
Journal o f lnteUigent Manufacturing (1990) 1, 17-29

An expert system for design for robotic
assembly

C H I D A M B A R A M M A N O H A R A N , H S U - P I N (B E N) W A N G * and
A N D R E S S O O M

Department of Industrial Engineering, State University of New York at Buffalo, 342 Lawrence
D. Bell Hall, Buffalo, NY 14260, USA

In recent years, due to the various advantages associated with automation and robotics, much
work has been done in developing robotic systems for assembly operations. Since part design
plays a major role in assembly, this paper deals with the design of parts for ease of robotic
assembly. Considerable knowledge is available in the form of design for robotic assembly
rules. In addition, a large amount of data is required for decisions regarding suitability of parts
for robotic assembly. The implementation of design for robotic assembly rules would be much
easier with the help of an expert system, which would guide the designer toward choosing the
design alternative that can best facilitate ease of assembly from a robotic point of view.

To this end, a prototype expert system for design for robotic assembly is developed and
presented in this paper. The expert system was implemented as a production system, which
consists of rules and Object-Attribute-Value (O-A-V) triplets to represent domain know-
ledge. In order to best utilize the domain specific knowledge, a state space search-based
inference mechanism was employed. The implementation of the prototype system is
illustrated with examples.

Keywords: Robotic assembly, expert systems

1. Introduction

Product assembly has been a major area of interest in
manufacturing industry. According to Riley (1982), 'For
most American companies, assembly accounts for over half
of all the direct costs involved in manufacturing. ' Because
of overseas competit ion and the continually increasing cost
of manual labor, the need to increase productivity is of
extreme importance for many American companies to
remain competitive. Since assembly is such an important
part of manufacturing, it is desirable to optimize the
assembly process wherever possible.

A product design determines its structure, method of
assembly, number of components, components design,
tolerances, etc. Assembly is thus fundamentally estab-
lished during the design stage. Unfortunately, the designer
has traditionally taken little notice of assembly, but been
preoccupied with achieving the desired product function.

A product is an assemblage of several number of parts.
One reason a product may have to be divided into multiple
components is the need for components to have degrees of
f reedom with respect to each other. Most products require
relative motion between parts to perform their required
function. For example, a piston in a cylinder must move

*To whom correspondence should be addressed.

0953-9875/90 $03.00 +. 12 (~) 1990 Chapman and Hall Ltd.

relative to the sleeve to perform its required function.
Often products must be separated into components be-
cause different materials are required. For example, many
electrical components require a conductor and an insulator
to achieve their functional requirements.

According to Boothroyd and Dewhurst (1983), the cost
of assembling a product is related to both the design of the
product and the assembly method used for its production.
The lowest cost can be achieved by designing the product so
that it can be economically assembled by the most
appropriate assembly method. According to Payne,

Mechanical assembly is so broad that it is difficult to provide a
general solution for various applications. It involves many
more variables than electronic assembly, which typically is a
matter of mounting components on a fiat surface. In the
electronics field, it is possible to develop some engineering
approaches that can be applied in a variety of applications
and by different users. The part presentation and orientation
problem is probably a tougher challenge in mechanical
assembly systems.

Since assembly is a highly repetitive job, manual assem-
bly tends to become tedious, tiring, monotonous and, over a
period, inconsistent too, while on the other hand, robotic
assembly has its own benefits: (1) consistency, (2) high

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 1 of 13

18 Manoharan, Wang and Soom

positioning repeatability, and (3) improved product de-
sign.

Unfortunately, a majority of the products that are
assembled manually, cannot be assembled robotically. The
human hand, which has approximately 22 degrees of
freedom (Wood, 1985), is an ideal gripper and manipulator
for assembly operations. Moreover, human beings have
sensory capabilities (e.g. vision, force feedback and
temperature sensing) to aid them in the assembly process.
A robotic assembly machine, on the other hand, is highly
limited in its capabilities. A typical robot has between 3 and
6 degrees of freedom and limited mechanical force detec-
tion and vision capabilities. Therefore, it is imperative to
take into consideration the capabilities of the robotic
assembly system while developing a product design.

