
CAIA Technical Report 060410C March 2006 page 1 of 17

Evaluating Machine Learning Methods for Online

Game Traffic Identification

Nigel Williams, Sebastian Zander, Grenville Armitage

Centre for Advanced Internet Architectures (CAIA). Technical Report 060410C

Swinburne University of Technology

Melbourne, Australia

{niwilliams,szander,garmitage}@swin.edu.au

Abstract—Online gaming is becoming more and more prominent

in the Internet, in terms of both traffic volume and as a potential

source of revenue. Quality of Service (QoS) requirements for

highly interactive games are much stricter than for traditional

Internet applications, such as web or email. For effective QoS

implementations that are transparent to users and game

applications, an accurate and reliable method of classifying game

traffic flows in the network must be found. Current methods

such as port number and payload-based identification exhibit a

number of shortfalls. A potential solution is the use of Machine

Learning techniques to identify game traffic based on payload

independent statistical features such as packet length

distributions. In this paper we evaluate the effectiveness of the

proposed approach. We compare the accuracy and performance

of different Machine Learning techniques and we also use

feature selection techniques to examine which features are most

important in discriminating game traffic from other traffic. We

find that machine learning algorithms are able to separate online

game traffic from other network traffic with very high (>99%)

accuracy. We also show that feature selection, while reducing

accuracy, allows games to be identified with fewer features and

substantial speed gains.

Keywords—Game Traffic Classification, Machine Learning,

Statistical Features

I.INTRODUCTION

The Internet is experiencing an increase in the use
and commercialisation of interactive applications such
as telephony and online gaming. Online gaming in
particular is expected to become a large source of
income, through either subscription-based games or
dedicated gaming services. Internet Service Providers
may also charge a premium for Quality of Service
(QoS)-enhanced accounts targeted at gamers.

Highly interactive online games, such as First Person
Shooter (FPS) games, have a narrow tolerance to
network issues such as delay, jitter and packet loss (see
[1], [2]) necessitating more rigid QoS compared to the
best effort service used for traditional Internet
applications such as web or email. In order for QoS to be
effective however, an accurate and timely method of
identifying and classifying network gaming flows is
required. As it is unlikely that game applications will
ever explicitly signal their QoS demands to the network,

the network must identify game flows and establish
adequate QoS for these flows. Once highly interactive
game traffic can be identified it can be given a higher
priority over other traffic in the network. We presented
the architecture and advantages of such a system in [3].

Current popular methods of classifying network
applications include TCP/UDP port-based identification,
and payload-based identification. The latter can be
further divided into protocol decoding and signature-
based identification. With protocol decoding the
classifier actually decodes the application protocol while
signature-based methods search for application specific
byte sequences in the payload.

Port-based classification systems are moderately
accurate at best and will become less effective in the
near future. For example, a server hosting multiple
games or instances of the same game might use an
arbitrary port rather than the specified default port,
making port-to-application mappings unpredictable.
Payload-based classification relies on specific
application data, making it difficult to detect a wide
range of applications or stay up to date with new
applications. In addition, the process of creating rules
for signature-based classification must often be done by
hand, which can be very time consuming.

Machine learning (ML) techniques [5] provide a
promising alternative through classifying flows based on
application protocol (payload) independent statistical
features. The features used in this study are flow
characteristics such as packet length and inter-arrival
times. This approach does not require packet payload
and the classifier can be trained automatically assuming
a representative training dataset can be obtained. A more
general introduction to the problem is presented in [6]
and [7].

We have previously used a wide range of machine
learning algorithms to separate common network
applications, such as web and mail traffic [24]. In this
paper we apply several of the better performing
algorithms to the task of separating network games from
generic (i.e. common) network traffic. Although this is
not the main focus we also investigate how effectively
different games can be separated from each other. As the

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 1 of 17

CAIA Technical Report 060410C March 2006 page 2 of 17

features used in classification have a crucial impact on
accuracy we also evaluate and compare performance of
the algorithms using Correlation-Based Feature
Selection (CFS).

For our evaluation we use gaming data captured by
members of CAIA [8] and Mark Claypool [9]. ‘Generic’
traffic examples were taken from several publicly
available traffic traces. We predominantly focus on First
Person Shooter (FPS) games as these fast-paced games
have the most stringent QoS requirements. However, we
have also included some data of a Real Time Strategy
(RTS) game. The games tested were from the PC and
Xbox platforms. It is important to include Xbox traffic
as current and next-generation console devices such as
the Xbox 360 and PlayStation 3 are expected to produce
a significant share of online gaming traffic [10].

We find that some algorithms are able to separate the
different games from each other and other traffic with
very high (>99%) accuracy. Results were also
encouraging when using a reduced number of features
(after feature selection). However, while the overall
accuracy of separating game from non-game traffic is
similar, the accuracy for detecting some individual
games is poor.

We found that all of the ML techniques seem to be fast
enough for real-time classification of a fairly large
number of simultaneous flows (at least several
thousands per second). Furthermore, most of the
algorithms can train fast enough to allow for frequent
updates of the classifier (training took no more than half
an hour).

The paper is structured as follows. Section 2 discusses
the shortfalls of current classification approaches and
outlines our machine learning based approach. Section 3
describes related work. Section 4 and 5 describe the
feature selection and ML techniques we use. Section 6
describes our datasets and approach. Section 7 presents
the results of the evaluation and Section 8 concludes and
outlines future work.

II. CURRENT CLASSIFICATION TECHNIQUES

A. Port Numbers

The oldest and still most common technique is based on
the inspection of known port numbers. While some
applications use symmetric ports (all communicating
peers use the same port number), many client-server
applications such as the web are port asymmetric (only
the server is using the well-known port whereas clients
use dynamic ports). Therefore in this paper we refer to
either port numbers or the server port as the port that
identifies an application.

The Internet Assigned Numbers Authority (IANA) [11]
assigns the well-known ports from 0-1023 and registers
port numbers in the range from 1024-49151. Many
applications do not have IANA assigned or registered

ports however and only utilise ‘well known’ default
ports. Often these ports overlap with IANA ports and an
unambiguous identification is no longer possible. A port
database [12] that lists not only the IANA ports but also
ports reported by users for different applications shows
that many applications have overlapping ports in the
IANA registered port range. As more and more
applications emerge, this overlap will increase since the
port number range is not likely to increase.

Port-space overlap is also caused by users running
applications with well-known ports on arbitrary ports to
bypass port-based filters or hide traffic. Furthermore
applications such as passive FTP and video/voice
communication choose ports dynamically.

In general online games have only a commonly known
default port. As these ports are not IANA registered,
there is potential for other applications to also use the
same port. Often online gaming servers run multiple
servers on a single physical host (IP address), which
means every server must run on a different port and
therefore many servers run on non-default ports.

B. Protocol Decoding

A more reliable technique used in many current industry
products involves stateful reconstruction of session and
application information from packet content (e.g.[13]).
This technique avoids reliance on fixed port numbers
and provides very accurate and reliable application
identification, but imposes significant complexity and
processing load on the traffic identification device. It
must be kept up-to-date with extensive knowledge of
application semantics and network-level syntax, and
must be powerful enough to perform concurrent analysis
of a potentially large number of flows.

This approach can be difficult or impossible when
dealing with proprietary protocols or encrypted traffic.
Another problem is that direct analysis of session and
application layer content may represent an explicit
breach of organisational privacy policies or violation of
relevant privacy legislation.

This method currently provides the highest accuracy and
reliability for classifying network traffic to
corresponding applications. The major problems of this
method are the performance required (especially
considering the ever-increasing network bandwidths)
and the effort required for implementing and keeping the
protocol definitions up to date. In our opinion this
method seems only feasible for few applications when
the incentives to provide reliable classification are very
high.

As many game protocols are not openly specified (to
prevent players from cheating), protocol definitions for
online games can only be obtained through reverse
engineering (not always a straightforward task).

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 2 of 17

CAIA Technical Report 060410C March 2006 page 3 of 17

C. Signature-based Approaches

To overcome the inefficiencies of protocol decoding
some researchers have proposed the use of signature-
based methods. These methods search packet payload
for the characteristic patterns of specific applications.
The advantage of this approach is that it can be more
effective than pure port-based classifications and more
efficient than protocol decoding (though less accurate).
Overall, signature-based methods provide a very good
trade-off between resource efficiency and classification
performance.

This method is still protocol dependant however, and as
with payload inspection signatures must be developed
using protocol specifications or through reverse
engineering. There are also a number of ways to defeat
simple signature-based detection (e.g. [43]). Signatures
cannot be used on encrypted data.

This approach seems feasible for online games but very
cumbersome for the scenario in which real-time
interactive flows need to be separate from non-real-time
flows, as signatures would need to be developed for
every game (or alternatively for every non-game).

