 Big Book of

World Wie

Compiled by WO Jﬁ :
A CkLoshin™

Foreword by Jakob Nielsen & 2

Limelight 1008

(EENE STATE COLLEGE LIBRARY

B1G BOOK OF
WORLD WIDE WEB RFCs

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS (“AP”) AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION OR
PRODUCTION OF THE ACCOMPANYING CODE (“THE PRODUCT") CANNOT AND DO NOT WARRANT
THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY USING THE PRODUCT. THE PRODUCT
IS SOLD “AS IS” WITHOUT WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY, OR TORT (INCLUDING
NEGLIGENCE), WILL AP OR ANYONE WHO HAS BEEN INVOLVED IN THE CREATION OR PRODUCTION
OF THE PRODUCT BE LIABLE TO PURCHASER FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS,
LOST SAVINGS OR OTHER [NCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PRODUCT OR ANY MODIFICATIONS THEREOF, OR DUE TO THE CONTENTS OF
THE CODE, EVEN IF AP HAS BEEN ADVISED ON THE POSSIBILITY OF SUCH DAMAGES. OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW LIMITATION ON HOW LONG AN IMPLIED WARRANTY LASTS, NOR
EXCLUSIONS OR LIMITATIONS OF INCIDENTAL OR CONSEQUENTIAL DAMAGE. SO THE ABOVE
LIMITATIONS AND EXCLUSIONS MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM JURISDICTION TO
JURISDICTION

THE RE-EXPORT OF UNITED STATES ORIGINAL SOFTWARE IS SUBJECT TO THE UNITED STATES LAWS
UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY FURTHER SALE OF THE
PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED STATES DEPARTMENT OF COMMERCE
ADMINISTRATION REGULATIONS. COMPLIANCE WITH SUCH REGULATIONS IS YOUR RESPONSIBILITY
AND NOT THE RESPONSIBILITY OF AP.

B1G BOOK OF
WORLD WIDE
WEB RFCs

Compiled by Pete Loshin

M [«

Morgan
Kaufmann
In Imprint of ACADEMIC PRESS

San Diego San Francisco New York Boston
London = Sydney Tokyo

acid-frec paper

“This book 15 pringed on
© 2000 by Academic Press.

Compilation copyright
All rights reserved.
Except as expressly pmvidud, n
by any means, electronic
without permission in writing

produced or ransmitted in any

his publication may be re
or any information

g photocopys recordings
from the publisher.

o part of €
form or or mechanieal, including
storage and retricV al system,

marks of registered trademarks of their respective

All brand names and product names are trade

companies.

The RFCs compiled in this volume are copyright © The Internct Society. All rights reserved. The
he following notice:
larion and ransl
on or otherwise explau
in whole or in part,

graph are inc

Internet Society requires
The RFCs in this compi ed and turnished to others, and
e works that comment

d, puhlishcd and discributed,

ations of it may be copt
4 it or assist in its imp!
without restricrion
he notice and this para tuded on all such copies and
documents themselves may not be modified i any way, such as by
erences O The Internet SOCIELY or other Internet organizations,
loping lnternet standards in which casc the procedures for
be followed, or as required to tr

cmentation may be

derivany
of any kind,

prepared, copie
provided that the above COpYNES
derivative works. However, these
removing the copyright notice or ref
except as needed for the purpose of deve

copyrights defined in the Internet Standards process must
han English-

ermissions granted abov

anslate it into

languages other t
¢ be revoked by The Internet Society

The limited p
or its successors Of assigns.
The REFCs are prm':dcd on an “AS 18" basis and THE
[NTERNET ENG!.NEI"R]NG TASK FORCE DISCLAIM ALL W.‘\RRJ\NTIES. EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
1NFORMA'HON HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
OF MEI-'LCHANTM!.IL[T‘(OR FITNESS FOR A PARTICULAR PURPOSE.

¢ are perpctunl and will no

INTERNET SOCIETY AND THE

ACADEMIC PRESS
A Harcourt Seignce an
525 B Surect, Swite 1900, San Diego, CA

http:h’www.ncadumucpress.com

d Technology Company
§2101-4495 USA

Academic Press
Harcourt Place, 32 Jamestown Rd., London NwW1 7BY, UK

hrtp:waw,harcourt—ap.com

Morgan Kaufmana

A Harcourt Science an
340 Pine Street, 5ixth Floo
http://www.mkp.com

J Technology Company
r, San Francisco, CA 94104-3205

ber: 99-69874

Library of Congress Catalog Num
ber: 0-12-455841-0

International Standard Book Num

Printed in the United States of America
00010203EB98765432‘1

15 2000

This book is dedicated to the members of the Internet Engineering Task Force.

' Table of Contents

Foreword ix

Preface xi

Introduction xiii

' RFC 1630 Universal Resource Identifiers in WWW

RFC 1736 Functional Recommendations for Internet Resource Locators
RFC 1738 Uniform Resource Locators (URL)

RFC 1808 Relative Uniform Resource Locators

RFC 2109 HTTP State Management Mechanism

RFC 2141 URN Syntax

RFC 2145 Use and Interpretation of HTTP Version Numbers
RFC 2227 Simple Hit-Metering and Usage-Limiting for HTTP

RFC 2276 Architectural Principles of Uniform Resource Name Resolution
RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax

RFC 2483 URI Resolution Services Necessary for URN Resolution

RFC 2518 HTTP Extensions for Distributed Authoring — WEBDAV

RFC 2594 Definitions of Managed Objects for WWW Services

RFC 2609 Services Templates and Service: Schemes

REC 2611
RFC 2616
RFC 2617
RFC 2717
REC 2718
Index 11

URN Namespace Definition Mechanisms

Hypertext Transfer Protocol — HTTP/1.1
HTTP Authentication: Basic and Digest Access Authentication
Registration procedures for URL Scheme Names

Guidelines for New URL Schemes

Foreword

The Web Lives on Standards

Why is the Web changing the world? Because it is a unique medium for connecting
everybody to everything in an interactive manner.

It is that simple and that difficult. Because to truly connect everybody requires
strict standards. The modest (and very misleading) phrase RFC forms the foun-
dation for the Internet Economy.

Most of the time, I am very annoyed about the limitations of the current Web
standards and Internet protocols. For example, I think that email should be recon-
ceptualized with the goal of delivering fewer messages and not more. We are all
drowning in email, and it will soon take up the entire working day to deal with
that day’s mail. We need protocols that recognize the value of the user’s time and
go beyond simple data-delivery services.

Similarly for the Web: pages are a poor unit for user interface design.
Sometimes we need bigger units to help users understand their navigation behav-
ior and the structure of the information space. And sometimes we need smaller
units. And we definitely need stronger conventions and maybe even standards for
the ways people interact with website. For example, how do you find out the ship-
ping and handling fees on an e-commerce site before wasting time stepping
through the check-out process for something you end up not buying because S&H
turned out to be too expensive?

I can go on and on, but this is not a book about future Internet architectures.
This is a book about the Web today. And the Web works today because of the
RFCs. It would be possible to build much better systems in proprietary services.
Apple’s eWorld had several interesting components. And don’t even get me started

10

-
o
=
m
s
(<}
-
.

on the great benefits of the various features that we used to have in hypertext sys-
tems back in the 1980s.
You probably don’t remember eWorld. You pr

great hypertext systems of the 1980s. Reason: they
everything. They surely did connect somebody to somet

bodies and good somethings. But the power of universality killed them all.
The Web thrives because of Metcalfe’s Law which says that the impact of a

network grows by the square of the size of the network because that’s the num-
ber of possibilities it will support. If you take Metcalfe’s Law 1 reverse, it follows
that breaking a network up into N pieces reduces the total value by a factor of N

and that each of the pieces has a value of 1/N2.
As an example, let us assume that some online service succeeded 1n getting 20
the Internet in the

million subscribers out of the 100 million people who were Of
his writing. 1f this service decided to deviate from the

United States at the time of t
official standards and create its own cosed world, then the value of this new
world would be 4% of the total value of the American share of the net. Nota bad
number, of course, considering the high valuations of all things Web. But the value
of the remaining standardized portion of the net would be 16 times higher, even
though it only had 4 times as many uscrs- That's why universal connectivity Wins.
And that’s why you should pay close attention to every single spec 1n this book.
If you make even a <mall mistake that prevents 10% of the users from using
your Service, then you have reduced the value of your company by 19%.

obably never used any of the
didn’t connect everybody to
hing, and often good some-

Jakob Nielsen

Nielsen Norman Group

www.useit.com and www.NNgroup.com

11

' Preface

Most of the content in this book is available online, for free. As long as you know
| which RFCs you’re looking for, you can find them (and more) in any number of
RFC archives. In fact, if you don’t know what you’re looking for and just want to
\ read the RFCs in this book, you can find them listed on my web site at Internet-
Standard.com (along with RFCs in all the other books in the series, as well as
RFCs on other selected topics).
So why should you buy this book? If you’re like me, you probably find a book
a more manageable tool for accessing information that is related and cross-refer-
enced. Many of the RFCs here refer to each other; many of those refer to several
different RFCs in this volume. Surely some readers will prefer to open related
RFCs in multiple browser windows and then flip from one window to another.
Personally, I prefer the option of physically flipping pages—it’s faster, and that
J means I don’t forget what I was looking for in the “other” RFC. Books have many
other advantages over digital versions of the documents, such as portability (you
can read them anywhere, as long as you have some light); adaptability (you can
mark, highlight, and otherwise annotate the margins); and permanence (digital
media can degrade over time and online resources are not always there when you
need them).
However, the most important features of this book are these:

An excellent, comprehensive index. You may be able to easily search for
terms in a single RFC with your browser or editor, but this book’s index lets
you search through all the related RFCs — something not always easy or even
possible online.

An introduction to the topic in general. Few, if any, Internet topics can be
covered completely in a single RFC. If you’re not familiar with the topic, the

12

neroduction offers a context in which to read the RFCs. If you are familiar
RECs were included (and in

with the topic, the introduction will explain why
some cases, why some RFCs were not included). In any case, the introduction

provides a framework in which to read the RFCs.
o Comprehensive and authoritative COVerage of the topic.

That last feature is worth talking about 2 little more. «Doorstop” books
(books big and fat enough to hold a big heavy door open) are all too common in
the computer book industry. Publishers want fat books— 800, {200, or even
1500 pages long—for a number of reasons. None of those reasons make the
books better buys for the consumer. And authors are hard-pressed to fill that
many pages with useful information. So filler and fluff are common.

These books contain the most authoritative documentation possible of Internet
specifications. Not all RFCs are standards, but most .f not all of the RECs in this
book are at least on the standards track. This means that they are intended for gen-
eral use (at the least, to prove their efficacy and usefulness), and are very likely
available n implementations for popular computing platforms. Even informa-
tional RECs usually represent important research resuls, and experimental RECs
can be useful as documentation of the cutting edge of networking experience.

What that means is that this book does not contain lame analogies that some-
one has cooked up trying to explain the painfully obvious, not does it contain

paper-wasting illustrations, lists, tables, or glos i

saries. All it contains is the pri-
mary documentation of the Internet, with a few pages of introductory material

and what we think is the best index possible for this material.
Finally, the RFCs included in this book were selected so as to provide the most
a reasonably-sized book. Historic or marginally

but everything else you need (and nothing else)
more than what is in this book, you’ll
ople who wrote the RFCs.

complete reference of the topic in
relevant RFCs have been left out,
has been included. If you need to know
probably have to get in touch with the pe

13

Introduction

If you’re interested in what really, really makes the Web tick, then this is the book
for you. Not how to writt HTML pages, but how the clients and servers work
together and where URLs come from. The RFCs in this book document how the
Web works from an interoperable internetworking perspective.

The Internet Engineering Task Force (IETF) publishes a series of documents
called Requests for Comments (RFC) that represent a sort of collective con-
sciousness for the Internet community. These documents may also belong to other
sets of documents such as the Internet standards (STD) series, or the For Your
Information (FYI) series, or the Best Current Practices (BCP) series. An RFC may
contain a specification that is on the standards track, meaning the protocol or
mechanism described therein is intended for general standardized use and with a
goal to someday attaining Standard status. Other RECs may be Informational,
describing something of interest to the Internet community but not necessarily a
standard; still other RFCs may be designated Experimental, meaning they docu-
ment work being done by cutting-edge researchers that currently is not intended
for general use. And as RFCs become obsolete or irrelevant, they are relegated to
Historic status.

This volume contains 16 RFCs that best describe the apparatus by which the
World Wide Web works, as documented by the IETE Most of these RFCs describe
cither how the Hypertext Transfer Protocol (HTTP) works or how Uniform Resource
Identifiers (URIs) work. Uniform Resource Locators (URLs) and Uniform Resource
Names (URNS) are specific types of URI, and are also described here. However, RFCs
describing specific URI schemes are not included here as these documents tend to
have limited usefulness for a general understanding of URI, and the most frequently
used schemes are described within the general URI documents.

Not included here are specifications for the Hypertext Markup Language
(HTML). There are RECs that document HTML, but HTML version 2.0 is the
most recent version specified in an REC. By about 1996, responsibility for devel-

X111

14

5
-
=
o
Q.
<
n
=5
o
>

AIX

oping Web standards for content creation and formatting was ceded to the World
Wide Web Consortium (W3C), while the IETF retained responsihility for the net-
working aspect of the Web. Don’t be put off by the absence of HTML documen-
tation in this volume: there are dozens, if not hundreds, of resources available
both in print and online offering information about HTML tagging. If you want

to see the current standards, check the W3C web site at:

http:/lwww. w3c.orgl

Why RFCs in 2 Book?
ontents of the most important and most current speci-
fications for the World Wide Web, this bool is the definitive guide to the Web

fications. But all the RECs are available for free, online. Why
der of increasing

Containing as it does the ¢

protocols and speci
would anyone buy this book? For several reasons, listed in or

importance:

d these specifications online, but if you want to read
them while away from your computer, you must print them out. [f you want
to take notes, you must print them out. [f you want to share them with
coworkers, you must print them out. There is no denying the appeal of the
printed page when working with complicated technical documents.

e Thisisa comprehensive collection of Web RECs. All current Web RFCs are
here —and only Web RFCs. You can flip from one specification to another,
bookmark the important parts, and flip from one highlight to another
instantly — much faster than is possible with a browser.

e TFach RFC, as written, stands alone. Each defines some terms, but some use
terms defined in predecessor documents. Putting them together, and in
context, makes them that much more valuable.

« Nowhere else is this material collected together; nowhere ha
formally indexed in print. A high-quality index means that you no longer
must search through dozens of different documents looking for the answer 1O
a questinnr—all answers are included in a single book, and you can search

[l the relevant documents in a single procedure.

e You may be able to rea

¢ it ever been

for a term in a

What Is in This Book

Very simply, the World Wide Web consists of three mechanisms:

e Content. This may be tagged HTML documents, Or graphics images, OF
something else, but it can (for our purposes, at least) be considered nothing

more than data transmitted between SEIVELs and clients. Among other

15

specifications, HTML defines how content is prepared for use on the Web —
as well as off the Web. Browsers as well as many other types of application
software recognize and render HTML content found online as well as on CD
ROM or other digital media.

e A way to refer to content. The Uniform Resource Identifier (URI) and its
related specifications all define ways to locate content and retrieve it. The
most common type of URI is the Uniform Resource Locator or URL.

e A way to move content from a server to a client. The Hypertext Transfer
Protocol (HTTP) defines how clients (browsers) solicit data from servers,
and how servers respond to those requests.

As we’ve mentioned, content markup languages are outside the scope of the
IETF’s activities, and they are well-documented both online and off. Most of the
RFECs in this book describe how HTTP and URIs, URLs, and URNs work. The
included RFCs are briefly described next.

The RFCs

RFC 1630, Universal Resource Identifiers in WWW

This is the first published RFC written by Tim Berners-Lee (“Father of the Web”).
This informational document defines the Universal (later, Uniform) Resource
Identifier (URI) naming scheme for Internet and Web resources, and describes a
specific set of syntax for different types of URL. It provides a concise introduc-
tion to the URI.

RFC 1736, Functional Recommendations for Internet Resource Locators
This is another informational RFC that describes the issues and suggested solu-
tions related to uniform Internet resource locators. It discusses issues such as the
transiense of resources and the way resource locators are created and used.

RFC 1738, Uniform Resowrce Locators (URL)
This standards track RFC (updated by RFC 1808 and RFC 2368) is a more formal
and detailed specification than that contained in RFC 1630, but it covers the same
ground. This document discusses general format issues for URLs and also describes
the format for URLs, defining “schemes,” which are methods of representing dif-
ferent resources, such as those exemplified by the http:/ part of Web page URLS or
the ftp:// part of FTP site URLS. Examples of current schemes are provided as well
as Backus-Naur Format (BNF) syntax for URL and schemes.

i‘h 'C 1808, Relative Uniform Resource Locators
ai-clvlother standards track RFC, this one documents mechanisms for building rel-
1tve URLs. Rather than repeat the entire URL for every resource within a con-

16

Introduction

5
-
=~
Q
Qo
<
N
=
()
=}

text, it is possible to forego the expression of some parts of the URL —for
example, the scheme, the network location, and parts of the host/retrieval
path—for the sake of brevity. This RFC defines how such relative URLs are

built and parsed.

RFC 2109, HTTP State Management Mechanism

HTTP, like so many other Internet application protocols, is inherently stateless.
That is, HTTP servers do not store information about sessions, but rather respond
to any and every request from a client as an entirely separate interaction. This
REC describes a standards track specification for a state management mechanism
for HTTP: cookies. These allow servers to store some data with the client that
persists from one request to another and makes it possible for servers to support

interactive sessions OVer the Web.

RFC 2141, URN Syniax

This brief standards track REC describes a syntax for the Uniform Resource
Name (URN). Unlike a URL, which points to a specific resource on a specific
host, a URN is intended to be a persistent identifier of a particular resource. A
URL can point (o anything, with that anything changing from moment to
moment; the location itself is persistent, but the thing at the location can be dif-
ferent. A URN persistently points to the same thing, whose actual location may

change from time to time.

RFC 2145, Use and I nzm]f;-rr'.t(uion of H TTP Version Numbers
Though an ‘nformational RFC, this document explains how HTTP version num-
bers should be used and interpreted, and is considered important to the use of

HTTP within the Internet and elsewhere.

RFC 2227, Simple Hit-Metering and Usage-Limiting for HTTP

By 1997, the practice of cache-busting was common on the Web. Servers would
use various techniques to prevent pages from being cached on intermediate Sys-
tems solely for the purpose of generating accurate demographic counts, or hit
counts, for web sites. This standards track RFC describes an extension to HTTP
chat allows servers to collect some hit-count information from caching proxies, as
well as to put some control on how long cached data can be used by proxies.

RFC 2276, Architectural Principles of Uniform Resource Name Resolution

Though URLs have long been in common use, URNs have yet to make a signifi-
cant impact. Missing is an ‘nfrastructure for resolving URNS to URLs, in much
the same way that the Domain Name System (DNS) provides an infrastructure for
resolving a domain name (e.g. loshin.com) to an IP address (e.g., 1 92.168.33.02).

17

This informational RFC describes the architectural principles that should be
applied to building a URN resolution infrastructure.

RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax

This standards track RFC defines a generic syntax for URIs, enabling applications
capable of parsing and interpreting any kind of URI, whether 2 URL or URN. As
a draft standard, RFC 2396 is only one step away from a full Internet standard.

RFC 2483, URI Resolution Services Necessary for URN Resolution

This experimental RFC describes operations for URN resolution and discusses
some guidelines for implementing these operations in a protocol. As an experi-
mental RFC, this document should not be used as a basis for mainstream appli-
cations, but it does provide important information about the way URIs and URI
resolution work.

RFC 2518, HTTP Extensions for Distributed Authoring — WEBDAV

As the abstract explains, RFC 2518 “describes an extension to the HTTP/1.1 pro-
tocol that allows clients to perform remote web content authoring operations.” It
describes a set of methods, headers, and body formats that provide:

* Operations for creating, removing, and querying information about Web
page properties.

* Operations for creating and retrieving sets of documents and hierarchical
listings of objects within those sets.

* Document locking, to prevent more than one entity from editing a document
at any given time.

* Namespace operations, to allow servers to copy and move Web resources.

This standards track document describes an extension to HTTP/1.1 that
makes distributed and interoperable Web authoring much simpler.

RIC 2594, Definitions of Managed Objects for WWW Services

Most Internet servers and devices use the Management Information Base (MIB)
for storing and retrieving management information. In order to manage informa-
tion that goes beyond the most basic information about the system, additional
managed objects are usually defined for specialized systems. This standards track
REC defines managed objects for WWW services, to be used by SNMP systems.

RFIC 2q09, Service Templates and Service: Schemes
Ifhls RFC describes a new URL scheme, called the "service:" scheme, which will
argely be used by the Service Location Protocol (SLP) to distribute service access

18

introduction

5|
-~
ﬂ
o
a
€
(a]
=
)
=)

information. The proposed standard specification defines an extensible frame-
work by which client software can get all the configuration information necessary

to use a network service.

RFC 2611, URN Namespace Definition Mechanisms

One of the prerequisites for a Uniform Resource Name (URN) infrastructure is a
resource namespace. just as the Internet domain name space requites that domain
names be globally unique, so t09 does the URN namespace. This REC, which is
also a Best Current Practice (

BCP 33), defines URN namespaces and describes
mechanisms for creating them.

RFC 2616, Hypertext Transfer Protocol — HTTP/1.1

This is the most important REC of this volume. It is 2 draft standard, putting it
one step away from full Interner standard, and it defines one of the most visible
protocols on the Internet. Virtually every computer shipped since the mid-1990s
included at least an HTTP client, and HTTP servers are included in almost all

server operating systems as well. This specification defines how those clients and
w those servers respond

servers behave: how clients solicit data from servers, ho
to requests, the format of data and messages transmitted between client and
gerver, server responses, and much more. At 176 pages, it is one of the longer

RECs in the canon, but it is also one of the most widely used.

RFC 2617, HTTP Authentication: Basic and Digest Access Authentication
Another draft srandard, RFC 2617 isa companion specification to REC 2616 and
defines mechanisms for doing authentication with HTTP.

RFC 2717, Registration Procedures for URL Scheme Names

This REC is a Best Current Practice (BCP) document describing the procedures for
registering New URL scheme names. Scheme registration processes for the IETF
scheme tree and for other scheme trees are described, with those in the IETF tree
of interest to the Internet community at large, with other trees being made avail-

able as needed for special interests.

RFC 2718, Guidelines for New URL Schemies

This is an [nformational REC that describes how new URL schemes should be

formatted and described. It < intended as a guide to those building new schemes

or registering those schemes. It discusses the factors
ded and

as well as to those evaluating
that should be considered in determining whether the new scheme is nee

whether it is compatible with existing schemes.

19

Getting RFCs Online

We could waste several pages with pointers to different web sites and mailing lists
where you can find out more about RFCs in general and the World Wide Web in
particular. Let’s just say, you can find plenty of online resources (including up-to-
date pointers to all those online resources) at this web site:

http:/fwww.Internet-Standard.com

You will also find pointers to all the RFCs publshed in this book, as well as
up-to-date information about new RFCs released after this book was published,
and much more about this book, others in the series, and other books about
Internet standards.

Introduction

Reading This Book

RFCs in this volume (and others in the series) are published in chronological
order. Usually, this provides some logical flow for the reader, who can often start
at the beginning and read (more or less) straight through to understand the topic.
However, in this case, many of the earlier RFCs that discuss HTTP have been
superseded and replaced by later RFCs. Thus, the earlier RECs often touch on
HTTP issues.

Therefore, readers looking for a comprehensive overview to the topic may
prefer to start near the end, with RFC 2616, to understand HTTP, and then con-

tinue from the start of the book for coverage of resource identifiers and HTTP
adjuncts and extensions.

For More Information

As editor of this series, I intend that this volume be used as a tool for network
implementers and deployers. Please let me know if you find it useful —and please
let me know if you know of a way to make it more useful. For more information
ibout Internet standards in general, check out Internet-Standards.com; if you

1ave a question or comment about this series, or if you’ve discovered a bug in the
text, or just want to get in touch, email me at:

pete@loshin.com

Hearing from readers of material I've edited or written is usually the best part
of my day; T'd [ove to hear what you think!

20

Network Working Group R. Fielding
Request for Comments: 2616 UC Irvine
Obsoletes: 2068 J. Gettys
Category: Standards Track Compag/wW3cC
J. Mogul

Compag

H. Frystyk

W3C/MIT

L. Masinter

Xerox

P. Leach

Microsoft

T. Berners-Lee

W3C/MIT

June 1999

Hypertext Transfer Protocol -- HTTP/1.1

Status of this Memo

This document specifies an Internet st
Internet community, and requests discussion and suggestions for
improvements, Please refer to the current edition of the "Internet
Official Protocol Standards" (gTD 1) for the standardization state

and status of thisg protocel. Distribution of this memo is unlimited. |

andards track Protocol for the

Copyright Notice

Copyright (C) The Internet Society (1999). a11 Rights Reserved.

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level

protocol for distributed, collaborative, hypermedia information
Systems, It is a generic, stateless, protocel which can be used for
many tasks beyond its use for hypertext, such as name servers and
distributed object management systems, through extension of its
request methods, error codes and headers [47]. & feature of uTPp is
the typing and negotiation of data representation, allowing systems
to be built independently of the data being transferred,

HTTP has been in use by the World-
initiative since 1990. This g
Teferred to ag "HTTP/1.1",

Wide Web global information
pecification defines the Protocol
and is an update to RFC 2068 [33],

Pxélding. et al. Standards Track

[Page 1]

21

9192 DY

RFC 2616 HTTP/1.1 June 1999

Table of Contents

1 e o e o oo o X s+ N L e 7
1.1 PUTDOSE e 4 e e e s ea s s s eo s s s as st e 7
1.2 REQUITEMENES «ovvtvevnrenrvonaneaasnsneotosasenanecressnnress 8
1.3 TEITNATIOLOTY + v v v oo v vt ennnoanessssssassesoossaenssasamasssress 8
1.4 Overall OpPerationeeeeeoeescnneanerasonoanonrsansarses 12
2 Notational Conventions and Generic Grammarseeccc 14
2.1 Augmented BNFuvereeennseacanasneresasnssnssees srnsnsss 14
2.2 BASLIC RULES + v tvevvmnoesoeenonnnnsssteessssasonsaanasanssss 15
3 ProtoCOl ParameberSeveterrearoossnnerstsosesess s asssanneas 17
3.1 HTTP VEISLiOT «vvovvnmneensortouoannanossosaneeserssesnsaiasssas &7
3.2 Uniform Resource Identifiersccouieeneeeennirnrnnnnras 18
3.2.1 General SYNEAXveerrereeaaraonsaasersennaaer s 19
3.2.2 a0 =15 < T ¢4 P R R R RS LR 19
3.2.3 URI COMDAYISOM «vvvvenenonenocanssonensosasosasncnsossoses 20
3.3 Date/Time FOXMALS +cevevurernneenneononmneenseecnnssannrsisss 20
3.3.1 FULL DBEE + vt v nvvaenseeseonnnnsnensseeesssssananrnnseess 20
3.3.2 Delta SECONAS v vvereieetuneraaossnesansaeestossnan b 21
3.4 CHATACEEY SEES 4 v v v veeeeroeeannonssesssnnoenssssonoassnssescs 21
3.4.1 MisSing CharSeLeeieiiiiiieerraner oo ses 22
3.5 Content COAIMTS v vvvvnrnnenronsoronnenssaseaceanananty el d
3.6 Transfer COQITNOS . vvrrtertrereneeaneenenssoaasssosttaansssnnss 24
3.6.1 Chunked Transfer COAINgcecveueereaeniennaare 25
3.7 MEALA TYDES + et nvoervneennronecesstnsanansssseneasmsuasesscs 26
3.7.1 Canonicalization and Text Defaultscceomrmeeenns 27
3.7.2 MULtipart TYDES . .uevevueeonencnonnaesonsaannssessas S 27
3.8 ProdUCt TOKEINS v veeeeroseenennsansenenaannsssnasenas ¥ el 28
3.9 QUALILY VALUES . .vviernreeroensnnnnnssessnnserncnresssnes 29
3,10 LANQUAJE TAGS .+ vvreesrnesstaaennossss et sosancossurtnanssss 29
3,11 ENtity TAQGS +vevervocoacaorossnsnnane o oo sscerssnaneses 30
3.12 RaANGe UNLIES «ovviiunnnnnnerosrorasnarensenesescnnrness 30
4 HTTP MESSATE .+ v v oervnnrnnonessstonasaausesssuoesanssesnssssscns 31
4.1 MESSAGE TYDES .+ v vonvaneenenceneanansaasssesstssannsenssssssns 31
4.2 Message HEaderSeveeeertueonnnersseenaonnereerisiinnns 31
4.3 MESSATE BOGY v tevrtanneneneneansanasacensstansnaressunnses 32
4.4 Message Lengthouieenniiiiiianai i 33
4.5 General Header FieldAsSieiennieneecinnearareraconnannensss 34
5 e (LY=L I 35
5.1 REQUESE-LAME . .vtinvrermeoeenusnnenanaressasuecneeenncrcnns 35
5.1.1 MEEROA o oo s e es et ian e eane e)
5.1.2 REQUESE-URT . tvutivnrnnnennnnssnssnessaesenssonennmsrssts 36
5.2 The Resource Identified by a Requestcconvvannnrrs 38
5.3 Request Header FLELAS ...vevvvreeeeerrnnnnnnnnennonnmnnsts 38
6 ROSDOTISE .+ vvvvvnenvnnnnnnasonaeesssssoeesssanneosannennssrsnns 39
6.1 SELALUS-LAIE .« v v eevnrunarerroaannaesneaessonnnssnsesesnnorosss 39
6.1.1 Status Code and Reason PHY@Seeeevesenonnscnssnnert? 39
6.2 Response Header Fieldsceeeesvunrereerrencnnnernnsensoss 41
Fielding, et al. standards Track [page 2]

22

RFC 2616 HTTP/1.1 June 1999
7 BOEEY oo r a5 55§ e 42
7.1 oLty Hoader FLelds ywa swe imesiis 655 565 Snmmm amm 42
7.2 FACIEY BOGY ©. ettt st s vt s e s v e 43
7.2.1 TYP® i 3l S e e A S S S b T 43
7.2.2 ENEILY LONGER wossitava s vmnnmnmnsns s gsn s o 43
8 CORBECLIONS ..\ veioiot v inme wvvas e nannnnsnsnsns s AT RS 44
B.1 Pereistent Comnections [[[lllliiiirieeeeeee 44
8.1.1 SUEDOBE o o s i v e e 44
8.1.2 overall OPOrALon suiia..........l LTI 45
B.1.3 PANY BRIVEE: (st v v e T 46
B34 Practical Considerations /1111t 46
8.2 Message Transmission Requirements 47
g.2.1 Persistent Comnnections and Flow Control 47
8.2.2 Monitoring Connections for Error Status Messages 48
8.2.3 Use of the 100 (Continue) Status 0" 48
8.2.4 Client Behavior if Server Prematurely Closes Connection ..50
9 MREROd DOMBIELONS oveciwsasnrnr.inansssyesern e D 51
9.1 Safe and Idempotent Methedsoveun it 51
9.1.1 B8 MBLHOMS v« yiwe vt e e aanans sl oo 51
S.1.2 TOMPCESHE. BELUOIN vy 0 mwoms & 2w 53 E S e e 51
9.2 i 52
9.3 T MR IATAG TN s e DS G g o o TS 53
9.4 DD EEE S as VA T S S v e e 54
9.5 DOBT » RHGRATS 43} 65, 1ase waste e 550 S g LT 54
9.6 B R 55
9.7 DE g it € A o R DA S s s e O 56
9.8 O s Faindsmmme yins s s 5% U355 i e m s s e 56
9.9 CONNECT vuwwweiasinn cas BENPS SN A RSP S mrm e smce e i 57
10 SEAtus Cods DEFIMILIONS +uie sintias st o nmmmew s e s 57
101 EOMALAGNAL LXK iyt n e b et 57
10.1.1 IO COBEIIUE \.oovr . v s 455 550 55 1y s s e 58
10,3:3 101 Switehing PrOLOCOLSew.ssoossonssnne 000 58
T002 TWOSRABIUL B ; wpix sonsarv s nit SO G LTSRS b 58
10.2.1 o T 58
10.2.2 JOL COBALOR .. .o onco mism 650 6575 S5 S s o TR I T e 59
10.2.3 208 DLOMDLON s i 053 0y v s s« 2o 59
10.2.4 203 Non-Authoritative Information " 59
10.2.5 208 MO QOMEOOE wueuinivuiv s s menmpmmsmsnann s o 60
10.2.6 205 Redet CONEONE. ... vevssuiicinnstnsianmn von oo 60
10.2.7 298 PATRAAL ICOREAIE b bt s vme soie vn ot wn o e 60
10.3 Redirection BIIE 5 o ariosmme ermin 63000 S50 S S AR pmsmrmrmietra s e 61
10.3.1 300 Multiple CHOLCER ...ueuuvvcnnansnssnsn oo [
10.3.2 301 Moved ECTHRBEIEIN wcocosrmm bt S5 50§80 e i womcros s b 62
10.3.3 SRIPOUIL v o s 5575 80 0 s e wis vt s o 62
10.3.4 BID G0 OO G songammmar oms ot oooth R s veoa63
10.3.5 ok NOE MOGLEASH! vt 50 e 514 s mmn o oot s e 63
10.3.6 3ps . G SRR SRO————————— R o 64
B2 0 U o i sa s e e T

Standards Track [Page 3]

23

RFC 2616

9L9¢ DY

Fielding,

et al. standards Track

RFC 2616 HTTP/1.1 June 1999
10.3.8 307 Temporary RedirecCtc...ceecronnermmemrrrrsrnssns 65
10.4 Client EXTOT AXX ..eeeesonassnnnnnnnss s sssssssmmsssnrrnsttinss 65
10.4.1 400 Bad REQUESL . covrnervcnrenense e mansarssrsnssssss 65
10.4.2 401 Unauthorizedeeeeeeeamnararersnaasmamrorsrssnss 66
10.4.3 402 Payment REQUATEA +vvvvivronnensnmrann s aees 66
10.4.4 403 FOYDIAAEN . .vvvvvrvecncnrasne s easaunsrmsresns 66
10.4.5 A0A NOL FOUNA +vvvervrnnnnrnsasnesssmersusnsnmesssssssses 66
10.4.6 405 Method Not Allowedceccrvesmmenrurrearrnnsansss 66
10.4.7 406 Not Acceptableeeeeeesermrmnmrmmerrsrteress 67
10.4.8 407 Proxy Authentication Requiredcsoevevsnssanmnanees 67
10.4.9 408 ReqUeSt TAMEOUL o rvevsnnessrensssrmssnrnsrnssonssss 67
10.4.10 £09 CONELLICE veevvnnnennnnsnnsereesssraaassuionearnsees 67
10.4.11 410 GOME v vveoecansnnssoensenaoressuresy ufasasuoness 68
10.4.12 411 Length Requiredceensmenrennmenemerrrrrmrsssss 68
10.4.13 412 Precondition Failedcevnruannmmernsrrrsres 68
10.4.14 413 Request Entity TOO LATGe ...c...orivsarrrurarrrrrsey 69
10.4.15 414 Request-URI TOO LONG «..esseerermnssnrmstansrsssssssy 69
10.4.16 415 Unsupported Media TYDecreerrnsramrorrorress 69
10.4.17 416 Requested Range Not Satisfiablecvsvsennmnnoens 69
10.4.18 417 Expectation Failedccreerens T ¢ 70
10.5 Server EXTOT SXX .eveeesserrnnnnsserre s nmnnmsrrsimssnsnsss 70
10.5.1 500 Internal Server EFYOTccesscrrersorsannrsss 70
10.5.2 501 Not ImMplementedeeoeeeeecmnnsesmrrrssrrssssses 70
10.5.3 502 BaAA GALEWAY « v vcnrereenrsssesensmsssensnsmurrssrsscs 70
10.5.4 503 Service Unavailablee.ceermermrnenrmrsrrres 70
10.5.5 504 Gateway TiMEOUL ...uewecnsrreecrrrmmmanrsnresssrses 71
10.5.6 505 HTTP Version Not Supportedeescesmrrrrrneers 71
11 Access Authenticationc.ceenreeinuinrrmnermn s 71
12 Content Negoti@fiOMesseerrnnnereenenrensssssssramrrersns 71
12.1 Server-driven Negotiationccerevsrrnrnrmerorssrss 72
12.2 Agent-driven Negotiabioneeecenevemarnrrsssnsommamne ey 73
12.3 Transparent NEGOLAAELON «ovvveeresseerrmnsmnnnnsnmmsreses 74
13 Caching im HTTP ..uuuuwsvosenmmmeres oo ssssrsssrrsssssnsrsnss 74
13.1.1 Cache COTTECENESS . .vwvrvrnsraran s sasmnessssesrsstsrtns 75
13.1.2 WATTIANGS « v v vvenerrnenassrenenae e sss s anrrnssstssnt 76
13.1.3 Cache-control MeChaniSmsceoovesmerererrosrsssrsss W,
13.1.4 Explicit User Agent WATNINgS «vevvvrnrencmmmamnrnanees 78
13.1.5 Exceptions to the Rules and Warnings .. .seeessszreseeccs 78
13.1.6 Client-controlled Behaviorccerscrrorermesrersrnsn? 79
13.2 Expiration Modeleeceesseesanannrsssnnarmsrn ittt Th9

.2.1 Server-Specified Expirationc.coeseeenararnrnntntt 79
.2.2 Heuristic EXDATatione.veerenansunrorrnramesssrrsstt? 80
3.3 Age CaloulatiOmns ...eeeeecenes mrmaseasmeerermrsorsrn ittt 80
3.4 Expiration Calculationseeeeesceeorrsrmsrrnttt 83
‘2 5 Disambiguating Expiration Valuesc.c.erecermsotttt 84
2.6 Disambiguating Multiple RESDONSESeerr-ecrrccrrt i7" 84
(3 VALlidation MOGEL ...eerrenserarossnssnadiaiis ettt 85
3.1 Last-Modified DALeSc.ceeesssssasarararnssr ottt n 86

24

RFC 2616 HTTP/1.1 June 1999

13.3.2 Entity Tag Cache Validators 86
13.3:.3 Weak and Strong Validators,.... . 00000 86
13.3.4 Rules for When to Use Entity Tags and Last-Modified Dates.89
13.3.5 Nhn—validating Conditionals= 90
13.4 Response Bty .l L 91
13,5 Constructing Responses From Caches 92
13.5.1 End-to-end and Hop-by-hop Headers | [Tt 92
132.5.2 Non-modifiable TRAABTE v s ww ks v e irssr L 92
13.5.3 Ot i® BRAEEY nvimwstasitmmmn o oo 94
13.5.4 Combining Byte ORISR Liomiginry e i 50 s ee sl e 95
13.6 Caching Negotiated ROBDORESS: “isiyumnnnnnanss oo 95
13.7 Shared and SORSRATe CACRES ..ovewnvaini. 96
13.8 Errors or Incomplete Response Cache Behavior 97
13.9 8ide Effects of ST NG HEAD oy va s st n e sa e 97
13.10 Invalidation After Updates or Deletions 97
13.11 Write-Through privipuc: ST RO 98
13.12 ¢ e R P S 99
13.13 e oay L1888 et L B et 99
14 Header Field Pefinitions ol 100
102 M s e LTI 100
14.2 N aarBet +neuee LI 102
14.3 Accept—Encoding .. 102
14 .4 Accept—Laﬁguage .. 104
14.5 A ABEER s LI 105
L7 IR S LTI s 106
L At fisgasnm e LI 106
105 e REOR i LTI 107
14.9 cache-control .,..... A A e AR e L 108
14.9.1 Mo o CRBEAELE oevcsmmmntitygs s« oo eee s 109
14.92.2 What May be Stored by ‘Caches,co0..,.l.... . 0T 110
14.9.3 Modifications of the Basic Expiration Mechanism 111
14.9.4 Cache Revalidation and Reload Controls 113
14.9.5 No-Transform DLBSDEAVE! vivp oo sins 854 853 w000 ss e 115
14.9.¢ Cache Control BECCHREONE (st dinmmmmmat « e ov e ovrnne 116
14.10 e R R G A 117
14.11 Content—Encoding ... 118
14.12 Content—LanguagE ... 118

14.13 Ccntent—Length

! Clockless Origin Server Operation """ 125
ld.19 B o Hites v i e uss

Standards Track [Page 5]

RFC 2616

25

RFC 2616 HTTP/1.1 June 1999

14.23 HOSE @ v vveenveeonensonassnsns o @ e R AT e i s B 51 0w (e 128

14.24 TE-MAECR +evvevvnvensncnnessiasasmasnpsessersrsoseesrniron 129

14.25 TF-Modified-Sinceeveverrsranenaneennarsasaaaanaesens 130

14.26 TF-NONE-MAECH . .vevveeoennnresannmasenassanssisssmansessss 132

14.27 TE-RAIGE &+ v vvvetnneernnsoeassassssnsrsssnassenscsnnnnssses 133

14.28 Tf-Unmodified-Sinceeviinssenmneennn o sannniiiy 134

14.29 LAast-MOAified +uivirreere it v....134 i
14.30 LOCALLOM v e v vnnensseeesasnasanssanennesrarsssssassens 135

14.31 MaX-FOTWALAS .+t v vrveeronnonsnsssnassannsasisarinsansssnns 136

14.32 PLAGME <o v v ceontonnesssessiimams e segeis b ol » o8 e ais st 136

14.33 Proxy-Authenticateocereivarrenaaraarnrasrnrre 137 |
14.34 Proxy-Authorizationveeveecrarnnens R == L 137

14.35 RENGE v evvrereonrannnssaeesnsssasaassassasioneoonsesesaness 138 |
14.35.1 Byte RANGES . .vvnvoenreonsrsnenssssnassossstsrsinunss 138

14.35.2 Range Retrieval REQUESESiiuvsrvnnerrernnnnores 139

14.36 ey oy = < L e R T I 140

Retry-AfLEr ...vuienrnieutnrarasrs i usioarasnrsrrnranees 141

UDGEAAR i s iioinenna e somesormasesnesssoonsaeieniss e
USAE-BIBIHE voae v v s s oaioa s s des aie s daassainesnesmesnsssrye s 145

WALTIANG o eeavrvrmie e v asmmames s soessassdsssrassssasssoine.

