
USOO6567857B1 

(12) United States Patent (10) Patent No.: US 6,567,857 B1 
Gupta et al. (45) Date of Patent: May 20, 2003 

(54) METHOD AND APPARATUS FOR DYNAMIC OTHER PUBLICATIONS 
PROXY INSERTION IN NETWORK TRAFFIC - - - - 
FLOW Hypertext Transfer Protocol. Fielding, R. et al. Network 

Working Group, RFC Archive, SunSITE Denmark, Jun. 
(75) Inventors: Amit Gupta, Fremont, CA (US); 1999, pp.1-158. 

Geoffrey Baehr, Menlo Park, CA (US) * cited by examiner 

(73) ASSignee: St Mystems Inc., Santa Clara, Primary Examiner Kenneth R. Coulter 
(74) Attorney, Agent, or Firm-Gunnison, McKay & 

(*) Notice: Subject to any disclaimer, the term of this Hodgson, L.L.P., Philip J. McKay 
patent is extended or adjusted under 35 (57) ABSTRACT 
U.S.C. 154(b) by 0 days. 

In embodiments of the invention, a method and apparatus for 
(21) Appl. No.: 09/363,472 dynamic proxy insertion in network traffic path is described. 

According to one or more embodiments of the invention, a 
(22) Filed: Jul. 29, 1999 request and/or response message may be modified to include 
(51) Int. Cl." ................................................ Gos 1300 one or more thru-proxy tags to identify a network (or traffic) node (e.g., a proxy, Server, or intermediary). For example, a 

request directed to a Server or a response directed to a client 
may be altered to insert a plurality of intermediate or final 
destination designations. In So doing, a path of a request or 

(56) References Cited response may be altered dynamically. A thru-proxy tag. in a 
response may be inserted in a related request to identify a 

U.S. PATENT DOCUMENTS destination or node Such that the request is Sent to the 
destination in the thru-proxy tag before being Sent to an 
origin Server. Thru-proxy tags may be used to identify 
multiple and/or alternate destinations. 

(52) U.S. Cl. ................ 709/238; 709/242; 370/235 
(58) Field of Search ................................. 709/239, 238, 

709/242; 370/235, 237 

5,905,872 A * 5/1999 DeSimone et al. ......... 709/245 
6,073,175. A 6/2000 Tavs et al. .................. 709/226 
6,101,549 A * 8/2000 Baugher et al. ..... 

: 

: 

... 709/238 
6,349,336 B1 2/2002 Sit et al. .............. ... 709/227 
6,389,462 B1 5/2002 Cohen et al. ............... 709/218 7 Claims, 7 Drawing Sheets 

ORIGIN 
SERVER 

CLEN 

  

Limelight 10141



US 6,567,857 B1 Sheet 1 of 7 May 20, 2003 U.S. Patent 

  

2



US 6,567,857 B1 Sheet 2 of 7 May 20, 2003 U.S. Patent 

  

3



US 6,567,857 B1 Sheet 3 of 7 May 20, 2003 U.S. Patent 

0 
0 
Z 

  

4



U.S. Patent May 20, 2003 Sheet 4 of 7 US 6,567,857 B1 

  

5



U.S. Patent May 20, 2003 Sheet 5 of 7 US 6,567,857 B1 

402 RECEIVE 
RESPONSE 

404 
RESPONSE 
INCLUDES 

THRU-PROXY TAG? 
NO 

406 

YES 

STORE PROXY 
IDENTIFIER 

410 
GENERATE REQUEST 

WITHOUT 
THRU-PROXY TAG 

RELATED 
REQUEST? NO 

YES 

GENERATE 
REQUEST WITH 

THRU-PROXY TAG 

FIG. A. 

  

  

  

  

    

  

    

    

  

6



U.S. Patent May 20, 2003 Sheet 6 of 7 US 6,567,857 B1 

506 

SEND REQUEST TO 
DESTINATION IN 

THRU-PROXY TAG 
REQUEST INCLUDES 
THRU-PROXY TAG? YES 

508 

GENERATE 
RESPONSE WITHOUT 
THRU-PROXY TAG 

ADD 
THRU-PROXY 

TAG? 

GENERATE 
RESPONSE WITH 
THRU-PROXY TAG 

SEND RESPONSE 
518 

FIG 5 

  

    

  

  

    

  

  

  

  

  

7



U.S. Patent May 20, 2003 Sheet 7 of 7 US 6,567,857 B1 

MESSAGE 
RESPONSE RECEIVED? 

604 
ADD 

THRU-PROXY 
TAG? 

PROCESS 
YES REQUEST? 

NO 

ADD TAG 
DENTIFYING 

INTERMEDARY 
-630 

GENERATE 
RESPONSE TO 
REQUEST 

SEND TO ORIGIN 
& THRU-PROXY 

YES 632 

DENTFY 
INTERMEDARY IN 
ORIGIN SERVER'S 
THRU-PROXY TAG 

INTERMEDARY 
ID'D BY TAC? 

YES 612 

DELETE TAG 

IDENTFY NEXT 
LOCATION 

NO 

SEND MESSAGE 
TO NEXT 
LOCATION 

FIG 6 

  

  

  

  

  

  

    

  

  

  

  

  

    

  

  

  

  

  

  

  

    

  

  

        

  

8



US 6,567,857 B1 
1 

METHOD AND APPARATUS FOR DYNAMIC 
PROXY INSERTION IN NETWORK TRAFFIC 

FLOW 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to computer Software and, more 

particularly, to the use of proxies in network traffic flow. 
Portions of the disclosure of this patent document may 

contain material that is Subject to copyright protection. The 
copyright owner has no objection to the facsimile reproduc 
tion by anyone of the patent document or the patent disclo 
sure as it appears in the Patent and Trademark Office file or 
records, but otherwise reserves all copyright rights whatso 
ever. Sun, Sun MicroSystems, the Sun logo, Java and all 
Java-based trademarks and logos are trademarks or regis 
tered trademarks of Sun Microsystems, Inc. in the United 
States and other countries. All SPARC trademarks are used 
under license and are trademarks or registered trademarks of 
SPARC International in the United States and other coun 
tries. Products bearing SPARC trademarks are based upon 
an architecture developed by Sun MicroSystems, Inc. 

