
USOO593O801A

United States Patent (19) 11 Patent Number: 5,930,801
Falkenhainer et al. (45) Date of Patent: Jul. 27, 1999

54 SHARED-DATA ENVIRONMENT IN WHICH O 458 718A2 11/1991 European Pat. Off..
EACH FILE HAS INDEPENDENT SECURITY 04336345 11/1992 Japan
PROPERTIES 2295909 12/1996 United Kingdom.

WO 97/15008 4/1997 WIPO.

75 Inventors: Brian C. Falkenhainer, Pittsford;
Mitchell Garnaat, Fairport, both of OTHER PUBLICATIONS

N.Y. The article “Document Management Software: Overview,”
Dat Inf tion Services G Apr. 1997). 73 Assignee: Xerox Corporation, Stamford, Conn. (Da apro OO ervices roup, pr.)
“Basis Document Manager,” from Information Dimensions,
Inc., is a document management application platform. 21 Appl. No.: 08/961,002

21 Appl. No 1961, “AltaVista Forum: Focus on OnSite Conference.” A descrip
22 Filed: Oct. 30, 1997 tion of OpenText is given in a press release of Feb. 28, 1997,

entitled Juggling Deeds, Deadlines: Document Workflow
Related U.S. Application Data Solutions.

60 Provisional application No. 60/040,114, Mar. 7, 1997, and “Intranets Are the Next Wa ss y to Manage Documents, Imag
provisional application No. 60/051,000, Jun. 27, 1997. ing Magazine, May 1997, pp. 26-39.

(51) Int. Cl. .. G06F 17/00 “Information Management Challenges and Opportunities on
52) U.S. Cl. 707/103; 707/2; 707/10 the Internet,” (Datapro Information Services Group, Feb.
58 Field of Search 707/1, 6, 8, 10, 1997).

707/2, 102, 103; 395/200.59, 18701, 680,
200.49 Primary Examiner Wayne Amsbury

Assistant Examiner Thuy Pardo
56) References Cited Attorney, Agent, or Firm-R. Hutter

U.S. PATENT DOCUMENTS 57 ABSTRACT

5,132,900 7/1992 Gilchrist et al. 364/419
5,162.992 11/1992 Williams E, Ashared-data yet. sh as could be TG with s s
5,179,718 1/1993 MacPhail 30s so or Internet, in which a large quantity of files available in a
5,388,196 2/1995 Pajak et al. 30s/153 file system are each individually assigned an identification
5,418,946 5/1995 Mori .. 395/600 number. This identification number is then converted into a
5,423,034 6/1995 Cohen-Levy et al. ... 395/600 non-location-based URL, Such as a Simple Scalar number,
5,560.008 9/1996 Johnson et al........ ... 395/680 which can be retained in a user's network browser. Further,
5.568.640 10/1996 Nishiyama et al. 395/600 each file has associated there with an individual data object,
5,649,099 7/1997 Theimer et al. 395/187.01 by which an owner of a particular file can Specify read and
577. t - - - - - -deal.".395. write access to the file. The System enables new users to

2 - Y - evergood et al.
5,727,156 3/1998 Herr-Hoyman et al. ... 395/200.49 create their own accounts to access the file System, without
5,745,750 4/1998 Pocaro .. 707/1 causing a general security breach. The use of location
5,778,367 7/1998 Wesinger, Jr. et al. 707/10 independent URLS to identify files enables individual users
5,794,230 8/1998 Horadan et al. 707/2 to organize the files independently, and also avoids “stale

web links which occur when websites are reorganized.
FOREIGN PATENT DOCUMENTS

O 398 645 A2 11/1990 European Pat. Off.. 7 Claims, 3 Drawing Sheets

NWTE
(COLL.)

BUETIN
BOARD

Facebook's Exhibit No. 1005
Page 1

5,930,801 Sheet 1 of 3 Jul. 27, 1999 U.S. Patent

SX!NIT NEHLO SETIH
Z |

| || ali?
9 |

Ol

NHST) NEST) NEST)

Facebook's Exhibit No. 1005
Page 2

5,930,801 Sheet 2 of 3 Jul. 27, 1999 U.S. Patent

STIGIESSTRUITGEIGEREGTILFÆRI

Facebook's Exhibit No. 1005
Page 3

5,930,801 Sheet 3 of 3 Jul. 27, 1999 U.S. Patent

BLIANIG

Facebook's Exhibit No. 1005
Page 4

5,930,801
1

SHARED-DATA ENVIRONMENT IN WHICH
EACH FILE HAS INDEPENDENT SECURITY

PROPERTIES

CLAIM OF PRIORITY TO PROVISIONAL
PATENT APPLICATIONS

The present application claims priority, for different parts
of the disclosure thereof, from U.S. Provisional Patent
Application No. 60/040,114 filed Mar. 7, 1997, and U.S.
Provisional Patent Application No. 60/051,000 filed Jun. 27,
1997.

FIELD OF THE INVENTION

The present invention relates to a Software environment in
which a plurality of users can create and share sets of
documents or files.

BACKGROUND OF THE INVENTION

In work environments in which a large number of users
eXchange data, in the form of documents, files, or other
entities, among themselves, there is a need to provide shared
resources in which any one of the number of users can
access a particular document which is in a "public space”
available to all. Similarly, there is a need for a mechanism
by which a user who has created a document or file can place
his work in this public space to be viewed by others, and if
desirable edited by others. At the same time, it is desirable,
in a shared-files System, to have Some mechanism for
Security with respect to publicly-available documents, So
that there can be Some order and control over the contents of
documents.