14.47 WWW-Authenticateeeciaraaunaansasssesre s cenns 150

15 Security Considerationsceeeccvcrenresaniarriinron s 150

15.1 Personal INfOrmation.......ooeeeeieiieerenscnneaennnnns 151

15.1.1 Abuse of Server Log Informationceciveeavananas 151

15.1.2 Transfer of Sensitive Informationcciveveeeennens 151

15.1.3 Encoding Sensitive Information in URI'Svuevaes 152

15.1.4 Privacy Issues Connected to Accept Headersseeovsvers 152

15.2 Attacks Based On File and Path Namescoceoeennoeens 153

15.3 DNS SPOOEING .« e vvuvnrnenenrnriraacenenennnen s snrrsrses 154

15.4 TLocation Headers and Spoofingeceemmmninereees 154

15.5 Content-Disposition ISSUEScoeenurenrnnaaren s 154

15.6 Authentication Credentials and Idle Clients .. e ause kiss e o 155

15.7 Proxies and Cachingc.oeeesnmnrrenutnnannnrionses 155

= 15.7.1 Denial of Service Attacks on Proxies..........c.eenveaneen 156
- 16 ACKNOWLEAGMENES « vt et rvenrneercansasnsneeencnesaarecesenssrs 156
N 17 REFEIENCES - e v ene e een e enasneatonsanssasssssesnsaencnsns 158
N 18 AULHOTS' AQATLESSES .+ ivvernteanreannorenasenneasesoussnnsesess 162
g 19 BPDPENALCES « e v v v e vvnn e s 164
o) 19.1 Internet Media Type message/http and application/http «....- 164
19.2 Internet Media Type multipart/byterangescce---: 165

19.3 Tolerant APPliCAtiONSvueriveienenmeerasrnenneermannrts 166

4 Differences Between HTTP Entities and RFC 2045 Entities 167

Fielding, et al. Standards Track

26

RFC 2616 HTTP/1.1 June 1999
19:4. % SEMBAVEEBLON woonavaii ettt e 167
19.4.2 Conversion to Canonical Form ... 167
19.4.3 Conversion of Date Formabs ... i i 168
19.4.4 Introduction of Content-Encoding 168
19:4.% No Content—Transfer—Encoding 168
19.4.6 Introduction of Transfer-Encoding 169
19.4.7 MHTML and Line Length Limitations 169

‘ 1913 Addifiomal Reatures,.................... . 0l 1treies 169
19.5.1 Content-Disposition 1 llTtiiirienees 170
19.6 Compatibility with Prewvious Versions 170
19:6.% Changes from HPTP/1.0 [1/ 77 i 171
19.6.2 Compatibility with HTTP/1.0 Persistent Connections 172
19.6.3 Changes from RFC 2068

................................... 172
20 Index

1 Introduction

1.1 Purpose

The Hypertext Transfer Protocol (HTTE) is an application-level
protocol for distributed, collaborative, hypermedia information
systems. HTTP has been in use by the World-wide Web global
information initiative since 1990. The first version of HTTPE,
referred to as HTTP/0.9, was a simple protocol for raw data transfer
across the Internet. HTTP/1.0, as defined by RFC 1945 [6], improved
the protocol by allowing messages to be in the format of MIME-l1like
messages, containing metainformation about the data transferred and
modifiers on the request/response semantics. However, HTTP/1.0 does
not sufficiently take into consideration the effects of hierarchical
proxies, caching, the need for persistent connections, or virtual
hosts. In addition, the proliferation of incompletely—implemented
applications calling themselves "HTTP/1.0" has necessitated a
protocol version change in order for two communicating applications
to determine each other's true capabilities.

This specification defines the protocol referred to as "HTTP/1.1v,
This protocol includes more stringent requirements than HTTP/1.0 in
order to ensure reliable implementation of its features.

Practical information systems require more functionality than simple
retrieval , including search, front-end update, and annotation. HTTP
2llows an open-ended set of methods and headers that indicate the

Purpose of a request [47]. It builds on the discipline of reference
Provided by the Uniform Rescurce Identifier (URI) [3], as a location
(URL) [4] or name (URM) [20], for indicating the resource to which a

gielﬁing, et al. Standards Track

RFC 2616

[Page 7]

27

RFC 2616 HTTP/1.1 June 1999

method is to be applied. Messages are passed in a format similar to
that used by Internet mail [9] as defined by the Multipurpose
Internet Mail Extensions (MIME) ([7].

HTTP is also used as a generic protocol for communication between

user agents and proxies/gateways to other Internet systems, including

those supported by the SMTP [16], NNTP [13], FTP [18]), Gopher [21,

and WAIS [10] protocols. In this way, HTTP allows basic hypermedia |
access to resources available from diverse applications.

1.2 Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NoT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", “MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [34].

An implementation is not compliant if it fails to satisfy one or more
of the MUST or REQUIRED level requirements for the protocols it
implements. An implementation that satisfies all the MUST or REQUIRED
level and all the SHOULD level requirements for its protocols is said
to be "unconditionally compliant”; one that satisfies all the MUST
level requirements but not all the SHOULD level requirements for its
protocols is said to be "conditionally compliant."

1.3 Terminology

This specification uses a number of terms to refer to the roles
played by participants in, and objects of, the HITP communication.

connection
A transport layer virtual circuit established between two programs

for the purpose of communication.

message
The basic unit of HTTP communication, consisting of a structured

sequence of octets matching the syntax defined in section 4 and
transmitted via the connection.

request
An HTTP request message, as defined in section 5.

response
An HTTP response message, as defined in section 6.

91L9¢ Oid

Fielding, et al. Standards Track [page 8]

28

RFC 2616 HTTP/1.1 June 1999

resource

A network data object or service that can be identified by a URI,
as defined in section 3.2, Resources may be available in multiple

representations (e.g. multiple languages, data formats, size, and
resolutions) or vary in other ways.

entity
The information transferred as
response. An entity consists of

entity-header fields and content
described in section 7.

in the form of an entity-body, as

i representation

An entity included with a résponse that is subject to content
negotiation, as described in section 12. There may exist multiple
representations associated with a particular response status.

content negotiation
The mechanism for selecting the appropriate representation when
servicing a request, as described in section 12. The

répresentation of entities in any response can be negotiated
(including error responses) .

variant

A resource may have one, or more than one, representation(s)
associated with it at any given instant. Each of these
representations is termed a ‘varriant'. Use of the term ‘variant:'

does not necessarily imply that the rescurce is subject to content
negotiation,

client

A program that establishes conne

ctions for the purpose of sending
requests.

user agent
The client which initiates a request.
editors, spiders (web-traversing robot

These are often browsers,
Ss), or other end user tools.

server

An application program that accepts connections in order to
service requests by sending back responses. Any given pProgram may
be capable of being both a client and & server; our use of thesge

e being performed by the program for a
+ rather than to the program's capabilities
any server may act as an origin server,

or tunnel, switching behavior based on the nature

in general . Likewise,
Proxy, gateway,
of each request,

Fielding, et al. Standards Track

RFC 2616

[Page 9]

29

RFC 2616 HTTP/1.1 June 1999 \

origin server
The server on which a given resource resides or is to be created.

Proxy
An intermediary program which acts as both a server and a client
for the purpose of making requests on behalf of other clients.
Requests are serviced internally or by passing them on, with
possible translation, to other servers. A proxy MUST implement
both the client and server requirements of this specification. A
"transparent proxy" is a proxy that does not modify the request or
response beyond what is required for proxy authentication and
identification. A "non-transparent proxy" is a proxy that modifies
the request or response in order to provide some added service to
the user agent, such as group annotation services, media type
transformation, protocol reduction, or anonymity filtering. Except
where either transparent or non-transparent behavior is explicitly

stated, the HTTP proxy requirements apply to both types of

proxies.

gateway
A server which acts as an intermediary for some other server.
Unlike a proxy, a gateway receives requests as if it were the
origin server for the requested resource; the requesting client
may not be aware that it is communicating with a gateway.

tunnel
An intermediary program which is acting as a blind relay between
two connections. Once active, a tunnel is not considered a party
to the HTTP communication, though the tunnel may have been
initiated by an HTTP request. The tunnel ceases to exist when both
ends of the relayed connections are closed.

cache
A program's local store of response messages and the subsystem
that controls its message storage, retrieval, and deletion. A
cache stores cacheable responses in order to reduce the response
time and network bandwidth consumption on future, equivalent
requests. Any client or server may include a cache, though a cache
cannot be used by a server that is acting as a tunnel.

cacheable
A response is cacheable if a cache is allowed to store a copy of
the response message for use in answering subsequent requests. The
rules for determining the cacheability of HTTP responses are
defined in section 13. Even if a resource is cacheable, there may
be additional constraints on whether a cache can use the cached

copy for a particular request.

9L92 D44

Fielding, et al. Standards Track [page 101

30

RFC 2616 HTTP/1.1 June 1999

first-hand

A response is first-hand if it comes directly and without |
unnecessary delay from the origin server i

proxies. A response is also fi
been checked directly with the

explicit expiration time
The time at which the origin server in

tends that an entity should
no longer be returned by a cache witho

ut further validation.

heuristic expiration time
An expiration time assigned by a cache when no explicit expiration
time is available.

age
The age of a response is the time

since it was sent by, or
successfully validated with, the o

rigin server.

freshness lifetime

The length of time between the
expiration time.

generation of a response and its

fresh

A response is fresh if its age has not yet exceeded its freshness
lifetime.

stale

A response is stale if itg age has passed its freshness lifetime.

semantically transparent

A cache behaves in a "semantically transparent" manner, with
respect to a particular response, when its use affects neither the
requesting client nor the origin server, except to improve
performance. When a cache is semantically transparent, rthe client
receives exactly the Same response (except
that it would have received had its request
by the origin server.

validator
A protocol element (e.qg.,
that is used to find out w]
COPY of an entity.

an entity tag or a Last-Modified time)
hether a cache entry is an equivalent

Upstream/downstream

Upstream and downstream describe the flow of a message: all
hessages flow from upstream to downstream.

lding, ot al. Standards Track

RFC 2616

[Page 11]

31

RFC 2616 HTTP/1.1 June 1999

inbound/outbound
Inbound and outbound refer to the request and response paths for
messages: "inbound" means "traveling toward the origin server",
and "outbound" means "traveling toward the user agent"

1.4 Overall Operation |

The HTTP protocol is a request/response protocol. A client sends a
request to the server in the form of a request method, URI, and
protocol version, followed by a MIME-like message containing request
modifiers, client information, and possible body content over a
connection with a server. The server responds with a status line,
including the message's protocol version and a success or error code,
followed by a MIME-like message containing server information, entity
metainformation, and possible entity-body content. The relationship
between HTTP and MIME is described in appendix 19.4.

Most HTTP communication is initiated by a user agent and consists of
a request to be applied to a resource on some origin server. In the

simplest case, this may be accomplished via a single connection (v)

between the user agent (UA) and the origin server (O).

A more complicated situation occurs when one or more intermediaries
are present in the request/response chain. There are three common
forms of intermediary: proxy, gateway, and tunnel. A proxy is a
forwarding agent, receiving requests for a URI in its absolute form,
rewriting all or part of the message, and forwarding the reformatted
request toward the server identified by the URI. A gateway is a
receiving agent, acting as a layer above some other server(s) and, if
necessary, translating the requests to the underlying server's
protocol. A tunnel acts as a relay point between two connections
without changing the messages; tunnels are used when the
communication needs to pass through an intermediary (such as a
firewall) even when the intermediary cannot understand the contents
of the messages.

919¢ Ddd

The figure above shows three intermediaries (A, B, and C) between the
user agent and origin server. A request or response message that
travels the whole chain will pass through four separate connections.
This distinction is important because some HTTP communication options

Fielding, et al. Standards Track [page 12]

32

RFC 2616 HTTP/1.1 June 1999

may apply only to the connection with the nearest, non-tunnel
neighbor, only to the end-points of the chain, or to all connections
along the chain. Although the diagram is linear, each participant may
be engaged in multiple, simultaneous communications. For example, B
may be receiving requests from many clients other than A, and/or
forwarding requests to servers other than C, at the same time that it
is handling a's request.

Any party to the communication which ig not acting as a tunnel may

employ an internal cache for handling requests. The effect of a cache

is that the request/response chain is shortened if one of the
participants along the chain has a cached response applicable to that

' request. The following illustrates the resulting chain if B has a

| cached copy of an earlier response from O (via C) for a request which

has not been cached by UA or A.

request chain -----—--—-- >
VA ====x= === A ——--- V== B------ C----== o
<=—m—m—— o response chain

Not all responses are usefully cacheable, and some requests may
contain modifiers which place special requirements on cache behavior.
HTTP reguirements for cache behavior and cacheable responses are
defined in section 13.

In fact, there are a wide variety of architectures and configurations
of caches and proxies currently being experimented with or deployed
across the World Wide Web. These systems include national hierarchies
of proxy caches to save transoceanic bandwidth, systems that
broadcast or multicast cache entries, organizations that distribute
subsets of cached data via CD-ROM, and so on. HITTP systems are used
in corporate intranets over high-bandwidth links, and for access via
FDAs with low-power radio links and intermittent connectivity. The
goal of HTTP/1.1 is to support the wide diversity of configurations
already deployed while introducing protocel constricts that meet the
needs of those who build web applications that require high

reliability and, failing that, at least reliable indications of
failure.

HTTPF communication usually takes place over TCP/IP connections. The
default port is TCP 80 [19]1, but other ports can be used. This does
not preclude HTTP from being implemented on top of any other protocol
on the Internet, or on other networks. HITP only presumes a reliable
Lransport; any protecol that provides such guarantees can be used;
the mapping of the HTTP/1.1 request and response structures onto the
transport data units of the protocol in guestion is outside the scope
of this specificatcion.

Fielding, et a1.

RFC 2616

Standards Track [Page 13]

33

RFC 2616 HTTP/1.1 June 1999

In HTTP/1.0, most implementations used a new connection for each
request/response exchange. In HTTP/1.1l, a connection may be used for
one or more request/response exchanges, although connections may be
closed for a variety of reasons (see section 8.1).

2 Notational Conventions and Generic Grammar

2.1 Augmented BNF

All of the mechanisms specified in this document are described in
both prose and an augmented Backus-Naur Form (BNF) similar to that
used by RFC 822 [9]. Implementors will need to be familiar with the
notation in order to understand this specification. The augmented BNF
includes the following constructs:

name = definition
The name of a rule is simply the name itself (without any
enclosing "<" and ">") and is separated from its definition by the
equal "=" character. White space is only significant in that
indentation of continuation lines is used to indicate a rule
definition that spans more than one line. Certain basic rules are
in uppercase, such as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle
brackets are used within definitions whenever their presence will

facilitate discerning the use of rule names.

“literal"
Quotation marks surround literal text. Unless stated otherwise,
the text is case-insensitive.

rulel | rule2
Elements separated by a bar ("|“) are alternatives, e.g., "yes |
no" will accept yes or no.

(rulel rule2)
Elements enclosed in parentheses are treated as a single element.
Thus, "(elem (foo | bar) elem)" allows the token sequences "elem

foo elem" and "elem bar elem".

*rule
The character "*" preceding an element indicates repetition. The
full form is "<n>*<m>element" indicating at least <n> and at most
<m> occurrences of element. Default values are 0 and infinity so
that "*(element)" allows any number, including zero; "1*element"
requires at least one; and "l*2element" allows one or two.

91L9¢ DY

[rule]
Square brackets enclose optional elements; "[foo bar]" is
equivalent to "*1(foo bar)".

Fielding, et al. Standards Track [page 14]

34

RFC 2616 HTTP/1.1 June 1999
N rule
Specific repetition: "<n>(element)" is equivalent to
"<n>*<n>(element)"; that is, exactly <n> occurrences of (element).,

Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three
alphabetic characters.

#rule
A construct "#" is defined, similar to "*", for defining lists of
elements. The full form is "<n>#<m>element” indicating at least
<n> and at most <m> elements, each separated by one or more commas

(", ") and OPTIONAL linear white space (LWS). This makes the usual

form of lists very easy; a rule such as {
(*LWS element *(*LWS "," *LWS element))

can be shown as
l#element

Wherever this construct is used, null elements are allowed, but do
not contribute to the count of elements present. That is,
"(element), , (element) " is permitted, but counts as only two
elements. Therefore, where at least one element is reguired, at
least one non-null element MUST be present. Default values are 0
and infinity so that "#element" allows any number, including zero;

"l#element" requires at least one; and "l#2element" allows one or
| two.

; comment
A semi-colon, set off some distance to the right of rule text,
starts a comment that continues to the end of line. This is a

simple way of including useful notes in parallel with the
specifications.

implied *Lws
The grammar described by this specification is word-based. Except
where noted otherwise, linear white space (LWS) can be included
between any two adjacent words (token or quoted-string), and
between adjacent words and separators, without changing the
interpretation of a field. At least one delimiter (LWS and/or

Separators) MUST exist between any two tokens (for the definition

of "token" below), since they would otherwise be interpreted as a
single token.

2.2 Basic Rules

The following rules are used throughout this specification to
§escribe basic parsing constructs. The US-ASCII coded character set
1s defined by ANSI X3.4-1986 [21]

?iElding, et al.

RFC 2616

Standards Track [Page 15]

35

RFC 2616 HTTP/1.1 June 1999
OCTET = <any 8-bit sequence of data>
CHAR = <any US-ASCII character (octets 0 - 127)>
UPALPHA = <any US~ASCII uppercase letter "A".."Z">
LOALPHA = <any US-ASCII lowercase letter "a".."z">
ALPHA = UPALPHA | LOALPHA
DIGIT = <any US-ASCII digit "0".."9">
CTL = <any US-ASCII control character
(octets 0 - 31) and DEL (127)>
CR = <US-ASCII CR, carriage return (13)>
LF = <US-ASCII LF, linefeed (10)>
SP = <US-ASCII SP, space (32)>
HT = <US-ASCII HT, horizontal-tab (9)>
<"> = <US-ASCII double-quote mark (34)>

HTTP/1.1 defines the sequence CR LF as the end-of-line marker for all
protocol elements except the entity-body (see appendix 19.3 for

tolerant applications). The end-of-line marker within an entity-body
is defined by its associated media type, as described in section 3.7.

CRLF = CR LF

HTTP/1.1 header field values can be folded onto multiple lines if the
continuation line begins with a space or horizontal tab. All linear
white space, including folding, has the same semantics as SP. A
recipient MAY replace any linear white space with a single SP before
interpreting the field value or forwarding the message downstream.

LWS = [CRLF] 1*(SP | HT)

The TEXT rule is only used for descriptive field contents and values
that are not intended to be interpreted by the message parser. Words
of *TEXT MAY contain characters from character sets other than ISO-
8859-1 [22] only when encoded according to the rules of RFC 2047
[14].

TEXT = <any OCTET except CTLs,
but including LWS>

A CRLF is allowed in the definition of TEXT only as part of a header
field continuation. It is expected that the folding LWS will be
replaced with a single SP before interpretation of the TEXT value.

Hexadecimal numeric characters are used in several protocol elements.

919¢ D4d

HEX = AN ngh I Llell l npn I g | L
| "an npn I na] ngn | e | WEH | DIGIT

Fielding, et al. Standards Track [page 161

36

RFC 2616 HITP/1.1 June 1999

Many HTTP/1.1 header field walues consist of words separated by LWS
or special characters. These speci

al characters MUST be in a guoted
string to be used within a parameter value (as defined in section
3.6).

token = l*<any CHAR except CTLs or separators>
separators = vy | nym [e l Hsn i nam

I L waw i wan ' LN | <>

' L W l R ' o | "

' [{ " ‘ W } " ' SPp I HT

Comments can be included in some
the comment text with parentheses
fields containing "comment"
In all other fields,
value.

|
HTTP header fields by surrounding |
- Comments are only allowad in
as part of their field value definition.
parentheses are considered part of the field

comment = "(" *(ctext | quoted-pair | comment) wjw
| ctext =

= <any TEXT excluding "(" and ‘) >

A string of text is parsed as

a single word if it is quoted using
double-quote marks.

quoted-string = (<"> *(gdtext | quoted-pair) <">)
qgdtext = <any TEXT except <">>

The backslash character (v\"

MAY be used as a single-character
quoting mechanism only within

quoted-string and comment constructs.

quoted-pair = "\" CHAR
3 Protocol Parameters

3.1 HTTP Version

HTTP uses a "<majors.<minors"

numbering scheme to indicate versions
of the protocel. The brotocol versioning policy is intended to allow
the sender to indicate the format of a message and its capacity for
understanding further HTTP communication, rather than the features

obtained via that communication. Ne change is made to the version
Humber for the addition of messag

communication behavior or which o
The <minors number is incremented
Protocoal add features which do not change the general message parsing
algorithm, but which may add to the message semantics and imply
ﬁdditional capabilities of the sendsr. The <major> number is
ncremented when the format of a message within the protocol is
Changed. gee Rpe 2145 [36] for a fuller explanation.

nly add to -extensible field values,
when the changes made to the

Flelding, et al. Standards Track

[Page 17]

RFC 2616

37

RFC 2616 HTTP/1.1 June 1999 |

The version of an HTTP message is indicated by an HTTP-Version field
in the first line of the message.

HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT

Note that the major and minor numbers MUST be treated as separate

integers and that each MAY be incremented higher than a single digit.

Thus, HTTP/2.4 is a lower version than HTTP/2.13, which in turn is i
lower than HTTP/12.3. Leading zeros MUST be ignored by recipients and

MUST NOT be sent.

An application that sends a request or response message that includes
HTTP-Version of "HTTP/1.1" MUST be at least conditionally compliant

with this specification. Applications that are at least conditionally

compliant with this specification SHOULD use an HTTP-Version of

"HTTP/1.1" in their messages, and MUST do so for any message that is

not compatible with HTTP/1.0. For more details on when to send)
specific HTTP-Version values, see RFC 2145 [36].

The HTTP version of an application is the highest HTTP version for
which the application is at least conditionally compliant.

Proxy and gateway applications need to be careful when forwarding
messages in protocol versions different from that of the application.
Since the protocol version indicates the protocol capability of the
sender, a proxy/gateway MUST NOT send a message with a version
indicator which is greater than its actual version. If a higher
version request is received, the proxy/gateway MUST either downgrade
the request version, or respond with an error, or switch to tunnel
behavior.

Due to interoperability problems with HTTP/1.0 proxies discovered
since the publication of RFC 2068[33], caching proxies MUST, gateways
MAY, and tunnels MUST NOT upgrade the reguest to the highest version
they support. The proxy/gateway's response to that request MUST be in
the same major version as the request.

Note: Converting between versions of HTTP may involve modification
of header fields required or forbidden by the versions involved.

3.2 Uniform Resource Identifiers

URIs have been known by many names: WWW addresses, Universal Document
Identifiers, Universal Resource Identifiers [3], and finally the
combination of Uniform Resource Locators (URL) [4] and Names (URN)
[20]. As far as HTTP is concerned, Uniform Resource Identifiers are
simply formatted strings which identify--via name, location, or any
other characteristic--a resource.

9L9¢ Ddd

Fielding, et al. Standards Track {page 18]

38

RFC 2616 HTTP/1.1 June 1999

3.2.1 General Syntax

URIs in HTTP can be represented in abgolute form or relative to some
kriown base URI |5k 3 B depending upon the context of their use. The two
forms are differentiated by the fact that absolute URIs always begin

with a scheme name followed by a colon. For definitive information on
URL syntax and semantics, see "Uniform Resource Identifiers {URI) :
Generic Syntax and Semantics, " RFC 2396 [42] (which replaces RFCs
1738 [4] and RFC 1808 [11]1). This specification adopts Lhe

definitions of "URI-reference", "abscluteURI", "relativeURT", *port",
"host",“abs_path", "rel_path", and "authority" from that
specification.

The HTTP protocol does not
a URI. Servers MUST be able
serve, and SHOULD be able to
provide GET-based forms that could generate such URIs. A server
SHOULD return 414 (Regquest-URI Too Long) status if a URT is longer
than the server can handle (see section 10.4.15).

| Note: Servers ought to be cautious about depending on URI lengths
above 255 bytes, because some older client or proxy
implementations might not properly support these lengths.

3.2.2 http URL
The "http" scheme is used to locate network res

protocol. This section defines the
semantics for http URLs.

ources via the HTTP
scheme-specific syntax and

http_URL = "http:* "//" host [":" port] [abs_path ["2 query 1]
If the port is emply or not given, port 80 is assumed. The semantics
are that the identified Tesource is located at the server listening
for TCP connections on that port of that host, and the Request-URT
for the resource is abs_path (section 5.1.2). The use of IP addresses
in URLs SHOULD be avoided whenever possible (see RFC 1900 ([24]). If
the abs_path is not present in the URL, it MUST be given as "/" when
used as a Request-URT for a resource (section 5.1.2).
receives a host name which is not a fully qualified domain name, it
MAY add its domain to the host name it received. If g DProxy receives

a fully gqualified domain name, the proxy MUST NOT change the host
Name .

'Fieiding, et al. Standards Track [Page 19]

RFC 2616

39

RFC 2616 HTTP/1.1 June 1999

3.2.3 URI Comparison

When comparing two URIs to decide if they match or not, a client
SHOULD use a case-sensitive octet-by-octet comparison of the entire
URIs, with these exceptions:

- A port that is empty or not given is eguivalent to the default
port for that URI-reference;

- Comparisons of host names MUST be case-insensitive;
- Comparisons of scheme names MUST be case-insensitive;
- An empty abs_path is equivalent to an abs_path of "/".

Characters other than those in the "reserved" and "unsafe" sets (see
RFC 2396 [42]) are eguivalent to their ""$" HEX HEX" encoding.

the following three URIs are equivalent:

For example,

http://abc.com:80/~smith/home.html
http://ABC.com/%7Esmith/home.html
http://ABC.com:/%$7esmith/home.html
3.3 Date/Time Formats

3.3.1 Full Date

HTTP applications have historically allowed three different formats
for the representation of date/time stamps:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

The first format is preferred as an Internet standard and represents
a fixed-length subset of that defined by RFC 1123 [8] (an update to
RFC 822 [9]). The second format is in common use, but is based on the
obsolete RFC 850 [12] date format and lacks a four-digit year.
HTTP/1.1 clients and servers that parse the date value MUST accept
all three formats (for compatibility with HTTP/1.0), though they MUST
only generate the RFC 1123 format for representing HTTP-date values
in header fields. See section 19.3 for further information.

9L9Z D4d

Note: Recipients of date values are encouraged to be robust in
accepting date values that may have been sent by non-HTTP
appllcatlons, as is sometimes the case when retrieving or posting
messages via proxies/gateways to SMTP or NNTP.

Fielding, et al. Standards Track [page 20]

40

RFC 2616 HTTP/1.1 June 1999

All HTTP date/time stamps MUST be represented in Greenwich Mean Time
(GMT), without exception. For the purposes of HTTP, GMT is exactly
equal Lo UTC (Coordinated Universal Time). This is indicated in the
first two formats by the inclusion of rgupr as the three-letter
abbreviation for time zone, and MUST be assumed when reading the
asctime format, HITP-date is case sensitive and MUST NOT include

additional ILWs beyond that specifically included as SP in the
grammar.

n

HTTP-date rfcli23-date | rfc850-date | asctime-date
rfcll23-date = wkday ", " 8P datel gp time Sp "GgMT"
rfc850-date = weekday "," SP date2 sp time SP "GMT"
asctime-date = wkday SP date3 8P time SP 4DIGIT

datel = 2DIGIT SP month SP 4DIGIT
i day month year (e.g., 02 Jun 1982)
date2 = ZDIGIT "-" month "-w 2DIGIT [
i day-month-year (e.g., 02-Jun-§2)
date3 = month SP (2DIGIT | (Sp 1DIGLT))
i month day (e.g., Jun 3)
time = ZDIGIT ":" 2DIGIT 1% 2DTeTT
i 00:00:00 - 23:59:59
wkday = "Mon" | “Tue' | wyedr
| "Thu' | "Friv | wggpe | "sun® '
weekday = "Monday" | *Tuesday" | "Wednesday"
| "Thursday" | "Eriday» | "Saturday" | "sunday
month = "Jan" | "Feb" | "Mar® | raprn
| "May" } "Jun" | "gulr | vauge
| "sep "Oeth "Nov" | "Dec*

Hote: HTTP regquirements for t
to their usage within the pro
not required to use these fo
logging, etc.

tocol stream. Clients and servers are
rmats for user bresentation, request

3.3.2 Delta Seconds

Some HTTP header fields allow a time value to be specified as an

integer number of seconds, represented in decimal, after the time
that the message was received.

delta-seconds = 1*DIGIT

3.4 Character gets

HTTP uses the same definition of the term "character set" as that
describedq for MIME:

.lding, et al.

RFC 2616

Standards Track [Page 21]

41

RFC 2616 HTTP/1.1 June 1999

The term "character set" is used in this document to refer to a
method used with one or more tables to convert a seguence of octets
into a sequence of characters. Note that unconditional conversion in
the other direction is not required, in that not all characters may
be available in a given character set and a character set may provide
more than one sequence of octets to represent a particular character.
This definition is intended to allow various kinds of character
encoding, from simple single-table mappings such as US-ASCII to
complex table switching methods such as those that use IS0-2022's
techniques. However, the definition associated with a MIME character
set name MUST fully specify the mapping to be performed from octets
to characters. In particular, use of external profiling information
to determine the exact mapping is not permitted.

Note: This use of the term "character set" is more commonly
referred to as a "character encoding." However, since HTTP and
MIME share the same registry, it is important that the terminology
also be shared.

HTTP character sets are identified by case-insensitive tokens. The
complete set of tokens is defined by the IANA Character Set registry

[191.

charset = token

Although HTTP allows an arbitrary token to be used as a charset
value, any token that has a predefined value within the IANA
Character Set registry [19] MUST represent the character set defined
by that registry. Applications SHOULD limit their use of character
sets to those defined by the IANA registry.

Implementors should be aware of IETF character set requirements [38]
[411].

3.4.1 Missing Charset

Some HTTP/1.0 software has interpreted a Content-Type header without
charset parameter incorrectly to mean "recipient should guess.'
Senders wishing to defeat this behavior MAY include a charset
parameter even when the charset is ISO-8859-1 and SHOULD do so when
it is known that it will not confuse the recipient.

Unfortunately, some older HTTP/1.0 clients did not deal properly with
an explicit charset parameter. HTTP/1l.1 recipients MUST regpect the

charset label provided by the sender; and those user agents that have
a provision to "guess" a charset MUST use the charset from the

[page 22]

Fielding, et al. Standards Track

42

RFC 2616 HTTP/1.1 June 1999

content-type field if they support that charset,
recipient's preference,
section 3.7.1.

rather than the
when initially displaying a document. See

3.5 Content Codings

ity of its underlying media type
requently, the entity is stored in
and only decoded by the recipient.

| and without loss of information. F
coded form, transmitted directly,

content-coding = token

All content-coding values are case-insensitive. HTTP/1.1 uses
content-coding values in the Accept—Encoding (section 14.3) ang
Content-Encoding (section 14.11) header fields. Although the value
describes the content-coding, what ig more important is that it

indicates what decoding mechanism will be required to remove the
encoding.

The Internet Assigned Numbers Authority (
content-coding value tokens. Initially,
following tokens:

IANA) acts as a registry for
the registry contains the

gzip aAn encoding format produced by the file compression program
"gzip" (GNU zip) as described in RFC 1952 [25], This format is a
Lempel-ziwv coding (LZ77) with a 32 bit CRC.

compress

The encoding format produced by
brogram "compress". This forma
coding (LZw)

the common UNIX file compression
t is an adaptive Lempel-Ziv-Welch

uraged for future encodings. Their
historical practice, not good
previous implementations of HTTP,
"X-gzip" and "X-compress" to be
"compress" respectively.

applications SHOULD consider
equivalent to "gzip" and

deflate

The "zlib" format defined

in RFC 1950 [31] in combination with
the "deflater compression

mechanism described in RFC 1951 [29].

Flelding, ot a1. Standards Track

[Page 23]

RFC 2616

43

RFC 2616 HTTP/1.1 June 1999

identity
The default (identity) encoding; the use of no transformation
whatsoever. This content-coding is used only in the Accept-
Encoding header, and SHOULD NOT be used in the Content-Encoding
header.

New content-coding value tokens SHOULD be registered; to allow
interoperability between clients and servers, specifications of the
content coding algorithms needed to implement a new value SHOULD be
publicly available and adequate for independent implementation, and
conform to the purpose of content coding defined in this section.

3.6 Transfer Codings

Transfer-coding values are used to indicate an encoding
transformation that has been, can be, or may need to be applied to an
entity-body in order to ensure "safe transport" through the network.
This differs from a content coding in that the transfer-coding is a
property of the message, not of the original entity.

transfer-coding = "chunked" | transfer-extension
transfer-extension token *(";" parameter)

Parameters are in the form of attribute/value pairs.

parameter = attribute "=" value
attribute = token
value = token | quoted-string

All transfer-coding values are case-insensitive. HTTP/1l.l uses
transfer-coding values in the TE header field (section 14.39) and in
the Transfer-Encoding header field (section 14.41).

Whenever a transfer-coding is applied to a message-body, the set of
transfer-codings MUST include "chunked", unless the message is
terminated by closing the connection. When the "chunked" transfer-
coding is used, it MUST be the last transfer-coding applied to the
message-body. The "chunked" transfer-coding MUST NOT be applied more
than once to a message-body. These rules allow the recipient to
determine the transfer-length of the message (section 4.4).

Transfer-codings are analogous to the Content-Transfer-Encoding
values of MIME [7], which were designed to enable safe transport of
binary data over a 7-bit transport service. However, safe transport
has a different focus for an 8bit-clean transfer protocol. In HTTP,
the only unsafe characteristic of message-bodies is the difficulty in
determining the exact body length (section 7.2.2), or the desire to
encrypt data over a shared transport.

919¢ DY

Fielding, et al. Standards Track [Page 24]

44

Flelding, et a1,

RFC 2616 HTTP/1.1 June 1999

The Internet Assigned Numbers Authority (IANA)
transfer-coding value tokens. Initially, the re
folloewing tokens: "chunked" (section 3.6.1}),
3.6.2); "gzip" (section 3.5),
(section 3.5),

acts as a registry for
gistry contains the
"identity" (section
"compress" (section 3.5), and "deflate"

New transfer-coding value tokens SHOULD be registered in the same way
as new content-coding value tokens (section 3.5).

A server which receives an entity-
not understand SHOULD return 501

connection. A server MUST NOT sen
client,

body with a transfer-coding it does
(Unimplemented), and close the
d transfer-codings to an HTTP/1.0

3.6.1 Chunked Transfer Coding

The chunked enceding modifies the body of a message in order to
transfer it as a szeries of chunks, each with its own size indicator,
followed by an OPTIONAL trailer containing entity-header fields. Thisg
allows dynamically produced content

information necessary for the recipi
received the full message.

Chunked-Body = *chunk
last-chunk
trailer
CRLF

chunk =

chunk-size [chunk-extension] CRLF
chunk-data CRLF

chunk-gize = 1*HEX

last-~chunk = 1*("0") [chunk-~extension] CRLF
chunk-extension= *(";" chunk-ext-name ["=v chunk-ext-val])
chunk-ext-name = token

chunk-ext-val = token | quoted-~string

chunk-data = chunk-size (OCTET)

trailer = *(entity-header CRLF)

The chunk-size field is a string of hex di
the chunk. The chunked encodin
zero, followed by the trailer,

gits indicating the size of
g is ended by any chunk whose size is
which is terminated by an empty line.

The trailer allows the sender to include additional HTTP header
fields at the eng of the message. The Trailer header field can be

used to indicate which header fields are included in a trailer (see
Section 14.40),

Standards Track [Page 25]

45

RFC 2616

RFC 2616 HTTP/1.1 June 1999

A server using chunked transfer-coding in a response MUST NOT use the
trailer for any header fields unless at least one of the following is
true:

a)the request included a TE header field that indicates "trailers" is
acceptable in the transfer-coding of the response, as described in
section 14.39; or,

b)the server is the origin server for the response, the trailer
fields consist entirely of optional metadata, and the recipient
could use the message (in a manner acceptable to the origin server)
without receiving this metadata. In other words, the origin server

is willing to accept the possibility that the trailer fields might

be silently discarded along the path to the client.

This requirement prevents an interoperability failure when the
message is being received by an HTTP/1.1 (or later) proxy and
forwarded to an HTTP/1.0 recipient. It avoids a situation where
compliance with the protocol would have necessitated a possibly
infinite buffer on the proxy.

An example process for decoding a Chunked-Body is presented in
appendix 19.4.6.

All HTTP/1.1 applications MUST be able to receive and decode the
"chunked" transfer-coding, and MUST ignore chunk-extension extensions
they do not understand.

3.7 Media Types

HTTP uses Internet Media Types [17] in the Content-Type (section
14.17) and Accept (section 14.1) header fields in order to provide
open and extensible data typing and type negotiation.

media-type = type "/" subtype *(";" parameter)
type = token
subtype = token

Parameters MAY follow the type/subtype in the form of attribute/value
pairs (as defined in section 3.6).

The type, subtype, and parameter attribute names are case-
insensitive. Parameter values might or might not be case-sensitive,
depending on the semantics of the parameter name. Linear white space
(LWS) MUST NOT be used between the type and subtype, nor between an
attribute and its value. The presence or absence of a parameter might
be significant to the processing of a media-type, depending on its
definition within the media type registry.

91L9¢ DY

Fielding, et al. Standards Track [Page 26]

46

RFC 2616 HTTP/1.1 June 1999

Note that some older HTTP applications do not reco
pParameters. When sending da
implementations SHOULD onl
required by that type/subtype definition.

Media-type values are registered with the Int
Authority (TaNA [19]). The media type re
outlined in RFC 1590 [17].
discouraged.

ernet Assigned Number
gistration process is
Use of non-registered media types is

3.7.1 Canonicalization and Text Defaults

Internet media types are registered with a
entity-body transferred via HTTP
appropriate canonical form prior
"text" types, as defined in the n

canonical form. An
messages MUST be represented in the
to its transmission except for

ext paragraph.

When in canonical form, media subtypes of the 'text* type use CRLF as
the text line break. HTTP relaxes this requirement and allows the
transport of text media with plain CR or LF alone representing a line
break when it is done consistently for an entire entity-body. HTTP

i . bare CR, and bare LF as being
representative of a line break in text media received via HTTP. In
addition, if the text is represented in a character set that does not
use octets 13 and 10 for CR and LF respectively, as is the case for
some multi-byte character sets, HTTP allows the use of whatever octet
sequences are defined by that character set to represent the
equivalent of CR and LF¥ for line breaks. This flexibility regarding
line breaks applies only to text media in the entity-body; a bare CR
or LF MUST NOT be substituted for CRLF within any of the HTTP control
structures (such as header fields and multipart boundarieg) .

If an entity-body is encoded with a content-coding,

the underlying
data MUST be in a form defined above prior to being

encoded.

The "charget" parameter is used with some media t
tharacter set (section 3.4) of the data,
bParameter is provided by the sender,

¥Pes to define the
When no explicit charset
media subtypes of the "text!
arset value of "IS0-8859-] when
- Data in character sets other than "IS0-8859-1" or

poropriate charset value. See
section 3.4.1 for compatibility problems.

3.7.2 Multipart Types

MIME provides for a number of "multipart" types -- encapsulations of
one or more entities within a single message-body. All multipart
t¥pes share a common syntax, as defined in section 5.1.1 of RFC 2046

Fielding, ot 4.

