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Abstract—In this paper, we are interested in improving the
performance of constructive network coding schemes in lossy
wireless environments. We propose I2NC - a cross-layer approach
that combines inter-session and intra-session network coding
and has two strengths. First, the error-correcting capabilities
of intra-session network coding make our scheme resilient to
loss. Second, redundancy allows intermediate nodes to operate
without knowledge of the decoding buffers of their neighbors.
Based only on the knowledge of the loss rates on the direct
and overhearing links, intermediate nodes can make decisions
for both intra-session (i.e., how much redundancy to add in
each flow) and inter-session (i.e., what percentage of flows to
code together) coding. Our approach is grounded on a network
utility maximization (NUM) formulation of the problem. We
propose two practical schemes, I2NC-state and I2NC-stateless,
which mimic the structure of the NUM optimal solution. We also
address the interaction of our approach with the transport layer.
We demonstrate the benefits of our schemes through simulations.

Index Terms—Network coding, wireless networks, error cor-
rection, cross-layer optimization.

I. I NTRODUCTION

Wireless environments lend themselves naturally to network
coding (NC), thanks to their inherent broadcast and overhear-
ing capabilities. In this paper, we are interested in wireless
mesh networks used for carrying traffic from unicast sessions,
which is the dominant traffic today. Network coding has been
used as a way to improve throughput over such wireless
environments. Given that optimal inter-session NC for unicast
is still an open problem, constructive approaches are used in
practice [1], [2], [3], [4], [5]. One of the first practical wireless
NC systems is COPE [2] - a coding shim between the IP and
MAC layers that performs one-hop, opportunistic NC. COPE
codes packets from different unicast sessions, and relies on
receivers being able to decode these using overheard packets.
This way, COPE combines multiple packets by using infor-
mation on overheard packets which are exchanged through
transmission reports and effectively forwards multiple packets
in a single transmission to improve throughput. In order for
COPE to work in a multihop network, nodes must cooperate
to (i) exchange information about what packets they have
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overheard and also (ii) code so that all one-hop downstream
nodes can decode. This must be done at every hop across the
path of a flow and cross-layer optimization approaches can be
used [6] to further boost the performance.

One important problem that remains open, and is the focus
of this paper, is COPE’s performance in the presence of non-
negligible loss rates. The reason is that intermediate nodes in
COPE require the knowledge of what their neighbors have
overheard, in order to perform one-hop inter-session NC.
However, in the presence of medium-high loss rate, although
each node fully cooperates to report what it has overheard,
this information is limited, possibly corrupted, and/or delayed
over lossy wireless channels. COPE turns off NC if loss rate
exceeds a threshold with default value 20% [2]. However,
this does not take full advantage of all the available NC
opportunities. To better illustrate this key point, let us discuss
the following example.

Example 1:Let us consider Fig. 1, and focus on the
neighborhood of nodeI, i.e., only the packets transmitted
via I, from A1 to A2 and fromB1 to B2. This forms an
“X” topology which is a well-known, canonical example of
one-hop opportunistic NC [1], [2]. In the absence of loss,
throughput is improved by33.3%, becauseI delivers two
packets in three transmissions (with NC), instead of four
(without NC). Let us re-visit this example when there is packet
loss. Assume that there is loss only on the overhearing link
A1 −B2, with probabilityρ{A1,B2} = 0.3, and all other links
have no loss. In this case,70% of the packets can still be coded
together, and throughput can be improved by26%, which is
still a significant improvement. Even at higher loss rate,e.g.,
ρ{A1,B2} = 0.5, inter-session coding still improves throughput
up to 20% This is under the assumption thatI knows the
exact state ofA2, B2, i.e., what packets were overheard, and
thus I is able to decide what packets to code together so as
to guarantee decodability at the receivers. However, at high
loss rates, cooperation among nodes becomes difficult. This is
why COPE turns off the coding functionality when loss rate
is higher than a threshold with default value 20%, thus not
taking full advantage of all coding opportunities. �

We propose a solution to this problem with a design which
combines intra- and inter-session NC over wireless mesh
networks. We use intra-session NC to combine packets within
the same flow and introduce parity packets to protect against
loss. Then, we use inter-session NC to combine packets from
different (already intra-session coded) flows, and thus increase
throughput. Our approach for combining intra-session with
inter-session NC, which we refer to as I2NC, has two key
benefits. First, it can correct packet loss and still perform inter-
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Fig. 1. Example of a unicast flow (fromS1 to R1) traversing multiple
wireless hops. Each node performs (intra- and inter-session) NC. The neigh-
borhood of I is shown here in detail. (Two unicast flows,S1 − R1 and
S2 −R2, meeting at intermediate nodeI. I receives packetsa, b from nodes
A1, B1, respectively. It can choose to broadcasta, b or a + b in a single
transmission to both receivers. The next hopsA2, B2 can decodea+b because
they overhear packetsb anda transmitted fromB1, A1, respectively.)

session NC, even in the presence of medium-high loss rates,
thus improving throughput. Second, the use of intra-session
NC makes all packets in the session equally beneficial. Thus,
I2NC eliminates the need to know the exact packets that have
been overheard by the neighbors of intermediate nodeI. It
is sufficient to know the loss probabilities of overheard and
transmitted packets. In our scheme, this information is reported
by each node to the nodes in its neighborhood which makes
NC possible even at higher loss rates.

Adding redundancy in this setting is non-trivial, since a flow
is affected not only by loss on its direct links, but also by loss
on overhearing links. This affects the decodability of coded
packets. Therefore, the amount of redundancy needed to be
determined carefully.

Example 1 - continued:Consider again the neighborhood
of I in Fig. 1. Flow 2 (originated fromS2) is affected not
only by loss on its own pathB1− I−B2, but also by loss on
the overhearing linkA1 − B2, which affects the decodability
of coded packeta+ b at B2. In order to protect flow 2 from
high loss rate on the overhearing linkA1 −B2, I may decide
either to add redundancy on flow 2, or to not perform coding,
or a combination of the two. On the other hand,I may also
decide to add redundancy on flow 1 (originated fromS1), to
correct loss on the overhearing linkA1−B2, thus helpingB2

to receivea and decodea+ b. �

Therefore, a number of questions need to be addressed in
the design of a system that combines both intra- and inter-
session NC. In particular:

Q1: How to gracefully combine intra- and inter-session NC?
We propose a generation-based design, and specify the
order we perform the two types of coding.

Q2: How much redundancy to add in each flow?We show
how to adjust the amount of redundancy after taking into
account the loss on the direct and overhearing links. We
implement the intra-session NC functionality as a thin
layer between IP and transport layer.

Q3: What percentage of flows should be coded togetherand
what parts should remain uncoded? We design algo-
rithms that make this decision taking into account the

loss characteristics on the direct and overhearing links.
We implement this and other functionality (e.g., queue
management) performed with or after inter-session NC
as a layer between MAC and IP.

Q4: What information should be reported to make these
decisions? We propose two schemes: I2NC-state, which
needs to know the state (i.e., overheard packets) of the
neighbors; and I2NC-stateless, which only needs to know
the loss rate of links in the neighborhood.

Our approach is grounded on a network utility maximization
(NUM) framework [7]. We formulate two variants of the
problem, depending on available information (as in Q4 above).
The solution of each problem decomposes into several parts
with an intuitive interpretation, such as rate control, NC rate,
redundancy rate, queue management, and scheduling. The
structure of the optimal solution provides insight into the
design of our two schemes, I2NC-state and I2NC-stateless.

We evaluate our schemes in a multi-hop setting, and we
consider their interaction with the transport layer, including
TCP and UDP. We propose a thin adaptation layer at the
interface between TCP and the underlying coding, to best
match the interaction of the two. We perform simulations in
GloMoSim [8], and we show that our schemes significantly
improve throughput compared to COPE.

The structure of the rest of the paper is as follows. Section II
presents related work. Section III gives an overview of the
system model. Section IV presents the NUM formulation and
solution. Section V presents the design of the I2NC schemes
in detail. Section VI presents simulation results. Section VII
concludes the paper.

II. RELATED WORK

COPE and follow-up work.This paper builds on COPE,
a practical scheme for one-hop NC across unicast sessions
in wireless mesh networks [2], which has generated a lot
of research interest. Some researchers tried to model and
analyze COPE [9], [10], [11]. Some others proposed new
coded wireless systems, based on the idea of COPE [12], [5].
In [13], the performance of COPE is improved by looking
at its interaction with MAC fairness. Our recent work in [6]
improves TCP’s performance over COPE with a NC-aware
queue management scheme. This paper also improves COPE
by adding intra-session redundancy with a cross-layer design
and reducing the amount of information that is needed to be
exchanged among nodes cooperatively,i.e., nodes no longer
need to know the exact packets overheard by their neighbors
and can operate only with knowledge of the link loss rates.