In the prior art there are known various techniques for
facilitating Such a shared-file or share-document environ
ment. One type of multi-user Software, an example of which
is XeroxOR GlobalView(R) Software, provides a concept of
“shared file drawers.” A shared file drawer is an icon which
is present on the Screens of a set of users, and the contents
of this drawer can be altered by anyone with access to the
drawer (although certain documents may be locked as
“read-only” documents). However, with GlobalView.(R),
basic access to the drawer is limited to those users who have
been given the icon for the drawer by a System administra
tor: Further, a person with access to a particular drawer will
have at least read-only access to every document in the
drawer.

A variant on the “shared drawer' concept is the “shared
drive” system, which is familiar from Novell(R) network
drives. Once again, a Set of users must be given access to a
particular drawer by a System administrator, and for the most
part a perSon with access to the drive has complete access to
every file in the drive. Another drawback of the network
drive System is that the organization of the drive, from the
perspective that each user, is intimately related to the hard
ware structure of the local area network (LAN).

Another mechanism for enabling the sharing of files or
documents relies on an “Internet” or “website' model. In
this model, documents can exist via hypertext or other links
from a home page. While certain documents linked to a
particular website may have Security properties associated
there with, Such as a necessity for a password, this model
once again has the drawback that a “web master' is required
to control the entire Security apparatus, very much in the
manner of a System administrator in the above-described
Systems. The presence of a web master or System adminis
trator represents a bottleneck in the usability of a System,

15

25

35

40

45

50

55

60

65

2
because very often no new documents can be made available
without permission of the web master. Further, a web master
must be dedicated on an active, ongoing basis to the man
agement of a website, and hypertext links within the website
can become Stale, i.e., lead to documents which no longer
exist because the web master may not have ownership of
particular documents linked to the website.

There thus exists a need for a shared-data environment
which overcomes the above practical drawbackS.

SUMMARY OF THE INVENTION

According to the present invention, there is provided a
method of managing a plurality of files Stored in an elec
tronic file System. A unique identification number is
assigned to each file in the file System. A unique identifica
tion number is assigned to a user with access to any file in
the file System. An object database is provided, the object
database including therein an object associated with each file
in the file System, the object including the identification
number of the file and an identification number of a user
having access to the file. A Software mechanism is provided
whereby each identification number assigned to a file is
associated with a location-independent URL. When a user
enters a URL of a desired file, the identification number of
the desired file is determined, the identification number of
the user is determined, and the object associated with the
desired file is consulted to determine if the user has access
to the file.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:
FIG. 1 is a diagram showing the basic functionality of the

environment according to the present invention;
FIG. 2 is an example window through which a user may

enter permissions to an object he has created; and
FIG. 3 is a diagram illustrating an example relationship

among data objects within the environment of the present
invention.

DETAILED DESCRIPTION OF THE
INVENTION

System overview
In the following discussion, three specific terms will be

defined: a “file” is a file of data that may be retrieved for
Viewing or editing, Such as in a Word-processing, graphics,
or Spreadsheet format. An "object' is a Smaller piece of
metadata which describes certain persistent attributes of a
file. A “handle” is simply an identification number by which
a file (or other data entity) in a file System is associated with
the object which describes it.

FIG. 1 is a simplified diagram Showing the basic elements
of an embodiment of the environment according to the
present invention. One overall purpose of the environment
of the present invention is to allow a large number of users,
here each indicated as 10, access to various files, Such as
word-processing or Spreadsheet documents, Stored in a file
System 12, which may be in the form of, for example, a
hard-drive or network server.

According to the present invention, individual files within
the file System 12 are each associated with what is here
called an “object.” In the present context, an “object”
asSociated with a file in file System 12 is a set of metadata,
or in other words, a field or String of data, which describes
the access properties (read and/or write permissions), hier
archical relations, and other properties of the file. According
to the present invention, the “object' associated with each

Facebook's Exhibit No. 1005
Page 5

5,930,801
3

file is essentially permanently associated with that file, as
long as the file exists in the file System 12, regardless of
whether, for example, it is edited or renamed or otherwise
altered.

Going through FIG. 1 in detail, a plurality of users 10,
each of which has control of, for example, a personal
computer, are connected via a network 14, to a Server 16.
According to a preferred embodiment of the present
invention, the Server 16 is an http Server, accessed over the
network 14 by standard internet browsers on the personal
computer of each user 10. The users 10 access the server 16
through standard URLS (“universal resource locators'), in a
manner familiar in network or internet communication.

The http server 16 communicates with what is here called
a “command utility” 18. The command utility 18 is a set of
programs or Subroutines, each program corresponding to
one command which influences an “object' as defined
above. These objects, each object being associated with one
or more files in the file System 12, are retained in an object
database 20. The objects in object database 20 each are
linked to an identified file in the file system 12, or alternately
could be associated with links (such as over another
network) to other sources of files.
When a user 10 wishes to create a file, Such as a

document, which he desires to be accessible only to a Subset
of users on network 14, the user Submits the document
through network 14 and http server 16 to the command
utility 18 with a command such as “add file” or “create file.”
In response to this request from a user 10, the command
utility 18 then sends back to the particular user 10 a form
which appears on the screen of the user 10, which the user
10 fills out with respect to the file he is submitting to the file
System 12.
Among the information required by the command utility