RFC 2616

Standards Track [Page 27]

47

RFC 2616 HTTP/1.1 June 1999

[40], and MUST include a boundary parameter as part of the media type
value. The message body is itself a protocol element and MUST
therefore use only CRLF to represent line breaks between body-parts.
Unlike in RFC 2046, the epilogue of any multipart message MUST be
empty; HITP applications MUST NOT transmit the epilogue (even if the
original multipart contains an epilogue). These restrictions exist in
order to preserve the self-delimiting nature of a multipart message-
body, wherein the "end" of the message-body is indicated by the
ending multipart boundary.

In general, HTTP treats a multipart message-body no differently than
any other media type: strictly as payload. The one exception is the
"multipart/byteranges" type (appendix 19.2) when it appears in a 206
{Partial Content) response, which will be interpreted by some HTTP
caching mechanisms as described in sections 13.5.4 and 14.16. In all
other cases, an HTTP user agent SHOULD follow the same or similar
behavior as a MIME user agent would upon receipt of a multipart type.
The MIME header fields within each body-part of a multipart message-
body do not have any significance to HTTP beyond that defined by
their MIME semantics.

In general, an HTTP user agent SHOULD follow the same or similar
behavior as a MIME user agent would upon receipt of a multipart type. b
If an application receives an unrecognized multipart subtype, the

application MUST treat it as being equivalent to "multipart/mixed".

Note: The "multipart/form-data" type has been specifically defined |
for carrying form data suitable for processing via the POST |
request method, as described in RFC 1867 [15].

3.8 Product Tokens

Product tokens are used to allow communicating applications to
identify themselves by software name and version. Most fields using
product tokens also allow sub-products which form a significant part
of the application to be listed, separated by white space. By
convention, the products are listed in order of their significance
for identifying the application.

product = token ["/" product-version]
product-version = token

Examples:

9L9¢ Ddd

User-Agent: CERN-LineMode/2.15 libwww/2.17b3
Server: Apache/0.8.4

Fielding, et al. Standards Track [Page 28]

48

RFC 2616 HTTP/1.1 June 1999

Product tokens SHOULD be short and to the point.
used for advertising or other non-essential info
token character MAY appear in a product-version,
only be used for a version i
the same product SHOULD onl
the product value).

They MUST NOT be
rmation. Although any
this token SHOULD
dentifier (i.e., successive versions of

Yy differ in the product-version portion of

3.9 Quality Values

HITP content negotiation
numbers to indicate the r
negotiable parameters,
the range 0 through 1,
value. If a parameter

(section 12) uses short "floating point"

elative importance ("weight") of various
A weight is normalized to a real number in

where 0 is the minimum and 1 the maximum

has a quality value of 0, then content with
this parameter is ‘not acceptable' for the client. HTTP/1.1

applications MUST NoT generate more than three digits after the

decimal point. User configuration of these values SHOULD also be
limited in this fashion.

qvalue = { “0" ["." 0*3DIGIT 1) :
I (wyw [LI 0*3("0")])

"Quality values" is a misnomer, since these values merely represent
relative degradation in desired quality.

3.10 Language Tags

A language tag identifies a nat
otherwise conveyed by human bei
to other human beings,
HTTP uses language tags
Language fields,

ural language spoken, written, or
ngs for communication of information
Computer languages are explicitly excluded.
within the Accept-Language and Content-

The syntax and registry of HITP language tags is the game as that
defined by RFC 1766 [1]. In summary, a language tag is composed of 1
Or mere parts: A primary language tag and a possibly empty series of

subtags:
language-tag = primary-tag *(#-w subtag)
primary-tag = 1*8ALPHA
subtag = 1*8ALPHA

White space is not allowed within the tag and all tags are case-

insensitive. The name space of language tags is administered by the
IANA. Example tags include:

en, en-US, en-cockney, i-cherokee, X-pig-latin

Fielding, et a1. Standards Track [Page 29]

RFC 2616

49

RFC 2616 HTTP/1.1 June 1999

where any two-letter primary-tag is an ISO-639 language abbreviation
and any two-letter initial subtag is an IS0-3166 country code. (The
last three tags above are not registered tags; all but the last are
examples of tags which could be registered in future.)

3.11 Entity Tags

Entity tags are used for comparing two or more entities from the same
requested resource. HTTP/l.1l uses entity tags in the ETag (section
14.19), If-Match (section 14.24), If-None-Match (section 14.26), and
If-Range (section 14.27) header fields. The definition of how they
are used and compared as cache validators is in section 13.3.3. An
entity tag consists of an opaque quoted string, possibly prefixed by
a weakness indicator.

[weak] opaque-tag
IIW/ n
quoted-string

entity-tag
weak
opaque-tag

A "strong entity tag" MAY be shared by two entities of a resource
only if they are equivalent by octet equality.

A "weak entity tag," indicated by the "W/" prefix, MAY be shared by
two entities of a resource only if the entities are eguivalent and

could be substituted for each other with no significant change in
semantics. A weak entity tag can only be used for weak comparison.

An entity tag MUST be unique across all versions of all entities
associated with a particular resource. A given entity tag value MAY
be used for entities obtained by requests on different URIs. The use
of the same entity tag value in conjunction with entities obtained by
requests on different URIs does not imply the equivalence of those
entities.

3.12 Range Units

HTTP/1.1 allows a client to request that only part (a range of) the
response entity be included within the response. HTTP/1.l uses range
units in the Range (section 14.35) and Content-Range (section 14.16)
header fields. An entity can be broken down into subranges according
to various structural units.

range-unit bytes-unit | other-range-unit
bytes-unit ‘bytes"
other-range-unit = token

1

9L9¢ D4y

defined by HTTP/1l.1 is "bytes". HTTP/l.1
ignore ranges specified using other units.

The only range unit
implementations MAY

Fielding, et al. Standards Track [Page 30]

50

RFC 2616 HTTP/1.1 June 1999

HTTP/1.1 has been designed to allow imp

lementations of applications
that do not depend o

n knowledge of ranges.

4 HTTP Message
4.1 Message Types

HTTP messages consist

of requests from client to server and responses
from server to client,

HTTP—message = Request] Response 7 HTTP/1.1 messages

Reguest (section 5) and Response (section 6) messages use the generic
mnessage format of RFC 822 [8] for Lransferring entities (the payload
of the message). Both types of message consist of a start-line, zero
or more header fieldg (also known as "headers"), an empty line (i.e.,

a line with nothing pPreceding the CRLF) indicating the end of the
header fields, and possibly a message-body.

generic-message = start-line

* (message-header CRLF)

CRLF

[message-body]
start-line = Request-Line | Status-Line

In the interest of robustness, servers SHOULD ignore any empty
line(s) received where a Request-Line is expected, In other words, if

| the server is reading the protocol stream at the beginning of a
message and receives a CRLF first, it should ignore the CRLF,

after a pPOsST request. To restate what is explicitly forbidden by the
BNF, an HTTE/1.1 client MUST NoOT preface or follow a request with an
extra CRLF.

4.2 Message Headers

HTTP header fields, which include general-header (section 4.5),
Tequest-header (section 5.3), response-header (section 6.2), and
entity-header (section 7.1) fields, follow the same generic format asg

that given in Section 3.1 of RFC 822 [9]. Each header field consists
of a name followed by a colon (":") and the field value. Field names
are case-insensitive. The field value MAY be preceded by any amount

of Lws, though a single Sp is preferred. Header fields can be
extended over multiple lineg by preceding each extra line with at
least one gp or HT, o follow "common form", where
one is known or indicated, when denerating HTTP constructs, since
there might exist some implementations that fail to accept anything

Fielding, et al. Standards Track

[Page 31]

RFC 2616

51

RFC 2616 HTTP/1.1 June 1999

beyond the common forms.

message-header = field-name ":" [field-value]
field-name = token

field-value = *(field-content | LWS)
field-content = <the OCTETs making up the field-value

and consisting of either *TEXT or combinations
of token, separators, and quoted-string>

The field-content does not include any leading or trailing LWS:
linear white space occurring before the first non-whitespace
character of the field-value or after the last non-whitespace
character of the field-value. Such leading or trailing LWS MAY be
removed without changing the semantics of the field value. Any LWS
that occurs between field-content MAY be replaced with a single SP
before interpreting the field value or forwarding the message
downstream.

The order in which header fields with differing field names are
received is not significant. However, it is "good practice" to send
general-header fields first, followed by request-header or response-
header fields, and ending with the entity-header fields.

Multiple message-header fields with the same field-name MAY be
present in a message if and only if the entire field-value for that
header field is defined as a comma-separated list [i.e., #(values)].
It MUST be possible to combine the multiple header fields into one
Wfield-name: field-value" pair, without changing the semantics of the
message, by appending each subsequent field-value to the first, each
separated by a comma. The order in which header fields with the same
field-name are received is therefore significant to the
interpretation of the combined field value, and thus a proxy MUST NOT
change the order of these field values when a message is forwarded.

4.3 Message Body

The message-body (if any) of an HTTP message is used to carry the
entity-body associated with the request or response. The message-body
differs from the entity-body only when a transfer-coding has been
applied, as indicated by the Transfer-Encoding header field (section
14.41).

message-body = entity-body
| <entity-body encoded as per Transfer-Encoding>

9L9¢ D4

Transfer-Encoding MUST be used to indicate any transfer-codings
applied by an application to ensure safe and proper transfer of the
message. Transfer-Encoding is a property of the message, not of the

[page 32]

Fielding, et al. Standards Track

52

RFC 2616 HTTP/1.1 June 1999

entity, and thus MAY be
Tequest/response chain.
when certain transfer-co

added or removed by any ap
(However, Section 3.6

dings may be used.)

plication along the
places restrictions on

The presence of a message-body in a request is signaled by the
inclusion of a Content-Length or Transfer—Encoding header field in
the request's message-headers. a message-body MUST NOT be inecluded in

a request if the specification of the request method (section 5.1.1)
does not aliow sending an entit

|
Y-body in requests. A server SHOULD
read and forward a message-body if the request method
does not include defined semantics for an entity-body, then the
message-body SHOULD he ignored when handling the request.

For response messages,
I & message is dependent
status code (section 6.
MUST NOT include a mess
header fields might lea
(informational), 204 (no content), and 304
MUST NOT include a me

ssage-body. all other
message-body, although it may be of

whether or not a message-body is included with
on both the request method and the respaonse

1.1), a11 responses to the HEAD
age-body, even though

(not modified) responses
responses do include a
Zero length.

4.4 Message Length

The transfer-length of @ message is the len
it appears in the message; that is, after any transfer—codings have
been applied, When a message-body ig included with a message, the
transfer—length of that body is determined by one of the following
{in order of brecedence) :

gth of the message-body as

1l.Any response message which "MysT NoT*

as the 1xx, 204, and 304 responses and any response to a HEAD
request) is always terminated by the first empty line after the

header fields, regardless of the entity-header fields present in
the message.

include a message-body (such

2.If a Transfer-Encoding header fielg (
has any value other than "identityr,
defined by use of the "chunkegr
unless the message ig t

section 14.41) 4g Present and
then the transfer—length is
transfer—coding (section 3.6),
erminated by closing the connection.

3.If a Content-Length header fieig (section 14.13
decimai value in ocrTETs represents both the
transfer—length‘ The Content-Length header £
if these two lengths are different (i.e.,

) is Present, its
entity-length and the
ield MUST NoT be sent
if a Transfer—Encoding

-fiﬂldiﬂga et al, Standards Track

RFC 2616

[Page 33]

53

RFC 2616 HTTP/1.1 June 1999 |

header field is present). If a message is received with both a
Transfer-Encoding header field and a Content-Length header field,

the latter MUST be ignored.

4.If the message uses the media type '"multipart/byteranges"”, and the

ransfer-length is not otherwise specified, then this self-
elimiting media type defines the transfer-length. This media type
UST NOT be used unless the sender knows that the recipient can arse
it; the presence in a request of a Range header with ultiple byte-
range specifiers from a 1.1 client implies that the lient can parse

multipart/byteranges responses.

A range header might be forwarded by a 1.0 proxy that does not

understand multipart/byteranges; in this case the server MUST

delimit the message using methods defined in items 1,3 or 5 of ||

this section. I|
|
|

5.By the server closing the connection. (Closing the connection
cannot be used to indicate the end of a request body, since that
would leave no possibility for the server to send back a response.)

For compatibility with HTTP/1.0 applications, HTTP/1.l requests
containing a message-body MUST include a valid Content-Length header
field unless the server is known to be HTTP/1.l compliant. If a
request contains a message-body and a Content-Length is not given,
the server SHOULD respond with 400 (bad request) if it cannot
determine the length of the message, or with 411 (length required) if
it wishes to insist on receiving a valid Content-Length.

All HTTP/1.1 applications that receive entities MUST accept the
vchunked" transfer-coding (section 3.6), thus allowing this mechanism
to be used for messages when the message length cannot be determined

in advance.

Messages MUST NOT include both a Content-Length header field and a
non-identity transfer-coding. If the message does include a non-
identity transfer-coding, the Content-Length MUST be ignored.
When a Content-Length is given in a message where a message-body is
allowed, its field value MUST exactly match the number of OCTETs in
the message-body. HTTP/1.1 user agents MUST notify the user when an
invalid length is received and detected.

4.5 General Header Fields

91L9¢Z D4y

There are a few header fields which have general applicability for
both request and response messages, but which do not apply to the
entity being transferred. These header fields apply only to the

[page 34]

Fielding, et al. standards Track

54

RFC 2616 HTTP/1.1 June 1999

message being transmitted.

general-header Cache-Control i Section 14.9

| Connection ; Section 14.10
| Date 7 Section 14.18
| Pragma ; Section 14,32
| Trailer i Section 14.40
| Transfer-Encoding i Section 14.41
| Upgrade ; Section 14.42
| via ; Section 14.45
| Warning

i Section 14.46
|

General-header field names canp be extended reliably only in

I combination with a change in the Protocol version. However, new or
experimental header fields may be given the semantics of genersl

header fields if all parties in the communication recognize them to

be general-header fields. Unrecognized header fields are treated as
entity-header fields,

5 Request

A request message from a client to a server
first line of that message, the method to be
the identifier of the resource, ang the proto

includes, within the
applied to the resource,
col version in use.

Request = Request-Line

i Section 5.1

*((general-header i Section 4.5
| request-header ; Section 5.3
| entity-header) CRLF) ; Section 7.1

CRLF

[message-body] Section 4.3

5.1 Request-Line

|
followed by the

ing with CRLF. The
No CR or LF is allowed

Request-Line = Method SP Request-URT SP HTTP-Version CRLF

et al. Standards Track

[Page 35]

RFC 2616

55

RFC 2616 HTTP/1.1 June 1999

5.1.1 Method

The Method token indicates the method to be performed on the
resource identified by the Request-URI. The method is case-sensitive.

Method = "OPTIONS" ; Section 9.2
"GET" ; Section 9.3
‘ "HEAD" : Section 9.4
| »posT" ; Section 9.5
| »pUT" ; Section 9.6
"DELETE" ; Section 9.7
I "TRACE" ; Section 9.8
| "CONNECT" ; Section 9.9
1

extension-method
extension-method = token

The list of methods allowed by a resource can be specified in an |
Allow header field (section 14.7). The return code of the response
always notifies the client whether a method is currently allowed on a
resource, since the set of allowed methods can change dynamically. An
origin server SHOULD return the status code 405 (Method Not Allowed)
if the method is known by the origin server but not allowed for the
requested resource, and 501 (Not Implemented) if the method is
unrecognized or not implemented by the origin server. The methods GET
and HEAD MUST be supported by all general-purpose servers. All other
methods are OPTIONAL; however, if the above methods are implemented,
they MUST be implemented with the same semantics as those specified

in section 9.
5.1.2 Request-URI

The Request-URI is a Uniform Resource Identifier (section 3.2) and
identifies the resource upon which to apply the request.

Request-URI = "*v | absoluteURI | abs_path | authority

The four options for Request-URI are dependent on the nature of the
request. The asterisk "*" means that the regquest does not apply to a
particular resource, but to the server itself, and is only allowed
when the method used does not necessarily apply to a resource. One
example would be

OPTIONS * HTTP/Ll.1

9L9¢ D4dd

The absoluteURI form is REQUIRED when the request is being made to a
proxy. The proxy is requested to forward the request or service it
from a walid cache, and return the response. Note that the proxy MAY
forward the recuest on to another proxy or directly to the server

[Page 36]

Fielding, et al. Standards Track

56

RFC 2616 HTTP/1.1 June 1999

specified by the absoluteURI. In order to avoid request loops, a
Proxy MUST be able to recognize all of its server names, including
any aliases, loeal variations, andg the numeric 1p address. an example
Request-Line would be:

GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1

To allow for Eransitig
versions of HTTP, all ®wTTR/1.1 servers
form in requests, even th -1 clients will only generates
I them in requests to proxies.

The authority form is only used by the CONNECT method (section 9.9).

The most common form of

resource on an origin se

path of the URr MUST be
I the Request-URI,
be transmitteq in

Request-URT is that used
TVer or gateway. In this
transmitted (see section
and the network location of the
8 Host header field, F

te identify a
case the absolute
3:8. 2, abs_path) as
URI fauthority] MUsT
or example, a client wishing
origin server would
Www.w3.org" and send
the lines:

GET /pub/WWW/TheProject.html HTTP/1.1
Host: WWW.w3.org

followed by the remaind
cannot be empty;
given as "/» (the

er of the Request.

if none is Present in the
Server root),

Note that the absolute path
original URI, it MUST be

The Request-URT is transmitted
3.2.1. If the Request-URT i
[42], the origin server MUS
broperly interpret the regu
Request-URIs with an approp

in the format s
S encoded using the
T decode the Reguest
est. Servers SHOULD
riate status code.

pecified in section
"% HEX HEX" encoding
-URI in order to
respond to invalid

A transparent prox:
received Request-U
€xcept as noted ab,

Y MUST NOT rewrite the "
RI when forwardi
ove to replace a

abs_path" part of the
ng it to the next inbound server,
null abs_path with /v,

Wote: The wpe rewrite"

rule prevents th
meaning of the reqguest wh

4 non-reserved URI charac
should be aware that some
rewrite the Request-URT,

€ proxy from changing the

en the origin Server is improparly using
ter for a reserved Purpose. Implementors
Pre-HITP/1.1 proxies have been known to

et al,

Standards Track

RFC 2616

[Page 37]

57

RFC 2616 HTTP/1.1 June 1999

5.2 The Resource Identified by a Request

The exact resource identified by an Internet request is determined by
examining both the Request-URI and the Host header field.

An origin server that does not allow resources to differ by the

requested host MAY ignore the Host header field value when

determining the resource identified by an HTTP/1.1 reguest. (But see i
section 19.6.1.1 for other requirements on Host support in HTTP/1.1.)

An origin server that does differentiate resources based on the host

requested (sometimes referred to as virtual hosts or vanity host

names) MUST use the following rules for determining the requested

resource on an HTTP/1.1 request: |

1. If Request-URI is an absoluteURI, the host is part of the
Request-URI. Any Host header field value in the request MUST be

ignored.

2. If the Request-URI is not an absoluteURI, and the request includes
a Host header field, the host is determined by the Host header
field value.

3. If the host as determined by rule 1 or 2 is not a valid host on
the server, the response MUST be a 400 (Bad Request) error message.

Recipients of an HTTP/1.0 request that lacks a Host header field MAY
attempt to use heuristics (e.g., examination of the URI path for
something unique to a particular host) in order to determine what
exact resource is being requested.

5.3 Request Header Fields

The request-header fields allow the client to pass additional
information about the request, and about the client itself, to the
server. These fields act as request modifiers, with semantics
equivalent to the parameters on a programming language method
invocation.

= request-header = Accept ; Section 14.1
- | Accept-Charset ; Section 14.2
(@) Accept-Encoding ; Section 14.3
N ‘ Accept-Language ; Section 14.4
E: | Authorization ; Section 14.8

o ‘ Expect ; Section 14.20

From ; Section 14.22

| Host ; Section 14.23

| If-Match : Section 14.24

Fielding, et al. Standards Track [page 38]

58

RFC 2616 HTTP/1.1 June 1999

If-Modified-Since

i Section 14.25
If-None-Match

i Section 14,26

l

|

| If-Range i Section 14.27

| If-Unmodified-Since i Section 14.28

| Max-Forwards ; Section 14.31

| Proxy-aAuthorization ; Section 14.34

| Range ; Section 14.35
Referer ; Section 14.36
TE i Section 14.39

| User-agent

; Section 14.43

Request-header field names can be
combination with a change in the
experimental header fields MAY be
header fields if all parti
be request-header fields.
entity-header fields.

extended reliably only in
protocol version. However, new or

given the semantics of request-
es in the communication recognize them to
Unrecognized header fields are treated as

6 Response

After receiving and interpreting a reguest message, a server responds
with an HTTP response message.

Response = Status-Line i Section 6.1
*((general-header i Section 4.5
| response-header ; Section 6.2
| entity-header) CRLF) ; Section 7.1
CRLF
[message-~body] ; Section 7.2

6.1 Status-Line

The first line of a Response message is the Status-Line, consisting
of the protocol version followed by a numeric status code and its
associated textual phrase, with each element separated by SP

characters. No CR or LF is allowed eéxcept in the final CRLF sequence.

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

6.1.1 Status Code and Reason Phrase

abttempt to understand and satisfy the request. These codes are fully
defined in section 10. The Reason-Phrase is intended to give a short
textual description of the Status-Code. The Status-Code is intended
for use by automata and the Reason-Phrase is intended for the human

user. The olient is not required to examine cr display the Reason-
Phrase,

Flelding, et a1,

Standards Track [Page 39]

59

RFC 2616

RFC 2616 HTTP/1.1 June 1999

The first digit of the Status-Code defines the class of response. The
last two digits do not have any categorization role. There are 5
values for the first digit:

- 1xx: Informational - Request received, continuing process

- 2xx: Success - The action was successfully received,
understood, and accepted

- 3xx: Redirection - Further action must be taken in order to
complete the request

- 4xx: Client Error - The request contains bad syntax or cannot
be fulfilled

- 5xx: Server Error - The server failed to fulfill an apparently
valid request

The individual values of the numeric status codes defined for
HTTP/1.1, and an example set of corresponding Reascon-Phrase's, are
presented below. The reason phrases listed here are only
recommendations -- they MAY be replaced by local equivalents without
affecting the protocol.

Status-Code =

"100" ; Section 10.1.1: Continue
"101" ; Section 10.1.2: Switching Protocols
"200" ; Section 10.2.1: OK
"201" ; Section 10.2.2: Created
"202" ; Section 10.2.3: Accepted
"203" ; Section 10.2.4: Non-Authoritative Information
"204" ; Section 10.2.5: No Content
"205" ; Section 10.2.6: Reset Content
"206" ; Section 10.2.7: Partial Content
"300" ; Section 10.3.1: Multiple Choices
"301" ; Section 10.3.2: Moved Permanently
"302" ; Section 10.3.3: Found
“303" ; Section 10.3.4: See Other
| "304" ; Section 10.3.5: Not Modified
= "305" ; Section 10.3.6: Use Proxy
T "307" ; Section 10.3.8: Temporary Redirect
(@] "400" ; Section 10.4.1: Bad Request
N "401" ; Section 10.4.2: Unauthorized
E: "402" ; Section 10.4.3: Payment Required
P "403" ; Section 10.4.4: Forbidden
"404" ; Section 10.4.5: Not Found
"405" ; Section 10.4.6: Method Not Allowed
| 406" ; Section 10.4.7: Not Acceptable

Fielding, et al. Standards Track [page 40]

60

RFC 2616 HTTP/1.1 June 1999

| "407" ; section 10.4.8: Proxy authentication Required
"408" ; Section 10.4.9: Request Time-out
"409" ; Section 10.4.10: conflict

| va10n Section 10.4.11: Gone
| "411" ; section 10.4.12: Length Required
["412" : section 10.4.13: Precondition Failed
| na13v Section 10.4.14; Request Entity Too Large
| "a14» Section 10.4.15- Request-URI Too Large
| "415" ; gsectien 10.4.16: Unsupported Media Type
["416v ; Section 10.4.17-: Requested range not satisfiable
| "417" ; Section 10.4.18: Expectation Failed
| “s00v Section 10.5.1: Internal Server Error
"501" ; Section 10.5.2: Not Implemented)
"502" ; Section 10.5.3: Bad Gateway
| "503" ; Section 10.5.4: Service Unavailable
["504" ; Section 10.5.5: Gateway Time-out
| "505" ; Section 10.5.g:
i

HTTP Version not supported
extension-code

eéxtension-code = 3DIGIT
Reason-Phrase = *<TEXT, excluding CR, LF>

HTTP status codes are extensible. HTTP applications are not required
Lo understand the meaning of all registered status codes, though such
understanding is obviously desirable. Howeaver, applications MUST
understand the class of any status code, as indicated by the first
digit, and treat any unrecognized reésponse as being eguivalent to the
x00 status code of that class, with the exception that an
unrecognized response MUST NOT be cached. For example,

cases, user agents SHOULD presen
with the response,
readable informatio

6.2 Response Headef Fields

The response-header fields allow the server to
information about the response
Line. These header fields aive
further access to the resource

bass additional

which cannot be placed in the Status-
information about the server ang about
identified by the Request-URT.

response-header Accept-Ranges i Section 14.5

| Age i Section 14.6
| ETag

f

[

; Section 14.19
Location ; Section 14.3¢
Proxy-Authenticate ; Section 14.33

Flelding, et 7. Standards Track

[Page 41]

RFC 2616

61

RFC 2616 HTTP/l.l June 1999
[Retry-afrey, ; Sectign 14 37
| Server i Section 14.338
| vary i Section 14 44
| WwWﬁAuthEnticate i Section 14 44
Responseﬁheader fielg Names cap be extendeqg reliably only in
combinatiey with a change jip he Protocgl version However, new ar
experimental header fields Ma e given the Semanticg of reSponge-
header fieldg if alz bParties ip the conmunication o i
be response‘header fields

7 Entity

An entigy

dlthough Some
In thig S8Ction, both Sender ang recipient refer g either the client
Or the Server, depending on whg sends agng who receiveg the

Entity,
73 Entity Header Fields

Entity—header fielas

Y=body or,
the requegt
REQUIRED by

entifieq by
i Same mighy be

entity-header

= i Section 14 4

| Content—Enccding i Bection 14.31

{ COntent~Language i Sectipp 14.12

| Content‘Length i Seection 14.13
| Content-Loeaticn ¢ Sectiop 14.14
[Content-pmpsg } Section 14,35
| Content—Range i Section 14 .16
| Content~Type i Begtigp 14.17
[Expireg 7 Sectiogp 14,21
| Last-Modifieqg i Section 14 5q
| extension~header

extension—header

message-header

g
e recognizable b

fields SHOULD e j
transparent Proxieg

ields cannaot
ized headey
be forwardeq by

Unr ecogn

Fielding,

et a1,

Standargg Track

[Page 42]

62

RFC 2616 HTTP/1.1 June 1999

7.2 Entity Body

entity-body = *OCTET

An entity-body is only present in a message when a message-body is
present, as described in section 4.3, The entity-body is obtained

c i Transfer-Encoding that might
€ and proper transfer of the message.

|
When an entity-body is included with & message, the data type of that !
| body is determined vi
i

a the header fields Content-Type and Content-
Encoding. These define a two-layer, ordered encoding model:

entity-body := Content—Encoding(Content-Type(data))

Content-Encoding may b
codings applied to the data,
compression, that are
no default encoding.

Any HTTP/1.1 message containing an entity-—
Content-Type header field defining the
and only if the medig Lype is not given
recipient MAY attempt to guess the media
content and/or the name extension(s) of
resource. If the media type remains unkne
treat it as type "application/octet—stream”

body SHOULD include a
media type of that body. If
by a Content-Type field, the
type via inspection of its
he URI used to identify the
» the recipient SHOULD

7.2.2 Entity Length

|
The entity-length of a message is the length of the message-body
before any transfer—codings have been applied. Section 4.4 defines
how the transfer—length of a message-body is determined.

et al.

Standards Track [Page 43]

RFC 2616

63

RFC 2616 HTTP/1.1 June 1999

8 Connections
8.1 Persistent Connections
8.1.1 Purpose

Prior to persistent connections, a separate TCP connection was
established to fetch each URL, increasing the load on HTTP servers
and causing congestion on the Internet. The use of inline images and
other associated data often require a client to make multiple
requests of the same server in a short amount of time. Analysis of
these performance problems and results from a prototype
implementation are available [26] [30]. Implementation experience and
measurements of actual HTTP/1.1 (RFC 2068) implementations show good
results [39]. Alternatives have also been explored, for example,
T/TCP [27].

Persistent HTTP connections have a number of advantages:

- By opening and closing fewer TCP connections, CPU time is saved
in routers and hosts (clients, servers, proxies, gateways,
tunnels, or caches), and memory used for TCP protocol control
blocks can be saved in hosts.

HTTP requests and responses can be pipelined on a connection.
Pipelining allows a client to make multiple requests without
walting for each response, allowing a single TCP connection to
be used much more efficiently, with much lower elapsed time.

Network congestion is reduced by reducing the number of packets
caused by TCP opens, and by allowing TCP sufficient time to
determine the congestion state of the network.

Latency on subsequent requests is reduced since there is no time
spent in TCP's connection opening handshake.

HTTP can evolve more gracefully, since errors can be reported
without the penalty of closing the TCP connection. Clients using
future versions of HTTP might optimistically try a new feature,
but if communicating with an older server, retry with old
semantics after an error is reported.

HTTP implementations SHOULD implement persistent connections.

9192 D4Y

Fielding, et al. Standards Track [Page 44]

64

———— e

RFC 2616 HTTP/1.1 June 1999
|

8.1.2 Overall Operation

A significant difference between H

HTITP is that persistent connecti
HTTP connection. That is,

| SHOULD assume that the se
even after error response

TTP/1.1 and earlier versions of

ons are the default behavior of any
unless otherwise indicated, the client

rver will maintain a pPersistent connection,
s from the server.

gnaling takes
(section 14.10). Once a close

end any more requests on that
connection,

8.1.2.1 Negotiation

maintain a persistent e n header including
the cornection-token "cloge" =] i

t. If the server
chooses to cloge the connection immediately after sending the
reésponse, it SHOULD seng a Co

connection-token close,

réquest, it SHOULD send a
connection-token close,

If either the clie
Connection header,
connection.

nt or the server g

ends the close token in the
that request beco

mes the last one for the

In order to remain persistent, all messages on th
have a self-defined message length (i.e.,
of the connection)

€ connection MUST

one not defined by closure
+ as described in section 4.4.

et al,

Standards Track [Page 45]

65

RFC 2616 HTTP/1.1 June 1999

8.1.2.2 Pipelining

A client that supports persistent connections MAY "pipeline" its
requests (i.e., send multiple requests without waiting for each
response). A server MUST send its responses to those requests in the
same order that the requests were received.

Clients which assume persistent connections and pipeline immediately
after connection establishment SHOULD be prepared to retry their
connection if the first pipelined attempt fails. If a client does
such a retry, it MUST NOT pipeline before it knows the connection is
persistent. Clients MUST also be prepared to resend their requests if
the server closes the connection before sending all of the
corresponding responses.

Clients SHOULD NOT pipeline requests using non-idempotent methods or
non-idempotent secquences of methods (see section 9.1.2). Otherwise, a
premature termination of the transport connection could lead to
indeterminate results. A client wishing to send a non-idempotent
request SHOULD wait to send that request until it has received the
response status for the previous request.

8.1.3 Proxy Servers

It is especially important that proxies correctly implement the
properties of the Connection header field as specified in section
14.10.

The proxy server MUST signal persistent connections separately with
its clients and the origin servers (or other proxy servers) that it
connects to. Bach persistent connection applies to only one transport
link.

A proxy server MUST NOT establish a HTTP/1.1 persistent connection
with an HTTP/1.0 client (but see RFC 2068 [33] for information and
discussion of the problems with the Keep-Alive header implemented by
many HTTP/1.0 clients).

8.1.4 Practical Considerations

Servers will usually have some time-out value beyond which they will
no longer maintain an inactive connection. Proxy servers might make
this a higher value since it is likely that the client will be making
more connections through the same server. The use of persistent
connections places no requirements on the length (or existence) of
this time-out for either the client or the server.

9L9Z DY

Fielding, et al. Standards Track [Page 46]

66

| RFC 2616 HTTP/1.1 June 1999

When a client or server wishes to time-out it SHOULD issue a graceful
close on the transport connection. Clients and servers SHOULD both
constantly watch for the other side of the transport close, and
respond to it as appropriate. If a client or server does not detect

the other side's close promptly it could cause unnecessary resource
drain on the network.

A client, Server, or proxy MAY close the transport connection at any
time. For example, a client might have started to send a new regquest
at the same time that the server has decided to close the "idle"
connection. From the server's point of view, the connection is being
closed while it was idle, but from the client's point of view, a
request is in progress.

This means that clients, servers,

and proxies MUST be able to recover
from asynchronous close events.

Client software SHOULD reopen the
transport connection and retransmit the aborted sequence of requests
without user interaction so long as the request sequerice is
idempotent (see section 9.1.2). Non-idempotent methods or seqguences
MUST NOT be automatically retried, although user agents MAY offer a
human operator the choice of retrying the request (s} . Confirmation by
user-agent software with semantic understanding of the application
MAY substitute for user confirmation. The automatic retry SHOULD NOT
be repeated if the second sequence of requests fails,

Servers SHOULD always respond to at least one re

if at all possible. Servers SHOULD NOT close a ¢

middle of transmitting a response,
i is suspected.

quest per connection,
onnection in the
unless a network or client failure

Clients that use persistent connections SHOULD limit the number of
simultaneous connections that they maintain to a given server. A
single-user client SHOULD NOT maintain more than 2 connections with
any server or proxy. A proxy SHOULD use up to 2*N connections to

| another server or proxy, where N is the number of simultaneously

active users. These guidelines are intended to improve HTTP response
times and avoid congestion.

8.2 Message Transmission Requirements

8.2.1 Persistent Connections and Flow Control

HTTP/1.1 servers SHOULD maintain persistent
flow control mechanisms to
terminating connecti
The latter technique

connections and use TCP's
resolve temporary overloads, rather than
ons with the expectation that clients will retry.
can exacerbate network congestion.

Fielding, et a1,

RFC 2616

Standards Track [Page 47]

67

RFC 2616 HTTP/1.1 June 1999

8.2.2 Monitoring Connections for Error Status Messages

An HTTP/1.1 (or later) client sending a message-body SHOULD monitor
the network connection for an error status while it is transmitting
the request. If the client sees an error status, it SHOULD
immediately cease transmitting the body. If the body is being sent
using a "chunked" encoding (section 3.6), a zero length chunk and
empty trailer MAY be used to prematurely mark the end of the message.
If the body was preceded by a Content-Length header, the client MUST
close the connection.

8.2.3 Use of the 100 (Continue) Status

The purpose of the 100 (Continue) status (see section 10.1.1) is to
allow a client that is sending a request message with a request body
to determine if the origin server is willing to accept the request
(based on the request headers) before the client sends the request
body. In some cases, it might either be inappropriate or highly
inefficient for the client to send the body if the server will reject
the message without looking at the body.

Requirements for HTTP/1.1 clients:
- If a client will wait for a 100 (Continue) response before

sending the request body, it MUST send an Expect request-header
field (section 14.20) with the "100-continue" expectation.

- A client MUST NOT send an Expect request-header field (section
14.20) with the "100-continue" expectation if it does not intend
to send a request body.

Because of the presence of older implementations; the protocol allows
ambiguous situations in which a client may send "Expect: 100-
continue" without receiving either a 417 (Expectaticn Failed) status
or a 100 (Continue) status. Therefore, when a client sends this
header field to an origin server (possibly via a proxy) from which it
has never seen a 100 (Continue) status, the client SHOULD NOT wait
for an indefinite period before sending the request body.

Requirements for HTTP/1.1 origin servers:

- Upon receiving a request which includes an Expect request-header
Field with the "100-continue' expectation, an origin server MUST
either respond with 100 (Continue) status and gontinue to read
from the input stream, or respond with a final status code. The
origin server MUST NOT walt for the request body before sending

the 100 (Continue) response. If it responds with a final status

code, it MAY close the transport connection or it MAY continue

9L9¢ D4y

Fielding, et al. Standards Track [Page 48]

68

RFC 2616 HTTP/1.1 June 1999

to read and discard the rest of the request. It MUST NOT
perform the requested method if it returns a final status code.

An origin server SHOULD NaoT send a 100 (Continue) response if
the request message does not include an Expect request-header
field with the "100-continue" expectation, and MUST NOT send a
100 (continue) response if such a request comes from an HTTP/1.0
(or earlier) client. There is an exception to this rule: for
compatibility with RFC 2068, a server MAY send a 100 (Continue)
status in response to an HTTP/1.1 PUT or POST request that does
not include an Expect request-header field with the "100-
continue' expectation. This @xception, the purpose of which is
to minimize any eclient processing delays associated with an

undeclared wait for 100 (Continue) status, applies only to

HTTP/1.1 requests, and not Lo requests with any other HTTP- |
version value.

- An origin server MAY omit a 100
already received some or all of
corresponding request.

(Continue) response if it has
the request body for the

l - An origin server that sends a 100 (Continue)
ultimately send a final status cod
received and processed,
connection prematurely.

response MUST
€, once the request body is
unless it terminates the transport

If an origin server receives a reque
Expect request-header field with the
the request includes a request body, and the server responds
with a final status code before reading the entire request body
from the transport connection, then the server SHOULD NOT close
the transport comnection until it has read the entire request,
or until the client closes the connection, Otherwise, the client
might not reliably receive the response message. However, this
requirement is not he construed as preventing a server from
defending itself against denial-of-service attacks, or from
badly broken client implementations.

St that does not include an
"100-continue" expectation,

Requirements for HTTP/1.1 proxies:

- If a proxy receives a request that includes an Expect request-
header field with the "100-continue" expectation, and the proxy
either knows that the next-hop server complies with HTTP/1.1 or
higher, or does not know the HTTP version of the next-hop

server, it MUST forward the request, including the Expect header
field.

Fielding, et al.

RFC 2616

Standards Track [Page 49]

69

RFC 2616 HTTP/1.1 June 1999

- If the proxy knows that the version of the next-hop server is
HTTP/1.0 or lower, it MUST NOT forward the request, and it MUST
respond with a 417 (Expectation Failed) status.

_ pProxies SHOULD maintain a cache recording the HTTP version
numbers received from recently-referenced next-hop servers.

- A proxy MUST NOT forward a 100 (Continue) response if the
request message was received from an HTTP/1.0 (or earlier)
client and did not include an Expect request-header field with
the "100-continue" expectation. This requirement overrides the
general rule for forwarding of 1lxx responses (see section 10.1).

8.2.4 Client Behavior if Server Prematurely Closes Connection

Tf an HTTP/1.1 client sends a request which includes a request body,
but which does not include an Expect request-header field with the |
"100-continue" expectation, and if the client is not directly |
connected to an HTTP/1.1 origin server, and if the client sees the
connection close before receiving any status from the server, the
client SHOULD retry the request. If the client does retry this
request, it MAY use the following "binary exponential backoff"
algorithm to be assured of obtaining a reliable response:

1. Initiate a new connection to the server

Transmit the request-headers

3. Tnitialize a variable R to the estimated round-trip time to the
server (e.g., based on the time it toock to establish the
connection), or to a constant value of 5 seconds if the round-

trip time is not available.

4. Compute T = R * (2**N), where N is the number of previous
retries of this request.

5. Wait either for an error response from the server, or for T
seconds (whichever comes first)

6. If no error response is received, after T seconds transmit the
body of the request.

If client sees that the connection is closed prematurely,
repeat from step 1 until the request is accepted, an error
response is received, or the user becomes impatient and
terminates the retry process.

91L9¢ O3y

Fielding, et al. Standards Track [page 50]

70

RFC 2616 HTTP/1.1 June 1999

If at any point an error status is received, the client

~ SHOULD NOT continue and

- SHOULD close the connection if

it has not completed sending the
request message.

9 Method Definitions

The set of common methods for HT
this set can be expanded, additi
share the same semantics for sep

TP/1.1 is defined below. Although
onal methods cannot be assumed to
arately extended clients and servers.

The Host request-header field (section 14.23) MUsST accompany all
HTTP/1.1 requests.

9.1 Safe and Idempotent Methods

9.1.1 Safe Methods

Implementors should be
their interactions over the Internet,
the user to be aware of any actions th
unexpected significance to themselves

aware that the software represents the user in

and should be careful to allow
ey might take which may have an
or others.

In particular, the convention has been
HEAD methods SHOULD NoT have the signif
other than retrieval. These metheds ought to be considered "safa",

This allows user agents to represent other methods, such as POST, PUT
and DELETE, in a special way, so that the user is made aware of the
fact that a possibly unsafe action is being requested.

established that the GET and
icance of taking an action

Naturally, it is not possible to ensire that the server does not

generate side-effects as a rasult of verforming a GET reguest; in

fact, some dynamic resources consider that a feature. The important

distinction here is that the user did not request the side-effects,

50 therefore cannot be held accountable for them.