NUM in coded systems.The NUM framework can be
applied in networks, to understand how different layers and/or
modules (such as flow control, congestion control, routing,
etc.) should be restructured when NC is used. Although
the approach is general, the parts and interpretation of the
distributed solution is highly problem-specific. For NUM to
be successful, the optimization model must be formulated so
as to capture and exploit the NC properties. This is highly
non-trivial and problem-specific. A body of work has looked
at the joint optimization of NC of unicast flows, formulated
in a NUM framework.
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Optimal scheduling and routing for COPE are considered
in [9] and [11], respectively. A linear optimization framework
for packing butterflies is proposed in [4]. A re-transmission
scheme for one-hop NC is proposed in [14]. Forward error
correction over wireless for pairwise NC is proposed in [15],
[16], which are also the most closely related formulations to
ours. Our main differences are that we consider: (i) multiple
flows coded together instead of pairwise, (ii) local instead
of end-to-end redundancy, and (iii) the effect of losses over
direct and overhearing links, to generate the right amount of
redundancy.

Dealing with wireless loss.Recent studies of IEEE 802.11b
based wireless mesh networks [17], [18], have reported packet
loss rates as high as 50%. Dealing such level of loss in wireless
networks is a hard enough problem on its own, which is further
amplified by NC. There is a wide spectrum of well-studied
options for dealing with loss,e.g., using redundancy and/or
re-transmissions, locally (MAC) and/or end-to-end (transport
layer). Local re-transmissions increase end-to-end delay and
jitter, which, if excessive, may cause TCP timeouts or hurt
real-time multimedia. Furthermore, the best re-transmission
scheme for network coded packets varies with the loss proba-
bility 1 and it is hard to switch among re-transmission policies
when the loss rate varies over time. Re-transmission also
requires state synchronization to perform inter-session NC,
which is not reliable at all loss rates. We follow an alternative
approach of local redundancy because we are interested in
keeping delay low and we want to eliminate the need for
knowing the state of neighbors.

There is extended work on TCP over wireless. One key
problem is the need to distinguish between wireless and
congestion loss and have TCP react only to congestion; this is
possiblee.g.,through Explicit Congestion Notification (ECN).
When re-transmissions exceed the delay budget, end-to-end
redundancy may also be used to combat loss on the path
[19]. The error-correcting capabilities of intra-session NC
have recently been used in conjunction with the TCP sliding
window in [20]. In contrast, we focus on one-hop inter-session
coding rather than end-to-end intra-session coding.

III. SYSTEM OVERVIEW

We consider multi-hop wireless networks, where intermedi-
ate nodes perform intra- and inter-session NC (I2NC). Next,
we provide an overview of the system and highlight some of
its key characteristics.

A. Notation and Setup

1) Sources and Flows:Let S be the set of unicast flows
between source-destination pairs in the network. Each flow
s ∈ S is associated with a ratexs and a utility functionUs(xs),
which we assume to be a strictly concave function ofxs.

1 We have observed through simulations that if a network coded packet is lost for one
receiver but received correctly for other receiver(s), it is better to re-transmit the same
network coded packet for low loss rates. However, it is better to combine the packet
which is lost in the previous transmission with new packets for high loss rates.

2) Wireless Transmission:Packets from a source (e.g.,S1

in Fig. 1) traverse potentially multiple wireless hops before
being received by the receiver (e.g., R1). We consider a
model for interference described in [22]: each node can either
transmit or receive at the same time, and all transmissions in
the range of the receiver are considered as interfering.

We use the following terminology for wireless. A hyperarc
(i,J ) is a collection of links from nodei ∈ N to a non-empty
set of next-hop nodesJ ⊆ N . A hypergraphH = (N ,A)
represents a wireless mesh network, whereN is the set of
nodes andA is the set of hyperarcs. For simplicity,h = (i,J )
denotes a hyperarc,h(i) denotes nodei andh(J ) denotes the
set of nodes inJ , i.e., h(i) = i and h(J ) = J . We use
these notations interchangeably in the rest of the paper. Each
hyperarch is associated with a channel capacityRh. Sinceh
is a set of links,Rh is the minimum capacity of all the links
in the hyperarc,i.e.,Rh = minj∈h(J){Ri,j} s.t. i ∈ N . In the
example of nodeI in Fig. 1,h = (I, {B2, A2}) is one of the
hyperarcs, and its capacity ismin{R{I,B2}, R{I,A2}}.

Note that with both intra- and inter-session NC, it is possible
to construct more than one code over a hyperarch. Let Kh

be the set of inter-session network codes over a hyperarch.
Sk ⊆ S be the set of flows coded together using codek ∈ Kh

and broadcast overh.2

Given H, we can construct the conflict graphC = (A, I),
whose vertices are the hyperarcs ofH and edges indicate
interference between hyperarcs. A cliqueCq ⊆ A consists of
several hyperarcs, at most one of which can transmit without
interference,i.e.,a transmission over a hyperarc interferes with
transmissions over other hyperarcs in the same clique.

3) Loss Model:A flow s may experience loss in two forms:
loss ρsh over the direct transmission links; or lossρs,s

′

h,k of
antidotes3 on overhearing links. These two types of loss have
different impact on network coded flows.

First, let us discuss loss on the direct links. A flows trans-
mitted over hyperarch experiences loss with probabilityρsh.
This probability is different per flows, even if several flows
are coded and transmitted over the same hyperarch, because
different flows are transmitted to different next hops, thus see
different channels. For example, in Fig. 1,ρS1

(I,{B2,A2})
is equal

to the loss probability over linkI − A2 and ρS2

(I,{B2,A2})
is

equal to the loss probability over linkI −B2.
Second, let us discuss the effect of lost antidotes on the

overhearing link. Consider that flows is combined with flow
s′ s.t. s 6= s′, and that some packets of flows′ are lost on
the overhearing link to the next hop ofs. Then, coded packets
cannot be decoded at the next hop and flows loses packets,
with probability ρs,s

′

h,k . For example, in Fig. 1, packets from
flow S1 cannot be decoded (hence are lost) at nodeA2 due to
loss of antidotes from flowS2 on the overhearing linkB1−A2.

In our formulation and analysis, we assume thatρsh andρs,s
′

h,k

2Note that we consider constructive inter-session NC,i.e., network codes
k ∈ Ki,J as well ash = (i,J ) is determined at each node with periodic
control packet exchanges or estimated through routing table.

3Following the poison-antidote terminology of [4], we call “antidotes” the
packets of flowss′ that are coded together withs, and thus are needed for
the next hop ofs to be able to decode.E.g., in Fig.1,a is the “antidote” that
B2 needs to overhear over linkA1 −B2, to decodea+ b and obtainb.
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are i.i.d. according to a uniform distribution. However, in our
simulations, we consider a Rayleigh fading channel model.
The loss probabilities are calculated at each intermediate node
as explained later in this section.

4) Routing:Each flows ∈ S follows a single pathPs ⊆ N
from the source to the destination, which is pre-determined by
a routing protocol,e.g., OLSR or AODV, and given as input to
our problem. Note that the nature of wireless networks is time
varying, i.e., nodes join and leave the system dynamically. In
such cases, the routing protocol actively determines new paths
which are used as input to our problem. It is not critical that
the paths remain fixed, neither from a theoretical nor from a
practical point of view, as explained in the following sections.
Also, note that several different hyperarcs may connect two
consecutive nodes along the path. We defineHs

h,k = 1 if s is
transmitted through hyperarch using network codek ∈ Kh;
andHs

h,k=0, otherwise.

B. Intra- and Inter-session Network Coding

Next, we give an overview of how an intermediate node
performs intra- and inter-session NC. The implementation
details are provided in Section V.

1) Intra-session Network Coding (for Error Correction):
Consider the commonly used generation-based NC [23]: pack-
ets from flow s ∈ S are divided into generations (note that
we use “generation” and “block” terms interchangeably), with
sizeGs. At the sources, packets within the same generation
are linearly combined (assuming large enough field size) to
generateGs network coded packets. Each intermediate node
along the path of flows addsP s parity packets, depending
on the loss rates of the links involved in this hop. At the next
hop, it is sufficient to receiveGs out of Gs + P s packets.
The same process is repeated at every intermediate node until
the receiver receivesGs error-free packets, which can then be
decoded and be passed on to the application.