18 (which will be exhaustively described in detail below)
are: The name of the user Submitting the file (who becomes
the “owner” of the file), a list of names of other users whom
the owner is permitting read and/or write access to the file;
and a list of hierarchical “parents” and “children” of the
document (i.e., whether the new file is intended to be part of
a larger collection of files, such as a “November file being
placed within a collection “Monthly Reports”). All of this
metadata which the user Submits in the field becomes part of
the “object” which then is placed by command utility 18 in
the object database 20. Further, upon submission of this file
and the creation of the object by command utility 18, the
command utility 18 also creates an unique identification
number, which in the present context is called a “handle,”
and permanently associates this handle with the object and
to the file associated with the object. Thus, at the end of the
process, the file created by user 10 is stored in file system 12,
and the object is stored in database 20. The file and the
object are associated with each other by their common
handle. The object in database 20 includes all of the data
describing the permissions, hierarchy, ownership, etc. of the
file identified by the handle.
As will be described in detail below, once a file (or

collection or other entity) is created in file System 12 and is
assigned a handle, the command utility 18 creates a new
URL which specifies the handle which has been assigned to
the file. This new handle-based URL in effect Supersedes the
original network-based URL which the file may have origi
nally had. This new URL is then sent to the browser of the
user 10, and in the future the browser (such as a bookmark
therein) of the user 10 will refer to the file exclusively by its
handle-based URL, and not by its original URL. This feature
is important from the perspective of avoiding "Stale links'
which occur when a URL includes artifacts from its original
location.

1O

15

25

35

40

45

50

55

60

65

4
At a later time, when another user 10 wishes to see the file

in file system 12, the user who wishes to read the file
requests the file through the http Server 16. In general, the
file desired to be read is referenced by the user by its
common name, e.g., “Sales Report for November,” either by
typing in the common name, typing in the handle, or clicking
on the name of the desired file when it is displayed in a menu
or a Search engine report. The common name of the desired
file is then passed through Server 16, through an http or other
protocol, and then this request is Sent to the command utility
18. The command utility 18 locates the object of the desired
file in the object database 20, which in turn locates the
corresponding file or files (in the case of a collection of files)
in file system 12 for retrieval back to the user. The handle
asSociating the object with the file, according to a preferred
embodiment of the present invention, can be made com
pletely invisible to a user on network 14. Further, according
to a preferred embodiment of the invention, the handle for
a particular file persists even if the file is Subsequently
renamed: the command utility 18 merely amends the com
mon file name that is associated with that handle, the
common title of a file being just one of the Several variables
defined in the object associated with the file.

Also, Significantly, the files which are placed in file
System 12 are in no particular order, need be in no particular
location in the file System 12, and preferably do not Specify
any hierarchical relationship to other files. Preferably, all of
the interrelations among files in file System 12 are Specified
only within the objects in database 16. There need be no
inherent hierarchy of folders, sub-files, etc., within file
System 12.
As will be described in detail below, there may exist

numerous distinct types of objects, each object describing a
Specific type of file retained in file System 12. For example,
what is known as a “file' is simply a document, as would
appear in a word-processing or Spreadsheet format. A “col
lection” refers to a collection of “files,” such as for example
the collection “Monthly Reports” including separate files for
“January,” “February,” etc. The object for a collection
includes therein, among other metadata, a list of the handles
of files or other collections which are “children' of that
collection. Thus, the handle for “Monthly Reports” will
include a list of the handles of the files associated with each
of the Monthly Reports. Significantly, one attribute of the
System of the present invention is that the hierarchical
relationships among files are retained in the objects associ
ated with the individual files, and are not inherent to a
hierarchical Structure of the data. For example, one file, Such
as could be described as “Accounting Report from New
York Office for November,” can appear in two or more
separate collections, such as “Monthly Reports,” “Reports
from New York Office,” and “Reports from Accounting
Department.” Even though the same file appears in three
Separate collections, the file itself is retained in only one
physical location in the file System 12, and collections of
files are assembled on an ad-hoc basis only when requested
by a particular user who wants to See a collection.

Other types of objects and associated files that may be
created by the environment of the present invention include
a calendar, which includes Spaces, corresponding to days, in
which events may be placed. Events themselves are
described by a type of object, and can each correspond to
their own file. Thus, should the owner of a file describing an
event want to change the description of the event, a revision
to the description of the event will appear in the calendars of
every user in which the event appears. Once again, although
each user may have his or her own calendar, the events

Facebook's Exhibit No. 1005
Page 6

5,930,801
S

within the calendars, being files described by objects, exist
independently of the calendar.

Still other types of objects which describe files include
“bulletins” and “bulletin boards.” Generally, bulletins are
Short ASCII messages, which are collected in a collection
called a “bulletin board,” the bulletin board typically being
Simply a collection with a large number of users with
read/write/add bulletin/remove bulletin access. Further, an
object may describe a file which is in fact a URL to another
network location; one possible advantage of this is to place
a useful website within a collection which is relevant to
other files in the collection.
Objects and Handles

Having explained the general function of the System of
the present invention, attention is now drawn to a detailed
implementation of the handles which are generated by the
command utility 18, and the objects which are retained in the
object database 20. AS mentioned above, in general, the files
retained in file system 12, each of which is described by an
“object” in object database 20, are generally of two types:
"files,” which are simply quantities of data Such as in a
word-processing document, and “collections,” which are
objects which point to a plurality of files.
AS an object is placed in object database 20 and file

System 12, the command utility 18 generates a unique
identification number, or “handle,” which is permanently
identified with the object and enables the object to be
associated with the file or files in the file system 20. For a
Simple file, that is, a mere collection of data as in a
word-processing document, a typical handle would be FILE
2523. What is important, as will be described in detail below,
is that the handle is “non-location based,” Such as the Simple
Scalar number in the example, in that it does not refer to a
Specific location of the file in, for example, a server. (In the
following discussion, random four-digit numbers are used to
illustrate different handles, and the random numbers them
Selves have no meaning beyond identifying a particular
object and file.) Within the object database 20, the handle
includes a few characters or a number indicating the type of
object, in this case a file, and then the actual identification
number. Typically, identification numbers for handles are
issued in numerical order as new files, collections, etc. are
created.
A handle for a collection would look Something like