9.1.2 Idempotent Methods

Methods can also have the Property of i
from error or expiration issues) the side-effects of I > 0 identical
Tequests is the same as for a single request. The methods GET, HEAD,
PUT and DELETE share this Property. Also, the methods OPTIONS and

TRACE SHOULD NOT have side effects, and so are inherently idempotent .

dempotence' in thag (aside

et al.

Standards Track [Page 51]

RFC 2616

71

RFC 2616 HTTP/1.1 June 1999

However, it is possible that a sequence of several requests is non-
idempotent, even if all of the methods executed in that sequence are
idempotent. (A sequence is idempotent if a single execution of the
entire sequence always yields a result that is not changed by a
reexecution of all, or part, of that sequence.) For example, a
sequence is non-idempotent if its result depends on a value that is
later modified in the same sequence.

A sequence that never has side effects is idempotent, by definition
(provided that no concurrent operations are being executed on the
same set of resources).

9.2 OPTIONS

The OPTIONS method represents a request for information about the
communication options available on the request/response chain
identified by the Request-URI. This method allows the client to
determine the options and/or requirements associated with a resource,
or the capabilities of a server, without implying a resource action
or initiating a resource retrieval.

Responses to this method are not cacheable.

If the OPTIONS request includes an entity-body (as indicated by the
presence of Content-Length or Transfer-Encoding), then the media type
MUST be indicated by a Content-Type field. Although this
specification does not define any use for such a body, future
extensions to HTTP might use the OPTIONS body to make more detailed
queries on the server. A server that does not support such an
extension MAY discard the request body.

If the Request-URI is an asterisk ("*"), the OPTIONS request is
intended to apply to the server in general rather than to a specific
resource. Since a server's communication options typically depend on
the resource, the "*" request is only useful as a "ping" or "no-op"

type of method; it does nothing beyond allowing the client to test

the capabilities of the server. For example, this can be used to test
a proxy for HTTP/1.l1 compliance (or lack thereof).

If the Reguest-URI is not an asterisk, the OPTIONS request applies
only to the options that are available when communicating with that
resource.

A 200 response SHOULD include any header fields that indicate
optional features implemented by the server and applicable to that

resource (e.g., Allow), possibly including extensions not defined by
this specification. The response body, if any, SHOULD also include
information about the communication options. The format for such a

9L9¢ D44

Fielding, et al. Standards Track [Page 52]

72

RFC 2616 HTTP/1.1 June 1999

. but might be defined by
future extensions to HTTP. Content negotiation MAY he used to select

the appropriate response format. If no response body is included, the

response MUST include a Content-Length field with a field-value of
ngu

T a Max-Forwards field.
field-value is zero ("0"), the broxy MUST NOT forward the message;

instead, the Proxy SHOULD respond with its own communication options.

If the Max-Forwards field-value ig an integer greater than zero, the

Proxy MUST decrement the field-value when it forwards the request. If M
no Max-Forwards field is bresent in the request, then the forwarded

request MUST NOT include a Max-Forwards field.

| 9.3 GET

The GET method means retrieve whatever information (
entity) is identifieqd by the Request-URI.

to a data—producing brocessg, it i
returned as the entity in the
brocess, unless that text happ

in the form of an
If the Request-URT refers

The semantics of the GET met "conditional QET" if the
request message includes an If~Modified—Sin¢e, If—Unmodified-Since,
If-Match, If-None-Match, or If-Range header field. a conditional GET
method requests that the entity be Eransferred only under the
circumstanceg described by the conditional header field(s). The
conditional GET method is intended to reduce unn

ecessary network
usage by allowing cached entities to he refreshed without requiring
| multiple requests or transferri

ethod change to a "partial GET" if the |
Range header field. a partial GET requests
that enly part of the entity be transferred, as described in section
14,35, The partial GET method is intended to reduce unnecessary
network usage by allowing partially-retrieved entities tgo be
completed without transferring data already held by the client.

Tequest message includes a

The response t

0 a GET reqguest is ca
the requirements for HTTP caching d

cheable if angd only if it meets
escribed in section 13.

See section 15.1.3 for security considerations when used for forms.

et al,

Standards Track [Page 53]

RFC 2616

73

RFC 2616 HTTP/1.1 June 1999

9.4 HEAD

The HEAD method is identical to GET except that the server MUST NOT
return a message-body in the response. The metainformation contained
in the HTTP headers in response to a HEAD request SHOULD be identical
to the information sent in response to a GET request. This method can
be used for obtaining metainformation about the entity implied by the
request without transferring the entity-body itself. This method is
often used for testing hypertext links for validity, accessibility,
and recent modification.

The response to a HEAD request MAY be cacheable in the sense that the
information contained in the response MAY be used to update a
previously cached entity from that resource. If the new field values
indicate that the cached entity differs from the current entity (as
would be indicated by a change in Content-Length, Content-MD5, ETag
or Last-Modified), then the cache MUST treat the cache entry as
stale.

9.5 POST

The POST method is used to request that the origin server accept the
entity enclosed in the request as a new subordinate of the resource
identified by the Request-URI in the Request-Line. POST is designed
to allow a uniform method to cover the following functions:

- Annotation of existing resources;

Posting a message to a bulletin board, newsgroup, mailing list,
or similar group of articles;

Providing a block of data, such as the result of submitting a
form, to a data-handling process;

Extending a database through an append operation.

The actual function performed by the POST method is determined by the
server and is usually dependent on the Request-URI. The posted entity
is subordinate to that URI in the same way that a file is subordinate
to a directory containing it, a news article is subordinate to a
newsgroup to which it is posted, or a record is subordinate to a
database.

The action performed by the POST method might not result in a
resource that can be identified by a URI. In this case, either 200
(OK) or 204 (No Content) is the appropriate response status,
depending on whether or not the response includes an entity that
describes the result.

91L9Z Ddd

Fielding, et al. Standards Track [Page 541]

74

RFC 2616 HTTP/1.1 June 1999

If a resource has been created on the origin server,
SHOULD be 201 (Created) and contain an entity which 4

status of the request and refers to the new resource,
header (see section 14.30).

the response
escribes the
and a Location

Responses to thig method are not cacheable, unless the response
includes appropriate Cache-Control or Expires header fields. However,
the 303 (See Other) response can be used to direct the user agent to
retrieve a cacheable resource.

POST requests MUST obey the message transmission requirements set out
in section 8.2.

See section 15.1.3 for security considerations.

9.6 PUT

osed entity be stared under the

supplied Request-URI. URI refers to an already

If the Request-
existing resource,

on the origin server, If the

via the 201 (Created) response. Tf an existin
either the 200 (OK) or 204

ta indicate successful comp
could not be created or

g resource is modified,
(Ne Content) response codes SHOULD be sent
letion of the request. If the resource

modified with the Reguest-URI, an appropriate
BLTOr response SHOULD be given that reflects the nature of the
I

problem. The recipient of the entity Musr nop ignore any Content-*
(e.g. Content-Range) headers that it does not understand or implement
and MUST return a 501 (Mot Implemented) response in such cases.

|
If the request basses through a cache ang the Request-URT identifies
one or more eurrently cached entities, those entries SHOULD be
treated as stale. Responses to this method are not cacheable.

The fundamental gif

ference between the POST and pyur reguests is

of the Request-URT. The URI in a

he enclosed

ta—accepting brocess, a gateway to

Or a separate entity that dccepts annotations.

I in a pyr request identifies the entity enclosed
the user agent knows what URT is intended ang the

empt to apply the request to some other resource.

es that the request be applied to a different URT,

some other Protocol,
In contrast, the pR
With the request --
Server MUST NOT att
If the server desir

Flelding, of o

Standards Track

[Page 55]

75

RFC 2616 HTTP/1.1 June 1999

it MUST send a 301 (Moved Permanently) response; the user agent MAY
then make its own decision regarding whether or not to redirect the
request.

A single resource MAY be identified by many different URIs. For
example, an article might have a URI for identifying "the current
version" which is separate from the URI identifying each particular
version. In this case, a PUT request on a general URI might result in
several other URIs being defined by the origin server.

HTTP/1.1 does not define how a PUT method affects the state of an
origin server.

PUT requests MUST obey the message transmission requirements set out
in section 8.2.

Unless otherwise specified for a particular entity-header, the
entity-headers in the PUT request SHOULD be applied to the resource
created or modified by the PUT.

9.7 DELETE

The DELETE method requests that the origin server delete the resource
identified by the Request-URI. This method MAY be overridden by human
intervention (or other means) on the origin server. The client cannot
be guaranteed that the operation has been carried out, even if the
status code returned from the origin server indicates that the action
has been completed successfully. However, the server SHOULD NOT
indicate success unless, at the time the response is given, it
intends to delete the resource or move it to an inaccessible
location.

A successful response SHOULD be 200 (OK) if the response includes an
entity describing the status, 202 (Accepted) if the action has not

yet been enacted, or 204 (No Content) if the action has been enacted
but the response does not include an entity.

If the request passes through a cache and the Request-URI identifies
one or more currently cached entities, those entries SHOULD be
treated as stale. Responses to this method are not cacheable.

9.8 TRACE

The TRACE method is used to invoke a remote, application-layer loop-
back of the request message. The final recipient of the request
SHOULD reflect the message received back to the client as the
entity-body of a 200 (OK) response. The final recipient is either the

9L9¢ D44

Fielding, et al. Standards Track [Page 56]

76

RFC 2616 HTTP/1.1 June 1999

origin server o
value of zero (

eceive a Max-Forwards
MUST NOT includ

.31). A TRACE request
€ an entity,

€ client to see what is being receiveg at
chain and use that q

ata for
lue of the Via header field

ts as a trace o]

the other
testing or diagnostic
(section 14.45) is of
f the Tequest chain.
elient tgo limit the
testing a chain of

information. The wva
particular interest
Use of the Max-p

» which ig useful for
Ng messages in an infinite loop.

| If the request is valiq, the re
| request message in the entit
|

sponse SHOULD contain the entire
"message/http".
|

y-body, with a Content-Type of
Responses to this methoq MUST NOT be cached.

9.9 CONNECT

This Sspecification
Proxy that can g
tunneling [44]) .

€serves the me

thod name CONNECT for use with a
ynamically switch

to being a tunnel (e.g. ssL
| 10 Status Code Definitiong
Each Status-~Code

method(s) it can
response.

is described below,

including a description of which
follow ang any metai

nformation required in the

10.1 Informational 1xx

consisting only of [ine andg optional headers,
terminated by an empty line. There are no required he

class of status code. Since HITE/1.0 dig
ceodes, Servers MUST NOTp

exXcept under Sxperimenta

and is
aders for this

not define any lxx status
send a lxy response to an HT

1 conditions,

Prior to g regula
EContinu@b status

. *pected 1xx status responses MAY be
lgnored by 5 user agent.

Proxies MUST forward Ixx responses, u
Proxy ang its client

nless the connectio
requesteg the

n between the
has been closed, or unless the Proxy itself
generation of the 1xx response. (For example, if a

et a1, Standards Track [Page 57)

77

RFC 2616 HTTP/1.1 June 1999

proxy adds a "Expect: 100-continue" field when it forwards a request,
then it need not forward the corresponding 100 (Continue)
response (s).)

10.1.1 100 Continue

The client SHOULD continue with its request. This interim response is
used to inform the client that the initial part of the request has

been received and has not yet been rejected by the server. The client
SHOULD continue by sending the remainder of the request or, if the

request has already been completed, ignore this response. The server
MUST send a final response after the request has been completed. See
section 8.2.3 for detailed discussion of the use and handling of this
status code.

10.1.2 101 Switching Protocols

The server understands and is willing to comply with the client's
request, via the Upgrade message header field (section 14.42), for a
change in the application protocol being used on this connection. The
server will switch protocols to those defined by the response's
Upgrade header field immediately after the empty line which
terminates the 101 response.

The protocol SHOULD be switched only when it is advantageous to do
so. For example, switching to a newer version of HTTP is advantageous
over older versions, and switching to a real-time, synchronous
protocol might be advantageous when delivering resources that use
such features.

10.2 Successful 2xx

This class of status code indicates that the client's request was
successfully received, understood, and accepted.

10.2.1 200 OK

The request has succeeded. The information returned with the response
is dependent on the method used in the request, for example:

GET an entity corresponding to the requested resource is sent in
the response;

HEAD the entity-header fields corresponding to the requested
resource are sent in the response without any message-body;

9L9¢ D4y

an entity describing or containing the result of the action;

Fielding, et al. Standards Track [Page 58]

78

RFC 2616 HTTP/1.1 June 1999

taining the request message as received by the
end server,

10.2.2 201 Created

The request has been fulfilleq and re
treated. The newly createq resource o
returned in the entity of the respon
for the resource given by a Location
SHOULD include an entity Containing 5
characteristics and locationt

Sulted in a New resource b
an be referenceqd by

S€, with the MOSt specific URI
header field, The response
list of resource

user or user g

eing
the URI(s)

gent can

If the action ca

Mot be carrieq
respond with 202

out immediately
{Accepted) resp

onse insteaqd,
A 201 response Ma
the current value
Created,

N

10.2.3 202 Accepted

The request has pPted for Processing, but the processing has
not been completed, The request might or migh
i acted upon, i

blace. There jg

Process (perhaps a
nce per day) without

Server persist

d with this
Pointer tg 5 sta ate of whep the
user can Bxpect the request tgo he fulfilieq.

10.2.4 203 Non—Authoritative Information

The returned metainformation in the entity-headey is not the
definitive set ag available from
from a 1o

the origin server, but jis gathered
third~party COPY. The sat Presented MAY ha a subset
OF Supergeat of the original version, i including local
annotatien information about the Tesource might result in a Superset
of the netainformatj SErver. Use of this
Yesponga co

PPropriate when the
Tesponse wWo

cal or a

de is ng
uld otherwise be

Fielding,

et a1, Standards Track

[Page 59]

79

RFC 2616 HTTP/1.1 June 1999

10.2.5 204 No Content

The server has fulfilled the request but does not need to return an
entity-body, and might want to return updated metainformation. The
response MAY include new or updated metainformation in the form of
entity-headers, which if present SHOULD be associated with the
requested variant.

If the client is a user agent, it SHOULD NOT change its document view
from that which caused the request to be sent. This response is
primarily intended to allow input for actions to take place without
causing a change to the user agent's active document view, although
any new or updated metainformation SHOULD be applied to the document
currently in the user agent's active view.

The 204 response MUST NOT include a message-body, and thus is always
terminated by the first empty line after the header fields.

10.2.6 205 Reset Content

The server has fulfilled the request and the user agent SHOULD reset
the document view which caused the request to be sent. This response |
is primarily intended to allow input for actions to take place via
user input, followed by a clearing of the form in which the input is
given so that the user can easily initiate another input action. The
response MUST NOT include an entity.

.2.7 206 Partial Content

The server has fulfilled the partial GET request for the resource.
The request MUST have included a Range header field (section 14.35)
indicating the desired range, and MAY have included an If-Range
header field (section 14.27) to make the request conditional.

The response MUST include the following header fields:

- Either a Content-Range header field (section 14.16) indicating
the range included with this response, or a multipart/byteranges
Content-Type including Content-Range fields for each part. If a
Content-Length header field is present in the response, its

value MUST match the actual number of OCTETs transmitted in the
message-body.

Date

9L9¢ D4y

ETag and/or Content-Location, if the header would have been sent
in a 200 response to the same request

Fielding, et al. Standards Track [Page 60]

80

10.

RFC 2616 HTTP/1.1 June 1999

- Expires, Cache—Control, and/or Vary, if the fielqd
differ frop that sent ip

~value might
any previous response fo
variant

r the same

ange request that useq a
sSection 13.3.3), the response SHOULD noT
- If the Tesponse is the result of an
If-Range reguest t weak validator, the response Mygy NOT
i i this prevents inconsistencies between
cached entity-bodd ed headers, Otherwise, the response
-headersg that woulg have been returned
with a 200 {OK)) sdame request
A cache MUST NoT
content if the ET
see 13.5.4.

combine a 206 Tésponse with other bPreviously cached
ag or Last—Modified headers do not match exactly,

A cache that does not Support the Range ang Conten
MUST NoT cache 206 (Partial) respo

t-Range headers
nses,

10.3 Redirection 3xx

3.1 300 Multiple Choices

The requegted Iresource Cerresponds tgo any

representaticns. 2ach with itg OWIl sSpeciq fi
drivern Negotiation i

the pser (or user
redirecs

one of a set of
fo} location, and agent-
) is being Provided so thar

Ct a preferred Tepresentation and
its request to that location,

Standards Track [Page 61)

81

RFC 2616 HTTP/1.1 June 1999

the user agent, selection of the most appropriate choice MAY be
performed automatically. However, this specification does not define
any standard for such automatic selection.

If the server has a preferred choice of representation, it SHOULD
include the specific URI for that representation in the Location
field; user agents MAY use the Location field value for automatic
redirection. This response is cacheable unless indicated otherwise.

.3.2 301 Moved Permanently

The requested resource has been assigned a new permanent URI and any
future references to this resource SHOULD use one of the returned
URIs. Clients with link editing capabilities ought to automatically
re-link references to the Request-URI to one or more of the new
references returned by the server, where possible. This response is
cacheable unless indicated otherwise.

The new permanent URI SHOULD be given by the Location field in the
response. Unless the request method was HEAD, the entity of the

response SHOULD contain a short hypertext note with a hyperlink to
the new URI(s).

If the 301 status code is received in response to a request other
than GET or HEAD, the user agent MUST NOT automatically redirect the
request unless it can be confirmed by the user, since this might

change the conditions under which the request was issued.

Note: When automatically redirecting a POST request after
receiving a 301 status code, some existing HTTP/1.0 user agents
will erroneously change it into a GET request.

.3.3 302 Found

The requested resource resides temporarily under a different URI.
Since the redirection might be altered on occasion, the client SHOULD
continue to use the Request-URI for future reguests. This response
is only cacheable if indicated by a Cache-Control or Expires header
field.

The temporary URI SHOULD be given by the Location field in the
response. Unless the request method was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to
the new URI(s).

9192 D4y

Fielding, et al. Standards Track [Page 62]

82

RFC 2616 HTTP/1.1 June 1999

If the 302 Status code 1g recei

& request other
than GgT 0X HEAD,

=8I agent MUST Nop automatically redirect the
Tequest unless it can be confirmed by the user, since thig might
change the conditi

request was issued.

2068 Specify that the clie
to change the method on the redirectegd request,

i gent implementations Ereat 302 ag
rming a GET On the Location fielg-
ginal Fequest methed, The status codeg

for servers that wish eg make un
ction is expected of the client,

nt is not allowed
However, most

if it were a 303
value regardlegs
303 ang 307 have
ambiguously clear which

response, perfo
of the orj
been addeq
kind of regs

10.3.4 303 gee Other

This method
activated script to
The new URT is not a
requested resource. The 303
bonse to the second

redirect the usg
substitute Teference for th
response MUST NoO
(redirected) req

e originally
T be cached, but the reg
uest might he cacheable,

The different URI SHOULD be given by the Location field in the
response. Unlesg the request method wasg HEAD, the entity of the
response SHOULD contain a short hypertesxt note with g hyperlink to
the ney URI(s) .,

10.3.5 304 Not Modifieq

If the client has performed z condi

allowed, byt the document has not b
Tespond with this status code,
message~body, and thus 4
after the header fields.

ticnal emp request and access is
cen modified, the server SHOULD
The 304 response MyusT NOT contain a
5 always terminateqd by the first empty line

Standards Track [Page 63]

83

RFC 2616 HTTP/1.1 June 1999

If a clockless origin server obeys these rules, and proxies and
clients add their own Date to any response received without one (as
already specified by [RFC 2068], section 14.19), caches will operate

correctly.

- ETag and/or Content-Location, if the header would have been sent
in a 200 response to the same request

- Expires, Cache-Control, and/or Vary, if the field-value might
differ from that sent in any previous response for the same
variant

Tf the conditional GET used a strong cache validator (see section
13.3.3), the response SHOULD NOT include other entity-headers.
Otherwise (i.e., the conditional GET used a weak validator), the
response MUST NOT include other entity-headers; this prevents
inconsistencies between cached entity-bodies and updated headers.

If a 304 response indicates an entity not currently cached, then the
cache MUST disregard the response and repeat the request without the

conditional.

If a cache uses a received 304 response to update a cache entry, the)
cache MUST update the entry to reflect any new field values given in

the response.

10.3.6 305 Use Proxy

The requested resource MUST be accessed through the proxy given by
the Location field. The Location field gives the URI of the proxy.
The recipient is expected to repeat this single request via the
proxy. 305 responses MUST only be generated by origin servers.

Note: RFC 2068 was not clear that 305 was intended to redirect a
single request, and to be generated by origin servers only. Not
observing these limitations has significant security consequences.

.3.7 306 (Unused)

The 306 status code was used in a previous version of the
specification, is no longer used, and the code is reserved.

9L9¢ D3H

[Page 64]

Fielding, et al. Standards Track

84

RFC 2616 HTTP/1.1 June 1999

10.3.8 307 Temporary Redirect

The requested resource resides tem|
Since the redirection May be alter
continue to uge the Reguest-

is only cacheable if indicat
field.

POrarily undey a different URI.

ed on occasion, tha client SHouLp
URI for future requests. Thig response
ed hy a Cache-Contrel Oor Expires header

<

The temporary URI SHOULD
response. Unless th

be given by the Location fielq in the |
€ request method was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to

the new URI(s) , since many PXe-HTTP/1.1 tiser agents do not
understang the 307 Statug, Therefore,

information ecessary for a g
the new URT.

If the 307 status code isg received inp response tg
than GET or HEAD, ¢

he user agent MUST worp automatli
request unless it can be confirmed by
change the conditions under w

a request other
cally redirect the
since this might

5 issued,

the user,
hich the request wa

10.4 Client Error 4xx

The 4xx clags of status code is intended for ¢
client seems Lo have erreq. Except

error situation,
condition,

If the client i a server implementati
SHOULD be carefy i
the packet (g) contai
input connection.
after the closge,

the client, which may
before they can be r

et al, Standards Track

[Page 65]

85

RFC 2616 HTTP/1.1 June 1999

10.4.2 401 Unauthorized

The request requires user authentication. The response MUST include a
WWW-Authenticate header field (section 14.47) containing a challenge
applicable to the requested resource. The client MAY repeat the
request with a suitable Authorization header field (section 14.8). If
the request already included Authorization credentials, then the 401
response indicates that authorization has been refused for those
credentials. If the 401 response contains the same challenge as the
prior response, and the user agent has already attempted
authentication at least once, then the user SHOULD be presented the
entity that was given in the response, since that entity might
include relevant diagnostic information. HTTP access authentication
is explained in "HTTP Authentication: Basic and Digest Access
Authentication” [43].

10.4.3 402 Payment Required

This code is reserved for future use.

10.4.4 403 Forbidden |'

The server understood the request, but is refusing to fulfill it. “
Authorization will not help and the request SHOULD NOT be repeated.]
If the request method was not HEAD and the server wishes to make |
public why the request has not been fulfilled, it SHOULD describe the |
reason for the refusal in the entity. If the server does not wish to
make this information available to the client, the status code 404
(Not Found) can be used instead.

.4.5 404 Not Found

The server has not found anything matching the Request-URI. No
indication is given of whether the condition is temporary or

permanent. The 410 (Gone) status code SHOULD be used if the server
knows, through some internally configurable mechanism, that an old
resource is permanently unavailable and has no forwarding address.
This status code is commonly used when the server does not wish to
reveal exactly why the request has been refused, or when no other

response is applicable.

.4.6 405 Method Not Allowed

The method specified in the Request-Line is not allowed for the
resource identified by the Request-URI. The response MUST include an
Allow header containing a list of valid methods for the requested

resource.

9L9¢ D4Y

Fielding, et al. standards Track [Page 66]

86

RFC 2616

HTTP/1.1 June 1999
10.4.7 40¢ Not Acceptable
The resource identifieg by the request ig only capable of generating
response entitieg which have content characteristic
according to the

S sent in the request .

+ the Tesponse SHOULD
entity characterist
Ot can choose the o

include an entity

ics and location(s)
ne most

appropriate
rformed automatically. However, thig Specification
does not define any standard fer such automatic selection.

Note: HTTP/1.1 Servers areg allow
not dcCceptable according tg the
regquest, Tp Some caseg, this may
406 reésponse. User agents are enc
an incoming response to determing

ed to return Tesponses which are
accept headers sent in the

even be preferable to Sending &

Ouraged to inspect the headers of

if it 4g atceptable,

If the Teésponse coulg be unacceptable, 4 user agent SHOULD
temporarily stop receipt of more data ang query the user for a
decision op further aCtions,

10.4.8 407 Proxy Authentication Required

Thisg

{Unautbnrized),
client must first authenticare itself with t

header field (s

header field

in "gpTp Authentication:
[43] .

-4.9 408 Request Timeout

10.

could not be Completed due to 8 conflict with the current
1€ Yesource. Thig code i i

Fielding, et al.

Standards Track [Page 67]

87

RFC 2616 HTTP/1.1 June 1999

information for the user to recognize the source of the conflict.
Ideally, the response entity would include enough information for the
user or user agent to fix the problem; however, that might not be
possible and is not required.

Conflicts are most likely to occur in response to a PUT request. For
example, if versioning were being used and the entity being PUT
included changes to a resource which conflict with those made by an
earlier (third-party) request, the server might use the 409 response
to indicate that it can't complete the request. In this case, the
response entity would likely contain a list of the differences
between the two versions in a format defined by the response
Content-Type.

10.4.11 410 Gone

The requested resource is no longer available at the server and no
forwarding address is known. This condition is expected to be
considered permanent. Clients with link editing capabilities SHOULD
delete references to the Request-URI after user approval. If the
server does not know, or has no facility to determine, whether or not
the condition is permanent, the status code 404 (Not Found) SHOULD be
used instead. This response is cacheable unless indicated otherwise.

The 410 response is primarily intended to assist the task of web
maintenance by notifying the recipient that the resource is
intentionally unavailable and that the server owners desire that
remote links to that resource be removed. Such an event is common for
limited-time, promotional services and for resources belonging to
individuals no longer working at the server's site. It is not
necessary to mark all permanently unavailable resources as "gone" oxr
to keep the mark for any length of time -- that is left to the
discretion of the server owner.

.4.12 411 Length Required

The server refuses to accept the request without a defined Content-
Length. The client MAY repeat the request if it adds a valid

Content-Length header field containing the length of the message-body
in the request message.

.4.,13 412 Precondition Failed

The precondition given in one or more of the request-header fields
evaluated to false when it was tested on the server. This response
code allows the client to place preconditions on the current resource
metainformation (header field data) and thus prevent the requested
method from being applied to a resource other than the one intended.

9L9¢ D4H

Fielding, et al. Standards Track [Page 68]

88

RFC 2616 HTTP/1.1 June 1999

10.4.14 413 Request Entity Too Large

The server ig refu
entity ig larger t
Server MAY clog
the request.

sing to Drocess a r
han the server is w
€ the connection to pr

Equest because the request
illing or able to DProcess. The
event the client from continuing

If the condition ig temporary, the server SHOULD include a Retry-
After header field to indiecate

that it ig temporary ang after what
time the client MAY try again.

10.4.15 414 Request-URT Too Long

The server ig refusing te g i
is longer than the serve
condition ig only likely

converted a pPosT request to a gR

t has improperly
information,

T request with long query

10.

10.4.17 a1s Requested Range Not Satisfiable

A server SHOULD return
included a Range reques

the range-specifier d overlap the Current extent
of the selected resource, and the request did not include ap If-Range
request-header field. (ror byte—ranges, this meang that the first-

byte-pos of all of the byte—range—spec values were greater than the
Current length of the selecteqd resourca,)

4 response with thig status code i
t-header fielg (section 1
values in this fiel

f a request
4.35), and none of

| When thig status code is returned for z by

response SHOULD inelude a Contenthange entity-header field
Specifying the current length of the selecteqd resource (

S&e sectiop
l4.16) . This response MIST NOT use the multipart/byteranges content-
type.

Le-range request, the

et al. Standards Track [Page 69)

89

RFC 2616 HTTP/1.1 June 1999

10.4.18 417 Expectation Failed

The expectation given in an Expect request-header field (see section
14.20) could not be met by this server, or, if the server is a proxy,
the server has unambiguous evidence that the request could not be met
by the next-hop server.

10.5 Server Error 5xx

Response status codes beginning with the digit "5" indicate cases in
which the server is aware that it has erred or is incapable of
performing the request. Except when responding to a HEAD request, the
server SHOULD include an entity containing an explanation of the
error situation, and whether it is a temporary or permanent
condition. User agents SHOULD display any included entity to the
user. These response codes are applicable to any request method.

10.5.1 500 Internal Server Error

The server encountered an unexpected condition which prevented it
from fulfilling the request.

10.5.2 501 Not Implemented

The server does not support the functionality required to fulfill the
request. This is the appropriate response when the server does not
recognize the request method and is not capable of supporting it for
any resource.

10.5.3 502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid
response from the upstream server it accessed in attempting to
fulfill the request.

10.5.4 503 Service Unavailable

The server is currently unable to handle the request due to a
temporary overloading or maintenance of the server. The implication
is that this is a temporary condition which will be alleviated after
some delay. If known, the length of the delay MAY be indicated in a
Retry-After header. If no Retry-After is given, the client SHOULD
handle the response as it would for a 500 response.

9192 D4d

Note: The existence of the 503 status code does not imply that a
server must use it when becoming overloaded. Some servers may wish
to simply refuse the connection.

Fielding, et al. Standards Track [Page 70]

90

RFC 2616 HTTP/1.1 June 1999

10.5.5 504 Gateway Timeout

The server, while acting as a
timely response from the upstr
HTTP, FTP, LDAP}) or some other
to access in attempting to comp

gateway or Proxy, did not receive a
fam server specified by the URT (e.qg.
auxiliary Server (e.g. DNS) it needed
lete the reguest .

Note: Note to implementors: Some deployed proxies are known to
return 400 or 500 when DNg lookups time out.

10.5.6 505 HTTP Version Not Supported
The server does not Support,
version that was used in the
indicating that it is unable
using the same major version
3.1, other than with this err
an entity describing why that
protocols are Supported by tha

or refuses to support; the HTTP Protoecol
Fequest message. The server is

or unwilling to complet
as the client,
O message. The
version is not
L server.

e the request

as described in section
response SHOULD contain
Supported and what otheyr

11 Access Authentication

HTTP provides several OPTIONAL chal
mechanisms which can pe used by a server to challenge a client
request and by a client Lo provide authentication information. The
general framework for dccess authentication, and the Specification of
"basic' ang "digest" are specified in "grop

Authentication: Basi S5 Authentication® [43]. This
specification adopts the definitions of "challenge" andg "eredentialg®
from that specification,

12 Content Negotiation

Mest HTTP Lésponses incluy

ntains information for
intarpretation by a human

user. Naturally, it is desirable Lo supply
the user with the "best available® entity Corresponding to the

reqguest Unfortunately for servers and caches, not ai] users have the
Same preferences for what is "best, " and not all user agents are

equally capable of rendering all entity types. For that Ireason, HITTP
hag Provisions for several mechanisms for » i

the process of selecting the pest Tépresentation for a
when there are multiple representations available,

This is not called "format negotiationn because the
alternate representations may be of the same media type, but use
different Ccapabilitieg of that type, be in different languages,
etc,

Fielding, op o7,

Standards Track [Page 71]

91

RFC 2616 HTTP/1.1 June 1999

Any response containing an entity-body MAY be subject to negotiation,
including error responses.

There are two kinds of content negotiation which are possible in
HTTP: server-driven and agent-driven negotiation. These two kinds of
negotiation are orthogonal and thus may be used separately or in
combination. One method of combination, referred to as transparent
negotiation, occurs when a cache uses the agent-driven negotiation
information provided by the origin server in order to provide
server-driven negotiation for subsequent requests.

12.1 Server-driven Negotiation

If the selection of the best representation for a response is made by
an algorithm located at the server, it is called server-driven
negotiation. Selection is based on the available representations of
the response (the dimensions over which it can vary; e.g. language,
content-coding, etc.) and the contents of particular header fields in
the request message or on other information pertaining to the request
(such as the network address of the client).

Server-driven negotiation is advantageous when the algorithm for
selecting from among the available representations is difficult to
describe to the user agent, or when the server desires to send its
"best guess" to the client along with the first response (hoping to
avoid the round-trip delay of a subsequent request if the "best
guess”" is good enough for the user). In order to improve the server's
guess, the user agent MAY include request header fields (Accept,
Accept-Language, Accept-Encoding, etc.) which describe its
preferences for such a response.

Server-driven negotiation has disadvantages:

1. It is impossible for the server to accurately determine what |
might be "best" for any given user, since that would require
complete knowledge of both the capabilities of the user agent
and the intended use for the response (e.g., does the user want
to view it on screen or print it on paper?).

2. Having the user agent describe its capabilities in every
request can be both very inefficient (given that only a small
percentage of responses have multiple representations) and a
potential violation of the user's privacy.

9192 D4y

3. It complicates the implementation of an origin server and the
algorithms for generating responses to a request.

Fielding, et al. Standards Track [Page 721

92

RFC 2616 HTTP/1.1 June 1999
4. It may limit a public cache'sg ability to use the same response
for multiple user's requests.

server-driven negotiation t
capabilities and user Preferences;
Charset (section 14.2),
Language (section 14.4),

Accept (section 14.1), Accept-
Accepthncoding (section 14.3), Accept-~

and User-Agent (section 14.43), However, an
origin server is not limited to these dimensions and MaYy vary the
response based on any aspect of the request, including information

outside the request-header fields or within extension header fields
not defined by thig specification.

.44 for use of the Vary header field by
servers.

I 12.2 Agent-driven Negotiation

With agent-driven negotiation,
for a response is performed by
f initial response from the origi
of the available representation
header fields or entity-body of
representation identified by its
representations may be performed
capable of doing SO) or manually by
generated (possibly hypertext) menu.

selection of

the best representation
the user agen

t after receiving an

Tl server. Selection is based on a 1ist

s of the response included within the
the initial response, with each

Agent-driven negotiation is advantageous when the response would vary
over commonly-used dimensions (such 4s type, language, or encoding),
when the origin server is unable to determine g user agent's
capabilities from examining the Tequest, and generally when publie

i caches are yused to distribute server load ang reduce nstwork usage.

epresentation. This
ent when caching is used. In addition,
this specification does not define any mechanism for supporting
automatic selection, though it also does not prevent any such

mechanism from being developed as an extension and used within
HTTP/1.1,

Fielding, et al. Standards Track

[Page 73]

93

RFC 2616 HTTP/1.1 June 1999

HTTP/1.1 defines the 300 (Multiple Choices) and 406 (Not Acceptable)
status codes for enabling agent-driven negotiation when the server is
unwilling or unable to provide a varying response using server-driven
negotiation.

12.3 Transparent Negotiation

Transparent negotiation is a combination of both server-driven and
agent-driven negotiation. When a cache is supplied with a form of the
list of available representations of the response (as in agent-driven
negotiation) and the dimensions of variance are completely understood
by the cache, then the cache becomes capable of performing server-
driven negotiation on behalf of the origin server for subsequent
requests on that resource.

Transparent negotiation has the advantage of distributing the
negotiation work that would otherwise be required of the origin
server and also removing the second request delay of agent-driven
negotiation when the cache is able to correctly guess the right
response.

This specification does not define any mechanism for transparent
negotiation, though it also does not prevent any such mechanism from
being developed as an extension that could be used within HTTP/1.1.

13 Caching in HTTP

HTTP is typically used for distributed information systems, where
performance can be improved by the use of response caches. The
HTTP/1.1 protocol includes a number of elements intended to make
caching work as well as possible. Because these elements are
inextricable from other aspects of the protocol, and because they
interact with each other, it is useful to describe the basic caching
design of HTTP separately from the detailed descriptions of methods,
headers, response codes, etc.

Caching would be useless if it did not significantly improve
performance. The goal of caching in HTTP/1.1 is to eliminate the need
to send requests in many cases, and to eliminate the need to send
full responses in many other cases. The former reduces the number of
network round-trips required for many operations; we use an
"expiration” mechanism for this purpose (see section 13.2). The
latter reduces network bandwidth requirements; we use a "validation'
mechanism for this purpose (see section 13.3).

91L9Z Ddy

Requirements for performance, availability, and disconnected
operation require us to be able to relax the goal of semantic
transparency. The HTTP/1.1 protocol allows origin servers, caches,

Fielding, et al. Standards Track [Page 74]

94

RFC 2616 HTTP/1.1 June 1999

nd clients to explicitl

a Y reduce transparency when necessary.
However, because non-tra:

nsparent operation may confuse non-expert

certain server applications
ordering merchandise), the protocol requiresg that
transparency be relaxed

- only by an explicit protocol-level request when relaxed by
client or origin server

1. Protocol features that provide full semantic transparency when
this is required by all parties.

low a cache to attach warnings to
responses that do not pre
semantic transparency.

Note: The server, cache,
design decisions not expl
If a decision might affec

or client implementor might be faced with
icitly discussed in this specification.

13.1.1 cache Correctness

A correct cache MUST r
response held by the o
sections 13.2.5,
conditions.

espond to a re

dquest with the mogt up-to-date
ache that is appropriate to the request (

see
13.2.6, and 13.12) which meets one of the following

1. It has been checked for equivalence wi

would have returned by revalidatin
origin server (section 13.3);

th what the origin server
g the response with the

Fielding, et al, Standards Track

[Page 75]

95

RFC 2616 HTTP/1.1 June 1999

2. It is "fresh enough" (see section 13.2). In the default case,
this means it meets the least restrictive freshness requirement
of the client, origin server, and cache (see section 14.9); if
the origin server so specifies, it is the freshness requirement
of the origin server alone.

If a stored response is not "fresh enough" by the most
restrictive freshness requirement of both the client and the
origin server, in carefully considered circumstances the cache
MAY still return the response with the appropriate Warning
header (see section 13.1.5 and 14.46), unless such a response
is prohibited (e.g., by a "no-store" cache-directive, or by a
"no-cache" cache-request-directive; see section 14.9).

3. It is an appropriate 304 (Not Modified), 305 (Proxy Redirect),
or error (4xx or 5xxX) response message.

If the cache can not communicate with the origin server, then a

correct cache SHOULD respond as above if the response can be

correctly served from the cache; if not it MUST return an error or !
warning indicating that there was a communication failure.

If a cache receives a response (either an entire response, or a 304

(Not Modified) response) that it would normally forward to the

requesting client, and the received response is no longer fresh, the

cache SHOULD forward it to the requesting client without adding a new !
Warning (but without removing any existing Warning headers). A cache

SHOULD NOT attempt to revalidate a response simply because that

response became stale in transit; this might lead to an infinite

loop. A user agent that receives a stale response without a Warning

MAY display a warning indication to the user.

.1.2 Warnings

Whenever a cache returns a response that is neither first-hand nor
"fresh enough" (in the sense of condition 2 in section 13.1.1), it
MUST attach a warning to that effect, using a Warning general-header.
The Warning header and the currently defined warnings are described
in section 14.46. The warning allows clients to take appropriate
action.

Warnings MAY be used for other purposes, both cache-related and
otherwise. The use of a warning, rather than an error status code,
distinguish these responses from true failures.

91L9¢ Ddd

Warnings are assigned three digit warn-codes. The first digit
indicates whether the Warning MUST or MUST NOT be deleted from a
stored cache entry after a successful revalidation:

Fielding, et al. Standards Track [Page 76]

96

RFC 2616 HTTP/1.1 June 1999

1xx Warnings tha

the response, and so MUST be g
| revalidation,

tity body or entity |
i (for example, a
the entj i ich MUST Norm be

See section 14.46 for the definitiong of the codes themselves.

HTTP/1.0 caches will cache all Warnings in responses,

without
Category. Warnings in »

@sponses that

-1 recipient from believing an
erronecusly cached Warning,

Warnings also carry a
appropriate natural 1a

headers) , and include
used.

Warning tesxt. The text May be
guage (perhaps hg
an OPTIONAL ing

in any
sed on the client's Accept
ication of what character set is

Multiple warnings May
server or by a cache) ,
number., For example,

texts in both English

be attacheg Lo a response

including multi
a4 server might
and Basque.

(either by the origin
ple warnings with the same code
Provide the Same warning with

ed to a respense,

able to display all of them to t
rict priority ry
at order, but do

it might not be
he user, Thig
les for deciding
€S suggest some

13.1.3 Cache-control Mechanismg

The basic cac

he mechanisms in HTTP/1.1
times ang val

{server—specified expiration
idators) are implicit directives tgo caches. In some
cases, a server or client might need to provide explicit directives
to the yrrp caches. We use the Cache-

Control header for this burpose.,

8 tyg caching algorithms As a
genersg] rule, if there ig any apparent conflict between header
Valueg, the most restrictive interpretatlon 18 applied (that is
one that g most like

3ialding' et al,

Standards Track

[Page 77)

97

RFC 2616 HTTP/1.1 June 1999

in some cases, cache-control directives are explicitly specified as
weakening the approximation of semantic transparency (for example,
"max-stale" or "public").

