
Multimodal User Interfaces in the Open Agent Architecture

Douglas B. Moran

Adam J. Cheyer

Luc E. Julia

David L. Martin

SRI International
333 Ravenswood Avenue

Menlo Park CA 94025 USA
+14158596486

{moran,cheyer,julia,martin} @ai.sri.com

ABSTRACT

The design and development of the Open Agent Architecture

(OAA)l system has focused on providing access to agent-

based applications through an intelligent, cooperative, dis-

tributed, and multimodal agent-based user interfaces. The

current multimodal interface supports a mix of spoken lan-

guage, handwriting and gesture, and is adaptable to the user’s

preferences, resources and environment. Only the primary

user interface agents need run on the local computer, thereby

simplifying the task of using a range of applications from a

variety of platforms, especiall y low-powered computers such

as Personal Digital Assistants (PDAs). An important consid-

eration in the design of the OAA was to facilitate mix-and-

match: to facilitate the reuse of agents in new and unantici-

pated applications, and to support rapid prototyping by facil-

itating the replacement of agents by better versions.

The utility of the agents and tools developed as part of this

ongoing research project has been demonstrated by their use

as infrastructure in unrelated projects.

Keywords: agent architecture, multimodal, speech, gesture,

handwriting, natural language

INTRODUCTION

A major component of our research on multiagent systems

is in the user interface to large communities of agents. We

i-navedeveloped agent-based multimodal user interfaces us-

ing the same agent architecture used to build the back ends

of these applications. We describe these interfaces and the

ltarger architecture, and outline some of the applications that

have been built using this architecture and interface agents.

Permissionto make digital/hard copies of all or pafi of this material for
persorrrd or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, tbe copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy other-wise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
IU I 97, Orlando Florida USA
@1997 ACM 0-89791-839-8/96/01 ..$3.50

Sangkyu Park
Artificial Intelligence Section

Electronics and Telecommunications

Research Institute (ETRI)

161 Kajong-Dong
Yusong-Gu, Taejon 305-350 KOREA

+82 428605641

skpark@com.etri. re.kr

OVERVIEW OF OPEN AGENT ARCHITECTURE

The Open Agent Architecture (OAA) is a multiagent system

that focuses on supporting the creation of applications from

agents that were not designed to work together, thereby fa-

cilitating the wider reuse of the expertise embodied by an

agent. Part of this focus is the user interface to these ap-

plications, which can be viewed as supporting the access of

human agents to the automated agents. Key attributes of the

OAA are

●

●

b

●

●

●

Open: The OAA supports agents written in multi-

ple languages and on multiple platforms. Currently

supported languages are C, Prolog, Lisp, Java, Mi-

crosoft’s Visual Basic and Borland’s Delphi. Cur-

rently supported platforms are PCs (Windows 3.1 and

95), Sun Workstations (Solaris 1.1 and 2.x) and SGIS.

Distributed The agents that compose an application

can run on multiple platforms.

Extensible: Agents can be added to the system while

it is running, and their capabilities will become imme-

diately available to the rest of the agents. Similarly,

agents can be dynamically removed from the system

(intentionally or not).

Mobile: OAA-based applications can be run from a

lightweight portable computer (or PDA) because only

the user interface agents need run on the portable.

They provide the user with access to a range of agents

running on other platforms.

Collaborative: The user interface is implemented with

agents, and thus the user appears to be just another

agent to the automated agents. This greatly simplies

creating systems where multiple humans and auto-

mated agents cooperate.

Multiple Modalities: The user interface supports hand-
writing, gesture and spoken language in addition to the

traditional graphical user interface modalities.

61

Comcast - Exhibit 1005, page 61

● Multimodal Interaction: Users can enter commands

with a mix of modalities, for example, a spoken com-

mand in which the object to be acted on is identified by

a pen gesture (or other graphical pointing operation).

The OAA has been influenced by work being done as part

of DARPA’s 13 (Intelligent Integration of Information) pro-

gram (http://isx.corn/pub/I3) and Knowledge Sharing Effort

(http://www-ksl. stanford.edu/knowledge-sharing/) [13].

THE USER INTERFACE

The User Interface Agent

The user interface is implemented with a set of agents that

have at their logical center an agent called the User Inter-

face (U]) Agent. The User Interface Agent manages the

various modalities and applies additional interpretation to

those inputs as needed. Our current system supports speech,

handwriting and pen-based gestures in addition to the con-

ventional keyboard and mouse inputs. when speech input

is detected, the UI Agent sends a command to the Speech

Recognition agent to process the audio input and to return the
corresponding text. Three modes are supported for speech

input: open microphone, push-to-talk, and click-to-start-

talking. Spoken and handwritten inputs can be treated as

either raw text, or interpreted by a natural language under-

standing agent.

