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An expert system for design for robotic 
assembly 

C H I D A M B A R A M  M A N O H A R A N ,  H S U - P I N  ( B E N )  W A N G *  and 
A N D R E S  S O O M  

Department of Industrial Engineering, State University of New York at Buffalo, 342 Lawrence 
D. Bell Hall, Buffalo, NY 14260, USA 

In recent years, due to the various advantages associated with automation and robotics, much 
work has been done in developing robotic systems for assembly operations. Since part design 
plays a major role in assembly, this paper deals with the design of parts for ease of robotic 
assembly. Considerable knowledge is available in the form of design for robotic assembly 
rules. In addition, a large amount of data is required for decisions regarding suitability of parts 
for robotic assembly. The implementation of design for robotic assembly rules would be much 
easier with the help of an expert system, which would guide the designer toward choosing the 
design alternative that can best facilitate ease of assembly from a robotic point of view. 

To this end, a prototype expert system for design for robotic assembly is developed and 
presented in this paper. The expert system was implemented as a production system, which 
consists of rules and Object-Attribute-Value (O-A-V) triplets to represent domain know- 
ledge. In order to best utilize the domain specific knowledge, a state space search-based 
inference mechanism was employed. The implementation of the prototype system is 
illustrated with examples. 
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1. Introduction 

Product  assembly has been a major  area of interest in 
manufacturing industry. According to Riley (1982), 'For 
most American companies, assembly accounts for over half 
of all the direct costs involved in manufacturing. '  Because 
of overseas competit ion and the continually increasing cost 
of manual labor, the need to increase productivity is of 
extreme importance for many American companies to 
remain competitive. Since assembly is such an important 
part of manufacturing, it is desirable to optimize the 
assembly process wherever possible. 

A product  design determines its structure, method of 
assembly, number  of components,  components design, 
tolerances, etc. Assembly is thus fundamentally estab- 
lished during the design stage. Unfortunately,  the designer 
has traditionally taken little notice of assembly, but been 
preoccupied with achieving the desired product function. 

A product  is an assemblage of several number of parts. 
One reason a product may have to be divided into multiple 
components  is the need for components to have degrees of 
f reedom with respect to each other.  Most products require 
relative motion between parts to perform their required 
function. For  example, a piston in a cylinder must move 
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relative to the sleeve to perform its required function. 
Often products must be separated into components be- 
cause different materials are required. For  example, many 
electrical components require a conductor and an insulator 
to achieve their functional requirements. 

According to Boothroyd and Dewhurst (1983), the cost 
of assembling a product  is related to both the design of the 
product  and the assembly method used for its production. 
The lowest cost can be achieved by designing the product so 
that it can be economically assembled by the most 
appropriate assembly method. According to Payne, 

Mechanical assembly is so broad that it is difficult to provide a 
general solution for various applications. It involves many 
more variables than electronic assembly, which typically is a 
matter of mounting components on a fiat surface. In the 
electronics field, it is possible to develop some engineering 
approaches that can be applied in a variety of applications 
and by different users. The part presentation and orientation 
problem is probably a tougher challenge in mechanical 
assembly systems. 

Since assembly is a highly repetitive job, manual assem- 
bly tends to become tedious, tiring, monotonous and, over a 
period, inconsistent too, while on the other hand, robotic 
assembly has its own benefits: (1) consistency, (2) high 
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positioning repeatability, and (3) improved product de- 
sign. 

Unfortunately, a majority of the products that are 
assembled manually, cannot be assembled robotically. The 
human hand, which has approximately 22 degrees of 
freedom (Wood, 1985), is an ideal gripper and manipulator 
for assembly operations. Moreover, human beings have 
sensory capabilities (e.g. vision, force feedback and 
temperature sensing) to aid them in the assembly process. 
A robotic assembly machine, on the other hand, is highly 
limited in its capabilities. A typical robot has between 3 and 
6 degrees of freedom and limited mechanical force detec- 
tion and vision capabilities. Therefore, it is imperative to 
take into consideration the capabilities of the robotic 
assembly system while developing a product design. 

1.1. Related work in design for robotic assembly 

For many years, researchers in this field have tried to aid 
the designer and traditionally this has taken the form of a 
few general design rules to help in the two major areas of 
assembly: feeding and orienting components and construc- 
tion of assemblies. It is argued that these few general rules 
are likely to augment a designer's experience sufficiently to 
facilitate satisfactory design for automatic assembly. This 
view is reinforced through a survey reported by Schraft and 
Bassler (1984). It is clear that in order for the designer to 
solve the assembly problem, the designer needs access to a 
higher level of automatic knowhow than that available in 
these rules. 

The most productive and best known work in this field is 
that conducted by Boothroyd and Dewhurst (1983), who 
are considered the forefathers of design for assembly. The 
'Design for Assembly' system available in the form of a 
handbook and software, allows designers and manufactur- 
ing engineers to rate products or designs for ease of 
assembly and obtaining estimates of assembly costs. 

In practice, design for robotic assembly begins with the 
coding of the components in a product for handling and 
assembly process, and then if the coding indicates areas of 
difficulty, an attempt is made to redesign the components. 
However, while the designer can be trained to use the 
coding system satisfactorily, the large amount of coding 
and form filling can be tedious and time consuming even to 
an experienced analyst. For example, the analysis of the 
eight component assembly discussed by Boothroyd and 
Redford (1968) required over 100 entries on the work- 
sheet. 