The cache-control directives are described in detail in section 14.9.
13.1.4 Explicit User Agent Warnings

Many user agents make it possible for users to override the basic
caching mechanisms. For example, the user agent might allow the user
to specify that cached entities (even explicitly stale ones) are
never validated. Or the user agent might habitually add "Cache-
Control: max-stale=3600" to every request. The user agent SHOULD NOT
default to either non-transparent behavior, or behavior that results
in abnormally ineffective caching, but MAY be explicitly configured
to do so by an explicit action of the user.

If the user has overridden the basic caching mechanisms, the user
agent SHOULD explicitly indicate to the user whenever this results in
the display of information that might not meet the server's
transparency requirements (in particular, if the displayed entity is
known to be stale). Since the protocol normally allows the user agent
to determine if responses are stale or not, this indication need only
be displayed when this actually happens. The indication need not be a
dialog box; it could be an icon (for example, a picture of a rotting
fish) or some other indicator.

If the user has overridden the caching mechanisms in a way that would
abnormally reduce the effectiveness of caches, the user agent SHOULD
continually indicate this state to the user (for example, by a
display of a picture of currency in flames) so that the user does not
inadvertently consume excess resources or suffer from excessive
latency.

13.1.5 Exceptions to the Rules and Warnings

In some cases, the operator of a cache MAY choose to configure it to
return stale responses even when not requested by clients. This
decision cught not be made lightly, but may be necessary for reasons
of availability or performance, especially when the cache is poorly
connected to the origin server. Whenever a cache returns a stale
response, it MUST mark it as such (using a Warning header) enabling
the client software to alert the user that there might be a potential
problem.

9192 D44

Fielding, et al. Standards Track [Page 78]

98

RFC 2616 HTTP/1.1 June 1999

It also allows the user agent to

fresh response,

requeste a first-hand or fresh one,
i L or policy reasons,

13.1.6 Client—controlled Behavior

While the origin server intermediate caches,
by their contribution to the dge of a Tesponse) are the Primary

source of expi i i i i
te contreol a cache's
response without vali
‘ directives of the Cac

client might need
decision about whether to return a cached

dating it, Clients do this using several
he-Control header,

A client'g request MAY
accept of an unval
| the cache(s)

Specify the maximum age it is willing to
idated response; specifving a value of zero forces
to revalidate all responses. A client MAY alsg Specify

Tesponse expires, Both of these
8, and so cannot

O
g o
T o
H
i
@ o
o1
=]
g c
a0 3
H
T
1

raints on the
rigin server's specified

but might be Necessary to
or high availability in the face aof
Poor connectivity,
13.2 Expiration Model

=21, 1! Server—Specified Expiration

an origin server
Eime in the future,

subseguent reguests,
response without firs

to provide an explicit expiration
indicating that a response MAY be used to satisfy
In other words, a cache Can return a fregh

£ contacting the server.

Our expectation is that servers will
expiration times to res
likely tqo change,
eXpiration time ig
transparency,
chogen

assign future explicit
Donses in the belief that the entity is not
in a semantically significant way, before the
reached. Thig normally breserves semantic

as long as the server's expiration times are carefully

et al. Standards Track

[Page 79]

99

RFC 2616 HTTP/1.1 June 1599

The expiration mechanism applies only to responses taken from a cache
and not to first-hand responses forwarded immediately to the
requesting client.

If an origin server wishes to force a semantically transparent cache
to validate every request, it MAY assign an explicit expiration time
in the past. This means that the response is always stale, and so the
cache SHOULD validate it before using it for subsequent requests. See
section 14.9.4 for a more restrictive way to force revalidation.

If an origin server wishes to force any HTTP/l.l cache, no matter how
it is configured, to validate every request, it SHOULD use the "must-
revalidate" cache-control directive (see section 14.9).

Servers specify explicit expiration times using either the Expires
header, or the max-age directive of the Cache-Control header.

An expiration time cannot be used to force a user agent to refresh
its display or reload a resource; its semantics apply only to caching
mechanisms, and such mechanisms need only check a resource's
expiration status when a new request for that resource is initiated.
See section 13.13 for an explanation of the difference between caches
and history mechanisms.

13.2.2 Heuristic Expiration

Since origin servers do not always provide explicit expiration times, |
HTTP caches typically assign heuristic expiration times, employing
algorithms that use other header values (such as the Last-Modified
time) to estimate a plausible expiration time. The HTTP/1.1
specification does not provide specific algorithms, but does impose
worst-case constraints on their results. Since heuristic expiration
times might compromise semantic transparency, they ought to used
cautiously, and we encourage origin servers to provide explicit
expiration times as much as possible.

.2.3 Age Calculations

In order to know if a cached entry is fresh, a cache needs to know if
its age exceeds its freshness lifetime. We discuss how to calculate

the latter in section 13.2.4; this section describes how to calculate
the age of a response or cache entry.

In this discussion, we use the term "now" to mean "the current value
of the clock at the host performing the calculation." Hosts that use
HTTP, but especially hosts running origin servers and caches, SHOULD
use NTP [28] or some similar protocol to synchronize their clocks to
a globally accurate time standard.

9L9Z D4H

Fielding, et al. Standards Track [Page 801

100

RFC 2616 HTTP/1.1 June 1999

HTTP/1.1 requires o
with every response, giving the time at which the response was
generated (see section 14.18) . we use the term "date_value" to denote
the value of the Date header, in 4 form appropriate for arithmetic
Ooperationg.

Date header, if Dossible,

'

network paths.

We use the term "age_value" to den
a form appropriate for arithmetic

A response's age can be calculated in two entirely independent ways:

1. now minus date_value,
synchronized to the or
negative, the result i

if the local clock is reasonably well
igin Server's clock. If the result is
S replaced by zero.

2. age_value, if all o

f the caches along the response path
implement HTTP/1.1.

compute the age of a
e these as

corrected_received_age = max (now - date_value, age_value)

Y synchronized clocks or all-
HTTP/1.1 paths,

one gets a reliable (conservative) result.

Because of network-imposed delays,
bass between the ti
it is received at t
this delay could re

some significant interv
me that a Server generateg a res

he next outbound cache or client
sult in improperly low ages.

al might
bonse and the time
. If uncorrected,

Because the request that rned Age wvalye must have
been injitj Age value's generation, we can correct

work by recording the ti

n, when an Age value ig received, it MusT

the time the request was initiated, not

for delays imposed by the net
Tequest wag initiated. The
be interpreted relative to

Standards Track [Page 81]

101

RFC 2616 HTTP/1.1 June 1999

the time that the response was received. This algorithm results in

conservative behavior no matter how much delay is experienced. So, we

compute:
corrected_initial_age = corrected_received_age

+ (now - request_time)

where "request_time" is the time (according to the local clock) when

the request that elicited this response was sent.

Summary of age calculation algorithm, when a cache receives a

response:
/*
* age_value
* is the value of Age: header received by the cache with
* this response.
* date_value
* is the value of the origin server's Date: header
* request_time
1 is the (local) time when the cache made the request
& that resulted in this cached response
* response_time
¥ is the (local) time when the cache received the
* response
* now
* is the current (local) time
*

~

apparent_age = max(0, response_time - date_value);
corrected_received_age = max(apparent_age, age_value) ;
response_delay = response_time - request_time;
corrected_initial_age = corrected_received_age + response_delay;
resident_time = now - response_time;

current_age = corrected_initial_age + resident_time;

The current_age of a cache entry is calculated by adding the amount
of time (in seconds) since the cache entry was last validated by the
origin server to the corrected_initial_age. When a response is
generated from a cache entry, the cache MUST include a single Age
header field in the response with a value equal to the cache entry's
current_age.

The presence of an Age header field in a response implies that a
response is not first-hand. However, the converse is not true, since
the lack of an Age header field in a response does not imply that the

9L9¢ D44

Fielding, et al. Standards Track [Page 82]

102

RFC 2616 HTTP/1.1 June 1999

response is first-hand unless all caches al
compliant with HTTP/1.1 (i.e
the Age header field).

ong the request path are
-+ older HTTP caches did not implement

13.2.4 Expiration Calculations

In order to decide whether a response is fresh or stale, we need to
compare its freshnessg lifetim

€ to its age. The age is calculated as
described in section 13.2.3; this section describes how to calculate
‘ the freshnese lifetime, and to determine if a response has expired.
In the discussion below,

the values can be represented in any form
apprepriate for arithmetic operations.

We use the term "expires_value” to denote the value of the Expires
header. We use the term "max_age_ value" to denote an appropriate
value of the number of seconds carried by the ‘max-age" directive of
the Cache-Control header in a response (see section 14.9.3).
The max-age directive takes

priority over Expires,
present in a response,

so if max-age is
the calculation ig simply:

freshness_lifetime = max_age_value

Otherwise, if Expires is present in the response, the calculation is:

freshness_lifetime = expires_value - date_value
Note that neither of these calculations

is vulnerable to clock skew,
since all of the information comes from

the origin server.

If nene of Expires, Cache-Control:
maxage (see section 14.9.3)
does not include oth

max-age, or Cache-Cortrol: 8-
appears in the response,

er restrictions on caching, the cache May compute
a freshness lifetime using a heuristiec, T

he cache MUST attach Warning
113 to any response whose age is more than 24 hours if such warning
has not already been added.

and the response

, 1f the reéesponse does have a Last
expiration value SHOULD be no more tha,
since that time. A typical setting of

~Modified time, the heuristic
N some fraction of the interval
this fraction might be 10%.

The calculation to de
simple:

response_is_fresh = (freshness_lifetime » current_age)

Fielding, et al. Standards Track

[Page B83]

RFC 2616

103

RFC 2616 HTTP/1.1 June 1999

13.2.5 Disambiguating Expiration Values

Because expiration values are assigned optimistically, it is possible

for two caches to contain fresh values for the same resource that are
different.

If a client performing a retrieval receives a non-first-hand response
for a request that was already fresh in its own cache, and the Date
header in its existing cache entry is newer than the Date on the new
response, then the client MAY ignore the response. If so, it MAY
retry the request with a "Cache-Control: max-age=0" directive (see
section 14.9), to force a check with the origin server.

If a cache has two fresh responses for the same representation with
different validators, it MUST use the one with the more recent Date
header. This situation might arise because the cache is pooling
responses from other caches, or because a client has asked for a
reload or a revalidation of an apparently fresh cache entry.

13.2.6 Disambiguating Multiple Responses

Because a client might be receiving responses via multiple paths, so
that some responses flow through one set of caches and other
responses flow through a different set of caches, a client might
receive responses in an order different from that in which the origin
server sent them. We would like the client to use the most recently

generated response, even if older responses are still apparently
fresh.

Neither the entity tag nor the expiration value can impose an
ordering on responses, since it is possible that a later response
intentionally carries an earlier expiration time. The Date values are
ordered to a granularity of one second.

When a client tries to revalidate a cache entry, and the response it
receives contains a Date header that appears to be older than the one
for the existing entry, then the client SHOULD repeat the request
unconditionally, and include

Cache-Control: max-age=0

to force any intermediate caches to validate their copies directly
with the origin server, or

9L9¢ D4H

Cache-Control: no-cache

to force any intermediate caches to obtain a new copy from the origin
server.

Fielding, et al. Standards Track [Page 84]

104

RFC 2616 HTTP/1.1 June 1999

If the pate values are equal, the
(or Ma¥y, if j¢ is being
Servers MUST o depend
deterministically betwee
if their expiration time

n the client May us
extremely prudent, request
on clientsg being able to ch
N respornses generat
S overlap.

e either response
a new responge) .
ocose

ed during the Same second,

13.3 validation Model

When a cache has a stale entry that it would like to use as a
Tesponse to a client's Tequest, it first has to check wit

server (or possibly an intermediate cache with a fresh re
see if its cacheg entry is still usable. we c¢al] this "validating»
the cache entry. Since we do not want to have to pay the overhead of
retransmitting the full Tesponse if the cached entry is goed,
do not want tg pay the overhead of an extra round trip if the cached
entry ig invalid, the HTTP/1.1 Protocol supports the use of
conditional methods .

b the origin
Sponse) to

The key protocol features for su

pporting conditional methods are
those concerneg with

"cache validatorg, » When an origin server

+ it attaches Some sort of validator to it,
cache entry, When a client (user agent or
broxy cache) makes a conditional request for 3 resource for which it

has a cache entry, it includes the associated validator in the
request.,

The server then checks thar validator

for the entity, and, if they matech (see sectien 13.3.3), it responds
with a special statyg code (usually, 304 (Not Modified)) ang no
entity-body. Otherwigae, it returns a ful]l response

entity-body) . Thusg,

validatoyr matches,
match,

against the current validator

In HITP/1.1, 3 con
fequest for the sSame resocurce, except that i
header (which includes the

method (usually, GET)

ditional request loaks exactly the

The Protecol includes both positive an
validating conditions,

& method be Performed if ang only if a validator mat
only if pgq validators match,

et al, Standards Track [Page 85)

105

RFC 2616 HTTP/1.1 June 1999

Note: a response that lacks a validator may still be cached, and
served from cache until it expires, unless this is explicitly
prohibited by a cache-control directive. However, a cache cannot
do a conditional retrieval if it does not have a validator for the

entity, which means it will not be refreshable after it expires.

13.3.1 Last-Modified Dates

The Last-Modified entity-header field value is often used as a cache
validator. In simple terms, a cache entry is considered to be valid
if the entity has not been modified since the Last-Modified value.

13.3.2 Entity Tag Cache Validators

The ETag response-header field value, an entity tag, provides for an
"opaque" cache validator. This might allow more reliable validation
in situations where it is inconvenient to store modification dates,
where the one-second resolution of HTTP date values is not
sufficient, or where the origin server wishes to avoid certain
paradoxes that might arise from the use of modification dates.

Entity Tags are described in section 3.11. The headers used with
entity tags are described in sections 14.19, 14.24, 14.26 and 14.44.

13.3.3 Weak and Strong Validators

Since both origin servers and caches will compare two validators to
decide if they represent the same or different entities, one normally
would expect that if the entity (the entity-body or any entity-
headers) changes in any way, then the associated validator would

change as well. If this is true, then we call this validator a
"strong validator."

However, there might be cases when a server prefers to change the

validator only on semantically significant changes, and not when
insignificant aspects of the entity change. A validator that does not
always change when the resource changes is a "weak validator."

Entity tags are normally "strong validators," but the protocol
provides a mechanism to tag an entity tag as "weak." One can think of
a strong validator as one that changes whenever the bits of an entity
changes, while a weak value changes whenever the meaning of an entity
changes. Alternatively, one can think of a strong validator as part
of an identifier for a specific entity, while a weak validator is
part of an identifier for a set of semantically equivalent entities.

9L9Z DdH

Note: One example of a strong validator is an integer that is
incremented in stable storage every time an entity is changed.

Fielding, et al. Standards Track [Page 86]

106

RFC 2616 HTTP/1.1 June 1999

An entity's modific
resolution,
the resource

ation time, if represented
could be a weak validator,
might be modified twice du

with one-secongd
since it ig Possible that
ring a single second.

Support for weak validators is optional.

allow for more efficient caching of equivalent objects; Ffor
eéxample, a hit counter on a gite is probably good enough if it 4s
updated every few days or weeks, and any value during that period
is likely "good encugh* to be equivalent.

However, wealk validators

A "use" of a validator i

ator in a validating header field, or when a
Server compares two validators

Strong validators are usable in any context., Weak validators are only
usable in contexts that do not depend on exact equality of an Entity.
For example, either king is usa] onditional gET of a full
entity, However, s usable for g sub-range
retrieval, since other t end up with an internally

Clients MAyY issue simple ¢
validators or strong vali
in other formg of request

non-subran
dators. Cli

ge) GET reéquests with either weak
ents MUST NOT use weak validators

- The strong Comparison function:
both validator

in order to be considered equal,
S MUST be identica
NOT be wealk.

1 in every way. and both MyUsT

- The weak comparison function:
both validators

both of them MAY
result,

in order to
MUST be identical in every

be tagged ag "weak"

ba considered equal,
way, but either or
without affecting the

An entity ta

g is strong unless it i
Section 3,11

S explicitly tagged as weak.
gives the syntax for e

ntity tags.

A Last-Modified time, when used as a validator in a request, is
implicitly weak unless it ig possible to deduce that it ig strong,
Using the following rules:

Y an origin server to the
entity and,

Standards Track [Page 87)

107

RFC 2616 HTTP/1.1 June 1999

- That origin server reliably knows that the associated entity did
not change twice during the second covered by the presented
validator.

or
- The validator is about to be used by a client in an If-
Modified-Since or If-Unmodified-Since header, because the client

has a cache entry for the associated entity, and

- That cache entry includes a Date value, which gives the time
when the origin server sent the original response, and

- The presented Last-Modified time is at least 60 seconds before
the Date value.

- The validator is being compared by an intermediate cache to the
validator stored in its cache entry for the entity, and

That cache entry includes a Date value, which gives the time
when the origin server sent the original response, and

The presented Last-Modified time is at least 60 seconds before
the Date value.

This method relies on the fact that if two different responses were
sent by the origin server during the same second, but both had the
same Last-Modified time, then at least one of those responses would
have a Date value equal to its Last-Modified time. The arbitrary 60-
second limit guards against the possibility that the Date and Last-
Modified values are generated from different clocks, or at somewhat
different times during the preparation of the response. An
implementation MAY use a value larger than 60 seconds, if it is
believed that 60 seconds is too short.

If a client wishes to perform a sub-range retrieval on a value for
which it has only a Last-Modified time and no opaque validator, it
MAY do this only if the Last-Modified time is strong in the sense
described here.

A cache or origin server receiving a conditional request, other than
a full-body GET regquest, MUST use the strong comparison function to
evaluate the condition.

9L9¢ Dd4d

These rules allow HTTP/l.l caches and clients to safely perform sub-
range retrievals on values that have been obtained from HTTP/1.0

Fielding, et al. Standards Track [Page 88]

108

’ RFC 2616 HTTP/1.1

June 1999

13.3.4 Rules for When to Use Entity Tags and Last-Modifieq Dates
We adopt a set o

clients, ang cac
be useq, and for

1ty tag validator unless it is not feasible to
generate one.

- MAY send a weak entity tag instead of a strong entity tag, if

performance considerationg Suppert the use of weak entity tags,
or if it ig unfeasible to send g Strong entity tag.

- SHOULD send g Lagt-Mo if it ig feasible to send one,
unless the risk of a breakdown in Semantic transparency that
could result frg

M using this date in an If—Modified—Since header
would lead to serious Problems,

dified valyue

the preferreg beha

vior for an HTTP/1
a strong entity ta

g and a Last-Mo

| In other words,
‘ is to send both

.1 origin server
dified value.
‘ In order to pe legal,
associated,entity valu
change whenever the as
significant way .

a strong entity
€ changes in any
sociated entity

tag MusT change whenever the
way. A weak entity tag SHOULD
changes in a semantically

in order Eo provide semantically transparent caching,
origin server must aveid reusing a specifj

value for two different entities,
entity tag value for two semanticall
entries might Persist for arbitrari
expiration times, so it might be in
cache will never again attempt to v
validator that it obtained at some

HTTP/1.1 clients:

¥ different entities. Cache
ly long periods, regardless of
appropriate to expect that g
alidate an entry using a

point in the past.

use that entity tag
Match or If—Ncne—Match).

EiEIding, et al,

Standards Track

[Page 89]

109

RFC 2616 HTTP/1.1 June 1999

- If only a Last-Modified value has been provided by an HTTP/1.0
origin server, MAY use that value in subrange cache-conditional
requests (using If-Unmodified-Since:). The user agent SHOULD
provide a way to disable this, in case of difficulty.

- If both an entity tag and a Last-Modified value have been
provided by the origin server, SHOULD use both validators in
cache~-conditional requests. This allows both HTTP/1.0 and
HTTP/1.1 caches to respond appropriately.

An HTTP/1.1 origin server, upon receiving a conditional request that
includes both a Last-Modified date (e.g., in an If-Modified-Since or
If-Unmodified-Since header field) and one or more entity tags (e.g.,
in an If-Match, If-None-Match, or If-Range header field) as cache
validators, MUST NOT return a response status of 304 (Not Modified)
unless doing so is consistent with all of the conditional header
fields in the request.

An HTTP/1.1 caching proxy, upon receiving a conditional request that
includes both a Last-Modified date and one or more entity tags as
cache validators, MUST NOT return a locally cached response to the
client unless that cached response is consistent with all of the
conditional header fields in the request.

Note: The general principle behind these rules is that HTTP/1.1
sexrvers and clients should transmit as much non-redundant
information as is available in their responses and requests.
HTTP/1.1 systems receiving this information will make the most
conservative assumptions about the validators they receive.

HTTP/1.0 clients and caches will ignore entity tags. Generally,
last-modified values received or used by these systems will
support transparent and efficient caching, and so HTTP/1l.1l origin
servers should provide Last-Modified values. In those rare cases
where the use of a Last-Modified value as a validator by an
HTTP/1.0 system could result in a serious problem, then HTTP/1.1
origin servers should not provide one.

.3.5 Non-validating Conditionals

The principle behind entity tags is that only the service author
knows the semantics of a resource well enough to select an
appropriate cache validation mechanism, and the specification of any
validator comparison function more complex than byte-equality would
open up a can of worms. Thus, comparisons of any other headers
(except Last-Modified, for compatibility with HTTP/1.0) are never
used for purposes of validating a cache entry.

9L9¢ >4y

Fielding, et al. Standards Track [Page 90]

110

RFC 2616 HTTP/1.1 June 1999

13.4 Response Cacheability

Unless specifically constraineg by a cache-control (section 14.9)
directive, a caching system MAY always store a SUccessful response
(see section 13.8) as a cache Ery,

if it ig fregh

GXpectation (for ex
vailable) , A

ken from a cache
‘ﬂ header to the current time.

Bivity is a

| Note: some HTTP/1.0

caches are kng
without providing an
[

Wh to violate thig €Xpectation
Y Warning.

However, inp some
|

retain an entity, or ¢
| request, Thisg might be

pPrivacy considerations.
therefores Provided
resource entities,
regardless of ot}

50 that the S8rver can inds
Or portions thereof,

her considerations,

and returning g
included an Auth

A response received with g Status code
410 MAY be stored by

& cache and useg i
tequest, subject to the

of 200, 203, 206

» Unless a cache-contro]
that does not support
ache 206 (Partial

Content)

responses.

A response re

Sxplicitly
Expires hag
revalidaten
directive

header (g) that
allow it. For example, these include the following: an
der (section 14.21); a » "s—maxage", "must-

’ ”proxy~reva1idate“, " "Privater
(section 14.9)

cache-control

et al. Standards Track

[Page 91]

111

RFC 2616 HTTP/1.1 June 1999

13.5 Constructing Responses From Caches

The purpose of an HTTP cache is to store information received in
response to requests for use in responding to future requests. In
many cases, a cache simply returns the appropriate parts of a
response to the requester. However, if the cache holds a cache entry
based on a previous response, it might have to combine parts of a new
response with what is held in the cache entry.

13.5.1 End-to-end and Hop-by-hop Headers

For the purpose of defining the behavior of caches and non-caching
proxies, we divide HTTP headers into two categories:

- End-to-end headers, which are transmitted to the ultimate
recipient of a request or response. End-to-end headers in
responses MUST be stored as part of a cache entry and MUST be
transmitted in any response formed from a cache entry.

- Hop-by~-hop headers, which are meaningful only for a single
transport-level connection, and are not stored by caches or
forwarded by proxies.

The following HTTP/1.1 headers are hop-by-hop headers:

- Connection

- Keep-Alive

- Proxy-Authenticate
- Proxy-Authorization
- TE

- Trailers

- Transfer-Encoding
Upgrade

All other headers defined by HTTP/l.l are end-to-end headers.

Other hop-by-hop headers MUST be listed in a Connection header,
(section 14.10) to be introduced into HTTP/1.l (or later).

13.5.2 Non-modifiable Headers

Some features of the HTTP/1l.l protocol, such as Digest
Authentication, depend on the value of certain end-to-end headers. A
transparent proxy SHOULD NOT modify an end-to-end header unless the

definition of that header requires or specifically allows that.

9192 DY

Fielding, et al. Standards Track [Page 92]

112

| RFC 2616 HTTP/1.1 June 1999

A transparent proxy
request or Yesponse,
already Dresent ;

- Content-Location

- Content-MD5

- ETag
I

~ Last-Modifieqd

A transparent Proxy MUST NOT modify any of the following fields in a
response:

~ EXpires

| but it MAY agq any of
Expires header is added,
that of the pate heade
[

A proxy MUST NOT modif
message that containg
any request:

Y or add an

Yy of the following fields in a
the no-trans

form cache-control directive,

~ Content—Encoding

- Content—Range

- Content-Type

m, but if it does so,
formation applied) if one does not al
(see section 14.45) .

Warning 214 (Trans
in the message

ready appear

Standards Track [Page 93]

113

RFC 2616 HTTP/1.1 June 1999

13.5.3 Combining Headers

When a cache makes a validating request to a server, and the server
provides a 304 (Not Modified) response or a 206 (Partial Content)
response, the cache then constructs a response to send to the
requesting client.

If the status code is 304 (Not Modified), the cache uses the entity-
body stored in the cache entry as the entity-body of this outgoing
response. If the status code is 206 (Partial Content) and the ETag or
Last-Modified headers match exactly, the cache MAY combine the
contents stored in the cache entry with the new contents received in
the response and use the result as the entity-body of this outgoing
response, (see 13.5.4).

The end-to-end headers stored in the cache entry are used for the
constructed response, except that

- any stored Warning headers with warn-code 1lxx (see section
14.46) MUST be deleted from the cache entry and the forwarded
response.

- any stored Warning headers with warn-code 2xx MUST be retained
in the cache entry and the forwarded response.

- any end-to-end headers provided in the 304 or 206 response MUST
replace the corresponding headers from the cache entry.

Unless the cache decides to remove the cache entry, it MUST also
replace the end-to-end headers stored with the cache entry with
corresponding headers received in the incoming response, except for
Warning headers as described immediately above. If a header field-
name in the incoming response matches more than one header in the
cache entry, all such old headers MUST be replaced.

In other words, the set of end-to-end headers received in the
incoming response overrides all corresponding end-to-end headers
stored with the cache entry (except for stored Warning headers with
warn-code 1xx, which are deleted even if not overridden).

Note: this rule allows an origin server to use a 304 (Not
Modified) or a 206 (Partial Content) response to update any header
associated with a previous response for the same entity or sub-
ranges thereof, although it might not always be meaningful or
correct to do so. This rule does not allow an origin server to use
a 304 (Not Modified) or a 206 (Partial Content) response to
entirely delete a header that it had provided with a previous
response.

9192 Ddd

Fielding, et al. Standards Track [Page 94]

114

RFC 2616 HTTP/1.1 June 1999

13.5.4 Combining Byte Ranges

A response might transfe
body, either because the

specifications, nnection wag broken Prématurely. After
several such transfers, & cache might

have receiveq several ranges of
the same entity-body.

N entity, and
Ponse transfers another subrange, the cache May
combine the ney subrange with th,

€ existing set if both the following
conditions are met ;

using the strong comparison
function (see section 13.3.3).

If either requirement ig not met,
recent partial response (
every response, a
equal or missing)

these valueg are

+ and MUST discarg partial information.

the other
-6 Caching Negotiated Responses

Use of server-driven content negotiation (section 12.1)
1 by the Presence of g Vary

conditions ang Procedure

subsequent requests,

field by servers,

+ &5 indicateqd
a4 response, alters the

can ugse the response for
44 for use of the Vary header

by which a cache
See section 14.

A server SHOULD use
request-header fielg
representations of
negotiation: The
ig known as the

the Vary header field to inform a cache of what

5 were used to select among multiple
a cacheable response j

Set of header fields named b
"selecting" Tequest-headers.

When the cache raceiv
Specifies ope 0r more
the dache MUST NOT use C a response to
the new reguest unless all of the solecting request-headerg Present
in the ey fequest match the correspending stored tequest-headers in
the origina] request.

€5 a subsequent reguest wh

OSe Request-URI
cache entries including a

The selectin
if ang only
be transform

g request-heade
if the selectin in the first request can
ed to the select

Flelding, o ;.

Standards Track [Page 95]

115

RFC 2616 HTTP/1.1 June 1999

by adding or removing linear white space (LWS) at places where this
is allowed by the corresponding BNF, and/or combining multiple
message-header fields with the same field name following the rules
about message headers in section 4.2.

A Vary header field-value of "*" always fails to match and subsequent
requests on that resource can only be properly interpreted by the
origin server.

If the selecting request header fields for the cached entry do not
match the selecting request header fields of the new request, then
the cache MUST NOT use a cached entry to satisfy the request unless
it first relays the new request to the origin server in a conditional
request and the server responds with 304 (Not Modified), including an
entity tag or Content-Location that indicates the entity to be used.

If an entity tag was assigned to a cached representation, the
forwarded request SHOULD be conditional and include the entity tags
in an If-None-Match header field from all its cache entries for the
resource. This conveys to the server the set of entities currently
held by the cache, so that if any one of these entities matches the
requested entity, the server can use the ETag header field in its 304
(Not Modified) response to tell the cache which entry is appropriate.
If the entity-tag of the new response matches that of an existing
entry, the new response SHOULD be used to update the header fields of
the existing entry, and the result MUST be returned to the client.

If any of the existing cache entries contains only partial content
for the associated entity, its entity-tag SHOULD NOT be included in
the If-None-Match header field unless the request is for a range that
would be fully satisfied by that entry.

If a cache receives a successful response whose Content-Location
field matches that of an existing cache entry for the same Request-
JURI, whose entity-tag differs from that of the existing entry, and
whose Date is more recent than that of the existing entry, the

existing entry SHOULD NOT be returned in response to future requests
and SHOULD be deleted from the cache.

.7 Shared and Non-Shared Caches

For reasons of security and privacy, it is necessary to make a
distinction between "shared" and "non-shared" caches. A non-shared
cache is one that is accessible only to a single user. Accessibility
in this case SHOULD be enforced by appropriate security mechanisms.
All other caches are considered to be "shared." Other sections of

91L9¢ DY

Fielding, et al. Standards Track [Page 96]

116

RFC 2616 HTTP/1.1 June 1999

this Specificatio
shareq caches in

13.

+ the cache MUST t
response, Partial respo

13.5.4; the result migh
partial. a cache MugT NOT
without explicitly maxricq
Content) statusg code,
using a status code of 200 (OK)

If a cache recei Sponse while dttempting to revalidate ap
entry, it may either forward i

« In the latter case, it May
Tesponse unless the cached entry

i cache-contyrg] directive (see sectiap
14.9),

13.9 Side Effects of GET and HEaAD
Unless the orj
responses, the

effects, but a cac
its caching decisions.

origin server's explici
We note one Bxception to this rule.

used GETs and HEADs wi
in the rel path part)

effects, caches MysT NOT t

since some applicationg have
th query uyrLg (those containing a
Lo perform Operations witp significant side
URIs as fresh unless
. Thisg Specifically

ch URIs SHouyLn Nor

ted information.

13.

Standards Track [Page 971

117

RFC 2616 HTTP/1.1 June 1999

There is no way for the HTTP protocol to guarantee that all such
cache entries are marked invalid. For example, the request that
caused the change at the origin server might not have gone through
the proxy where a cache entry is stored. However, several rules help
reduce the likelihood of erroneous behavior.

In this section, the phrase "invalidate an entity" means that the
cache will either remove all instances of that entity from its
storage, or will mark these as "invalid" and in need of a mandatory
revalidation before they can be returned in response to a subsequent
request.

Some HTTP methods MUST cause a cache to invalidate an entity. This is
either the entity referred to by the Request-URI, or by the Location

or Content-Location headers (if present). These methods are:

- PUT

- DELETE
- POST
In order to prevent denial of service attacks, an invalidation based

on the URI in a Location or Content-Location header MUST only be
performed if the host part is the same as in the Request-URI.

A cache that passes through requests for methods it does not
understand SHOULD invalidate any entities referred to by the
Request-URI.

.11 Write-Through Mandatory

All methods that might be expected to cause modifications to the
origin server's resources MUST be written through to the origin
server. This currently includes all methods except for GET and HEAD.
A cache MUST NOT reply to such a request from a client before having
transmitted the request to the inbound server, and having received a
corresponding response from the inbound server. This does not prevent
a proxy cache from sending a 100 (Continue) response before the
inbound server has sent its final reply.

The alternative (known as "write-back" or "copy-back" caching) is not
allowed in HTTP/1.1, due to the difficulty of providing consistent
updates and the problems arising from server, cache, or network
failure prior to write-back.

919 Dd4H

Fielding, et al. Standards Track [Page 98]

118

RFC 2616 HTTP/1.1 June 1999
13.12 Cache Replacement
If a new

cacheable (gsee sect
response i

1S received from g
the same resource are cached
to reply to the curren
and MAY, if i
| future reques

ions 14.9.2, 13.2.5, 13.2.6 ang 13.8)
resource while any existin

+ the cache SHOULD use the

nte cache storage

I, use it tg respond
ts that weuld prewvi

to any
s 1ously hawe caused the old response to
be returneq. If it inserts the nay Teésponse into cache storage the
rules in section 13.5.3 apply.

Note: a ney response that has an older Date header value than
existing cached respo:

nses is not Cacheable.
13.13 History Lists

User agents of hanisms, such as "Back" buttons and
history lists, which can be used t i ay an entity retrieved
earlier in a ses

History mechanisms ang caches are different .
IY to show a semanticag
resource. Rather,
¥ what the uyser Saw at the

In particular history
1ly Lransparent viey of
A history mechanism ig meant
time when the resource was

the current state of g
to show exact]
retrieved,

By default, an exXpiration
If the entity {
it even if the
configured the

time does not apply to history mechanisms.
S 8till in storage, a history mechanism SHourp di
entity hasg expired, unless the

agent to refresh expired histor

This is not to

be construeqd to
telling the use

Prohibit the history mechanism from
T that a view mj

ght be stale,
Note: if histor
viewing stale r
to aveoid using

they would othe
important that

warning
te wview

Y list mechaniams unnecessarily brevent userg from
esources, this will tend to force service authors
HTTP e@xpiration controls andg cache controlg when
rwise like to. Service authors may consider it
Users not he Dresented with SXror messages or
messages when they use navigation oontrols

Previously fetched resources. Even though s
resources ought not top cached, or ought tg expire
interfaece consid -

Ice service authors
Other means of p le.g. "once~only"
Hot to suffer th perly functioning
mechanisms .

(such ag BACK)
ometimes such
quickly, user

to resort to
URLs) in order
history

FiEIding, et al.

Standards Track [Page 99]

119

RFC 2616 HTTP/1.1 June 1999

14 Header Field Definitions

This section defines the syntax and semantics of all standard
HTTP/1.1 header fields. For entity-header fields, both sender and
recipient refer to either the client or the server, depending on who
sends and who receives the entity.

14.1 Accept

The Accept request-header field can be used to specify certain media
types which are acceptable for the response. Accept headers can be
used to indicate that the request is specifically limited to a small
set of desired types, as in the case of a request for an in-line
image.

Accept = "Accept" ":"
#(media-range [accept-params])

media-range =5

(type "/" subtype)

*(";" parameter)
accept-params = ";" "g" "=" gvalue *(accept-extension)
accept-extension = ";" token ["=" (token | quoted-string)]

{
I (type nymowEn
|
)

The asterisk "*" character is used to group media types into ranges,
with "*/*" indicating all media types and "type/*" indicating all
subtypes of that type. The media-range MAY include media type
parameters that are applicable to that range.

Each media-range MAY be followed by one or more accept-params,
beginning with the "g" parameter for indicating a relative quality
factor. The first "g" parameter (if any) separates the media-range
parameter(s) from the accept-params. Quality factors allow the user
or user agent to indicate the relative degree of preference for that
media-range, using the gvalue scale from 0 to 1 (section 3.9). The
default value is g=1.

Note: Use of the "g" parameter name to separate media type
parameters from Accept extension parameters is due to historical
practice. Although this prevents any media type parameter named
"q" from being used with a media range, such an event is believed
to be unlikely given the lack of any "g" parameters in the IANA
media type registry and the rare usage of any media type
parameters in Accept. Future media types are discouraged from
registering any parameter named "g".

919¢ Did

Fielding, et al. Standards Track [Page 100]

120

Tre——— T

RFC 2616 HTTP/1.1 June 1999

The example

Accept : audio/*, g=0.2, audio/basic

SHOULD be interpreteg as "I prefer audio/basic,
type if it jig the best av.

but send me any audio
ailable after an 80% mark-down in Quality, »

1S present, then it is assumeq that the
epts all media types. If ap Accept header field ig Present,

end a responge which ig acceptable
o the combined Accept field value,

then the Server SHOULD
send a 406 (not acceptable) response.
|

A more elaborate example isg

Accept: text/plain; g=0.5,

text/html,
text/x-dvi; g=0.8,

l

I

text/x-c

‘ Verbally, thig would be inte

rpreted as "text/html ang text/x~c are
the preferredq media types, but if thay do not exist, then send the
1 text/x-dvi entity, and if that does not exist,
K| entity.

send the text/plain

Media ranges can b

specifie media types. I1f more than one
type, the most Specifi

to a given
For example,

Accept: text/=*, text/html,

text/html;level=l, */*

have the following bPrecedence:

1) text/html;level=1
2) text/htm]

3) text/*

4) */=

The media type qualit
determined by finding
which

Yy factor @ssociated with a given type is
the media range with the highest bPrecedence
matches that type. For example,

Accept ; text/*;q=0.3,
text/html;leve

text/html;q:O.?,

text/html;level=1,
1=2;9=0.4, * /% .5

would causge the following values to be associateq:

text/html;level=l
text/htm1
text/plain

L]

Fielding’ et al,

Standards Track

[Page 101]

121

RFC 2616 HTTP/1.1 June 1999

image/jpeg
text/html;level=2 =
text/html; level=3 =

[N ele]
[N

Note: A user agent might be provided with a default set of quality
values for certain media ranges. However, unless the user agent is
a closed system which cannot interact with other rendering agents,
this default set ought to be configurable by the user.

14.2 Accept-Charset

The Accept-Charset request-header field can be used to indicate what
character sets are acceptable for the response. This field allows
clients capable of understanding more comprehensive or special-
purpose character sets to signal that capability to a server which is
capable of representing documents in those character sets.

Accept-Charset = "Accept-Charset" ":
l#((charset l nk N)[u,.n uqu = qvalue])

Character set values are described in section 3.4. Each charset MAY
be given an associated quality value which represents the user's
preference for that charset. The default value is g=1. An example is

Accept-Charset: iso-8859-5, unicode-1-1;g=0.8

The special value "*", if present in the Accept-Charset field,
matches every character set (including IS0-8859-1) which is not
mentioned elsewhere in the Accept-Charset field. If no "*" is present
in an Accept-Charset field, then all character sets not explicitly
mentioned get a quality value of 0, except for ISO-8859-1, which gets
a quality value of 1 if not explicitly mentioned.

If no Accept-Charset header is present, the default is that any
character set is acceptable. If an Accept-Charset header is present,
and if the server cannot send a response which is acceptable
according to the Accept-Charset header, then the server SHOULD send
an error response with the 406 (not acceptable) status code, though
the sending of an unacceptable response is also allowed.

14.3 Accept-Encoding

The Accept-Encoding request-header field is similar to Accept, but
restricts the content-codings (section 3.5) that are acceptable in
the response.

919Z DdY

Accept-Encoding = "Accept-Encoding"

Fielding, et al. Standards Track [Page 102]

122

RFC 2616 HTTP/1.1 June 1999
1#(codings [n;n "q" "—u qvalue])
codings = content-coding | mwwy
Examples of itg use are:

Accept—Encoding: compress, gzip

Accept—Encoding:
| Accept—Encoding: *
| Accepc-Encoding: Compress;qg=0.5, gzip;g=1.0

Accept—Encoding: 9zip;q=1.0,

identity; 9=0.5, *;g=0
! A server testg whethe

I a content-cod
an Accept—Encoding fi

ing is acceptable,
eld, using thes

according to
€ rules:
1. If the content-coding is one of the content-codings listed in
the Ac&ept~Encoding field, then it is acceptable, unless it is
accompanied by a gqvalue of q, (As defined in section 3.9, a
‘ qvalue of g means "not acceptable .
2. The special "
available conten
field.

symbol in an Acce

Pt-Encoding field matches any
t-coding not expl

icitly listedq in the header

If multiple content -

codings are acceptable,
content-coding with

then the acceptable
the highest non-zero qva

lue is preferred.
4. The "identity™
specifically re

content-coding 1ig always acceptable, unless
"identity;qg=Q"

fused because the AcceptuEncoding fie

1d includes
+ Or because the fie

1d includes "*;q=0" and does
not explicitly include the "ident{ gy content-coding. If the
Accept—Encoding field-value ig empty, then only the "identityw
encoding ig acceptable,

SErver cannot send a
Acceptkﬂncoding header

+ then the Server SHOULD send a
with the 406 (

N error response
Not Acceptable) status code.