III. ML-BASED CLASSIFICATION

A. Approach

Figure 1 visualises a machine learning based
classification architecture. Training input data can be
taken from previously captured traffic traces (or possibly
from live capturing). Then packets are grouped into
flows based on IP addresses, TCP or UDP ports and
protocol and the flow characteristics (features) are
computed. The flow data used for training each class
must be representative for the particular network
application. For supervised learning algorithms the flow
data needs to be labelled with class labels corresponding
to the network applications prior to training. For large
data traces it is necessary to limit the number of flows
passed to the learning algorithm by sampling flows
before training.

The flow characteristics and a set of algorithm
parameters are then used to build a classification model
(see Figure 1 top). The algorithm parameters range from
very simple to very complex and depend on the ML
algorithm used. For some algorithms no parameters may
be needed. Once the classifier has been trained new
flows can be classified based on their statistical
attributes (see Figure 1 bottom). New flows are taken
from live network capture or from trace files. Again
sampling can be used to only classify a fraction of the
overall flow data for example if the classification
performance is insufficient. The results of the
classification process can be used to map network traffic
to different QoS classes, or other tasks such as trend
analysis.

 [Sampling]

Output

Machine Learning

Offline Traces

Online

Packet

Classification

Flow

Statistics

ML
Algorithm

Parameters

ML

Classifier

Packet Classification

Packet

Sniffing

 [Sampling]

Output

Machine Learning

Offline Traces

Online

Packet

Classification

Flow

Statistics

Classifier

ML

QoS

mapping,

trend

analysis

etc.

Packet Classification

Packet

Sniffing

Figure 1: ML-based flow classification approach: learning

phase (top) and classification phase (bottom)

B. Assessing Performance

There are several approaches to testing the accuracy
of ML algorithms. We use the common method of k-fold
cross validation. In this process the data set is divided
into k subsets. Each time, one of the k subsets is used as
the test set and the other k-1 subsets are put together to
form the training set. Error statistics are calculated as the
average across all k trials. This allows an overall
indication of how well the classifier will perform on
unseen data.

We use three standard metrics to evaluate the
performance:

1. Accuracy is the percentage of correctly classified
instances over the total number of instances.

2. Precision is the number of class members classified
correctly over the total number of instances
classified as class members.

3. Recall (or true positive rate) is the number of class
members classified correctly over the total number
of class members.

A confusion matrix provides the basis for the
evaluation metrics and contains information about actual
and predicted classifications for each class. Table 1
shows the confusion matrix for a two-class classifier
(classes - and +).

Table 1: Confusion matrix

Assignment z

Label l
- +

- TN FP

+ FN TP

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 3 of 17

CAIA Technical Report 060410C March 2006 page 4 of 17

Each instance is associated with a label l, which
accounts for the true class. The classification produces
an assignment z indicating whether it believes an object
to belong to a certain class. Then for each instance there
are four possible outcomes: TP stands for true positive,
TN stands for true negative, FP stands for false positive
and FN stands for false negative.

Accuracy is computed with the following formula:

TP TN
a

FP TP FN TN

+=
+ + +

 (9)

Precision is calculated using the following formula:

TP
p

TP FP
=

+
 (10)

The following formula is used for recall:

TP
r

TP FN
=

+
 (11)

In addition to the standard overall accuracy, precision
and recall metric the processing performance of the
algorithms is also evaluated. Two performance metrics
were measured, defined below:

Classifications per second: The number of instances
that the algorithm is able to classify each second. Speed
is important to perform near real-time classification on
large numbers of simultaneous networks flows.

Build Time: The time required to build a
classification model. Building the classifier can be done
offline but as building times may reach several days for
certain classifiers, shorter build times may be more
convenient.

IV. RELATED WORK

The idea of using ML techniques for flow classification
was initially introduced in the context of intrusion
detection [14]. The authors evaluated how likely an
identified flow was an intrusion based on the flow
attributes of duration, number of packets and bytes using
a decision tree as classifier. Although this work is not
directly related to ours it is one of the earliest examples
of using ML techniques in the area of computer
networks. Since then many researchers have investigated
the use of various ML methods for intrusion detection.

The authors of [15] use Principal Component Analysis
(PCA) and density estimation to classify traffic into
different applications. They use the distributions of two
flow attributes: packet length and packet inter-arrival
time. First they project each packet into a 2D bin matrix
based on its length, the inter-arrival time and the
direction of the packet and the previous packet. They
then use PCA to reduce the high dimensional space and
binning density estimation to learn each flow type from
three PCA. The classification works in a similar way.
After PCA the probability of a flow being an application

is computed for the learned density of all applications
and the application with the highest probability is select.
The evaluation is based on a set of roughly 17,000 flows
from two hours, ignoring flows with less than 10
packets. The false negative error rates are between 0%
and 7.5%. The authors study traffic of the following
well-known ports: FTP, SSH, RSH, telnet, DNS, SMTP,
rlogin, ICMP and IRC.

In [16] the authors use nearest neighbour (NN) and
linear discriminate analysis (LDA) to successfully map
different applications to different QoS classes using four
different attributes: average packet size, root mean
square packet size, average duration, inter-arrival
variability. The paper investigates the following
applications: DNS, FTP data, HTTP over SSL, Kazaa,
Realmedia and telnet. The authors do not use web traffic
for the learning but show that web traffic falls into
different classes and is difficult to separate from several
of the other applications. The classification errors
reported are between 2% and 13%. The flow attributes
used in the study have not been computed based on
single flows but are the mean values of all flows of a
particular application aggregated over 24 hour periods.

The Expectation Maximization (EM) algorithm is used
in [17] to cluster flows into different application types
using a fixed set of attributes. The algorithm was found
to separate traffic into a small number of basic classes.
Cross validation was used and identified similar sets of
classes across different parts of the same trace and
different traces. However, from their evaluation it is not
clear what influence different attributes and EM
parameters have. Also, as the results of the clustering
were not evaluated it is unclear as to how good the
clustering was.

In [18] the authors use a simulated annealing EM
algorithm to classify traffic flows based on their size
(e.g. mice and elephants). The authors conclude that
their approach produces more meaningful results than
previous threshold-based methods.

We proposed an ML-based approach for identifying
different network applications in [6] using unsupervised
learning. This approach is based on the autoclass [19]
algorithm, which is based on Bayesian classification and
the EM algorithm. The evaluation is based on random
samples of flows obtained from four large 24-hour trace
files. We have investigated the performance of
clustering using the following applications: FTP data,
SSH, DNS, SMTP, Web, Napster, AOL messenger and
Half-life. We have shown that some separation between
the different applications can be achieved and some
applications can be separated more effectively (e.g.
Half-life) than others (e.g. web).

The authors of [20] use a similar approach based on the
Naïve Bayes classifier and a large number of flow
attributes. Although only one data set is used the flows
have been hand-classified allowing a very accurate

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 4 of 17

CAIA Technical Report 060410C March 2006 page 5 of 17

evaluation. In their study it is not clear what influence
the different attributes have on the classification.

Research on combining different non-ML techniques to
identify network applications is presented in [21]. The
work is based on the same hand-classified data set as
[20]. The authors found that high classification accuracy
can only be achieved using a combination of techniques.
They also find that using the server port alone allowed
for an average of 70% of the flows and bytes to be
classified correctly. Some individual applications have
higher accuracy for instance 80% for web traffic and
96% for mail traffic. However, high classification rates
(>95%) could only be achieved using packet content in
the classification process.

The authors of [22] have developed a method that
characterises host behaviour on different levels to
classify network traffic into different application types.
The social level captures the behaviour of a host in terms
of the number of other hosts it is communicating with.
At the functional level the functional role of a host is
considered, for example if a host is a provider or
consumer of a service. At the application level the
transport layer interactions between hosts is used. An
evaluation based on three real traces shows that 80%-
90% of the traffic could be identified with more than
95% accuracy.

V. FEATURE SELECTION TECHNIQUES

A feature set describing a data instance might range in
size from two to several hundred features. The
representative quality of this feature set greatly
influences the effectiveness of the ML algorithm. It is
therefore desirable to carefully select the number and
type of features used to train the ML algorithm, a
process known as feature selection. The benefits of
feature selection are two-fold. Reducing the number of
features decreases learning and classification times,
while the removal of irrelevant or redundant features can
also increase the classification accuracy.

Feature selection algorithms can be broadly classified
into the filter model or wrapper model [23]. Filter model
algorithms use a custom metric to rate and select
features and provide feature subsets that are not biased
towards any particular ML algorithm. The wrapper
method evaluates the performance of different subsets
using specific ML algorithms hence subsets are
optimised towards the algorithm used. A number of
subset search techniques can be used to generate feature
subsets for the evaluators (see section V.B).

In this study we use the Correlation-based Feature
Selection (CFS) filter technique. For further information
regarding the use of other filter and wrapper methods for
traffic flow statistics, see [24].