There are two basic styles of user interface. The first style

parallels the traditional graphical user interface (GUI) for an

application: The user selects an application and is presented

with a window that has been designed for the application im-

plemented by that agent and that is composed of the familiar

GUI-style items. In this style interface, the application is typ-

ically implemented as a primary agent, with which the user

interacts, and a number of supporting agents that are used by

the primary agent, and whose existence is hidden from the

user. When text entry is needed, the user may use handwrit-

ing or speech instead of the keyboard, and the pen may be

used as an alternative to the mouse. Because the UI Agent

handles all the alternate modalities, the applications are iso-

lated from the details of which modalities are being used.

This simplifies the design of the applications, and simplifies

adding new modalities.

In the second basic style of interface, not only is there no

primary agent, the individual agents are largely invisible to

the user, and the user’s requests may involve the cooperative

actions of multiple agents. In the systems we have imple-

mented, this interface is based on natural language (for ex-

ample, English), and is entered with either speech or hand-

writing. When the UI Agent detects speech or pen-based
input, it invokes a speech recognition agent or handwriting
recognition agent, and sends the text returned by that agent

to a natural language understanding agent, which produces a

logicalform representation of the user’s request, This logical

form is then passed to a Facilitator agent, which identifies

the subtasks and delegates them to the appropriate applica-

tion agents. For example, in our Map-based Tourist Informa-

tion application for the city of San Francisco, the user can ask

for the distance between a hotel and sightseeing destination.

The locations of the two places are in different databases,

which are managed by different agents, and the distance cal-

culation is performed by yet another agent.

These two basic styles of interfaces can be combined in a sin-

gle interface. In our O@ce Assistant application, the user is

presented with a user interface based on the Rooms metaphor

and is able to access conventional applications such as e-

mail, calendw, and databases in the familiar manner. In ad-

dition there is a subwindow for spoken or written natural lan-

guage commands that can involve multiple agents.

A major focus of our research is multimodal inputs, typi-

cally a mix of gesture/pointing with spoken or handwritten

language. The UI agent manages the interpretation of the in-

dividual modalities and passes the results to a Modality Co-

ordination agent, which returns the composite query, which

is then passed to the Facilitator agent for delegation to the

appropriate application agents (described in subsequent sec-

tions).

Speech Recognition

We have used different speech recognition systems, sub-

stituting to meet different criteria. We use research sys-

tems developed by another laboratory in our organization

(http://www-speech.sri.corn/) [3] and by a commercial spin-

off from that laboratory.2 We are current] y evaluating other

speech reeognizers, and will create agents to interface to

their application programming interfaces (APIs) if they sat-

isfy the requirements for new applications being considered.

Natural Language Understanding

A major advantage of using an agent-based architecture is

that it provides simple mix-and-match for the components.
In developing systems, we have used three different natural

language (NL) systems: a simple one, based on Prolog DCG

(Definite Clause Grammar), then an intermediate one, based

on CHAT [16], and finally, our most capable research system

GEMINI [6, 7]. The ability to trivially substitute one natural

language agent for another has been very useful in rapid pro-

totyping of systems. The DCG-based agent is used during

the early stages of development because grammars are eas-
ily written and modified. Writing grammars for the more so-

phisticated NL agents requires more effort, but provides bet-

ter coverage of the language that real users are likely to use,
and hence we typically delay upgrading to the more sophis-

ticated agents until the application crosses certain thresholds

of maturity and usage.

1open Agent ,&Chitecture ~d OAA ~ trademwks of SRI Intemationd. Other brand names and product names herein ~ trademarks ~d mzist-d

trademarks of their respective holders.
2NUan~eColoration (fo~erly CoronaCorp.), Building 110,333RavenswoodAvenue,MenloP~k,C.494025 (dornairr:COronacorp.corn)

62

Comcast - Exhibit 1005, page 62

Pen Input

We have found that including a pen in the user interface has

several significant advantages. First, the gestures that users

employ with a pen-based system are substantially richer than

those employed by other pointing and tracking systems (e.g.,

a mouse). Second, handwriting is an important adjunct to

spoken language. Speech recognizes (including humans)

can have problems with unfamiliar words (e.g., new names).

Users can use the pen to correct misspelled words, or may

even anticipate the problem and switch from speaking to

handwriting. Third, our personal experience is that when

a person who has been using a speech-and-gesture interface

faces an environment where speech is inappropriate, replac-

ing speech with handwriting is more natural.