1.1. Related work in design for robotic assembly

For many years, researchers in this field have tried to aid
the designer and traditionally this has taken the form of a
few general design rules to help in the two major areas of
assembly: feeding and orienting components and construc-
tion of assemblies. It is argued that these few general rules
are likely to augment a designer's experience sufficiently to
facilitate satisfactory design for automatic assembly. This
view is reinforced through a survey reported by Schraft and
Bassler (1984). It is clear that in order for the designer to
solve the assembly problem, the designer needs access to a
higher level of automatic knowhow than that available in
these rules.

The most productive and best known work in this field is
that conducted by Boothroyd and Dewhurst (1983), who
are considered the forefathers of design for assembly. The
'Design for Assembly' system available in the form of a
handbook and software, allows designers and manufactur-
ing engineers to rate products or designs for ease of
assembly and obtaining estimates of assembly costs.

In practice, design for robotic assembly begins with the
coding of the components in a product for handling and
assembly process, and then if the coding indicates areas of
difficulty, an attempt is made to redesign the components.
However, while the designer can be trained to use the
coding system satisfactorily, the large amount of coding
and form filling can be tedious and time consuming even to
an experienced analyst. For example, the analysis of the
eight component assembly discussed by Boothroyd and
Redford (1968) required over 100 entries on the work-
sheet.

Andreasen and colleagues (1983) propose methods to
design components to simplify assembly operations while
maintaining required part functions. While their work does
a very good job of illustrating a variety of design principles,
it does not present a cohesive methodology.

The use of interactive computer programs for the
analysis of components for manual and automatic assembly

has been reported by Field and Russel (1980) and Booth-
royd and Dewhurst (1983). In this work, computer prog-
rams have been developed to semi-automate some aspects
of the analysis procedure in the Design for Assembly
handbook. The programs are 'hard-wired' to pose a series
of questions to obtain the data required to perform the
design analysis. Graphical displays were used to aid the
designer in coding the components (Dewhurst and Booth-
royd, 1983).

A new methodology was developed by Wood (1985) to
aid the design process from the initial conceptual stage.
This system is more suitable for the synthesis of a new
product rather than for analysis of a product that already
exists.

Most of the motivation for this work was drawn from the
work done by Becker (1986) and Swift (1987) and extends
to some of the concepts given therein. The ASSEX
(ASSembly design EXpert) system has some shortcom-
ings. A large amount of data input is required for the
reasoning. The system should be capable of interacting
effectively with the other components of a Computer
Integrated Manufacturing System, like the design depart-
ment, manufacturing department, etc. Also, there is still
doubt over how knowledge about the parts is going to be
represented.

1.2. Research objectives

Based on the above-mentioned problems, the objectives of
this study are the following:

(1) Study the feasibility of developing an expert system
to facilitate the design for robotic assembly.

(2) Develop an efficient way of representing the known
knowledge.

(3) Develop a control strategy or inference mechanism
to work with the facts and rules.

(4) Reduce the amount of data input by the user by
trying to elicit geometric data about the parts directly from
a CAD Post Processor file in conjunction with the KK3
code [5].

(5) Develop a prototype expert system for design for
robotic assembly.

This paper is organized as follows. Section 2 reviews the
methodology and the framework of the proposed system.
Section 3 discusses about the actual implementation of the
proposed Expert System along with an associated example.
The implementation of the knowledge and inference
engine is dealt with in detail. Section 4 concludes this study
and points out some directions for future research.

2. Methodology and framework of the system

The main goal for the design for assembly, is to reduce the
assembly costs of the product that is being considered for

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 2 of 13

An expert system for design for robotic assembly 19

Initial I
Input

Check Necessity of
Parts:
+ Relative Motion
+ Different Material
+ Ease of Assembly

or Disassembly

+
Part Analysis
Considering

Robot
Capabilities

Redesign
Analysis

$
Evaluation of

Design Improvement

Output

Fig. 1. Flow chart of redesign analysis.

redesign. This can be achieved by reducing the number of
assembly operations and facilitating the assembly opera-
tions by designing for ease of orientation, manipulation,
alignment and insertion.

Before attempting to develop an expert system, the
procedure leading to a solution must be found. To aid this,
the work of a human expert should be analyzed and his
approach to finding a solution examined. This knowledge
acquisition is the first and the most important step in
developing an expert system. This knowledge about the
domain can be elicited from experts in the field and the
knowledge compiled in books, articles and other refer-
ences.