COLLECTION-5811 (i.e., a code indicating the following
digits refer to a collection, and then the digits), and the
object corresponding to this collection would include therein
a list of files incorporated in the collection, for example,
COLLECTION-5811: {FILE-0871 FILE-7737 FILE-4391},
indicating that those files identified by those particular
handles will be “pointed to” when the handle for the
collection is requested by a user. Such a collection of
handles pointed to by another handle is known as a “handle
list.” Once again, whereas a file exists in only one location
in the file System 12, its handle may appear in the handle of
any number of collections in which that file is desired to
appear. Only when a user requests to view a particular
collection will the files within that collection be “assembled”
for display to a user at that particular time. Individual files
are not Stored in the file System 12 in any hierarchical
manner: such hierarchies as “Monthly Reports” are created
only an ad-hoc basis when the collection object describing
Such a hierarchy is invoked by a user.

For collections within collections, Such as for example the
hierarchy “Sales Reports/Monthly Reports/November,” the
collection object “Sales Reports” may include handles for a
number of collection objects, of which “Monthly Reports” is

15

25

35

40

45

50

55

60

65

6
only one. In turn, the collection “Monthly Reports” includes
therein handles to files for each monthly report.

In one embodiment of the present invention, database 16
is a relatively Small electronic memory Separate from the
electronic memory forming file System 12. File System 12
could indeed comprise Several electronic memories, which
interact with each other through a network. Database 16
could be defined in a distinct area of a larger electronic
memory in which file System 12 is comprised.

Below is a table describing the “attributes” or detailed
information which may be contained within each object
retained in the object database 20. In all cases each attribute
is a type of variable, and a collection of these variables
Strung together forms the complete object.

NAME TYPE DESCRIPTION

handle
title
summary

string
string
string

The handle of this object
The title or name of the object.
A short (preferably one-line) description of
the object.
A longer description of the object that may
be used to hold an abstract for a document or
a summary of an experiment.
A floating point representation of the time
and day the object was created.
A floating point representation of the time
and day the object was last modified.
The handle of an object representing the
user who last modified the object.
The handle of the object representing the
user who created and owns the object.
A list of handles to user and/or group objects
hat have been granted read access to this
object.
A list of handles to user and/or group objects
hat have been granted write access to this
object.
A list of handles to objects considered to be
parents of this object. This attribute provides
he illusion of a hierarchical structure, but
enables objects to appear in multiple
ocations.
A list of handles to objects considered to
be children of this object
A list of handles to keyword objects
representing keywords that are applicable to
his object.
A list of handles
o this object.

description string

create date float

modified date float

modified by handle

OWe handle

readers handle-list

writers handle-list

parents handle-list

children handle-list

keywords handle-list

links handle-list o objects which are linked

Object Commands
As mentioned above with reference to FIG. 1, the objects

which describe various files and collections are acted upon
by commands which ultimately originate with users 10 on
the network 14. It is a function of the server 16 to convert
the plain-language or Internet commands from the users 10
to commands which can be carried out by the command
utility 18. Certain commands, Such as to add (i.e., create) a
file or collection, and to view a file or collection, have been
described briefly above, but the following discussion is a
Series of detailed descriptions of the operations behind
commands in a currently-preferred embodiment of the
present invention.

View: This is a command when a user wants to view a file,
or collection of files, in file system 12. If the requested file
or collection is invoked by its title, the command utility 18
can scan the “title” variables in the objects in database 20 to
find the object associated with the requested file or collec
tion. In the case of a collection, the command utility gen
erates a Screen Suitable for viewing by the user, Such as a list
of the titles (derived from the objects) for each file within the
collection. Thus, if a user required “Monthly Reports,” in

Facebook's Exhibit No. 1005
Page 7

5,930,801
7

this particular embodiment of the invention, there will
ultimately appear on his Screen a list of the titles of the
Monthly Reports from which he can select; generally, with
the simple “view” function, no file is retrieved from the file
System 12.

Get: This is similar to the “view' command, but applies
only to files, and allows the requesting user to See the file
itself, Such as in the form of a word-processing, graphics, or
spreadsheet document. The command utility 18 locates the
object by title, looks at the handle of the object, and then
retrieves the file from the file system 12 using the handle.
For files, one portion of the object describing the file is the
"mime type,” indicating the type of document format the file
is in. The command utility 18 then causes the retrieval of the
file from file system 12, and then sends the file to the user,
according to the mime type.
Add: This command is used at the creation or Submission

of a file to file system 12, or the creation or submission of
a new collection of files, which must be identified by a new
object. In response to Such a command from a user, the
command utility 18 creates a prototype of the type of desired
object, Such as a calendar or empty collection. The command
utility then causes a Screen to be sent back to the user, the
screen being an entry form to be filled out by the user in the
case of, for example, a calendar or collection, in which the
user inserts into Spaces in the form what files he wants to
have inserted into the empty prototype. After the form Screen
is filled out, the user clicks a “submit” button. In response to
this “submit” command, the command utility 18 creates an
object of the desired handle, using the data submitted by the
user when filling out the form on the Screen, and then
generates a handle (Such as from a counter within command
utility 18) to assign a unique identification number forming
the handle for the object. The new object, with its new
handle, is then entered into object database 20. In the case
of adding a file, the command utility 18 also sends on to file
system 12 the file which is identified only by the handle
which has just been generated. Any common original name
of the file, such as “November Report,” is retained only as
a String variable within the object, as an attribute, as in the
table above.
View properties and edit properties: This is a command

for a user, who is typically the owner of the object in
question to View and, if desirable, edit the properties embod
ied in the object. As will be explained below in regard to
"permissions,' only the owner is authorized to make
changes in the attributes. When a command regarding the
properties is submitted by a user to command utility 18, the
command utility 18 displays the data within the object in a
usable form on the Screen of the user. If the user is so
authorized, the user can in effect move or copy the object
from one collection to another by changing the "parents' or
“children” fields, and can also change the list of users who
have read and/or write permission in regard to the object and
its underlying files. Also, only the owner of an object has the
authority to completely delete an object from the object
database 20, and in turn delete the underlying files from file
System 12.