2. Background Art 
A distributed system typically distributes functionality 

(e.g., computing or other Services, storage, input/output, 
etc.) across multiple locations (or network nodes). The 
Internet is an example of a global-Scale, highly available 
distributed System that interconnects computing networkS. 
and computer Systems that can provide functionality. In a 
distributed System, information (e.g., text, graphics, Sound, 
image, etc.) may be obtained from a variety of Sources. It is 
becoming increasingly easier for computer System users to 
become interconnected. AS more and more users are added 
to the Internet, for example, there is an increase in the 
amount of information that is transmitted via the Internet. 
The information may need to be created or modified (or 
customized) before it is transmitted to its destination. Such 
information creation, customization and dissemination can 
not Scale with today's networking technology. 
A proxy is a computer System (or Software that executes 

on a computer System) that can provide various functional 
ity. A proxy has been used to reduce the amount of infor 
mation that must be transmitted via a network. Initially, a 
proxy was used to communicate across (“get over”) a 
firewall (i.e., a mechanism used to protect information in 
internal computer networks from external access). Proxies 
have since been used to cache (or Store) information. In So 
doing, the information may be locally Stored and available 
to each user of the internal computer network. The cached 
information was available to Service multiple requests with 
out requiring that it first be obtained from an external Source 
thereby reducing the amount of network traffic. 
A proxy can be used to provide other functionality Such as 

content transformation (e.g., compression, decompression, 
encryption, decryption and reformatting), controlled exter 
nal access to corporate intranets (Sun.net reverse proxy), and 
for use in advertising and marketing on the Internet. 

Thus, proxies can be adapted to provide additional and/or 
Special-purpose functionality that can be used to meet the 
increasing need for information of interconnected computer 
Systems and their users. However, there is a need to be able 
to ensure that the information flows through the desired 
proxy or proxies. 

To better understand the need for ensuring the use of 
proxies, the following discussion of networks, the Internet 
and related topics is provided. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

2 
Networks 
In modern computing environments, it is commonplace to 

employ multiple computers or WorkStations linked together 
in a network to communicate between, and share data with, 
network users. A network also may include resources, Such 
as printers, modems, file Servers, etc., and may also include 
Services, Such as electronic mail. 
A network can be a Small System that is physically 

connected by cables (a local area network or “LAN”), or 
Several Separate networks can be connected together to form 
a larger network (a wide area network or “WAN”). Other 
types of networks include the Internet, tel-com networks, the 
World Wide Web, intranets, extranets, wireless networks, 
and other networks over which electronic, digital, and/or 
analog data may be communicated. 
Computer Systems. Sometimes rely on a Server computer 

System to provide information to requesting computers on a 
network. When there are a large number of requesting 
computers, it may be necessary to have more than one server 
computer System to handle the requests. 
The Internet 
The Internet is a worldwide network of interconnected 

computers. An Internet client accesses a computer on the 
network via an Internet provider. An Internet provider is an 
organization that provides a client (e.g., an individual or 
other organization) with access to the Internet (via analog 
telephone line or Integrated Services Digital Network line, 
for example). A client can, for example, read information 
from, download a file from or Send an electronic mail 
message to another computer/client using the Internet. 
To retrieve a file or Service on the Internet, a client must 

Search for the file or Service, make a connection to the 
computer on which the file or Service is Stored, and down 
load the file or Service. Each of these StepS may involve a 
Separate application and access to multiple, dissimilar com 
puter systems. The World Wide Web (WWW) was devel 
oped to provide a simpler, more uniform means for acceSS 
ing information on the Internet. 
The components of the WWW include browser Software, 

network links, servers. and WWW protocols. The browser 
Software, or browser, is a user-friendly interface (i.e., front 
end) that simplifies access to the Internet. A browser allows 
a client to communicate a request without having to learn a 
complicated command Syntax, for example. Abrowser typi 
cally provides a graphical user interface (GUI) for display 
ing information and receiving input. Examples of browsers 
currently available include Mosaic, Netscape Navigator and 
Communicator, Microsoft Internet Explorer, and Cello. 

Information Servers maintain the information on the 
WWW and are capable of processing a client request. 
Hypertext Transport Protocol (HTTP) is the standard pro 
tocol for communication with an information Server on the 
WWW. HTTP has communication methods that allow cli 
ents to request data from a Server and Send information to the 
SCWC. 

To submit a request, the client contacts the HTTP server 
and transmits the request to the HTTP server. The request 
contains the communication method requested for the trans 
action (e.g., GET, PUT or POST). A GET method is a 
request may be used to retrieve a file or other information. 
A PUT method request is commonly used to store informa 
tion that is contained in the request. A POST method may be 
used to process information in Some manner (e.g., operate on 
the information contained in the request by a Software 
program). The HTTP server responds to the client by send 
ing a response (e.g., the requested information). The con 

9



US 6,567,857 B1 
3 

nection is terminated between the client and the HTTP 
Server once the transaction is complete. 
A client request therefore, consists of establishing a 

connection between the client and the HTTP server, per 
forming the request, and terminating the connection. The 
HTTP server does not retain any information about the 
request after the connection has been terminated. HTTP is, 
therefore, a StateleSS protocol. That is, a client can make 
several requests of an HTTP server, but each individual 
request is treated independent of any other request. The 
Server has no recollection of any previous request. 

Instead of transmitting the information from the Server 
that maintains the information, Some Systems utilize what is 
referred to as a proxy. Referring to FIG. 1A, proxy 102 acts 
as an intermediary between client 100 and server 104. 
Request 108 may be sent from client 100 to server 104 via 
path 118. However, instead of sending request 108 to server 
104 via path 118, request 108 may be transmitted to proxy 
102 via path 122. Proxy 102 may have the ability to carry out 
the request and return a response to client 100. If proxy 102 
is not capable of replying to request 108, it forwards request 
108 to server 104 via path 124. Proxy 102 may be configured 
to modify request 108 (e.g., reformatting, translating or 
transforming the Some or all of the information contained in 
request 108) before forwarding it to server 104. 

