
CAIA Technical Report 060410C                                        March 2006  page 1 of 17 

 

Evaluating Machine Learning Methods for Online 

Game Traffic Identification

Nigel Williams, Sebastian Zander, Grenville Armitage 

Centre for Advanced Internet Architectures (CAIA). Technical Report 060410C 

Swinburne University of Technology 

Melbourne, Australia 

{niwilliams,szander,garmitage}@swin.edu.au 
  

Abstract—Online gaming is becoming more and more prominent 

in the Internet, in terms of both traffic volume and as a potential 

source of revenue. Quality of Service (QoS) requirements for 

highly interactive games are much stricter than for traditional 

Internet applications, such as web or email. For effective QoS 

implementations that are transparent to users and game 

applications, an accurate and reliable method of classifying game 

traffic flows in the network must be found. Current methods 

such as port number and payload-based identification exhibit a 

number of shortfalls. A potential solution is the use of Machine 

Learning techniques to identify game traffic based on payload 

independent statistical features such as packet length 

distributions. In this paper we evaluate the effectiveness of the 

proposed approach. We compare the accuracy and performance 

of different Machine Learning techniques and we also use 

feature selection techniques to examine which features are most 

important in discriminating game traffic from other traffic. We 

find that machine learning algorithms are able to separate online 

game traffic from other network traffic with very high (>99%) 

accuracy. We also show that feature selection, while reducing 

accuracy, allows games to be identified with fewer features and 

substantial speed gains. 
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I.INTRODUCTION 

The Internet is experiencing an increase in the use 
and commercialisation of interactive applications such 
as telephony and online gaming. Online gaming in 
particular is expected to become a large source of 
income, through either subscription-based games or 
dedicated gaming services. Internet Service Providers 
may also charge a premium for Quality of Service 
(QoS)-enhanced accounts targeted at gamers. 

Highly interactive online games, such as First Person 
Shooter (FPS) games, have a narrow tolerance to 
network issues such as delay, jitter and packet loss (see 
[1], [2]) necessitating more rigid QoS compared to the 
best effort service used for traditional Internet 
applications such as web or email. In order for QoS to be 
effective however, an accurate and timely method of 
identifying and classifying network gaming flows is 
required. As it is unlikely that game applications will 
ever explicitly signal their QoS demands to the network, 

the network must identify game flows and establish 
adequate QoS for these flows. Once highly interactive 
game traffic can be identified it can be given a higher 
priority over other traffic in the network. We presented 
the architecture and advantages of such a system in [3]. 

Current popular methods of classifying network 
applications include TCP/UDP port-based identification, 
and payload-based identification. The latter can be 
further divided into protocol decoding and signature-
based identification. With protocol decoding the 
classifier actually decodes the application protocol while 
signature-based methods search for application specific 
byte sequences in the payload. 

Port-based classification systems are moderately 
accurate at best and will become less effective in the 
near future.  For example, a server hosting multiple 
games or instances of the same game might use an 
arbitrary port rather than the specified default port, 
making port-to-application mappings unpredictable. 
Payload-based classification relies on specific 
application data, making it difficult to detect a wide 
range of applications or stay up to date with new 
applications. In addition, the process of creating rules 
for signature-based classification must often be done by 
hand, which can be very time consuming. 

Machine learning (ML) techniques [5] provide a 
promising alternative through classifying flows based on 
application protocol (payload) independent statistical 
features. The features used in this study are flow 
characteristics such as packet length and inter-arrival 
times. This approach does not require packet payload 
and the classifier can be trained automatically assuming 
a representative training dataset can be obtained. A more 
general introduction to the problem is presented in [6] 
and [7]. 

We have previously used a wide range of machine 
learning algorithms to separate common network 
applications, such as web and mail traffic [24]. In this 
paper we apply several of the better performing 
algorithms to the task of separating network games from 
generic (i.e. common) network traffic. Although this is 
not the main focus we also investigate how effectively 
different games can be separated from each other. As the 
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features used in classification have a crucial impact on 
accuracy we also evaluate and compare performance of 
the algorithms using Correlation-Based Feature 
Selection (CFS).  

For our evaluation we use gaming data captured by 
members of CAIA [8] and Mark Claypool [9]. ‘Generic’ 
traffic examples were taken from several publicly 
available traffic traces. We predominantly focus on First 
Person Shooter (FPS) games as these fast-paced games 
have the most stringent QoS requirements. However, we 
have also included some data of a Real Time Strategy 
(RTS) game. The games tested were from the PC and 
Xbox platforms. It is important to include Xbox traffic 
as current and next-generation console devices such as 
the Xbox 360 and PlayStation 3 are expected to produce 
a significant share of online gaming traffic [10]. 

We find that some algorithms are able to separate the 
different games from each other and other traffic with 
very high (>99%) accuracy. Results were also 
encouraging when using a reduced number of features 
(after feature selection). However, while the overall 
accuracy of separating game from non-game traffic is 
similar, the accuracy for detecting some individual 
games is poor.  

We found that all of the ML techniques seem to be fast 
enough for real-time classification of a fairly large 
number of simultaneous flows (at least several 
thousands per second). Furthermore, most of the 
algorithms can train fast enough to allow for frequent 
updates of the classifier (training took no more than half 
an hour). 

The paper is structured as follows. Section 2 discusses 
the shortfalls of current classification approaches and 
outlines our machine learning based approach. Section 3 
describes related work. Section 4 and 5 describe the 
feature selection and ML techniques we use. Section 6 
describes our datasets and approach. Section 7 presents 
the results of the evaluation and Section 8 concludes and 
outlines future work. 

II. CURRENT CLASSIFICATION TECHNIQUES 

A. Port Numbers 

The oldest and still most common technique is based on 
the inspection of known port numbers. While some 
applications use symmetric ports (all communicating 
peers use the same port number), many client-server 
applications such as the web are port asymmetric (only 
the server is using the well-known port whereas clients 
use dynamic ports). Therefore in this paper we refer to 
either port numbers or the server port as the port that 
identifies an application. 

The Internet Assigned Numbers Authority (IANA) [11] 
assigns the well-known ports from 0-1023 and registers 
port numbers in the range from 1024-49151. Many 
applications do not have IANA assigned or registered 

ports however and only utilise ‘well known’ default 
ports. Often these ports overlap with IANA ports and an 
unambiguous identification is no longer possible. A port 
database [12] that lists not only the IANA ports but also 
ports reported by users for different applications shows 
that many applications have overlapping ports in the 
IANA registered port range. As more and more 
applications emerge, this overlap will increase since the 
port number range is not likely to increase.  

Port-space overlap is also caused by users running 
applications with well-known ports on arbitrary ports to 
bypass port-based filters or hide traffic. Furthermore 
applications such as passive FTP and video/voice 
communication choose ports dynamically. 

In general online games have only a commonly known 
default port. As these ports are not IANA registered, 
there is potential for other applications to also use the 
same port. Often online gaming servers run multiple 
servers on a single physical host (IP address), which 
means every server must run on a different port and 
therefore many servers run on non-default ports.    

B. Protocol Decoding 

A more reliable technique used in many current industry 
products involves stateful reconstruction of session and 
application information from packet content (e.g.[13]). 
This technique avoids reliance on fixed port numbers 
and provides very accurate and reliable application 
identification, but imposes significant complexity and 
processing load on the traffic identification device. It 
must be kept up-to-date with extensive knowledge of 
application semantics and network-level syntax, and 
must be powerful enough to perform concurrent analysis 
of a potentially large number of flows.  