Andreasen and colleagues (1983) propose methods to 
design components to simplify assembly operations while 
maintaining required part functions. While their work does 
a very good job of illustrating a variety of design principles, 
it does not present a cohesive methodology. 

The use of interactive computer programs for the 
analysis of components for manual and automatic assembly 

has been reported by Field and Russel (1980) and Booth- 
royd and Dewhurst (1983). In this work, computer prog- 
rams have been developed to semi-automate some aspects 
of the analysis procedure in the Design for Assembly 
handbook. The programs are 'hard-wired' to pose a series 
of questions to obtain the data required to perform the 
design analysis. Graphical displays were used to aid the 
designer in coding the components (Dewhurst and Booth- 
royd, 1983). 

A new methodology was developed by Wood (1985) to 
aid the design process from the initial conceptual stage. 
This system is more suitable for the synthesis of a new 
product rather than for analysis of a product that already 
exists. 

Most of the motivation for this work was drawn from the 
work done by Becker (1986) and Swift (1987) and extends 
to some of the concepts given therein. The ASSEX 
(ASSembly design EXpert) system has some shortcom- 
ings. A large amount of data input is required for the 
reasoning. The system should be capable of interacting 
effectively with the other components of a Computer 
Integrated Manufacturing System, like the design depart- 
ment, manufacturing department, etc. Also, there is still 
doubt over how knowledge about the parts is going to be 
represented. 

1.2. Research objectives 

Based on the above-mentioned problems, the objectives of 
this study are the following: 

(1) Study the feasibility of developing an expert system 
to facilitate the design for robotic assembly. 

(2) Develop an efficient way of representing the known 
knowledge. 

(3) Develop a control strategy or inference mechanism 
to work with the facts and rules. 

(4) Reduce the amount of data input by the user by 
trying to elicit geometric data about the parts directly from 
a CAD Post Processor file in conjunction with the KK3 
code [5]. 

(5) Develop a prototype expert system for design for 
robotic assembly. 

This paper is organized as follows. Section 2 reviews the 
methodology and the framework of the proposed system. 
Section 3 discusses about the actual implementation of the 
proposed Expert System along with an associated example. 
The implementation of the knowledge and inference 
engine is dealt with in detail. Section 4 concludes this study 
and points out some directions for future research. 

2. Methodology and framework of the system 

The main goal for the design for assembly, is to reduce the 
assembly costs of the product that is being considered for 
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Fig. 1. Flow chart of redesign analysis. 

redesign. This can be achieved by reducing the number of 
assembly operations and facilitating the assembly opera- 
tions by designing for ease of orientation, manipulation, 
alignment and insertion. 

Before attempting to develop an expert system, the 
procedure leading to a solution must be found. To aid this, 
the work of a human expert should be analyzed and his 
approach to finding a solution examined. This knowledge 
acquisition is the first and the most important step in 
developing an expert system. This knowledge about the 
domain can be elicited from experts in the field and the 
knowledge compiled in books, articles and other refer- 
ences. 

After discovering the method for finding a solution, the 
specification for the expert system must be compiled. The 
domain-specific knowledge must be represented in an 
efficient way. This presentation must store the rules and 
facts about the system. Once the knowledge is organized, 
an efficient mechanism to deal with the rules and facts has 
to be developed. 

The methodology of the system is shown as a flow chart 
in Fig. 1 and is described below. 

(1) Since this system is based on analysis and not for the 
purposes of synthesis, the basic input to the system is an 
already designed product which has to be assembled by a 
robot. The initial input to the system includes a part list, 
mating relationships, a CAD file describing the surfaces 

and features of the parts, assembly sequence and other 
related information. 

(2) While designing the parts, the capability of the 
assembly robot should also be taken into account. Since the 
capabilities may differ between robots, parts that can be 
assembled on one robot may not be suitable for another. 
Features of the robot such as accuracy, payload capacity, 
configuration, degree of freedom, gripper, etc. should be 
considered in redesign analysis. 

(3) During analysis, the expert commences by making 
hypotheses about improvements. The first consideration 
would be to figure out the necessity of a particular part in 
the product or to establish its function. As mentioned 
earlier, the component in question should serve one of the 
following purposes: 

(a) Relative motion. 
(b) Material difference. 
(c) Providing access for assembly or disassembly of 

parts already assembled. 

If not, this part is an ideal candidate for elimination. For 
instance, the third and fourth digits of KK3 code provide 
detailed material information and can serve as a basis for 
part necessity checking. In this section of the analysis, only 
main components are specified. Fastening elements are 
considered in a later stage. 

(4) The aim of this step is to ascertain how the parts are 
assembled and held in place. The capability of the robotic 
gripper will have an impact on some of the design features 
of the part. 

(5) After this, analysis is carried out with respect to 
other criteria such as ease of orienting, manipulating, 
inserting and alignment that could be avoided by redesign- 
ing the parts. 

(6) The interface between the components should also 
be taken into account while designing parts for assembly. 
This interface relationship along with the accuracy for 
locating parts with each other represents input by the user. 
Very fine accuracy requirements indicate potential pro- 
sitioning problems, which can typically be resolved by 
providing generous chamfers, tapers, etc. 