Similarly, instead of sending response 110 directly to 
client 100 via path 120, server 104 can send response 110 to 
client 100 via traffic path 126. Proxy 102 forwards response 
110 via traffic path 128 to client 100. Proxy 102 may retain 
copies of documents or information fetched by request 108 
for Some time So that they can be accessed more quickly in 
the future, Speeding up access for commonly requested 
information. This maintaining of information and fetched 
documents by proxy 102 is referred to as caching and the 
information maintained in the proxy 102 is referred to as a 
cache or proxy cache. 

In the example of FIG. 1A, a single proxy is illustrated. 
It is possible to have multiple proxies or other types of 
intermediaries (e.g., a tunnel, a Server Such a gateway, etc.) 
between client 100 and server 104. A tunnel acts as a blind 
relay between two connections (e.g., client 100 and server 
104). A gateway is typically used to connect two or more 
networks. 

Because a gateway is used to connect networks, it Some 
times includes or is used in conjunction with a firewall. A 
firewall is a mechanism that is used to protect information in 
internal computer networks from external access by block 
ing access between the client and the Server. To provide 
limited access to information, a proxy or proxy server may 
Sit atop a firewall and act as a conduit, providing a specific 
connection for each network connection. Proxy Software 
retains the ability to communicate with external Sources, yet 
is trusted to communicate with the internal network. For 
example, proxy Software may require a username and pass 
word to acceSS certain Sections of the internal network and 
completely block other Sections from any external access. 
An addressing Scheme is employed to identify Internet 

resources (e.g., HTTP server, file or program). This address 
ing scheme is called Uniform Resource Locator (URL). A 
URL contains the protocol to use when accessing the Server 
(e.g., HTTP), the Internet domain name of the site on which 
the Server is running, the port number of the Server, and the 
location of the resource in the file structure of the server. 

The WWW uses a concept known as hypertext. Hypertext 
provides the ability to create links within a document to 
move directly to other information. To activate the link, it is 

15 

25 

35 

40 

45 

50 

55 

60 

65 

4 
only necessary to click on the hypertext link (e.g., a word or 
phrase). The hypertext link can be to information stored on 
a different Site than the one that Supplied the current infor 
mation. A URL is associated with the link to identify the 
location of the additional information. When the link is 
activated, the client's browser uses the link to access the data 
at the site specified in the URL. 

If the client request is for a file, the HTTP server locates 
the file and sends it to the client. An HTTP server also has 
the ability to delegate work to gateway programs. The 
Common Gateway Interface (CGI) specification defines a 
mechanism by which HTTP servers communicate with 
gateway programs. A gateway program is referenced using 
a URL. The HTTP server activates the program specified in 
the URL and uses CGI mechanisms to pass program data 
Sent by the client to the gateway program. Data is passed 
from the Server to the gateway program via command-line 
arguments, Standard input, or environment variables. The 
gateway program processes the data and returns its response 
to the server using CGI (via Standard input, for example). 
The server forwards the data to the client using the HTTP. 
A browser displayS information to a client/user as pages 

or documents (referred to as “web pages” or “web sites”). A 
language is used to define the format for a page to be 
displayed in the WWW. One example of a language that may 
be used to define a page is called Hypertext Markup Lan 
guage (HTML). Other examples of languages include Stan 
dard Generalized Markup Language (“SGML) and Exten 
sible Markup Language (“XML'). To illustrate with 
reference to HTML, a WWW page is transmitted to a client 
as an HTML document. The browser executing at the client 
parses the document and displays a page based on the 
information in the HTML document. 

HTML is a Structural language that is comprised of 
HTML elements that are nested within each other. An 
HTML document is a text file in which certain strings of 
characters, called tags, mark regions of the document and 
assign special meaning to them. These regions are called 
HTML elements. Each element has a name, or tag. An 
element can have attributes that specify properties of the 
element. Blocks or components include unordered list, text 
boxes, check boxes, and radio buttons, for example. Each 
block has properties Such as name, type, and value. The 
following provides an example of the structure of an HTML 
document: 

HTML 
<HEADs 
... element(s) valid in the document head 
</HEADs 
BODYS 

... element(s) valid in the document body 
</BODYe 

</HTML 
Each HTML element is delimited by the pair of characters 

"<” and ">''. The name of the HTML element is contained 
within the delimiting characters. The combination of the 
name and delimiting characters is referred to as a marker, or 
tag. Each element is identified by its marker. In most cases, 
each element has a Start and ending marker. The ending 
marker is identified by the inclusion of an another character, 
“/ that follows the “C” character. 
HTML is a hierarchical language. With the exception of 

the HTML element, all other elements are contained within 
another element. The HTML element encompasses the 
entire document. It identifies the enclosed text as an HTML 
document. The HEAD element is contained within the 

10



US 6,567,857 B1 
S 

HTML element and includes information about the HTML 
document. The BODY element is contained within the 
HTML. The BODY element contains all of the text and other 
information to be displayed. Other HTML elements are 
described in HTML reference manuals. 