Using 2D gestures in the human-computer interaction holds

promise for recreating the pen-and-paper situation where the

user is able to quickly express visual ideas while she or he

is using artother modality such as speech. However, to suc-

cessfully attain a high level of human-computer cooperation,

the interpretation of on-line data must be accurate and fast

enough to give rapid and correct feedback to the user.

The gestures-recognition engine used in our application is

fully described in [9] as the early recognition process. There

is no constraint on the number of strokes. The latest eval-

uations gave better than 9690 accuracy, and the recognition

was performed in less than half a second on a PC 486/50,

siitisfying what we judge is required in terms of quality and

speed.

In most applications, this engine shares pen data with a hand-

writing recognize. The use of the same medium to handle

two different modalities is a source of ambiguities that are

solved by a competition between both recognizes in order

tc~determine whether the user wrote (a sentence or a com-

mand) or produced a gesture. A remaining problem is to
solve a mixed input (the user draws and writes in the same

set of strokes).

The main strength of the gestures recognition engine is its

adaptability and reusability. It allows the developer to easily

define the set of gestures according to the application. Each

gesture is actually described with a set of parameters such

as the number of directions, a broken segment, and so forth.

Adding a new gesture consists of finding the description for

each parameter. If a conflict appears with an existing object,

the discrimination is done by creating a new parameter. For

a given application, as few as four parameters are typically

required to describe and discriminate the set of gestures.

We can use any handwriting recognize compatible with Mi-

crosoft’s PenWlndows.3

Modality Coordination Agent

Our interface supports a rich set of interactions between nat-

ural language (spoken, written, or typed) and gesturing (e.g.,
pointing, circling)—much richer than that seen in the put-

that-there systems. Deictic words (e.g.,Wr, them, here) can
be used to refer to many classes of objects, and also can be

used to refer to either individuals or collections of individu-

als.

The Modality Coordination (MC) agent is responsible for

combining the inputs in the different modalities to produce a

single meaning that matches the user’s intention. It is respon-

sible for resolving references, for filling in missing informa-

tion for an incoming request, and for resolving ambiguities

by using contexts, equivalence or redundancy.

Taking into account contexts implies establishing a hierarchy

of rules between them. The importance of each context and

the hierarchy may vary during a single session. In the actual

system, missing information is extracted from the dialogue

context (no graphical context or interaction context).

When the user says “Show me the photo of this hotel” and

simultaneously points with the pen to a hotel, the MC agent

resolves references based on that gesture. If no hotel is ex-

plicitly indicated, the MC agent searches the conversation

context for an appropriate reference (for example, the hotel

may have been selected by a gesture in the previous com-

mand). If there is no selected hotel in the current context,

the MC Agent will wait a certain amount of time (currently

2 to 3 seconds) before asking the user to identify the ho-

tel intended. This short delay is designed to accommodate

different synchronizations of speech and gesture: different

users (or a single user in different circumstances) may point

before, during or just after speaking.

In another example, the user says “Show me the distance

from the hotel to here” while pointing at a destination. The

previous queriei have resulted in a single hotel being focused

upon, and the MC agent resolves “the hotel” from this con-

text.4 The gesture provides the MC agent with the referent of

“here”. Processing the resulting query may involve multiple

agents, for example, the location of hotels and sightseeing

destinations may well be in a different databases, and these

locations may be expressed in different formats, requiring

another agent to resolve the differences and then compute

the distance.

Flexible Sets of Modalities

The OAA allows the user maximum flexibility in what

modalities will be used. Sometimes, the user will be on

a computer that does not support the full range of modali-

ties (e.g., no pen or handwriting recognition). Sometimes,

the user’s environment limits the choice of modalities, for

example, spoken commands are inappropriate in a meeting

where someone else is speaking, whereas in a moving ve-

hicle, speech is likely to be more reliable than handwriting.

And sometimes, the user’s choice of modalities is influenced

by the data being entered [14].

With this flexibility, the telephone has become our low-end
user interface to the system. For example, we can use the

30ur preferred recognize is Handwriterfor Windows from Communication Intelligence Corp (CIC) of Redwood City, CA.

4User feedback about which items are in focus (contextually) is provided by graphically highlighting them.

63

Comcast - Exhibit 1005, page 63

telephone to check on our appointments, and we use the tele-

phone to notify us of the arrival and content of important

e-mail when we are away from our computers.

This flexibility has also proven quite advantageous in accom-

modating hardware failure. For example, moving the PC for

one demonstration of the system shook loose a connection

on the video card. The UI agent detected that no monitor

was present, and used the text-to-speech agent to generate

the output that was normally displayed graphically.