A. Correlation-Based Feature Selection (CFS)

The CFS algorithm [25] uses an evaluation heuristic that
examines the usefulness of individual features along
with the level of inter-correlation among the features.
High scores are assigned to subsets containing attributes
that are highly correlated with the class and have low
inter-correlation with each other.

Conditional entropy is used to provide a measure of the
correlation between each feature and the class and
between features within the class. If H(X) is the entropy
of a feature X and H(X|Y) the entropy of a feature X
given the occurrence of feature Y the correlation
between two features X and Y can then be calculated
using the symmetrical uncertainty:

)(

)|()(
)|(

YH

YXHXH
YXC

−= (1)

The class of an instance is considered to be a feature.
The goodness of a subset is then determined as:

ii

ci

subset

rkkk

rk
G

)1(−+
= (2)

where k is the number of features in a subset,
cir the

mean feature correlation with the class and
iir the mean

feature correlation. The feature-class and feature-feature
correlations are the symmetrical uncertainty coefficients
(Equation 3).

B. Search Techniques

CFS as used in the study requires a search algorithm to
provide subsets from the feature space. The following
common search techniques were used:

� Greedy

� Best First

� Genetic

The Best First and Greedy search techniques require a
starting point and search direction to be specified. We
use forward and backward searches. A search that
begins with zero features and increases in size on each
iteration is known as a forward search. Starting with all
features and reducing the subset size on following
iterations is known as a backward search.

Greedy
Greedy search considers changes local to the current
subset through the addition or removal of features. For a
given ‘parent’ set, a greedy search examines all possible
‘child’ subsets through either the addition or removal of
features. The child subset that shows the highest
goodness measure then replaces the parent subset, and
the process is repeated. The process terminates when no
more improvement can be made.

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 5 of 17

CAIA Technical Report 060410C March 2006 page 6 of 17

Best First
Best First search is similar to greedy search in that it
creates new subsets based on the addition or removal of
features to the current subset. However, it has the ability
to backtrack along the subset selection path to explore
different possibilities when the current path no longer
shows improvement. To prevent the search from
backtracking through all possibilities in the feature
space, a limit is placed on the number of non-improving
subsets that are considered. In our evaluation we chose a
limit of five.

Genetic
A Genetic search attempts to find an optimal solution
using evolutionary concepts [26]. An initial population
of individuals (solutions) is generated at random or
heuristically. In every evolutionary step, known as a
generation, the individuals in the current population are
decoded and evaluated according to some predefined
quality criterion (fitness function). To form a new
population (the next generation), individuals are selected
according to their fitness. Population selection schemes
ensure that only high-fitness (good) individuals stand a
better chance of ‘reproducing’, while unsuitable
individuals are more likely to disappear.

Selection alone cannot introduce any new individuals
into the population, i.e. it cannot find new points in the
search space. These are generated by genetically
inspired operators, of which the most well known are
crossover and mutation. We chose an initial random
subset population of 20, and performed 20 evolutionary
steps. The crossover probability used was 0.6, while the
probability of subset mutation was 0.033.

VI. MACHINE LEARNING ALGORITHMS

We use a number of supervised ML algorithms. As
previously described, a supervised algorithm forms a
model based on training data and uses this model to
classify unseen new data. In this study we focus on well-
known algorithms that have shown good results when
applied to other problems. Furthermore, we focus on
algorithms that do not require ‘magic’ parameters to be
tuned. Therefore we do not test neural networks or
support vector machines, as even though very good
results might be obtained, optimisation of the many
parameters is tedious and risks biasing the classifier to
the training dataset. We use the following algorithms:

� C4.5 Decision Tree

� Naïve Bayes

� Naïve Bayes Tree

� Bayesian Networks

The algorithms are briefly described in the following
sections. For more detailed descriptions the reader is
refereed to the related work.

A. C4.5 Decision Tree

The C4.5 algorithm [27] creates a decision model based
on a tree structure of nodes, branches and leaves. Nodes
in the tree represent features, with branches representing
possible values connecting features. A series of nodes
and branches is terminated with a leaf, which represents
the class. Determining the class of an instance is simply
a matter of tracing the path of feature nodes and
branches to the terminating leaf node.

C4.5, as other decision tree learners, uses the ‘divide and
conquer’ method to construct a tree from a set of S
training instances. If all cases in S belong to the same
class, the decision tree is a leaf labelled with that class.
Otherwise the algorithm will use some test to divide S
into several non-trivial partitions. Each of the partitions
becomes a child node of the current node and the test
outcomes to separate S are assigned to the branches.

C4.5 uses two main types of tests each involving only a
single attribute A. In case of discrete attributes the test is
A=? with one outcome for each value of A. For numeric
attributes the test is A≤θ where θ is a constant threshold
Possible threshold values are found by sorting the
distinct values of A that appear in S and then identifying
a threshold between each pair of adjacent values.

To find the optimal partitions of S C4.5 relies on greedy
search and selects the candidate test set that maximizes a
heuristic splitting criterion. C4.5 uses entropy based gain
ratio to select the best split. If SCj is frequency of
instances in S that belong to class Cj the information
content that identifies the class of an instance in S is:

() log()Cj Cj

j

I S S S= −∑ (3)

After S is partitioned into subsets by a test T the
information gain is:

(,) () ()
i

i

i

S
G S T I S I S

S
= −∑ (4)

A problem with this test is that it favours large numbers
of partitions e.g. G(S,T) is maximised by a test in which
each Si contains a single instance. The gain ratio
criterion sidesteps this problem by taken the gain ratio of
the partition into account:

(,) (,)

(,)
log

i i

i

G S T G S T

P S T S S

S S

=

−

∑
 (5)

The divide and conquer approach partitions the data
until every leaf contains instances from only one class or
a further partition is not possible e.g. because two
instances have the same features but different class. If
there are no conflicting cases the tree will correctly
classify all training instances. However this close fitting
of the training data leads to a decrease of the prediction

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 6 of 17

CAIA Technical Report 060410C March 2006 page 7 of 17

accuracy on unseen instances. C4.5 attempts to
generalise the classifier by removing some structure
from the tree after it has been built. Pruning is based on
the estimated true error rates. After building a classifier
the ratio of misclassified instances and total instances
can be viewed as the real error. But this error is
minimised because the classifier was constructed
specifically for the training instances and therefore not
useful. Instead of using the real error the C4.5 pruning
algorithm uses a more conservative estimate. This
estimate is the upper limit of a confidence interval
constructed around the real error probability. With a
given confidence CF The real error will be below the
upper limit with 1-CF.

C4.5 prunes a tree in a single bottom up pass. For each
tree C4.5 computes the upper bound of the error for the
whole tree and the errors for all sub trees and leaves.
Subtree replacement will replace the tree with a single
leaf if the estimated error for the whole tree is lower
than the weighted sum of the errors of the leaves.
Subtree raising will lift a subtree if the estimated error of
the new tree will be less than the estimated error of the
subtree.

In our test the confidence level is 0.25 and the minimum
number of instances per leaf is set to two. We use
subtree replacement and subtree raising when pruning.

B. Naïve Bayes

Naïve Bayes is based on the Bayesian theorem [28].
This classification technique analyses the relationship
between each attribute and the class for each instance to
derive a conditional probability for the relationships
between the attribute values and the class. We assume
that X is a vector of instances where each instances is
described by attributes {X1,...,Xk} and a random variable
C denoting the class of an instance. Let x be a particular
instance and c be a particular class.

Using Naïve Bayes for classification is a fairly simple
process. During training, the probability of each class is
computed by counting how many times it occurs in the
training dataset. This is called the prior probability
P(C=c). In addition to the prior probability, the
algorithm also computes the probability for the instance
x given c. Under the assumption that the attributes are
independent this probability becomes the product of the
probabilities of each single attribute. Surprisingly Naïve
Bayes has achieved good results in many cases even
when this assumption is violated.

The probability that an instance x belongs to a class c
can be computed by combining the prior probability and
the probability from each attribute’s density function
using the Bayes formula:

() (|)

(|)
()

i i

i

P C c P X x C c

P C c X x
P X x

= = =
= = =

=

∏
 (6)

The denominator is invariant across classes and only
necessary as a normalising constant (scaling factor). It
can be computed as the sum of all joint probabilities of
the enumerator:

() () (|)j jj
P X x P C P X x C= = =∑ (7)

Equation 8 is only applicable if the attributes Xi are
qualitative (nominal). A qualitative attribute takes a
small number of values. The probabilities can then be
estimated from the frequencies of the instances in the
training set. Quantitative attributes can have a large
number (possibly infinite) of values and the probability
cannot be estimated from the frequency distribution.
This can be addressed by modelling attributes with a
continuous probability distribution or by using
discretisation. Discretisation transforms the quantitative
attributes into qualitative attributes, and avoids the
problem of using a continuous probability density
function that does not match the true density. For this
reason we evaluate Naïve Bayes using attribute
discretisation.