If no Accept-Encoding field i
assume that the client will a

if "identity* ig one of the available content~codings, then the
use the "identityn content-coding, unless it hag
“ormation that a different content-coding is meaningful

in a Tequest, the server May
coding. In this case,

Note: 1f the request does no
and if the "identityn
content—codings common

t include an ac
content—coding is una
ly understood by HTTP

cept-Encoding fielq,
vailable, then
/1.0 clients (i.e.,

Eielding_ et al, Standards Track [Page 103]

123

RFC 2616 HTTP/1.1 June 1999

"gzip" and "compress") are preferred; some older clients
improperly display messages sent with other content-codings. The
server might also make this decision based on information about
the particular user-agent or client.

Note: Most HTTP/1.0 applications do not recognize or obey gvalues
associated with content-codings. This means that gvalues will not
work and are not permitted with x-gzip or x-compress.

14.4 Accept-Language
The Accept-Language request-header field is similar to Accept, but

restricts the set of natural languages that are preferred as a
response to the request. Language tags are defined in section 3.10.

Accept-Language = "Accept-Language" ":"
1#(language-range [";" "q" "=" gvalue])
language-range = ((1*8ALPHA *("-" L1*8ALPHA)) | "*")

Each language-range MAY be given an associated quality value which
represents an estimate of the user's preference for the languages
specified by that range. The quality value defaults to "g=1l". For
example,

Accept-Language: da, en-gb;g=0.8, en;qg=0.7

would mean: "I prefer Danish, but will accept British English and
other types of English."” A language-range matches a language-tag if
it exactly equals the tag, or if it exactly equals a prefix of the
tag such that the first tag character following the prefix is "-",
The special range "*", if present in the Accept-Language field,
matches every tag not matched by any other range present in the
Accept-Language field.

Note: This use of a prefix matching rule does not imply that

language tags are assigned to languages in such a way that it is
always true that if a user understands a language with a certain
tag, then this user will also understand all languages with tags
for which this tag is a prefix. The prefix rule simply allows the
use of prefix tags if this is the case.

The language quality factor assigned to a language-tag by the
Accept-Language field is the quality value of the longest language-
range in the field that matches the language-tag. If no language-
range in the field matches the tag, the language quality factor
assigned is 0. If no Accept-Language header is present in the
request, the server

9192 D44

Fielding, et al. Standards Track [Page 104]

124

“r———————

RFC 2616 HTTP/1.1 June 1999

all languages a
der is Present,
factor greater t

re equally acceptable. If agn
then all languages whi

ch are
han 0 are acceptable,

It might be contrary to the privacy expectations of the user to send
an Accept—Language header with the complete linguistic Preferences of
the user in EVEeIy request. For a discussion of this issue, see
section 15.1.4,

Note: When making the choice of
‘ the us

er, we remind implementors
| iliar with the details of lang
ould provide appropriate gy
i assume that on selecting » they will he served any
1 kind of English document jif British English is not available, a
' user agent might Suggest in such a case to add "en' to get the
best matching behavieor,

linguistic prefere
of the fact that
uage matching ag
idange.
en-gh",

nce available to
users are not
described above,
As an example, users

14.5 Accept—Ranges

The Accept—Ranges b

esponse-header field
indicate its accept

allows the server to
ance of

range requests for g resource:

Accept-Ranges = "Accept-Ranges" .

acceptable—ranges
acceptable-ranges = l#range-unit ["none"

Origin servers that accept byte-range requests MAY send

Accept-Ranges: bytes

but are not required to do so.
requests without
involved. Range

Clients MAY genera
having received this header for

units are defined in section 3.12

te byte—range
the resource

Accept—Ranges: none

to advige the client not to attempt a range request.

B'j“*lding, et al, Standards Track

[Page 105]

125

RFC 2616 HTTP/1.1 June 1999

14.6 Age

The Age response-header field conveys the sender's estimate of the
amount of time since the response (or its revalidation) was
generated at the origin server. A cached response is "fresh" if
its age does not exceed its freshness lifetime. Age values are
calculated as specified in section 13.2.3.

Age = "Age" ":" age-value
age-value = delta-seconds

Age values are non-negative decimal integers, representing time in
seconds.

If a cache receives a value larger than the largest positive
integer it can represent, or if any of its age calculations
overflows, it MUST transmit an Age header with a value of
2147483648 (2731). An HTTP/1.1 server that includes a cache MUST
include an Age header field in every response generated from its
own cache. Caches SHOULD use an arithmetic type of at least 31
bits of range.

14.7 Allow

The Allow entity-header field lists the set of methods supported
by the resource identified by the Request-URI. The purpose of this
field is strictly to inform the recipient of valid methods
associated with the resource. An Allow header field MUST be
present in a 405 (Method Not Allowed) response.

Allow = "Allow" ":" #Method
Example of use:

Allow: GET, HEAD, PUT

This field cannot prevent a client from trying other methods.
However, the indications given by the Allow header field value

SHOULD be followed. The actual set of allowed methods is defined
by the origin server at the time of each request.

The Allow header field MAY be provided with a PUT request to
recommend the methods to be supported by the new or modified
resource. The server is not required to support these methods and
SHOULD include an Allow header in the response giving the actual
supported methods.

9L9Z D4Y

Fielding, et al. Standards Track [Page 106]

126

RFC 2616

HTTP/1.1 June 1999

Y the Allow header fielg even if it does not
11 the methods Specified, since the user agent might
with the origin server.

14.8 Authorization

A user agent that wishes to

authenticate itself with a server--
usually, but not necessarily, after receiving a 401 response--does
so by including an Authurization request-header field with the
request. The Authorizari 1

- "Authorization" ":" credentialg

"HTTP Authentication:
S8 Authentication" [43]. If & request ig
and a realm Specified, the same credentiale SHOULD
be valid for all other requests within this realm (assuming that
the authentication scheme itself does not require otherwise,
as credentials that Vary according tg a ch

such
synchronizeg clocks) .

allenge value or using

When a shared cache
containing an
corresponding
of the followi

(see gection 13.7) receives a reqguest
Authorization field, it MUST NOT return the

response as a reply to any other request, unlesg one
ng specific exceptions holds:

1. If the response includes the n
directive, the cache may use t
subsequent request. But ied maximum age has
bassed) a proxy cache MUST fiyrge] i
SBIver, using the request-

S-maxage" cache~contro]

W request. (Thig is the
EsSponse includes 'g-
ate it before re-using

If the response ineludes the “must-revalidate“
directive, the cache May use that responsa in r
subsequent request. But if the response is stal
MUST first revalidate it with the origin server

the ney reqguest
BW request,

cache-control
eplying to a

€, all caches

+ using the

to allow the origin server

If the response

includes the "public"
it MAY pe return

Ccache-control directive,
ed in reply to any sub

sequent request,

et al, Standards Track

[Page 107]

127

RFC 2616 HTTP/1.1 June 1999

14.9 Cache-Control

The Cache-Control general-header field is used to specify directives
that MUST be obeyed by all caching mechanisms along the
request/response chain. The directives specify behavior intended to
prevent caches from adversely interfering with the request or
response. These directives typically override the default caching
algorithms. Cache directives are unidirectional in that the presence
of a directive in a request does not imply that the same directive is
to be given in the response.

Note that HTTP/1.0 caches might not implement Cache-Control and
might only implement Pragma: no-cache (see section 14.32).

Cache directives MUST be passed through by a proxy or gateway
application, regardless of their significance to that application,
since the directives might be applicable to all recipients along the
request/response chain. It is not possible to specify a cache-
directive for a specific cache.

Cache-Control = "Cache-Control" ":" li#cache-directive

cache-directive = cache-request-directive
| cache-response-directive

cache-request-directive =

"no-cache" ; Section 14.9.1
| "no-store" ; Section 14.9.2
| "max-age" "=" delta-seconds ; Section 14.9.3, 14.9.4
| "max-stale" ["=" delta-seconds] + Section 14.9.3
| "min-fresh" "=" delta-seconds i Section 14.9.3
| "no-transform" ; Section 14.9.5
| "only-if-cached" : Section 14.9.4
} cache-extension ; Section 14.9.6
cache-response-directive =
"public" ; Section 14.9.1
"private" ["=" <"> 1l#field-name <">] ; Section 14.9.1
"no-cache" ["=" <"> 1l#field-name <">]; Section 14.9.1
= | "no-store" ; Section 14.9.2
b1 | "no-transform" ; Section 14.9.5
(@] | "must-revalidate" ; Section 14.9.4
N | "proxy-revalidate" ; Section 14.9.4
E: | "max-age" "=" delta-seconds ; Section 14.9.3
N | "s-maxage" "=" delta-seconds ; Section 14.9.3
| cache-extension ; Section 14.9.6

cache-extension = token ["“=" (token | quoted-string)]

Fielding, et al. Standards Track [Page 108]

128

RFC 2616 HTTP/1.1 June 1999

name parameter, the

5 - When such g

» it applieg enly to
of the request opr

This mechanism sSupports i1ity; implementations of

C these directives to

lds not defined in HTTP/1.,1.

The cache-control directives can be broken down into these general
categories:

~ Restrictions on what are cacheable; these may only be imposed by
the origin server,

may be stored by a cache;

these may be
origin server or the user

agent.
Modificationsg of the

basic expiration mec
imposed by either the

hanism; these may be
origin Server or th

€ user agent.
Controls over cache

revalidation an
imposed by a user ay

d reload;
ent,

these may only be
Control over transformation of entities.

Extensions to the caching system.

14.9.1 What ig Cacheable

By default, a res if the requirements of the

Teéduest method, request header fields, ang the resronse status

i iz cacheabie. Section 13.4 sSummarizes these defaults
1 response directives

G o cacheability of a

for cacheability.

allow an origin server Lo everride the defau
response:

ached by any cache,
would nermally b —C&

cacheable only within
shareg cache. (See also Authorization, section 14.8, for
additional detailg,)

even if it
a non-

Private
Indicateg that

Standards Track [Page 109]

129

RFC 2616 HTTP/1.1 June 1999

response are intended for only one user and are not a valid
response for requests by other users. A private (non-shared) cache
MAY cache the response.

Note: This usage of the word private only controls where the
response may be cached, and cannot ensure the privacy of the
message content.

no-cache
If the no-cache directive does not specify a field-name, then a
cache MUST NOT use the response to satisfy a subsequent request
without successful revalidation with the origin server. This
allows an origin server to prevent caching even by caches that
have been configured to return stale responses to client reqguests.

If the no-cache directive does specify one or more field-names,
then a cache MAY use the response to satisfy a subsequent request,
subject to any other restrictions on caching. However, the
specified field-name(s) MUST NOT be sent in the response to a
subsequent request without successful revalidation with the origin
server. This allows an origin server to prevent the re-use of
certain header fields in a response, while still allowing caching
of the rest of the response.

Note: Most HTTP/1.0 caches will not recognize or obey this
directive.

14.9.2 What May be Stored by Caches

no-store
The purpose of the no-store directive is to prevent the
inadvertent release or retention of sensitive information (for
example, on backup tapes). The no-store directive applies to the
entire message, and MAY be sent either in a response or in a
request. If sent in a request, a cache MUST NOT store any part of
either this request or any response to it. If sent in a response,
a cache MUST NOT store any part of either this response or the
request that elicited it. This directive applies to both non-
shared and shared caches. "MUST NOT store" in this context means
that the cache MUST NOT intentionally store the information in
non-volatile storage, and MUST make a best-effort attempt to
remove the information from volatile storage as promptly as
possible after forwarding it.

Even when this directive is associated with a response, users
might explicitly store such a response outside of the caching
system (e.g., with a "Save As" dialog). History buffers MAY store
such responses as part of their normal operation.

Fielding, et al. Standards Track [Page 110]

130

RFC 2616 HTTP/1.1 June 1999

cache data structures. Whi
improve privacy in some ca
way a reliable or suff

e might

Seés, we caution that it is NOT in any

icient me

chanism for ensuring privacy. In
particular, malicious or compromised caches might not recognize or
: obey this directive, and communications networks might be
| vulnerable to eavesdropping.
14.9.3 Modifications of the Basic Expiration Mechanism

The expiration time of an entity MAY he speciiied by the origin

server using the Expires header (sees section 14.21). Alternatively,

it MAY be specified usiing the m,

8X-age directive in a response. When
the max-age cache- f i i : in a cached response,
ge is greater than the age
resource. The max-age diy
response is cacheable (i.e,,
restrictive cache directive i

mplies that the
"public") unless some other, more
s also present.

If a response includes
directive, the max-age directive override
if the Expires header is more restrictive
Server to provide, for a given response,
an HTTE/1.1 (or later) cache than to an
useful if certain HTTR/1.g caches improp
expiration times, perhaps due to des

both an Expires header and a max-age

I
s the Expires header, even

- This rule allows an origin
a longer expiratioen time to
HTTP/1.0 cache. This might be
erly calculate ages or
¥nchronized clocks.

Many HTTP/1.0 cache implementations will treat an Expires value that
is less than or equal to the response Date value as being equivalent
to the Cache-Control response directive "no-cache". If an HTTP/1.1
cache receives sueh a

response, and the Tésponse does not include a
Cache-Control header field, it sHouLD consider the response to be

non-cacheable in order to retain compatibility with HTTP/1.0 servers.

Note: An origin serve

r might wish to use a relatively new HTTP
cache control feature

; such as the "private" directive, on a
do not understand that

eld whose value is
This will prevent older c
response.

less than or equal to the

Date value. aches from improperly

caching the

et al, Standards Track [Page 111]

RFC 2616

131

RFC 2616 HTTP/1.1 June 1999

s-maxage
If a response includes an s-maxage directive, then for a shared
cache (but not for a private cache), the maximum age specified by
this directive overrides the maximum age specified by either the
max-age directive or the Expires header. The s-maxage directive
also implies the semantics of the proxy-revalidate directive (see
section 14.9.4), i.e., that the shared cache must not use the
entry after it becomes stale to respond to a subsequent request
without first revalidating it with the origin server. The s-
maxage directive is always ignored by a private cache.

Note that most older caches, not compliant with this specification,
do not implement any cache-control directives. An origin server
wishing to use a cache-control directive that restricts, but does not
prevent, caching by an HTTP/1l.l-compliant cache MAY exploit the
requirement that the max-age directive overrides the Expires header,
and the fact that pre-HTTP/1l.l-compliant caches do not observe the
max-age directive.

Other directives allow a user agent to modify the basic expiration
mechanism. These directives MAY be specified on a request:

max-age
Indicates that the client is willing to accept a response whose
age is no greater than the specified time in seconds. Unless max-
stale directive is also included, the client is not willing to
accept a stale response.

min-fresh
Indicates that the client is willing to accept a response whose
freshness lifetime is no less than its current age plus the
specified time in seconds. That is, the client wants a response
that will still be fresh for at least the specified number of
seconds.

max-stale
Indicates that the client is willing to accept a response that has
exceeded its expiration time. If max-stale is assigned a value,
then the client is willing to accept a response that has exceeded
its expiration time by no more than the specified number of
seconds. If no value is assigned to max-stale, then the client is
willing to accept a stale response of any age.

If a cache returns a stale response, either because of a max-stale
directive on a request, or because the cache is configured to
override the expiration time of a response, the cache MUST attach a
Warning header to the stale response, using Warning 110 (Response is
stale).

Fielding, et al. Standards Track [Page 112]

132

RFC 2616

HTTP/1.1 June 1999

A cache MAY be configured to return stale r
validation, but only if thig dees not confl

g cache validation (
ve) .

e€sponses without

ict with any "MUST"-level
e.g., a ”must-revalidate"

requirements concerni
cache-contyol directj

Sometimes a usg
revalidate itg

T agent might want or need to insist that a cache
the nex

cdche entry with the erigin server (and not just with

€ path to the origin S@rver), or teg reload its
igi End-to-end revalidation might be
origin server has overestimated
Ponse. End-to-engd relead may be
me corrupted for sSome reason.

er the cache or the
the expiration time of the cached reg

necessary if the cache entry has bheco

not have its own local cae
"unspecified end-
local cached aopy
revalidation, *

her when the client doeg
in which case we call it

to-end revalidationr, or when the client does have a
+ in which case we call it "specific end-to-end

The client can specify these three kinds of action using Cache-
Control request directives:

|
: End-to-end reload
The reguest includes a "no-cache" cache-control directive or,
| compatibility with HITP/1. ients, "Pragma : no-cache". Fielg
names MUST NOT be i

Specifie end-to-end revalidation
The request includes g "max-age=Qn"
foreces each cache along the Path to the origin gervesr to
revalidate jprg own entry, if any, with the next cache or server,
The initia] request includes g cache-validatinq conditional with
the client'g Current validator.

cache-control directive, which

d-to-end revalidation
The request includes "Max-age=0"
forces @dch cache along the path
revalidate its own entry, if any,

The initjag Tequest does ngt inclu

cache-control directive,
to the origin server top
with the next cache or server,
de a cache—validating

which

?Fielding, et a1,

Standards Track [Page 113]

133

RFC 2616 HTTP/1.1 June 1999

conditional; the first cache along the path (if any) that holds a
cache entry for this resource includes a cache-validating
conditional with its current validator.

max-age
When an intermediate cache is forced, by means of a max-age=0
directive, to revalidate its own cache entry, and the client has
supplied its own validator in the request, the supplied validator
might differ from the validator currently stored with the cache
entry. In this case, the cache MAY use either validator in making
its own request without affecting semantic transparency.

However, the choice of validator might affect performance. The
best approach is for the intermediate cache to use its own
validator when making its request. If the server replies with 304
(Not Modified), then the cache can return its now validated copy
to the client with a 200 (OK) response. If the server replies with
a new entity and cache validator, however, the intermediate cache
can compare the returned validator with the one provided in the
client's request, using the strong comparison function. If the
client's validator is equal to the origin server's, then the
intermediate cache simply returns 304 (Not Modified). Otherwise,
it returns the new entity with a 200 (OK) response.

If a request includes the no-cache directive, it SHOULD NOT
include min-fresh, max-stale, or max-age.

only-if-cached
In some cases, such as times of extremely poor network
connectivity, a client may want a cache to return only those
responses that it currently has stored, and not to reload or
revalidate with the origin server. To do this, the client may
include the only-if-cached directive in a request. If it receives
this directive, a cache SHOULD either respond using a cached entry
that is consistent with the other constraints of the request, or
respond with a 504 (Gateway Timeout) status. However, if a group
of caches is being operated as a unified system with good internal
connectivity, such a request MAY be forwarded within that group of
caches.

must-revalidate
Because a cache MAY be configured to ignore a server's specified
expiration time, and because a client request MAY include a max-
stale directive (which has a similar effect), the protocol also
includes a mechanism for the origin server to require revalidation
of a cache entry on any subsequent use. When the must-revalidate
directive is present in a response received by a cache, that cache
MUST NOT use the entry after it becomes stale to respond to a

919 Ddd

Fielding, et al. Standards Track [Page 114]

134

-Fi91ding,

RFC 2616

HTTP/1.1

June 1999

subsequent request
Server. (I.e., the tache MUST g
time, if, basead solely on the o
value, the cached respo

without first revalidating it with the origin

O an end-to-end revalidation e

rigin Server's Expires or max-age
nse is stale,)

Ty to support reliable
In all circumstanceg an
dte directive; in

Teach the origin server for any
Gateway Timeout) response,

Servers SHOULD send the must-revaliga
failur

€ to revalidat
incorrect operation, s
transactien, Recipients MUST noT take an
violates this dirascti
unvalidated copy of t

te directive if and only if
entity could result in
unexecuted financial
Y automated action that
Ve, and MUST NoT automatically pProvide an
he entity if revalidation fails.
Although thisg is net
severe connectivity
SO, MUST explicitly
been provideqd. The w,
access, and SHOULD r

Tecommended, user 2gents operating under

Censtraints May violate thig directive but, if
WArn the user that an unvalidated response has
arning Mysrt be provided on each unvalidated
equire expliecit user confirmatign.
broxy-revalidate

The Proxy-revalidate directive has the same
revalidate directive, €xcept that jr does no
user agent caches. It ean be useq on a resgpo

authenticated Tequest to permit the user's ¢

later returp the response without needing to

meaning as the must-

t apply to non-shared

nse to an

ache to store and

revalidate it {since

that user), while stil]

1wt service many users to revalidate each time

(in order to make s

Sure that each user has been authenticateq) .
Note that such auth i d the publice cache

control directive i

14.9.5 No-Transform Directive

No-transform

Implementors of intermediate caches
Eo convert the medis type of certain
transparent Proxy might, for example,

ats in order to save cache Space o
fic on a slow link.

(Proxies) have found ie useful
entity bodieg. A non-
convert between image

r b0 reduce the amount of
Eraf

et al, Standards Track

[Page 115]

135

very

RFC 2616 HTTP/1.1 June 1999

imaging, scientific data analysis and those using end-to-end
authentication, all depend on receiving an entity body that is bit
for bit identical to the original entity-body.

Therefore, if a message includes the no-transform directive, an
intermediate cache or proxy MUST NOT change those headers that are
listed in section 13.5.2 as being subject to the no-transform
directive. This implies that the cache or proxy MUST NOT change
any aspect of the entity-body that is specified by these headers,
including the value of the entity-body itself.

14.9.6 Cache Control Extensions

The Cache-Control header field can be extended through the use of one
or more cache-extension tokens, each with an optional assigned value.
Informational extensions (those which do not reguire a change in
cache behavior) MAY be added without changing the semantics of other
directives. Behavioral extensions are designed to work by acting as
modifiers to the existing base of cache directives. Both the new
directive and the standard directive are supplied, such that
applications which do not understand the new directive will default
to the behavior specified by the standard directive, and those that
understand the new directive will recognize it as modifying the
requirements associated with the standard directive. In this way,
extensions to the cache-control directives can be made without
requiring changes to the base protocol.

This extension mechanism depends on an HTTP cache obeying all of the
cache-control directives defined for its native HTTP-version, obeying
certain extensions, and ignoring all directives that it does not

understand.

For example, consider a hypothetical new response directive called
community which acts as a modifier to the private directive. We
define this new directive to mean that, in addition to any non-shared
cache, any cache which is shared only by members of the community
named within its value may cache the response. An origin server
wishing to allow the UCI community to use an otherwise private
response in their shared cache(s) could do so by including
Cache-Control: private, community="UCI"
A cache seeing this header field will act correctly even if the cache
does not understand the community cache-extension, since it will also
see and understand the private directive and thus default to the safe
behavior.

9192 J4H

Fielding, et al. Standards Track [Page 116]

136

‘1F.-________-------illllllllllllllllr

RFC 2616 HTTP/1.1 June 1999

Unrecognized cache-directj
cache-directive likely to
be combineq with
cacheability)
correct even i

ves MUST be ignored; it isg assumed that any
be unrecognizeq by an HTTP/1 .1 cache will
standard directiveg (or the response's default
such that the cache behavigr will remain minimally
f the cache does not understand the extension(s) .

‘ 14.10 Connection

The Connection header has the following grammar :

Connection = "Connection® n,n

connection-token =

l#(connection—token)
= token

HTTP/1.1 proxies MUST par
i message is forwarded and,
\ remove any header field(s)
connection-token. Connectig
& connection-token in the ¢

se the Connection header fielg before a

for each connection-token in thig field,
from the message with the Same name as the
n options. are signaled by the Presence of
onnection header field, not by any
ader field(s), since the additional header
€Te are no parameters associated with that

Message headers lis

ted in the Connection
end-to-end headers,

header MUST NOT include
such as Cache-Control

HTTP/1.1 defines the "closer connection option for the sender to
signal that the connection will be closed after completion of the
response. For example,

Connection: close

HTTP/1.1 applications that do n

ot support
include the "close"

persistent connections MUST
connection option in e

very message.

A systen receiving an HTTP/1.0 (or lower

ineludes a Connection header MUST, for e
fielq, remove

the same name

farwarding of
19

-Version) message that

ach connection-token in this
and ignore any header field(s) from the message with

as the connection-token. This Protects against mistaken
such header fields hy pre-HTTR/1.1 proxies. See section

Fielding

et al: Standards Track

[Page 117]

137

RFC 2616 HTTP/1.1 June 1999

14.11 Content-Encoding

The Content-Encoding entity-header field is used as a modifier to the
media-type. When present, its value indicates what additional content
codings have been applied to the entity-body, and thus what decoding
mechanisms must be applied in order to obtain the media-type
referenced by the Content-Type header field. Content-Encoding is
primarily used to allow a document to be compressed without losing
the identity of its underlying media type.

Content-Encoding = "Content-Encoding" ":" l#content-coding
Content codings are defined in section 3.5. An example of its use is
Content-Encoding: gzip

The content-coding is a characteristic of the entity identified by
the Request-URI. Typically, the entity-body is stored with this
encoding and is only decoded before rendering or analogous usage.
However, a non-transparent proxy MAY modify the content-coding if the
new coding is known to be acceptable to the recipient, unless the
"no-transform” cache-control directive is present in the message.

If the content-coding of an entity is not "identity", then the
response MUST include a Content-Encoding entity-header (section
14.11) that lists the non-identity content-coding(s) used.

If the content-coding of an entity in a request message is not
acceptable to the origin server, the server SHOULD respond with a
status code of 415 (Unsupported Media Type).

If multiple encodings have been applied to an entity, the content
codings MUST be listed in the order in which they were applied.

Additional information about the encoding parameters MAY be provided
by other entity-header fields not defined by this specification.

.12 Content-Language

The Content-Language entity-header field describes the natural
language(s) of the intended audience for the enclosed entity. Note
that this might not be equivalent to all the languages used within
the entity-body.

Content-Language = "Content-Language" ":" l#language-tag

9L9¢ DdH

Fielding, et al. Standards Track [Page 118]

138

RFC 2616 HTTP/1.1 June 1999
Language tags are

defined in section 3,10,
Contemt-Language is to allew & User to iden

entities according to the User's own prefer

body content is intendeg only for g Danish-
appropriate field ig

The Primary PUrpose of
tify and differentiate
red language, Thus, if the
literate audience, the

Content—Language: da

If no Ccntent—Language is specified, the default is that the content
is intended for alil language audiencea

- This might mean that the
sender does not consider it tq be specific to any natural language,

Multiple langua
] multiple audiences. For example, g rendition of the
I Waitangi, " presenteq simultaneous

"Treaty of
ly in the original
] versions, would call for

Maori and English

Content—Language: mi, en

such as "A Firgt

used by an
ience. In this case, the Content—Language would
properly cnly inelude "en*,

Content-Language MAY be applied to any media type -- it ig not
limited to textual documents.

14.13 Content—Length

The Content-Len
entity-body,
in the cage of t

gth entity-heas

der field indicates the size of the
r of OCTETs, sent to the recipient or,

d, the size of the entity—body that
Tequest been a GET.

Content—Length = "Content—Length" Nigih

1*DIGIT

An example is

Content-Length: 3495

Applicationg SHOULD use this field to indicate the transfer~length of
the Message-body, unless thig ig pr
4.4,

ohibited by the rules in section

et al,

Standards Track [Page 119]

139

RFC 2616 HTTP/1.1 June 1999

Any Content-Length greater than or equal to zero is a valid wvalue.
Section 4.4 describes how to determine the length of a message-body
if a Content-Length is not given.

Note that the meaning of this field is significantly different from
the corresponding definition in MIME, where it is an optional field
used within the "message/external-body" content-type. In HTTP, it
SHOULD be sent whenever the message's length can be determined prior
to being transferred, unless this is prohibited by the rules in
section 4.4.

14.14 Content-Location

The Content-Location entity-header field MAY be used to supply the
resource location for the entity enclosed in the message when that
entity is accessible from a location separate from the requested
resource's URI. A server SHOULD provide a Content-Location for the
variant corresponding to the response entity; especially in the case
where a resource has multiple entities associated with it, and those
entities actually have separate locations by which they might be
individually accessed, the server SHOULD provide a Content-Location
for the particular variant which is returned.

Content-Location = "Content-Location” ":"
(absoluteURI | relativeURI)

The value of Content-Location also defines the base URI for the
entity.

The Content-Location value is not a replacement for the original
requested URI; it is only a statement of the location of the resource
corresponding to this particular entity at the time of the request.
Future requests MAY specify the Content-Location URI as the request-
URI if the desire is to identify the source of that particular
entity.

A cache cannot assume that an entity with a Content-Location
different from the URI used to retrieve it can be used to respond to
later requests on that Content-Location URI. However, the Content-
Location can be used to differentiate between multiple entities

retrieved from a single requested resource, as described in section
13.6.

If the Content-Location is a relative URI, the relative URI is
interpreted relative to the Request-URI.

91L9¢ D4d

The meaning of the Content-Location header in PUT or POST requests is
undefined; servers are free to ignore it in those cases.

Fielding, et al. Standards Track [Page 120]

140

Fielding,

RFC 2616 HTTP/1.1 June 1999

14.15 Content-MD5

The Content-MDp5 entity-header field,
an MD5 digest of the entity-body for
end-to-end message integrity check (MIC) of the entity-body. (Note: a

MIC is good for detecting accidental modification af the entity—body
in transit, but is not proof against malicious attacks.)

as defined in RFC 1864 [23],

is
the purpose of providing an

Content-MD5 = "Content-MD5" ok

md5-digest
md5-digest = <base64 of 128 bit

MD5 digest as per RFC 1864>

The Content-mps header field MAY be generated by an origin server or
client to function as an integrity check of the entity-hody. Only
origin servers or clients Mavy generate the Content-MDS header field;
Proxies and gateways MUST NOT generate it, as thisg would defeat itg
value as an end-to-end integrity check. Any recipient of the entity-
body, including gateways and Proxies, May check that the digest value
in this header field matches that of the entity-body as received.

The MD5 digest is comj

puted based on the content
including any content

-coding that has been appii
any transfer—encoding applied to the message-hod
received with a transfer—enccding, that encoding
prior to checking the Content-MD5 v

of the entity—body,
ed, but not including
Y. If the message is
MUST be removed

alue against the received entity.
This has the result tha
entity-body exactly as,
no transfer—encoding wer

t the digest is computed on the octets of the

and in the order that, they would be sent if
e being applieqd.

HITP extends RFC 1864 to
composite media-types (
this does not change ho
pPreceding paragraph.

permit the digest to be

computed for MIME
€.9., multipart/+

and message/rfec822), but
mputed as defined in the

There are several consequences of this.
Lypes MAY contain many body-parts, each with its own MIME and HTTP
headers (including Content-MDS5, Content—Transfer—Encoding, and
Content—Encoding headers) ., 1f a body-part has a Content-Transfer-
Encoding or Content-Encoding header, it is assumed that the content
of the body-part has had the encoding applied, and the body-part is
included in the Content-Mp5 digest as ig -- i.e., after the

application. The Transfer-Encoding header fielg is not allowed within
body-parts.

The entity-body for composite

Conversion of all line breaks to CRLF MUST
Computing or checking the digest:

the text actually transmitted MUST
the digest,

NOT be done before
the line break convention used in
be left unaltered when computing

et al, Standards Track

[Page 121]

141

RFC 2616 HTTP/1.1 June 1999

Note: while the definition of Content-MD5 is exactly the same for
HTTP as in RFC 1864 for MIME entity-bodies, there are several ways
in which the application of Content-MD5 to HTTP entity-bodies
differs from its application to MIME entity-bodies. One is that
HTTP, unlike MIME, does not use Content-Transfer-Encoding, and
does use Transfer-Encoding and Content-Encoding. Another is that
HTTP more frequently uses binary content types than MIME, so it is
worth noting that, in such cases, the byte order used to compute
the digest is the transmission byte order defined for the type.
Lastly, HTTP allows transmission of text types with any of several
line break conventions and not just the canonical form using CRLF.

14.16 Content-Range

The Content-Range entity-header is sent with a partial entity-body to
specify where in the full entity-body the partial body should be
applied. Range units are defined in section 3.12.

Content-Range = "Content-Range" ":" content-range-spec

content-range-spec = byte-content-range-spec

byte-content-range-spec = bytes-unit SP
byte-range-resp-spec "/"
(instance-length | "*")

byte-range-resp-spec = (first-byte-pos "-" last-byte-pos)

ko

instance-length = 1*DIGIT

The header SHOULD indicate the total length of the full entity-body,
unless this length is unknown or difficult to determine. The asterisk
"*" character means that the instance-length is unknown at the time

when the response was generated.

Unlike byte-ranges-specifier values (see section 14.35.1), a byte-
range-resp-spec MUST only specify one range, and MUST contain
absolute byte positions for both the first and last byte of the
range.

A byte-content-range-spec with a byte-range-resp-spec whose last-
byte-pos value is less than its first-byte-pos value, or whose

instance-length value is less than or equal to its last-byte-pos
value, is invalid. The recipient of an invalid byte-content-range-
spec MUST ignore it and any content transferred along with it.

91L9¢ D4y

A server sending a response with status code 416 (Requested range not
satisfiable) SHOULD include a Content-Range field with a byte-range-
resp-spec of "*". The instance-length specifies the current length of

Fielding, et al. Standards Track [Page 122]

142

RFC 2616 HTTP/1.1 June 1999

Examples of byte—content—range—spec values, assuming that the entity
contains a total of 1234 bytes:

The first 500 bytes:
bytes 0-499/1234

The second 500 bytes:
bytes 500-999/1234

- All except for the first 500 bytes:
bytes 500-1233/1234

The last 500 bytes:
bytes 734-1233/1234

ge includes the content of a sin

gle range (for
a response to a request

for a single range, or to a reguest
without any holes), this content is

; -and a Content—Length header

HTTP/1.1 206 Partial content
Date: Wed, 15 Nov 1995 06:25:24 gMT
Last~Modified: Wed, 15 Nov 1995 04:58:08 gMT

Content—Range: bytes 21010—47021/47022
Content—Length: 26012

Content~Type: image/gif

When an HTTP mnessa
example,

non-overlapping

tipart message. The multipart

multipart;byteranges" as defined
for a compatibility issue.

is purpose ig »
See appendix 19.6.3

A response Lo a request for
single fange, MAY be sent as a
multipartfbytaran h one part, a client that cannot

decode a multipart,

t/byteranges message MUST NOT ask for multiple
byte-ranges in a g

multiple ranges,

When a client re
Server SHOULD r
request .

quests multiple byte—ranges in one request, the

order that they appeared in the

eturn them in the

Fielding, et al, Standards Track

[Page 123)

143

RFC 2616 HTTP/1.1 June 1999

If the server ignores a byte-range-spec because it is syntactically
invalid, the server SHOULD treat the request as if the invalid Range
header field did not exist. (Normally, this means return a 200
response containing the full entity).

If the server receives a request (other than one including an If-
Range request-header field) with an unsatisfiable Range request-
header field (that is, all of whose byte-range-spec values have a
first-byte-pos value greater than the current length of the selected
resource), it SHOULD return a response code of 416 (Requested range
not satisfiable) (section 10.4.17).

Note: clients cannot depend on servers to send a 416 (Requested
range not satisfiable) response instead of a 200 (OK) response for
an unsatisfiable Range request-header, since not all servers
implement this request-header.

14.17 Content-Type
The Content-Type entity-header field indicates the media type of the

entity-body sent to the recipient or, in the case of the HEAD method,
the media type that would have been sent had the reguest been a GET.

Content-Type = "Content-Type" ":" media-type

Media types are defined in section 3.7. An example of the field is

charset=IS0-8859-4

Content-Type: text/html;

Further discussion of methods for identifying the media type of an
entity is provided in section 7.2.1.

.18 Date

The Date general-header field represents the date and time at which
the message was originated, having the same semantics as orig-date in
RFC 822. The field value is an HTTP-date, as described in section
3.3.1; it MUST be sent in RFC 1123 [8]-date format.

Date = "Date" ":" HTTP-date

An example is

Date: Tue, 15 Nov 1994 08:12:31 GMT

9192 D44

Origin servers MUST include a Date header field in all responses,
except in these cases:

Fielding, et al. Standards Track [Page 124]

144

RFC 2616 HTTP/1.1 June 1999

If the response status code ig 100 (Continue) or 101 (Switching
Protocols), the response MAY include a Date header field, at
the server's option.

If the response status code conveys a server error, e.g. 500
(Internal Server Error) or 503 (Service Unavailable), and it is
inconvenient or impossible to generate a valid Date.

If the server doesg not have a clock that can provide a
reasonable approximation of the current time, itsg responses
MUST NOT include a Date header field. 1n this case, the rules
in section 14,18.1 MUST be followed.

not have a Date header field MUST be
assigned one by the recipient if the message will be cached by that
recipient or gatewayved via a brotocol which raquires a Date. An HTTPR
implementation without a clock MUST NoT cache responses without
revalidating them on every use. An HTTP cache, especially a shared
cache, SHOULD use a mechanism, such as NTP [28], to synchronize its
clock with a reliable external standard.

and even
MUST NOT send a Date

Sage. It SHOULD represent
mation of the date and time of message
ti of generating a
the date ought to
represent the moment Jjust i is generated. In
practice, the date can be generated at any time during the message
origination without affecting its semantic value.

14.18.1 Clockless Origin Server Operation

Some origin Server implementations might not have a clock available,
An origin server without a clogk MUST NOT assign Expires or Last-
Modifieqd values to a response, unless thege values were associated
with the Tesource by a system or user with a reliable clock. It May
assign an Expires value that is known, at or before server
configuration time, to be in the past (this allows 'pre-expiration"
of responses without storing separate Expires values for each
fesource) ,

?ielding, et al. Standards Track [Page 125]

145

RFC 2616 HTTP/1.1 June 1999

14.19 ETag

The ETag response-header field provides the current value of the
entity tag for the requested variant. The headers used with entity
tags are described in sections 14.24, 14.26 and 14.44. The entity tag
MAY be used for comparison with other entities from the same resource
(see section 13.3.3).

ETag = "ETag" ":" entity-tag
Examples:

ETag: "xyzzy"

ETag: W/'"xyzzy"

ETag: ""

14.20 Expect

The Expect request-header field is used to indicate that particular
server behaviors are required by the client.

Expect "Expect" ":" l#expectation

expectation = "100-continue" | expectation-extension

expectation-extension = token ["=" (token | quoted-string)
*expect-params]

expect-params = ";" token ["=" (token | quoted-string)]

A server that does not understand or is unable to comply with any of
the expectation values in the Expect field of a request MUST respond
with appropriate error status. The server MUST respond with a 417
(Expectation Failed) status if any of the expectations cannot be met
or, if there are other problems with the request, some other 4xx
status.

This header field is defined with extensible syntax to allow for
future extensions. If a server receives a request containing an
Expect field that includes an expectation-extension that it does not
support, it MUST respond with a 417 (Expectation Failed) status.

Comparison of expectation values is case-insensitive for unguoted
tokens (including the 100-continue token), and is case-sensitive for
quoted-string expectation-extensions.

9L9¢ D44

Fielding, et al. Standards Track [Page 126]

146

RFC 2616

HTTP/1.1 June 1999

The Expect mechanis
|| return a 417
with an expec

m is hop-by-hop that is, 1.1 proxy must
(Expectation Failed) status if it receives a request
tation that it cannot meet. However, the Expect
Téquest-header itself is end-to-end; it MUST be forwarded if the
request is forwarded.

an HTTP/]

Many older HTTP/1.0 and HTTP/1.1 applications do not understand the
| Expect header.

See section 8.2.3 for the use of the 100 (continue) status.
|
| 14.21 Expires

The Expires entity-head
response is consider

returned by a cache (either a Proxy c
unless it is firge validated with tp
intermediate cache that hag 5 fresh copy of the entity)

13.2 of the expiration model.

ed stale. n sta

. See section
for further discussion
I

The format is an absolute date and time as defi

ned by HTTP-date in
section 3.3,1; it MUST be in RFC

1123 date format:
Expires = "EXpires" w.w» HTTP-date

An example of its use ig

Expires: Thu,

01 Dec 1994 16:00:00 gur

Note: if a response
age directive (see s
Expires field.

includes a Cache-Co

ntrol field with the max-
ection 14.9.3),

that directive overrides the

HTTP/1 .1 clients and

@Epecially includin
expiredr) .

caches MUST treat other inv,

alid date formats,
g the value "0", as in the pa

st (i.e., "already

To mark a response ag
Expires date that is e

already expired, " an origin server sends an
for &Xpiration calcula

qual to the Date header value. (See the rules
tions in section 13.2.4.)

et al, Standards Track

[Page 127}

147

RFC 2616 HTTP/1.1 June 1999

To mark a response as "never expires," an origin server sends an
Expires date approximately one year from the time the response is
sent. HTTP/1l.1 servers SHOULD NOT send Expires dates more than one
year in the future.

The presence of an Expires header field with a date value of some

time in the future on a response that otherwise would by default be

non-cacheable indicates that the response 1s cacheable, unless

indicated otherwise by a Cache-Control header field (section 14.9).
14.22 From

The From request-header field, if given, SHOULD contain an Internet

e-mail address for the human user who controls the requesting user

agent. The address SHOULD be machine-usable, as defined by "mailbox"

in RFC 822 [9] as updated by RFC 1123 [8]:

From = "From" ":" mailbox

An example is:

From: webmaster@w3.org

This header field MAY be used for logging purposes and as a means for
identifying the source of invalid or unwanted requests. It SHOULD NOT
be used as an insecure form of access protection. The interpretation
of this field is that the request is being performed on behalf of the
person given, who accepts responsibility for the method performed. In
particular, robot agents SHOULD include this header so that the

person responsible for running the robot can be contacted if problems
occur on the receiving end.