Version number: In situations where there may exist
several versions of what is considered to be the “same’
document, Such as in the case of edited versions of a
word-processing document, or updated versions of a spread
sheet, the command utility 18 is capable of generating
“revised' handles while maintaining a connection between
different versions of what is considered to be the same file.
For example, if one draft of a document is given the number
FILE-3672, and edited version of the draft which is added to

15

25

35

40

45

50

55

60

65

8
the file System 12 later in time can be given the handle
FILE-3672-2. Provisions can be made in the object database
20 to accommodate multiple versions of objects with the
same handle. (Alternately, a “version number can be made
a field within an object.) There thus can readily exist
commands for retrieving from file system 12 “all versions”
of a file or just the “latest version,” or the “first version.” The
command utility 18 can then select from object database 16
the appropriate handle which corresponds to the Specific
desired version of the file.
Permissions
AS mentioned above, a practical limitation of most prior

art shared-data Systems is that Security with respect to
individual documents Stored in various collections is “all or
nothing.' That is, in a shared-drawer or shared-drive System,
whereas a System administrator can restrict access to the
drawer itself, once a perSon has access to the drawer or
drive, all of the documents therein are accessible to him. If
different levels of security for different types of documents
are desired, with different subsets of users being allowed
access to different Subsets of documents, the only Solution
would be to provide a multiplicity of drawers, each drawer
having a different Subset of users.
With the system of the present invention, however, the

Security properties of an object are embodied in the list of
“readers” and “writers' listed in the object itself. Thus, for
a file underlying a particular object (whether the object
describes the file itself, or whether the file is part of a
collection described by an object), the Security properties
persist with the object. Even if a file is at different times
placed in different collections, the Security properties will
remain with the file, because the file itself has an object with
a list of readers and writers associated therewith.
According to a currently-preferred embodiment of the

present invention, an object which describes a file,
collection, or other object Such as a calendar, has within its
object data the "handles” of its owner, its readers, and its
writers (there may further be a class of users called
“managers,” who have the same privileges as the owner but
who are not the owner). The readers are those users who
have only read access to the file or collection; the writers are
those users having write access, and the owner is the user
having the capability of altering the object itself and of
deleting an underlying file or a portion thereof.

According to a currently-preferred embodiment of the
invention, multiple users may be given "owner' rights to an
object and its underlying files, and the "owner' rights
include the ability to edit the permissions of what other users
have read and/or write access to the object.

Further according to a currently-preferred embodiment of
the invention, all of the users of the system in FIG. 1 who
desire any type of access to Secured files in file System 12
must at Some point “create an account” with the command
utility 18. As alluded to in the above table of attributes
within an object, users themselves are assigned handles by
the command utility 18 at the time of registration, as if the
users were files in a collection. That is, regardless of the
name or internet or e-mail address of a particular user, upon
creation of an account for a user, the command utility 18 will
asSociate the name or address of the user with a newly
generated handle, which once again is Simply an identifica
tion number which persists with the user forever. In the
owner, reader, and writer attributes within an object, the
users are identified not by their names or addresses, but by
their handles.
When a user account is created, a utility within command

utility 18 called a “community registry” creates a new object

Facebook's Exhibit No. 1005
Page 8

5,930,801
9

which includes data describing the user. The registration
proceSS includes the user filling out an electronic form, data
from which is used in the user object. Such user information
can include, for example, the user's legal name, hard-copy
and e-mail addresses, website URL, and the names of user
groups he wishes to be associated with (this is equivalent of
naming “parent collections for the user, assuming the user
groups have handles and objects associated there with, and
may be Subject to Security considerations). Also, preferably,
at this point the new user will be asked to type in a password
he will use for future logins to the system. The password will
be checked by the command utility 18 at all future times the
user logs into the System.

If a user does not want to register, i.e., create a user object
with respect to the System, whenever he wants to login, the
command utility will identify him as a "guest.” A guest
would not have to enter a password, but would have acceSS
only to those objects and underlying files with unrestricted
read permissions, and of course would have no write or
ownership access to any file. Typically, only a registered
user, with a user object, would be able to create objects to
object database 16 or add files to file system 12.

Prefatory to the activation of any of the above commands
Such as add, View, etc. the command utility 18 does a
permission check on the user initiating the command. Thus,
when a command is issued from a user, the command utility
18 checks the user's handle against the list of user handles
in the owner, readers, and writerS Spaces, and then deter
mines whether that particular command can be requested by
that user. (Of course, for unsecured files and collections, a
wild card variable or equivalent can be placed in the
“readers” or even “writers” spaces in the object.)

The implementation of assigning handles to users as user
objects are created, and then using the assigned handles to
check permission to perform certain commands, is carried
out in a variation of the known “cookie” system for identi
fying users in an Internet protocol. When a new object for
the user is generated by command utility 18, the handle
thereof is appended to the “cookie' used to identify the user
on network 14. This “cookie' will then stay with the user for
all future logins. Thus, when a particular object is desired by
a particular user, command utility 18 first compares the
handle within the cookie of the user with the list of user
handles in the “read” field; only if the handle in the cookie
matches one in the read field will the user be granted access.