(7) At this stage, the actual fastening method is defined 
for all the parts. It is desirable to design parts that are 
self-fastening (e.g. compliant tabs or snap-fit parts) and do 
not require additional fastening elements. 

(8) The final step is to evaluate improvement of design 
in term of design efficiency. An estimate of the savings in 
the average assembly cycle time to produce the entire 
product is also provided along with the design efficiency. 

2.1. Part description 

The main focus of this system is a product and the parts that 
make up the product. For a redesign analysis, a compre- 
hensive description about current design is necessary. The 
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product in its entirety has to be described to the system or in 
other words, the system has to 'visualize' the parts. In most 
other systems, the user has to input a voluminous amount 
of data to describe the product to the system. 

In keeping up with the objectives of this study, an 
attempt has been made to reduce the amount of data input 
by the user. The ideal situation would be to do away 
completely with user interaction and directly interact with a 
CAD system. But technology at this point has not reached 
that degree of sophistication. To this effect, two methods 
have been employed to elicit geometric data directly from 
the KK3 code in conjunction with the output from a CAD 
post processor. 

2.1.1. KK3 code 

KK3 code is 21 digits long and spans the entire gamut of 
machined parts (Chang and Wysk, 1985). The KK3 code 
provides valuable information for design for assembly 
analysis: 

(1) The main part shape is critical to the part orienting 
and feeding. Common part shape (bracket, cylinder, pin, 
etc.) information is available from KK3 code. 

(2) Individual part features also play a vital role in part 
orienting and feeding analysis. These features are inferred 
from KK3 code. 

(3) A KK3 code contains part accuracy information 
which is necessary for design for assembly analysis. 

(4) Material information, which is available from a KK3 
code, is often used in checking part necessity. 

2.1.2. CAD post processor 

Because of its importance in CAD/CAM integration, the 
extraction of geometric features from a CAD data base has 
received considerable attention since the mid 1970s. Wang 
has attempted to extract complete geometric information 

Table 1. Data format of CAD postprocessor output. 

Field Description Data Type 

1 surface number integer 

2 surface type integer 

3 X_starLpt real 

4 Y_starLpt real 

5 X_end_pt real 

6 Y_end_pt real 

7 X_center_pt real 

8 Y_center_pt real 

9 radius real 

for symmetric rotational parts by recognizing all surface 
features (Wang and Chang, 1988). In this research, the 
authors make use of the output produced from the post 
processor of AIMSI (An Intelligent Machined Surfaces 
Identifier) (Wang, 1986). The format of the output file 
from the post processor is so designed that it includes most 
information necessary for later processing. Each drawing 
entity in the file occupies one record space and each record 
consists of nine data fields (see Table 1). 

Surface type includes external and internal longitudinal 
cylinders, external and internal vertical faces, taper, con- 
vex and concave arcs and thread (Wang, 1986). Thus, given 
a part drawing and its related database (KK3 code, CAD 
postprocessor output, etc.) the main task is to identify main 
part shape and the presence of certain part attributes which 
are necessary to provide redesign suggestions. 

2.2 State space search 

In order to provide a formal description of a problem, the 
following points have to be taken into consideration (Rich, 
1986): 

(1) Define a state space that contains all the possible 
configurations of the relevant objects. 

(2) Specify one state as the initial state, that describes 
possible situations from which the problem-solving process 
may start. 

(3) Specify one or more states asfinal states that would 
be acceptable as solutions to the problem. 

(4) Provide a set of rules that describe the actions 
available for moving from the initial to the final states. 

The problem can then be stated by using the rules in 
combination with an appropriate control strategy for 
controlling rule firing to move through the problem space 
until a goal (final) state is found. 

Every search process can be viewed as a traversal of a 
directed graph, in which each node represents a problem 
state and each arc represents a relationship rule between 
the states represented by the nodes it connects. This is 
shown in Fig. 2, where S and F represent the initial and the 
final states of the system, R1,R2 ,R3 , . . .Rn  are the 
connecting links in the state diagram and S1 ,$2 , . . . Sn  are 
the intermediate states of the decision-making process. 
This graph that must be searched could, in principle, be 
constructed in its entirety from the rules that define 
allowable moves in the problem space, hut in practice it is 
never done, since it is too large and most of it is never 
explored. 

Instead of first building the graph explicitly and then 
searching it, most search programs represent the graph 
inplicitly in the rules and generate explicitly only those 
parts that they wish to explore. It is important to keep in 
mind this distinction between implicit search graphs and 
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The condition part (premise) has to be true for the action 
(conclusion) to be taken. 

na 

Fig. 2. State space search. 

explicit search graphs that are actually constructed by the 
search program. 

2.3. Knowledge representation 

As a first step towards the development of the system, the 
knowledge representation scheme must be developed. This 
representation must be capable of storing the domain 
specific facts and rules. Furthermore, a representation of 
the product data has to be established. Once this is done, 
the control strategy can be implemented. 

Knowledge used in an Expert System is of the following 
two types: 

(1) Declarative knowledge- facts about objects, events 
and relations. 

(2) Procedural knowledge - rules which interact with 
the facts to derive inferences. 

