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ABSTRACT

We describe a novel 30-OH unblocked reversible
terminator with the potential to improve accuracy
and read-lengths in next-generation sequencing
(NGS) technologies. This terminator is based
on 5-hydroxymethyl-20-deoxyuridine triphosphate
(HOMedUTP), a hypermodified nucleotide found nat-
urally in the genomes of numerous bacteriophages
and lower eukaryotes. A series of 5-(2-
nitrobenzyloxy)methyl-dUTP analogs (dU.I–dU.V)
were synthesized based on our previous work with
photochemically cleavable terminators. These
2-nitrobenzyl alkylated HOMedUTP analogs were
characterized with respect to incorporation,
single-base termination, nucleotide selectivity and
photochemical cleavage properties. Substitution at
the a-methylene carbon of 2-nitrobenzyl with alkyl
groups of increasing size was discovered as a key
structural feature that provided for the molecular
tuning of enzymatic properties such as single-base
termination and improved nucleotide selectivity
over that of natural nucleotides. 5-[(S)-a-tert-
Butyl-2-nitrobenzyloxy]methyl-dUTP (dU.V) was
identified as an efficient reversible terminator,
whereby, sequencing feasibility was demonstrated
in a cyclic reversible termination (CRT) experiment
using a homopolymer repeat of ten complementary
template bases without detectable UV damage
during photochemical cleavage steps. These
results validate our overall strategy of creating
30-OH unblocked reversible terminator reagents

that, upon photochemical cleavage, transform
back into a natural state. Modified nucleotides
based on 5-hydroxymethyl-pyrimidines and
7-deaza-7-hydroxymethyl-purines lay the founda-
tion for development of a complete set of four re-
versible terminators for application in NGS
technologies.

INTRODUCTION

Next-generation sequencing (NGS) technology has
accelerated the field of genomic research by delivering
enormous volumes of low-cost sequencing reads (1).
Despite these advances, chemistry improvements are still
needed, particularly in the production of more accurate
read data and longer read-lengths. Our group has
focused on developing novel reversible terminators,
which ideally halt DNA synthesis after the addition of a
single-nucleotide analog by polymerase into the growing
primer strand. Recently, we reported a new paradigm in
30-OH unblocked nucleotide chemistry by attaching a
small photocleavable 2-nitrobenzyl group to the
N6-position of 20-deoxyadenosine triphosphate (2). While
the results were promising, translation to thymine has
proven problematic as an N3-alkylated nucleotide would
be expected to interfere with Watson–Crick base pairing,
thus reducing nucleotide selectivity. This prompted us to
search for alternative thymine analogs that maintain
the desired features of base selective, 30-OH unblocked
terminators. A common attachment site for thymine has
been at its 5-position coupled with unsaturated amino
linkers (3–5), resulting in molecular scars residing on the
nucleobase structure upon chemical (6–8) and
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photochemical (9,10) cleavage reactions. Our goal, there-
fore, was to identify a thymine analog that could enable
the direct coupling of the 2-nitrobenzyl group to the
nucleobase, which upon photochemical cleavage would
transform back into a natural nucleotide substrate.
5-Hydroxymethyl-20-deoxyuridine (HOMedU) mono-

phosphate is a natural nucleotide found in the genomes
of several Bacillus subtilis bacteriophages (11,12) and
dinoflagellates (13). Remarkably, thymidine is completely
replaced with HOMedU in B. subtilis phages SP01,
SP82G, j25, SP8, je, 2C and H1 (11,12). Unlike these
phages, however, the degree of HOMedU replacement in
the genomes of dinoflagellates (13), B. subtilis phage
SP10 (12), Pseudomonas acidovirans phage jW14 (14),
and Trypanosoma brucei (15) varies considerably. For
B. subtilis phage SP10, P. acidovirans phage jW14 and
T. brucei, HOMedU triphosphate (HOMedUTP) is
incorporated during DNA synthesis as an intermediate
(12,16), and then further modified in their respective
genomes as a-glutamylthymidine (12), putresci-
nylthymidine (14) and b-D-glucosyl-hydroxymethyl-
20-deoxyuridine analogs (15). While roles remain unclear,
HOMedU might protect phage DNA against host
and phage nucleases and/or provide signals for the regu-
lation of middle- and/or late-phage gene transcription
(12,17). Although elusive, modification of HOMedU
also serves specific, yet unknown biological roles,
with chemical functionalization of HOMedU occurring
on the 5-hydroxymethyl group. For our purposes, the
5-hydroxymethyl group could serve as a ‘molecular
handle’ to couple directly a 2-nitrobenzyl group, which
upon photochemical cleavage with ultraviolet (UV) light,
would transform the modified nucleotide back into a
natural HOMedU structure. Here, we report novel 30-OH
unblocked reversible terminators based on a core
HOMedU nucleotide and determined their incorporation,
termination, selectivity and photochemical cleavage
properties as candidate reversible terminators for cyclic re-
versible terminator (CRT) sequencing applications (1,18).

MATERIALS AND METHODS

Reagents and materials

Chemical reagents and solvents were purchased from Alfa
Aesar, Sigma-Aldrich or EM Sciences. 20-Deoxyadenosine
triphosphate (dATP), 20-deoxycytosine triphosphate
(dCTP), 20-deoxyguanosine triphosphate (dGTP), thymi-
dine triphosphate (TTP), 30-deoxythymidine triphosphate
(30-dTTP) and Q Sepharose Fast Flow anion exchange
resin were purchased from GE Healthcare Life Sciences.
All DNA polymerases were purchased from New England
Biolabs, with the exception of AmpliTaqFS, which was
purchased from Applied Biosystems (AB), now Life
Technologies. Snake venom phosphodiesterase I was
purchased from United States Biochemical (now
Affymetrix), and alkaline phosphatase was purchased
from Sigma-Aldrich. Oligonucleotides were purchased
from Integrated DNA Technologies. M-270
streptavidin-coated magnetic beads, BODIPY-FL SE
and BigDye version 3.1 kits were purchased from Life

Technologies. Analytical silica gel 60 F254 TLC plates
were purchased from Whatman, and silica gel 60
(230–400 mesh) was purchased from EM Sciences.
Spheri-5 RP-18 and Aquapore OD-300 columns were
purchased from Perkin Elmer.