There are many ways to generate parities (P s) in prac-
tice. We use generation based intra-session NC [23] for this
purpose. Although one could use various coding techniques,
such as Reed-Solomon or Fountain codes, using intra-session
NC has several advantages. First, it has lower computational
complexity. Second, in systems like COPE that already imple-
ment inter-session NC, it is natural to incrementally add intra-
session NC functionality. Moreover, in this setting, hop-by-hop
intra-session coding (in which redundant packets are generated
at each hop) is clearly a better choice than end-to-end coding
for dealing with loss. In terms of performance, hop-by-hop
coding achieves higher end-to-end throughput (thanks to in-
troducing less redundancy than end-to-end coding), without
adding high complexity (and thus delay) to the intermediate
nodes. Furthermore, in terms of system implementation, our
hop-by-hop scheme requires minimal modifications on top of
the inter-session NC, which is already implemented.

2) Inter-session Network Coding (for Throughput):After
an intermediate node has added redundancy (P s) to flow s, it
treats all (Gs + P s) packets as indistinguishable parts of the
same flow. Inter-session NC is applied on top of the already
intra-coded flows, as a thin layer between MAC and IP (similar

Fig. 2. Operations taking place at end-points and intermediate nodes.

to COPE), shown in Fig. 2. We design two schemes, I2NC-
state and I2NC-stateless, depending on the type of information
that is needed to make network coding decisions. We define
as state of a node the information about which exact packets
have been overheard at that node.

I2NC-state: First, we assume that intermediate nodes use
COPE [2] for inter-session coding. Each nodei listens all
transmissions in its neighborhood, stores the overheard packets
in its decoding buffer, and periodically advertises the content
of this buffer to its neighbors. When a nodei wants to transmit
a packet, it checks or estimates the contents of the decoding
buffer of its neighbors. If there is a coding opportunity,
the node combines the relevant packets using simple coding
operations (XOR) and broadcasts the combination toJ . The
content of the decoding buffers needs to be exchanged, in order
to make NC decisions,i.e., state synchronization is required.

I2NC-stateless:Second, we design an improved version of
COPE, which no longer requires state synchronization. The
key idea is to exploit the fact that the redundancy already
introduced by intra-session coding makes allGs+P s packets
in a generation equally important.4 In this improved scheme,
each nodei still listens to all transmissions in its neighborhood
and stores the overheard packets.5 The node periodically
advertises the loss rate for each received and overheard flow,
which is then provided as input to the intra-session NC module
to determine the amount of redundancy needed. In particular,
the loss rates are calculated at each intermediate node as
one minus the ratio of correctly received packets over all the
packets in a generation. Also, the loss rate over overhearing
links is calculated as effective loss rate.E.g.,in Fig. 1, the loss
rate at nodeA2 is calculated as follows. IfGS1 +PS1 packets
are sent byB1 and at leastGS1 packets are received atA2,
then the loss rate is set to 0. IfGS1 − u packets are received
by A2 such thatu ≤ GS1 , then the loss rate is set tou/GS1.
The loss rates calculated for each generation are advertised to
other nodes in the neighborhood. Then, each node calculates

4It no longer matters which exact packets a node has. As long as a node
has anyGs out of Gs +P s, it can decode with high probability. As long as
it knows the percentage of received packets it can make coding decisions.

5Note that when inter-session network coded packets are overheard, they
are not stored in the “decoding buffer”, but discarded.
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its loss probabilities (ρsh and ρs,s
′

h,k ) as weighted average of the
loss rates it has received.

In summary, there is a synergy between intra- and inter-
session NC. Intra-session makes the process sequence agnos-
tic, which allows inter-session coding to operate using only
information about the loss rates, not about the identity of the
packets. The loss rates can be used as input for tuning the
amount of redundancy in intra-session NC. In terms of im-
plementation, the two modules are separable: an intermediate
node first performs intra-session, then inter-session NC.

IV. N ETWORK UTILITY MAXIMIZATION FORMULATION

A. I2NC-state Scheme

1) Formulation: Our objective is to maximize the total
utility function by optimally choosing the flow ratesxs at
sourcess ∈ S, as well as the following variables at the
intermediate nodes: the fractionαs

h,k (or “traffic splitting”
parameters, following the terminology of [24]) of flows inter-
session coded using codek ∈ Kh over hyperarch; and the
percentage of timeτh,k each hyperarc is used.

max
x,α,τ

∑

s∈S

Us(xs)

s.t.
Hs

h,kα
s
h,kxs

1− ρsh
+

∑

s′∈Sk−{s}

Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k ≤ Rhτh,k,

∀h ∈ A, k ∈ Kh, s ∈ Sk
∑

h(J )|h∈A

∑

k∈Kh|s∈Sk

αs
h,k = 1, ∀s ∈ S, i ∈ Ps

∑

h∈Cq

∑

k∈Kh

τh,k ≤ γ, ∀Cq ⊆ A (1)

The first constraint is the capacity constraint for each flows ∈
Sk. It is well-known, [25], that NC allows flows that are coded
together in codek ∈ Kh, to coexist,i.e., each have rate up to
the rate allocated to that codek. The right hand side,Rhτh,k,
is the capacity of hyperarch; τh,k is the percentage of time
hyperarch can be used for transmitting thek-th network code.
τh,k is determined by scheduling in the third constraint, taking
into account interference: all hyperarcs in a clique interfere and
should time-share the medium. Therefore, the sum of the time
allocated to all hyperarcs in a clique should be less than an
over-provisioning factor,γ ≤ 1. The second constraint is the
flow conservation: at every nodei on the pathPs of sources,
the sum ofαs

h,k over all network codes and hyperarcs should
be equal to 1. Indeed, when a flow enters a particular node
i, it can be transmitted to its next hopj as part of different
network coded and uncoded flows.

The first constraint is key to our work because it determines
how to deal with loss on the direct (ρsh) and overhearing (ρs,s

′

h,k )
links and how large a fraction (αs

h,k) of flow rate (xs) to code
in the k-th code over hyperarch. Let us discuss the left hand
side in more detail.6

6Note that our formulation has two novel aspects, compared to prior work,
which allow us to better handle loss and parities. First, we allow for flows
coded together to have different rates (in the first constraint in Eq. (1)).
Second, we allow for loss rates of each link to be specified separately, even
for links in the same hyperarc.

The first term refers to the direct link of flows. Hs
h,kα

s
h,kxs

is the fraction of flow ratexs allocated to codek and hyperarc
h. It is scaled by1 − ρsh to indicate that we use redundancy
to protect against loss that flows experiences with probability
ρsh. (Hs

h,kα
s
h,kxs)/(1−ρsh) is the total rate of flows, including

data and redundancy.
The second term refers to loss on the overhearing links.

∑

s′∈Sk−{s} H
s′

h,kα
s′

h,kxs′ρ
s,s′

h,k is the amount of redundancy
(via intra-session coding) added by the intermediate node on
flow(s) s′ to protect flows against loss of antidote packets.
These antidotes come from other flows (s′ ∈ Kh) that are
coded together with flows, reach the next hop for flows
through the overhearing links, and are needed to decode inter-
session coded packets.

Example 1- continued.In Fig. 1, let us consider flow 2 from
B1 to B2, as the flow of interest. The intermediate nodeI adds
redundancy toS2 to protect against loss rateρS2

(I,{B2,A2})
on

the direct linkI − B2. It also adds redundancy to flow 1 to
protect against loss rateρS2,S1

(I,{B2,A2})
of antidotes coming to

B2 from flow 1 over the overhearing linkA1 −B2.

2) Optimal Solution: To solve Eq. (1) we follow a sim-
ilar approach proposed in [36]. First, we relax the capacity
constraint in Eq. (1), and we have the Lagrangian function:

L(x,α, τ , q) =
∑

s∈S

Us(xs)−
∑

h∈A

∑

k∈Kh

∑

s∈Sk

qsh,k

(Hs
h,kα

s
h,kxs

1− ρsh

+
∑

s′∈Sk−{s}

Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k −Rhτh,k

)

, (2)

where qsh,k is the Lagrange multiplier, which can be in-
terpreted as the queue size fork-th network code at hy-
perarc h for flow s. We define ρs,s

′

h,k = 0 if s =
s′, ∀s, s′ ∈ S and we rewrite

∑

k∈Kh

∑

s∈Sk
as

∑

s∈S
∑

k∈Kh|s∈Sk
. The Lagrange function isL(x,α, τ , q) =

∑

s∈S(Us(xs)−xs

∑

h∈A

∑

k∈Kh|s∈Sk
Hs

h,kα
s
h,k((q

s
h,k) /(1−

ρsh)+
∑

s′∈Sk
qs

′

h,kρ
s′,s
h,k ))+

∑

h∈A

∑

k∈Kh

∑

s∈Sk
qsh,kRhτh,k.