C.Bayesian Networks (Bayes Net)

A Bayesian Network [29] is a combination of a
directed acyclic graph (DAG) of nodes and links, and a
set of conditional probability tables. Nodes can represent
features or class, while links between nodes represent
the relationship between them.

Conditional probability tables determine the strength
of the links. There is one probability table for each node
(feature) that defines the probability distribution for the
node given its parent nodes. If a node has no parents the
probability distribution is unconditional. If a node has
one or more parents the probability distribution is a
conditional distribution where the probability of each
feature value depends on the values of the parents.

Learning in a Bayesian network is a two-stage
process. First the network structure Bs is formed
(structure learning) and then probability tables Bp are
estimated (probability distribution estimation).

We use a local score metric approach that aims to
optimise the network structure based on the quality of
nodes as indicated by a given metric. The quality of the
whole network is then the sum of the individual nodes.
A local search algorithm is used to compute the metrics
for each node.

The search algorithm we use is the K2 hill climbing
algorithm created by G. Cooper and E. Herskovitz. This
algorithm searches through the nodes according to some
predetermined ordering of the data. The implementation
we use searches in order of appearance of the features in
the dataset. The K2 algorithm requires that the input data
is discretised.

We use the Bayesian Metric in conjunction with the
K2 search to determine node quality. The quality Q for a
network structure Bs for a given database D is given by

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 7 of 17

CAIA Technical Report 060410C March 2006 page 8 of 17

10 1 1

(1)!
(,) () !

()!

i iq rn
i

S s ijk

i iji j k

r
Q B D P B N

r N−= = =

−
=

+∏∏ ∏ (8)

where n is the number of features, ri the cardinality
(the number of elements in the set) of the ith feature xi
and qi denotes the cardinality of the parent set of xi in Bs,
which is defined as the product of the cardinalities of all
parent nodes of xi. Nij is the number of instances in D for
which the parent set of feature i takes its jth value. Nijk is
the number of instances in D for which the parent set of
feature takes its jth value and the feature i takes its kth
value. The prior probability P(Bs) of the network
structure Bs is assumed to be constant and therefore
ignored. See [29] and [30] for a detailed explanation of
this algorithm.

An estimation algorithm is used to create the
conditional probability tables for the Bayesian Network.
We use a simple estimator, which estimates probabilities
directly from the dataset. The simple estimator
calculates class membership probabilities for each
instance, as well as the conditional probability of each
node given its parent node in the Bayes network
structure.

Our combination of structure learning and search
technique is only one of many combinations that can be
used to create Bayesian Networks.

D. Naïve Bayes Tree (NBTree)

The NBTree [30] is a hybrid of a decision tree
classifier and a Naïve Bayes classifier. Designed to
allow accuracy to scale up with increasingly large
training datasets, the NBTree algorithm has been found
to have higher accuracy than C4.5 or Naïve Bayes on
certain datasets. The NBTree model is best described as
a decision tree of nodes and branches with Bayes
classifiers on the leaf nodes.

As with other tree-based classifiers, NBTree spans
out with branches and nodes. Given a node with a set of
instances the algorithm evaluates the ‘utility’ of a split
for each attribute. If the highest utility among all
attributes is significantly better than the utility of the
current node the instances will be divided based on that
attribute. Threshold splits using entropy minimisation
are used for continuous attributes while discrete
attributes are split into all possible values. If there is no
split that provides a significantly better utility a Naïve
Bayes classifier will be created for the current node.

The utility of a node is computed by discretising the
data and performing 5-fold cross validation (see Section
III.B) to estimate the accuracy using Naïve Bayes. The
utility of a split is the weighted sum of the utility of the
nodes, where the weights are proportional to the number
of instances in each node. A split is considered to be
significant if the relative (not the absolute) error
reduction is greater than 5% and there are at least 30
instances in the node.

VII.EXPERIMENTAL APPROACH

This section describes the data and features that form
the basis of our study.

A. Traffic Classes

In traffic classification a class might be an individual
application or a group of applications with similar
characteristics. Example instances of each class are
provided to the learning algorithm at training time. For
accurate classification, the class instances used for
training must be truly representative of the class. As our
focus is on classifying game traffic, the classes are based
on individual games.

The majority of game traffic classes were from the
First Person Shooter (FPS) game genre, as these are
most sensitive to QoS issues. A single real-time strategy
(RTS) game was also included for comparison.

An additional ‘other’ class was also created,
consisting of a sample of flow data taken from three
publicly available trace files. This class was included to
represent generic unknown network data other than
online games, and includes web, email, DNS and peer-
to-peer traffic, among others.

Table 1 summarises the classes used in the
experiments.

Table 2: Traffic classes used in experiments

Class Description Genre/platfor

m

CCG Command and

Conquer: Generals

RTS / PC

HL1 Half-Life: Death

Match

FPS / PC

HL2-DM Half-Life 2: Death

Match

FPS / PC

HL2-CS Half-Life 2: Counter

Strike

FPS / PC

Q3 Quake 3 Death Match FPS / PC

TS Time Splitters FPS / X-Box

HALO Halo: Death Match FPS / X-Box

HALO2 Halo 2: Death Match FPS / X-Box

Other Common network

protocols e.g. HTTP,

DNS, P2P

-

B. Features

Features are attributes that as a set describe an
instance of a class. Here each instance represents a
traffic flow generated by one of the classes. We use
NetMate [32] to process packet traces, classify packets
and compute features. We classify packets to flows
based on source IP and source port, destination IP and

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 8 of 17

CAIA Technical Report 060410C March 2006 page 9 of 17

destination port. Flows are bidirectional and the first
packet seen by the classifier determines the forward
direction.

Flows have limited duration. UDP flows are
terminated by a 60 second flow timeout, while TCP
flows are terminated upon proper connection teardown
(TCP state machine) or after a 60 second timeout
(whichever occurs first). We consider only UDP and
TCP flows that have at least 1 packet in each direction
and transport at least 1 byte of payload. This excludes
flows without payload (e.g. failed TCP connection
attempts) or ‘unsuccessful’ flows (e.g. requests without
responses). Flows devoid of payload cannot reveal
information about the generating application. Flows with
only a single packet do not resemble a successful
communication (without payload inspection it is
difficult to determine if these are failed connections or
malicious traffic such as port scans).

We distinguish active and idle periods of flows by
using an idle threshold, which is 1 second by default.
Periods where no packets are observed for 1 second or
more are treated as idle periods. A flow is active when
not in an idle period. The duration of idle periods is the
time difference between a packet and the last packet at
the beginning of the idle periods. The duration of active
periods is the time difference between the last and first
packet of the active periods. When a flow is terminated
by timeout the time from the last packet until the timeout
is not counted as idle time.

We compute the following features: protocol,
duration, volume in bytes and packets, average volume
in bytes and packets per active period, number of
packets with push flag set (only for TCP – always 0 for
UDP), packet length (minimum, mean, maximum,
standard deviation), inter-arrival times (minimum, mean,
maximum, standard deviation) active and idle times
(minimum, mean, maximum, standard deviation). Aside
from protocol and duration all features are computed
separately in both directions of a flow. Packet length
derived features are based on the IP length excluding
link layer overhead. Inter-arrival times are computed
with microsecond precision. All of the 36 features can
be efficiently computed solely from the packets
collected within each individual flow. Server port is not
used as an attribute as ‘wrong’ ports could introduce an
unknown bias.

C. Data Traces

Where possible game data was obtained from public
game servers. This is the most realistic and diverse data
as it is based on a large number of real players. For
games where it is impossible to run a public server
(Xbox, CCG) and Q3 (which is no longer widely
played), we used traces captured in controlled
experiments designed to obtain game traffic
characteristics.

Due to the client/server discovery mechanisms used
by first person shooter games, additional care is needed
when sampling data from public servers to ensure actual
game traffic is obtained. As described in [33], much of
the traffic seen by public servers is from game clients
probing the server for information, such as round trip
times, current map and number of current players. We
call this traffic probe traffic as opposed to non-probe
traffic, which is traffic that is exchanged when players
are actually playing

Half-Life 1 traffic was captured over 15 games at a
server located in the Swinburne University LAN [34].
Between 3 and 7 players were present in each game.
Some HL1 traffic was also captured on CAIAs public
HL1 counter-strike server (now offline). As the majority
of these flows were probe flows, we have taken a
random sample equal in size to the number of non-probe
flows.

Half-Life 2 DM and CS traffic was captured over a
period of one month from CAIAs public Half-Life 2
server [35]. Due to a large amount of probe flows these
datasets were constructed using stratified sampling on
the flow size. We took all flows where more than 10
packets were sent from client to server and an equal
amount of short flows randomly sampled from the
population of a few million probe flows. This strategy
ensures that the training set is not overly large and has a
balance of small and large flows for each game.