Nucleosides and nucleotides synthesis

Complete experimental procedures describing the syn-
thesis of the nucleotides used in this work are available
in the Supplementary Data.

PEP assays for incorporation

The general procedure for polymerase end-point (PEP)
assays has been previously described (2). Interrogation
bases for all oligoTemplates described here are underlined
and bolded. Dye-labeled primers ending in ‘S’ contain
a phosphorothioate linkage between the 30-end and
penultimate nucleotides. For the current study, 5 nM of
BODIPY-FL labeled primer-1 (50-TTGTAAAACGACG
GCCAGT) (19) was hybridized with 40 nM of
oligoTemplate-4 (50-TACGGAGCTGAACTGGCCGTC
GTTTTACA) to conduct the PEP assays. PEP assays
were performed in triplicate for each DNA polymerase/
nucleotide analog combination to calculate the average
IC50±1 SD.

Weighted-sum assay for termination studies

The weighted-sum assay was designed to examine quanti-
tatively the degree to which a nucleotide could be extended
along a homopolymer stretch of complementary template
bases. BODIPY-FL-labeled primer-1 (5 nM) was
hybridized to 40 nM of oligoTemplate-7 (50-CCGAAAA
AAAAAAACTGGCCGTCGTTTTACAGCCGCCGCC
GCCGAACCGAGAC-Biotin), and the primer/template
complex was assayed as described above. The IC50

values were determined using PEP assays for dU.I –
dU.V using Therminator and Vent(exo�) polymerases
with oligoTemplate-7. Primer extensions were then per-
formed at 25� IC50 values for dU.I, dU.II and dU.III
with an additional concentration end-point of 3 mM,
which is �1000� the IC50 value for dU.IV and dU.V.
The weighted-sum value was determined from the

following formula:
P10

i¼0 fi�wi, where fi is the fraction

of signal for a given band to the overall signal and wi is

the weight assigned to discrete positions in the DNA
sequence ladder (i.e. for the primer band, w0=0, for the
n+1 product, w1=1, . . . for the n+10 product, w10=10).

Nucleotide selectivity assays for TTP, HOMedUTP and
dU.I–dU.V

OligoTemplate-4 was substituted with either 40 nM of
oligoTemplate-2 (50-TACGGAGCTGTACTGGCCGTC
GTTTTACA) or 40 nM of oligoTemplate-5 (50-TACGG
AGCAGCACTGGCCGTCGTTTTACA). For the T—G
mismatch, 5 nM of BODIPY-FL-labeled primer-3 (50-TA
TGACCATGATTACGCC) was hybridized with 40 nM
of oligoTemplate-8 (50-TACGGAGCACGGGCGTAAT
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CATGGTCATA, and the primer/template complexes
were analyzed using PEP assays.

Photochemical cleavage studies

dU.I–dU.V were incorporated, as described for the PEP
assays, at a final concentration of 100 nM, using the
BODIPY-FL labeled primer-1/oligoTemplate-4 complex
(10 nM/80 nM ratio). The incorporated reactions were
then quenched with either 10 ml of FBD solution [20%
aqueous deionized formamide; 10mM Na2EDTA, pH
8.0; 16.6mg/ml Blue Dextran, MW 2000 000, (2)] or
50mM sodium azide solution, exposed to 365 nm UV
light for various time-points using our custom-designed
UV deprotector [see Supplementary Figure S1 in Ref.
(2)], and then placed on ice. Twenty ml of stop solution
(98% deionized formamide; 10mM Na2EDTA, pH 8.0;
25mg/ml Blue Dextran, MW 2000 000) was added, and
samples were analyzed using an AB model 377 DNA se-
quencer. Cleavage assays were performed in triplicate to
calculate the average DT50 value±1SD (i.e. the time at
which 50% of 2-nitrobenzyl groups were photochemically
cleaved from the extended primer/template complex).

PCR and Sanger sequencing

For PCR experiments, exons 2 and 10 from the TCF1 gene
were amplified [see Supplementary Table S1 in Ref. (20)
for primer sequences]. Approximately 50 ng of genomic
DNA was amplified with 0.4 mM of HNF1a_2.1 (F/R)
or HNF1a_10.1 (F/R) primer pairs and one unit of
Vent(exo�) polymerase in 1� ThermoPol buffer [20 mM
Tris–HCl, pH 8.8; 10mM (NH4)2SO4; 10mM KCl; 2mM
MgSO4; 0.1% Triton X-100; New England BioLabs], 1 M
betaine (21,22) and 200mM each of dATP, dCTP, dGTP
and either TTP or HOMedUTP. Cycling conditions were
4min at 95�C, then 35 cycles of 95�C for 30 s, 59�C for 30 s
and 72�C for 90 s with a final step at 72�C for seven min.
PCR products were purified using a Qiagen QIAquick gel
extraction kit and sequenced using a ‘1/16’ dilution of
BigDye version 3.1 chemistry. Sequencing reactions were
cycled using the following conditions: 96�C for 1min, then
25 cycles of 96�C for 10 s, 50�C for 5 s and 60�C for 4min.
Reaction products were purified by ethanol precipitation,
resuspended in 30 ml of HPLC water, and then loaded
onto an AB model 3100 DNA sequencer.