The Internet e-mail address in this field MAY be separate from the
Internet host which issued the request. For example, when a request
is passed through a proxy the original issuer's address SHOULD be

used.

The client SHOULD NOT send the From header field without the user's
approval, as it might conflict with the user's privacy interests or
their site's security policy. It is strongly recommended that the

user be able to disable, enable, and modify the value of this field
at any time prior to a request.

.23 Host

9192 D4d

The Host request-header field specifies the Internet host and port
number of the resource being requested, as obtained from the original
URI given by the user or referring resource (generally an HTTP URL,

Fielding, et al. Standards Track (Page 128]

148

RFC 2616 HTTP/1.1 June 1999

as described in section 3.2,.3),
the naming authority
|l original URy,. This
differentiate b
u URL of a server

The Host
of the origin server
allows the origin serve
etween internally—ambi

for multiple host nam,

field value MUST represent

Or gateway given by the

T Oor gateway to

guous URLs, such ag the root W/

®S on a single IP address.

Host = r"gogtr “:" host [w,u port] ; Section 3.2.2
A "host" without any Imation implieg the default

| port for the service

"80" for an HTTP URL). For
example, a request on the origin server f
|

trailing port info

GET /pub/wWww/ HTTP/1.1
Host: WWw.w3.org

A client MysT include a Host header fielg in all HiTp

messages If the Tequested URT doeg not include

name for the service being Tequested, then the Host header field musr

be given with an empty wvalue. An HTTP/1.1 Proxy MUST ensure that any

request message it forwards does contai

field that identifi

Internet-baseg HTTP/1.1 servers MUST r
I status code trg any HITT

field.

/1.1 request
an Internet hosgt

25 the servipe bein

.24 If-Match

The If-Match request-header fielg is used with a method to make it
conditional, A client that has one or
obtained from the resource can verify
current by including a list of their
If-Match header field. Entity tags

this feature ig to

"If-Match® v, » (mxe) l#entity—tag)

€€ returned in the
If-Match header)

pi@lding. et al, Standards Track

[Page 129]

149

RFC 2616 HTTP/1.1 June 1999

and any current entity exists for that resource, then the server MAY
perform the requested method as if the If-Match header field did not
exist.

A server MUST use the strong comparison function (see section 13.3.3)
to compare the entity tags in If-Match.

If none of the entity tags match, or if "*" is given and no current
entity exists, the server MUST NOT perform the requested method, and
MUST return a 412 (Precondition Failed) response. This behavior is
most useful when the client wants to prevent an updating method, such
as PUT, from modifying a resource that has changed since the client
last retrieved it.

If the request would, without the If-Match header field, result in
anything other than a 2xx or 412 status, then the If-Match header
MUST be ignored.

The meaning of "If-Match: *" is that the method SHOULD be performed
if the representation selected by the origin server (or by a cache,
possibly using the Vary mechanism, see section 14.44) exists, and
MUST NOT be performed if the representation does not exist.

A request intended to update a resource (e.g., a PUT) MAY include an
If-Match header field to signal that the request method MUST NOT be
applied if the entity corresponding to the If-Match value (a single
entity tag) is no longer a representation of that resource. This
allows the user to indicate that they do not wish the request to be
successful if the resource has been changed without their knowledge.
Examples:

If-Match: "xyzzy"
If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
If-Match: *

The result of a request having both an If-Match header field and
either an If-None-Match or an If-Modified-Since header fields is
undefined by this specification.

.25 If-Modified-Since

The If-Modified-Since request-header field is used with a method to
make it conditional: if the requested variant has not been modified
since the time specified in this field, an entity will not be
returned from the server; instead, a 304 (not modified) response will
be returned without any message-body.

9L9¢ DdY

If-Modified~Since = "If-Modified-Since" ":" HTTP-date

Fielding, et al. Standards Track [Page 130]

150

RFC 2616 HTTP/1.1 June 1999

An example of the field is.

If-Modified»Since: Sat, 29 oct 1994 19:43:31 gumr

Since header ang o Range header

only if it hag
been modifieq ate given by the 1f 1f3

The algorithm

a) If the request would normally

Y result in anything other than a
200 (oK) status, or if

the passed If~Modified—Since date ig
invaliqg, the respense ig exactly the same as for a normal GET.
A date which is later than the Server's current time ig
invaliqg.

not been modified since a
Modified-Since date

valid If-
; the server SHOULD return
Modified) response.

a 304 (Not

Note: The Range reéquest-header fi
Modified—since; See section 14,35

eld modifies the meaning of Tf-
for full details.

Since timesg
t be Synchronize

are interpreted by the server, whose
d with the client,

Note: When handlj
Servers will use an exac

some
ion, rather than a
less-than function, for deciding s
Modified) response.

04 (Not
To get best res i
Modi fied-g3

ng an IE~Modified~Si

clients are
Xaclk date string received in @ pPrevious Lasgt-
.d whenever pPossible,

Note:

If a client uses an arbitrary date in the T
header instead of a date taken from

the Lag
request, the client should be awar

f—Modified—Sinca
E-Modifieq header for
t

€ of the fact that thig
ver's understanding of time. The
client should consider ungyne i

Standards Track [Page 131]

151

RFC 2616 HTTP/1.1 June 1999

possibility of clock-skew-related problems if the If-Modified-
Since date is derived from the client's clock without correction
to the server's clock. Corrections for different time bases
between client and server are at best approximate due to network
latency.

The result of a request having both an If-Modified-Since header field
and either an If-Match or an If-Unmodified-Since header fields is
undefined by this specification.

14.26 If-None-Match

The If-None-Match request-header field is used with a method to make
it conditional. A client that has one or more entities previously
obtained from the resource can verify that none of those entities is
current by including a list of their associated entity tags in the
If-None-Match header field. The purpose of this feature is to allow
efficient updates of cached information with a minimum amount of
transaction overhead. It is also used to prevent a method (e.g. PUT)
from inadvertently modifying an existing resource when the client
believes that the resource does not exist.

As a special case,
resource.

the value "*" matches any current entity of the

If-None-Match = "If-None-Match" ":" ["*" | l#entity-tag)

If any of the entity tags match the entity tag of the entity that
would have been returned in the response to a similar GET request
(without the If-None-Match header) on that resource, or if "*" is
given and any current entity exists for that resource, then the
server MUST NOT perform the requested method, unless required to do
so because the resource's modification date fails to match that
supplied in an If-Modified-Since header field in the request.
Instead, if the request method was GET or HEAD, the server SHOULD
respond with a 304 (Not Modified) response, including the cache-
related header fields (particularly ETag) of one of the entities that
matched. For all other request methods, the server MUST respond with
a status of 412 (Precondition Failed).

See section 13.3.3 for rules on how to determine if two entities tags
match. The weak comparison function can only be used with GET or HEAD
requests.

91L9¢ DN

Fielding, et al. Standards Track [Page 132]

152

RFC 2616 HTTP/1.1

¢ Iésulg
~None-March
Ction 13,34 for a discussion of
Server behavior when both If—Modified~ i
| in the same requeg

The meaning of #
berformed if the
L a cache, possibly
[A exists, ang SHOULD
This feature is ing
| Operationg.
I

IE—Nonekmatch: o
Tepresentation se
using the Vary
be Performed ;
ended to be us

is that eh
lected by
Mechanigm,

f the repre
eful inp pre

€ method Mysp NOT be
the origin Server
See section 14.44)
Sentation dpag not exist,
venting races between PUT

(or by

Exampleg:

IEfNone—Mateh:
If—NDne~Match:
If—ane-Match: "r262xxxx",

IE‘None=Match: Wf"xyzzy“. Wy
If~mone—Macch:]

"yzzy
W/ Zzy"
"Xyzzyn, "c3piozzzgn
r2d2xxxx", W/"c3piozzzz"

The resylt of g request having both an If~None-Match heade
I either an If-Match or an If~Unmodified—since h
undefined by this

r field ang
eader fields
spacification.

is
14.27 If-Range

+ if the
+ the client

The If-Ran

request , Informally,

me the Part(s) thar 1
entity

ge header

allows a client to
its meaning ig ‘if
am missing;

short=circuit" the secongd

the Entity is unchanged, send
otherwise, send me the entire new

If-Range =

"If—Range" [

(entity-taq | HTTP-date)

fiEIﬂiﬂg, et aj,

Standards Track

153

RFC 2616 HTTP/1.1 June 1999

If the client has no entity tag for an entity, but does have a Last-
Modified date, it MAY use that date in an If-Range header. (The
server can distinguish between a valid HTTP-date and any form of
entity-tag by examining no more than two characters.) The If-Range
header SHOULD only be used together with a Range header, and MUST be
ignored if the request does not include a Range header, or if the

| server does not support the sub-range operation.

If the entity tag given in the If-Range header matches the current
entity tag for the entity, then the server SHOULD provide the
specified sub-range of the entity using a 206 (Partial content)
response. If the entity tag does not match, then the server SHOULD
return the entire entity using a 200 (OK) response.

14.28 If-Unmodified-Since

The If-Unmodified-Since request-header field is used with a method to
make it conditional. If the requested resource has not been modified
since the time specified in this field, the server SHOULD perform the
requested operation as if the If-Unmodified-Since header were not
present.

If the requested variant has been modified since the specified time,
the server MUST NOT perform the requested operation, and MUST return
a 412 (Precondition Failed).

HTTP-date

If-Unmodified-Since = "If-Unmodified-Since" ":'

An example of the field is:

29 Oct 1994 19:43:31 GMT

If-Unmodified-Since: Sat,

If the request normally (i.e., without the If-Unmodified-Since
header) would result in anything other than a 2xx or 412 status, the
If-Unmodified-Since header SHOULD be ignored.

If the specified date is invalid, the header is ignored.
The result of a request having both an If-Unmodified-Since header
field and either an If-None-Match or an If-Modified-Since header
fields is undefined by this specification.

.29 Last-Modified

The Last-Modified entity-header field indicates the date and time at
which the origin server believes the variant was last modified.

9L9Z D4H

Last-Modified = "Last-Modified" ":" HTTP-date

Fielding, et al. Standards Track [Page 134]

154

.30 Location

An €Xample ig:

Pleldin,

RFC 2616 HTTP/1.1

June 1999
An example of its use ig
Last-Modifieq: Tue, 15 Nov 1994 12:45:2¢ GMT
The exact meaning of thisg header fislg depends on the implementation
of the origin server and the nature of the original resource. For
files, it may be just the file system last-modified time. For
entities with dynamicall

Y ineluded parts,

“modify times for its co
v be the last-update
i it may be the last

of the set of last
gateways, it ma
virtual objects

it may be the most recent
mponent parts. Fop database
time stamp of the record. por
time the internal state changed.
MUST NOT send a Last-
time of message orig

An origin seryer
than the server's
the resource!
future,

Modified date which is later
ination.

In such cases, where

An origin server gy
as close as possibl
its response,

HTTP/1.1 servers SHOULD send Last-Modifieqg whenever feasible.

responses, the Locat
by the reguest .
SErver's preferr

For 3xx responses,
ed URI for automati

¢ redirection to the resource, The
field valye consists of a single absolute URT.
Location = "Location" n,w» absoluteURT

Location;: http://www.wB.org/pub/WWW/People.html

Note: The Content-Lecation
from Location in that the ¢

location of the entity encl
Posgible £

and Conten
requiremen

header fielg (section 14.14) differs
ontent-Locatign identifies the original
osed in the Tequest, It ig therefore

Or a response to contain header fields for both Locatien
E-Location. Alsc See section 13.710 for cache
ts of some methods,

et al, Standards Track

[Page 135)

155

RFC 2616 HTTP/1.1 June 1999

14.31 Max-Forwards

The Max-Forwards request-header field provides a mechanism with the
TRACE (section 9.8) and OPTIONS (section 9.2) methods to limit the
number of proxies or gateways that can forward the request to the
next inbound server. This can be useful when the client is attempting
to trace a request chain which appears to be failing or looping in
mid-chain.

Max-Forwards = "Max-Forwards" ":" 1*DIGIT

The Max-Forwards value is a decimal integer indicating the remaining
number of times this request message may be forwarded.

Each proxy or gateway recipient of a TRACE or OPTIONS request
containing a Max-Forwards header field MUST check and update its
value prior to forwarding the request. If the received value is zero
(0), the recipient MUST NOT forward the request; instead, it MUST
respond as the final recipient. If the received Max-Forwards value is
greater than zero, then the forwarded message MUST contain an updated
Max-Forwards field with a value decremented by one (1).

The Max-Forwards header field MAY be ignored for all other methods
defined by this specification and for any extension methods for which
it is not explicitly referred to as part of that method definition.

.32 Pragma

The Pragma general-header field is used to include implementation-
specific directives that might apply to any recipient along the
request/response chain. All pragma directives specify optional
behavior from the viewpoint of the protocol; however, some systems
MAY require that behavior be consistent with the directives.

Pragma "Pragma" ":" l#pragma-directive
pragma-directive = "no-cache" | extension-pragma
extension-pragma = token ["=" (token | quoted-string)]

When the no-cache directive is present in a request message, an
application SHOULD forward the request toward the origin server even
if it has a cached copy of what is being requested. This pragma
directive has the same semantics as the no-cache cache-directive (see
section 14.9) and is defined here for backward compatibility with
HTTP/1.0. Clients SHOULD include both header fields when a no-cache
request is sent to a server not known to be HTTP/1l.l compliant.

9L9¢Z D44

Fielding, et al. Standards Track [Page 136]

156

RFC 2616 HTTP/1.1 June 1999

Pragma directives MugT
application, regardless
since the directives mig
request/response chain.

specific recipient; however, any pragma directive

not relevant te a
Yy that recipient

HTTP/1.1 caches SHOULD treat "Pragma: no-cache" as if the client had
sent "Cache-Control: no-cache". No new Pragma directives will be
' defined in HTTP.

Note: because the meaning of
| header field is not actually
‘ reliable replacement for

"Pragma: no-cache as a response
specified, it does not provide a

"Cache-Control: no-cache" in a response

14.33 Proxy-Authenticate

The Proxy-Authenticat
of a 407 {Proxy Authe
censists of & challen
parameters applicable

€ response-header f£i

ntication Required)

ge that indicates th
to the Proxy

eld MUST be included as part

résponse. The field value

€ authentication scheme and

for this Request-URT.

Proxy—Authenticate = "Proxy—Authenticate“ et

l#challenge

The HTTP access authenti
Authentication: Basic
WWW-Authenticate,
the current connection
clients. However,

cation process is described in "HTTP

entication" [43]. Unlike
eader field applies only to
be passed on to downstream

Y might need to obtain its own
e downstream client, which in

1 i he proxy is forwarding the
Proxy-Authenticate header field.

14.34 Proxy-Authorization

The Prcxy—ﬂuthorization request-hea,
identify itself (or its user) to a
authentication. The Proxy-Authoriza
Ccredentialg centaining the authenti
agent for the broxy and/or realm of

der field allows the client to
broxy which requires

tion field value consists of
cation information of the user
the resource being requested.

Proxy—Authorization = "Proxy-Authorization" e

credentials

The HpTp access authentication process is described in "HTTP
Authentication: Basic and Digest Access Authentication" [43] Unlike
Authorization, i

the next outbon
ﬂuthentic&te £i

Standards Track [Page 137]

157

RFC 2616 HTTP/1.1 June 1999

Proxy-Authorization header field is consumed by the first outbound
proxy that was expecting to receive credentials. A proxy MAY relay
the credentials from the client request to the next proxy if that is
the mechanism by which the proxies cooperatively authenticate a given
request.

14.35 Range

14.35.1 Byte Ranges
Since all HTTP entities are represented in HTTP messages as sequences
of bytes, the concept of a byte range is meaningful for any HTTP
entity. (However, not all clients and servers need to support byte-

range operations.)

Byte range specifications in HTTP apply to the sequence of bytes in
the entity-body (not necessarily the same as the message-body) .

A byte range operation MAY specify a single range of bytes, or a set
of ranges within a single entity.

ranges-specifier = byte-ranges-specifier

byte-ranges-specifier = bytes-unit "=" byte-range-set
byte-range-set = 1#(byte-range-spec | suffix-byte-range-spec)
byte-range-spec = first-byte-pos "-" [last-byte-pos]
first-byte-pos = 1*DIGIT

last-byte-pos = 1*DIGIT

The first-byte-pos value in a byte-range-spec gives the byte-offset
of the first byte in a range. The last-byte-pos value gives the
byte-offset of the last byte in the range; that is, the byte
positions specified are inclusive. Byte offsets start at zero.

If the last-byte-pos value is present, it MUST be greater than or
equal to the first-byte-pos in that byte-range-spec, or the byte-
range-spec is syntactically invalid. The recipient of a byte-range-
set that includes one or more syntactically invalid byte-range-spec
values MUST ignore the header field that includes that byte-range-
set.

If the last-byte-pos value is absent, or if the value is greater than
or equal to the current length of the entity-body, last-byte-pos is
taken to be equal to one less than the current length of the entity-
body in bytes.

91L9Z D4Y

By its choice of last-byte-pos, a client can limit the number of
bytes retrieved without knowing the size of the entity.

Fielding, et al. Standards Track [Page 138]

158

RFC 2616 HTTP/1.1 June 1999

suffix—byte-range-spec = Mo suffix-length
suffix-length = 1*pIGIT

A suffix-byte-range-spec is used to specify the suffix of the
entity-body, of a length given by the suffix-length value, (That is,
this form specifies the last N bytes of an entity-body.) If the
entity is shorter than the specified suffix-length, the entire
entity-body is used.

If a syntactically valig byte-range-set includes at least one byte-
range-spec whose firstfbyte—pos is less than the current length of
the entity-body, or at least one suffix—byte—range—spec with a non-
zero suffix-length, then the byte-range-get is satisfiable.

Otherwise, the byte-range-set ig unsatisfiable. If the byte-range-set
is unsatisfiable, the server SHOULD return a response with a statug
of 416 (Requested range not satisfiable) . Otherwise, the server
SHOULD return a response with a status of 206 (Partial Content)
containing the satisfiable ranges of the entity-body.

Examples of byte—ranges—specifier values (assuming an entity-body of
length 10000):

- The first 500 bytes (byte offsets 0-499, inclusive): bytes=0-
499

The second 500 bytes (byte offsets 500-999, inclusive) :
bytes=500-999

The final 500 bytes (byte offsets 9500-9999, inclusive) :
bytes=-500

Or bytes=9500-

The first and last bytes only (bytes 0 and 9999) : bytes=0-0, -1
Several legal but not canonical specifications of the second 500
bytes (byte offsets 500-999, inclusive) :

bytes=5@0~600,601-999
bytes=500—700,601—999

14.35,2 Range Retrieval Requests

HTTP retrieval requests using conditional or unconditional GET
methods May request one or more sub- i instead of
the entire entity,

the entity ret

Range = "Range" v ranges-specifier

Slelding, o Lo Standards Track [Page 139]

RFC 2616

159

RFC 2616 HTTP/1.1 June 1999

A server MAY ignore the Range header. However, HTTP/1.1 origin
servers and intermediate caches ought to support byte ranges when
possible, since Range supports efficient recovery from partially
failed transfers, and supports efficient partial retrieval of large
entities.

If the server supports the Range header and the specified range or
ranges are appropriate for the entity:

- The presence of a Range header in an unconditional GET modifies
what is returned if the GET is otherwise successful. In other
words, the response carries a status code of 206 (Partial
Content) instead of 200 (OK).

- The presence of a Range header in a conditional GET (a request
using one or both of If-Modified-Since and If-None-Match, or
one or both of If-Unmodified-Since and If-Match) modifies what
is returned if the GET is otherwise successful and the
condition is true. It does not affect the 304 (Not Modified)
response returned if the conditional is false.

In some cases, it might be more appropriate to use the If-Range
header (see section 14.27) in addition to the Range header.

If a proxy that supports ranges receives a Range request, forwards
the request to an inbound server, and receives an entire entity in
reply, it SHOULD only return the requested range to its client. It
SHOULD store the entire received response in its cache if that is

consistent with its cache allocation policies.

.36 Referer

The Referer[sic] request-header field allows the client to specify,
for the server's benefit, the address (URI) of the resource from
which the Request-URI was obtained (the "referrer", although the
header field is misspelled.) The Referer request-header allows a
server to generate lists of back-links to resources for interest,
logging, optimized caching, etc. It also allows obsolete or mistyped
links to be traced for maintenance. The Referer field MUST NOT be
sent if the Request-URI was obtained from a source that does not have
its own URI, such as input from the user keyboard.

Referer = "Referer"” ":" (absoluteURI | relativeURI)

9L9¢ DdH

Example:

Referer: http://www.w3.org/hypertext/DataSources/Overview.html

Fielding, et al. Standards Track [Page 140]

160

r

——

RFC 2616

If the field value is a relative URI,
relative to the Request-URI. The Urp
section 15.1.3 for security considera

14.37 Retry-After

HTTP

The Retry-After response-

Unavailable) response
be unavailable to the requesti
with any 3xx (Redirection)
user-agent is asked wait he
value of this field can bea
of seconds (in decimal) aft

Retry-After

Two examples of its use are

Retry-After:
Retry-After:

14.38 Server

software used by

In the latter example,

Fri,
120

The Berver Tesponse-header field co
the origin server

can contain multiple product tokens

identifying the server and an
tokens are listed in order of

application.
Server

Example:

If the response ig bein

Server: CERN/3.0 libwww/2.17

= "Server" o

g forwarded t

application MygT NOT modify the Serv

SHOULD include a via field

Note: Rew
allow the

ealing the specific softwar

= "Retry-After" .

y significant subpred
their significance for ide

/1.1

tions.

31 Dec 1999 23:59:59 GMT

the delay is 2 minutes,

{section 3.8)

hrough a pProxy,

Standards Track

161

ucts,

June 1999

ntains information about the
te handle the reguest,

1*(product | comment

the proxy
er response-header.
(as described in section 14.4

Instead,
5).

[Page

it SHOULD be interpreted
MUST NOT include a fragment.

(Service
Xpected to
This field MAY also be used
response teo indicate the minimum time the
fore issuing the redirected request. The
either an HITP-date or an integer n
er the time of the response.

umber

(HTTP-date | delta-seconds)

The field
and comments
The product
ntifying the

it

141]

RFC 2616

RFC 2616 HTTP/1.1 June 1999

14.3% TE

The TE request-header field indicates what extension transfer-codings
it is willing to accept in the response and whether or not it is
willing to accept trailer fields in a chunked transfer-coding. Its
value may consist of the keyword "trailers" and/or a comma-separated
list of extension transfer-coding names with optional accept
parameters (as described in section 3.6).

TE = "TE" ":" #(t-codings)
t-codings = "trailers" | (transfer-extension [accept-params]

The presence of the keyword "trailers" indicates that the client is
willing to accept trailer fields in a chunked transfer-coding, as
defined in section 3.6.1. This keyword is reserved for use with
transfer-coding values even though it does not itself represent a
transfer-coding.

Examples of its use are:
TE: deflate

TE:
TE: trailers, deflate;qg=0.5

The TE header field only applies to the immediate connection.
Therefore, the keyword MUST be supplied within a Connection header
field (section 14.10) whenever TE is present in an HTTP/1.l1 message.

A server tests whether a transfer-coding is acceptable, according to
a TE field, using these rules:

1. The "chunked" transfer-coding is always acceptable. If the
keyword "trailers" is listed, the client indicates that it is
willing to accept trailer fields in the chunked response on
behalf of itself and any downstream clients. The implication is

that, if given, the client is stating that either all

downstream clients are willing to accept trailer fields in the
forwarded response, or that it will attempt to buffer the
response on behalf of downstream recipients.

Note: HTTP/1.1 does not define any means to limit the size of a
chunked response such that a client can be assured of buffering
the entire response.

9L9Z J4H

If the transfer-coding being tested is one of the transfer-
codings listed in the TE field, then it is acceptable unless it
is accompanied by a gvalue of 0. (As defined in section 3.9, a
qvalue of 0 means "not acceptable.")

Fielding, et al. Standards Track [Page 142]

162

RFC 2616 HTTP/1.1 June 1999

If multiple transfer—codings are acceptable, then the
acceptable transfer—coding with the highest non-
breferred. The "chunkegd"

transfer—coding always has a gvalue
of 1.

If the TE field-value ig empty or if no
transfer—coding is "chunked" .
always acceptable,

TE field is present,

the only
A message with no transfer-cod

ing is
q 14.40 Trailer

i The Trailer general field value indicates that the given gset of
header fields ig pr

esent in the trailer of a message encoded with
chunked transfer—coding.
Trailer = "Trailer" n.n

l#field-name
|

If no Trailer header
any header fields.
trailer fields in a

field is bresent, the trailer SHOULD NOT include

See section 3.6.1 for restrictions on the use of
"chunked" transfer-coding.

Message header field
include the followin

S listed in the Trailer

header fielq MUST NOT
g header fields:

Transfer—Encoding

Content—Length

Trailer

.41 Transfer~Encoding

Property of the message, not of the entity,

Transfer-Encoding

Transfer-Encoding: chunked

Fielding, et al,

Standards Track

[Page 143]

RFC 2616

163

RFC 2616 HTTP/1.1 June 1999

If multiple encodings have been applied to an entity, the transfer-
codings MUST be listed in the order in which they were applied.
Additional information about the encoding parameters MAY be provided
by other entity-header fields not defined by this specification.

Many older HTTP/1.0 applications do not understand the Transfer-
Encoding header.

14.42 Upgrade

The Upgrade general-header allows the client to specify what
additional communication protocols it supports and would like to use
if the server finds it appropriate to switch protocols. The server
MUST use the Upgrade header field within a 101 (Switching Protocols)
response to indicate which protocol(s) are being switched.

Upgrade = "Upgrade" ":" l#product

For example,
Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11

The Upgrade header field is intended to provide a simple mechanism
for transition from HTTP/1.l to some other, incompatible protocol. It
does so by allowing the client to advertise its desire to use another
protocol, such as a later version of HTTP with a higher major version
number, even though the current request has been made using HTTP/1.1.
This eases the difficult transition between incompatible protocols by
allowing the client to initiate a request in the more commonly
supported protocol while indicating to the server that it would like
to use a "better" protocol if available (where "better" is determined
by the server, possibly according to the nature of the method and/or
resource being requested).

The Upgrade header field only applies to switching application-layer
protocols upon the existing transport-layer connection. Upgrade
cannot be used to insist on a protocol change; its acceptance and use
by the server is optional. The capabilities and nature of the
application-layer communication after the protocol change is entirely
dependent upon the new protocol chosen, although the first action
after changing the protocol MUST be a response to the initial HTTP
request containing the Upgrade header field.

The Upgrade header field only applies to the immediate connection.
Therefore, the upgrade keyword MUST be supplied within a Connection
header field (section 14.10) whenever Upgrade is present in an

HTTP/1.1 message.

9192 D4

Fielding, et al. Standards Track [Page 144]

164

14.

14

Example:

.44 vary

RFC 2616

HTTP/1.1 June 1999

Protocel on a different connecti , it is more
appropriate to use a 301, 302, or 305 redirection response.
This specification only defines the Protocol name "HPpTpw
the family of Hypertext Transfer Protocols,
version rules of Section 3.1 and fut
specification. Any token can he used
will only be useful if both the e¢lien
with the same protocol .

for use by
as defined by the HTTP

ure updates to thisg
45 a protocol name;

however, it
t and

Server associate the name

43 User-Agent

The User-Agent request-head
user agent originating the

the tracing of protocal W
agents for the sake of ta

er field contains inform
Tequest., This ig for statistical Purposes,
iolations, and automated recognition of user

ilering responses to avoid particular user
agent limitations. User agents SHOULD include this field with

requests. The field cian contain multiple Product tokens (section 3.8)
and comments identifyin nd any subproducts which form a
significant part of the user agent. By convention, the product tokeng

are listed in order of their significance for identifying the
application.

ation about the

User-Agent =

"User-Agent" n.» 1*(product | comment)

User-Agent: CERN-LineMode/2.15 libwww/2.17b3

The Vary field w
Fully determines,
pPermitted to use t

alue indicates the

while the respons
h

set of request-header

e is fresh,

fields that

whether a cache is

without revalidatio

& cache cannot datermi
request whether this r
Section 13,4 for use o

€ résponse to reply to a subseguent request

n. For uncacheable or stale responses, the vary

[

implies that
of a subsequent

Le representation. See

by caches .

ne from the request headers
2sponse is the appropria
£ the vary header fielg

Vary "Vary" wen (nxn '

l#field-name)

Standards Track [Page 145]

165

RFC 2616

RFC 2616 HTTP/1.1 June 1999

on that resource. A server MAY include a Vary header field with a
non-cacheable response that is subject to server-driven negotiation,
since this might provide the user agent with useful information about
the dimensions over which the response varies at the time of the
response.

A Vary field value consisting of a list of field-names signals that
the representation selected for the response is based on a selection
algorithm which considers ONLY the listed request-header field values
in selecting the most appropriate representation. A cache MAY assume
that the same selection will be made for future requests with the
same values for the listed field names, for the duration of time for
which the response is fresh.

The field-names given are not limited to the set of standard
request-header fields defined by this specification. Field names are
case-insensitive.

A Vary field value of "*" signals that unspecified parameters not
limited to the request-headers (e.g., the network address of the
client), play a role in the selection of the response representation.
The "*' value MUST NOT be generated by a proxy server; it nmay only be
generated by an origin server.

14.45 Via

The Via general-header field MUST be used by gateways and proxies to
indicate the intermediate protocols and recipients between the user
agent and the server on requests, and between the origin server and
the client on responses. It is analogous to the "Received" field of
RFC 822 [9] and is intended to be used for tracking message forwards,
avoiding request loops, and identifying the protocol capabilities of
all senders along the request/response chain.

via = "via" ":" 1#(received-protocol received-by [comment]
received-protocol = [protocol-name "/"] protocol-version
protocol-name = token

protocol-version = token

received-by = (host [":" port]) | pseudonym
pseudonym = token

The received-protocol indicates the protocol version of the message
received by the server or client along each segment of the
request/response chain. The received-protocol version is appended to
the Via field value when the message is forwarded so that information
about the protocol capabilities of upstream applications remains
visible to all recipients.

91L9¢Z D4d

Fielding, et al. Standards Track [Page 146]

166

RFC 2616 HTTP/1.1 June 1999

The protocol-name is optional if and only if it would be

received-by field is normally the hogt and optional port number of a
recipient server or ¢lient that subsequently forwarded the message.
However, if the real host is considered to he sensitive information,

If the port is not given, it May
£ the received-protocol .

"HTTP". The

Multiple via fielqd values represents each
forwarded the message. Each recipient MUST
such that the end result is ordered accordi
! forwarding applications.

Droxy or gateway that has
append its information
ng to the sequence of

Comments MAY be used in the Via header field to identif
of the recipient broxy or gateway, analogous to the User-Agent and
Server header fields. However, all comments in the Via field are
optional and MAY be removed by any recipient prior to forwarding the
message.

For example, a request m

€Ssage could be sent fr
agent to an internal PTOXY code-named "Ired", which uses HTTP/1.1 to
forward the request to a public Droxy at nowhere.com, which completes
the reguest by forwarding it to the origin server at
The request received by www. ics.uci, edy would then ha
Via header field:

om an HTTP/1.0 user

Via: 1.0 fred, 1.1 nowhere. com (Apache/1.1)

Proxies and gateways
SHOULD ‘NOT, by default,
the firewall region.
explicitly enabled. If not enabiled,
behind the firewall
for that host.

the received-by host of any host
SHOULD be replaced by

For organizations that i Y requirements for hiding
internal structures, X

Via header field entries
a single such entry. For

example,

Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy

could be collapsed to

Via: 1.0 ricky, 1.1 mertz, 1.0 lucy

Flelding, et al, Standards Track

RFC 2616

[Page 147)

167

RFC 2616 HTTP/1.1 June 1999

Applications SHOULD NOT combine multiple entries unless they are all
under the same organizational control and the hosts have already been

replaced by pseudonyms. Applications MUST NOT combine entries which
have different received-protocol values.

14.46 Warning

The Warning general-header field is used to carry additional
information about the status or transformation of a message which
might not be reflected in the message. This information is typically
used to warn about a possible lack of semantic transparency from

caching operations or transformations applied to the entity body of
the message.

Warning headers are sent with responses using:
Warning = "Warning" ":" l#warning-value

warning-value = warn-code SP warn-agent SP warn-text
[SP warn-date]

warn-code = 3DIGIT
warn-agent = (host [":" port]) | pseudonym
; the name or pseudonym of the server adding
; the Warning header, for use in debugging
warn-text = quoted-string
warn-date <"> HTTP-date <">

A response MAY carry more than one Warning header.

The warn-text SHOULD be in a natural language and character set that
is most likely to be intelligible to the human user receiving the
response. This decision MAY be based on any available knowledge, such
as the location of the cache or user, the Accept-Language field in a
request, the Content-Language field in a response, etc. The default
language is English and the default character set is ISO-8859-1.

If a character set other than IS0-8859-1 is used, it MUST be encoded
in the warn-text using the method described in RFC 2047 [14].

Warning headers can in general be applied to any message, however
some specific warn-codes are specific to caches and can only be
applied to response messages. New Warning headers SHOULD be added
after any existing Warning headers. A cache MUST NOT delete any
Warning header that it received with a message. However, if a cache
successfully validates a cache entry, it SHOULD remove any Warning
headers previously attached to that entry except as specified for

9L9Z D44

Fielding, et al. Standards Track [Page 148!

168

RFC 2616 HTTP/1.1 June 1999

specific Warning codes. T
in the validating respon
that would be attached t

t MUST then add an
Se. In other words,
o the most recent re

Y Warning headerg received
Warning headers are those
levant response.
| When multiple Warnin
agent ought to infg
order that they appear in the respons
inform the user of all

these heuristics:

; the user

many of them ag possible, in the
€. If it is not Possible to
of the warnings, the user agent SHOULD follow

OvVer warnings in othe
codes and warn-agents

Systems that gener,

ate multiple w
this user agent be

arning headers SHOULD order them with
havior in ming.

Requirements for the behavior of caches with respect to Warnings are
stated in section 13.1.2.

This is a list of the ¢

urrently-defined warn-codes,
Teécommended warn-text i

each with a
n English, and a description

of its meaning.
110 Response is stale

MUST be included whenever the returned response is stale.

111 Revalidation faileq
MUST be included if a cache returns a stale response because an
attempt to revalidate the response failed, due to an inability to
reach the server.

112 Disconnected operatipon

SHOULD be included if the cache ig inten
the rest of the network

tionally disconnected from
for a period of time.

1l9g Miscellaneous

warning
The warning te

*E MAY include arbitra ir

to a human user, or logged. A system receivin
NOT take any automated action,
the uger .

@iElding, et al, Standards Track

[Page 149]

169

RFC 2616 HTTP/1.1 June 1999

214 Transformation applied
MUST be added by an intermediate cache or proxy if it applies any
transformation changing the content-coding (as specified in the
Content-Encoding header) or media-type (as specified in the
Content-Type header) of the response, or the entity-body of the
response, unless this Warning code already appears in the response.

299 Miscellaneous persistent warning
The warning text MAY include arbitrary information to be presented

to a human user, or logged. A system receiving this warning MUST
NOT take any automated action.

If an implementation sends a message with one or more Warning headers
whose version is HTTP/1.0 or lower, then the sender MUST include in
each warning-value a warn-date that matches the date in the response.

If an implementation receives a message with a warning-value that

includes a warn-date, and that warn-date is different from the Date
value in the response, then that warning-value MUST be deleted from
the message before storing, forwarding, or using it. (This prevents
bad consequences of naive caching of Warning header fields.) If all

of the warning-values are deleted for this reason, the Warning header
MUST be deleted as well.

14.47 WWw-Authenticate

The WWW-Authenticate response-header field MUST be included in 401
(Unauthorized) response messages. The field value consists of at
least one challenge that indicates the authentication scheme (s) and
parameters applicable to the Request-URI.

WWW-Authenticate = "WWW-Authenticate" ".» l#challenge

The HTTP access authentication process is described in "HTTP
Authentication: Basic and Digest Access Authentication" [43]. User
agents are advised to take special care in parsing the WWw-
Authenticate field value as it might contain more than one challenge,
or if more than one WWW-Authenticate header field is provided, the

contents of a challenge itself can contain a comma-separated list of
authentication parameters.

Security Considerations

This section is meant to inform application developers, information
providers, and users of the security limitations in HTTP/1.1 as
described by this document. The discussion does not include
definitive solutions to the problems revealed, though it does make
some suggestions for reducing security risks.

9L9Z D4¥

Fielding, et al. Standards Track [Page 150]

170

RFC 2616 HTTP/1.1 June 1999

15.1 Personal Information

HTTP clients are often privy to
(e.g. the user'g name, location,

| keys, ete.), and SHOULD be very ¢
‘ leakage of thisg information via t

large amounts of personal information
mail address, basswords, encryption
areful to prevent unintentionai

he HTTP protocol to other sources,
We very Strongly recommend that s convenient interface be providedg
for the user g control dissemination of such information, and that
designers and implementors be parti area,
History shows that errors in this

Security
and/or pPrivacy problems and generate highly adverse pPublicity for the
| implementor'g company .

15.1.1 Abuse of Server Log Information
\

A server is in the position to
l requests which might ide
interest. Thisg
handling can
the HTTP Prot

Save personal data about a user'sg
ntify their reading patterns or subjects of
information is Clearly confidential in nature and itg
be constraineq by law in certain countries, People uging
ocel to provide data arg responsible for ensuring that
is not distributeg without the pPermission of any

Like any generic data transfer brotocol, HTTP cannot regulate the
at isg transferred, i

Four header fields are

Server, via, Referer and From.

Revealing the s
server
that is
Server h

pecific software v
machine to become more vul
known. teo ¢ontain securit
eader field a configurab

ersion of the serv
nerable to attg
y holes, Impleme:
le option.

er might alley the
cks against software
ntors SHOULD make the

Proxies which 1 through a network firewall suouLp
Lake special i i Eransfer of header information
that identifj 5 ir irewall. Tn particular, they
SHOULD remove

+ OY replace with sanitiz . any Via fields
generated behin

; its power can be abused
ails are not sepa formation contained in

Standards Track

[Page 151]

171

RFC 2616 HTTP/1.1 June 1999

the Referer. Even when the personal information has been removed, the
Referer header might indicate a private document's URI whose
publication would be inappropriate.

The information sent in the From field might conflict with the user's
privacy interests or their site's security policy, and hence it
SHOULD NOT be transmitted without the user being able to disable,
enable, and modify the contents of the field. The user MUST be able
to set the contents of this field within a user preference or
application defaults configuration.

We suggest, though do not require, that a convenient toggle interface
be provided for the user to enable or disable the sending of From and
Referer information.

The User-Agent (section 14.43) or Server (section 14.38) header
fields can sometimes be used to determine that a specific client or
server have a particular security hole which might be exploited.
Unfortunately, this same information is often used for other valuable
purposes for which HTTP currently has no better mechanism.

15.1.3 Encoding Sensitive Information in URI's

Because the source of a link might be private information or might
reveal an otherwise private information source, it is strongly
recommended that the user be able to select whether or not the
Referer field is sent. For example, a browser client could have a
toggle switch for browsing openly/anonymously, which would
respectively enable/disable the sending of Referer and From
information.

Clients SHOULD NOT include a Referer header field in a (non-secure)
HTTP request if the referring page was transferred with a secure
protocol.

Authors of services which use the HTTP protocol SHOULD NOT use GET
based forms for the submission of sensitive data, because this will
cause this data to be encoded in the Reguest-URI. Many existing
servers, proxies, and user agents will log the request URI in some
place where it might be visible to third parties. Servers can use
POST-based form submission instead

.1.4 Privacy Issues Connected to Accept Headers

Accept request-headers can reveal information about the user to all
servers which are accessed. The Accept-Language header in particular
can reveal information the user would consider to be of a private
nature, because the understanding of particular languages is often

Fielding, et al. Standards Track [Page 152]

172

RFC 2616 HTTP/1.1 June 1999

e sent in every request are strongly
guration process include a message which
loss of privacy involved.

encouraged to let the confi
makes the user aware cf the

An approach that limits the loss of privacy would be for a user agent

to omit the sending of Accepthanguage headers by default, and to ask
‘ the user whether or not to start sending Accept—Language headers to a
server if it detects, by looking for any Vary response-header fields

generated by the server, that such sending could improve the quality
of service.

Elaborate user-customized acc
in particular if these includ
as relatively reliable and lo

ept header fields sent in every request,
e quality values, can be used by servers
ng-lived user identifiers. Such user

cross-server
ns of individual users. Note that for

the network address of the host

O serve as a long-lived user

re proxies are used to enhance

€ conservative in offering accept

end users, As an extreme privacy

€ accept headers in relayed requests.
h previde a high degree of header

of privacy which can

many users not behind a proxy,
running the user agent will als
identifier. In environments whe
privacy, user agents ought to b
header configuration options to
measure, proxies could filter th
General purpose user agents whic
configurability SHOULD
be involved.