It is implied by the overall Structure of permissions, as
they relate to files and collections of files, that an inherit
ability principle is facilitated. That is, because each indi
vidual file has a Security associated therewith, in the form of
the reader and writer permission in its object, even if the
particular file is made part of a collection, the Security
properties will remain with the file even if the larger
collection may have a broader range of permissions (i.e.,
more people are allowed to access the collection as a whole).
It is possible, according to one embodiment of the present
invention, to provide a Software mechanism in which, if
desired, the permissions associated with a collection are
never broader than the permissions of any file within the
collection. This can be carried out, for example, by a
program within command utility 18, which reconciles per
missions associated with a collection with the files within
that collection. This reconciliation can be carried out by
automatically altering the object associated with files in file
system 12, and the files themselves never have to be invoked
to reconcile permissions.

FIG. 2 is an example of a Screen which can be presented
to a user (typically, the owner or manager of an object) when

15

25

35

40

45

50

55

60

65

10
it is desired to edit the permissions of the object. A matrix
is displayed, with a list of potential users and/or perSons
currently with at least read access (starting with the object
owner) in the first column and the different types of per
missions (including an option of removing a previously
listed person from the access list) extending across the
columns. The owner or other manager can edit the permis
Sions by clicking Suitable boxes within the matrix.
Creation of Documents with Dynamic Content

FIG. 3 is a diagram showing the interrelationship among
objects, as the objects would exist within an object database
20, for an example of an event in which a number of users
would attend, and in which there may be a collection of files
for pre-reading. Starting from the top of the Figure, it can be
Seen that three users, each having his own calendar, would
each have the “event” listed on the appropriate day for his
particular calendar. An object describing the event exists
only in one place in the object database 20, but the calendars
of each user at the top of the Figure all include, in their
calendar objects, a handle to this event. Further, each object
describing a calendar includes a handle pointing to an object
describing the user or owner of that calendar.

Within the handle describing the event, there may be
several different types of objects to which the event object
points. For example, if there are Some files of pre-reading for
the event, the event object can describe a collection object,
as shown in the Figure, which in turn includes handles
pointing to the files for pre-reading, as shown. The event
object further includes a handle pointing to those users who
are to be invited to the event. The handles for these users
may be in the form of an object containing handles for a
group of users, e.g., a user group object called “engineers in
program Z would be a collection object including the
handles for all of the perSons in that class. An unlimited
number of ad-hoc user groups may be created by any user,
within bounds of the permissions in the user objects. Cre
ating a user group is simply a matter of creating a “collec
tion” object with a handle-list of the users intended to be in
the group. Of course, the “event” collection object could
also include handles to users not in a group as shown, and
a user group may include handles to users without custom
ary access to the event object, as shown in the Figure.

Another possible object that may be collected in the
“event’ object is a bulletin object, which, as shown in the
Figure, can be part of a bulletin board having other bulletins
besides that describing the event. Typically, a bulletin board
is intended to have wide access permissions, and a user with
no other access to the event may be able to see the bulletin
describing the event.

Another object that could appear in an “event collection
object is the URL of, for example, the homepage of a
Sponsoring organization, as shown. Also, the event collec
tion may include provision for Storing text in the object
thereof, and this text can include hot-links to external
websites.
A significant feature of the present invention, relating to

the fact that the underlying files which are described by
object are not stored hierarchically, relates to the ability for
one type of object to be simultaneously “inside” and “out
side' another object. For example, with the event shown in
FIG. 3, whereas the event is “within' the calendar of the
number of users, the user group collection object that
describes users to be invited to the event is within the event
object. AS shown by the dotted line in the Figure, a user
having the event on his calendar, but who is also listed as
someone to be invited to the event, is described by an object
which is a “child” of the event, but is also the owner of a

Facebook's Exhibit No. 1005
Page 9

5,930,801
11

calendar object which is a “parent” of the event. The point
is that the hierarchy of whether a file is within a collection
is always ad-hoc, depending on the perspective of a particu
lar file being viewed by a particular user, and most impor
tantly can be created independently of the files underlying
the objects which are stored in file server 12. In the present
example, regardless of whether users are added or taken off
of a list of persons to be invited to the event (and that who
have their handle collected in the event object), these
changes affect only the objects in the object database 20, and
have absolutely no affect on the underlying files in file
system 12. Similarly, for the pre-reading of files in the
collection, even if they are constantly being updated,
because the files themselves exist only in one place, the
updating occurs only to the files in one place in the file
System, and the updates have no effect on the object data
base. The overall effect is that the present invention facili
tates very low overhead of having to update a large number
of files even as a list of invitees are constantly changed or the
contents of the pre-reading files are constantly changed.

Another context in which the System of the present
invention finds great utility is the context of a university
having access to digitized course material, which could be
Stored as a Series of articles, each with a separate file, in file
System 12. If Professor A preparing a course would like to
create a collection of articles XYZ, while Professor B would
like to create a course packet of articles WXZ, each of the
files WXYZ need only exist in one place in file system 12.
Professor A and Professor B can then each create a
collection, referencing the objects of the Article he desires,
for access and/or printout. The practical advantage of main
taining each article WXYZ in one location in the file server
is that for royalty-paying purposes, the number of total
requests for printing out any particular article WXYZ can be
easily maintained regardless of who requests an article.
Further, if for example article Z is updated on a monthly
basis, the updates need address only one location in the file
system 12 and then would serve both professors.
Practical embodiment
The “heart” of the system of the present invention is

command utility 18. The overall function of command utility
18 is to implement the basic commands, Such as get, view,
add, etc., described above, which are operative on objects in
database 20. In one practical embodiment of the present
invention, these commands exist in command utility 18 as
Sets of instructions in the "Python” Scripting language,
which are automatically invoked through the Common Gate
way Interface (CGI) defined in the HTTP 1.0 standard. Use
of any programming language through the CGI, or any web
Server Specific interface, enable the commands to be embed
ded in a web server Such as http server 16.