Primer extension assays

As described above for PEP assays, primer extensions for
Therminator and Vent(exo�) polymerases were performed
using 5 nM of BODIPY-FL-labeled primer-1S hybridized
to 40 nM of oligoTemplate-7. TTP and HOMedUTP were
extended at 25� their IC50 value and 3 mM (�1000� their
IC50 values) and analyzed using an AB model 377 DNA
sequencer.

Ten cycle CRT sequencing

The binding of a biotinylated template to M-270 beads
and the hybridization of BODIPY-FL-labeled primer-2S
(50-GGCGGCGGCGGCTGTAAAACGACGGCCAG-
s-T) have been previously described (2), except

oligoTemplate-7 was substituted for oligoTemplate-3.
The bead bound primer/template complex was incubated
with 0.5 units of Therminator polymerase in 1�
ThermoPol buffer on ice for 5min.

Incorporation step. dU.V (3mM) in 1� ThermoPol buffer
(reaction volume: 20 ml) was added to the polymerase
bound nucleic acid complex and incubated at 65�C for
5min, and then placed on ice. dU.V-incorporated beads
were washed three times with 50 ml W10 washing solution
(10mM Tris–HCl, pH 8.0; 10mM Na2EDTA; 0.1%
Triton X-100).

Photochemical cleavage step. The beads were resuspended
in 20 ml cleavage solution (50mM sodium azide), exposed
to 365 nm UV light with an intensity of �0.7 W/cm2 for
4min (i.e. 4� 1-min exposures interrupted with a 15 s
mixing step to ensure good resuspension of the beads)
using the customized UV deprotector, then washed three
times with 50 ml 1� ThermoPol buffer.
The entire cycle was then repeated from the incorpor-

ation step. Final reactions were washed three times with
50 ml W10 washing solution, quenched with 10 ml of stop
solution, heated to 50�C for 30 s and placed on ice. The
extension products were analyzed on a 10% Long Ranger
polyacrylamide gel using an AB model 377 DNA
sequencer.

Nucleoside composition analysis after prolonged UV
exposure

The primer/template duplex was quantitatively analyzed
for potentially damaging effects from UV exposure,
similar to those described in reference (23). Unlabeled
primer-2 (10 nmole) was hybridized to 10 nmole of
oligoTemplate-7 in 1� ThermoPol buffer (reaction
volume: 35 ml) at 80�C for 30 s, 57�C for 30 s and then
cooled to 4�C. Thirty-five ml of 100mM sodium azide
solution was then added to the duplex solution. Samples
were exposed to 365 nm UV light with an intensity of �1
W/cm2 at 0, 30, 60, 90, 120 and 150min time increments.
The duplex was denatured by heating to 80�C for 30 s and
then placed on ice. Following the addition of 1.5 ml of 1.2
M sodium acetate, pH 5.3, 4U of snake venom phospho-
diesterase I were added directly to the duplex solution and
incubated at 37�C for 16 h. Four units of alkaline phos-
phatase were then added and incubated at 37�C for 1 h.
Digested samples were analyzed by reverse-phase
high-performance liquid chromatography (RP-HPLC)
using a 4.6mm� 250mm Spheri-5 RP-18 column. A
linear gradient of 0% Buffer B to 13.34% Buffer B over
30min was used to separate the nucleosides at a flow rate
of 1.5ml per min. Buffer A contained 20mM ammonium
acetate, and Buffer B contained 20mM ammonium
acetate, 40% acetonitrile (v/v).

RESULTS

Nucleotides synthesis

In this report, HOMedUTP, a parent 5-(2-nitrobenzyloxy)
methyl-dUTP (dU.I), and four 5-(a-substituted-
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2-nitrobenzyloxy)methyl-dUTP analogs (dU.II, dU.III,
dU.IV and dU.V) were synthesized and characterized
(Figure 1). Our initial motivation in creating a-methylene
carbon substituted dU.II and dU.III was based on the
achievement of better photocleavage product yields
(24,25). Upon photochemical cleavage, these a-substituted
analogs produced less reactive ketone intermediates
compared with that of a benzaldehyde by-product
formed from a parent 2-nitrobenzyl group. Subsequent
reports have also shown that a-methyl-2-nitrobenzyl
ester (26) and a-methyl-2-nitrobenzyloxycarbonyl (27)
linkages enhanced photochemical cleavage rates by
5-to-10 fold. Unexpectedly, we discovered that increasing
the size from a-methyl to a-isopropyl improved the ter-
mination properties of these 2-nitrobenzyl alkylated
HOMedUTP analogs (see below). We then synthesized
the a-tert-butyl analog to further tune its termination
properties. The S configuration of the a-substitutions for
dU.IV and dU.V was chosen arbitrarily, based on previous
reports (28,29). The design and synthesis of dU.I–dU.V,
therefore, gave us the opportunity to explore
photocleavage product yields and rates, and termination
properties of the parent and a-substituted 2-nitrobenzyl
ether linkages. To avoid confusion, the term ‘5-
(2-nitrobenzyloxy)methyl-dUTP analogs’ is used to

describe both the parent and a-substituted nucleotides
shown in Figure 1.

We envisioned that nucleophilic coupling of the allylic
bromide 2 with 2-nitrobenzyl or a-substituted-2-
nitrobenzyl alcohols would provide the desired nucleoside
analogs 3a–3e (Scheme 1). Intermediate 2 was obtained
via bromination of the fully protected thymidine 1,
according to Anderson et al. (30), although we found
that N3 protection increased the stability of the
bromomethyl product (data not shown). 2-Nitrobenzyl
alkylated HOMedU products 3a–3e were obtained when
2 was heated neat with their corresponding 2-nitrobenzyl
alcohols. 2-Nitrobenzyl alcohol is commercially available,
and the synthesis of the racemic a-methyl-2-nitrobenzyl
alcohol has been reported (31). Racemic a-isopropyl-
and a-tert-butyl-2-nitrobenzyl alcohols were synthesized
using a Grignard reaction with 2-nitrophenyl-magnesium
chloride (generated in situ from 1-iodo-2-nitrobenzene
and phenylmagnesium chloride) and isobutyraldehyde or
trimethylacetaldehyde, respectively (Scheme 2).