In another project’s demonstration (CommandTalk), the des-

ignated computer was nonfunctional, and an underpowered

computer had to be substituted. Using the OAA’S innate ca-

pabilities, the application’s components were distributed to

other computers on the net. However, the application had

been designed and tested using the microphone on the local

computer, and the substitute had none. The solution was to

add the Telephone agent that had been created for other ap-

plications: it automatically replaced the microphone as the
input to the speech recognize.

Learning the System

One of the well-known problems with systems that utilize

natural language is in communicating to the user what can

and cannot be said. A good solution to this is an open re-

search problem. Our approach has been to use the design

of the GUI to help illustrate what can be said: All the sim-

ple operations can also be invoked through traditional GUI

items, such as menus, that cover much of the vocabulary.

OAA AGENTS

Overview

OAA agents communicate with each other in a high-level

logical language called the Interagent Communication Lan-

guage (ICL). ICL is similar in style and functionality to the

Knowledge Query and Manipulation Language (KQML) of

the DARPA Knowledge Sharing Effort. The differences area

result of our focus on the user interface ICL was designed to

be compatible with the output of our natural language under-

standing systems, thereby simplifying transforming a user’s

query or command into one that can be handled by the auto-

mated agents.

We have developed in initial set of tools (the Agent De-

velopment Toolkit) to assist in the creation of agents [11].

These tools guide the developer through the process, and au-

tomatically generate code templates from specifications (in

the style of various commercial CASE tools). These tools

are implemented as OAA agents, so they can interact with,
and build upon, existing agents. The common agent support
routines have been packaged as libraries, with coordinated

libraries for the various languages that we support:

These tools support building both entirely new agents and

creating agents from existing applications, including legacy

systems. These latter agents are called wrappers (or trans-

ducers); they convert between ICL and the application’s API

(or other interface if there is no API).

The Facilitator Agent

In the OAA framework, the Facilitator agents play a key

role. When an agent is added to the application, it registers

its capabilities with the Facilitator. Part of this registration

is the natural language vocabulary that can be used to talk

about the tasks that the agent can perform. When an agent

needs work done by other agents within the application, it

sends a request to the Facilitator, which then delegates it to

an agent, or agents, that have registered that they can han-

dle the needed tasks. The ability of the Facilitator to han-

dle complex requests from agents is an important attribute

of the OAA design. The goal is to minimize the informa-

tion and assumptions that the developer must embed in an

agent, thereby making it easier to reuse agents in disparate

applications.

The OAA supports direct communication between applica-

tion agents, but this has not been heavily utilized in our im-

plementations because our focus has been on aspects of ap-

plications in which the role of the Facilitator is crucial. First,

we are interested in user interfaces that support interactions

with the broader community of agents, and the Facilitator is

key to handling complex queries. The Facilitator (and sup-

porting agents) handle the translation of the user’s model of

the task into the system model (analogous to how natural lan-

guage interfaces to databases handle transforming the user’s

model into the database’s schemas). Second, the Facilitator

simplifies reusing agents in new applications. If a commu-

nity of agents is assembled using agents acquired from other

communities, those agents cannot be assumed to all make

atomic requests that can be handled by other agents: simple

requests in one application maybe implemented by a combi-

nation of agents in another application. The Facilitator is re-

sponsible for decomposing complex requests and translating

the terminology used. This translation is typically handled

by delegating it to another agent.

In the OAA, the Facilitator is a potential bottleneck if there

is a high volume of communication between the agents. Our

focus has been on supporting a natural user interface to a

very large community of intelligent agents, and this environ-

ment produces relatively low volume through the Facilitator.

In the CommandTalk application (discussed later), the mul-

tiagent system is actually partitioned into two communities:

the user interface and the simulator. The simulator has very

high volume interaction and a carefully crafted communica-

tion channel and appears as a single agent to the Facilitator
and the user interface agents.

‘lYiggers

In an increasing variety of conventionrd applications, users

can set triggers (also called monitors, daemons or watch-

dogs) to take specific action when an event occurs. How-

ever, the possible actions are limited to those provided in

5A ~lea~eof a “eHion of this SOftWm is planned.Theannouncementwiii appearon htip:llwww.ti.sri.co~~oti.

64

Comcast - Exhibit 1005, page 64

that application. The OAA supports triggers in which both

the condition and action parts of a request can cover the full

range of functionality represented by the agents dynamically

connected to the network.

In a practical real-world example, one of the authors success-

fully used agent triggers to find a new home. The local rental

housing market is very tight, with all desirable offerings be-

ing taken immediately. ‘l%us, you need to be among the first

to respond to a new listing. Several of the local newspa-

pers provide on-line versions of their advertisements before

the printed versions are available, but there is considerable

variability in when they actually become accessible. To au-

tomatically check for suitable candidates, the author made

the following request to the agent system: “When a house

for rent is available in Menlo Park for less than 1800 dol-

lars, notifi me immediately.” This natural language request
installed a trigger on an agent knowledgeable about the do-

main of World Wide Web sources for house rental listings.