After discovering the method for finding a solution, the
specification for the expert system must be compiled. The
domain-specific knowledge must be represented in an
efficient way. This presentation must store the rules and
facts about the system. Once the knowledge is organized,
an efficient mechanism to deal with the rules and facts has
to be developed.

The methodology of the system is shown as a flow chart
in Fig. 1 and is described below.

(1) Since this system is based on analysis and not for the
purposes of synthesis, the basic input to the system is an
already designed product which has to be assembled by a
robot. The initial input to the system includes a part list,
mating relationships, a CAD file describing the surfaces

and features of the parts, assembly sequence and other
related information.

(2) While designing the parts, the capability of the
assembly robot should also be taken into account. Since the
capabilities may differ between robots, parts that can be
assembled on one robot may not be suitable for another.
Features of the robot such as accuracy, payload capacity,
configuration, degree of freedom, gripper, etc. should be
considered in redesign analysis.

(3) During analysis, the expert commences by making
hypotheses about improvements. The first consideration
would be to figure out the necessity of a particular part in
the product or to establish its function. As mentioned
earlier, the component in question should serve one of the
following purposes:

(a) Relative motion.
(b) Material difference.
(c) Providing access for assembly or disassembly of

parts already assembled.

If not, this part is an ideal candidate for elimination. For
instance, the third and fourth digits of KK3 code provide
detailed material information and can serve as a basis for
part necessity checking. In this section of the analysis, only
main components are specified. Fastening elements are
considered in a later stage.

(4) The aim of this step is to ascertain how the parts are
assembled and held in place. The capability of the robotic
gripper will have an impact on some of the design features
of the part.

(5) After this, analysis is carried out with respect to
other criteria such as ease of orienting, manipulating,
inserting and alignment that could be avoided by redesign-
ing the parts.

(6) The interface between the components should also
be taken into account while designing parts for assembly.
This interface relationship along with the accuracy for
locating parts with each other represents input by the user.
Very fine accuracy requirements indicate potential pro-
sitioning problems, which can typically be resolved by
providing generous chamfers, tapers, etc.

(7) At this stage, the actual fastening method is defined
for all the parts. It is desirable to design parts that are
self-fastening (e.g. compliant tabs or snap-fit parts) and do
not require additional fastening elements.

(8) The final step is to evaluate improvement of design
in term of design efficiency. An estimate of the savings in
the average assembly cycle time to produce the entire
product is also provided along with the design efficiency.

2.1. Part description

The main focus of this system is a product and the parts that
make up the product. For a redesign analysis, a compre-
hensive description about current design is necessary. The

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 3 of 13

20 Manoharan, Wang and Soom

product in its entirety has to be described to the system or in
other words, the system has to 'visualize' the parts. In most
other systems, the user has to input a voluminous amount
of data to describe the product to the system.

In keeping up with the objectives of this study, an
attempt has been made to reduce the amount of data input
by the user. The ideal situation would be to do away
completely with user interaction and directly interact with a
CAD system. But technology at this point has not reached
that degree of sophistication. To this effect, two methods
have been employed to elicit geometric data directly from
the KK3 code in conjunction with the output from a CAD
post processor.

2.1.1. KK3 code

KK3 code is 21 digits long and spans the entire gamut of
machined parts (Chang and Wysk, 1985). The KK3 code
provides valuable information for design for assembly
analysis:

(1) The main part shape is critical to the part orienting
and feeding. Common part shape (bracket, cylinder, pin,
etc.) information is available from KK3 code.

(2) Individual part features also play a vital role in part
orienting and feeding analysis. These features are inferred
from KK3 code.

(3) A KK3 code contains part accuracy information
which is necessary for design for assembly analysis.

(4) Material information, which is available from a KK3
code, is often used in checking part necessity.

2.1.2. CAD post processor

Because of its importance in CAD/CAM integration, the
extraction of geometric features from a CAD data base has
received considerable attention since the mid 1970s. Wang
has attempted to extract complete geometric information

Table 1. Data format of CAD postprocessor output.

Field Description Data Type

1 surface number integer

2 surface type integer

3 X_starLpt real

4 Y_starLpt real

5 X_end_pt real

6 Y_end_pt real

7 X_center_pt real

8 Y_center_pt real

9 radius real

for symmetric rotational parts by recognizing all surface
features (Wang and Chang, 1988). In this research, the
authors make use of the output produced from the post
processor of AIMSI (An Intelligent Machined Surfaces
Identifier) (Wang, 1986). The format of the output file
from the post processor is so designed that it includes most
information necessary for later processing. Each drawing
entity in the file occupies one record space and each record
consists of nine data fields (see Table 1).