It can be decomposed into several intuitive parts (rate control,
traffic splitting, scheduling, and queue update), each of which
solves the optimization problem for one variable.

Rate Control. First, we solve the Lagrangian w.r.txs:

xs = (U ′
s)

−1
(
∑

i∈Ps
Qs

i

)

, (3)

where(U ′
s)

−1 is the inverse function of the derivative ofUs,
andQs

i is the occupancy of flows at nodei and expressed as

Qs
i =

∑

h(J)|h∈A

∑

k∈Kh|s∈Sk
Hs

h,kα
s
h,kQ

s
h,k, (4)

where Qs
h,k is the queue size of flows associated with

hyperarc and network code pair{h, k}:

Qs
h,k =

qsh,k

1−ρs
h

+
∑

s′∈Sk−{s} q
s′

h,kρ
s′,s
h,k (5)

Traffic Splitting. Second, we solve the Lagrangian forαs
h,k.

At each nodei along the path (i.e., i ∈ Ps), the traffic splitting
problem can be expressed as follows:

min
α

∑

h(J)|h∈A

∑

k∈Kh|s∈Sk
αs
h,kH

s
h,kQ

s
h,k

s.t.
∑

h(J)|h∈A

∑

k∈Kh|s∈Sk
αs
h,k = 1. (6)
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Let us assume thatEi[Q(t)] is the maximal
−
Qi(t) at time

t such that
−
Qi(t) = 1

|A
′

i
(t)|

∑

ϕ∈A
′

i(t)
Hs

h,kQ
s
h,k(t) with

A
′

i(t) := {ϕ = {h(J ), k}|αs
h,k > 0 or Hs

h,kQ
s
h,k ≤

−
Qi(t), h(J ) ∈ N s.t. h ∈ A, k ∈ Kh}. At each node
i, the amount of traffic splitting factorαs

h,k for flow s

over hyperarch and codek follows;
.
α
s

h,k = κi[Ei[Q] −
Hs

h,kQ
s
h,k]

+
αs

h,k
, whereκi is a positive constant, and[b]+z =

b if z ≥ 0 and [b]+z = 0 if b ≤ 0 and z =
0. It can be seen that

∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

.
α
s

h,k =

0 and
∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

.
α
s

h,kH
s
h,kQ

s
h,k ≤ 0. Also,

∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

.
α
s
h,kH

s
h,kQ

s
h,k = 0 only if

.
α
s
h,k =

0 which is possible only if Hs
h,kQ

s
h,k ≥

−
Qi, and

αs
h,k(H

s
h,kQ

s
h,k −

−
Qi) = 0.

The structure of the optimal solution of Eq. (6) (i.e.,
.
α
s
h,k =

κi[Ei[Q] − Hs
h,kQ

s
h,k]

+
αs

h,k
) has the following interpretation:

the higher the loss rate of antidotes on overhearing linksρs
′,s

h,k ,
the higherQs

h,k, and the smallerαs
h,k. This means that flow

s should code fewer packets with packets from flow(s)s′ in
codek, when antidotes froms′ are likely to be lost.

Example 1 - continued:In Fig. 1, this means thatI should
combine fewer packets from the two flows if there is loss on
the overhearing linkA1 −B2. In the extreme case where loss
rate is 1 over the linkA1−B2, inter-session coding should be
turned off. At the other extreme, where there is no loss, the
two flows should always be combined. �

Scheduling.Third, we solve the Lagrangian forτh,k. This
problem is solved for every hyperarc and every clique for the
conflict graphs in the hypergraph.

max
τ

∑

h∈A

∑

k∈Kh

∑

s∈Sk
qsh,kRhτh,k

s.t.
∑

h∈Cq

∑

k∈Kh
τh,k ≤ τ, ∀Cq ⊆ A (7)

Let us assume thatQh,k = Rh

∑

s∈Sk
qsh,k, and ECq

[Q(t)]

is the minimal
−
QCq

(t) at time t such that;
−
QCq

(t) =
1

|A
′

Cq
(t)|

∑

φ∈A
′

Cq

Qh,k(t) with A
′

Cq
:= {φ = {h, k}|τh,k >

0 or Qh,k(t) ≥
−
QCq

(t), h ∈ A, k ∈ Kh}. At each cliqueCq,
the fraction of the timeτh,k that is allocated to hyperarch,
and codek is as follows;

.
τh,k = εCq

[Qh,k − ECq
[Q]]+τh,k

,
where εCq

is a positive constant and[b]+z = b if z ≥ 0
and [b]+z = 0 if b ≤ 0 and z = 0. It can be seen that
∑

h∈Cq

∑

k∈Kh

.
τh,k = 0 and

∑

h∈Cq

∑

k∈Kh

.
τh,kQh,k ≥ 0.

Also,
∑

h∈Cq

∑

k∈Kh

.
τh,kQh,k = 0 only if

.
τh,k = 0 which

requires thatQh,k =
−
QCq

or τh,k = 0 andQh,k <
−
QCq

.
Queue Update.We find the Lagrange multipliers (queue

sizes)qsh,k, using the gradient descent:

qsh,k(t+ 1) = {qsh,k(t) + ct{
Hs

h,kα
s
h,kxs

1−ρs
h

+
∑

s′∈Sk−{s} H
s′

h,kα
s′

h,kxs′ρ
s,s′

h,k −Rhτh,k}}+ (8)

where t is the iteration number,ct is a small constant, and
the + operator makes the Lagrange multipliers positive.qsh,k
is interpreted as the queue for flows allocated for thek-

th network code over hyperarc∀h ∈ A. Indeed, in Eq. (8),
qsh,k is updated with the difference between the incoming

(Hs
h,kα

s
h,kxs)/(1 − ρsh) +

∑

s′∈Sk−{s} H
s′

h,kα
s′

h,kxs′ρ
s,s′

h,k and
outgoingRhτh,k traffic rates ath.7

B. I2NC-stateless Scheme

The second term in Eq. (1) describes the redundancy added
by node i to protect flow s from loss of antidotes on the
overhearing link. An implicit assumption was that nodei
knows what antidotes are available at the next hop and uses
only those packets for inter-session coding. However, this
knowledge can be imperfect, especially in the presence of loss.
Here, we formulate a variation of the problem, where such
knowledge is not necessary. Instead, nodei needs to know
only the loss rate on all the links to the next hop for flows
(e.g., in Fig. 1 for flow 2 (S2), these are linksI − B2 and
A1 −B2).

We replace the capacity constraint in Eq. (1) with:

Hs
h,kα

s
h,kxs

1−ρs
h

+
∑

s′∈Sk−{s}

Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k

1−ρs
h

≤ Rhτh,k (9)

and this is∀h ∈ A, k ∈ Kh, s ∈ Sk. The other constraints
remain the same as in Eq. (1). The difference from Eq. (1) is
in the second term, related to the overheard packets at the next
hop. Any fraction of flows′ added as redundancy to flows,
as well as overheard packets froms′ in the next hop, help to
decode inter-session coded packets ofs with flow s′. To protect
transmissions of these “helping” fractions (Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k )
from being lost on the direct link to the next hop of flows
(e.g., from I to B2), we add redundancy to match the loss
rate of that direct link (ρsh in general,ρS2

{I,B2}
in the example).

This is why the termHs′

h,kα
s′

h,kxs′ρ
s,s′

h,k is divided by1− ρsh.
The solution of this optimization problem also decomposes

into rate control, traffic splitting, and scheduling problems,
which correspond to Eq. (3), (6), and (7), respectively.Qs

h,k

needs to be updated:

Qs
h,k =

qsh,k

1−ρs
h

+
∑

s′∈Sk−{s}

qs
′

h,kρ
s′,s

h,k

1−ρs′

h

. (10)

The Lagrange multiplier is updated as follows;

qsh,k(t+ 1) = {qsh,k(t) + ct{
Hs

h,kα
s
h,kxs

1−ρs
h

+

∑

s′∈Sk−{s}

Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k

1−ρs
h

−Rhτh,k}}+ (11)

We provide the convergence analysis of our solution in Ap-
pendix A.8 We first give the proof of convergence, then we
verify the convergence through numerical calculations.

7Note that the queue update in Eq. (8) can be re-written as;q̇s
h,k

=

γh[
Hs

h,kα
s
h,kxs

1−ρs
h

+
∑

s′∈Sk−{s} Hs′

h,k
αs′

h,k
xs′ρ

s,s′

h,k
−Rhτh,k ]

+

qs
h,k

, where

γh is a positive constant.
8We do not claim that the solution of our network utility maximization

problem is the optimal solution to the general intra- and inter-session NC
problem over wireless networks. This is well-known, open problem [26], [27],
[28]. Even without an optimal, closed form solution, there is still value in
using the structure of the solution to design mechanisms that perform well
in practice, as we show through the numerical and simulations results in the
next sections.
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V. SYSTEM IMPLEMENTATION

We propose practical implementations of the I2NC-state
and I2NC-stateless schemes (Fig. 2), following the NUM
formulation structure.