The 1H NMR spectra of compounds 3b and 3c showed
a 50:50 mixture of both diastereomers resulting from the
chirality of a-substitution. Because the mixture could not
be separated by standard chromatographic means, we set
out to synthesize single diastereomeric 3d and 3e analogs
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Figure 1. Structures of HOMedUTP and 5-(2-nitrobenzyloxy)methyl-dUTP analogs.

e39 Nucleic Acids Research, 2011, Vol. 39, No. 6 PAGE 4 OF 13



via neat coupling of 2 with enantio-pure (S)-a-isopropyl-
and (S)-a-tert-butyl-2-nitrobenzyl alcohols, respectively.
(S)-a-Isopropyl- and (S)-a-tert-butyl-2-nitrobenzyl
alcohols were resolved by fractional crystallization of

their respective diastereomeric (1S)-camphanates, accord-
ing to Corrie et al. (32). The absolute stereochemistry
of the camphanates was determined by X-ray crystal-
lography (Supplementary Figures S1 and S2). The
enantio-pure (S)-a-isopropyl- and (S)-a-tert-butyl-2-
nitrobenzyl alcohols were recovered by saponification of
the diastereomeric (1S)-camphanates with potassium
carbonate in methanol in near quantitative yields
(Scheme 2).
Triphosphate syntheses were performed using the

‘one-pot’ procedure, as described by Ludwig (33), to
yield dU.I–dU.V. HOMedUTP was obtained by photo-
chemical cleavage of dU.II with 365 nm UV light. All
triphosphates were purified by Q sepharose FF
anion-exchange chromatography followed by RP-HPLC.

5-(2-nitrobenzyloxy)methyl-dUTP analogs are active
with Family B DNA polymerases

Initially, dU.I was synthesized and tested for base-specific
incorporation by eight different DNA polymerases
using the PEP assay described in reference (2). TTP,
HOMedUTP, and 30-dTTP were also examined
(Supplementary Table S1), providing a benchmark for
determining the incorporation bias (i.e. the modified nu-
cleotide IC50 value divided by the natural nucleotide IC50

value) for the 5-(2-nitrobenzyloxy)methyl-dUTP analogs.
As shown, dU.I was incorporated by Bst and
Klenow(exo�) polymerases showing incorporation biases
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of 45 and 30, respectively, compared with HOMedUTP
(Table 1). Taq and TaqFS polymerases poorly
incorporated dU.I, extending the primer <50% before
revealing inhibitory effects. In contrast to these Family
A polymerases, all Family B polymerases examined, that
is Therminator, Therminator II, Vent(exo�) and
DeepVent(exo�), incorporated dU.I efficiently revealing
only slight incorporation biases that ranged from 0.8 to
1.8. These data provide good evidence that Family B poly-
merases incorporate dU.I similarly to that of its natural
nucleotide counterpart.
dU.II and dU.III were then examined against the

battery of DNA polymerases. The IC50 values for dU.II
markedly increased for Bst and Klenow(exo�)
polymerases, and Taq and TaqFS polymerases showed
no activity at all (Table 1). For dU.III, none of the
Family A polymerases showed any activity up to a final
concentration of 100 mM. In contrast, the Family B
polymerases incorporated dU.II efficiently with IC50

values being slightly higher over those for dU.I (i.e.,
incorporation biases ranged from 1.0 to 6.3). dU.III was
also incorporated by all Family B polymerases with
Therminator and Vent(exo�) polymerases showing the
least bias of incorporation of 1.4 and 4.2, respectively.
Based on these findings, 5-(2-nitrobenzyloxy)
methyl-dUTP analogs were further characterized with
Therminator and Vent(exo�) polymerases.

Size of the a-carbon group influences termination of
5-(2-nitrobenzyloxy)methyl-dUTP analogs

We developed the weighted-sum assay to evaluate quanti-
tatively the termination property of nucleotide analogs
being extended along a homopolymer stretch of
complementary template bases (oligoTemplate-7). A
weighted-sum value of 1.0 indicates the addition of
a single-nucleotide analog for a given concentration.
IC50 values for dU.I–dU.V were determined using
oligoTemplate-7, which in some cases varied from those
calculated for oligoTemplate-4 (Supplementary Table S2).
dU.I gave weighted-sum values of 3.7 and 3.0 for
Therminator and Vent(exo�) polymerases, respectively,
at a concentration of 25� their IC50 values (Table 2).
Unexpectedly, the (R/S) a-methyl (dU.II) and (R/S)

a-isopropyl (dU.III) nucleotide analogs’ weighted-sum
values at the same concentration decreased to 1.7 and
1.0 for Therminator polymerase and to 1.2 and 1.0 for
Vent(exo�) polymerase, respectively. The (S) a-isopropyl
(dU.IV) and (S) a-tert-butyl (dU.V) nucleotide analogs
displayed weighted-sum values of 1.0 at 25� their IC50

values. Nucleotide analogs, however, are typically
utilized at higher concentrations in CRT experiments
(see below). Increasing the dU.IV concentration to 3 mM,
which is �1000� its IC50 value, increased the
weighted-sum values to 1.9 and 1.7 for Therminator
and Vent(exo�) polymerases, respectively. The bulkier
a-tert-butyl group of dU.V, however, maintained
weighted-sum values of 1.0 for both polymerases
(Table 2). These data highlight the role of the size of the
a-substituent in ‘tuning’ the termination properties of
30-OH unblocked 5-(2-nitrobenzyloxy)methyl-dUTP
analogs.