Surface type includes external and internal longitudinal
cylinders, external and internal vertical faces, taper, con-
vex and concave arcs and thread (Wang, 1986). Thus, given
a part drawing and its related database (KK3 code, CAD
postprocessor output, etc.) the main task is to identify main
part shape and the presence of certain part attributes which
are necessary to provide redesign suggestions.

2.2 State space search

In order to provide a formal description of a problem, the
following points have to be taken into consideration (Rich,
1986):

(1) Define a state space that contains all the possible
configurations of the relevant objects.

(2) Specify one state as the initial state, that describes
possible situations from which the problem-solving process
may start.

(3) Specify one or more states asfinal states that would
be acceptable as solutions to the problem.

(4) Provide a set of rules that describe the actions
available for moving from the initial to the final states.

The problem can then be stated by using the rules in
combination with an appropriate control strategy for
controlling rule firing to move through the problem space
until a goal (final) state is found.

Every search process can be viewed as a traversal of a
directed graph, in which each node represents a problem
state and each arc represents a relationship rule between
the states represented by the nodes it connects. This is
shown in Fig. 2, where S and F represent the initial and the
final states of the system, R1,R2 ,R3 , . . .Rn are the
connecting links in the state diagram and S1 ,$2 , . . . Sn are
the intermediate states of the decision-making process.
This graph that must be searched could, in principle, be
constructed in its entirety from the rules that define
allowable moves in the problem space, hut in practice it is
never done, since it is too large and most of it is never
explored.

Instead of first building the graph explicitly and then
searching it, most search programs represent the graph
inplicitly in the rules and generate explicitly only those
parts that they wish to explore. It is important to keep in
mind this distinction between implicit search graphs and

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 4 of 13

An expert system for design for robotic assembly 21

The condition part (premise) has to be true for the action
(conclusion) to be taken.

na

Fig. 2. State space search.

explicit search graphs that are actually constructed by the
search program.

2.3. Knowledge representation

As a first step towards the development of the system, the
knowledge representation scheme must be developed. This
representation must be capable of storing the domain
specific facts and rules. Furthermore, a representation of
the product data has to be established. Once this is done,
the control strategy can be implemented.

Knowledge used in an Expert System is of the following
two types:

(1) Declarative knowledge- facts about objects, events
and relations.

(2) Procedural knowledge - rules which interact with
the facts to derive inferences.

An Object-Attribute-Value (O-A-V) structure is frame-
like but differs in its handling of inheritance. In this system,
facts are stored in a triplet, where attributes are character-
istics of the object taking on a specific value. With O-A-V
triplets, they work similar [o slots. O-A-V triplets can be
used to represent both static and dynamic aspects of the
knowledge base.

The knowledge of this system is represented with
production rules in the form

IF conditions THEN actions

2.4. Inference engine

An inference mechansim of an expert system controls the
sequence and application of the rules. The following are
some of the important issues to be considered (Rich, 1986)
in relation to the design of the inference structure:

(1) search direction;
(2) topology of search;
(3) rule matching;
(4) conflict resolution; and
(5) search strategy

2.4.1. Search direction
The objective of a search procedure is to discover a path
through a problem space from an initial configuration to a
goal state. There are two directions in which such a search
can proceed:

(1) Forward chaining starts with the data and applies all
the rules to the given data, until a solution is found or all the
rules have been applied without any result.

(2) Backward chaining tries to prove a goal by setting up
subgoals and tries to establish all the facts needed to reach
that goal.

As redesign is based on analysis and applying rules to the
available data to establish other facts, it is a data-driven
problem. Since we have to provide suggestions based on
certain facts, it is a forward chaining system. But, to
provide these suggestions as our goal, we would have to
prove other facts or set up sub-goals. Thus we use a
combination of both forward and backward chaining to run
through our rules and achieve our goal. This will become
clear, once we talk about the actual implementation of the
inference structure.