This approach can be difficult or impossible when 
dealing with proprietary protocols or encrypted traffic. 
Another problem is that direct analysis of session and 
application layer content may represent an explicit 
breach of organisational privacy policies or violation of 
relevant privacy legislation. 

This method currently provides the highest accuracy and 
reliability for classifying network traffic to 
corresponding applications. The major problems of this 
method are the performance required (especially 
considering the ever-increasing network bandwidths) 
and the effort required for implementing and keeping the 
protocol definitions up to date. In our opinion this 
method seems only feasible for few applications when 
the incentives to provide reliable classification are very 
high.  

As many game protocols are not openly specified (to 
prevent players from cheating), protocol definitions for 
online games can only be obtained through reverse 
engineering (not always a straightforward task). 
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C. Signature-based Approaches 

To overcome the inefficiencies of protocol decoding 
some researchers have proposed the use of signature-
based methods. These methods search packet payload 
for the characteristic patterns of specific applications. 
The advantage of this approach is that it can be more 
effective than pure port-based classifications and more 
efficient than protocol decoding (though less accurate). 
Overall, signature-based methods provide a very good 
trade-off between resource efficiency and classification 
performance. 

This method is still protocol dependant however, and as 
with payload inspection signatures must be developed 
using protocol specifications or through reverse 
engineering. There are also a number of ways to defeat 
simple signature-based detection (e.g. [43]). Signatures 
cannot be used on encrypted data. 

This approach seems feasible for online games but very 
cumbersome for the scenario in which real-time 
interactive flows need to be separate from non-real-time 
flows, as signatures would need to be developed for 
every game (or alternatively for every non-game). 

III. ML-BASED CLASSIFICATION 

A. Approach 

Figure 1 visualises a machine learning based 
classification architecture. Training input data can be 
taken from previously captured traffic traces (or possibly 
from live capturing). Then packets are grouped into 
flows based on IP addresses, TCP or UDP ports and 
protocol and the flow characteristics (features) are 
computed. The flow data used for training each class 
must be representative for the particular network 
application. For supervised learning algorithms the flow 
data needs to be labelled with class labels corresponding 
to the network applications prior to training. For large 
data traces it is necessary to limit the number of flows 
passed to the learning algorithm by sampling flows 
before training.  

The flow characteristics and a set of algorithm 
parameters are then used to build a classification model 
(see Figure 1 top). The algorithm parameters range from 
very simple to very complex and depend on the ML 
algorithm used. For some algorithms no parameters may 
be needed. Once the classifier has been trained new 
flows can be classified based on their statistical 
attributes (see Figure 1 bottom). New flows are taken 
from live network capture or from trace files. Again 
sampling can be used to only classify a fraction of the 
overall flow data for example if the classification 
performance is insufficient. The results of the 
classification process can be used to map network traffic 
to different QoS classes, or other tasks such as trend 
analysis. 
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Figure 1: ML-based flow classification approach: learning 

phase (top) and classification phase (bottom) 

B. Assessing Performance 

There are several approaches to testing the accuracy 
of ML algorithms. We use the common method of k-fold 
cross validation. In this process the data set is divided 
into k subsets. Each time, one of the k subsets is used as 
the test set and the other k-1 subsets are put together to 
form the training set. Error statistics are calculated as the 
average across all k trials. This allows an overall 
indication of how well the classifier will perform on 
unseen data.  

We use three standard metrics to evaluate the 
performance:  

1. Accuracy is the percentage of correctly classified 
instances over the total number of instances. 

2. Precision is the number of class members classified 
correctly over the total number of instances 
classified as class members. 

3. Recall (or true positive rate) is the number of class 
members classified correctly over the total number 
of class members. 

A confusion matrix provides the basis for the 
evaluation metrics and contains information about actual 
and predicted classifications for each class. Table 1 
shows the confusion matrix for a two-class classifier 
(classes - and +). 

Table 1: Confusion matrix 

Assignment z  

Label l 
- + 

- TN FP 

+ FN TP 

PAN -- 1010 
Palo Alto Networks, Inc.  v.  Selective Signals, LLC 

Page 3 of 17



CAIA Technical Report 060410C                                        March 2006  page 4 of 17 

 

Each instance is associated with a label l, which 
accounts for the true class. The classification produces 
an assignment z indicating whether it believes an object 
to belong to a certain class. Then for each instance there 
are four possible outcomes: TP stands for true positive, 
TN stands for true negative, FP stands for false positive 
and FN stands for false negative. 

Accuracy is computed with the following formula: 

TP TN
a

FP TP FN TN

+=
+ + +

   (9) 

Precision is calculated using the following formula: 

TP
p

TP FP
=

+
     (10) 

The following formula is used for recall: 

TP
r

TP FN
=

+
     (11) 

In addition to the standard overall accuracy, precision 
and recall metric the processing performance of the 
algorithms is also evaluated. Two performance metrics 
were measured, defined below:  

Classifications per second: The number of instances 
that the algorithm is able to classify each second. Speed 
is important to perform near real-time classification on 
large numbers of simultaneous networks flows. 

Build Time: The time required to build a 
classification model. Building the classifier can be done 
offline but as building times may reach several days for 
certain classifiers, shorter build times may be more 
convenient. 

IV. RELATED WORK 

The idea of using ML techniques for flow classification 
was initially introduced in the context of intrusion 
detection [14]. The authors evaluated how likely an 
identified flow was an intrusion based on the flow 
attributes of duration, number of packets and bytes using 
a decision tree as classifier. Although this work is not 
directly related to ours it is one of the earliest examples 
of using ML techniques in the area of computer 
networks. Since then many researchers have investigated 
the use of various ML methods for intrusion detection. 

The authors of [15] use Principal Component Analysis 
(PCA) and density estimation to classify traffic into 
different applications. They use the distributions of two 
flow attributes: packet length and packet inter-arrival 
time. First they project each packet into a 2D bin matrix 
based on its length, the inter-arrival time and the 
direction of the packet and the previous packet. They 
then use PCA to reduce the high dimensional space and 
binning density estimation to learn each flow type from 
three PCA. The classification works in a similar way. 
After PCA the probability of a flow being an application 

is computed for the learned density of all applications 
and the application with the highest probability is select. 
The evaluation is based on a set of roughly 17,000 flows 
from two hours, ignoring flows with less than 10 
packets. The false negative error rates are between 0% 
and 7.5%. The authors study traffic of the following 
well-known ports: FTP, SSH, RSH, telnet, DNS, SMTP, 
rlogin, ICMP and IRC.  

In [16] the authors use nearest neighbour (NN) and 
linear discriminate analysis (LDA) to successfully map 
different applications to different QoS classes using four 
different attributes: average packet size, root mean 
square packet size, average duration, inter-arrival 
variability. The paper investigates the following 
applications: DNS, FTP data, HTTP over SSL, Kazaa, 
Realmedia and telnet. The authors do not use web traffic 
for the learning but show that web traffic falls into 
different classes and is difficult to separate from several 
of the other applications. The classification errors 
reported are between 2% and 13%. The flow attributes 
used in the study have not been computed based on 
single flows but are the mean values of all flows of a 
particular application aggregated over 24 hour periods.  