An Object-Attribute-Value (O-A-V) structure is frame- 
like but differs in its handling of inheritance. In this system, 
facts are stored in a triplet, where attributes are character- 
istics of the object taking on a specific value. With O-A-V 
triplets, they work similar [o slots. O-A-V triplets can be 
used to represent both static and dynamic aspects of the 
knowledge base. 

The knowledge of this system is represented with 
production rules in the form 

IF conditions THEN actions 

2.4. Inference engine 

An inference mechansim of an expert system controls the 
sequence and application of the rules. The following are 
some of the important issues to be considered (Rich, 1986) 
in relation to the design of the inference structure: 

(1) search direction; 
(2) topology of search; 
(3) rule matching; 
(4) conflict resolution; and 
(5) search strategy 

2.4.1. Search direction 
The objective of a search procedure is to discover a path 
through a problem space from an initial configuration to a 
goal state. There are two directions in which such a search 
can proceed: 

(1) Forward chaining starts with the data and applies all 
the rules to the given data, until a solution is found or all the 
rules have been applied without any result. 

(2) Backward chaining tries to prove a goal by setting up 
subgoals and tries to establish all the facts needed to reach 
that goal. 

As redesign is based on analysis and applying rules to the 
available data to establish other facts, it is a data-driven 
problem. Since we have to provide suggestions based on 
certain facts, it is a forward chaining system. But, to 
provide these suggestions as our goal, we would have to 
prove other facts or set up sub-goals. Thus we use a 
combination of both forward and backward chaining to run 
through our rules and achieve our goal. This will become 
clear, once we talk about the actual implementation of the 
inference structure. 

2.4.2. Topology of search 
A simple way to implement any search strategy is as a tree 
traversal. Implementing such a tree traversal procedure is 
often simple and requires very little bookkeeping. Howev- 
er, this process often results in the same node being 
generated as part of several paths and so being processed 
more than once. Therefore, instead of traversing a search 
tree, traversal of a directed graph was employed. This 
graph differs from a tree in that several paths may come 
together at a node ('OR' graphs), which reduces the 
amount of effort that is spent exploring essentially the same 
path several times. 

2.4.3. Rule matching 
This stage of development is concerned with the scheme to 
extract rules for firing from the entire collection of produc- 
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tion rules. Sometimes, the problem of selecting applicable 
rules is greater than the simple problem of finding a way to 
ignore the bulk of the rules and go immediately to the 
appropriate ones. Most of the problem of rule matching is 
reduced by the way PROLOG uses the concept of unifica- 
tion, to match appropriate rules. Unification is a pattern- 
matching process, by which PROLOG tries to match a 
term against the facts or the antecedents of other rules in an 
effort to prove a goal. 

We also use the concept of pointers, that link different 
sets of rules. There is an inherent hierarchy built into the 
building of the rule graph which makes different sets of 
rules candidates to be applied at different stages of the 
system. 

2.4.4. Conflict resolution 

Typically, the result of the matching process would be a list 
of rules whose left sides match the current state. It is the job 
of the search method to decide upon the order of applica- 
tion of the rules. This phase of the matching process, called 
conflict resolution, is very difficult to establish. Thus, it is 
useful to incorporate some of that decision making into the 
matching process itself. 

The rule graph is built in such a way that we get over this 
problem to a certain extent, by having matching premises 
down the graph and conflicting premises across the graph. 
This would mean that we would not come across a situation 
where the search procedure would be confronted with 
multiple paths at a particular state. There would be one and 
only one candidate path or solution. If the system is unable 
to solve the problem, it would require input from the user 
to resolve the conflict. 

2.4.5. Search strategy 

Well-designed heuristic functions can play an important 
part in guiding a search process efficiently towards a 
solution. The more accurately the heuristic function esti- 
mates the true merits of each node in the search tree or 
graph, the more directed would be the solution process. 

The way our system is built warrants the use of depth- 
first algorithm for an effective search mechanism. This 
concept would become clear once we discuss the actual 
implementation of the system. 

2.5. Evaluation of design improvement 

The final stage of development focuses on the approach in 
which design improvement can be evaluated. Since cost 
information would be difficult to acquire, a close approx- 
imation would be to provide an estimate of the savings in 
the average assembly cycle time to produce a complete 
product or assembly. 

In the assembly analysis technique developed by Booth- 
royd and Dewhurst (1983), information is presented in the 
form of classification and data charts for robot assembly 

systems. For our study, we consider the single-station 
one-arm assembly system. In these charts, part placement, 
insertion or other required assembly operations are clas- 
sified according to difficulty. For each classification and 
depending on the difficulty of the operation, relative time 
factors are given which can be used to estimate assembly 
times. 

Typically, we would be able to infer two values, TP, the 
relative effective basic operation time, and TG, the relative 
time penalty for gripper or tool change. In their work, the 
basis for time estimates is the average time taken by the 
robot to move approximately 0.5 m, grasp the part, return 
and insert the part, where the motion is simple and no 
insertion problem exists. For a typical current generation 
robot, this process might take 3 s. However, if faster robots 
are available, the user can adopt a more suitable basic 
insertion time and all of the time estimates would change in 
direct proportion. 

Now, we use the following equation to calculate the 
assembly cycle time for the different parts: 

TA = TB(RP(TP + TR) + TG) 

where: 

TA = total operation time. 
TB = basic operation time. 
RP -- number of times the above operations are repeated. 
TP = relative effective basic operation time. 
TR = relative time penalty for final orientation of the part 

by the robot. 
TG = relative time penalty for a tool change. 