2.4.2. Topology of search
A simple way to implement any search strategy is as a tree
traversal. Implementing such a tree traversal procedure is
often simple and requires very little bookkeeping. Howev-
er, this process often results in the same node being
generated as part of several paths and so being processed
more than once. Therefore, instead of traversing a search
tree, traversal of a directed graph was employed. This
graph differs from a tree in that several paths may come
together at a node ('OR' graphs), which reduces the
amount of effort that is spent exploring essentially the same
path several times.

2.4.3. Rule matching
This stage of development is concerned with the scheme to
extract rules for firing from the entire collection of produc-

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 5 of 13

22 Manoharan, Wang and Soom

tion rules. Sometimes, the problem of selecting applicable
rules is greater than the simple problem of finding a way to
ignore the bulk of the rules and go immediately to the
appropriate ones. Most of the problem of rule matching is
reduced by the way PROLOG uses the concept of unifica-
tion, to match appropriate rules. Unification is a pattern-
matching process, by which PROLOG tries to match a
term against the facts or the antecedents of other rules in an
effort to prove a goal.

We also use the concept of pointers, that link different
sets of rules. There is an inherent hierarchy built into the
building of the rule graph which makes different sets of
rules candidates to be applied at different stages of the
system.

2.4.4. Conflict resolution

Typically, the result of the matching process would be a list
of rules whose left sides match the current state. It is the job
of the search method to decide upon the order of applica-
tion of the rules. This phase of the matching process, called
conflict resolution, is very difficult to establish. Thus, it is
useful to incorporate some of that decision making into the
matching process itself.

The rule graph is built in such a way that we get over this
problem to a certain extent, by having matching premises
down the graph and conflicting premises across the graph.
This would mean that we would not come across a situation
where the search procedure would be confronted with
multiple paths at a particular state. There would be one and
only one candidate path or solution. If the system is unable
to solve the problem, it would require input from the user
to resolve the conflict.

2.4.5. Search strategy

Well-designed heuristic functions can play an important
part in guiding a search process efficiently towards a
solution. The more accurately the heuristic function esti-
mates the true merits of each node in the search tree or
graph, the more directed would be the solution process.

The way our system is built warrants the use of depth-
first algorithm for an effective search mechanism. This
concept would become clear once we discuss the actual
implementation of the system.

2.5. Evaluation of design improvement

The final stage of development focuses on the approach in
which design improvement can be evaluated. Since cost
information would be difficult to acquire, a close approx-
imation would be to provide an estimate of the savings in
the average assembly cycle time to produce a complete
product or assembly.

In the assembly analysis technique developed by Booth-
royd and Dewhurst (1983), information is presented in the
form of classification and data charts for robot assembly

systems. For our study, we consider the single-station
one-arm assembly system. In these charts, part placement,
insertion or other required assembly operations are clas-
sified according to difficulty. For each classification and
depending on the difficulty of the operation, relative time
factors are given which can be used to estimate assembly
times.

Typically, we would be able to infer two values, TP, the
relative effective basic operation time, and TG, the relative
time penalty for gripper or tool change. In their work, the
basis for time estimates is the average time taken by the
robot to move approximately 0.5 m, grasp the part, return
and insert the part, where the motion is simple and no
insertion problem exists. For a typical current generation
robot, this process might take 3 s. However, if faster robots
are available, the user can adopt a more suitable basic
insertion time and all of the time estimates would change in
direct proportion.

Now, we use the following equation to calculate the
assembly cycle time for the different parts:

TA = TB(RP(TP + TR) + TG)

where:

TA = total operation time.
TB = basic operation time.
RP -- number of times the above operations are repeated.
TP = relative effective basic operation time.
TR = relative time penalty for final orientation of the part

by the robot.
TG = relative time penalty for a tool change.

The assembly cycle time is calculated for each and every
part in the product, before and after redesign. Along with
the cycle times, the design efficiency of the product is also
calculated using the following equations:

EM = 3NM/TM

where:

EM = design efficiency.
NM = theoretical minimum number of parts.
TM = total assembly cycletime for the product.

This equation assumes an 'ideal' time of 3 seconds for
assembly of any part that is easy to orient and align.

3. Implementation

In the development of the proposed system, the main focus
of interest is the knowledge representation scheme and the
inference mechanism, rather than building the knowledge
base. Given the scheme for representing the domain
specific knowledge and the mechanism for manipulating
this knowledge, the system is limited only by the scope of
the knowledge base, which could be expanded at a later

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 6 of 13

An expert system for design for robotic assembly 23

stage. Once this is completed, the user interface, explana-
tion mechanism and knowledge acquisition module can be
incorporated.