At regular intervals, the agent instructs a Web retrieval agent

to scan data from three on-line newspaper databases. When

an advertisement meeting the specified criteria is detected,

a request is sent to the Facilitator for a notify action to be

delegated to the appropriate other agents.

The notify action involves a complex series of interactions

between several agents, coordinated by the Notify and Facil-

itator agents. For example, if the user is in a meeting in a

conference room, the Notify agent first determines his cur-

rent location by checking his calendar (if no listing is found,

the default location is his office, which is found from another

database). The Notify agent then requests contact informa-

tion for the conference room, and finds only a telephone

number. Subsequent requests create a spoken version of the

advertisement and retrieve the user’s confirmation password.

When all required information is collected, the Facilitator

contacts the Telephone agent with a request to dial the tele-

phone, ask for the user, confirm his identity with password

(entered by TouchTone), and finally play the message. Other

media, includlng FAX, e-mail and pager, can be considered

by the Notify agent if agents for handling these services hap-

pen to be connected to the network.

DISTRIBUTED SYSTEMS

Multiple Platforms

The OAA applications that we have implemented run on a

variety of platforms, and the exact location of individual

agents is easily changed. We currently support PCs (Wh-

dows 3.1 and 95) and Sun and SGI workstations. Our pri-

mary user interface platform is the PC, partly because it

currently offers better support for pen-based computing and

partly because of our emphasis on providing user interfaces

on lightweight computers (portable PCs and PDAs in near

future). PCs also have the advantage of mass-market GUI-
building packages such as Visual Basic and Delphi. A lesser
version of the user interface has been implemented under X

for UNIX workstations.

Even when the UI is on a PC, some of the agents in the UI

package are running elsewhere. Our preferred speech recog-

nize requires a UNIX workstation, and our natural language

agents and Modality Coordination agent have been written

for UNIX systems.

Mobile Computing

We view mobile computing not only as people moving about

with portable computers using wireless communication, but

also people moving between computers. Today’s user may

have a workstation in his office, a personal computer at

home, and a portable or PDA for meetings. In additional,

when the user meets with management, colleagues and cus-

tomers (“customers” in the broad sense of the people who

require his services), their computers may be different plat-

forms. From each of these environments, the user should be

able to access his data and run his applications.

The OAA facilitates supporting multiple platforms because

only the primary user interface agents need to be running on

the local computer, thereby simplifying the problem of port-

ing to new platforms and modality devices. Also, since only

a minimal set of agents need to be run locally, lightweight

computers (portables, PDA, and older systems) have the re-

sources needed to be able to utilize heavyweight, resource-

hungry applications.

COLLABORATION

One of the major advantages of having an agent-based inter-

face to a multiagent application is that it greatly simplifies

the interactions between the user and the application: appli-

cation agents may interact with a human in the same way

they interact with any other agent.

This advantage is readily seen when building collaborative

systems. Perhaps the simplest form of collaboration is to

allow users to share input and output to each other’s applica-

tions. This form of cooperation is inherent in the design of

the OAA: it facilitates the interoperation of software devel-

oped by distributed communities, especially disparate user

communities (different platforms, different conventions).

We are currently integrating more sophisticated styles of col-

laboration into the OAA framework, using the synchronous

collaborative technology [5] built by another group within

our organization. In the resulting systems, humans can com-

municate with agents, agents can work with other automated

agents, and humans can interact in realtime with other hu-

mans users.

APPLICATIONS AND REUSE

Two applications, the O@ce Assistant and Map-based

Tourist Information have been the primary experimental en-

vironments for this research project. The agent architecture

and the specific agents developed on this research project
have proved to be so useful that they are being used by an ex-
panding set of other projects within our organization. These

other internal projects are helping us improve the documen-

65

Comcast - Exhibit 1005, page 65

tation and packaging of our toolkits and libraries, and we are

hoping to release a version in the near future.

Some of the projects adopting the OAA have been motivated

by the availability of various agents, especially the user in-

terface agents. Some projects have gone further and used

the OAA to integrate the major software components being

developed on those projects.

Office Assistant

The OAA has been used as the framework for a number

of applications in several domain areas. In the first OAA-

based system, a multifunctional “office assistant”, fourteen

autonomous agents provide information retrieval and com-

munication services for a group of coworkers in a networked

computing environment ([4]). This system makes use of a

multimodal user interface running on a pen-enabled portable

PC, and allows for the use of a telephone to give spoken com-

mands to the system. Services are provided by agents run-

ning on UNIX workstations, many of which were created by

providing agent wrappers for legacy applications.