Size of the a-carbon group improves selectivity of
5-(2-nitrobenzyloxy)methyl-dUTP analogs

We next examined the nucleotide selectivity of incorpor-
ation using the PEP discrimination assay (2). Vent(exo�)
polymerase revealed a selectivity ratio (i.e. the mismatched
IC50 value divided by the matched IC50 value) for TTP
(Supplementary Table S3) and HOMedUTP (Figure 2 and
Supplementary Table S3) greater than three orders of
magnitude for each mismatch combination. dU.I, dU.II
or dU.III incorporated poorly against pyrimidine

Table 1. PEP assay for compounds dU.I–dU.III

Polymerase IC50 values Incorporation bias

dU.I dU.II dU. III dU.I/HOMedUTP dU.II/HOMedUTP dU.III/HOMedUTP

Bst 98±13nM 3.5±0.2�M Not Activea 45 1600 ND
Klenow(exo�) 48±4nM 2.4±0.1�M Not Activea 30 1500 ND
Taq 50�Mb Not Activea Not Activea ND ND ND
TaqFS 25�Mc Not Activea Not Activea ND ND ND
Therminator 1.8±0.1 nM 1.7±0.2 nM 2.3±0.1 nM 1.1 1.0 1.4
Therminator II 5.7±0.4 nM 14±1nM 0.14±0.01�M 0.8 1.9 20
Vent(exo�) 2.0±0.1 nM 2.2±0.2 nM 5.9±0.7 nM 1.4 1.6 4.2
DeepVent(exo�) 4.9±1.0 nM 17±1nM 0.22±0.02�M 1.8 6.3 80

Values in italics represent mM concentrations to contrast those IC50 values in the nM range.
aNo visible +1 band observed in 377 gel image at 100mM.
bConcentration that yielded highest percent incorporation: 45±1%.
cConcentration that yielded highest percent incorporation: 35±4%;
ND: Not determined.

Table 2. Weighted-sum values for dU.I–dU.V

Nucleotide analog Therminator Vent(exo�)

25� IC50 3mM 25� IC50 3 mM

dU.I 3.7±0.0 ND 3.0±0.1 ND
dU.II 1.7±0.1 ND 1.2±0.0 ND
dU.III 1.0±0.0 ND 1.0±0.0 ND
dU.IV 1.0±0.0 1.9±0.2 1.0±0.0 1.7±0.1
dU.V 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

ND: Not determined.
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template bases, extending the primer to �50% or less
before revealing inhibitory effects (Supplementary
Table S4). The distinction here is that unlike natural
nucleotides that completely extend the primer by
misincorporation at micromolar concentrations,
Vent(exo�) polymerase is more selective towards 5-(2-
nitrobenzyloxy)methyl-dUTP analogs as it does not effi-
ciently extend the primer up to a concentration of 100 mM.
Selectivity ratios of 900 and 4900 were determined for
dU.I and dU.II, respectively, against a ‘G’ template base,
with dU.III poorly extending the primer before revealing
inhibitory effects. These results provide good evidence
that 5-(2-nitrobenzyloxy)methyl-dUTP analogs are
base-specific nucleotides using Vent(exo�) polymerase
and, with exception of the dU.I—G mismatch, showed
higher selectivity against mismatch incorporation than
natural nucleotides.

In contrast, selectivity ratios for Therminator polymer-
ase were approximately two orders of magnitude lower
for TTP (Supplementary Table S5) and HOMedUTP
(Figure 2 and Supplementary Table S5) compared with
Vent(exo�) polymerase. Lower selectivity ratios are
expected to increase error rates. These data are consistent
with a study by Ichida et al. (34) who reported an error
rate �100-fold higher for Therminator polymerase
compared with Taq polymerase; both Vent(exo�) and
Taq polymerases have similar error rates (35).
Comparable selectivity results were obtained for dU.I

using Therminator polymerase. The selectivity ratios for
dU.II and dU.III, however, increased with Therminator
polymerase in a size-dependent manner based on the
a-substituent group (Figure 2 and Supplementary
Table S6). The improvement results from the marked
increase in mismatch IC50 values, while those match

values remain relatively constant. The single diastereomer
dU.IV gave even higher selectivity ratios when compared
with its mixed diastereomeric counterpart dU.III. Both
dU.IV and dU.V showed similar selectivity results.
Overall, selectivity ratios for dU.IV and dU.V were at
least 30-fold higher than the parent dU.I analog and
approached selectivity ratios of almost three orders of
magnitude for Therminator polymerase.

5-(2-nitrobenzyloxy)methyl-dUTP analogs are cleaved
quickly and efficiently

The UV light spectrum can be divided into UVC
(100–280 nm), UVB (280–315 nm) and UVA (315–
400 nm) regions. Both UVB and UVC light have been
reported to cause pyrimidine dimers (36), whereas UVA
does not appear to cause these dimers in any significant
amount (37). UVA light can generate hydroxide radicals
(�OH) among other reactive oxygen species, which
can damage DNA by oxidative base modifications
[i.e. 8-oxo-7,8-dihydro-20-deoxyguanosine (8-oxo-dG)]
(38) and single-strand breaks (39). Powerful oxygen
radical scavengers, such as acetate, azide, EDTA,
formate and mannitol, have been used effectively in
neutralizing these damaging effects (40–42). Here, we
compared a 50mM sodium azide solution with our previ-
ously described cleavage FBD solution (see ‘Materials and
Methods’ section). DT50 values for dU.I, dU.II, and dU.III
were approximately three-fold lower (i.e., faster)
in sodium azide compared with the FBD solution
(Table 3). dU.II and dU.III were 33-60% faster in the
azide solution compared with the parent dU.I analog,
although no difference was observed in the FBD
solution. Single diastereomeric dU.IV and dU.V showed
the fastest DT50 values in the azide solution of 1.8 s and
1.3 s, respectively. All 5-(2-nitrobenzyloxy)methyl-dUTP
analogs were photochemically cleaved to 100% efficiency
within 60 s at 365 nm UV light exposure with an intensity
of �0.7 W/cm2 in azide solution (Supplementary Figure
S3). These results prompted us to test the UV protective
effects of azide solution in CRT sequencing.