3.1. Knowledge representation

The reasoning mechanism or control strategy is influenced
by the representation of knowledge and data. As men-
tioned earlier, knowledge can be divided into declarative
(facts) and procedural (rules) knowledge.

3.1.1. Static knowledge
Declarative knowledge in the redesign domain is modeled
as O-A-V triplets. These describe knowledge that do not
change during a consultation session and are obtained
initially. The following are some of the facts considered at
the moment:

Every robot's performance is bound by certain charac-
teristics such as configuration, number of axes, accuracy,
payload capacity and gripper capabilities. The characteris-
tics of the robot reflect on the types of parts that can be
assembled by it. Thus, facts about the robot are im-
plemented as O-A-V triplets as shown below:

robot(puma,configuration(articulate)).
robot(puma,envelope(12,15,320,275,300)).
robot(puma ,gripper(two_finger,air)).
robot(puma,payload(30)).
robot(puma,accuracy(0.03)).

The configuration of an assembly robot is a spatial con-
straint involving basic mechanical configuration, arm sizes,
work envelope, gripper type, maximum payload, accuracy,
etc. The spatial constraint is inferred from the O-A-V
triplet in the database.

Knowledge about the product and the parts that go to
make up the product are also stored in the form of O-A-V
triplets. Each part has several attributes and each attribute
has an associated value. The name of a particular part is the
object in this triplet. The following are some of the
attributes being considered: part name, number of same
parts, KK3 code, weight, mating parts, type of relation and
accuracy, degree of symmetry and direction of insertion.

Knowledge about a particular part would be represented
as shown below:

part(top_clamp,number(l)).
part(top_clamp,wt(2.2)).
part(top clamp,mating_parts([

(bolt,fit,0.03),
(bracket,fit,0.03),
�9

Besides the above, as mentioned earlier, a CAD file

describing the features of rotational parts is also used to
describe a part. A preprocessor modifies the output of that
file into a form suitable for our needs and stores the
necessary information about the parts as follows (see
Wang, 1986):

surface(shaft,l,ext_face,4.1,4.5,4.1,5.2,_,_,_).
surface(shaft ,2,cxt_cylinder,4.1,5.2,6.7,5.2,_,_,_).

3.1.2. Procedural rules
Procedural rules in this system are typically ease of
assembly rules for design. The syntax of the rules is shown
in Fig. 3. Using the modus ponens, the premise will imply
the result, only if every condition in the premise is satisfied.

The premise may consist of different conditions which
are connected by logical conjunctions or disjunctions. A
condition is formed by the presence or absence of an
attribute of an object. The conditions are in the form of an
object, attribute and a value where the object has an
attribute which can take on a particular value. The action
part consists of a list of conclusions or actions, which will be
executed only if all the conditions in the premise are true.

The rules are classified as to their field of application as
follows:

(1) rules for feature interpretation.
(2) rules for checking parts with respect to robot capabi-

lities.
(3) rules for determining assembly cycle times.
(4) rules for feeding, orienting, manipulating and in-

serting.

As mentioned early on in this paper, it is necessary to get
information about a part such as taper, chamfer, internal
diameter change, etc. to apply the redesign rules. Given
the knowledge about the part in the form of all the surfaces
making up the part, it is our task to interpret them to suit
our requirements.

PREMISE

OBJECT

Fig. 3. Rule syntax.

j CONDITION J >

[AND] /

ACTIONS

@

 A ,,BOTE VALUE

ICONCWS,O. I >
I ASSERT,ON I ' /

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 7 of 13

24 Manoharan, Wang and Soom

A typical rule for identifying the presence of a chamfer
might be stated as follows:

(Part,chamfered) :-
(Part,surface_l) = exLfaee,
(Part,surface_2) = exLtaper,
(surface_2,Y_end_pt) > (surface_2,Y_starLpt),
(surface_2,X_end_pt) - (surface_2,X_starLpt) < 0.15.

A typical rule for redesign suggestion after a part is
checked with respect to robot capabilities is shown below:

rule(wLpayload,more,
[snggest("Breakup the part into multiple components, or

consider change of material, or
use another robot with larger payload.")]).