In a typical scenario, agents with expertise in e-mail process-

ing, text-to-speech translation, notification planning, calen-

dar and database access, and telephone control cooperate to

find a user and alert him or her of an important message. The

office assistant system provides a compelling demonstration

of how new services can arise from the synergistic combi-

nation of the capabilities of components that were originally

intended to operate in isolation. In addition, as described

earlier, it demonstrates the combination of two basic styles

of user interaction — one that directly involves a particular

agent as the primary point of contact, and one that anony-

mously delegates requests across a collection of agents — in

a way that allows the user to switch freely between the two.

In the interface for this system, the initial screen portrays

an office, in which familiar objects are associated with the

appropriate functionality, as provided by some agent. For in-

stance, clicklng on a wall clock brings up a dialogue that al-

lows one to interact with the calendar agent (that is, browsing

and editing one’s appointments). In this style of interaction,

even though the calendar agent may call on other agents in

responding to some request, it has primary responsibility, in

that all requests through that dialogue are handled by it.

The alternative style of interaction is one in which the user

might speak “Where will I be at 2:00 this afternoon?”. In

this case, the delegation of the request to the appropriate

agents — which is done by the User Interface agent in con-
cert with a Facilitator agent — reflects a style that is less

direct and more anonymous.

Map-based Tourist Information

In a number of domains, access to information can very natu-

rally be organized around a map-based interface. In creating

such interfaces for several different systems, we have found

the agent-based approach to multimodality to be extremely

useful. In these systems, all the components share a com-

mon interface-the map-and the fact that there are many

agents is entirely invisible to the user.

One example is a map-based system to provide tourist infor-

mation about San Francisco. Requests expressed in a vari-

ety of modalities can control the scrolling and zoom level of

the map, retrieve information about locations and distances,

display hotels or attractions meeting a user’s preferences, or

present detailed information in a variety of media about par-

ticular hotels or attractions. Where appropriate, this informa-

tion is derived and updated regularly from WWW sources.

Map-based interfaces provide a rich setting in which to ex-

plore the coordination of gesture with speech and traditional

GUI modalities. The tourist information system accommo-

dates the use of a variety of familiar pen gestures, such as

circling objects or regions, drawing arrows, X’ ing positions

or objects, and striking out objects. Depending on context

and timing considerations, requests can be derived from sin-

gle gestures, multiple gestures interpreted together, spoken

or handwritten input, point-and-click, or some combination

of these operations.

For example, an arrow drawn across a map from right to left

(which itself is recognized from two or three pen strokes) is

interpreted as a request to scroll the map. The same effect

may be achieved by speaking “scroll left”. Display of hotels

can be obtained by writing or speaking “Show hotels”, or,

perhaps, “Show hotels with a pool”. The distance between

two objects or locations may be obtained by circling, X’ing,

or clicking on each of them, and then drawing a straight line

between them. Alternatively, one can speak “Show the dis-

tance fmm here to here”, while selecting two locations, or

one can write “distance” either before or after selecting two

objects.

This system, and the organization of the input recognition

agents, is described in detail in [2]. A related system is de-

scribed in [15].

CommandTalk

CommandTalk, a system in quite a different domain than

tourism, was able to make use of the same approach to

the map-based integration of speech with other modalities.b

In the CommandTalk system, currently installed at the Ma-

rine Corps Air Ground Combat Center at Twentynine Palms,

CA, a collection of OAA-enabled agents provides a spoken-
English interface to a map-based simulation of armed forces

[12]. CommandTalk has proven useful in providing realism

to scenarios used in training military commanders. The sim-

ulator is roughly 500,000 lines of code that was provided to

the interface developers. Within 2 weeks of receiving the

simulator code, they were able to demonstrate a spoken lan-

guage interface to the basic functionality of the package by

creating an agent interface to that portion of the simulator’s

6 In ~he ~Me of c~~~~dT& ~e~tu~ hm not yet been a factor,but there has been an emphasis on the comprehensiveuseof speech,in combinationwi~

traditional GUI modahdes.

66

Comcast - Exhibit 1005, page 66

functionality and then adapting the existing user interface

agents to that domain. After the early prototype had demon-

strated the utility of the concept, a more extensive analy-

sis was conducted of the task and the commands used, and

more capable prototypes were developed. One of the sig-

nificant enhancements was the replacement of our simplest

natural language agent (DCG-based) with our most sophisti-

cated (based on GEMINI [6, 7]).