Multiple incorporations of HOMedUTP in PCR
amplified and synthetic templates

Following incorporation, the photochemical cleavage of
5-(2-nitrobenzyloxy)methyl-dUTP analogs produces a
HOMedU monophosphate in the primer strand
(Figure 3A), and with subsequent CRT cycles, the
accumulation of HOMedU monophosphate residues. We
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Figure 2. Histogram plot of nucleotide selectivity ratios for HOMedUTP
[Vent(exo�) and Therminator polymerases] and dU.I–dU.V (Therminator
polymerase). Nucleotide selectivity ratios (i.e. the mismatched IC50 value
divided by the matched IC50 value) were calculated based on PEP
discrimination assay results, see Supplementary Tables 3–6.

Table 3. Cleavage results for dU.I–dU.V

Nucleotide analog DT50 values (s)

FBD solution 50mM NaN3

dU.I 8.7±0.9 3.2±0.1
dU.II 7.4±1.2 2.0±0.1
dU.III 8.8±0.8 2.4±0.2
dU.IV ND 1.8±0.1
dU.V ND 1.3±0.1
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investigated the effects on the polymerase incorporating
HOMedUTP using PCR and primer extension experi-
ments. We only conducted PCR experiments with
Vent(exo�) polymerase (Figure 3B) because of the low
selectivity of Therminator polymerase with TTP or
HOMedUTP. Comparable yields and product size were
obtained from exons 2 and 10 of the TCF1 gene (20),
amplified using standard PCR conditions in the presence
of dATP, dCTP, dGTP and either TTP or HOMedUTP.
Automated Sanger sequencing data were indistinguishable
for PCR products containing either HOMedUTP or TTP,
verifying the integrity of the HOMedUTP amplicons
(Supplementary Figure S4). These data show that not
only can multiple HOMedUTP be incorporated into the
primer strand, but HOMedU can act as a complementary
templating base in subsequent PCR cycles and in
automated Sanger sequencing.
At 25� IC50 values, Therminator polymerase extended

both TTP and HOMedUTP farther (weighted-sum values
of 4.0 and 2.6, respectively) compared with Vent(exo�)
polymerase (weighted-sum values of 3.3 and 1.9, respect-
ively; Figure 3C). These data also suggest that TTP is
extended more efficiently than HOMedUTP using either
polymerase. At a concentration of 3 mM, Therminator

and Vent(exo�) polymerases efficiently extended both
nucleotides along oligoTemplate-7, upon which TTP,
but not HOMedUTP, extended farther in a non-template
directed manner, see ‘*’ in Figure 3C. Collectively, these
data provide evidence that HOMedUTP can be
incorporated into a growing primer strand of at least
600 bp in length and can be extended consecutively
through a homopolymer stretch of at least ten com-
plementary template bases.

Ten-base CRT sequencing with dU.V

Based on the incorporation, termination, nucleotide
selectivity, and photochemical cleavage experiments
described above, we tested dU.V as a reversible terminator
in CRT sequencing using Therminator polymerase. A
ten-base experiment was performed using a biotinylated
template containing a poly(dA) stretch (oligoTemplate-7)
attached to streptavidin-coated magnetic beads.
Therminator polymerase was bound to the primer/
template complex and underwent multiple cycles of in-
corporation (5min) with 3 mM dU.V in 1� ThermoPol
buffer and UV cleavage (4min) in 50mM sodium azide
(Figure 4A). The gel image in Figure 4A was analyzed
further by quantifying the fluorescent bands at different

A

B

C

Figure 3. Polymerase extension assays with HOMedUTP. (A) Chemical scheme showing UV cleavage of a 5-(a-substituted-2-nitrobenzyloxy)-
methyl-20-deoxyuridine monophosphate into its naturally occurring HOMedU counterpart. (B) PCR results comparing TTP with HOMedUTP in
reactions containing equimolar concentrations of dATP, dCTP and dGTP using Vent(exo�) polymerase. Reactions were initiated with either HPLC
water (blank) or 50 ng human genomic DNA (gDNA) as described in the ‘Materials and Methods’ section. The expected PCR size for TCF1 exon 2
is 602 bp with the region of interest flanking the primers being 564 bp, of which 103 thymine bases (18.3% T) were present, and the expected PCR
size for TCF1 exon 10 is 670 bp with the region of interest flanking the primers being 633 bp, of which 129 thymine bases (20.4% T) were present. (C)
Linear extension on a synthetic poly(dA)10 template hybridized with BODIPY-FL-labeled (blue star) primer-1S. OligoTemplate-7 served as the
template for either TTP or HOMedUTP incorporation at 25� their IC50 values (lane ‘a’) and 3mM (lane ‘b’) using Vent(exo�) or Therminator
polymerase. The addition of non-template directed nucleotides are marked by asterisk.
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CRT cycles (Figure 4B). During the first cycle, the product
of incorporation efficiency (1a: 100%) and cleavage effi-
ciency (1b: 100%) resulted in an initial cycle efficiency
(Ceff) of 100% on a solid support (18). The signal-to-noise
ratio decreased slightly in subsequent cycles because of
lagging and leading dephasing signals (1). The overall
signal of the reaction products remained relatively
constant over the 10 CRT cycles, indicating that the
primer/template or Therminator polymerase did not
undergo any significant damage due to UV exposure
(Figure 4C). The bound Therminator undergoing
multiple cycles of incorporation, washing, UV exposure
and washing again showed good activity in all cycles.
To further examine the primer/template complex for UV
damage, the duplex in azide solution was exposed to
365 nm UV light, with an intensity of �1 W/cm2, up to
150min and then characterized by RP-HPLC analysis.
Quantitative analysis of the nucleoside composition
revealed no significant alteration of the primer/template
duplex after prolonged UV exposure (Supplementary
Figure S5). This represents a significant improvement
over our previous work with the N6-(2-nitrobenzyl)-
dATP analog (2), which showed a 50% signal drop
by the fifth cycle. We attribute this finding to the

a-substituted 2-nitrobenzyl group forming the less
reactive ketone intermediate and the addition of the
azide radical scavenger, thereby, minimizing adverse
conditions in the sequencing reaction (24,25).