The Expectation Maximization (EM) algorithm is used 
in [17] to cluster flows into different application types 
using a fixed set of attributes. The algorithm was found 
to separate traffic into a small number of basic classes. 
Cross validation was used and identified similar sets of 
classes across different parts of the same trace and 
different traces. However, from their evaluation it is not 
clear what influence different attributes and EM 
parameters have. Also, as the results of the clustering 
were not evaluated it is unclear as to how good the 
clustering was.  

In [18] the authors use a simulated annealing EM 
algorithm to classify traffic flows based on their size 
(e.g. mice and elephants). The authors conclude that 
their approach produces more meaningful results than 
previous threshold-based methods.  

We proposed an ML-based approach for identifying 
different network applications in [6] using unsupervised 
learning. This approach is based on the autoclass [19] 
algorithm, which is based on Bayesian classification and 
the EM algorithm. The evaluation is based on random 
samples of flows obtained from four large 24-hour trace 
files. We have investigated the performance of 
clustering using the following applications: FTP data, 
SSH, DNS, SMTP, Web, Napster, AOL messenger and 
Half-life. We have shown that some separation between 
the different applications can be achieved and some 
applications can be separated more effectively (e.g. 
Half-life) than others (e.g. web). 

The authors of [20] use a similar approach based on the 
Naïve Bayes classifier and a large number of flow 
attributes. Although only one data set is used the flows 
have been hand-classified allowing a very accurate 
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evaluation. In their study it is not clear what influence 
the different attributes have on the classification. 

Research on combining different non-ML techniques to 
identify network applications is presented in [21]. The 
work is based on the same hand-classified data set as 
[20]. The authors found that high classification accuracy 
can only be achieved using a combination of techniques. 
They also find that using the server port alone allowed 
for an average of 70% of the flows and bytes to be 
classified correctly. Some individual applications have 
higher accuracy for instance 80% for web traffic and 
96% for mail traffic. However, high classification rates 
(>95%) could only be achieved using packet content in 
the classification process. 

The authors of [22] have developed a method that 
characterises host behaviour on different levels to 
classify network traffic into different application types. 
The social level captures the behaviour of a host in terms 
of the number of other hosts it is communicating with. 
At the functional level the functional role of a host is 
considered, for example if a host is a provider or 
consumer of a service. At the application level the 
transport layer interactions between hosts is used. An 
evaluation based on three real traces shows that 80%-
90% of the traffic could be identified with more than 
95% accuracy. 

V. FEATURE SELECTION TECHNIQUES 

A feature set describing a data instance might range in 
size from two to several hundred features. The 
representative quality of this feature set greatly 
influences the effectiveness of the ML algorithm. It is 
therefore desirable to carefully select the number and 
type of features used to train the ML algorithm, a 
process known as feature selection. The benefits of 
feature selection are two-fold. Reducing the number of 
features decreases learning and classification times, 
while the removal of irrelevant or redundant features can 
also increase the classification accuracy. 

Feature selection algorithms can be broadly classified 
into the filter model or wrapper model [23]. Filter model 
algorithms use a custom metric to rate and select 
features and provide feature subsets that are not biased 
towards any particular ML algorithm. The wrapper 
method evaluates the performance of different subsets 
using specific ML algorithms hence subsets are 
optimised towards the algorithm used. A number of 
subset search techniques can be used to generate feature 
subsets for the evaluators (see section V.B). 

In this study we use the Correlation-based Feature 
Selection (CFS) filter technique. For further information 
regarding the use of other filter and wrapper methods for 
traffic flow statistics, see [24]. 

A. Correlation-Based Feature Selection (CFS) 

The CFS algorithm [25] uses an evaluation heuristic that 
examines the usefulness of individual features along 
with the level of inter-correlation among the features. 
High scores are assigned to subsets containing attributes 
that are highly correlated with the class and have low 
inter-correlation with each other. 

Conditional entropy is used to provide a measure of the 
correlation between each feature and the class and 
between features within the class. If H(X) is the entropy 
of a feature X and H(X|Y) the entropy of a feature X 
given the occurrence of feature Y the correlation 
between two features X and Y can then be calculated 
using the symmetrical uncertainty:  

)(

)|()(
)|(

YH

YXHXH
YXC

−=    (1) 

The class of an instance is considered to be a feature. 
The goodness of a subset is then determined as: 

ii

ci

subset

rkkk

rk
G

)1( −+
=     (2) 

where k is the number of features in a subset, 
cir the 

mean feature correlation with the class and 
iir the mean 

feature correlation. The feature-class and feature-feature 
correlations are the symmetrical uncertainty coefficients 
(Equation 3). 

B. Search Techniques 

CFS as used in the study requires a search algorithm to 
provide subsets from the feature space. The following 
common search techniques were used: 

� Greedy 

� Best First 

� Genetic 

The Best First and Greedy search techniques require a 
starting point and search direction to be specified. We 
use forward and backward searches.  A search that 
begins with zero features and increases in size on each 
iteration is known as a forward search. Starting with all 
features and reducing the subset size on following 
iterations is known as a backward search.  

Greedy 
Greedy search considers changes local to the current 
subset through the addition or removal of features. For a 
given ‘parent’ set, a greedy search examines all possible 
‘child’ subsets through either the addition or removal of 
features. The child subset that shows the highest 
goodness measure then replaces the parent subset, and 
the process is repeated. The process terminates when no 
more improvement can be made.  
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Best First 
Best First search is similar to greedy search in that it 
creates new subsets based on the addition or removal of 
features to the current subset. However, it has the ability 
to backtrack along the subset selection path to explore 
different possibilities when the current path no longer 
shows improvement. To prevent the search from 
backtracking through all possibilities in the feature 
space, a limit is placed on the number of non-improving 
subsets that are considered. In our evaluation we chose a 
limit of five.  

Genetic 
A Genetic search attempts to find an optimal solution 
using evolutionary concepts [26]. An initial population 
of individuals (solutions) is generated at random or 
heuristically. In every evolutionary step, known as a 
generation, the individuals in the current population are 
decoded and evaluated according to some predefined 
quality criterion (fitness function). To form a new 
population (the next generation), individuals are selected 
according to their fitness. Population selection schemes 
ensure that only high-fitness (good) individuals stand a 
better chance of ‘reproducing’, while unsuitable 
individuals are more likely to disappear.  

Selection alone cannot introduce any new individuals 
into the population, i.e. it cannot find new points in the 
search space. These are generated by genetically 
inspired operators, of which the most well known are 
crossover and mutation. We chose an initial random 
subset population of 20, and performed 20 evolutionary 
steps. The crossover probability used was 0.6, while the 
probability of subset mutation was 0.033.  

VI. MACHINE LEARNING ALGORITHMS 

We use a number of supervised ML algorithms. As 
previously described, a supervised algorithm forms a 
model based on training data and uses this model to 
classify unseen new data. In this study we focus on well-
known algorithms that have shown good results when 
applied to other problems. Furthermore, we focus on 
algorithms that do not require ‘magic’ parameters to be 
tuned. Therefore we do not test neural networks or 
support vector machines, as even though very good 
results might be obtained, optimisation of the many 
parameters is tedious and risks biasing the classifier to 
the training dataset. We use the following algorithms: 

� C4.5 Decision Tree 

� Naïve Bayes 

� Naïve Bayes Tree 

� Bayesian Networks  

The algorithms are briefly described in the following 
sections. For more detailed descriptions the reader is 
refereed to the related work. 