In the example of FIG. 1A, request 108 and response 110 
are transmitted between client 100 and 104 via proxy 102. 
By Specifying a Static Set of preferences, a browser that is 
running on client 100 may be configured to direct request 
108 to proxy 102. That is, the browser's preference may be 
Set to direct a type (e.g., a given communications protocol 
such as HTTP) of requests to a specific proxy. If the 
browser's preference setting identifies proxy 102 as the 
proxy for the type of request 108, for example, request 108 
is directed to proxy 102. This mechanism allows a user to 
Statically Set a preference for a proxy either by identifying a 
proxy's URL or a URL of a configuration file that contains 
a proxy's URL. A network address associated with a proxy 
may be obtained using a proxy advertisement mechanism 
(e.g., SLP or Web Proxy Auto Discovery (WPAD)). To 
change a proxy, the user must change the proxy designation 
in the browser's preference or the configuration file. There 
is no ability to dynamically Set a proxy based on each 
request that is generated by the browser, for example. 
AS an alternative to Statically identifying a proxy in a 

browser's preference settings, HTTP (i.e., HTTP version 
1.1, or HTTP/1.1, discussed in Request For Comments 
(RFC) 2616) provides a redirection mechanism that allows 
server 104 to redirect request 108 to proxy 102 and requires 
the requester to repeat each request twice to complete the 
redirection. Referring to FIG. 1B, client 100 send request 
108 to server 104. Server 104 transmits a response that 
contains a redirection status code and identifies proxy 102. 
In RFC 2616 (see section 10.3.6), the status code is referred 
to as a “305 Use Proxy.” 
Upon receipt of request redirection 112 (i.e., status code 

305), client 100 resends request 108 to proxy 102. Proxy 102 
process request 108 as described above (e.g., provides a 
response, forwards request 108 to server, etc.). A disadvan 
tage of this approach is that client 100 must send request 108 
at least twice, once to server 104 and then to proxy 102. 
Further, the redirection mechanism is only available for use 
by server 104. Therefore, client 100 is dependent on server 
104 to provide redirection information which may not be 
possible if server 104 is unavailable (e.g., behind a firewall 
or not operational). In addition, the redirection mechanism 
in HTTP can only be used to redirect a single request. That 
is, client 100 must access server 104 to obtain redirection 
information for Subsequent requests. 
A mechanism is needed to dynamically insert proxies or 

intermediaries (e.g., gateway, tunnel, Server, etc.) in a net 
work traffic path. 

SUMMARY OF THE INVENTION 

In embodiments of the invention, a method and apparatus 
for dynamic proxy insertion in network traffic path is 
described. According to one or more embodiments of the 
invention, a request and/or response message may be modi 
fied to identify a network (or traffic) node (e.g., a proxy, 
Server, or intermediary). For example, a request directed to 
a Server or a response directed to a client may be altered to 
insert a plurality of intermediate or final destination desig 
nations. In So doing, a path of a request or response may be 
altered dynamically. 

In one or more embodiments of the invention, a thru 
proxy tag is inserted in a response or request message to 
identify a network node or location. A response message 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

6 
may be modified by a receiving node to add a thru-proxy tag. 
If a response message that contains a thru-proxy tag is 
received by a client, the client retains the proxy identifier for 
use with Subsequent requests. A request that is directed to an 
origin Server that contains a thru-proxy tag is sent to the 
network node or location that is identified in the tag prior to 
Sending the request to the origin Server. A request may be 
modified by a receiving node to add a thru-proxy tag. The 
node that is identified in a thru-proxy tag may delete the tag 
from either the request or the response. 
When generating a request, a client determines whether a 

request is related to a previous response and whether there 
is a thru-proxy tag associated with previous response. If So, 
the client adds the thru-proxy tag to the request. A request 
may be related to a previous response, if the request is 
initiated from a Web page Sent in the previous response, for 
example. For example, a request for a resource identified by 
a hyperlink in a Web page is related to the response that 
contained the Web page. A request may be related to a 
previous response where the request is directed to the same 
location that provided the previous response. These are 
examples of the relationships that may exist between a 
response and a request. Other types of relationships may be 
used with one or more embodiments of the invention. 

Since embodiments of the invention allow dynamic proxy 
designation, it is possible to Specify a proxy for a given 
Situation (e.g., a given request or resource). The dynamic 
proxy designation of one or more embodiments of the 
invention may specify a proxy for inclusion in more than one 
request. Further, embodiments of the invention provide a 
mechanism to designate a proxy at different levels (e.g. a 
default and overriding designations) and for multiple pro 
tocols. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIGS. 1A-1B illustrate existing Web page processing and 
handling. 

FIG. 2 is a block diagram of one embodiment of a 
computer System capable of providing a Suitable execution 
environment for an embodiment of the invention. 

FIG.3 provides an overview of proxy insertion in network 
traffic flow according to one or more embodiments of the 
invention. 

FIG. 4 provides a client proceSS flow according to one or 
more embodiments of the invention. 

FIG. 5 provides a origin Server proceSS flow according to 
one or more embodiments of the invention. 

FIG. 6 provides an intermediary process flow according to 
one or more embodiments of the invention. 

DETAILED DESCRIPTION OF THE 
INVENTION 

A method and apparatus for dynamic proxy insertion in 
network traffic flow is described. In the following 
description, numerous Specific details are Set forth in order 
to provide a more thorough description of the present 
invention. It will be apparent, however, to one skilled in the 
art, that the present invention may be practiced without these 
Specific details. In other instances, well-known features have 
not been described in detail So as not to obscure the 
invention. 
Embodiment of Computer Execution Environment 
(Hardware) 
An embodiment of the invention can be implemented as 

computer Software in the form of computer readable code 

11



US 6,567,857 B1 
7 

executed on a general purpose computer Such as computer 
200 illustrated in FIG. 2, or in the form of bytecode class 
files executable within a runtime environment (e.g., a Java 
runtime environment) running on Such a computer. A key 
board 210 and mouse 211 are coupled to a bi-directional 
system bus 218. The keyboard and mouse are for introduc 
ing user input to the computer System and communicating 
that user input to processor 213. Other suitable input devices 
may be used in addition to, or in place of, the mouse 211 and 
keyboard 210. I/O (input/output) unit 219 coupled to bidi 
rectional system bus 218 represents such I/O elements as a 
printer, A/V (audio/video) I/O, etc. 