Another important utility generally associated with com
mand utility 18 is what is known as a "session manager,
which is a short program which issues identification num
bers as handles are needed when objects are created. Various
ways of issuing new handles for various types of objects,
Such as counting upward for each type of object, or gener
ating random numbers, will be apparent.

Another kind of instruction generally associated with
command utility 18 is known as an “object database rou
tine.” These routines act as a bridge between the Simple
Strings of variables which are the objects as they are actually
stored, and a “window' by which an object and the prop
erties therein can be viewed on the Screen of a user, Such as
for editing.

Another utility associated with command utility 18 is a
"document manager.” The general function of the document

15

25

35

40

45

50

55

60

65

12
manager is to maintain control over multiple versions of the
“same” file or document kept in file system 12. The docu
ment manager issueS version numbers which are appended
to new files which are declared by a user to be a new version
of a previous file. The document manager issues to the new
version a handle identical to a previous version, and a
version number following thereon.

Finally, the present invention can readily be used in
conjunction with a Search engine which is operative on the
files in file system 12, and/or on the variables within objects
in database 20. The present invention enhances the useful
neSS of a Search engine, in that, if a Search engine is used to
locate certain important files in file System 12, the objects
associated with those files can be used to find related files via
the “parents” of the located files. Further, the objects of the
located files can be used to find other files which were
written or modified by the same author, or find events which
occurred or files which were created on the same day. Thus,
the present invention can help a perSon researching an issue
by overcoming the limitations of text-Searching.
Persistent handles to avoid stale web links
With particular attention to http (or internet) server 16, a

Significant attribute of a practical embodiment of the present
invention is that the shared-data environment exists “on the
web,” that is, is accessible through an internet protocol.
However, as can be seen in the relationship between http
server 16 and command utility 18, the “border of the
shared-data environment is marked by a conversion from
internet-style URLs to the handles which are exclusive to the
shared-data environment. In other words, a key function of
command utility 18 is to convert URLs which are generally
understandable on the internet to handles which are perma
nently associated with files in file System 12. This conver
Sion of URLS into handles marks a key practical advantage
of the present invention, namely the avoidance of “Stale
links' which are common, for example, in the maintenance
of internet websites.
A typical URL, which identifies a particular page acces

Sible through the internet, Specifies a hierarchical order
throughwhich a user must "click through' in order to access
the particular page. For example, a URL of a page describing
a price list as of January 1995 for the Xerox Corporation
may have the URL: www.xerox.com/pr/news/1995/january/
prices/index.html. It will be noted that the URL itself
(which, on the web, becomes the name of the file) specifies
a hierarchy of files within files in order for a user to reach
the desired price list. The practical problem occurs when the
website is altered or reorganized, and the necessary
Sequence of "clicks' to reach a particular page no longer
exists; it will then become much harder, or more non
intuitive, for a user to access a particular desired page. This
is generally referred to here as a “stale link.”
The System of the present invention can overcome the

“stale link' problem with respect to files which have been
stored in file system 12. For example, if the Xerox website,
containing therein the above-mentioned price list, is reor
ganized by the Xerox Systems administrator or webmaster,
the Same price list previously reached through the above
URL could be reorganized to be at a different location. If, for
example, the webmaster reorganizes the Xerox website by
product and not by date, the new URL of the original
January 1995 price list may turn into something like
www.Xerox.com/products/prices/index.html. Typical inter
net browsing software provides a system of “bookmarks” by
which commonly-used or accessed files have there URLs
retained for quick reference; the problem occurs when the
URL, that is the location-based address, of a particular

Facebook's Exhibit No. 1005
Page 10

5,930,801
13

desired page is changed. Once the URL of a file is changed,
the original URL is now instantly useless, and further, it may
not always be possible for a user using an internet browser
to find the desired page in the reorganized website.

Referring again to FIG. 1, command utility 18 not only
assigns handles (that is, identification numbers to files which
could include web links) placed in file system 12, but also
in effect “renames' the original URL of a file, replacing the
original, location-based, “hierarchical” URL with a new
URL which is non-location-based and non-hierarchical, or in
other words location-independent. For example, the original
URL mentioned above, upon being filed in file system 12,
will be effectively renamed http://www.Xerox.com/get/file
0039, where “file-0039” in this example is just an arbitrary
handle number. In this new URL, it will be noticed that the
first part is simply the name of the world wide web server;
the Second part is a command, Such as described in detail
above; and the last part is the handle of the file placed in file
system 12. It is this new URL which is placed, for example,
(in the bookmark file or equivalent System, Such as a web
link) within the browser or other memory of a user 10 on
network 14. Thus, the next time a user 10 wants to access
that particular file, his browser will reference the file by the
new, non-hierarchical URL, and not the original URL, which
may eventually be made obsolete or “Stale” by a reorgani
Zation of the web page. In brief, users accessing files in file
System 12 refer to files not by a location-based, hierarchical
URL which can be made obsolete or stale, but rather by a
location-independent URL, incorporating only the handle of
the file desired. This handle-based URL, because it is not
location-based and does not refer to higher-level folders
which may disappear, will thus Survive any Subsequent
reorganization of the original Source of the data file.
Of course, if a user chooses to retain an original hierarchy

of internet folders, and retain one or more of the folders
within file system 12, the higher-level folders, (in the above
case, such as “pr.” “news,” “1995,” “January”) can be
retained as collections within file System 12, with each
Subsequent folder in the hierarchy being a child of the
previous. What is important is that the system of the present
invention provides the essential Step of renaming
hierarchical, location-based URLS with non-hierarchical,
location-independent URLs, which include only the handle
of the file or collection. This feature enables the system of
the present invention to overcome the “stale link' problem.