The assembly cycle time is calculated for each and every 
part in the product, before and after redesign. Along with 
the cycle times, the design efficiency of the product is also 
calculated using the following equations: 

EM = 3NM/TM 

where: 

EM = design efficiency. 
NM = theoretical minimum number of parts. 
TM = total assembly cycletime for the product. 

This equation assumes an 'ideal' time of 3 seconds for 
assembly of any part that is easy to orient and align. 

3. Implementation 

In the development of the proposed system, the main focus 
of interest is the knowledge representation scheme and the 
inference mechanism, rather than building the knowledge 
base. Given the scheme for representing the domain 
specific knowledge and the mechanism for manipulating 
this knowledge, the system is limited only by the scope of 
the knowledge base, which could be expanded at a later 
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stage. Once this is completed, the user interface, explana- 
tion mechanism and knowledge acquisition module can be 
incorporated. 

3.1. Knowledge representation 

The reasoning mechanism or control strategy is influenced 
by the representation of knowledge and data. As men- 
tioned earlier, knowledge can be divided into declarative 
(facts) and procedural (rules) knowledge. 

3.1.1. Static knowledge 
Declarative knowledge in the redesign domain is modeled 
as O-A-V triplets. These describe knowledge that do not 
change during a consultation session and are obtained 
initially. The following are some of the facts considered at 
the moment: 

Every robot's performance is bound by certain charac- 
teristics such as configuration, number of axes, accuracy, 
payload capacity and gripper capabilities. The characteris- 
tics of the robot reflect on the types of parts that can be 
assembled by it. Thus, facts about the robot are im- 
plemented as O-A-V triplets as shown below: 

robot(puma,configuration(articulate)). 
robot(puma,envelope(12,15,320,275,300)). 
robot(puma ,gripper(two_finger,air)). 
robot(puma,payload(30)). 
robot(puma,accuracy(0.03)). 

The configuration of an assembly robot is a spatial con- 
straint involving basic mechanical configuration, arm sizes, 
work envelope, gripper type, maximum payload, accuracy, 
etc. The spatial constraint is inferred from the O-A-V 
triplet in the database. 

Knowledge about the product and the parts that go to 
make up the product are also stored in the form of O-A-V 
triplets. Each part has several attributes and each attribute 
has an associated value. The name of a particular part is the 
object in this triplet. The following are some of the 
attributes being considered: part name, number of same 
parts, KK3 code, weight, mating parts, type of relation and 
accuracy, degree of symmetry and direction of insertion. 

Knowledge about a particular part would be represented 
as shown below: 

part(top_clamp,number(l)). 
part(top_clamp,wt(2.2)). 
part(top clamp,mating_parts([ 

(bolt,fit,0.03), 
(bracket,fit,0.03), 
�9 

Besides the above, as mentioned earlier, a CAD file 

describing the features of rotational parts is also used to 
describe a part. A preprocessor modifies the output of that 
file into a form suitable for our needs and stores the 
necessary information about the parts as follows (see 
Wang, 1986): 

surface(shaft,l,ext_face,4.1,4.5,4.1,5.2,_,_,_). 
surface(shaft ,2,cxt_cylinder,4.1,5.2,6.7,5.2,_,_,_). 

3.1.2. Procedural rules 
Procedural rules in this system are typically ease of 
assembly rules for design. The syntax of the rules is shown 
in Fig. 3. Using the modus ponens, the premise will imply 
the result, only if every condition in the premise is satisfied. 

The premise may consist of different conditions which 
are connected by logical conjunctions or disjunctions. A 
condition is formed by the presence or absence of an 
attribute of an object. The conditions are in the form of an 
object, attribute and a value where the object has an 
attribute which can take on a particular value. The action 
part consists of a list of conclusions or actions, which will be 
executed only if all the conditions in the premise are true. 

The rules are classified as to their field of application as 
follows: 

(1) rules for feature interpretation. 
(2) rules for checking parts with respect to robot capabi- 

lities. 
(3) rules for determining assembly cycle times. 
(4) rules for feeding, orienting, manipulating and in- 

serting. 

As mentioned early on in this paper, it is necessary to get 
information about a part such as taper, chamfer, internal 
diameter change, etc. to apply the redesign rules. Given 
the knowledge about the part in the form of all the surfaces 
making up the part, it is our task to interpret them to suit 
our requirements. 

PREMISE 

OBJECT 

Fig. 3. Rule syntax. 

j CONDITION J > 

[ AND ] / 

ACTIONS 

@ 

 A ,,BOTE  VALUE 

ICONCWS,O. I > 
I ASSERT,ON I ' /  
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A typical rule for identifying the presence of a chamfer 
might be stated as follows: 

(Part,chamfered) :-  
(Part,surface_l) = exLfaee, 
(Part,surface_2) = exLtaper, 
(surface_2,Y_end_pt) > (surface_2,Y_starLpt), 
(surface_2,X_end_pt) - (surface_2,X_starLpt) < 0.15. 

A typical rule for redesign suggestion after a part is 
checked with respect to robot capabilities is shown below: 

rule(wLpayload,more, 
[snggest("Breakup the part into multiple components, or 

consider change of material, or 
use another robot with larger payload.")]). 