Computer 200 includes a video memory 214, main 
memory 215 and mass Storage 212, all coupled to bidirec 
tional system bus 218 along with keyboard 210, mouse 211 
and processor 213. The mass Storage 212 may include both 
fixed and removable media, Such as magnetic, optical or 
magnetic optical Storage Systems or any other available mass 
Storage technology. BuS 218 may contain, for example, 
thirty-two address lines for addressing video memory 214 or 
main memory 215. The system bus 218 also includes, for 
example, a 32-bit data bus for transferring data between and 
among the components, Such as processor 213, main 
memory 215, video memory 214 and mass storage 212. 
Alternatively, multiplex data/address lines may be used 
instead of Separate data and address lines. 

In one embodiment of the invention, the processor 213 is 
a microprocessor manufactured by Motorola, Such as the 
680x0 processor or a microprocessor manufactured by Intel, 
such as the 80x86, or Pentium processor, or a SPARCTM 
microprocessor from Sun MicroSystems, Inc. However, any 
other Suitable microprocessor or microcomputer may be 
utilized. Main memory 215 is comprised of dynamic random 
access memory (DRAM). Video memory 214 is a dual 
ported Video random acceSS memory. One port of the Video 
memory 214 is coupled to video amplifier 216. The video 
amplifier 216 is used to drive the cathode ray tube (CRT) 
raster monitor 217. Video amplifier 216 is well known in the 
art and may be implemented by any Suitable apparatus. This 
circuitry converts pixel data Stored in Video memory 214 to 
a raster signal suitable for use by monitor 217. Monitor 217 
is a type of monitor Suitable for displaying graphic images. 
Alternatively, the video memory could be used to drive a flat 
panel or liquid crystal display (LCD), or any other Suitable 
data presentation device. 

Computer 200 may also include a communication inter 
face 220 coupled to bus 218. Communication interface 220 
provides a two-way data communication coupling via a 
network link 221 to a local network 222. For example, if 
communication interface 220 is an integrated Services digital 
network (ISDN) card or a modem, communication interface 
220 provides a data communication connection to the cor 
responding type of telephone line, which comprises part of 
network link 221. If communication interface 220 is a local 
area network (LAN) card, communication interface 120 
provides a data communication connection via network link 
221 to a compatible LAN. Communication interface 220 
could also be a cable modem or wireleSS interface. In any 
Such implementation, communication interface 220 Sends 
and receives electrical, electromagnetic or optical Signals 
which carry digital data Streams representing various types 
of information. 

Network link 221 typically provides data communication 
through one or more networks to other data devices. For 
example, network link 221 may provide a connection 
through local network. 222 to local server computer 223 or 
to data equipment operated by an Internet Service Provider 

15 

25 

35 

40 

45 

50 

55 

60 

65 

8 
(ISP) 224. ISP 224 in turn provides data communication 
Services through the world wide packet data communication 
network now commonly referred to as the “Internet” 225. 
Local network 222 and Internet 225 both use electrical, 
electromagnetic or optical Signals which carry digital data 
Streams. The Signals through the various networks and the 
Signals on network link 221. and through communication 
interface 220, which carry the digital data to and from 
computer 200, are exemplary forms of carrier waves trans 
porting the information. 

Computer 200 can Send messages and receive data, 
including program code, through the network(s), network 
link 221, and communication interface 220. In the Internet 
example, remote Server computer 226 might transmit a 
requested code for an application program through Internet 
225, ISP 224, local network 222 and communication inter 
face 220. 
The received code may be executed by processor 213 as 

it is received, and/or Stored in mass Storage 212, or other 
non-volatile Storage for later execution. In this manner, 
computer 200 may obtain application code in the form of a 
carrier wave. 

Application code may be embodied in any form of 
computer program product. A computer program product 
comprises a medium configured to Store or transport com 
puter readable code or data, or in which computer readable 
code or data may be embedded. Some examples of computer 
program products are CD-ROM disks, ROM cards, floppy 
disks, magnetic tapes, computer hard drives, Servers on a 
network, and carrier waves. 
The computer Systems described above are for purposes 

of example only. An embodiment of the invention may be 
implemented in any type of computer System or program 
ming or processing environment, including embedded 
devices (e.g., web phones, etc.), personal digital assistant 
("PDA") and “thin” client processing environments (e.g., 
network computers (NCS), etc.) that Support a virtual 
machine. 
Network Traffic Flow and Proxy Insertion 

In one or more embodiments of the invention, a request 
directed to a server or a response directed to a client may be 
altered to insert a plurality of intermediate or final destina 
tion designations. In So doing, a path of a request or 
response, and/or a Subsequent request or response, may be 
altered dynamically. FIG. 3 provides an overview of proxy 
insertion in network traffic flow according to one or more 
embodiments of the invention. 

Client 302 sends request 304 that is directed to origin 
server 312. While other locations may temporarily store a 
given resource, origin Server 312 is the Server on which the 
resource permanently resides and/or is created, for example. 
Embodiments of the invention are described with reference 
to the Internet, however, it should be apparent that any type 
of communications network architecture (e.g., Local Area 
Network (LAN), Metropolitan Area Network (MAN), Wide 
Area Network (WAN), etc.) may be used with embodiments 
of the invention. Further, while embodiments of the inven 
tion are described with reference to the HTTP and/or HTML, 
it should be apparent that other communications protocols 
and definitional languages (e.g., SGML and XML) may be 
used with one or more embodiments of the invention. 

Request 304 is, for example, an HTTP request that 
identifies origin server 312 using a URL (or other identifier 
such as a Internet Protocol (IP) Address). In addition, 
Request 304 may contain none or more “thru-proxy' tags 
that identify another possible destination (e.g., intermediate 
or ultimate destination) of request 304. According to one 

12



US 6,567,857 B1 

embodiment of the invention, "thru-proxy' tag is located in 
a header portion (e.g., an HTTP header portion) of request 
304 and as the following form: 

Thru-Proxy:<proxy identifiers 

where the proxy identifier may be a hostname, an IP address, 
a cluster identification, or an IP multicast address, for 
example. Alternatively, the thru-proxy tag may be placed in 
the data or other portion of the message instead of the header 
portion. For example, a thru-proxy tag may be included in a 
Web pages HTML definition. A thru-proxy tag may be part 
of a <HEAD> element, HREF (i.e., hypertext reference), or 
IMG (i.e., image reference), for example. Typically, a mes 
Sage header is processed by the Server Software and the data 
portion is passed to another Software mechanism Such as a 
CGI or application-level software. Thus, the CGI or other 
Software can add and/or process a thru-proxy tag. This is 
beneficial when, for example, an older version of Server 
Software is being used that is unaware of the thru-proxy tag 
mechanism. Thus embodiments of the invention may be 
used with older Servers without adding another proxy to 
handle a thru-proxy tag. 