DISCUSSION

Natural bases are not limited to adenine, cytosine, guanine
and thymine, as there are numerous examples of biological
species that utilize hypermodified bases as part of the
normal life cycle. HOMedU is one such example found
in the genomes of numerous organisms, acting both as
an incorporating nucleotide and a complementary
templating base. Here, we describe a novel 30-OH
unblocked reversible terminator, based on a core
HOMedUTP, which exhibits excellent enzymatic
properties of incorporation, single-base termination,
nucleotide selectivity, and efficient photochemical
cleavage. The hydroxymethyl group at the 5-position of
HOMedU acts as a molecular handle to which a
photocleavable, terminating group can be attached.
This contrasts our previous work describing N-alkylation
of dATP with a parent 2-nitrobenzyl group, as the
extrapolation of this example to thymidine would lead
to N3-(2-nitrobenzyl)-TTP (2). We predicted that an

A B

C

Figure 4. Ten-base CRT sequencing with dU.V. (A) 377 DNA sequencer gel image of a 10-cycle CRT experiment. Therminator polymerase was
bound to primer/template complex and subjected to multiple cycles of incorporation (5min) with 3mM dU.V in 1� ThermoPol buffer, plus UV
cleavage (4min) in 50mM sodium azide. P, dye-labeled primer (blue star represents BODIPY-FL label); 1a, first incorporation; 1b, first cleavage; 2a–
10a, subsequent cleavage and incorporation cycles on dye-labeled primer. (B) Histogram plot of quantified gel bands in (A). Cycle efficiency was
determined as a product of incorporation efficiency (1a: 100%) and cleavage efficiency (1b: 100%). Dephasing signals were also quantified as ‘%n–2’
(incomplete incorporation for the current cycle), ‘%n–1’ (incomplete UV cleavage from the previous cycle, extension of the ‘%n–2’ from the previous
cycle and/or 30-exonuclease activity followed by incorporation in the current cycle) and ‘%n+1’ [natural (photochemically cleaved) nucleotide
carryover from the previous cycle]. (C) Histogram plot including the total signal for each cycle, representing the sum of the correct signal plus
all dephasing signals.
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N3-alkylated thymidine analog would interfere with
Watson–Crick base pairing, adversely affecting nucleotide
selectivity. We have confirmed this hypothesis by
synthesizing and characterizing N3-(2-nitrobenzyl)-TTP
(T.I). Of the eight DNA polymerases tested, only
Therminator polymerase incorporated T.I, albeit indis-
criminately against all mismatched template bases
(Supplementary Table S7).
The use of HOMedU as a core nucleoside fits within our

overall strategy of creating reversible terminator reagents
that transform back into a natural state (2), representing
an important distinction between our nucleotide reagents
and those described by others (7,10,43). In addition to our
work, Ju and colleagues have reported the synthesis of
30-OH unblocked nucleotides using a photocleavable
2-nitrobenzyl group (9). There are notable differences in
the overall structure and biological utility of these
nucleotide analogs compared with those described in this
report. For example, to the 5-position of 20-deoxyuridine
is attached an 3-amino-1-propargyl (AP3) linker (4)
to which an a-methyl-2-nitrobenzyloxycarbonyl linker
with a fluorescent dye is joined. The authors showed
that single nucleotides could be incorporated using
ThermoSequenaseTM (44), a Taq polymerase containing
the same F667Y amino acid variant (45) as TaqFS
polymerase, using the non-repetitive template sequence
50-TCTGATATCAGT. A single nucleotide addition
strategy (18) was used to demonstrate DNA sequencing
feasibility, whereby, the polymerase is paused only until
addition of the next complementary nucleotide. In their
companion paper, the authors stated that the 30-OH
requires blocking with a chemical moiety, such as an
30-O-allyl group, to effect the termination property of
these nucleotides (10). We note that 30-O-allyl-dATP is
not efficiently incorporated by Vent(exo�) polymerase
(46). Ju and colleagues have reported, however, that
their dye-labeled 30-O-allyl-dNTPs were incorporated
with Therminator II polymerase, which contains the
Y409V amino acid variant in addition to the A485L
variant found in the Therminator polymerase. The 409
amino acid residue of Therminator acts as a steric gate
for incorporation of ribonucleotides (NTPs) (47–49). In
contrast, the 30-OH unblocked 5-[(S)-a-tert-butyl-2-
nitrobenzyloxy]methyl-dUTP dU.V is an efficient termin-
ator with both Vent(exo�) and Therminator polymerases,
but is not incorporated with TaqFS polymerase.
Proximity of the 2-nitrobenzyl group to the nucleobase
and size of the alkyl group attached to its a-methylene
carbon are important structural features that confer the
unique properties of termination and selectivity upon
30-OH unblocked 5-(2-nitrobenzyloxy)methyl-dUTP
analogs.
Vent(exo�) and Therminator are highly homologous

polymerases, showing �77% identity and �89% similar-
ity by protein sequence alignment. It is, therefore, not
surprising that both perform with similar efficiencies in
incorporation and termination assays. Our nucleotide
selectivity assays, however, revealed significantly lower
ratios for TTP and HOMedUTP using Therminator
polymerase compared with Vent(exo�) polymerase.
Therminator polymerase contains the A485L variant,