A. C4.5 Decision Tree 

The C4.5 algorithm [27] creates a decision model based 
on a tree structure of nodes, branches and leaves. Nodes 
in the tree represent features, with branches representing 
possible values connecting features. A series of nodes 
and branches is terminated with a leaf, which represents 
the class.  Determining the class of an instance is simply 
a matter of tracing the path of feature nodes and 
branches to the terminating leaf node. 

C4.5, as other decision tree learners, uses the ‘divide and 
conquer’ method to construct a tree from a set of S 
training instances. If all cases in S belong to the same 
class, the decision tree is a leaf labelled with that class. 
Otherwise the algorithm will use some test to divide S 
into several non-trivial partitions. Each of the partitions 
becomes a child node of the current node and the test 
outcomes to separate S are assigned to the branches.  

C4.5 uses two main types of tests each involving only a 
single attribute A. In case of discrete attributes the test is 
A=? with one outcome for each value of A. For numeric 
attributes the test is A≤θ where θ is a constant threshold 
Possible threshold values are found by sorting the 
distinct values of A that appear in S and then identifying 
a threshold between each pair of adjacent values.  

To find the optimal partitions of S C4.5 relies on greedy 
search and selects the candidate test set that maximizes a 
heuristic splitting criterion. C4.5 uses entropy based gain 
ratio to select the best split. If SCj is frequency of 
instances in S that belong to class Cj the information 
content that identifies the class of an instance in S is: 

( ) log( )Cj Cj

j

I S S S= −∑                                               (3) 

After S is partitioned into subsets by a test T the 
information gain is: 

( , ) ( ) ( )
i

i

i

S
G S T I S I S

S
= −∑                                      (4) 

A problem with this test is that it favours large numbers 
of partitions e.g. G(S,T) is maximised by a test in which 
each Si contains a single instance. The gain ratio 
criterion sidesteps this problem by taken the gain ratio of 
the partition into account: 

( , ) ( , )

( , )
log

i i

i

G S T G S T

P S T S S

S S

=
 

−   
 

∑
                                     (5) 

The divide and conquer approach partitions the data 
until every leaf contains instances from only one class or 
a further partition is not possible e.g. because two 
instances have the same features but different class. If 
there are no conflicting cases the tree will correctly 
classify all training instances. However this close fitting 
of the training data leads to a decrease of the prediction 

PAN -- 1010 
Palo Alto Networks, Inc.  v.  Selective Signals, LLC 

Page 6 of 17



CAIA Technical Report 060410C                                        March 2006  page 7 of 17 

 

accuracy on unseen instances. C4.5 attempts to 
generalise the classifier by removing some structure 
from the tree after it has been built. Pruning is based on 
the estimated true error rates. After building a classifier 
the ratio of misclassified instances and total instances 
can be viewed as the real error. But this error is 
minimised because the classifier was constructed 
specifically for the training instances and therefore not 
useful. Instead of using the real error the C4.5 pruning 
algorithm uses a more conservative estimate. This 
estimate is the upper limit of a confidence interval 
constructed around the real error probability. With a 
given confidence CF The real error will be below the 
upper limit with 1-CF.  

C4.5 prunes a tree in a single bottom up pass. For each 
tree C4.5 computes the upper bound of the error for the 
whole tree and the errors for all sub trees and leaves. 
Subtree replacement will replace the tree with a single 
leaf if the estimated error for the whole tree is lower 
than the weighted sum of the errors of the leaves. 
Subtree raising will lift a subtree if the estimated error of 
the new tree will be less than the estimated error of the 
subtree. 

In our test the confidence level is 0.25 and the minimum 
number of instances per leaf is set to two. We use 
subtree replacement and subtree raising when pruning.  

B. Naïve Bayes 

Naïve Bayes is based on the Bayesian theorem [28]. 
This classification technique analyses the relationship 
between each attribute and the class for each instance to 
derive a conditional probability for the relationships 
between the attribute values and the class. We assume 
that X is a vector of instances where each instances is 
described by attributes {X1,...,Xk} and a random variable 
C denoting the class of an instance. Let x be a particular 
instance and c be a particular class. 

Using Naïve Bayes for classification is a fairly simple 
process. During training, the probability of each class is 
computed by counting how many times it occurs in the 
training dataset. This is called the prior probability 
P(C=c). In addition to the prior probability, the 
algorithm also computes the probability for the instance 
x given c. Under the assumption that the attributes are 
independent this probability becomes the product of the 
probabilities of each single attribute. Surprisingly Naïve 
Bayes has achieved good results in many cases even 
when this assumption is violated. 

The probability that an instance x belongs to a class c 
can be computed by combining the prior probability and 
the probability from each attribute’s density function 
using the Bayes formula: 

( ) ( | )

( | )
( )

i i

i

P C c P X x C c

P C c X x
P X x

= = =
= = =

=

∏
    (6) 

The denominator is invariant across classes and only 
necessary as a normalising constant (scaling factor). It 
can be computed as the sum of all joint probabilities of 
the enumerator: 

( ) ( ) ( | )j jj
P X x P C P X x C= = =∑    (7) 

Equation 8 is only applicable if the attributes Xi are 
qualitative (nominal). A qualitative attribute takes a 
small number of values. The probabilities can then be 
estimated from the frequencies of the instances in the 
training set. Quantitative attributes can have a large 
number (possibly infinite) of values and the probability 
cannot be estimated from the frequency distribution. 
This can be addressed by modelling attributes with a 
continuous probability distribution or by using 
discretisation. Discretisation transforms the quantitative 
attributes into qualitative attributes, and avoids the 
problem of using a continuous probability density 
function that does not match the true density. For this 
reason we evaluate Naïve Bayes using attribute 
discretisation. 

C.Bayesian Networks (Bayes Net) 

A Bayesian Network [29] is a combination of a 
directed acyclic graph (DAG) of nodes and links, and a 
set of conditional probability tables. Nodes can represent 
features or class, while links between nodes represent 
the relationship between them.  

Conditional probability tables determine the strength 
of the links. There is one probability table for each node 
(feature) that defines the probability distribution for the 
node given its parent nodes. If a node has no parents the 
probability distribution is unconditional. If a node has 
one or more parents the probability distribution is a 
conditional distribution where the probability of each 
feature value depends on the values of the parents. 

Learning in a Bayesian network is a two-stage 
process. First the network structure Bs is formed 
(structure learning) and then probability tables Bp are 
estimated (probability distribution estimation). 

We use a local score metric approach that aims to 
optimise the network structure based on the quality of 
nodes as indicated by a given metric. The quality of the 
whole network is then the sum of the individual nodes. 
A local search algorithm is used to compute the metrics 
for each node.                                                                                                                                                                                                                                             

The search algorithm we use is the K2 hill climbing 
algorithm created by G. Cooper and E. Herskovitz. This 
algorithm searches through the nodes according to some 
predetermined ordering of the data. The implementation 
we use searches in order of appearance of the features in 
the dataset. The K2 algorithm requires that the input data 
is discretised.  