Summarization of Conversation

A system that summarizes conversations provided a novel

opportunity to use two instances of a speech recognition

agent, in conjunction with a single instance of a text process-

ing agent ([10]). In this system, MIMI, two Japanese speak-

ers engage in a conversation, such as, for example, an inquiry

about room availability at a hotel. Each speaker is on a sepa-

rate microphone, and each microphone feeds into a separate

speech recognition agent. The output streams of these agents

are both fed into a text processing agent, adapted especially

for this task. Following the completion of the conversation,

the text processing agent is able to print out a summary of

what was discussed and agreed upon.

In constructing this system, as with CommandTalk, the abil-

ity to reuse and reconfigure preexisting user interface agents,

in conjunction with newly created agents, afforded a sig-

nificant savings in system construction time. The English-

language speech recognize was replaced with a Japanese-

language version, and the natural language understanding

agent that generated commands to the rest of the system was

replaced by an agent that analyzed and stored the summary

of the conversation.

Air Travel Information System

Web-based interfaces can readily be integrated into an agent-

based system. At the same time that the agent system ben-

efits from the universal accessibility of a Web interface, the

HTML paradigm is extended and strengthened by the use of

persistent interface agents to maintain the state of a sequence

of interactions.

In one such system, user interface agents have been used to

provide a Web/telephone interface to a spoken language Air

Travel Information System (ATIS) [1]. In addition to speech

recognition and natural language understanding agents, this

system involves a telephone control agent, a response gener-

ation agent, and a User Interface agent. The initial version

was based on HTML. The current version uses Java to pro-

vide more incremental feedback to the user.7

Multi-robot Control

SRI’s family of mobile robots have been integrated as agents

within the OAA framework. As such, robots may access,

and be accessed by, existing OAA services, including cor-

porate databases, text-to-speech generation, and telephone
interfaces. In the Robot Competition at the 1996 AAAI con-

7It maybeaccessedat http://Www-speech.sri.cotidemoslatis.htrnl

ference, OAA’S capabilities were used by the SRI team to

coordinate the activities of three robots. SRI won the Office

Navigation task, completing it much faster than any of the

other competitors (who were using only single robots) [8].

The multimodal map application was minorly modified to

provide monitoring and control of the robots as they navi-

gate a building. The screen displays a blueprint-style map of

the area in which the robots operate, and the positions of the

movable objects (robots and the objects that they can manip-

ulate) are updated in realtime. Although the input modalities

are the same as the earlier application (Map-based Tourist

Information), there are noticeable differences. First, the in-

puts are predominantly commands, instead of information

retrieval (queries), Second, some pen gestures mean differ-

ent things: for example, with the robots, an arrow is used

to indicate orientation (“Robot one, face this direction”) or

direction (“Move this way”).

Emergency Response System

Another system for which a map-based interface has been

useful is a prototype system of pen-based mobile computing

units for use in the field by teams responding to a disaster

such as an earthquake. In this system, a database of maps

is available on each mobile unit (to avoid having to down-

load sizable bitmaps), but information about specific loca-

tions and structures is stored in a centralized set of databases.

This information can be retrieved and/or updated as appro-

priate by each mobile unit. The centralized database server

also receives updates from hospitals and clinics as to their

status, capacity, and patients being treated.

For example, as a response team learns the condition of the

streets and structures in its region, it is able to record this in-

formation on the map-based interface, using point-and-click

in combination with handwriting or typing, and then upload

the data to the central databases. When a street or structure

is found to be unsafe, that information can be relayed to all

mobile units.

In the case in which an injured person is found, the system

allows for the entry of some basic facts about the injury. Fol-

lowing that, an agent operating on the central server makes

a determination of what hospital or clinic would be most ap-

propriate for the person, based on current status reports, and

this recommendation is then returned to the response team.

This system has both Japanese-language and English-

language interfaces.

CONCLUSIONS

The OAA has proven to be useful in constructing sophisti-

cated systems because it provides the flexibility to combine

applications that were not originally envisioned as a pack-

age. The OAA differs from much of the other research on

distributed agents in its focus on providing multimodal user

interfaces to systems assembled from disparate agents. This
focus results in a tradeoff which is a major limitation of this

67

Comcast - Exhibit 1005, page 67

architecture: while the Facilitator agent is key to coopera-

tion between independently developed agents, it is a poten-

tial bottleneck in systems where agents need high-volume,

low-delay interactions (discussed in The Facilitator Agent).

In one existing application (and one under consideration), a

composite approach has provided a viable solution for this

limitation.

ACKNOWLEDGMENTS

This paper is based on work that was supported in part by

a contract to SRI from the Electronics and Telecommunica-

tions Research Institute (Korea). Philip R. Cohen (now at the

Oregon Graduate Institute) was project leader until August

1994, and was responsible for many of the design decisions

in the systems described here. Any opinions expressed in

this paper are strictly those of the authors.