A. Operation of End-Nodes

At the end nodes, there is an adaptation layer between
transport and intra-session NC which has two tasks: (i) to
interface between application and intra-session NC; and (ii) to
optimize the reliability mechanism at the transport layer.

Task (i): At the source, the adaptation layer sets the gen-
eration (block) sizeGs. Gs is set according to application;
e.g., media transmission requirements for UDP, or set equal
to TCP congestion window for TCP applications and changes
over time. The adaptation layer receivesGs original packets
p1, p2, ..., pGs from the transport layer of flows and generates
Gs intra-session coded packets;a1 = p1, a2 = p1 + p2, ...,
aGs = p1+...+pGs. We call this coding “incremental additive
coding”. We chose the incremental additive coding to avoid
introducing coding delays (i.e.,our algorithm does not need to
wait Gs packets to encode packets) as proposed in [20]. The
intra-session header includes the block id, packet id, block
size, and coding coefficients. At the receiver side, the reverse
operations are performed.

Task (ii): To further optimize the interaction between I2NC
and transport, particularly TCP, we keep track of and acknowl-
edge the number of received packets in a generation, rather
than their sequence numbers (note that this part is not needed
for UDP protocol). This idea is similar to the use of end-to-end
FEC and intra-session NC that make TCP sequence agnostic
[19], [29], [20]. E.g., if a receiver receives the first packet
labeled with block idgs = 1, then it generates an ACK with
block id gs = 1 and packet idηs = 1. The uncoded packets,
p1, p2, ..., pGs , are stored in a buffer at the source for TCP
ACK adaptation.E.g., if an ACK for block id gs = 1 and
packet idηs = 1 is received by the source, then the TCP
adapter matches this ACK to packetp1 and informs TCP that
packetp1 is ACK-ed. As long as the TCP receiver transmits
ACKs, the TCP clock moves, thus improving TCP goodput.
After the ACK with the block and packet ids is transmitted
by the TCP receiver, the packet is stored at the receiving
buffer. When the last packet from a generation is received,
then packets are decoded and passed to the application.

B. Operation of Intermediate Nodes

An intermediate node needs to take a number of actions
when it receives (Alg. 1) or transmits (Alg. 2) a packet.

1) Receiving a packet and intra-session network coding:
Buffer packets. A node i may receive a packet from higher
layers or from previous hops. In the latter case, if the re-
ceived packet is inter-coded, it is decoded and the packet
with destination to this node is stored (or is passed to
transport if it is the last hop). If it is not the last hop, a
packetal ∈ {a1, a2, ..., aGs} is stored in the output queue
Qi. In addition to the physical output queueQi, the node
i keeps track of several virtual queues;Qs

h,k per (flow,

Algorithm 1 Node i processes packetal from flow s.
1: Read the information: packetal, from flow s (generation sizeGs)
2: Insertal into the physical output queueQi .
3: Determine{h∗, k∗} and labelal with {h∗, k∗} pair ands
4: Updateqsh∗,k∗ (using Eqs. (8) and (11)) andqs

′

h∗,k∗

5: CalculateQs
h∗,k∗ (using Eqs. (5) and (10)) andQs

i (using Eq. (4))
6: Gs

h∗,k∗ = Gs
h∗,k∗ + 1

7: if Gs packets from flows are received at nodei then
8: Calculate the number of paritiesP s,s

h,k
, P s′,s

h,k

9: CreateP s,s

h,k
parities froms andP s′,s

h,k
parities froms′

10: Label all generated parities with{h, k} pair ands

hyperarc, code). The packetal is labeled with(h∗, k∗, s),
which essentially indicates whether and how to code this
packet according to the traffic splitting in Eq. (6): we pick
{h∗, k∗} = argminh,k{Hs

h,kQ
s
h,k}, randomly breaking ties.

Note that this labeling is local at the node, and does not
introduce any transmission overhead.

Note thatHs
h,k is the indicator whether flows is transmitted

over hyperarch with codek. This indicator is determined at
each node using a routing table which has a data structure to
determine the next hops (note that paths do not need to be
known by the sources or any node in the system). Basically, if
a packet from flows is able to reach to the next hop determined
by the routing table when it transmitted over hyperarch and
with codek, then the indicator is set to1, otherwise0. We
also note that in this system, as long as paths remain fixed
for longer (at least longer than a time required to transmit
a packet) time periods, we can see more benefit from NC,
because each node will learn which flows can be network
coded and estimate the loss rates better as time gets longer.
However, even in the extreme case in which paths change
very fast (say for example at every packet transmission),
our system works well, but it does not fully exploit NC
opportunities, since it cannot estimate whether NC is possible
or not. However, it works not worse than a system without NC.
Therefore, I2NC is designed to adapt to path changes and to
exploit NC benefit if possible.

Update Virtual Queue Sizes.When packetal is selected
to be transmitted with thek∗-th network code over hyperarc
h∗, the virtual queues;Qs

h∗,k∗ andqsh∗,k∗ should be updated.
qsh∗,k∗ is updated according to Eqs. (8) and (11).Qs

h∗,k∗ is
calculated according to Eq. (5) for I2NC-state and Eq. (10) for
I2NC-stateless.Qs

i is calculated according to Eq. (4). Then, the
number of packetsGs

h∗,k∗ from the same generation that are
allocated toh∗, k∗ pair is incremented:Gs

h∗,k∗ = Gs
h∗,k∗ + 1.

Gs
h,k is set to 0 for each new generation.
Generate Parities.After Gs packets from a generation of

flow s are received at nodei, P s parity packets are generated
via intra-session NC (which is performed according to random
linear NC [30]) and labeled with information(s, h, k). There
are two types of parities.

• P s,s
h,k = ⌈Gs

h,kρ
s
h/(1−ρsh)⌉ parities are added on flows’s

virtual queue to correct for loss during direct transmission
to the next hop over hyperarch.

• P s′,s
h,k = ⌈Gs

h,kρ
s′,s
h,k ⌉, ∀s′ ∈ Sk parities are added on

the virtual queues of other flowss′ that are inter-session
coded together withs. This is to help the next hop fors′

to decode despite losses on the overhearing link.
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Algorithm 2 Node i transmits a packet.
1: Select{h†, k†} pair that maximizesQh,k = Rh(

∑
s∈Sk

qsh,k)

2: Initialize: ξ = ∅
3: for al ∈ Qi do
4: if al is labeled with{h†, k†} AND flow id label of al is different from

∀al′ ∈ ξ then
5: if I2NC-state ANDξ ∪ al is decodable OR I2NC-statelessthen
6: Insert packet toξ
7: Network code (XOR) all packets inξ
8: Broadcast the network coded packet over hyperarch†

9: Updateqs
h†,k† , ∀s ∈ Sk

10: Re-calculateQh,k = Rh(
∑

s∈Sk
qsh,k) andQs

i (using Eq. (4))

These parity packets are for I2NC-state. For I2NC-stateless
P s,s
h,k is the same, butP s′,s

h,k = ⌈Gs
h,kρ

s′,s
h,k /(1 − ρs

′

h )⌉, i.e.,
additional redundancy is used to protect parity packets from
loss on the direct link.

2) Transmitting a packet and inter-session network coding:
We consider the 802.11 MAC. When a nodei accesses a chan-
nel, {h†, k†} is chosen to maximizeQh,k = Rh(

∑

s∈Sk
qsh,k)

according to Eq. (7), randomly breaking ties. Although the
pair {h†, k†} determines the hyperarc, code and flows to be
coded together in the next transmission, the specific packets
from those flows still need to be selected and coded. We call
these packets the setξ, and select them using the procedure
specified in Alg. 2.9

To achieve this, we first initialize the set of network coded
packetsξ = ∅. For each packetal ∈ Qi, check whether
al is labeled with{h†, k†}. If it is, then we check whether
its flow id label already exists in one of the packets inξ,
i.e., another packet from the same flow has already been
put in ξ. If not, there is one more check for I2NC-state for
decodability at the next hops of all packets in the network
code, based on reports or estimates of overheard packets in
the next hops, similarly to [2]. If the packet is decodable
with some probability larger than a threshold (default value
is 0.20) then,al is inserted toξ. In I2NC-stateless, the packet
al is inserted toξ without checking the decodability, which is
ensured through the additional redundancy packets. This is the
strength of I2NC-stateless: it eliminates the need to exchange
detailed state, which is costly and unreliable at high loss rates.
After all packets inQi are checked, the labels (h, k, s) of the
packets inξ, inter-session NC header is added, and coded
(XORed) and broadcast overh.