We use the Bayesian Metric in conjunction with the 
K2 search to determine node quality. The quality Q for a 
network structure Bs for a given database D is given by  
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where n is the number of features, ri the cardinality 
(the number of elements in the set) of the ith feature xi 
and qi denotes the cardinality of the parent set of xi in Bs, 
which is defined as the product of the cardinalities of all 
parent nodes of xi. Nij is the number of instances in D for 
which the parent set of feature i takes its jth value. Nijk is 
the number of instances in D for which the parent set of 
feature takes its jth value and the feature i takes its kth 
value. The prior probability P(Bs) of the network 
structure Bs is assumed to be constant and therefore 
ignored. See [29] and [30] for a detailed explanation of 
this algorithm. 

An estimation algorithm is used to create the 
conditional probability tables for the Bayesian Network. 
We use a simple estimator, which estimates probabilities 
directly from the dataset. The simple estimator 
calculates class membership probabilities for each 
instance, as well as the conditional probability of each 
node given its parent node in the Bayes network 
structure. 

Our combination of structure learning and search 
technique is only one of many combinations that can be 
used to create Bayesian Networks.  

D. Naïve Bayes Tree (NBTree) 

The NBTree [30] is a hybrid of a decision tree 
classifier and a Naïve Bayes classifier. Designed to 
allow accuracy to scale up with increasingly large 
training datasets, the NBTree algorithm has been found 
to have higher accuracy than C4.5 or Naïve Bayes on 
certain datasets. The NBTree model is best described as 
a decision tree of nodes and branches with Bayes 
classifiers on the leaf nodes. 

As with other tree-based classifiers, NBTree spans 
out with branches and nodes. Given a node with a set of 
instances the algorithm evaluates the ‘utility’ of a split 
for each attribute. If the highest utility among all 
attributes is significantly better than the utility of the 
current node the instances will be divided based on that 
attribute. Threshold splits using entropy minimisation 
are used for continuous attributes while discrete 
attributes are split into all possible values. If there is no 
split that provides a significantly better utility a Naïve 
Bayes classifier will be created for the current node. 

The utility of a node is computed by discretising the 
data and performing 5-fold cross validation (see Section 
III.B) to estimate the accuracy using Naïve Bayes. The 
utility of a split is the weighted sum of the utility of the 
nodes, where the weights are proportional to the number 
of instances in each node. A split is considered to be 
significant if the relative (not the absolute) error 
reduction is greater than 5% and there are at least 30 
instances in the node. 

VII.EXPERIMENTAL APPROACH 

This section describes the data and features that form 
the basis of our study.   

A. Traffic Classes 

In traffic classification a class might be an individual 
application or a group of applications with similar 
characteristics. Example instances of each class are 
provided to the learning algorithm at training time. For 
accurate classification, the class instances used for 
training must be truly representative of the class. As our 
focus is on classifying game traffic, the classes are based 
on individual games. 

The majority of game traffic classes were from the 
First Person Shooter (FPS) game genre, as these are 
most sensitive to QoS issues. A single real-time strategy 
(RTS) game was also included for comparison.  

An additional ‘other’ class was also created, 
consisting of a sample of flow data taken from three 
publicly available trace files. This class was included to 
represent generic unknown network data other than 
online games, and includes web, email, DNS and peer-
to-peer traffic, among others. 

Table 1 summarises the classes used in the 
experiments. 

Table 2: Traffic classes used in experiments 

Class Description Genre/platfor

m 

CCG Command and 

Conquer: Generals 

RTS / PC 

HL1 Half-Life: Death 

Match 

FPS / PC 

HL2-DM Half-Life 2: Death 

Match 

FPS / PC 

HL2-CS Half-Life 2: Counter 

Strike 

FPS / PC 

Q3 Quake 3 Death Match FPS / PC 

TS Time Splitters FPS / X-Box 

HALO Halo: Death Match FPS / X-Box 

HALO2 Halo 2: Death Match FPS  / X-Box 

Other Common network 

protocols e.g. HTTP, 

DNS, P2P 

- 

  

B. Features 

Features are attributes that as a set describe an 
instance of a class. Here each instance represents a 
traffic flow generated by one of the classes. We use 
NetMate [32] to process packet traces, classify packets 
and compute features. We classify packets to flows 
based on source IP and source port, destination IP and 
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destination port. Flows are bidirectional and the first 
packet seen by the classifier determines the forward 
direction. 

Flows have limited duration. UDP flows are 
terminated by a 60 second flow timeout, while TCP 
flows are terminated upon proper connection teardown 
(TCP state machine) or after a 60 second timeout 
(whichever occurs first). We consider only UDP and 
TCP flows that have at least 1 packet in each direction 
and transport at least 1 byte of payload. This excludes 
flows without payload (e.g. failed TCP connection 
attempts) or ‘unsuccessful’ flows (e.g. requests without 
responses). Flows devoid of payload cannot reveal 
information about the generating application. Flows with 
only a single packet do not resemble a successful 
communication (without payload inspection it is 
difficult to determine if these are failed connections or 
malicious traffic such as port scans).  

We distinguish active and idle periods of flows by 
using an idle threshold, which is 1 second by default. 
Periods where no packets are observed for 1 second or 
more are treated as idle periods. A flow is active when 
not in an idle period. The duration of idle periods is the 
time difference between a packet and the last packet at 
the beginning of the idle periods. The duration of active 
periods is the time difference between the last and first 
packet of the active periods. When a flow is terminated 
by timeout the time from the last packet until the timeout 
is not counted as idle time. 

We compute the following features: protocol, 
duration, volume in bytes and packets, average volume 
in bytes and packets per active period, number of 
packets with push flag set (only for TCP – always 0 for 
UDP), packet length (minimum, mean, maximum, 
standard deviation), inter-arrival times (minimum, mean, 
maximum, standard deviation) active and idle times 
(minimum, mean, maximum, standard deviation). Aside 
from protocol and duration all features are computed 
separately in both directions of a flow. Packet length 
derived features are based on the IP length excluding 
link layer overhead. Inter-arrival times are computed 
with microsecond precision. All of the 36 features can 
be efficiently computed solely from the packets 
collected within each individual flow. Server port is not 
used as an attribute as ‘wrong’ ports could introduce an 
unknown bias.  

C. Data Traces 

Where possible game data was obtained from public 
game servers. This is the most realistic and diverse data 
as it is based on a large number of real players. For 
games where it is impossible to run a public server 
(Xbox, CCG) and Q3 (which is no longer widely 
played), we used traces captured in controlled 
experiments designed to obtain game traffic 
characteristics. 

Due to the client/server discovery mechanisms used 
by first person shooter games, additional care is needed 
when sampling data from public servers to ensure actual 
game traffic is obtained. As described in [33], much of 
the traffic seen by public servers is from game clients 
probing the server for information, such as round trip 
times, current map and number of current players. We 
call this traffic probe traffic as opposed to non-probe 
traffic, which is traffic that is exchanged when players 
are actually playing  

Half-Life 1 traffic was captured over 15 games at a 
server located in the Swinburne University LAN [34]. 
Between 3 and 7 players were present in each game. 
Some HL1 traffic was also captured on CAIAs public 
HL1 counter-strike server (now offline). As the majority 
of these flows were probe flows, we have taken a 
random sample equal in size to the number of non-probe 
flows. 

Half-Life 2 DM and CS traffic was captured over a 
period of one month from CAIAs public Half-Life 2 
server [35]. Due to a large amount of probe flows these 
datasets were constructed using stratified sampling on 
the flow size. We took all flows where more than 10 
packets were sent from client to server and an equal 
amount of short flows randomly sampled from the 
population of a few million probe flows. This strategy 
ensures that the training set is not overly large and has a 
balance of small and large flows for each game. 