Assembly cycle times are needed for the sake of evaluat- 
ing the proposed design. An example of such a rule is as 
follows: 

rule_n :- 
attrib(Part,added_secured(Y)), 
attrih(Part,resistance(N)), 
attrib(Part,std_gripper(Y)), 
attrib(Part ,hoiding~down(N)), 
attrih(Part ,self_aligning(Y)), 
assert(Part,basic_time(l)), 
assert(Part,gripper_time(O)). 

The above rule when interpreted, means that the basic time 
factor is 1 and gripper time factor is 0 for the above 
combination of conditions. Thus, for different combination 
of conditions, different times are obtained. 

The assembly cycle times obtained from the Design for 
Assembly is stored in the form of a binary tree as shown in 
Fig. 4 (Boothroyd and Dewhurst,  1983). Every node 

represents either some attribute of the part, such as 
direction of insertion, resistance to insertion or capabilities 
of the robot  such as standard gripper or not. Each node has 
two arcs leading to their successor nodes. Depending on 
the value a particular attribute takes, one or the other  arc is 
taken to traverse down to the next node. This process is 
continued until we encounter  a node that does not have any 
successor, where we get our cycle time for the particular 
part. 

Rules for ease of orienting and feeding are usually based 
on the main part shape (a and/3 symmetry of a part) and 
presence or absence of certain features or attributes in a 
part, such as chamfer,  taper, stepped hole, etc. These rules 
are again represented as productions but are implemented 
in the form of a directed graph. 

rule_c2 :-  
part(spring,num(l)), 
part(spring,end(open)), 
suggest("provide close ended spring"). 

rule_c2 :- 
part(spring,hum(I)), 
part(spring,diLpitcb(less)), 
suggest(' 'increase diameter or decrease pitch"). 

If the inference engine has to go through all the rules in 
the system every time, there is unnecessary instantation of 
the same predicates or conditions. To get over this 
problem, these rules were implemented in the form of a 
graph as depicted in Fig. 5. Here  again, each node 
represents a condition or an attribute of the part and the 
arcs represent the different values that it can take. Each arc 
is also associated with a suggestion list and an assertion list. 
The suggestion list is in the form of suggestion for redesign. 

STD GRIPPER 

HOLDING HOLDING 

1,0- 1.3,0 1.1,0 1.4,0 1,2 1.3,2 1.1,2 1.4,2 

& 

( 
[ ]  
& 

[ ]  
4,, 

Q CONDITIONS 

[~] SUGGESTIONS 

/ ~  ASSERTIONS 

Fig. 4. Binary tree. Fig. 5. Rule graph. 
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The assertions are basically facts about the parts that were 
inferred during the consultation and goes into the dynamic 
database for later use by the system. The assertions are 
necessary to help us deduce the cycle times for the 
redesigned parts. The following shows how a typical set of 
rules are implemented in the system: 

rule(fastener_type,screw, [assertx(both,"std gripper",no), 
assertx(both,"snap fit",no)],point). 

rule(point ,pilot ,[assertx(both,"self aligning",yes)] ,nil). 
rule(point,flat,[suggest("Use cone, pilot or oval point screw."), 

assertx(before,"self aligning",no), 
asserx(after,' 'self aligning",yes)],nil). 

The graph is so structured that conditions across the 
graph are conflicting and conditions down the graph are 
matching. As shown above, each node has a pointer to the 
next node or condition that has to be checked. The 
advantage of implementing the rules in this graph structure 
is that, once we visit the nodes down the graph, we would 
have provided all the related suggestions without repeated 
instantiation or checking of the same premises over and 
again. 

3.2. Inference engine 

Once the knowledge is implemented in the system, the 
actual application of production rules (rule firing) is 
controlled by the inference engine. The algorithm used by 
the engine to evaluate the different rules is as shown below: 

begin{infer} 
current node < - -  root node, 
while current node 4: terminating node, 
do 

determine value of attribute associated with current node, 
select arc matching that value, 
provide suggestions, if any 
make assertions, if any, 
traverse arc to next node, 
current node < - -  next node 

end do 
end while 
end{infer} 

The above algorithm is depicted in the form of a flow 
diagram as illustrated in Fig. 6. 

At the beginning, the inference structure starts evaluat- 
ing the first condition of the rule. It checks whether all 
necessary information for testing the premise is available. 
If not, the search module is invoked to gather the necessary 
information. Once the information is gathered, a check is 
made to see whether there are any matching premises. If 
there is any matching premise, the associated suggestions 
and assertions are made, if any. These assertions are used 
by the system in inferring new knowledge about a particu- 
lar part that was not evident at the beginning of the 
consultation. 

START ) 

CONSIDER THE I 
FIRST 

I CONDITION I 

NO 

GET 
INFORMATION 

NO 

STOP 

~,.INFORMATION 
AVAILABLE 

? 

MATCHING 
" PREMISES 

YES 

YES 

Fig. 6. Flow chart of the inference engine. 

CONSIDER THE 
NEXT 

I CONDITION 

~L 
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CHECK THE 
KK3 F LE 

 t,N o 
CHECK THE 

CAD F LE 

~ YES 

INFER VALUE 
FROM 

AVAILABLE 
RULES 

~ ASK THE 
USER 

Fig. 7. Flow chart of the search mechanism. 