REFERENCES

1

2

3

4

5

6

Harry Bratt, John Dowding, and Kate Hunicke-

Smith. The SRI telephone-based ATIS system. In

Proc. of the ARPA Spoken Lunguage System Technol-

ogy Workshop, Austin, Texas, January 1995. Also

http://www.ai.sri.com/natural-language/projects/arpa-

sls/apps.html.

Adam Cheyer and Luc Julia. Multimodal maps: An

agent-based approach. In Proc. of the International

Conference on Cooperative Multimodal Communication

(CMC/95), Eindhoven, The Netherlands, May 1995.

Also http://www.ai.sri.com/*oaa/ + “Bibliography”.

Michael Cohen, Hy Murveit, Jared Bernstein, Patti Price,

and Mitchel Weintraub. The DECIPHER speech recog-

nition system. In IEEE ICASSP, pages 77–80, 1990.

Philip R. Cohen, Adam J. Cheyer, Michelle Wang, and

Soon Cheol Baeg. An open agent architecture. In O. Et-

zioni, editor, Pmt. of the AAA1 Spring Symposium Se-

ries on Sojlware Agents, pages 1–8, Stanford, California,

March 1994. American Association for Artificial Intelli-

gence.

Earl Craighill, Martin Fong, Keith Skinner, Ruth

Lang, and Kathryn Gruenefeldt. SCO(Yl? An object-

oriented toolkit for multimedia collaboration. In

Proc. of the ACM MULTIMEDIA 94 Conference,

pages 41-49, San Francisco, CA, October 1994.
Also http://www.std.sri .com/public/ftp/ACE/Papers/-

scooT94.ps.z.

John Dowding, J. Mark Gawron, Douglas Appelt,

John Bear, Lynn Cherny, Robert Moore, and Douglas

Moran. GEMINI: A natural language system for spoken-

language understanding. In Pmt. of the 31st Annual

7

8

9

Meeting of the Association for Computational Linguis-

tics, pages 54-61, Ohio State University, Columbus,

Ohio, 22–26 June 1993.

John Dowding, Robert Moore, Francois Andry, and

Doug las Moran. Interleaving syntax and semantics in an

efficient bottom-up parser. In Pmt. of the 32nd Annual

Meeting of the Association for Computational Linguis-

tics, pages 110-116, New Mexico State University, Las

Cruces, New Mexico, 27 June – 1 July 1994.

Didier Guzzoni, Adam Cheyer, Luc Julia, and Kurt

Konolige. Report on the SRI Pioneer Robot Team at

AAAI-96 Robotics Competition and Exhibition (tenta-

tive title). To appear in AI Magazine, Whtter 1996 or

Spring 1997.

Luc Julia and Claudie Faure. Pattern recognition and

beautification for a pen based interface. In ~CDAR’95,

pages 58–63, Montreal, Canada, 1995.

10 Megumi Kameyama, Goh Kawai, and Isao Arima.

11

12

13

14

15

A ~eal-time system for summarizing human-human

spontaneous spoken dialogues, In Pmt. of the

Fourth International Conference on Spoken Lan-

guage Processing (ICSLP-96), October 1996. Also

http:llwww.ai.sri. comi~megumil + “My publications”.

David L. Martin, Adam J. Cheyer, and Gowang-Lo Lee.

Agent development tools for the Open Agent Architec-

ture. In Pmt. of the First International Conference on

the Practical Application of IntelligentAgents and Multi-

Agent Technology, pages 387404, London, April 1996.

The Practical Application Company Ltd.

Robert Moore, John Dowding, Harry Bratt, J.Mark

Gawron, Yonael Gorfu, and Adam Cheyer. Com-

mandtalk: A spoken-language interface for battlefield

simulation. Technical report, Artificial Intelligence

Center, SRI International, 21 June 1996. Also

http://www.ai.sri .comAtatural-language/projects/arpa-

sls/apps.html.

R. Neches, R. Flkes, T. Finin, T. Gruber, R. Patil, T. Sen-

ator, and W. Swartout. Enabling technology for knowl-

edge sharing. Al Magazine, 12(3), 1991.

S. L. Oviatt. Pen/voice: Complementary multimodal

communication. In Pmt. of Speech Tech ’92, pages 238-
241, 1992.

S. L. Oviatt. Multimodal interfaces for dynamic interac-

tive maps. In Pmt. of CHI 96, Vancouver; Canada, 1996.

Assoc. for Computing Machinery.

16 F. C. N. Pereira. Logic for Natural Language Analysis.

PhD thesis, U. of Edinburgh, 1983.

68

Comcast - Exhibit 1005, page 68