Quake 3 game traffic was captured on a server
located on the university LAN [36]. Games captured
consisted of between 2 and 8 players.

Halo traffic was captured between up to three Xbox
consoles connected via System Link, for games
consisting of up to four players and lasting up to 50
minutes [38]. Halo 2 traffic was captured from between
up to four Xboxes connected to a Hub and an Xbox
server [39]. Time Splitters traffic was captured between
three Xbox consoles over six games with up to nine
players participating [40].

Xbox units communicating over System Link are
differentiated by Ethernet MAC address (the UDP/IP
payloads within each Ethernet frame contain a non-
functional source and destination IP set to 0.0.0.1).
Xbox game servers often generate broadcast packets
during the initial stage of creating a client and server
connection. These were removed from the Xbox
datasets.

The ‘Command and Conquer: Generals’ data was
obtained from Mark Claypool’s archive of game traffic
[9]. The traces consist of a number of 15-45 minute
games.

The data used to represent the ‘other’ class was
drawn from publicly available NLANR [37] data traces.
These traces were captured in different years and at
different locations. We used flow data from four 24-hour

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 9 of 17

CAIA Technical Report 060410C March 2006 page 10 of 17

periods of these traces (auckland-vi-20010611, leipzig-
ii-20030221, nzix-ii-20000706).

As a 24-hour period of the packet traces contains up
to several million flows, our data set is sampled from the
total number of flows. We randomly sampled 200,000
flows from each trace, for a total of 600,000 flows. As
the public traces do not contain any payload information
we use port numbers to estimate the different
applications contained within ‘other’ class (see Table 3).
75-80% of the traffic flows and 70-75% of the volume
in the ‘other’ class can be attributed to these few popular
applications.

Table 3: Several common applications in ‘other’ class

Application Description Protocol Flows

(%)

Volume

(%)

HTTP World Wide

Web

TCP 52.45 52.37

DNS Domain

Name

Service

UDP/TCP 12.73 1.01

eDonkey P2P File

sharing

UDP/TCP 10.28 8.24

HTTPS Secure Web TCP 3.34 2.43

SMTP E-Mail TCP 1.92 6.04

Kazaa P2P file

sharing

TCP/UDP 1.08 4.72

POP Electronic

Mail

TCP 1.04 0.51

As the majority of online games (and all of those
tested here) use UDP/IP, it was important that the non-
game class contained a sizeable portion of UDP traffic.
There were approximately 126,568 UDP flows in the
‘other’ class, accounting for 21% of the total (and far
exceeding the total game flows). We removed all flows
with ports that were the default Half-life 1/2, Quake 3 or
Xbox ports from these traces. A summary of all the
trace data is shown in Table 4.

Table 4: Trace summary

Class Flows Volume (MB) Protocol

CCG 561 252 UDP

HL1 1,902 592 UDP

HL2-DM 10,519 25,570 UDP

HL2-CS 2,391 1,641 UDP

Q3 1,246 83 UDP

TS 23 23 UDP

HALO 35 272 UDP

HALO2 78 126 UDP

Other 600,000 6,993 TCP/UDP

We arranged the trace data into three different
datasets, each containing game data and non-game
(other) data. The first contains each individual game as
separate class (game), the second contains one class per
game engine (engine), while in the final trace all games
are aggregated into a single class (2-class). Note that the
engine dataset is essentially identical to the game
dataset, with the HL2-DM and HL2-CS combined into
one class.

D.ML Software

Experiments were conducted using the WEKA
(Waikato Environment for Knowledge Analysis)
software version 3.4.4 [41]. Widely used in the
academic community, WEKA contains Java
implementations of all the algorithms described above.

VIII. RESULTS AND ANALYSIS

First we evaluate accuracy, precision and recall of the
different algorithms. Then we investigate the influence
of feature selection, using CFS and different search
techniques. We also present what features are more
useful according to our feature selection technique used.
Finally, we evaluate the performance of the different
algorithms in terms of classification and training speed.

A. Algorithm Evaluation

Figure 2 shows the accuracy of each algorithm and
dataset using the entire feature set. Overall accuracy is
greater than 99% for each of the algorithms when using
all features, except for Naïve Bayes. The 2-class dataset
provided the highest accuracy for each of the algorithms.
The per-engine dataset provided slightly higher accuracy
than the per-game dataset.

9
7

9
8

9
9

1
0
0

C
4.
5

B
ay
es
N
et

N
ai
ve
B
ay
es

N
B
Tr
ee

A
c
c
u
ra
c
y
 (
%
)

Game Engine 2-class

Figure 2: Accuracy using all features

Overall accuracy is quite good starting reference, but
it does not give us an indication as to the accuracy of
each individual class. It can also be biased towards
classes with a greater number of instances. For example,
consider a dataset containing only HL2-DM (10,519
instances) and TS (23 instances). So long as the recall of
the HL2-DM class is high, overall accuracy will also be
high, regardless of whether recall for TS was high or
low.

Therefore, in the following we evaluate the recall and
precision of all individual classes and use mean recall
and precision values instead of accuracy. Recall and
precision are also calculated according to the total
volume of each class correctly or incorrectly classified.

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 10 of 17

CAIA Technical Report 060410C March 2006 page 11 of 17

It is important to consider these metrics according to
volume as during training algorithms optimise the
classifiers based on the number of instances in the
dataset. As game traffic is often a combination of many
probe flows (with small volume) and fewer in-game
flows (with larger volume), it is very important to also
consider precision and recall calculated according to
bytes classified. These rates are calculated by adding the
volume of each instance into a standard confusion table.
By comparing the instance-based metrics and volume-
based metrics we can determine the proportion of actual
in-game flows that are correctly classified.

0
0
.5

1

CC
G

HL
2-
C
S

HL
2-
D
M Q

3
HL
1

Ha
lo

Ha
lo
2

TS

O
th
er

R
a
te

Precision Recall

0
0
.5

1

CC
G

HL
2-
CS

HL
2-
DM Q

3
HL
1

Ha
lo
1

Ha
lo
2

TS
ot
he
r

R
a
te

Precision Recall

Figure 3: Precision and recall by instance (top) and volume

(bottom) using C4.5 with all features, per-game dataset

Figure 3 plots the precision and recall rates by for
each traffic class using the per-game dataset and C4.5
algorithm. The majority of classes have high instance-
based precision and recall, which indicates low numbers
of false positives and negatives. Classes with very few
training instances, such as Time Splitters and Halo, still
achieve acceptable recall and precision rates (0.73 and
0.89 respectively). Considering volume, there is an
immediate difference seen in HL2-DM and HL2-CS, Q3
and HL1. The reduced precision and recall for the HL2-
based games is due to a number of HL2-CS in-game
flows being misclassified as HL2-DM. A number of Q3
flows with larger volumes were also classified as HL2-
DM. The remaining classes are classified at rates equal
or better than those based on flow instances.

Figure 4 plots the precision and recall rates for each
traffic class using the per-game dataset and Bayes Net
algorithm. The instance-based precision rates for the
FPS games are significantly lower than those using
C4.5, indicating an increase in the number of false
positives and false negatives between these classes. The
RTS and ‘other’ class are both separated with high
precision and recall. Volume-based metrics are again
quite different, with fewer game flows from HL2-DM
being classified as HL2-CS (as indicated by the high
precision of HL2-CS). However many HL2-CS game

flows are being classified as HL2-DM. Besides Counter
Strike, many of the applications were classified with
high precision and recall in terms of volume.

0
0
.5

1

CC
G

HL
2-
C
S

HL
2-
D
M Q

3
HL
1

Ha
lo

Ha
lo
2

TS

O
th
er

R
a
te

Precision Recall

0
0
.5

1

CC
G

HL
2-
CS

HL
2-
DM Q3 HL

1

Ha
lo1

Ha
lo2 TS

ot
he
r

R
a
te

Precision Recall

Figure 4: Precision and recall by instance (top) and volume

(bottom) using Bayes Net with all features, per-game dataset

Figure 5 plots the precision and recall rates with all
features for each traffic class using the per-game dataset
and Naïve Bayes algorithm. The sample size of a class
appears to have a large affect on the instance-based
precision and recall rates when using Naïve Bayes.
Classes with few training instances perform very poorly,
with Time Splitters approaching zero for precision and
recall. Again Command and Conquer Generals appears
distinct enough from the FPS games to be classified with
high accuracy, as is the case with the generic ‘other’
class.

0
0
.5

1

cc
g

H
L2
-C
S

H
L2
-D
M Q

3
H
L1

H
al
o1

H
al
o2 TS

ot
he
r

R
a
te

Precision Recall

0
0
.5

1

CC
G

HL
2-
CS

HL
2-
DM Q

3
HL
1

Ha
lo
1

Ha
lo
2

TS
ot
he
r

R
a
te

Precision Recall

Figure 5: Precision and recall per class using Naïve Bayes with

all features, per-game dataset

As with the flow-based metrics, the volume-based
rates for the FPS game classes are quite varied. Much of
Q3 was classified as Halo1, while most HL2-CS game
flows are classified as HL2-DM and HL1. Flows from
the ‘other’ class were misclassified as all of the game

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 11 of 17

CAIA Technical Report 060410C March 2006 page 12 of 17

classes, reducing the precision of each (with the
exception of CCG).