Quake 3 game traffic was captured on a server 
located on the university LAN [36]. Games captured 
consisted of between 2 and 8 players. 

Halo traffic was captured between up to three Xbox 
consoles connected via System Link, for games 
consisting of up to four players and lasting up to 50 
minutes [38]. Halo 2 traffic was captured from between 
up to four Xboxes connected to a Hub and an Xbox 
server [39]. Time Splitters traffic was captured between 
three Xbox consoles over six games with up to nine 
players participating [40]. 

Xbox units communicating over System Link are 
differentiated by Ethernet MAC address (the UDP/IP 
payloads within each Ethernet frame contain a non-
functional source and destination IP set to 0.0.0.1). 
Xbox game servers often generate broadcast packets 
during the initial stage of creating a client and server 
connection. These were removed from the Xbox 
datasets. 

The ‘Command and Conquer: Generals’ data was 
obtained from Mark Claypool’s archive of game traffic 
[9]. The traces consist of a number of 15-45 minute 
games. 

The data used to represent the ‘other’ class was 
drawn from publicly available NLANR [37] data traces. 
These traces were captured in different years and at 
different locations. We used flow data from four 24-hour 
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periods of these traces (auckland-vi-20010611, leipzig-
ii-20030221, nzix-ii-20000706).  

As a 24-hour period of the packet traces contains up 
to several million flows, our data set is sampled from the 
total number of flows. We randomly sampled 200,000 
flows from each trace, for a total of 600,000 flows. As 
the public traces do not contain any payload information 
we use port numbers to estimate the different 
applications contained within ‘other’ class (see Table 3). 
75-80% of the traffic flows and 70-75% of the volume 
in the ‘other’ class can be attributed to these few popular 
applications.  

Table 3: Several common applications in ‘other’ class 

Application Description Protocol Flows 

(%) 

Volume 

(%) 

HTTP World Wide 

Web 

TCP 52.45 52.37 

DNS Domain 

Name 

Service 

UDP/TCP 12.73 1.01 

eDonkey P2P File 

sharing 

UDP/TCP 10.28 8.24 

HTTPS Secure Web TCP 3.34 2.43 

SMTP E-Mail TCP 1.92 6.04 

Kazaa P2P file 

sharing 

TCP/UDP 1.08 4.72 

POP Electronic 

Mail 

TCP 1.04 0.51 

 

As the majority of online games (and all of those 
tested here) use UDP/IP, it was important that the non-
game class contained a sizeable portion of UDP traffic. 
There were approximately 126,568 UDP flows in the 
‘other’ class, accounting for 21% of the total (and far 
exceeding the total game flows). We removed all flows 
with ports that were the default Half-life 1/2, Quake 3 or 
Xbox ports from these traces.  A summary of all the 
trace data is shown in Table 4.  

Table 4: Trace summary 

Class Flows Volume (MB) Protocol 

CCG 561 252 UDP 

HL1 1,902 592 UDP 

HL2-DM 10,519 25,570 UDP 

HL2-CS 2,391 1,641 UDP 

Q3 1,246 83 UDP 

TS 23 23 UDP 

HALO 35 272 UDP 

HALO2 78 126 UDP 

Other 600,000 6,993 TCP/UDP 

 

We arranged the trace data into three different 
datasets, each containing game data and non-game 
(other) data. The first contains each individual game as 
separate class (game), the second contains one class per 
game engine (engine), while in the final trace all games 
are aggregated into a single class (2-class). Note that the 
engine dataset is essentially identical to the game 
dataset, with the HL2-DM and HL2-CS combined into 
one class. 

D.ML Software 

Experiments were conducted using the WEKA 
(Waikato Environment for Knowledge Analysis) 
software version 3.4.4 [41]. Widely used in the 
academic community, WEKA contains Java 
implementations of all the algorithms described above. 

VIII. RESULTS AND ANALYSIS 

First we evaluate accuracy, precision and recall of the 
different algorithms. Then we investigate the influence 
of feature selection, using CFS and different search 
techniques. We also present what features are more 
useful according to our feature selection technique used. 
Finally, we evaluate the performance of the different 
algorithms in terms of classification and training speed. 

A. Algorithm Evaluation 

Figure 2 shows the accuracy of each algorithm and 
dataset using the entire feature set. Overall accuracy is 
greater than 99% for each of the algorithms when using 
all features, except for Naïve Bayes. The 2-class dataset 
provided the highest accuracy for each of the algorithms. 
The per-engine dataset provided slightly higher accuracy 
than the per-game dataset. 
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Figure 2: Accuracy using all features 

Overall accuracy is quite good starting reference, but 
it does not give us an indication as to the accuracy of 
each individual class. It can also be biased towards 
classes with a greater number of instances. For example, 
consider a dataset containing only HL2-DM (10,519 
instances) and TS (23 instances). So long as the recall of 
the HL2-DM class is high, overall accuracy will also be 
high, regardless of whether recall for TS was high or 
low. 

Therefore, in the following we evaluate the recall and 
precision of all individual classes and use mean recall 
and precision values instead of accuracy. Recall and 
precision are also calculated according to the total 
volume of each class correctly or incorrectly classified. 
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It is important to consider these metrics according to 
volume as during training algorithms optimise the 
classifiers based on the number of instances in the 
dataset. As game traffic is often a combination of many 
probe flows (with small volume) and fewer in-game 
flows (with larger volume), it is very important to also 
consider precision and recall calculated according to 
bytes classified. These rates are calculated by adding the 
volume of each instance into a standard confusion table. 
By comparing the instance-based metrics and volume-
based metrics we can determine the proportion of actual 
in-game flows that are correctly classified. 
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Figure 3: Precision and recall by instance (top) and volume 

(bottom) using C4.5 with all features, per-game dataset 

Figure 3 plots the precision and recall rates by for 
each traffic class using the per-game dataset and C4.5 
algorithm. The majority of classes have high instance-
based precision and recall, which indicates low numbers 
of false positives and negatives. Classes with very few 
training instances, such as Time Splitters and Halo, still 
achieve acceptable recall and precision rates (0.73 and 
0.89 respectively). Considering volume, there is an 
immediate difference seen in HL2-DM and HL2-CS, Q3 
and HL1. The reduced precision and recall for the HL2-
based games is due to a number of HL2-CS in-game 
flows being misclassified as HL2-DM. A number of Q3 
flows with larger volumes were also classified as HL2-
DM. The remaining classes are classified at rates equal 
or better than those based on flow instances. 