Because command utility 18 converts URLs to handles
which are permanently associated with each file, a change in
the hierarchy of "clicks” by which a user accesses a page and
a website will still be accessible. With a typical URL, as
noted above, the name of a file is indistinguishable from the
path through the hierarchy through which it is reached; with
the handle System of the present invention, a file can exist
independent of any hierarchy; indeed, as noted above, each
individual user can create his own hierarchy, or a file can
exist without any hierarchy at all.
Community maintenance

Another key feature of the present invention is the fact
that it can be “community maintained.” In practical terms,
the essence of being “community maintained' is that no
Super-user, Such as a System administrator, webmaster, or
other person with more than usual user privileges, is
required to “oversee' the entire System. Typically, Such as
with a website, a certain perSon or perSons designated as
“webmaster' will have special privileges as to letting certain
other users access all or portions of the website. With the
present invention, because each individual file defines its
own acceSS permissions, Security is carried out on a file-by
file basis, and no Such Super-user is needed.

15

25

35

40

45

50

55

60

65

14
When a person with no previous contact with the shared

data environment of the present invention first accesses http
server 16 through the internet, command utility 18 identifies
the user as being non-registered. If the user elects not to
register with the system, the command utility 18 will iden
tify this Strange user as merely a "guest'. AS mentioned
above, in order to have any access to restricted files within
file System 12, a guest must create an account with the
command utility 18. From the standpoint of “community
maintenance,” the important fact here is that a guest entering
the System creates an account on his own motion and does
not have to receive specific permission (for entering the
System as a whole) from any kind of human Super-user Such
as a webmaster or System administrator. The present inven
tion provides an automatic mechanism by which a user with
no previous contact with the System can merely request a
user Status, Such as by creating an account, and this account
creation is automatically generated by the System. With the
present invention, each individual file acts as its own System
administrator and controls what perSons have access to it.
This provision of security at the level of individual files, and
not at the level of the entire System, is another important
aspect of the “community maintenance' property of the
System of the present invention.
System Summary
The above-described System includes many features

which, although possibly available individually in other
shared-data Systems, act together within the System of the
present invention to yield an unusually flexible Service to its
users. Of the many features of the invention, the three most
significant are: 1) the conversion of network URLs to
location-independent handles; 2) the provision of unique
access rights for each object in the database, and therefore
to each file in the file system; and 3) the concept of
“community maintenance,” in which no single Super-user is
required to grant permission to a user who wants access to
any particular part of the System.

These three features of the present invention Synergize.
The fact that each file in the system retains its own indi
vidual access rights means that each individual file protects
itself and therefore no Super-user is required to act as a
gatekeeper to the entire System. The provision of unique
access rights attached to each file therefore facilitates the
“community maintenance' feature of having users register
themselves without causing a major Security breach. Further,
the concept that network, location-based URLS are con
verted to non-location-based URLS for files in the file
System, enables individual users to create their own hierar
chies for files in the filing System. Thus, if the original author
of a file (whether within file system 12 or elsewhere) sets up
a hierarchy of folders or files, once these files are placed in
file System 12, the non-location-based handle associated
with each file “frees” the file so that other users can place the
file in hierarchies of their own devising. The location
independent URL aspect of the present invention Synergizes
with the property of unique access rights for each file to
create a System whereby every user can organize whatever
data he can access to his own taste. In this way, the three
essential attributes of the System of the present invention
work together to create a System in which each user can
tailor a large quantity of information as the user requires.
While the invention has been described with reference to

the Structure disclosed, it is not confined to the details Set
forth, but is intended to cover Such modifications or changes
as may come within the Scope of the following claims.
We claim:
1. A method of managing a plurality of files Stored in an

electronic file System, comprising the Steps of:

Facebook's Exhibit No. 1005
Page 11

5,930,801
15

assigning to each file in the file System a unique identi
fication number;

assigning to a user with access to any file in the file System
a unique identification number;

providing an object database, the object database includ
ing therein an object associated with each file in the file
System, the object including the identification number
of the file and an identification number of a user having
access to the file;

providing a Software mechanism whereby each identifi
cation number assigned to a file is associated with a
location-independent URL,

converting a location-based URL of a file to a location
independent URL including an identification number
uSable by the Software mechanism; and

when a user enters a URL of a desired file, determining
the identification number of the desired file, determin
ing the identification number of the user, and consulting
the object associated with the desired file to determine
if the user has access to the file.

2. The method of claim 1, each user having associated
therewith a memory for retaining URLs, and further com
prising the Step of

15

16
causing a user to retain in memory a location-independent
URL for a file desired by the user.

3. The method of claim 1, an object in the object database
including identification numbers of a plurality of files.

4. The method of claim 1, further comprising the step of
providing a Software mechanism whereby a user can create
an object having an identification number of a file in the file
System.

5. The method of claim 4, further comprising the step of
providing a Software mechanism whereby any user having
an identification number assigned thereto can create an
object having an identification number of a file in the file
System.

6. The method of claim 1, further comprising the step of
providing a Software mechanism whereby a user can request
an identification number be assigned to him.

7. The method of claim 6, further comprising the step of,
when a user requests an identification number, generating
the identification number and appending the identification
number to a network address of the user.

Facebook's Exhibit No. 1005
Page 12