After a coded packet is transmitted, the virtual queues are
updated according to Eqs. (8), (11). The queuesQh†,k† and
Qs

i are calculated according to Eqs. (5), (10), (4).10

We note that in both I2NC-state and stateless, packets are
network coded if some conditions are satisfied. However, if
these conditions are not met, a packet without NC is still trans-
mitted, because at least one packet is inserted inξ (Alg. 2).
Thus, we do not delay any packets in our schemes. Yet,
delaying packets may create more NC opportunities and there
is a tradeoff between delay and throughput. These issues have

9The inter-session NC header includes the number of coded packets
together, next hop address, and the packet id’s. Note that this header as well
as the IP header of each packet are not network coded.

10Note that I2NC may cause re-ordering at the receiver, but since we already
implemented intra-session NC, and made TCP receiver sequence agnostic in
this term, out of packet delivery is not a problem for TCP.

been considered in some previous work [31], [32]. However,
this is an aspect orthogonal to the focus of I2NC (which is
the synergy between inter- and intra-session NC) and can
potentially be combined with it.

3) Keeping Track of and Exchanging State Information:
For I2NC-state, intermediate nodes need also to keep track of
and exchange information with each other, so as to enable the
intra- and inter-session NC modules to make their redundancy
and coding decisions and to provide reliability. An approach
similar to COPE is used: ACKs are sent after the reception and
successful decoding of a packet. Information about overheard
packets is piggy-backed on the ACKs. With I2NC-stateless,
we only need neighbors to exchange information about the
loss rates at the neighboring nodes. Information about the loss
rates as well as the number of received packets at a generation
is reported through control packets for every generation.11 In
order to provide reliability, we consider re-transmissions. In
I2NC-state, a packet is removed from the output queue only
after an ACK related to the packets is received. Otherwise,
the packet is re-transmitted after a round trip time. In I2NC-
stateless, packets are removed from the output queue when
a control packets is received and confirms the successful
transmission of all packets of the corresponding generation.
Otherwise, a number of intra-session coded packets from the
generation which are missing at the receiver are generated
from the packets kept in the queue and transmitted.

4) Congestion Control and Queue Management:End-to-
end congestion control (i.e., rate control) is given by Eq. (3)
in which if Us(xs) = log(xs), then xs = 1/

(
∑

i∈Ps
Qs

i

)

.
This means that flow ratexs is inversely proportional with
increasing queue size over the path of flows. This behavior
is similar to TCP’s end-to-end congestion control algorithm,
where congestion at a node may result in one or more packets
may be dropped from the buffer at this node. TCP reacts to
packet drops by reducing its rate. Thus, TCP reduces its flow
rate when queue size increases. This gives us intuition that
TCP mimics the rate control part of the decomposed solution.
This intuition has been validated in [7], [33], [34], [35].

Similarly, we consider that TCP already mimics the struc-
ture of the rate control part in Eq. (3). Therefore, upon
congestion at nodei, the per-flow queue sizesQs

i are compared
and the last packet from flows having the largestQs

i is
dropped from the queue; in case of a tie, an incoming packet
is dropped. We do not make any additional updates to TCP’s
end-to-end congestion control algorithm. Also, we do not
implement any end-to-end congestion control mechanism for
UDP. Our goal is to keep UDP as it is (without any end-to-end
control) and show the effectiveness of I2NC-state and I2NC-
stateless when there is no end-to-end control.

Example 2:Let us re-visit the X-topology from Fig. 1,
shown again for convenience in Fig. 3, and illustrate how
we perform intra- and inter-session NC under scheme I2NC-
stateless. The loss probabilities over the direct (I − B2) and

11In our implementation, the loss probabilities are calculated as weighted
average of the loss rates. The weighted average is calculated over a window
of 10 samples. The last 10 samples are ordered such that the newest sample
is the first sample, and the oldest sample is the10th sample. Each sample is
given a weight inversely proportional to its sample number.
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(a) Intra-session coding

(b) Inter-session coding

Fig. 3. Example of coding (under scheme I2NC-stateless) at nodeI in the
X-topology. There is loss only on two links: the direct linkI − B2 (with
probability 0.5) and the overhearing linkA1 −B2 (with probability 0.25).

overhearing (A1 −B2) links are assumed0.5 and0.25.
In Fig. 3(a), we describe intra-session NC. Let us assume

the generation size ofS1 is GS1 = 4 and S2 is GS2 = 1.
The packets transmitted byA1, B1 area1, a2, a3, a4 and b1,
respectively. Note that there is only one option for inter-
session NC,i.e., to XOR packets from the two flows, thus
there exists only one possible network codek = 1 over
hyperarch = (I, {B2, A2}). All packets are labeled with
this information and their flow ids. The labeled packets are
aS1

1 , aS1

2 , aS1

3 , aS1

4 and bS2

1 . Parities are generated as follows.
SinceGS1

I,{B2,A2}
= 4 and GS2

I,{B2,A2}
= 1, the number of

parities isPS1,S1

I,{B2,A2}
= 0, PS1,S2

I,{B2,A2}
= 0, PS2,S2

I,{B2,A2}
= 1

(thus generating one parity from flowS2 and labeling it with
S2, i.e., bS2

2 ), andPS2,S1

I,{B2,A2}
= 2 (thus generating two parities

from flow S1 and labeling them withS2, i.e., aS2

5 , aS2

6 ).
In Fig. 3(b), we describe inter-session NC. NodeI performs

inter-session NC and transmits packets according to Alg. 2: it
XORs packets from the two queues, forS1, S2, and broadcasts
over the hyperarc(I, {B2, A2}). In particular, it transmits the
following packets:aS1

1 ⊕ bS2

1 , aS1

2 ⊕ bS2

2 , aS1

3 ⊕aS2

5 , andaS1

4 ⊕
aS2

6 . A2 receives and decodes all the packets.B2 receives
3 packets on the average over overhearing linkA1 − B2 and
receives2 packets over transmission linkI−B2. Five received
packets allowsB2 to decode all five packetsa1, a2, a3, a4, b1,
so b1 is successfully decoded. �

VI. PERFORMANCEEVALUATION

A. Simulation Setup

We used theGloMoSim simulator [8], which is well suited
for simulating wireless environments. We considered various
topologies: X topology, shown in part of Fig. 1 and repeated in
Fig. 4(a); the cross-topology with four end-nodes generating

bi-directional traffic, with one relay shown in Fig. 4(b); the
wheel topology shown in Fig. 4(c); and the multi-hop topology
shown in Fig. 1. In X, cross, and wheel topologies, the
intermediate nodeI is placed in a center of of circle with
radius 90m over 200m × 200m terrain and all other nodes
A1, B1 and etc. are placed around the circle. In the multi-
hop topology of Fig. 1, two X topologies are cascaded and
the distance between consecutive nodes is set to90m. The
topology is over a800m× 300m terrain.

We also considered varioustraffic scenarios: FTP/TCP and
CBR/UDP. TCP and CBR flows start at random times within
the first5sec and are on until the end of the simulation which
is 60sec. The CBR flow generates data packets at every0.1ms.
IEEE 802.11b is used in theMAC layer, with the addition of
the pseudo-broadcasting mechanism, as in COPE [2]. In terms
of wireless channel, we simulated the two-ray path loss model
and a Rayleigh fading channel with average channel loss rates
0, 20, 30, 40, 50 %. We have repeated each60sec simulation
for 10 seeds. Channel capacity is1Mbps, the buffer size at
each node is set to100 packets, packet sizes are set to500B,
the generation size is set to 15 packets for UDP flows and to
the TCP window size for TCP flows.

We compare our schemes (I2NC-state and I2NC-stateless)
to no network coding (noNC), andCOPE[2], in terms of total
transport-level throughput (added over all flows).

B. Simulation Results

TCP Traffic.In Fig. 5, we present simulation results for two
TCP flows in X topology shown in Fig. 4(a) to illustrate the
key intuition of our approach. Consider, for the moment, that
loss occurs only on one link, either (a) the overhearing link
A1 −B2 or (b) the direct linkI −B2.