Figure 4 plots the precision and recall rates for each 
traffic class using the per-game dataset and Bayes Net 
algorithm. The instance-based precision rates for the 
FPS games are significantly lower than those using 
C4.5, indicating an increase in the number of false 
positives and false negatives between these classes. The 
RTS and ‘other’ class are both separated with high 
precision and recall. Volume-based metrics are again 
quite different, with fewer game flows from HL2-DM 
being classified as HL2-CS (as indicated by the high 
precision of HL2-CS). However many HL2-CS game 

flows are being classified as HL2-DM. Besides Counter 
Strike, many of the applications were classified with 
high precision and recall in terms of volume. 
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Figure 4: Precision and recall by instance (top) and volume 

(bottom) using Bayes Net with all features, per-game dataset 

Figure 5 plots the precision and recall rates with all 
features for each traffic class using the per-game dataset 
and Naïve Bayes algorithm. The sample size of a class 
appears to have a large affect on the instance-based 
precision and recall rates when using Naïve Bayes. 
Classes with few training instances perform very poorly, 
with Time Splitters approaching zero for precision and 
recall. Again Command and Conquer Generals appears 
distinct enough from the FPS games to be classified with 
high accuracy, as is the case with the generic ‘other’ 
class.  
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Figure 5: Precision and recall per class using Naïve Bayes with 

all features, per-game dataset 

As with the flow-based metrics, the volume-based 
rates for the FPS game classes are quite varied. Much of 
Q3 was classified as Halo1, while most HL2-CS game 
flows are classified as HL2-DM and HL1. Flows from 
the ‘other’ class were misclassified as all of the game 
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classes, reducing the precision of each (with the 
exception of CCG). 

Figure 6 plots the precision and recall rates for each 
traffic class using the per-game dataset and NBTree 
algorithm. Instance-based performance for NBTree is on 
par with C4.5 and in some cases slightly better. 
Interestingly a number of Halo flows were classified as 
Command and Conquer flows, reducing the CCG 
precision and the recall of the Halo class. This crossover 
between RTS and FPS classes was not seen in tests with 
the other algorithms.  

The volume-based results were also comparable to 
those seen in C4.5, although will slightly less recall and 
precision for most classes. 
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Figure 6: Precision and recall per class using NBTree with all 

features, per-game dataset 

Figure 7 summarises the mean recall and precision 
rates of the algorithms when using the per-game dataset. 
Rates for C4.5 and NBTree show almost identical 
performance (~0.95), while Bayes Net (~0.91) was 
slightly less accurate.  

The precision of Naïve Bayes is very poor, and it 
appears this algorithm has difficulty with disparate class 
sizes. For C4.5, Bayes Net and NBTree there does not 
appear to be a great difference when comparing flow 
instances and volume. 
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Figure 7: Mean recall and precision for each algorithm, flows 

and bytes, game dataset 

The only difference between the per-engine and per-
game datasets was the aggregation of the two HL2-based 

games. Therefore in Figure 8 we compare the instance-
based recall and precision for the single HL2 class 
against the mean rates of the individual HL2-CS and 
HL2-DM classes. As a single class the recall and 
precision rate improves slightly. This test shows that two 
separate game modifications with distinct game 
mechanics but the same underlying engine can be 
detected not only individually but also as a single class. 
Using a single class appears to lead to higher accuracy.  
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Figure 8: Half-Life 2 precision and recall with all features  

Figure 9 compares the mean recall and precision of 
the algorithms when using the 2-class dataset. Precision 
and recall metrics are generally higher than for the per-
game dataset. 

Apart from Naïve Bayes, there is very little 
separating the different algorithms, as all are very 
accurate for flows and volume. The recall and precision 
metrics for flows and bytes approached .99 for C4.5 and 
NBTree. At 0.95 the Bayes Net volume-based recall 
stood out, being .04 (4%) less than for flow-based recall. 
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Figure 9: Mean recall and precision for each algorithm, flows 

and bytes, 2-class dataset 

Even though overall accuracy was slightly optimised 
towards the class with the largest number of instances 
(other), the difference in recall for the two classes was 
minor.  

B. Feature Selection 

Feature subset selection was performed on all three 
datasets using CFS with Best First, Genetic and Greedy 
search methods (see section V). Figure 10 shows the 
average size of the selected subsets as a percentage of 
the full feature set, averaged across the datasets. 
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Figure 10: Percentage of full feature set by search method 

 

CFS provides substantial reductions in the number of 
features used, with the largest subset using 20% of the 
features. The forward directional searches were very 
aggressive, with both Best First and Greedy Forward 
selecting only one feature for each dataset (minimum 
forward packet length).  

Figure 11 shows the change in overall accuracy 
averaged across the different search methods when using 
CFS for each of the algorithms and datasets, compared 
to accuracy using all features. 
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Figure 11: Average change in overall accuracy by subset 

selection method compared against using full feature set 

With the exception of Naïve Bayes it appears that 
CFS selection causes a slight reduction in accuracy. 
Although classification improves for Naïve Bayes when 
using CFS, this is somewhat misleading, as overall 
accuracy is heavily biased towards classes with large 
numbers of instances. Again a more practical evaluation 
of CFS performance can be made by considering the 
per-class accuracy (i.e. recall).  
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Figure 12: Mean recall compared to overall accuracy, per-game 

dataset 

Figure 12 compares the mean class recall against 
accuracy, averaged across the algorithms for the per-
game dataset. Recall is expressed as a percentage for 

comparison. The large difference between overall 
accuracy and mean class recall can be seen for several of 
the tests (such as greedy forward, best first forward). 

Figure 13 shows the change in mean class recall for 
each algorithm when compared to the mean class recall 
obtained using the full feature set, for the per-game 
dataset. We see that the 60% drop in class recall ranges 
across all the algorithms when using the forward-
directional searches. The poor mean class recall was due 
to classes with very few training instances such as ‘Time 
Splitters’ and ‘Halo’ having a recall of 0 as a 
consequence of using these search methods. A similar 
result was observed for the per-engine dataset. 
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Figure 13: Change in mean class recall by CFS search method, 

‘game’ dataset 

Figure 14 compares the mean class recall against 
accuracy, averaged across the algorithms, for the 2-class 
dataset. The difference between overall accuracy and 
recall is less pronounced for the 2-class dataset. As both 
classes contain a significant number of flows, it appears 
difficult for the evaluator to optimise for one class 
without reducing the overall accuracy. 
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Figure 14: Mean recall compared to accuracy for 2-class dataset 

Figure 15 again shows the change in mean class 
recall for each algorithm, this time using the ‘2-class’ 
dataset. In most cases CFS selection decreases mean 
class recall as compared to using the full feature set, 
although not by greater than 10%. As suggested in 
Figure 14, using CFS subset selection in a 2-class 
scenario does not incur as severe a penalty than with a 
multi-game scenario (per-game, per-engine). 
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Figure 15: Change in mean class recall by CFS search method, 

‘2-class’ dataset 

Overall the results of the CFS evaluation suggest that 
a reduced number of features still allow game traffic to 
be separated from generic IP network traffic. 

There were several cases of extreme reductions in the 
feature space, though results suited only few classes 
with the highest number of training instances. A range of 
classes with an equal number of training instances would 
most likely require more features, but a significant 
reduction in features would still be expected. 

The genetic search appeared to have the least impact 
of the average class accuracy, while still providing a 
large reduction in features and classification time. For 
the 2-class dataset, genetic search and CFS had a 
minimal impact, and improved the mean class recall 
when using Naïve Bayes. 

C. Features of Interest 

We also examine the frequency at which particular 
features are included in the selected feature subsets. This 
provides an excellent indicator as to which features are 
likely to be better at discriminating the classes. Figure 
16 graphs the percentage of selected feature sets in 
which a given feature was included, for each of the 
datasets.  
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Figure 16: Percentage of subsets in which feature was selected 

‘Minimum forward packet length’ (minfpktl) is 
clearly the strongest feature, appearing in all selected 
subsets. There does not seem to be any other feature that 
is as dominant for all datasets, although ‘protocol’, 
‘standard deviation idle time’ (stdidle) and ‘Minimum 
backward packet length’ (minbpktl) are often selected. 