15.2 Attacks Based On File and Path Names

Implementations of HTTP origin servers SHi
the documents returned by HTTP reguests t
intended by the Server administrators. TIf
HITP URIs directly into file system calls, the server MUST take
special care not to serve files that were not intended to be

delivered to HTTP clients. For éxample, UNIX, Microsoft Windows,
other Operating systems use ". .«

directory level above the current
server MUST disallow any such cons
would otherwise allow access to a
@ accessible via the HTTP server.
reference only internally to the se

QULD be careful to restrict
¢ be only those that were
an HTTP server Eranslates

and
as a path component to indicate a

one. On such a system, an HTTP
truct in the Request-URI if it
resource outside those intended to
Similarly, files intended for

rver (such as access control
flIES, configuration files, and script code) MUST be bProtected from
inapprepriate retrieval, since they might ¢

ontain sensitive

r bugs in such HTTP server
ed into security risks

%nformation. Experience has shown that mino
iMplementations have turn

Fielding, et al. Standards Track

[Page 153]

173

RFC 2616 HTTP/1.1 June 1999

15.3 DNS Spoofing

Clients using HTTP rely heavily on the Domain Name Service, and are
thus generally prone to security attacks based on the deliberate
mis-association of IP addresses and DNS names. Clients need to be

cautious in assuming the continuing validity of an IP number/DNS name
association.

In particular, HTTP clients SHOULD rely on their name resolver for
confirmation of an IP number/DNS name association, rather than
caching the result of previous host name lookups. Many platforms
already can cache host name lookups locally when appropriate, and
they SHOULD be configured to do so. It is proper for these lookups to
be cached, however, only when the TTL (Time To Live) information
reported by the name server makes it likely that the cached
information will remain useful.

If HITP clients cache the results of host name lookups in order to
achieve a performance improvement, they MUST observe the TTI,
information reported by DNS.

If HTTP clients do not observe this rule, they could be spoofed when
a previously-accessed server's IP address changes. As network
renumbering is expected to become increasingly common [24], the
possibility of this form of attack will grow. Observing this
requirement thus reduces this potential security vulnerability.

This requirement also improves the load-balancing behavior of clients
for replicated servers using the same DNS name and reduces the

likelihood of a user's experiencing failure in accessing sites which
use that strategy.

15.4 Location Headers and Spoofing

If a single server supports multiple organizations that do not trust
one another, then it MUST check the values of Location and Content-
Location headers in responses that are generated under control of
said organizations to make sure that they do not attempt to
invalidate resources over which they have no authority.

.5 Content-Disposition Issues

RFC 1806 [35], from which the often implemented Content-Disposition
(see section 19.5.1) header in HTTP is derived, has a number of very
serious security considerations. Content-Disposition is not part of
the HTTP standard, but since it is widely implemented, we are
documenting its use and risks for implementors. See RFC 2183 [49]
(which updates RFC 1806) for details.

9192 D3y

Fielding, et al, Standards Track [Page 154]

174

RFC 2616 HTTP/1.1 June 1999
c

15.6 Authentication Credentials and Idle Clients

Existing HTTP clients and user agents typicall
information indefinitely, HTTP/1.1.
server to direct c¢lients to discard
a4 significant defect that requires £
| Circumstances under which
application's security mod

¥ retain authentication
does not provide a method for a
these cached credentials. This is
urther extensions to HTTP.
credential caching can interfere with the
el ineclude but are not limited to:

- Clients which have been idle f
which the server might wish to
user for credentials.

or an extended period following
cause the client to reprompt the

- Applications which include
(such ag a ‘logout' or
the server side of the a
further reason for the ¢

& session termination indication
commit' button on a page) after which
pplication ‘knows' that there is no
lient to retain the credentials.

This is currently under separate study. There are a number of work-
arounds to parts of this problem, and we encourage the use of
password protection in sereen savers, idle time-outs, and other

methods which mitigate the gsecurity problems inherent in this
problem. In particular,

encouraged to provide a
cached credentials

under user control.

15.7 Proxies and Caching

By their very nature,

HTTP proxies are men-in-the-middle, and
Tépresent an oppertunity for man-in-the-middle attacks. Compromise of
the systems on which the proxies run ecan result i

in serious security
and privacy problems. Proxies have access to security-related
information, personal informat

organizaticns, and pro
content providers.
configured without
Juight be used in th

ion about individual users and
prietary information belonging to users and

A compromised Proxy, or a proxy implemented or
regard to security and privacy considerations,

e commission of a wide range of potential attacks.

Proxy operators should protect the sy
they would protect any system
information, 1n particular,

contains highly sensitive pe

Stems on which proxies run as
that contains or transports sensitive
log information gathered at proxies often
rsonal information, and/or information
about organizations. Log information should be carefully guarded, and
ippropriate guidelines for use developed and followed. (Section

T O B T

et al.

Standards Track [Page 155]

175

RFC 2616 HTTP/1.1 June 1999

Caching proxies provide additional potential vulnerabilities, since
the contents of the cache represent an attractive target for
malicious exploitation. Because cache contents persist after an HTTP
request is complete, an attack on the cache can reveal information
long after a user believes that the information has been removed from
the network. Therefore, cache contents should be protected as
sensitive information.

Proxy implementors should consider the privacy and security
implications of their design and coding decisions, and of the
configuration options they provide to proxy operators (especially the
default configuration).

Users of a proxy need to be aware that they are no trustworthier than
the people who run the proxy; HTTP itself cannot solve this problem.

The judicious use of cryptography, when appropriate, may suffice to
protect against a broad range of security and privacy attacks. Such
cryptography is beyond the scope of the HTTP/1l.l1l specification.

15.7.1 Denial of Service Attacks on Proxies

They exist. They are hard to defend against. Research continues.
Beware.

16 Acknowledgments

This specification makes heavy use of the augmented BNF and generic
constructs defined by David H. Crocker for RFC 822 [9]. Similarly, it
reuses many of the definitions provided by Nathaniel Borenstein and
Ned Freed for MIME {7]}. We hope that their inclusion in this
specification will help reduce past confusion over the relationship
between HTTP and Internet mail message formats.

The HTTP protocol has evolved considerably over the years. It has
benefited from a large and active developer community--the many
people who have participated on the www-talk mailing list--and it is
that community which has been most responsible for the success of
HTTP and of the World-Wide Web in general. Marc Andreessen, Robert
Cailliau, Daniel W. Connolly, Bob Denny, John Franks, Jean-Francois
Groff, Phillip M. Hallam-Baker, Hakon W. Lie, Ari Luotonen, Rob
McCool, Lou Montulli, Dave Raggett, Tony Sanders, and Marc
VanHeyningen deserve special recognition for their efforts in
defining early aspects of the protocol.

919¢ D4H

This document has benefited greatly from the comments of all those
participating in the HTTP-WG. In addition to those already mentioned,
the following individuals have contributed to this specification:

Fielding, et al. Standards Track [Page 156]

176

| RFC 2616

Gary aAdams
Harald Tveit A
| Keith Ball
| Brian Behlendorf
Paul Burcharg
Maurizio Codogno
Mike Cowlishaw
Roman Czyborra
Michael a. Dolan
David ., Fiander
| Alan Freier
Marc Hedlung
I Greg Herlihy

lvestrand

Koen Holtman
Alex Hopmann
Bob Jernigan
Shel Kaphan
Rohit Khare
John Klensin
Martijn Koster
Alexei Kosut
David M. Kristol
Daniel LaLiberte
Ben Laurie

Paul J. Leach
Daniel DuBojig

Much of the
suggestions
Paul Leach,

Most of the
Zilles,
Thanks to the

Jim Gettys (the current edi

to thank Roy Fielding, th
with John Klensin, geff Mogul,
Holtman, Jahn Franks,

Larry Masinter for the
Mogul and Scott Lawren

et al.

content ang Presentation of
and comments from individual
Koen Holtman, Davig Morris,

Specification of ra;

Nges is based op W
by Ari Luotonen ang John Franks

, with additional

cave men" of Palo Alto.

ir help. Ang thank
ce for performing the

HTTP/1.1

Ross Patterson
Albert Lunde
John c, Mallery

June 1999

Jean-Philippe Martin-Flatin

Mitra
David Morrig
Gavin Nicol
Bill Perry
Jeffrey Perry
Scott Powers
Owen Rees
Luigi Rizzo
David Robinson
Marc Salomon
Rich Salz
Allan M. Schiffman
Jim Seidman
Chuck Shotton
Eric w. sink
Simon E. Sperog
Richard mn. Taylor
Robert g, Thau
Bill (BearHeart)
Fraricoig Yergeau
Mary Ellen Zurko
Josh Cohen

Standards Track

177

Weinman

You know who You are.

the caching design ig due to
s including: Sh

el Kaphan,
and Larry Masin

ork originally done
input from Steve

Scott Lawrence, and
s go Particularly tq Jeff
"MUST/MAY/SHDULD"

audit.

[Page 157]

RFC 2616 HTTP/1.1 June 1999

The Apache Group, Anselm Baird-Smith, author of Jigsaw, and Henrik
Frystyk implemented RFC 2068 early, and we wish to thank them for the
discovery of many of the problems that this document attempts to
rectify.

17 References

[1]1 Alvestrand, H., "Tags for the Identification of Languages", RFC
1766, March 1995.

[2] Anklesaria, F., McCahill, M., Lindner, P., Johnson, D., Torrey,
D. and B. Alberti, "The Internet Gopher Protocol (a distributed
document search and retrieval protocol)", RFC 1436, March 1993.

[3] Berners-Lee, T., "Universal Resource Identifiers in WWW", RFC
1630, June 1994.

[4] Berners-Lee, T., Masinter, L. and M. McCahill, "Uniform Resource
Locators (URL)", RFC 1738, December 1994.

[5] Berners-Lee, T. and D. Connolly, "Hypertext Markup Language -
2.0", RFC 1866, November 1995.

[6] Berners-Lee, T., Fielding, R. and H. Frystyk, "Hypertext Transfer
Protocol -- HTTP/1.0", RFC 1945, May 1996.

[7] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies",
RFC 2045, November 1996.

[8] Braden, R., "Requirements for Internet Hosts -- Communication
Layers", STD 3, RFC 1123, October 1989.

[9] Crocker, D., "Standard for The Format of ARPA Internet Text
Messages", STD 11, RFC 822, August 1982.

[10] Davis, F., Kahle, B., Morris, H., Salem, J., Shen, T., Wang, R..
Sui, J., and M. Grinbaum, "WAIS Interface Protocol Prototype
Functional Specification," (v1.5), Thinking Machines
Corporation, April 1990.

Fielding, R., "Relative Uniform Resource Locators", RFC 1808,
June 1995.

[12] Horton, M. and R. Adams, "Standard for Interchange of USENET
Messages", RFC 1036, December 1987.

9192 D4y

Fielding, et al. Standards Track [Page 1581

178

RFC 2616 HTTP/1.1 June 1999

[13] Kantor, B. ang pP. Lapsley, "Network News Transfer Protocol", RrC
977, February 198¢.

[14] Moore, K., "MIME (
Three: Message Hea
November 199¢.

Multipurpose In

ternet Mail Extensions) part
der Extensions

for Non-ASCTI Text", RFC 2047,

[15] Nebel, E. ang L. Masinter, "Form-based File Upload in HTML", RFC
1867, November 1995,

[16] Postel, J., "Simple Mail Transfer Protocol™",

STD 10, RFC 821,
| August 1982,

[17] Postel, 7., "Medi

a Type Registration Procedure",
November 1996 .

RFC 1590,

[18] Postel, g. and J. Reynolds, 'rije Transfer Protocol", gTp 9,
959, October 1985,

RFC '

|
Reynolds, J. and J. Postel, "Assigned Numbers", gTp 2, RFC 1700,
October 1994,

[20] Sollins, K. ang L. Masinter,
Uniform Resource Names",

"Functional Requirements for
RFC 1737, December 1994,

[21] US-AscCIT. Coded ¢
Information Inter

haracter get - 7-Bit Ame

rican Standard Code for
change. Standard ansT X3

-4-1986, ANST, 1986,

[22] 1s50-8854. International Standard
8-bit Single-Byte Coded ¢r
Part 1: Latin alphabet No.

> 2: Latin alphabet Mo, 2

3: Latin alphabet No. 3

Part 4: Latin alphabet No, 4

—— Information Processing --
aphic Character Sets -~

1, 180-8859-1:1987.
« IS0-B859-2, 1987.
» IS0-8859-3, 1988.

150-8859-4, 1983,
Part 5; Latin/Cyrillic alphabet, IS0-8859-5, 1988.
Part @; Latin/Arabic alphabet, 1[50-8859-6, 1987,
Part 7. Latin/Greek alphabet, I50-8859-7, 1987.
Part g. Latin/Hebrew alphabet, Is50-8859-8, 1988.
Part 9.

Latin alphabet No. 5,

180-B858-9, 1990,

[23] Meyers

+ J. and M. Rose,

"The Content-MD5 Header Fieldr,

RFC

1864, October 1995,

[24] Carpenter, B. ang Y. Rekhter, "Renumbering Needs Work", RFC
1900, February 1996,

[25) Deutsch, p., wgzrp file format specification version 4.3", RFC
1952, May 199¢.

fielding- et al. Standards Track

[Page 159]

179

RFC 2616 HTTP/1.1 June 1999

[26] Venkata N. Padmanabhan, and Jeffrey C. Mogul. "Improving HTTP
Latency", Computer Networks and ISDN Systems, v. 28, pp. 25-35,
Dec. 1995. Slightly revised version of paper in Proc. 2nd
International WWW Conference '94: Mosaic and the Web, Oct. 1994,
which is available at
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul /HTTPLat
ency.html.

[27] Joe Touch, John Heidemann, and Katia Obraczka. "Analysis of HTTP
Performance", <URL: http://www.isi.edu/touch/pubs/http-perf96/>,
ISI Research Report ISI/RR-98-463, (original report dated Aug.
1996), USC/Information Sciences Institute, August 1998.

[28] Mills, D., "Network Time Protocol (Version 3) Specification,
Implementaticn and Analysis", RFC 1305, March 1992.

[29] Deutsch, P., "DEFLATE Compressed Data Format Specification
version 1.3", RFC 1951, May 1996.

[30] S. Spero, "Analysis of HTTP Performance Problems,"
http://sunsite.unc.edu/mdma-release/http-prob.html.

[31] Deutsch, P. and J. Gailly, "ZLIB Compressed Data Format
Specification version 3.3", RFC 1950, May 1996.

[32] Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P.,
Luotonen, A., Sink, E. and L. Stewart, "An Extension to HTTP:
Digest Access Authentication", RFC 2069, January 1997.

[33] Fielding, R., Gettys, J., Mogul, J., Frystyk, H. and T.
Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.l1", RFC
2068, January 1997.

[34] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[35] Troost, R. and Dorner, S., "Communicating Presentation
Information in Internet Messages: The Content-Disposition
Header", RFC 1806, June 1995.

Mogul, J., Fielding, R., Gettys, J. and H. Frystyk, "Use and
Interpretation of HTTP Version Numbers", RFC 2145, May 1997.
[3g639]

February

91L9¢ D44

Palme, J., "Common Internet Message Headers", RFC 2076,
1997. [jg640]

Fielding, et al. Standards Track [Page 160]

180

RFC 2616 HTTP/1.1 June 1999

[38] Yergeau, F., "UTF-8,

a transformation format of Unicode ang
ISO-10646”, RFC 2279,

January 1998, [jg641]

[39] Nielsen, H.F., Gettys, J.5 Baird~Smith, A, Prud'hcmmeaux, E.,

Lie, H., ang C. Lilley. "Network Performance Effects of
HITP/1.1, C5581, and PNG, v Proceedings of ACM SIGCOMM '87, Cannes
France, September lQ??.[ngdz}

[40] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensionsg (MIME) Part Two: Media Types", RFC 2046, November
1996. [jg643]

[41] Alvestrand, H., "IETF Policy on ch

aracter Sets and Languages",
BCP 18, RFC 2277, January 199g.

|
[Jg644]

[42] Berners—Lee, Ta Fielding, R. and 1. Masinter, "Uniform Resource
Identifiers (URI): Generic Syntax and Semantics", RFC 2396,
August 1998, [Jg645]

[43] Franks, J., Hallam—Baker, P . Lawrence, §
Leach, p., Luotonen, A., Sink, E, and L. Stewart, “HTTP
Authentication: Basic and Digest Accesg Authentication", RFC
2617, June 1599, [Jg6ds)]

P Hostetler, J.

L

[44] Luotonen, A., "Tunneling TCP based Protocols through wep proxy
servers, " Work in Progress, [Jg647]

[45] Palme, 7. and A. Hopmann, "MIME E-mail Encapsulation of
Aggregate Documents, such as HTML (MHTML) *, RFC 2110, March
1997.

Bradner, S., "The Internet Standards Process
9, RFC 2026, October 1996.

-~ Revision 3", Bep

[47] Masinter, L., "Hyper Text Coffee pot Cont
(HTCPCP/l.O)", RFC 2324, 1 April 1998,

rol Protocol

[48] Freed, n. and N. Borenstein, "Multipurpose Internet Mai]l
Extensions (MIME) Part Five:

Conformance Criteria ang Examples",
RFC 2049, November 1996.

[49] Troost, R., Dorner, S. and k. Moore, ”Communicating Presentation
Information in Internet Messages: The Content—Disposition Header
Field", rrc 2183, August 1997,

et al.

Standards Track [Page 161)

181

RFC 2616 HTTP/1.1 June 1999

18 Authors' Addresses

Roy T. Fielding

Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

Fax: +1 (949) 824-1715
EMail: fielding@ics.uci.edu

James Gettys

World Wide Web Consortium

MIT Laboratory for Computer Science
545 Technology Square

Cambridge, MA 02139, USA

Fax: +1 (617) 258 8682
EMail: jg@w3.org

Jeffrey C. Mogul

Western Research Laboratory
Compaq Computer Corporation

250 University Avenue

Palo Alto, California, 94305, USA

EMail: mogul@wrl.dec.com

Henrik Frystyk Nielsen
World Wide Web Consortium |
MIT Laboratory for Computer Science |
545 Technology Square

Cambridge, MA 02139, USA

Fax: +1 (617) 258 8682
EMail: frystyk@w3.org

Larry Masinter
Xerox Corporation

3333 Coyote Hill Road
Palo Alto, CA 94034, USsA

919Z D3d

EMail: masinter@parc.xerox.com

Fielding, et al. Standards Track [Page 162]

182

RFC 2616 HTTP/1.1 June 1999
Paul J. Leach
Microsoft Corporation
1 Microsoft Way
Redmond, wa 98052, usa
EMail: paulle@microsoft.com
Tim Berners-iee
Director, World Wide web Consortium

MIT Laboratory for Computer Science
545 Technology Square

Cambridge, mp 02139, ysa

Fax: +1 (617) 258 8682
EMail: timbl@w3.org

et al.

Standards Track [Page 163]

183

RFC 2616 HTTP/1.1 June 1999

19 Appendices
19.1 Internet Media Type message/http and application/http

In addition to defining the HTTP/l.l protocol, this document serves
as the specification for the Internet media type "message/http" and
"application/http". The message/http type can be used to enclose a
single HTTP request or response message, provided that it obeys the
MIME restrictions for all "message" types regarding line length and
encodings. The application/http type can be used to enclose a
pipeline of one or more HTTP request or response messages (not
intermixed). The following is to be registered with IANA [17].

Media Type name: message

Media subtype name: http

Required parameters: none

Optional parameters: version, msgtype

version: The HTTP-Version number of the enclosed message
(e.g., "1.1"). If not present, the version can be
determined from the first line of the body.

msgtype: The message type -- "request" or "response". If not

present, the type can be determined from the first
line of the body.
Encoding considerations: only "7bit", "8bit", or "binary" are
permitted
Security considerations: none

Media Type name: application
Media subtype name: http
Required parameters: none
Optional parameters: version, msgtype
version: The HTTP-Version number of the enclosed messages
(e.g., "1.1"). If not present, the version can be
determined from the first line of the body.
msgtype: The message type -- "request" or "response". If not

present, the type can be determined from the first
line of the body.

Encoding considerations: HTTP messages enclosed by this type
are in "binary" format; use of an appropriate
Content-Transfer-Encoding is required when
transmitted via E-mail.

Security considerations: none

9L9¢ D44

Fielding, et al. Standards Track [Page 164]

184

-~ —

RFC 2616 HTTP/1.1 June 1999

19.2 Internet Media Type multipart/byteranges

When an HTTP 2086

(Partial Content)
content of multip

le ranges (a respo

nse to a request for multiple
nonfcverlapping ranges), these are Lransmitted as a multipart
message-body, The media type for thisg Purpese is called
“multipart{byteranges".

| with its own Content
boundary parameter sp
each body-part .

more parts, each
The required

Media Typre name:

multipart

Media subtype name: byteranges

Required Parametersg;: boundary

Optional parameters: none

Encoding considerations: only "7bitr, "8bit", or "binary" are
permitted

Security considerations: none

For example:

HTTP/1.1 206 Partial Content
Date: Wed, 15 Nov 1995 06:25:24 GMT
Last-Modified: Wed, 15 Nov 1995 04:58;08 GMT

Content-type: multipartﬁhyteranges; boundary=THIS_STRING_SEPARATES
——THIS_STRING_SEPARATES
Content—type:

application/pdf
Contentkrange:

bytes 500-999/8000

...the firgt range, . .
-—THIS_STRING_SEPARATES
Content-type: application/pdf
Contentfrange: bytes 1000—7999/8000
--.the secong range
-—THIS_STRING_SEPARATES——

Standards Track

[Page 165]

185

RFC 2616 HTTP/1.1 June 1999

2) Although RFC 2046 [40] permits the boundary string to be
quoted, some existing implementations handle a quoted boundary
string incorrectly.

3) A number of browsers and servers were coded to an early draft
of the byteranges specification to use a media type of
multipart/x-byteranges, which is almost, but not quite
compatible with the version documented in HTTP/1.1.

19.3 Tolerant Applications

Although this document specifies the requirements for the generation
of HTTP/1.1 messages, not all applications will be correct in their
implementation. We therefore recommend that operational applications
be tolerant of deviations whenever those deviations can be
interpreted unambiguously.

Clients SHOULD be tolerant in parsing the Status-Line and servers
tolerant when parsing the Request-Line. In particular, they SHOULD
accept any amount of SP or HT characters between fields, even though
only a single SP is required.

The line terminator for message-header fields is the sequence CRLF.
However, we recommend that applications, when parsing such headers,
recognize a single LF as a line terminator and ignore the leading CR.

The character set of an entity-body SHOULD be labeled as the lowest
common denominator of the character codes used within that body, with
the exception that not labeling the entity is preferred over labeling
the entity with the labels US-ASCII or IS0-8859-1. See section 3.7.1
and 3.4.1.

Additional rules for requirements on parsing and encoding of dates
and other potential problems with date encodings include:

- HTTP/1l.l1 clients and caches SHOULD assume that an RFC-850 date
which appears to be more than 50 years in the future is in fact
in the past (this helps solve the "year 2000" problem).

An HTTP/1.1 implementation MAY internally represent a parsed
Expires date as earlier than the proper value, but MUST NOT
internally represent a parsed Expires date as later than the
proper value.

All expiration-related calculations MUST be done in GMT. The
local time zone MUST NOT influence the calculation or comparilson
of an age or expiration time.

919 D44

Fielding, et al. Standards Track [Page 166]

186

RFC 2616 HTTP/1.1 June 1999

- If an HTTP header incorrectly carries a date
Zone other than gmp,6 ;

¢ LE MUST he converted int
most conservative pos

19.4 Differences Between HTTP Entities ang RFC 2045

HTTP/1.1 uses
822 [9])

Entities

many of the constructs defin

ed for Internet Mail (RFC
i1 Extensions (MIME [71) to

Te carefully chosen
to allow greater

and clientg.

This appendix describes specific areas where HTTP differs from RFC
2045, Proxies and gateways to Strict MIME environments SHOULD be
aware of thesge differences and provide the appropriate conversions
where necessary. Proxies ang gateways from MIME environments to HTTP
also need to be aware of the differences because some conversions
might be required,

4.1 MIME-Version

HTTP/1.1 messages MAY
eader field to indicate what
O comstruct the message. Use
icates that the message is in

(as defineq in RFC 2045177 .
S are responsible for ensuring full compliance (where
eXporting HpTR messages i i

MIME-Version = "MIME-Version® L

1*DIGIT v v 1*DIGIT

MIME version "1.0" t for use in HTTP/1.1.
HTTP/1.1 message parsi
and not the MIME sp

ecification.

19.

4.2 Conversion to Canonical Form

(7] requires that an In

form brior ro being Cransferred,
of RFe 2049 [48] . Sectien 3.7.1 of th

subtypes of the

ternet mail entity he converted to

as described ip section 4

Standards Track [Page 167]

187

RFC 2616 HTTP/1.1 June 1999

break sequences. HTTP allows CRLF, bare CR, and bare LF to indicate a
line break within text content when a message is transmitted over
HTTP.

Where it is possible, a proxy or gateway from HTTP to a strict MIME
environment SHOULD translate all line breaks within the text media
types described in section 3.7.1 of this document to the RFC 2049
canonical form of CRLF. Note, however, that this might be complicated
by the presence of a Content-Encoding and by the fact that HTTP
allows the use of some character sets which do not use octets 13 and
10 to represent CR and LF, as is the case for some multi-byte
character sets.

Implementors should note that conversion will break any cryptographic
checksums applied to the original content unless the original content
is already in canonical form. Therefore, the canonical form is
recommended for any content that uses such checksums in HTTP.

19.4.3 Conversion of Date Formats

HTTP/1.1 uses a restricted set of date formats (section 3.3.1) to
simplify the process of date comparison. Proxies and gateways from
other protocols SHOULD ensure that any Date header field present in a
message conforms to one of the HTTP/1l.l formats and rewrite the date
if necessary.

19.4.4 Introduction of Content-Encoding

RFC 2045 does not include any concept equivalent to HTTP/l.1's
Content-Encoding header field. Since this acts as a modifier on the
media type, proxies and gateways from HTTP to MIME-compliant
protocols MUST either change the value of the Content-Type header
field or decode the entity-body before forwarding the message. (Some
experimental applications of Content-Type for Internet mail have used
a media-type parameter of ";conversions=<content-coding>" to perform
a function equivalent to Content-Encoding. However, this parameter is
not part of RFC 2045.)

.4.5 No Content-Transfer-Encoding

HTTP does not use the Content-Transfer-Encoding (CTE) field of RFC

2045. Proxies and gateways from MIME-compliant protocols to HTTP MUST
remove any non-identity CTE ("quoted-printable" or "base64") encoding
prior to delivering the response message to an HTTP client.

9192 D4d

Proxies and gateways from HTTP to MIME-compliant protocols are
responsible for ensuring that the message is in the correct format
and encoding for safe transport on that protocol, where "safe

Fielding, et al. Standards Track [Page 168]

188

_ ‘.—————---——-——— e

RFC 2616 HTTP/1.1 June 1999

Eransport" isg defined by
Such a proxy or gateway SHOULD labe
Content—Transfer—Encoding if doing

1 the data with an appropriate
safe transport over the destination

80 will improve the likelihood of
Protocol.

19.4.6 Introduction of Transfer-Encoding

A process for decoding the

chunkegd"
can be represented in pseudo

transfer—coding (section 3.6)
-code as:

length := ¢

| read chunk-sige, chunk-extension (if any) and CcrLF
| | while (chunk-size » 0y {
|

| read chunk-data and CRLF
‘ append chunk-data rg entity-body
length := length + chunk-size

read chunk-size and CRLF
}

read entity-header
while (entity-header no
append entity-head
read entity-header

£ empty) {
€r to existing header fields

}

Content—Length := length
Remove “chunkeqr

from Transfer-Encoding

19.4.7 MHTML, ang Line Length Limitationg

i . Since HTTP does not
tation, HITP does not fold long lines. MHTML messages
being transported by HrTR follew all conventions of MHTML, including
i s and folding, canonicalization,
HITP trans]

etc., since
sports all message-bodies gs payload (see section 3.7,3) and
does not interpret the content or any MIME header lines that might pe
contained therein,

19

&5 Additional Features

RFC 1945 and
existing
across mg
aWEre of
interoper

RFC 2068 docum
HTTP impl@mentations,
st HTTP/1.1 applications.
these features,

ability with, other HTTP/1.

1 applications., Some of these

EFiElding, et al, Standards Track

[Page 169]

189

RFC 2616 HTTP/1.1 June 1999

describe proposed experimental features, and some describe features
that experimental deployment found lacking that are now addressed in
the base HTTP/l.l1l specification.

A number of other headers, such as Content-Disposition and Title,
from SMTP and MIME are also often implemented (see RFC 2076 [37]).

19.5.1 Content-Disposition

The Content-Disposition response-header field has been proposed as a
means for the origin server to suggest a default filename if the user
requests that the content is saved to a file. This usage is derived

| from the definition of Content-Disposition in RFC 1806 [35].

content-disposition = "Content-Disposition” ":*®
disposition-type *(";" disposition-parm)

disposition-type = "attachment" | disp-extension-token

disposition-parm = filename-parm | disp-extension-parm

filename-parm = "filename" "=" quoted-string

disp-extension-token = token

disp-extension-parm = token "=" (token | quoted-string)

An example is
Content-Disposition: attachment; filename="fname.ext"

The receiving user agent SHOULD NOT respect any directory path
information present in the filename-parm parameter, which is the only
parameter believed to apply to HTTP implementations at this time. The
filename SHOULD be treated as a terminal component only.

If this header is used in a response with the application/octet-
stream content-type, the implied suggestion is that the user agent
should not display the response, but directly enter a ‘save response
as...' dialog.

See section 15.5 for Content-Disposition security issues.
.6 Compatibility with Previous Versions

It is beyond the scope of a protocol specification to mandate
compliance with previous versions. HTTP/1l.l was deliberately
designed, however, to make supporting previous versions easy. It is
worth noting that, at the time of composing this specification

(1996), we would expect commercial HTTP/l.l servers to:

9L9¢ D4y

- recognize the format of the Request-Line for HTTP/0.9, 1.0, and
1.1 requests;

Fielding, et al. Standards Track [page 1701

190

RFC 2616 HTTP/1.1 June 1999

, 1.0, or

~ respond appropriately with a4 message in the same major version
used by the client.

And we would expect HTTP/1.1 clients to:

recognize the format of the Status-Line for HTTP/1.0 and 1.1
W responses;

| - understand an
i

Y valid responge in the format of HTTP/0.9, 1.0, or
1.1.
|

| For most implementations of HTTP/1.(Q,
by the client prior to the reqguest ang

gending the response.

version of persistent

2068 [33].

each connection is established
cloged by

the server after
Some implementati i

-6.1 Changes from HTTP/1.0

The requirements
header, report a
missing from an HTTP/1.1 re

5.1.2) are among the
specification.

(section 14.23) is

te URIs (section
t changes defined by this

quest, and accept absolu
most importan

Older HTTR/1.0 clients assumed a one-to-one relationship of 1p
addresses ang servers; there was no other established mechanism for
distinguishing the intended serve

to which that request was directe
allow the Internet,
Support multiple Web sites from a si

Simplifying large operational Web servers,
IP addresses Eo a si

ngle host has Created s
Internet wi1] also be able to Yecover the I
allocateq for the sole Purpose of allowing
Names g root-level HTTP URLs.
the weh, ber of servers already

ngle Ip address, greatly

where é@llocation pf many
erious problems, The

P addresses that have been

special-purpose domain

Given the rate of growth of
deployed, ir is extremely

be used in
and the npum

Flelaing, et al.

Standards Track [Page 171]

191

RFC 2616 HTTP/1.1 June 19399

important that all implementations of HTTP (including updates to
existing HTTP/1.0 applications) correctly implement these
requirements:

- Both clients and servers MUST support the Host request-header.
- A client that sends an HTTP/1l.l1 request MUST send a Host header.

- Servers MUST report a 400 (Bad Request) error if an HTTP/1.1
request does not include a Host request-header.

- Servers MUST accept absolute URIs.
19.6.2 Compatibility with HTTP/1.0 Persistent Connections

Some clients and servers might wish to be compatible with some
previous implementations of persistent connections in HTTP/1.0
clients and servers. Persistent connections in HTTP/1.0 are
explicitly negotiated as they are not the default behavior. HTTP/1.0
experimental implementations of persistent connections are faulty,
and the new facilities in HTTP/1.l1 are designed to rectify these
problems. The problem was that some existing 1.0 clients may be
sending Keep-Alive to a proxy server that doesn't understand
Connection, which would then erroneously forward it to the next
inbound server, which would establish the Keep-Alive connection and
result in a hung HTTP/1.0 proxy waiting for the close on the
response. The result is that HTTP/1.0 clients must be prevented from
using Keep-Alive when talking to proxies.

However, talking to proxies is the most important use of persistent
connections, so that prohibition is clearly unacceptable. Therefore,
we need some other mechanism for indicating a persistent connection
is desired, which is safe to use even when talking to an old proxy
that ignores Connection. Persistent connections are the default for
HTTP/1.1l messages; we introduce a new keyword (Connection: close) for
declaring non-persistence. See section 14.10.

The original HTTP/1.0 form of persistent connections (the Connection:
Keep-Alive and Keep-Alive header) is documented in RFC 2068. [33]

.6.3 Changes from RFC 2068

This specification has been carefully audited to correct and
disambiguate key word usage; RFC 2068 had many problems in respect to
the conventions laid out in RFC 2119 [34].

9L9¢ D4d

Clarified which error code should be used for inbound server failures
(e.g. DNS failures). (Section 10.5.5).

Fielding, et al. Standards Track [Page 172]

192

RFC 2616

HTTP/1.1 June 1999 |
CREATE had a race that required an Etag be sent when a resource is
first created. (Section 10.2.2).

Content-Base was del
implemented widely,

without a robust ext
similar, but not ide

eted from the specification:

and there is no simple, safe way to introduce it
ension mechanism, In addition, it is used in a
ntical fashion in MHTML [45] .

it was not

Tranafer—coding and message lengths a11 interact in ways that

required fixing exactly when chunked encoding is used {to allow for

transfer encoding that may not be gelf delimiting); it was important
] Lo straighten out exactly how me

Ssage lengths are computed. (Sectionsg
36y A4, 7.2.2, 13.5,2, 14.13, 14.16)

A content-coding of "identity

was introduced, to solve Problems
discovered in caching

. (section 3.5)

Quality Values of 2ero should indicate that
to allow clients to refuse a representation.

"I don't want semething*
(Section 3.9)

The use and inter on numbers has been clarified
by RFC 2145, Require proxies to upgrade requests to highest Protocol
version they Support to deal with problems discovered in HTTP/1.0
implementations (Section 3.1)

Charset wildcarding is in

troduced to avoid
names in accept headers.

(Section 14.2)

A case was missed in the ¢

ache-Control model of HTTP/1.1; s

-maxage
was introduced to add this missing case. (Sections 13.4, 14.8, 14.9,
14.9.3)

The Cache-Control : max-age directive was not properly defined for
responses. (Section 14.9.3)

There areg situations where a server {eSpecially a4 proxy) does not
know the fyu11 len

gth of a response but is
byterange request, we thereforea
with a content-range
(Section 14.16)

would become very wverbose if all meta-data
ned; by allowing the SeIver to only send needed

a 206 response, this problem can be avoided. (Section
10.2.7, 13.5.3, ang 14.27)

Standards Track [Page 173]

193

RFC 2616 HTTP/1.1 June 1999

Fix problem with unsatisfiable range requests; there are two cases:
| syntactic problems, and range doesn't exist in the document. The 416

status code was needed to resolve this ambiguity needed to indicate
i an error for a byte range request that falls outside of the actual
contents of a document. (Section 10.4.17, 14.16)

Rewrite of message transmission requirements to make it much harder
| for implementors to get it wrong, as the consequences of errors here
can have significant impact on the Internet, and to deal with the
following problems:

| 1. Changing "HTTP/1.1 or later" to "HTTP/1l.l1l", in contexts where
| this was incorrectly placing a requirement on the behavior of
an implementation of a future version of HTTP/l.x

2. Made it clear that user-agents should retry requests, not
*clients" in general.

3. Converted requirements for clients to ignore unexpected 100
(Continue) responses, and for proxies to forward 100 responses,
into a general requirement for 1xx responses.

4. Modified some TCP-specific language, to make it clearer that
non-TCP transports are possible for HTTP.

5. Require that the origin server MUST NOT wait for the request
body before it sends a required 100 (Continue) response.

6. Allow, rather than require, a server to omit 100 (Continue) if
it has already seen some of the request body.

7. Allow servers to defend against denial-of-service attacks and
broken clients.

This change adds the Expect header and 417 status code. The message
transmission requirements fixes are in sections 8.2, 10.4.18,
8.1.2.2, 13.11, and 14.20.

Proxies should be able to add Content-Length when appropriate.
(Section 13.5.2)

Clean up confusion between 403 and 404 responses.
10.4.5, and 10.4.11)

(Section 10.4.4,

9L9¢ DdH

Warnings could be cached incorrectly, or not updated appropriately.
(Section 13.1.2, 13.2.4, 13.5.2, 13.5.3, 14.9.3, and 14.46) Warning
also needed to be a general header, as PUT or other methods may have
need for it in requests.

Fielding, et al. Standards Track [Page 1741

194

- —

RFC 2616 HTTP/1.1 June 1999

Transfer—coding had significant problems,
interactions with churked encoding., The solution is that transfer-
codings become ag full fledged as content-codings. This involves
adding an Tana registry for transfer-codings (separate from content
codings), a new header field (TE) and enabling trailer headers in the
future. Transfer encoding is a major performance benefit,

worth fixing (39]. Tg also solves another, obscure, downward
interoperability problem that could have occurred due to interactions

between authentication trailers, chunked encoding and HTTP/1.0
‘ clients. (Section 3.6, 3.6.1, and 14.39)

barticularly with

| The PATCH, LINK, UNLINK methods were 4

implemented in Previous versions of th
[33].

efined but not commonly
is specification. See RFC 2068

The Alternates,

Content-Version, Derived-From, Link, URI, Public and
Content-Base hea

der fields were defined in previous versions of thisg
ut not commonly implemented. See RFC 2068 [33].

Please see the PostScript version of this RFC for the INDEX.

et al, Standards Track

[Page 175]

195

RFC 2616 HTTP/1.1 June 1999

‘ 21. Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to

‘ others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are

‘ included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for

| copyrights defined in the Internet Standards process must be

l followed, or as required to translate it into languages other than

English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the
Internet Society.

9L9Z D4dd

Fielding, et al. Standards Track [Page 176]

196

About Pete Loshin

EAN 53495 >
UPC
M <
LS 9780124558410
ISBN 0-12-u455841-0
Morgan Kaufmann is an imprint of Academic Press
A Harcourt Science and Technology Company
>%34.95
L r0aE28"5AHL0M" 2 :

Internet / World Wide Web

Big Book of H
World Wlde Web’

Compiled by
S Pete Loshin

i il

5079 188087 d

The emergence of the Web has done more to change the Internet than all of the many applications
that once defined the Internet. No single standards document specifies the World Wide Web,
but rather an entire sequence of documents published as Requests for Comments (RFCs). This
book compiles and organizes these essential documents in a single printed volume, adding an
introduction and an extensive index. This means you no longer have to search through countless
RFCs fo find the answer to your question about a World Wide Web protocol —all specifications
are compiled in a single book, with an index that makes answers even easier to locate.

This book contains the most important and relevant RFCs describing or affecting the World Wide
Web, including specifications for the protocols that define how Web servers and Web browsers
interact and how Web resources are identified and located by browsers and servers. If you buy
one World Wide Web standards reference, this is the one to choose. Written by members of
the Internet Engineering Task Force (IETF), this compilation is the most complete and authoritative
Web protocol standard reference available.

Topics covered in this volume include:

* Specifications for the Universal Resource Identifier (URI), Universal Resource
Locator {URL), and Universal Resource Name (URN) mechanisms

¢ Specification of the Hypertext Transfer Protocol {HTTP)

© HTTP access authentication

* Service Templates and Service Schemes

¢ Definitions of managed objects for WWW services

* HTTP Extensions for Distributed Authoring—WEBDAV.

Pete Loshin started using the Infernet in 1988 and has written a dozen books about the Internet,
electronic commerce, and TCP / IP. Formerly an editor at Byte Magazine, he has written articles
for Information Security, PC World, PC Magazine, Communication News, PC Week, Telecom-
munications, and other well-known trade publications. Pete is based in eastern Massachusetts
and can be reached at pete@loshin.com for consulting on Internet issues. Check out his Web
site www.Internet-Standard.com for more about Internet standards.

CAN. s48.95

197

	4036_001
	Binder1
	Binder2
	4037_001