The first case is depicted in Fig. 5(a). Loss on the over-
hearing link does not affect the uncoded streams, thus the
throughput of TCP+noNC does not change with loss rate.
When NC is employed, reports carrying information about
overheard packets may be delivered late to intermediate node
I. Thus, there are some instances that intermediate node should
make a decision even if it does not have the exact knowledge.
In this case,I makes a decision probabilistically. Specifically,
if decoding probability exceeds some threshold (20% in our
simulations),I codes packets. However, some of these packets
may not be decodable at the receiver. It is why the performance
of TCP+COPE and TCP+I2NC-state reduce with increasing
loss rate and equals to the throughput of TCP+noNC after
20% loss rate (NC is turned off after 20% loss rate). However,
TCP+I2NC-state is still better than TCP+COPE, because when
it makes probabilistic NC decision (when loss rate is less than
20%), it adds redundancy considering the loss rate over the
overhearing link. This improves throughput, because adding
redundancy using intra-session NC makes all packets equally
beneficial to the receiver and the probability of decoding
inter-session network coded packets increases. TCP+I2NC-
stateless outperforms other schemes over the entire loss range.
For example, if there is no loss, I2NC-stateless still brings
the benefit due to eliminating ACK packets and using less
overhead to communicate information (i.e., COPE and I2NC-
state exchanges the information about the overheard packets,
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(a) X topology (b) Cross topology (c) Wheel topology

Fig. 4. Topologies under consideration. (a) X topology. Two unicast flows,S1, R1, andS2, R2, meeting at intermediate nodeI. (b) Cross topology. Four
unicast flows,S1, R1, S2, R2, S3, R3, andS4, R4, meeting at intermediate nodeI. (c) Wheel topology. Multiple unicast flowsS1, R1, S2, R2, etc., meeting
at intermediate nodeI. In all three topologies,I opportunistically combine the packets and broadcast.

(a) Loss only on overhearing link
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(b) Loss only on direct link

Fig. 5. X topology in Fig. 4(a). We show the total TCP throughput (added
over two flows) vs. link loss rate, for two specific loss patterns. Loss happens
only on one link, either: (a) the overhearing linkA1 − B2 or (b) the direct
link I − B2. All other links are lossless.

while I2NC-stateless exchanges the information about the loss
rates), thus using the medium more efficiently. When the loss
rate increases, the improvement of I2NC-stateless becomes
significant, reaching up to 30%. The reason is that at high loss
rates, I2NC-state and COPE do not have reliable knowledge
of the decoding buffers of their neighbors and cannot do
NC efficiently. In contrast, I2NC-stateless does not rely on
this information, but on the loss rate of the overhearing link
to make NC decision. In the discussion of Example 1, we
mentioned that at 50% loss rate, 16.6% improvement can be
achieved via NC. Here, we see this improvement (13%) as
well as the the additional benefit of eliminating ACK packets
(12%). Note that the total improvement is 25%.

The second case is depicted in Fig. 5(b). The throughput of

TCP+noNC decreases with increasing loss rate because, the
loss is over the direct link and some packets whether they are
coded or not are lost on the direct link (I − B2). This leads
to decrease in throughput level. TCP+I2NC-state outperforms
TCP+COPE in this scenario, because I2NC-state corrects
errors on the direct link thanks to the added redundancy
which reduces the number of re-transmissions. Thus, I2NC-
state uses the channel more efficiently than COPE and im-
proves the throughput. Note that TCP+I2NC-state outperforms
TCP+COPE even after 20% loss rate, although inter-session
NC is turned off after this level. The reason is that although
I2NC-state does not do inter-session NC after 20% loss rate,
it keeps doing intra-session NC which adds redundancy to
correct errors. Due to this property, TCP+I2NC-state out-
performs TCP+COPE even at high loss rates. TCP+I2NC-
stateless significantly outperforms all alternatives again due to
performing NC at all loss rates and eliminating ACK packets.

Fig. 6 presents simulation results for TCP traffic over X,
cross, and the multi-hop topologies assuming loss on all links.
For ease of presentation, here, we report only the results when
all links have the same loss probability.

Fig. 6(a) shows the results for the X topology. At low-
medium loss rates (10% - 30%), I2NC-state and COPE are
still able to do NC, so TCP+I2NC-state and TCP+COPE
improve throughput significantly as compared to TCP+noNC.
At higher loss rates, I2NC-state and COPE do not have reliable
knowledge of the decoding buffers of their neighbors and
cannot do NC efficiently. As a result, the improvement of
TCP+I2NC-state and TCP+COPE as compared to TCP+noNC
reduce with increasing loss rate. TCP+I2NC-state is better
than TCP+COPE at higher loss rates thanks to its error
correction mechanism. TCP+I2NCstateless outperforms other
schemes over the entire loss range thanks to combining NC
and error correction as well as eliminating ACKs. For example,
if there is no loss, TCP+I2NC-stateless still brings the benefit
by eliminating ACK packets, thus using the medium more
efficiently. When the loss rate increases, the improvement
of I2NC-stateless becomes significant, because I2NC-stateless
does not rely on the knowledge of the decoding buffers of their
neighbors, but only on the link loss rates for inter-session NC.

Fig. 6(b) shows the results for the cross topology. The
improvement of TCP+I2NC-stateless is higher as compared to
the X topology, because there are more NC opportunities here
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(a) X topology (shown in Fig. 4(a))
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(b) Cross topology (shown in Fig. 4(b))
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(c) Multi-hop topology (shown in Fig. 1)

Fig. 6. Total TCP throughput vs. average loss rate (for ease of presentation, the same loss rate is assumed on all links) in three different topologies.
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Fig. 7. Wheel topology shown in Fig. 4(c) with increasing number of flows.
Loss rate on all links is set to 10%.

for I2NC-stateless to exploit. We also performed simulations
with increasing number of flows, (i.e., nodes in this topology);
the details are provided later in this section.

Fig. 6(c) presents the results for the multi-hop topology
in Fig. 1. The improvement of TCP+I2NC-state is higher
than in the X and cross topologies, especially at higher
loss rates. This is because intra-session coding, employed
by I2NC-state, reduces the dependency on link level ARQ.
More specifically, in this multi-hop topology, the end-to-end
residual loss rate increases with the number of hops. Intra-
session NC overcomes this, thus increasing TCP throughput.
The improvement of I2NC-stateless is even more significant
for this topology, because the benefit of eliminating ACKs is
more pronounced with larger number of hops.

We also performed simulations with increasing number
of flows, i.e., nodes in wheel topology in Fig. 4(c). It is
seen in Fig. 7 that the total throughput achieved by NC
schemes increases with the increasing number of flows. When
the number of flows increases, the probability of NC at the
intermediate nodeI increases. More NC opportunities leads
to higher throughput.

UDP traffic. We repeated the simulations for the three
topologies for the case that there is loss over all links. The
results are presented in Fig. 8.

Fig. 8(a) presents the results for the X topology. The
improvement of UDP+I2NC-stateless is up to 60% as com-
pared to UDP+noNC. This is significantly higher than the
improvement of TCP+I2NC-stateless and the optimal scheme
(in which the improvement is 33.3%). The reason is the MAC

gain as explained in [2].12 We present the results for the
load at which the system saturates. At this load, UDP+noNC
is already saturated, several packets are dropped from the
buffers, and they do not arrive to their receivers. This reduces
the throughput of noNC, while NC schemes still handle the
traffic created by the load. Notice that even at 50% loss
rate, UDP+I2NC-stateless improves over UDP+noNC by 40%,
which is significant.

Fig. 8(b) presents the results for the cross topology. In this
topology, the improvement of NC is very large. When there is
no loss, the improvement is around 250%. The effectiveness
of UDP+I2NC-stateless is also significant in this topology: at
50% loss rate the improvement of UDP+I2NC-stateless over
UDP+noNC is 70%.

Fig. 8(c) presents the results for multi-hop topology. We see
similar behavior as observed by Figs. 8(b) and (c). However,
the improvement of UDP+I2NC-stateless is larger in this
topology, because the benefit of eliminating ACKs is more
pronounced with larger number of hops.

C. Numerical Results

We consider the X and cross topologies shown in Figs. 4(a)
and 4(b). In the X topology,A1 transmits packets toA2 via I
with ratex1, andB1 transmits packets toB2 via I with ratex2.
In the cross topology,A1 transmits packets toA2 with ratex1,
A2 transmits packets toA1 with ratex2, B1 transmits packets
to B2 with ratex3, andB2 transmits packets toB1 with rate
x4. All transmissions are viaI. In both topologies, the data rate
of each link is set to1 packet/transmission. We compare our
schemes I2NC-state and I2NC-stateless with noNC which is
also formulated in a network utility maximization framework
without any NC constraints.