There was some level of consistency in the subset of 
features selected by the different search methods across 
the datasets, indicating that the stronger features are 
relatively independent of dataset. The 2-class dataset 
tends to require more features than the other datasets (as 
neither class is particularly homogenous).  

The results shown above are for CFS across all 
different search techniques. Different feature selection 
metrics may produce different results. 

D. Performance Evaluation 

To further differentiate the algorithms, we calculate 
two additional performance metrics: training and 
classification time (defined in Section III.B). These are 
evaluated using the game and 2-class datasets. 

Performance metrics were measured using a 3.4 GHz 
Pentium 4 workstation with 4GB of RAM and the Java 
VM 1.5.0_04-b05. 

Figure 17 shows the classifications per second for 
each of the algorithms for the per-game and 2-class 
datasets. 
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Figure 17: Classifications per second for 2-class and game 

datasets 

In terms of classifications per second, C4.5 
(88,233/133,786) has a considerable advantage in both 
datasets, and is markedly faster than the nearest 
algorithm, Naïve Bayes (23,238/54,580). NBTree 
(2,075/21,150) is the slowest algorithm. 

Having only two classes provides a substantial 
increase in classification speed for the algorithms. C4.5 
remained significantly faster than the others, although 
the gap between NBTree (21,150) and Bayes Net 
(25,020) narrowed.  

Figure 18 shows the build time for each of the 
algorithms with the game and 2-class datasets. Note that 
the y-axis is non-linear to accommodate the long 
NBTree training period. 
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Figure 18: Training time for 2-class and game datasets 

Naïve Bayes provided the fastest build time for the 
per-game dataset (302.14s), followed closely by Bayes 
Net (395.91s). C4.5 is significantly slower than Bayes 
Net, while NBTree (35,418.2s) is by far the slowest 
learner.  

C4.5 and Naïve Bayes see an increase in training 
time for 2 classes, but are still the slowest learners. 
Bayes Net and NBTree take approximately the same 
time to create the classification model.  

As CFS selection did not significantly affect 
classification accuracy and average recall for the 2-class 
dataset, we tested for any reduction in processing cost. 
Figure 19 shows the classification and training times for 
subsets as a percentage of the classification and training 
times when using the full feature space, for the 2-class 
dataset. 
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Figure 19: CFS subset classification (top) and training (bottom) 

times as a percentage of classification and training times when 

using all features 

Each algorithm experiences a great improvement in 
classification speed, taking only 10-40% of the original 
time. Reductions are greater still for training times, at 
10% the original training time and less. Although not 
shown here, the ‘per-game’ and ‘per-engine’ datasets 
saw a similar reduction in training and classification 
times.  

E.Limitations of the Datasets 

Imbalanced datasets generally pose a problem for 
machine learning algorithms. An imbalanced dataset 
contains training classes with a significant difference in 
the number of instances. This is problematic as 
algorithms optimise towards overall accuracy and thus 
‘favour’ the large classes. However, it is difficult to 
obtain a large game traffic dataset especially for games 
where no public servers can be set up (Xbox games).  

Balancing the dataset by reducing the dataset size 
would likely lead to an overestimation of accuracy due 
to a lack of variance in the feature distributions. Despite 
the imbalanced dataset used in the experiments, with 
many more non-game than game flows, we were able to 
detect game flows with high accuracies (even for classes 
with few instances) with three of the four algorithms 
evaluated.   

The results obtained thus far are very promising, but 
there are a number of avenues to be further explored. 
The data traces for the games were either taken from a 
single public server or from some controlled lab 
experiments. Although we were able to obtain data for a 
large number of players from the public server it is 
likely that at least the probe flows introduce some bias in 
our study that lead to an increased accuracy. If we were 
to capture probe traffic on a large number of servers 
there would likely be more variation in the feature value 
space as some features (for example packet lengths) are 
indirectly dependent on game server configuration.  

For example, as the server’s response contains 
information such as sever name, packet length of the 
server to client traffic would have a wider distribution if 
more servers (with different names) were considered. A 
more complete approach may be to combine data from 
several games servers and possibly clients. An 
interesting observation however is that the more popular 
features were either in the forward direction (client to 
server) or were independent of direction (protocol, 
active and idle times). This may have reduced the 
influence of using data from a single server, although the 
more complete approach is still preferred. 

For several of the controlled experiments there may 
also be bias due to factors such as a lack of variation of 
player combinations and maps played. 

IX.CONCLUSIONS AND FUTURE WORK 

In this paper we have evaluated different machine 
learning algorithms for the purpose of classifying online 
games based on statistical payload-independent flow 
attributes. We have shown that games can be separated 
both from each other and from common network traffic. 
With a feature space of 36 flow statistics we were able 
to achieve overall classification accuracies of greater 
than 99%, and individual class accuracies greater than 
95%. 

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

C4
.5

NB
Tr
ee

Ba
ye
s 
Ne
t

Na
ive
 B
ay
es

T
ra
in
in
g
 t
im
e
 (
s
)

Game 2-class

0
2
0
0
0

C4
.5

NB
Tr
ee

Ba
ye
s 
Ne
t

Na
ive
 B
ay
es

T
ra
in
in
g
 t
im
e
 (
s
)

PAN -- 1010 
Palo Alto Networks, Inc.  v.  Selective Signals, LLC 

Page 15 of 17



CAIA Technical Report 060410C                                        March 2006  page 16 of 17 

 

In testing with the CFS evaluator, packet length 
statistics were identified as the strongest class 
discriminators. We also identified a weakness in using 
feature selection when classes have a disparate number 
of training instances. As subsets are evaluated according 
to overall accuracy, they are optimised to provide high 
accuracy for classes with the most instances. An equal 
amount of training instances for each class would likely 
produce higher per-class accuracy, although with a 
slightly larger feature set. The reduced feature sets tested 
provided significant reductions in classification and 
training time, and the ability to trade off accuracy for 
speed is a possible option. 

Algorithm performance was quite consistent across 
the datasets. Whether games were grouped into 
individual classes, by engine or as individual classes, 
classification accuracy remained high across all the 
algorithms. Byte-based results were also good, though 
flow-based results were generally better. We believe the 
byte accuracy could be further improved as algorithms 
optimise classifiers only on the number instances during 
training. Increased per-byte accuracy may be obtainable 
if a classifier is trained with flows given different 
weights based on volume. 

Particularly accurate algorithms were C4.5 and 
NBTree, which were able to provide high recall and 
precision for classes, even those with low numbers of 
training instances. The classification speed and training 
times for NBTree do not appear suitable for real-time 
operation however. Bayes Net, while not as accurate as 
either C4.5 or NBTree, offers very good accuracy and 
fast build times. Although classification speed is not 
exceptional, it has shown to increase in performance 
when using smaller subsets of features. 

Whether trying to classify games as individual 
applications or as a single category against non-game 
traffic, decision tree classifiers appear best suited to the 
flows statistics that we use. In particular the C4.5 
algorithm provided good results across all of our tests 
and is also quite fast.  

We plan to extend this study using other popular 
interactive applications, such as Internet telephony and 
streaming video, and identify the features capable of 
identifying these applications. 
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