which is analogous to the modified Vent(exo�) A488L
polymerase. Gardner and Jack (49) suggested that the
modified Vent(exo�) A488L polymerase is more tolerant
of base-modified nucleotides, but with the trade-off of
lower nucleotide selectivity. Here, Therminator and
wild-type Vent(exo�) polymerases incorporated
5-(2-nitrobenzyloxy)methyl-dUTP analogs with similar
efficiencies, providing evidence that the respective L485
and A488 residues do not play a major role in their
incorporation. In the selection process for the correct
nucleotide, however, these residues appear to play a
major role as increasing the size of the a-carbon substitu-
ent of the 2-nitrobenzyl group improved nucleotide select-
ivity. In a broader sense, the use of variant polymerases
in NGS technologies (7,43) potentially raises concern
that their use contributes to higher error rates observed
in sequencing read data. To our knowledge, this is the
first example of base-modified nucleotides improving the
nucleotide selectivity of DNA polymerases over that
of natural nucleotides. This point is exemplified by
comparing the performance of Therminator polymerase,
which uncontrollably extended TTP along the entire
sequence of oligoTemplate-7, misincorporating the last
three template bases and adding nucleotides in a
non-template directed manner (Figure 3C) compared
with the efficient step-wise addition of dU.V along the
same template sequence (Figure 4A). Our expectation is
that use of 2-nitrobenzyl alkylated hydroxymethyl-dNTP
analogs in NGS technologies should yield more accurate
read data.

The molecular basis for the improved nucleotide select-
ivity of the 5-(a-substituted-2-nitrobenzyloxy)methyl-
dUTP analogs (dU.II, dU.III, dU.IV and dU.V) with
Vent(exo�) and Therminator polymerases is unknown.
As a whole, DNA polymerases play different cellular
roles, range in replication fidelities, and exhibit different
activities to modified substrates. Despite this diversity,
they have the extraordinary property of nucleotide
selectivity that cannot be explained simply by free
energy differences between matched and mismatched
Watson–Crick base pairs (50–52). Crystal structure
studies of several unrelated DNA polymerases have
revealed a common conformational change from the
open to closed state, resulting in the assembly of the
catalytic complex (53). For high-fidelity polymerases,
the resulting ‘tight fit’ around the correctly formed base
pair within the active site may preclude mismatched base
pairs due to steric effects (53–56). Low fidelity polymer-
ases, such as those involved in rapid production of highly
related genomes (57) or in repair and lesion bypass
processes (58) may have a looser fit to accommodate the
larger geometric shapes of mismatched or damaged
base-pairs. Three-dimensional modeling of site-directed
mutants of human immunodeficiency virus type 1
reverse transcriptase have led authors to propose that
nucleotide selectivity may be a function of active site
flexibility, with a more rigid catalytic pocket providing
higher DNA synthesis fidelity (59). Neither model is
mutually exclusive, as both the size and rigidity of the
active site may play a role in nucleotide selectivity (60).
Based on the crystal structure of the RB69 polymerase, the
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A488L variant in Vent(exo�), analogous to the A485L
variant in Therminator, is located in the a-helix of the
fingers domain, known to play a role in binding of the
incoming nucleotide. The 488/485 amino acid sites,
however, are predicted to face away from the active site,
suggesting no direct interaction within the nucleotide
binding pocket (49). Even if the amino acid residue did
directly contact the correctly formed base pair, it is
counterintuitive that a larger leucine residue would
increase the size of the active site. These observations
suggest that nucleotide behavior with the L485 variant
of Therminator polymerase favors the flexible active site
hypothesis, resulting in lower nucleotide selectivity of
natural nucleotides. In this model, increasing the size of
the alpha substituted group of 2-nitrobenzyl-dUTP
analogs would stretch the limits of the catalytic pocket,
resulting in a tighter geometric fit for correctly paired
bases and, therefore, higher nucleotide selectivity against
mismatch incorporation. Our data, however, do not com-
pletely rule-out the role of active site size, as improved
nucleotide selectivity of the 5-(a-substituted-2-
nitrobenzyloxy)methyl-dUTP analogs was also observed
with Vent(exo�) polymerase. Ongoing kinetic studies are
underway to shed more light on the relative roles of active
site size and flexibility.

We have presented in vitro evidence that HOMedUTP
can substitute for TTP in PCR without compromise of
product yield, size, or integrity using Vent(exo�) poly-
merase (Figure 3 and Supplementary Figure S4). We
note that a PCR assay is a more stringent test in
demonstrating that HOMedU nucleotides do not alter
normal polymerase action in extending long stretches of
nucleic acids. This is due to the HOMedU nucleotide
serving the additional role of complementary templating
base during subsequent PCR cycles. Demands for the
CRT method require only the accumulation of
hydroxymethylated nucleotides into the growing primer
strand as the template strand is not regenerated. Work is
ongoing to demonstrate by in vitro assays that
read-lengths are not adversely affected by the accumula-
tion of all four hydroxymethyl nucleoside
monophosphates into the growing primer strand. We
argue that this demonstration will be important in
modeling longer read-lengths for use in NGS
technologies. To this end, we have now developed a
complete set of reversible terminators based on the
core nucleoside triphosphates of 7-deaza-7-
hydroxymethyl-20-deoxyadenosine, 5-hydroxymethyl-20-
deoxycytidine, 7-deaza-7-hydroxymethyl-20-deoxyguanosine,
and 5-hydroxymethyl-20-deoxyuridine (61,62), the results
of which are being prepared for publication. The
dye-labeled version of these 2-nitrobenzyl alkylated nu-
cleotides are called Lightning TerminatorsTM, structures
of which include the recently reported 5-(a-isopropyl-2-
nitrobenzyloxy)methyl-dUTP derivative (1).

SUPPLEMENTARY DATA

Supplementary data are available at NAR Online.
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