Fig. 9 shows the total throughput;x1 + x2 for X topology.
Fig. 9(a) shows the results when there is loss onA1 − B2.
It is seen that the throughput of noNC is flat with increasing

12The MAC gain observed with UDP flows when NC is used can be
summarized as follows. When NC is employed, the coded wireless network
can handle larger amount of load as compared to its uncoded counterpart.
Therefore, when coded system saturates at some load level, uncoded system
can not handle this level of load. Thus, several packets are dropped from
output queues at each node in the system. Some of these packets may be
dropped from intermediate packets. In this case, resources (bandwidth in
our case) to transmit these packets (which will be eventually dropped) is
wasted. Therefore, the gap between the achieved throughput level of coded
and uncoded systems becomes significant.
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(a) X topology (shown in Fig. 4(a))
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(b) Cross topology (shown in Fig. 4(b))
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(c) Multi-hop topology (shown in Fig. 1)

Fig. 8. Total UDP throughput vs. average loss rate (the same loss rate is assumed on all links) in three different topologies.
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(a) Loss onA1 −B2
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(b) Loss onI −B2

0 10 20 30 40 50
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Average loss rate (%)

T
hr

ou
gh

pu
t

I2NC−stateless
I2NC−state
noNC

(c) Loss onA1 −B2 and I −B2
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(d) Loss on all links

Fig. 9. X topology. Throughput vs. loss rate (the same loss rate is assumed
on A1 − B2 and I − B2 in (c), and the same loss rate is assumed on all
links in (d)).

loss rate, because it is not affected by the loss rate on the
overhearing link. I2NC-state and I2NC-stateless improve over
noNC, because they exploit NC benefit. When the loss rate in-
creases, the improvement reduces, becauseB2 overhears only
part of the data transmitted byA1. Although the improvement
decreases with increasing loss rate, it is still significant,e.g.,
16.6% at 50% loss rate. Note that Fig. 9(a) is the counterpart
of the simulation results presented in Fig. 5(a). It is seen that
TCP+I2NC-stateless in Fig. 5(a) shows similar performance
as I2NC-stateless in Fig. 9(a). This shows the effectiveness of
I2NC-stateless in a realistic simulation environment.

Fig. 9(b) shows the results when there is loss onI − B2.
It is seen that I2NC-state and I2NC-stateless improve over
noNC significantly at all loss rates. It is also interesting to note
that at 50% loss rate, I2NC-state and I2NC-stateless improve
over noNC by 44% which is even higher than in the no loss
case (33%). The reason is in the following. In the optimal
solution, the throughput values arex1 = 0.4 and x2 = 0.2.
In this case, in the downlinkI − B2, data part ofx2 with
rate0.2 and the parity part with rate0.2 (considering loss rate
50%) are combined withx1. This means that our schemes

combine both parity and data parts of a flow with other flows
and this improves the throughput significantly. This is one of
the important contributions of I2NC.

Fig. 9(c) shows the results when there is loss on links
A1 − B2 and I − B2. It is seen that I2NC-state improves
the throughput significantly while the improvement of I2NC-
stateless reduces to0 with increasing loss rate. The reason
is that, I2NC-stateless is a more conservative scheme as
compared to I2NC-state in the sense that it eliminates the
perfect knowledge on antidotes. Yet, it still improves the
throughput significantly,e.g., it improves over noNC by 22%
at 30% loss rate.

Fig. 9(d) shows the results when there is loss on all links. It
is seen that I2NC-state and I2NC-stateless improve over noNC
significantly at all loss rates. Note that throughput of I2NC-
stateless reduces to that of noNC at 50% loss rate in Fig. 9(c).
The reader might wonder why we do not see such behavior in
Fig. 9(d). The reason is that since there is loss over linkA1−I
as well asA1 − B2, the number of parities added byA1 to
correct losses over linkA1 − I also increases the number of
overheard packets atB2. Therefore, I2NC-stateless does not
add redundancy at nodeI for bothA1 −B2 andI −B2 as in
Fig. 9(c), but adds redundancy only for loss on linkI − B2.
This improves the performance of I2NC-stateless . Note that
the counterpart of these results are presented in Fig. 6(a). It is
seen that the throughput improvement of I2NC-stateless over
noNC at 50% loss rate is around 30% in Fig. 9(d). As com-
pared to this, the improvement of TCP+I2NC-stateless over
noNC is limited in Fig. 6(a), because, in simulations, the block
size is limited and fixed, and the scheduling is not perfect (we
consider IEEE 802.11). Yet, the throughput improvement of
TCP+I2NC-stateless over noNC is around 20% in Fig. 6(a),
which is significant.

Fig. 10 shows the total throughput;x1 + x2 + x3 + x4 for
I2NC-state, I2NC-stateless and noNC for the cross topology
shown in Fig. 4(b) for different loss patterns. It is seen that
the results are similar to the ones in Fig. 9. One difference
is that the throughput improvement of NC schemes is higher,
i.e., up to 80%, because there are more NC opportunities in
the cross topology.

VII. C ONCLUSION

In this paper, we proposed I2NC: a one-hop intra- and inter-
session network coding approach for wireless networks. I2NC
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(b) Loss onI −B2
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(c) Loss onA1 −B2 and I −B2
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Fig. 10. Cross topology. Throughput vs. loss rate (the same loss rate is
assumed onA1 −B2 andI −B2 in (c), and the same loss rate is assumed
on all links in (d)).

builds on and improves COPE in two aspects: it is resilient
to loss and it does not need to rely on the exact knowledge
of the state of the neighbors. Our design is grounded on a
NUM formulation and its solution. Simulations inGloMoSim
demonstrate significant throughput gain of our approach com-
pared to no network coding and COPE.
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APPENDIX A: CONVERGENCEANALYSIS

In this section, we analyze the convergence of the distributed
solution of the NUM problem, given in Section IV. First,
we provide a proof of convergence, and then present some
numerical calculations to verify the convergence.
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A. Proof of Convergence

Let us first consider the optimality conditions below. Note
that
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We consider a similar Lyapunov function considered
in [36]; V (q, τ, α) =
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The derivative of the Lyapunov function with
respect to the Lagrange multipliers is expressed
as;

.
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By using the definition of the function[b]+z , and
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When we arrange the terms in the above inequality by
adding and removing terms, we have;
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Since the marginal utilityU
′

s(.) is a decreasing function, its
inverse,i.e., the Eq. (22) is less than 0. Due to the optimality
condition in Eq. (13) and Eq. (15), Eq. (23) is less than 0. Due
to the optimality condition in Eq. (14), Eq. (24) is less than
0. Due to the optimality condition in Eq. (16), Eq. (25) is less
than 0. Thus,

.

V (q, τ, α) ≤ 0. This implies the convergence of
our solutions, [36], [37].

B. Numerical Results

We consider again the X and cross topologies shown in
Figs. 4(a) and 4(b). In the X topology,A1 transmits packets
to A2 via I with ratex1, andB1 transmits packets toB2 via
I with rate x2. In the cross topology,A1 transmits packets
to A2 with ratex1, A2 transmits packets toA1 with ratex2,
B1 transmits packets toB2 with rate x3, andB2 transmits
packets toB1 with rate x4. All transmissions are viaI.
In both topologies, the data rate of each link is set to1
packet/transmission and the loss rate is set to 30%.

In Figs. 11 and 12, we present the throughput vs. the
iteration number for the X topology at different loss patterns
for I2NC-state and I2NC-stateless, respectively. Each figure
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(d) Loss on all links

Fig. 11. X topology. Convergence ofx1, x2, andx1 +x2 for I2NC-state. Loss rate
is 30%.
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Fig. 12. X topology. Convergence ofx1, x2, andx1 + x2 for I2NC-stateless. Loss
rate is 30%.

shows the convergence ofx1, x2, andx1+x2 to their optimum
values.E.g., x1 + x2 converges to its optimum value0.59 in
Fig. 11(c) andx1 + x2 converges to its optimum value0.55
in Fig. 12(c).

Fig. 13 and 14 present the throughput vs. the iteration
number for the cross topology at different loss patterns for
I2NC-state and I2NC-stateless, respectively. We see similar
convergence results. Specifically, each flow rate,x1, x2, x3,
x4, and the total rate converge to their optimum values.
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(c) Loss on linksA1 − B2 andI − B2
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(d) Loss on all links

Fig. 13. Cross topology. Convergence ofx1, x2, x3, x4, andx1 + x2 + x3 + x4

for I2NC-state. Loss rate is 30%.
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(a) Loss only on overhearing linkA1 −

B2
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(b) Loss only on direct linkI − B2
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(c) Loss on linksA1 − B2 andI − B2
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(d) Loss on all links

Fig. 14. Cross topology. Convergence ofx1, x2, x3, x4, andx1 + x2 + x3 + x4

for I2NC-stateless. Loss rate is 30%.
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