Figure 6 plots the precision and recall rates for each
traffic class using the per-game dataset and NBTree
algorithm. Instance-based performance for NBTree is on
par with C4.5 and in some cases slightly better.
Interestingly a number of Halo flows were classified as
Command and Conquer flows, reducing the CCG
precision and the recall of the Halo class. This crossover
between RTS and FPS classes was not seen in tests with
the other algorithms.

The volume-based results were also comparable to
those seen in C4.5, although will slightly less recall and
precision for most classes.

0
0
.5

1

C
C
G

H
L2
-C
S

H
L2
-D
M

Q
3

H
L1

H
al
o

H
al
o2 TS

O
th
er

R
a
te

Precision Recall

0
0
.5

1

CC
G

HL
2-
CS

HL
2-
DM Q

3
HL
1

Ha
lo
1

Ha
lo
2

TS
ot
he
r

R
a
te

Precision Recall

Figure 6: Precision and recall per class using NBTree with all

features, per-game dataset

Figure 7 summarises the mean recall and precision
rates of the algorithms when using the per-game dataset.
Rates for C4.5 and NBTree show almost identical
performance (~0.95), while Bayes Net (~0.91) was
slightly less accurate.

The precision of Naïve Bayes is very poor, and it
appears this algorithm has difficulty with disparate class
sizes. For C4.5, Bayes Net and NBTree there does not
appear to be a great difference when comparing flow
instances and volume.

0
.4

0
.6

0
.8

1

C
4.
5

Ba
ye
s
N
et

N
ai
ve
 B
ay
es

N
BT
re
e

R
a
te

Mean Recall flows Mean Precision Flows
Mean Recall Bytes Mean Precision Bytes

Figure 7: Mean recall and precision for each algorithm, flows

and bytes, game dataset

The only difference between the per-engine and per-
game datasets was the aggregation of the two HL2-based

games. Therefore in Figure 8 we compare the instance-
based recall and precision for the single HL2 class
against the mean rates of the individual HL2-CS and
HL2-DM classes. As a single class the recall and
precision rate improves slightly. This test shows that two
separate game modifications with distinct game
mechanics but the same underlying engine can be
detected not only individually but also as a single class.
Using a single class appears to lead to higher accuracy.

0
0
.2

0
.4

0
.6

0
.8

1

C4
.5

Ba
ye
sN
et

Na
ive
Ba
ye
s

NB
Tr
ee

R
a
te

Precision-engine Recall-engine Precision-game Recall-game

Figure 8: Half-Life 2 precision and recall with all features

Figure 9 compares the mean recall and precision of
the algorithms when using the 2-class dataset. Precision
and recall metrics are generally higher than for the per-
game dataset.

Apart from Naïve Bayes, there is very little
separating the different algorithms, as all are very
accurate for flows and volume. The recall and precision
metrics for flows and bytes approached .99 for C4.5 and
NBTree. At 0.95 the Bayes Net volume-based recall
stood out, being .04 (4%) less than for flow-based recall.

0
.8

0
.9

1

C4
.5

Ba
ye
s
Ne
t

Na
ive
 B
ay
es

NB
Tr
ee

R
a
te

Mean Recall flows Mean Precision Flows
Mean Recall Bytes Mean Precision Bytes

Figure 9: Mean recall and precision for each algorithm, flows

and bytes, 2-class dataset

Even though overall accuracy was slightly optimised
towards the class with the largest number of instances
(other), the difference in recall for the two classes was
minor.

B. Feature Selection

Feature subset selection was performed on all three
datasets using CFS with Best First, Genetic and Greedy
search methods (see section V). Figure 10 shows the
average size of the selected subsets as a percentage of
the full feature set, averaged across the datasets.

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 12 of 17

CAIA Technical Report 060410C March 2006 page 13 of 17

0
5

1
0

1
5

2
0

2
5

B
es
t F
irs
t F
or
w
ar
d

G
re
ed
y
F
or
w
ar
d

G
en
et
ic

B
es
t F
irs
t B
ac
kw
ar
d

G
re
ed
y
B
ac
kw
ar
d

P
e
rc
e
n
ta
g
e

% of feature set

Figure 10: Percentage of full feature set by search method

CFS provides substantial reductions in the number of
features used, with the largest subset using 20% of the
features. The forward directional searches were very
aggressive, with both Best First and Greedy Forward
selecting only one feature for each dataset (minimum
forward packet length).

Figure 11 shows the change in overall accuracy
averaged across the different search methods when using
CFS for each of the algorithms and datasets, compared
to accuracy using all features.

-2
-1

0
1

2

C
4.
5

Ba
ye
sN
et

N
aiv
eB
ay
es

NB
Tr
eeC

h
a
n
g
e
 i
n
 A
c
c
u
ra
c
y
 (
%
)

Game Engine 2-class

Figure 11: Average change in overall accuracy by subset

selection method compared against using full feature set

With the exception of Naïve Bayes it appears that
CFS selection causes a slight reduction in accuracy.
Although classification improves for Naïve Bayes when
using CFS, this is somewhat misleading, as overall
accuracy is heavily biased towards classes with large
numbers of instances. Again a more practical evaluation
of CFS performance can be made by considering the
per-class accuracy (i.e. recall).

0
2
0

4
0

6
0

8
0
1
0
0

Al
l f
ea
tu
re
s

Be
st
 F
irs
t F
or
wa
rd

G
re
ed
y
Fo
rw
ar
d

G
en
et
ic

Be
st
 F
irs
t B
ac
kw
ar
d

G
re
ed
y
Ba
ck
w
ar
d

P
e
rc
e
n
ta
g
e

Mean Recall Accuracy

Figure 12: Mean recall compared to overall accuracy, per-game

dataset

Figure 12 compares the mean class recall against
accuracy, averaged across the algorithms for the per-
game dataset. Recall is expressed as a percentage for

comparison. The large difference between overall
accuracy and mean class recall can be seen for several of
the tests (such as greedy forward, best first forward).

Figure 13 shows the change in mean class recall for
each algorithm when compared to the mean class recall
obtained using the full feature set, for the per-game
dataset. We see that the 60% drop in class recall ranges
across all the algorithms when using the forward-
directional searches. The poor mean class recall was due
to classes with very few training instances such as ‘Time
Splitters’ and ‘Halo’ having a recall of 0 as a
consequence of using these search methods. A similar
result was observed for the per-engine dataset.

-6
0

-4
0

-2
0

0
2
0

Be
st
 F
irs
t F
or
wa
rd

G
re
ed
y
Fo
rw
ar
d

G
en
et
ic

Be
st
 F
irs
t B
ac
kw
ar
d

G
re
ed
y
Ba
ck
w
ar
d

C
h
a
n
g
e
 i
n
 m
e
a
n
 r
e
c
a
ll
 (
%
)

C4.5 Bayes Net Naïve Bayes NBTree

Figure 13: Change in mean class recall by CFS search method,

‘game’ dataset

Figure 14 compares the mean class recall against
accuracy, averaged across the algorithms, for the 2-class
dataset. The difference between overall accuracy and
recall is less pronounced for the 2-class dataset. As both
classes contain a significant number of flows, it appears
difficult for the evaluator to optimise for one class
without reducing the overall accuracy.

0
2
0

4
0

6
0

8
0
1
0
0

Al
l f
ea
tu
re
s

Be
st
 F
irs
t F
or
wa
rd

G
re
ed
y
Fo
rw
ar
d

G
en
et
ic

Be
st
 F
irs
t B
ac
kw
ar
d

G
re
ed
y
Ba
ck
w
ar
d

P
e
rc
e
n
ta
g
e

Mean Recall Accuracy

Figure 14: Mean recall compared to accuracy for 2-class dataset

Figure 15 again shows the change in mean class
recall for each algorithm, this time using the ‘2-class’
dataset. In most cases CFS selection decreases mean
class recall as compared to using the full feature set,
although not by greater than 10%. As suggested in
Figure 14, using CFS subset selection in a 2-class
scenario does not incur as severe a penalty than with a
multi-game scenario (per-game, per-engine).

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 13 of 17

CAIA Technical Report 060410C March 2006 page 14 of 17

-6
0

-4
0

-2
0

0
2
0

Be
st
Fi
rs
t F
or
wa
rd

Gr
ee
dy
 F
or
wa
rd

Ge
ne
tic

Be
st
Fi
rs
t B
ac
kw
ar
d

Gr
ee
dy
 B
ac
kw
ar
d

C
h
a
n
g
e
 i
n
 m
e
a
n
 r
e
c
a
ll
 r
a
te
 (
%
) C4.5 Bayes Net Naive Bayes NBTree

Figure 15: Change in mean class recall by CFS search method,

‘2-class’ dataset

Overall the results of the CFS evaluation suggest that
a reduced number of features still allow game traffic to
be separated from generic IP network traffic.