To illustrate, the following provides an example of a 
thru-proxy tag with an HREF in an anchor (i.e., “Za./>”) 
HTML element according to an embodiment of the inven 
tion: 
<A HREF="www.server.com/webpage.html.” THRU 
PROXY=www.proxy.com> CLICK HERE 

</A> 
In the above example, a thru-proxy tag is included in an 

anchor element's definition in conjunction with an HREF 
tag. The anchor element may be associated with a line of text 
that is to be displayed by a browser, for example. If a user 
Selects the text, the browser causes a request (e.g., an HTTP 
GET request) to be generated to retrieve the “webpage.html” 
resource (e.g., an HTML definition of a web page). The 
request includes the thru-proxy tag that identifies the “WWW 
proxy.com' intermediary node. If the request is to be sent 
to the “www.server.com' node, the request is to be sent to 
"www.proxy.com” (ie., the network intermediary node) des 
ignated in the thru-proxy tag before it is Sent to the 
“www.server.com'. 

Request 304's path may include some number, “N,” (i.e., 
none or more) intermediaries 308. Request 304 may be 
satisfied by one of intermediaries 308 such that there is no 
need to send the request to origin server 312. However, if the 
request is to be sent to origin Server and request 304 contains 
a thru-proxy tag, request 304 is sent to the proxy (or other 
intermediary) specified by the thru-proxy tag. If, for 
example, request 304 contained a thru-proxy tag that iden 
tifies proxy 310, request 304 is to be sent to proxy 310 before 
it is sent to origin server 312. That is, client 302 and/or 
intermediaries 308 may send request 304 to destinations 
other than origin server 312. However, before request 304 is 
sent to origin server 312, the sender sends request 304 to the 
destination identified by the thru-proxy tag (e.g., proxy 310). 
In the example provided in FIG. 3, request 304 is forwarded 
directly from proxy 310 to origin server 312. However, it is 
contemplated that proxy 310 may send request 304 to one or 
more of intermediaries 308 that may or may not send request 
304 to origin server 312. 

In one or more embodiments of the invention, an entity 
that originates, receives and/or processes request 304 (e.g., 
client 302, intermediaries 308, proxy 310 and/or origin 
Server 312) may add one or more thru-proxy tags to request 
304. The entity that is identified in a thru-proxy tag may 

15 

25 

35 

40 

45 

50 

55 

60 

65 

10 
remove the tag from request 304. Similarly, an entity that 
receives and/or processes response 306 may add a thru 
proxy tag to response 306, and the entity that is identified in 
a thru-proxy tag may remove the tag from response 306. 
As response 306 is transmitted to client 302, an entity 

(e.g., origin server 312, proxy 310, intermediaries 308) may 
add one or more thru-proxy tags. If response 306 is received 
by client 302 with one or more thru-proxy tags, client 302 
retains this information. If a Subsequent, related request 
(e.g.,314) of response 306 is generated by client 302, one or 
more thru-proxy tags may be added to the Subsequent 
request. A request may be related in that it is generated from 
a selection made from within a Web page (e.g., a hypertext 
link within a Web page) that is transmitted in response 306, 
for example. To illustrate, request 304 may be a request for 
a Web page for display on a browser executing at client 302 
and response 306 transmits the requested page to client 302. 
The selection of a hyperlink that is displayed in the Web 
page causes a request to be generated to retrieve the hyper 
linked resource (e.g., another Web page). If a thru-proxy tag 
was received in response 306, it is included in the request for 
the hyperlinked resource. 

Embodiments of the invention contemplate the use of 
thru-proxy tags at various levels. For example, there may be 
one or more default thru-proxy designations as well as 
Specific thru-proxy designations that may override or 
Supplement the default designation(s). In embodiments of 
the invention, a default thru-proxy tag is associated with a 
response (e.g., contained in an HTTP header, as discussed 
above, while a more Specific thru-proxy tag is associated 
with an element of the response. For example, a specific 
thru-proxy tag may be a field within an HTML element 
definition (e.g., an “A,” i.e., hypertext anchor, element or an 
"IMG," i.e., image, element). 

In the hyperlink example above, response 306 may con 
tain a default thru-proxy tag as well as a thru-proxy tag that 
is associated with the hyperlinked resource. In one embodi 
ment of the invention, the thru-proxy tag associated with the 
hyperlinked resource overrides the default thru-proxy tag. 
Client 302 generates a request that contains the hyperlinked 
resources thru-proxy tag. In another embodiment of the 
invention, the thru-proxy tag associated with the hyper 
linked resource may be used in conjunction with the default 
thru-proxy tag. That is, client 302 generates a request that 
contains both the hyperlinked resources thru-proxy tag as 
well as the default thru-proxy tag. 
When a request contains multiple thru-proxy tags, 

embodiments of the invention visit the entities in the order 
in which the thru-proxy tags appear in the request. If a proxy 
or other destination that is identified in a thru-proxy tag (e.g., 
proxy 310) is unavailable, embodiments of the invention 
assume that the Source (e.g., origin server 312) is unavail 
able and behave accordingly. Alternatively, in an embodi 
ment of the invention, the Source (e.g., origin server 312) is 
consulted to determine the appropriate action to be taken. 
Embodiments of the invention allow for the designation of 
multiple thru-proxy tags Such that one designation may be 
used as an alternate of another. Alternate proxy designations 
may be used for redundancy and/or load balancing, for 
example. Thus, if a proxy is unavailable or busy, a proxy 
Specified in an alternate thru-proxy designation may be used 
in its place. 