Next, it will be examined to see whether there are more 
conditions to be evaluated. If so, the next condition will be 
considered for testing and the procedure is called recursive- 
ly. If there are no more conditions to be tested, the system 
gathers all the suggestions and exits. 

Once the search module is invoked by the inference 
mechanism as shown in Fig. 7, the module first infers the 
main part shape, a and fl symmetry, weight, accuracy, 
material, etc. based on KK3 code and postprocessed CAD 
data. It then checks whether the value of part attributes 
(taper, slot, etc.) could be inferred from the KK3 code of 
the particular part. If so, it would check the KK3 code and 
return with the value of the attribute. If not, a check is 
made to see whether the value could be got from the CAD 
postprocessor file. Next the system checks to see whether 
any rules are present, that could possibly lead to the 
answer. Both design for assembly rules (a and/3 symmetry) 
and feature identification rules (attributes) are employed. 

The concept of backtracking is used to deduce the value 
of the attributes from other rules. If the system is unsuc- 
cessful in deducing the value from the available rules, it 
comes back to the user for the value. Thus the user is not 

posed with unnecessary questions which could have been 
inferred by the system in the first place. At present the 
system does not handle uncertainty, but can be incorpo- 
rated at a later stage. 

At present, the knowledge acquisition module, explana- 
tion mechanism and the user interface modules are in a 
very nascent stage. But, since building expert systems is an 
incremental process, these modules can be built upon the 
existing framework of the system at a later stage. 

3.3. Example and discussion 

The redesign methodology for a product will be illustrated 
by the assembly of a ball bearing journal bracket for a 
ceiling fan, shown in Fig. 8. The bracket was originally 
designed to take two clamps between which the bearing 
was held. 

Now, considering the present product, there might be 
scope for eliminating parts. One of the clamps appears to 
be redundant, because, the clamp and the bearing bracket 
need not be of different material, they need never move 
relative to each other and they need never be taken apart. 
Therefore, the top clamp and the bracket are combined, so 
that the operations of machining the clamp and screwing it 
on the bracket are eliminated. While one of the clamps is 
eliminated, the other clamp is necessary, since the clamp 
has to be taken apart to fit the bracket with the ball bearing 
which is standard and has to be of a different material than 
the bracket. 

2 
7 _~I___ 3 

6 
s 

I -  D zl; 
P - -  --II 
I 4 I 

- 

L _ _ I  
F ~ - I  

1 BOLT 

2 TOP CLAHP 
3 BEARING BRACKET 
4 BEARING 
5 BOTTGN CLAHP 
6 NUT 

3 4 ~ __ r-I 

f BEARIN6 BRACKET 
2 BEARING 
3 BOTTOH CLAHP 
4 SCRE~ 

Fig. 8. Component design. 
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Initially, the above parts are held together by a bolt and 
nut assembly. Usually, parts whose only function is to 
fasten other parts are potentially redundant. The best 
situation would be totally to eliminate the nut and bolt 
assembly and provide snap-on or push-fit parts, but since 
there is a shaft which is going to have relative motion with 
respect to the above parts, the force exerted might be too 
high for a snap-fit part to handle. 

Thus, the next best alternative would be to provide for a 
one-handed adjustment, by having screw connections 
instead of a bolt and nut assembly. Considering that screws 
were used to fasten the parts together, the next step would 
be to design the right screw point for ease of assembly. 
Screws should be provided with cone or oval points so that 
it is easy to locate and align. 

Once the product has been examined for the necessity of 
each part, we get a theoretical minimum number of three 
parts, the bracket, bearing and clamp, with three screws to 
connect these parts together. Now these parts have to be 
analyzed to discover whether problems would arise during 
feeding, orienting, manipulating or inserting the parts. 

1 
REDESIGN 

I 

I 
, \ 

DESIGN 

/ 

Fig. 9. Providing flats to aid in orientation. 

One of the prime objectives was to provide for stacked or 
layered assembly and to reduce the number of directions of 
insertion. Originally, the parts have to be either inserted 
horizontally or the whole product has to flipped over, to 
connect them together with the bolt and nut. In the 
redesigned product, the parts can be inserted along the 
vertical direction, starting with the integrated bracket and 
then the rest of the parts can be stacked on in the vertical 
direction from the top. 

Further examination shows that the clamp is easy to 
handle, but a little difficult to assemble. It seems likely that 
the orientation of the clamp will cause problems, since the 
clamp is asymmetrical about its plane of orientation. It 
would be best to make the clamp symmetrical, by providing 
a fourth screw hole, but that is going to increase the number 
of parts, which is undesirable. The next best alternative 
would be to aid orientation by providing tabs or fiats as 
shown in Fig. 9. This would reduce the number of possible 
orientations of the part. Furthermore, it is best to eliminate 
sharp corners, by providing generous tapers and chamfers 
on the mating parts, which would aid in the insertion 
process. 

The redesign analysis is shown in Table 2 and Table 3. 
Thus, the output from the program lists all the parts in the 
new design along with their individual assembly cycle 
times. The total number of parts along with the total 
assembly cycle time is also provided. The total estimated 
assembly cycle time for the new design is 31.5 seconds. As 
before, the theoretical minimum number of parts is six as 
compared to ten in the original design. This gives a design 
efficiency of 57 per cent and a saving in time over the 
original of 23.4 seconds. 