There were several cases of extreme reductions in the
feature space, though results suited only few classes
with the highest number of training instances. A range of
classes with an equal number of training instances would
most likely require more features, but a significant
reduction in features would still be expected.

The genetic search appeared to have the least impact
of the average class accuracy, while still providing a
large reduction in features and classification time. For
the 2-class dataset, genetic search and CFS had a
minimal impact, and improved the mean class recall
when using Naïve Bayes.

C. Features of Interest

We also examine the frequency at which particular
features are included in the selected feature subsets. This
provides an excellent indicator as to which features are
likely to be better at discriminating the classes. Figure
16 graphs the percentage of selected feature sets in
which a given feature was included, for each of the
datasets.

0
2
0

4
0

6
0

8
0

1
0
0

pr
ot
oc
ol

m
ax
fp
kt
l

m
in
fp
kt
l

m
in
bp
kt
l

m
ea
na
ct
ive

m
ax
id
le

bp
sh

fp
sh

st
di
dl
e

m
ax
bp
kt
l

In
 S
u
b
s
e
ts
 (
%
)

Game Engine 2-class

Figure 16: Percentage of subsets in which feature was selected

‘Minimum forward packet length’ (minfpktl) is
clearly the strongest feature, appearing in all selected
subsets. There does not seem to be any other feature that
is as dominant for all datasets, although ‘protocol’,
‘standard deviation idle time’ (stdidle) and ‘Minimum
backward packet length’ (minbpktl) are often selected.

There was some level of consistency in the subset of
features selected by the different search methods across
the datasets, indicating that the stronger features are
relatively independent of dataset. The 2-class dataset
tends to require more features than the other datasets (as
neither class is particularly homogenous).

The results shown above are for CFS across all
different search techniques. Different feature selection
metrics may produce different results.

D. Performance Evaluation

To further differentiate the algorithms, we calculate
two additional performance metrics: training and
classification time (defined in Section III.B). These are
evaluated using the game and 2-class datasets.

Performance metrics were measured using a 3.4 GHz
Pentium 4 workstation with 4GB of RAM and the Java
VM 1.5.0_04-b05.

Figure 17 shows the classifications per second for
each of the algorithms for the per-game and 2-class
datasets.

0
5
0
,0
0
0

1
0
0
,0
0
0

1
5
0
,0
0
0

C4
.5

NB
Tr
ee

Ba
ye
s
Ne
t

Na
ive
 B
ay
es

C
la
s
s
if
ic
a
ti
o
n
s
 p
e
r
s
e
c
o
n
d Game 2-class

Figure 17: Classifications per second for 2-class and game

datasets

In terms of classifications per second, C4.5
(88,233/133,786) has a considerable advantage in both
datasets, and is markedly faster than the nearest
algorithm, Naïve Bayes (23,238/54,580). NBTree
(2,075/21,150) is the slowest algorithm.

Having only two classes provides a substantial
increase in classification speed for the algorithms. C4.5
remained significantly faster than the others, although
the gap between NBTree (21,150) and Bayes Net
(25,020) narrowed.

Figure 18 shows the build time for each of the
algorithms with the game and 2-class datasets. Note that
the y-axis is non-linear to accommodate the long
NBTree training period.

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 14 of 17

CAIA Technical Report 060410C March 2006 page 15 of 17

Figure 18: Training time for 2-class and game datasets

Naïve Bayes provided the fastest build time for the
per-game dataset (302.14s), followed closely by Bayes
Net (395.91s). C4.5 is significantly slower than Bayes
Net, while NBTree (35,418.2s) is by far the slowest
learner.

C4.5 and Naïve Bayes see an increase in training
time for 2 classes, but are still the slowest learners.
Bayes Net and NBTree take approximately the same
time to create the classification model.

As CFS selection did not significantly affect
classification accuracy and average recall for the 2-class
dataset, we tested for any reduction in processing cost.
Figure 19 shows the classification and training times for
subsets as a percentage of the classification and training
times when using the full feature space, for the 2-class
dataset.

0
2
0

4
0

6
0

C4
.5

Ba
ye
s
Ne
t

Na
ive
 B
ay
es

NB
Tr
ee

p
e
rc
e
n
ta
g
e
 o
f
c
la
s
s
if
ic
a
ti
o
n
 t
im
e
 (
%
)

BF/G Forward Genetic Best First Backward Greedy Backward

0
5

1
0

1
5

C4
.5

Ba
ye
s
Ne
t

Na
ive
 B
ay
es

NB
Tr
ee

p
e
rc
e
n
ta
g
e
 o
f
tr
a
in
in
g
 t
im
e
 (
%
)

BF/G Forward Genetic Best First Backward Greedy Backward

Figure 19: CFS subset classification (top) and training (bottom)

times as a percentage of classification and training times when

using all features

Each algorithm experiences a great improvement in
classification speed, taking only 10-40% of the original
time. Reductions are greater still for training times, at
10% the original training time and less. Although not
shown here, the ‘per-game’ and ‘per-engine’ datasets
saw a similar reduction in training and classification
times.

E.Limitations of the Datasets

Imbalanced datasets generally pose a problem for
machine learning algorithms. An imbalanced dataset
contains training classes with a significant difference in
the number of instances. This is problematic as
algorithms optimise towards overall accuracy and thus
‘favour’ the large classes. However, it is difficult to
obtain a large game traffic dataset especially for games
where no public servers can be set up (Xbox games).

Balancing the dataset by reducing the dataset size
would likely lead to an overestimation of accuracy due
to a lack of variance in the feature distributions. Despite
the imbalanced dataset used in the experiments, with
many more non-game than game flows, we were able to
detect game flows with high accuracies (even for classes
with few instances) with three of the four algorithms
evaluated.

The results obtained thus far are very promising, but
there are a number of avenues to be further explored.
The data traces for the games were either taken from a
single public server or from some controlled lab
experiments. Although we were able to obtain data for a
large number of players from the public server it is
likely that at least the probe flows introduce some bias in
our study that lead to an increased accuracy. If we were
to capture probe traffic on a large number of servers
there would likely be more variation in the feature value
space as some features (for example packet lengths) are
indirectly dependent on game server configuration.

For example, as the server’s response contains
information such as sever name, packet length of the
server to client traffic would have a wider distribution if
more servers (with different names) were considered. A
more complete approach may be to combine data from
several games servers and possibly clients. An
interesting observation however is that the more popular
features were either in the forward direction (client to
server) or were independent of direction (protocol,
active and idle times). This may have reduced the
influence of using data from a single server, although the
more complete approach is still preferred.

For several of the controlled experiments there may
also be bias due to factors such as a lack of variation of
player combinations and maps played.

IX.CONCLUSIONS AND FUTURE WORK

In this paper we have evaluated different machine
learning algorithms for the purpose of classifying online
games based on statistical payload-independent flow
attributes. We have shown that games can be separated
both from each other and from common network traffic.
With a feature space of 36 flow statistics we were able
to achieve overall classification accuracies of greater
than 99%, and individual class accuracies greater than
95%.

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

C4
.5

NB
Tr
ee

Ba
ye
s
Ne
t

Na
ive
 B
ay
es

T
ra
in
in
g
 t
im
e
 (
s
)

Game 2-class

0
2
0
0
0

C4
.5

NB
Tr
ee

Ba
ye
s
Ne
t

Na
ive
 B
ay
es

T
ra
in
in
g
 t
im
e
 (
s
)

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 15 of 17

CAIA Technical Report 060410C March 2006 page 16 of 17

In testing with the CFS evaluator, packet length
statistics were identified as the strongest class
discriminators. We also identified a weakness in using
feature selection when classes have a disparate number
of training instances. As subsets are evaluated according
to overall accuracy, they are optimised to provide high
accuracy for classes with the most instances. An equal
amount of training instances for each class would likely
produce higher per-class accuracy, although with a
slightly larger feature set. The reduced feature sets tested
provided significant reductions in classification and
training time, and the ability to trade off accuracy for
speed is a possible option.

Algorithm performance was quite consistent across
the datasets. Whether games were grouped into
individual classes, by engine or as individual classes,
classification accuracy remained high across all the
algorithms. Byte-based results were also good, though
flow-based results were generally better. We believe the
byte accuracy could be further improved as algorithms
optimise classifiers only on the number instances during
training. Increased per-byte accuracy may be obtainable
if a classifier is trained with flows given different
weights based on volume.