Referring to FIG. 3, it is possible that one of 
intermediaries, for example, may send request 304 directly 
to origin server 312 bypassing proxy 310. In one or more 
embodiments of the invention, origin server 312 forwards 
request 304 to proxy 310. Proxy 310 processes request 304 
and, if necessary, forwards request 304 to server 312. 

13



US 6,567,857 B1 
11 

In embodiments of the invention, different thru-proxy tags 
may be specified for different protocols (e.g., HTTP, Secure 
Hypertext Transport Protocol (HTTPS), file transfer proto 
col (FTP), gopher, etc.). Thus, where a Secure transmission 
is being Sent using HTTPS, for example, a thru-proxy tag 
may specify a Secure proxy that decrypts the message before 
it is forwarded onto the next location. 
Client Process Flow 

According to one or more embodiments of the invention, 
client 302 may add a thru-proxy tag to request 314 based on 
a thru-proxy tag received in response 306. According to one 
or more embodiments of the invention, on client 302, a 
browser or other application, applet or other Software or 
program code may implement the behavior configured to 
add a thru-proxy tag to request 314 and/or retrieve thru 
proxy tag information from response 306. FIG. 4 provides a 
client process flow according to one or more embodiments 
of the invention. 

At step 402, client 302 receives response 306. Client 302 
(e.g., a browser or, other application or applet Software 
executing on client 302) determines whether the response 
contains a thru-proxy tag. If yes, processing continues at 
step 406 to store the resource locator or identification 
information in the thru-proxy tag. If not, processing contin 
ues at step 408 to await another request. 

If a user initiates another request, at Step 408, processing 
continues at Step 410 to determine whether the request is a 
related request (e.g., a hypertext link within the response 
page or a URL that identifies the previous request's origin 
Server). If not, client 302 generates a request, at Step 414, 
without a thru-proxy tag. If the request is a related request 
(i.e., related to a response), client 302 generates a request, at 
Step 412, that contains one or more thru-proxy tags that 
identify a proxy Specified in a related response. For example, 
client 302 uses the default thru-proxy identifier unless it is 
overridden by a more specific thru-proxy tag identifier(s). 
Client 302 sends the request at step 418. Client 302 may, for 
example, Send the request to a proxy identified in a thru 
proxy tag (e.g., proxy 310), or to an intermediary (e.g., one 
of intermediaries 308). Processing continues at step 402 to 
process a response to the request, if any. 
Origin Server Process Flow 

According to one or more embodiments of the invention, 
origin Server 312 may add a thru-proxy tag to a response 
(response 306). Server software, CGI, application, applet or 
other Software or program code may be used to implement 
the behavior of an origin Server according to one or more 
embodiments of the invention. FIG. 5 provides a origin 
Server process flow according to one or more embodiments 
of the invention. 
A request is received by origin server 312 at step 502. At 

step 504, a determination is made whether the request 
contains a thru-proxy tag. If So, origin Server 504 sends the 
request to the destination identified in the thru-proxy tag at 
step 506. If not, processing continues at step 508 to process 
the request. At step 510, a determination is made whether 
there is a response to the request. If not, processing returns 
to step 502 to await another request. 

If there is a response to the request, processing continues 
to step 512 to determine whether the response is to contain 
a thru-proxy tag (e.g., whether a Subsequent request is to be 
directed to a proxy before origin server 312). If not, pro 
cessing continues at Step 514 to generate a response without 
a thru-proxy tag. Otherwise, processing continues at Step 
516 to generate a response with one or more thru-proxy tags. 
Once a response is generated, it is Sent at Step 518. ProceSS 
ing continues at Step 502 to await another request. 

5 

15 

25 

35 

40 

45 

50 

55 

60 

65 

12 
Intermediary Process Flow 
According to one or more embodiments of the invention, 

an intermediary (e.g., intermediaries 308) may add a thru 
proxy tag to a request (e.g., request 314) or response 
(response 306), and delete a thru-proxy tag where the 
intermediary is identified in the thru-proxy tag to be deleted. 
Server Software, CGI, application, applet or other Software 
or program code may be used to implement the behavior of 
an intermediary according to one or more embodiments of 
the invention. FIG. 6 provides an intermediary process flow 
according to one or more embodiments of the invention. 
At Step 602, a determination is made as to the type of 

message received. If the message is a response message, 
processing continues at Step 604. At Step 604, a determina 
tion is made whether to add a thru-proxy tag. If So, proceSS 
ing continues at Step 606 to add the thru-proxy tag that 
identifies a network node or location (e.g., one of interme 
diaries 308, proxy 310, or origin server 312 may act as an 
intermediary for another). 
An intermediary may also delete a tag. Thus, at Steps 608 

and 610, determinations are made whether a delete operation 
is to be done and whether the intermediary is the one 
Specified in the thru-proxy tag to be deleted. If So, processing 
continues at Step 612 to delete the thru-proxy tag, and 
processing continues at Step 614 to identify the next network 
node or location to which the message is to be sent. If no 
deletion is to be performed, processing continues at Step 
614. Once the next network node is determined, processing 
continues at Step 664 to forward the request to the next 
location. 

If it is determined at Step 602 that the message is a request 
message (e.g., by examining the operation or method iden 
tified in the message), processing continues at Step 624 to 
determine whether the intermediary is to process the request 
to generate a response. If So, the request is processed at Step 
626 to generate a response to the request at Step 628. 
Processing continues at step 604 to determine whether to 
add or delete thru-proxy tags from the response and to 
determine the next network node or location to which the 
response is to be sent. At Step 664 the response is forwarded 
to the next location. 