4. Concluding remarks 

Since assembly operations account for more than half the 
production cost for a particular product, there has been an 
increased interest in the field of assembly automation. The 
area of design for assembly deserves due attention, because 
of the impact it has, over the overall operating costs of a 
manufacturing plant. 

Since the product is the key to efficiency of the assembly 
system, it is important that the design of the product is in 
sympathy with automated assembly practices and philo- 
sophies. To this effect, rules were developed to advise the 
designers on how to improve the 'assemblability' of a 
product, but are often overlooked. It was clear therefore, 
that in order for the designer to solve the assembly 
problem, the designer needs access to a higher level of 
automatic knowhow than that available in these rules. 

Moreover, most knowledge in this domain existed as 
rules-of-thumb and as acquired experience. One solution 
to code this knowledge into the computer, was to use the 
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Table 2: Analysis before redesign 

Part No. Cycle time(sec) 

Top clamp 1 6.0 

Bracket 1 6.0 

Bottom clamp 1 6.0 

Bearing 1 2.4 

Bolt 3 19.5 

Nut 3 15.0 

Total assembly cycle time 
Total number of parts 
Design efficiency 

54.9 
10 
0.33 

Table 3: Analysis after redesign 

Part No. Cycle time(sec) 

Bracket 1 4.8 

Bottom clamp 1 4.8 

Bearing 1 2.4 

Screw 3 19.5 

Total assembly cycle time 
Total number of parts 
Design efficiency 

31.5 
6 
0.57 

concept of expert systems, an emerging technology that is 
making its impact felt in almost every facet of modern life. 

In keeping up with the objectives of this research, this 
system was developed, and it shows that the principle of an 
expert system can be applied to the domain of redesign for 
ease of assembly. An attempt was made at eliciting 
geometric data about the parts, directly from a CAD post 
processor, in conjunction with the KK3 code. Although, at 
present, the above concept works only for rotational 
symmetric parts, an attempt was made to show how this 
system can be integrated directly with a CAD system. 

The concept of O-A-V triplets were used to represent 
most of the domain specific knowledge. The whole expert 
system was implemented as a production system, which 
consists of rules or productions to represent relationships in 
terms of condition-action pairs. O-A-V triplets could be 
used to represent, both static and dynamic aspects of the 
knowledge base. 

The main focal point of this study was to develop an 
effective control strategy or inference mechanism, to work 
with the facts and rules. The problem-solving process was 
structured as a search through a state space. A simple way 
to implement any search strategy is as a tree traversal. 

However, this process often results in the same node being 
node generated as part of several paths. Thus, a directed 
graph was used to implement the rules. Treating the search 
process as a graph search rather than as a tree search, 
reduces the amount of effort that is spent exploring 
essentially the same path several times. 

One of the goals of this system was to produce a design 
with a minimum number of parts and to minimize the total 
assembly cycle time for the product. In the previous 
section, the redesign of a bearing bracket journal clamp 
was discussed in detail. In keeping up with the objectives of 
the system, the theoretical minimum number of parts was 
reduced from ten to six. All of the aforementioned design 
principles were incorporated in the redesign of the product. 
The total assembly cycle time of the product was also 
reduced considerably. 

In conclusion, the redesigned product suggested by the 
system is good from a robotic assembly viewpoint. Howev- 
er, other factors such as manufacturability, cost, etc. 
should also be taken into account, in order to get a viable 
product design. 

4.1.  Future directions 

Although this research has considered many aspects of the 
problem of integrating AI with the domain of redesign, 
there is still a whole range of avenues, yet to be explored. 
This section briefly reviews some of these ideas, in the hope 
that they may trigger future research in this area. 

In this research, the redesign of a journal bearing clamp 
assembly was considered. The first step in improving the 
performance of the system is to enlarge its knowledge base, 
to encompass a wider variety of products and parts. 

Considerable improvement can be made in the field of 
knowledge acquisition. Since technology is always chang- 
ing, constant changes take place in the domain-specific 
knowledge and the knowledge base has to be either 
updated or modified. Thus, an efficient way of updating the 
stored knowledge base is called for. 

Two other modules that require consideration are the 
explanation module and the user interface. Since a large 
amount of interaction takes place between the system and 
the user, the system has to be user friendly. The system 
should be able to explain its line of reasoning at any time. 
Since a lot of uncertainty is bound to be involved in the user 
responses, the system should be able to incorporate 
uncertainty in its reasoning. 

One other way to improve the user interface is to provide 
graphical output in the form of the drawing of the 
redesigned product. This can be achieved by integrating 
the system with a CAD system, so that a common database 
could be accessed by both the systems. For this research, 
knowledge about parts was extracted from a CAD post 
processor, but only rotational parts were considered. A 
more comprehensive CAD post processor should be avail- 
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able so that other parts, like prismatic parts, could also be 
considered. 

In relation to the above premise, the KK3 code was used 
to describe the parts. KK3 code is basically a machining 
code, which classifies parts according to their machining 
features. A comprehensive code, solely for the purpose of 
grouping parts with respect to their ease of assembly, is yet 
to be developed. Once this is done, much of the data input 
would be reduced to a great extent. 
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