Particularly accurate algorithms were C4.5 and
NBTree, which were able to provide high recall and
precision for classes, even those with low numbers of
training instances. The classification speed and training
times for NBTree do not appear suitable for real-time
operation however. Bayes Net, while not as accurate as
either C4.5 or NBTree, offers very good accuracy and
fast build times. Although classification speed is not
exceptional, it has shown to increase in performance
when using smaller subsets of features.

Whether trying to classify games as individual
applications or as a single category against non-game
traffic, decision tree classifiers appear best suited to the
flows statistics that we use. In particular the C4.5
algorithm provided good results across all of our tests
and is also quite fast.

We plan to extend this study using other popular
interactive applications, such as Internet telephony and
streaming video, and identify the features capable of
identifying these applications.

ACKNOWLEDGMENTS

This paper has been made possible in part by a grant
from the Cisco University Research Program Fund at
Community Foundation Silicon Valley.

REFERENCES

[1] G. Armitage, “An Experimental Estimation of Latency
Sensitivity in Multiplayer Quake3”, Proceedings 11th IEEE

International Conference on Networks (ICON) 2003, Sydney,

Australia, September 2003.

[2] S. Zander, G. Armitage, “Empirically Measuring the QoS

Sensitivity of Interactive Online Game Players”, Australian

Telecommunications Networks & Applications Conference

(ATNAC) 2004, Sydney, Australia, December 2004.

[3] L. Stewart, G. Armitage, P. Branch, S. Zander, “An
Architecture for Automated Network Control of QoS over

Consumer Broadband Links”, IEEE TENCON 05 Melbourne,

Australia, 21 - 24 November 2005.

[4] Thomas Karagiannis, Andre Broido, Nevil Brownlee, kc claffy,
“Is P2P dying or just hiding?” In Proceedings of Globecom

2004, November/December 2004.

[5] Tom M. Mitchell, “Machine Learning“, McGraw-Hill
Education (ISE Editions), December 1997.

[6] S. Zander, T.T.T. Nguyen, G. Armitage, “ Automated Traffic
Classification and Application Identification using Machine

Learning“, IEEE 30th Conference on Local Computer Networks

(LCN 2005), Sydney, Australia, 15-17 November 2005.

[7] M. Roughan, S. Sen, O. Spatscheck, N. Duffield, “Class-of-
Service Mapping for QoS: A statistical signature-based

approach to IP traffic classification“, ACM SIGCOMM Internet

Measurement Workshop, Sicily, Italy, 2004.

[8] SONG – Simulating Online Network Games Database
http://caia.swin.edu.au/sitcrc/song/index.html (January 2006)

[9] Mark Claypool’s Homepage http://web.cs.wpi.edu/~claypool/
(December 2005)

[10] Instat: Online gaming anything but fun and games,
http://www.instat.com/press.asp?ID=576&sku=IN030683A

(January 2006)

[11] IANA Port Numbers, http://www.iana.org/assignments/port-

numbers (January 2006)

[12] Ports database, http://www.portsdb.org/ (as of January 2006)

[13] Cisco IOS Documentation, “Network-Based Application
Recognition and Distributed Network-Based Application

Recognition“,http://www.cisco.com/univercd/cc/td/doc/product/

software/ios122/122newft/122t/122t8/dtnbarad.htm (as of

January 2006).

[14] J. Frank, “Machine Learning and Intrusion Detection: Current
and Future Directions”, Proceedings of the National 17th

Computer Security Conference, 1994.

[15] T. Dunnigan, G. Ostrouchov, “Flow Characterization for
Intrusion Detection”, Oak Ridge National Laboratory,

Technical Report, http://www.csm.ornl.gov/~ost/id/tm.ps,

November 2000.

[16] M. Roughan, S. Sen, O. Spatscheck, N. Duffield, “Class-of-
Service Mapping for QoS: A statistical signature-based

approach to IP traffic classification“, ACM SIGCOMM Internet

Measurement Workshop, Sicily, Italy, 2004.

[17] A. McGregor, M. Hall, P. Lorier, J. Brunskill, “Flow Clustering

Using Machine Learning Techniques“, Passive & Active

Measurement Workshop 2004 (PAM 2004), France, April 19-

20, 2004.

[18] A. Soule, K. Salamatian, N. Taft, R. Emilion, and K.
Papagiannaki, “Flow Classification by Histograms or How to

Go on Safari in the Internet”, In ACM Sigmetrics, New York,

U.S.A., June, 2004.

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 16 of 17

CAIA Technical Report 060410C March 2006 page 17 of 17

[19] P. Cheeseman, J. Stutz, “Bayesian Classification (Autoclass):

Theory and Results”, Advances in Knowledge Discovery and

Data Mining, AAAI/MIT Press, USA, 1996.

[20] A. W. Moore and D. Zuev, “Internet Traffic Classification
Using Bayesian Analysis Techniques”, ACM SIGMETRICS,

Banff, Canada, June 2005.

[21] A. Moore, and K. Papagiannaki, “Toward the Accurate
Identification of Network Applications” Passive & Active

Measurement Workshop, Boston, U.S.A., April, 2005.

[22] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC:

Multilevel Traffic Classification in the Dark”, ACM Sigcomm,

Philadelphia, PA, August 2005.

[23] M. A. Hall, G. Holmes, “Benchmarking attribute selection
techniques for discrete class data mining“, IEEE Transactions

on Knowledge & Data Engineering, Vol 15, No 6, pp 1437-

1447, 2003.

[24] N. Williams, S. Zander, G. Armitage, "Evaluating Machine
Learning Algorithms for Automated Network Application

Identification", CAIA Technical Report 060410B, April 2006

[25] M. Hall, “Correlation-based Feature Selection for Machine

Learning“, PhD diss. Department of Computer Science,

Waikato University, Hamilton, NZ, 1998.

[26] D. E. Goldberg, "Genetic Algorithms in Search, Optimization,
and Machine Learning", Addison-Wesley, 1989.

[27] R. Kohavi and J. R. Quinlan, Will Klosgen and Jan M. Zytkow,
editors, “Decision-tree discovery”, In Handbook of Data Mining

and Knowledge Discovery, chapter 16.1.3, pages 267-276,

Oxford University Press, 2002.

[28] G. H. John, P. Langley, “Estimating Continuous Distributions in

Bayesian Classifiers”, 11th Conference on Uncertainty in

Artificial Intelligence, pp. 338-345, Morgan Kaufman, San

Mateo, 1995.

[29] R. Bouckaert, “Bayesian Network Classifiers in Weka”,
Technical Report, Department of Computer Science, Waikato

University, Hamilton, NZ 2005.

[30] D. Chickering, D. Geiger, D Heckerman, „“Learning Bayesian
Networks is NP-Hard” Technical Report MSR-TR-94-17,

Microsoft Research, 1994.

[31] Ron Kohavi, “Scaling Up the Accuracy of Naïve-Bayes

Classifiers: a Decision-Tree Hybrid”, 2nd International

Conference on Knowledge Discovery and Data Mining (KDD),

1996.

[32] NetMate, http://sourceforge.net/projects/netmate-meter/
(October 2005).

[33] S. Zander, D. Kennedy, G. Armitage "Dissecting Server-
Discovery Traffic Patterns Generated By Multiplayer First

Person Shooter Games”, ACM NetGames 2005, Hawthorne

NY, USA, 10-11 October, 2005

[34] T.Lang, G.Armitage, P.Branch, H-Y.Choo. "A Synthetic Traffic

Model for Half Life," Australian Telecommunications Networks

& Applications Conference 2003, (ATNAC 2003), Melbourne,

Australia, December 2003.

[35] CAIA Game Research: http://caia.swin.edu.au/genius/ genius-
what.html (January 2006)

[36] T.Lang, P.Branch, G.Armitage. "A Synthetic Traffic Model for
Quake 3," ACM SIGCHI ACE2004 conference, Singapore,

June 2004

[37] NLANR traces: http://pma.nlanr.net/Special/ (Oct. 2005).

[38] M. D. Pozzobon, "Capturing Xbox System Link Traffic while

playing Halo," (html) CAIA Technical Report 020802A, August

2002

[39] J. Bussiere, S. Zander, "Empirical Measurements of Player QoS
Sensitivity for the Xbox Game Halo2," CAIA Technical Report

050527A, May 2005

[40] A.M. Pavlicic, "Capturing Xbox System Link Traffic While
Playing TimeSplitters2," CAIA Technical Report 031009A,

October 2003

[41] WEKA 3.4.4, http://www.cs.waikato.ac.nz/ml/weka/ (October
2005).

[42] G. Cawley, “Efficient Sequential Minimal Optimisation of
Support Vector Classifiers”, Technical Report, School of

Information Systems, University of East Angila, Norwich,

Norfolk, UK, 2001

[43] Put to the test:
http://www.networkworld.com/news/2002/0415idsevad.html?ne

t (January 2006)

PAN -- 1010
Palo Alto Networks, Inc. v. Selective Signals, LLC

Page 17 of 17