If it is determined, at step 624, that the intermediary is not 
processing the request to generate a response, processing 
continues at step 630 to determine whether the next location 
is origin Server 312 and there is a thru-proxy tag. If So, 
processing continues at Step 632 to identify the next location 
as the intermediary identified in the thru-proxy tag for origin 
server 312. Processing continues at step 604 to add or delete 
thru-proxy tags, if any. 
Application Examples 

Embodiments of the invention may be used in various 
applications. For example, in a reverse proxy application in 
which the reverse proxy acts as a gateway between an 
external network (e.g., the Internet) and an internal network 
(e.g., an intranet), a thru-proxy tag may be used to identify 
a proxy that is able to map external identifiers to internal 
resources. In the past, the reverse proxy modified the 
resource identifiers (e.g., URLS) So that each one referred to 
the reverse proxy. That is, each URL in a Web page is 
modified to point to the reverse proxy before the Web page 
is sent to client 302, for example. Using embodiments of the 
invention, however, a thru-proxy tag may be used to identify 
the reverse proxy thereby eliminating the need to rewrite the 
identifiers. 

Content rewriting at an Internet Service Provider (ISP) 
may be outsourced using the thru-proxy tag. The thru-proxy 
tag may be used to identify a reliable, assured Server-side 

14



US 6,567,857 B1 
13 

proxy for content rewriting, including composing from 
multiple pages and per-user group customization. A thru 
proxy tag may be used to identify a distill proxy that can 
transform an image's resolution to accommodate handheld 
devices with limited Video capability. Instead of installing a 
distill proxy on a corporate intranet and having it configured 
as a parent proxy by the System administrator, the thru-proxy 
tag may be used to identify the distill proxy. 

Embodiments of the invention may be used to provide 
load balancing and failure recovery acroSS multiple web 
Server farms as well as provisioning of heterogeneous con 
tent. Embodiments of the invention may also be used to 
achieve fine-grained per-page proxy Settings, rather than a 
Static proxy Specification encoded in browser preferences or 
configuration files. 

Thus, a method and apparatus for dynamic proxy inser 
tion in network traffic flow has been described in conjunc 
tion with one or more specific embodiments. The invention 
is defined by the claims and their full Scope of equivalents. 
What is claimed is: 
1. In a computer System, a method of dynamically insert 

ing a node in network traffic flow comprising: 
designating a plurality of intermediary network nodes in 

a response to a first request; 
designating at least one of Said plurality of intermediary 

network nodes in a Second request when Said Second 
request is related to Said response, wherein Said plu 
rality of intermediary network nodes comprise at least 
two intermediary network node designations, 

directing Said Second request to Said at least two inter 
mediary network node designations according to an 
order of designation in Said Second request. 

2. A computer program product comprising: 
a computer usable medium having computer readable 
program code embodied therein configured to dynami 
cally insert a network node comprising: 
computer readable program code configured to cause a 

computer to designate a plurality of intermediary 
network nodes in a response to a first request; 

computer readable program code configured to cause a 
computer to designate at least one of Said plurality of 
intermediary network nodes in a Second request 
when Said Second request is related to Said response, 
wherein; 
Said plurality of intermediary network nodes com 

prise at least two intermediary network node 
designations, Said computer program product fur 
ther comprising: 
computer readable program code configured to 

cause a computer to direct Said Second request 
to Said at least two intermediary network node 
designations according to an order of designa 
tion in Said Second request. 

3. In a computer System, a method of dynamically insert 
ing a node in network traffic flow comprising: 

designating a plurality of intermediary network nodes in 
a response to a first request; 

designating at least one of Said plurality of intermediary 
network nodes in a Second request when Said Second 
request is related to Said response, wherein designating 
a plurality of intermediary network nodes in a response 
further comprises: 
designating one of Said plurality of intermediary net 
work nodes in Said response as a default intermedi 
ary network node, 

designating another of Said plurality of intermediary 
network nodes in Said response as an override inter 
mediary network node. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

14 
4. The method of claim 3 wherein said override interme 

diary network node is related to a portion of Said response, 
Said designating at least one of Said plurality of intermediary 
network nodes in a Second request further comprises: 

designating Said override intermediary node in Said Sec 
ond request when Said Second request is associated with 
Said portion of Said response; 

designating Said default intermediary network node in 
Said Second request when Said Second request is not 
asSociated with Said portion of Said response. 

5. A System comprising: 
a first network node configured to generate a response to 

a first request, Said response including a plurality of 
intermediary network node designations, 

a Second network node configured to receive Said 
response and to generate a plurality of requests related 
to Said response, Said Second network node configured 
to include at least one of Said plurality of intermediary 
network node designations in Said plurality of requests, 
wherein; 
one of Said plurality of intermediary network node 

designations is a default and the remainder of Said 
plurality of intermediary network node designation 
are capable of overriding Said default. 

6. A computer program product comprising: 
a computer usable medium having computer readable 

program code embodied therein configured to dynami 
cally insert a network node comprising: 
computer readable program code configured to cause a 

computer to designate a plurality of intermediary 
network nodes in a response to a first request; 

computer readable program code configured to cause a 
computer to designate at least one of Said plurality of 
intermediary network nodes in a Second request 
when Said Second request is related to Said response, 
wherein; 
computer readable program code configured to cause 

a computer to designate a plurality of intermediary 
network nodes in a response further comprises: 
computer readable program code configured to 

cause a computer to designate one of Said 
plurality of intermediary network nodes in Said 
response as a default intermediary network 
node, 

computer readable program code configured to 
cause a computer to designate another of Said 
plurality of intermediary network nodes in Said 
response as an override intermediary network 
node. 

7. The computer program product of claim 6 wherein Said 
override intermediary network node is related to a portion of 
Said response, Said computer readable program code con 
figured to cause a computer to designate at least one of Said 
plurality of intermediary network nodes in a Second request 
further comprises: 

computer readable program code configured to cause a 
computer to designate Said override intermediary node 
in Said Second request when said Second request is 
asSociated with Said portion of Said response; 

computer readable program code configured to cause a 
computer to designate Said default intermediary net 
work node in Said Second request when Said Second 
request is not associated with Said portion of Said 
response. 

15