Assembly cycle times are needed for the sake of evaluat-
ing the proposed design. An example of such a rule is as
follows:

rule_n :-
attrib(Part,added_secured(Y)),
attrih(Part,resistance(N)),
attrib(Part,std_gripper(Y)),
attrib(Part ,hoiding~down(N)),
attrih(Part ,self_aligning(Y)),
assert(Part,basic_time(l)),
assert(Part,gripper_time(O)).

The above rule when interpreted, means that the basic time
factor is 1 and gripper time factor is 0 for the above
combination of conditions. Thus, for different combination
of conditions, different times are obtained.

The assembly cycle times obtained from the Design for
Assembly is stored in the form of a binary tree as shown in
Fig. 4 (Boothroyd and Dewhurst, 1983). Every node

represents either some attribute of the part, such as
direction of insertion, resistance to insertion or capabilities
of the robot such as standard gripper or not. Each node has
two arcs leading to their successor nodes. Depending on
the value a particular attribute takes, one or the other arc is
taken to traverse down to the next node. This process is
continued until we encounter a node that does not have any
successor, where we get our cycle time for the particular
part.

Rules for ease of orienting and feeding are usually based
on the main part shape (a and/3 symmetry of a part) and
presence or absence of certain features or attributes in a
part, such as chamfer, taper, stepped hole, etc. These rules
are again represented as productions but are implemented
in the form of a directed graph.

rule_c2 :-
part(spring,num(l)),
part(spring,end(open)),
suggest("provide close ended spring").

rule_c2 :-
part(spring,hum(I)),
part(spring,diLpitcb(less)),
suggest(' 'increase diameter or decrease pitch").

If the inference engine has to go through all the rules in
the system every time, there is unnecessary instantation of
the same predicates or conditions. To get over this
problem, these rules were implemented in the form of a
graph as depicted in Fig. 5. Here again, each node
represents a condition or an attribute of the part and the
arcs represent the different values that it can take. Each arc
is also associated with a suggestion list and an assertion list.
The suggestion list is in the form of suggestion for redesign.

STD GRIPPER

HOLDING HOLDING

1,0- 1.3,0 1.1,0 1.4,0 1,2 1.3,2 1.1,2 1.4,2

&

(
[]
&

[]
4,,

Q CONDITIONS

[~] SUGGESTIONS

/ ~ ASSERTIONS

Fig. 4. Binary tree. Fig. 5. Rule graph.

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 8 of 13

A n expert sys tem fo r design for robotic assembly 25

The assertions are basically facts about the parts that were
inferred during the consultation and goes into the dynamic
database for later use by the system. The assertions are
necessary to help us deduce the cycle times for the
redesigned parts. The following shows how a typical set of
rules are implemented in the system:

rule(fastener_type,screw, [assertx(both,"std gripper",no),
assertx(both,"snap fit",no)],point).

rule(point ,pilot ,[assertx(both,"self aligning",yes)] ,nil).
rule(point,flat,[suggest("Use cone, pilot or oval point screw."),

assertx(before,"self aligning",no),
asserx(after,' 'self aligning",yes)],nil).

The graph is so structured that conditions across the
graph are conflicting and conditions down the graph are
matching. As shown above, each node has a pointer to the
next node or condition that has to be checked. The
advantage of implementing the rules in this graph structure
is that, once we visit the nodes down the graph, we would
have provided all the related suggestions without repeated
instantiation or checking of the same premises over and
again.

3.2. Inference engine

Once the knowledge is implemented in the system, the
actual application of production rules (rule firing) is
controlled by the inference engine. The algorithm used by
the engine to evaluate the different rules is as shown below:

begin{infer}
current node < - - root node,
while current node 4: terminating node,
do

determine value of attribute associated with current node,
select arc matching that value,
provide suggestions, if any
make assertions, if any,
traverse arc to next node,
current node < - - next node

end do
end while
end{infer}

The above algorithm is depicted in the form of a flow
diagram as illustrated in Fig. 6.

At the beginning, the inference structure starts evaluat-
ing the first condition of the rule. It checks whether all
necessary information for testing the premise is available.
If not, the search module is invoked to gather the necessary
information. Once the information is gathered, a check is
made to see whether there are any matching premises. If
there is any matching premise, the associated suggestions
and assertions are made, if any. These assertions are used
by the system in inferring new knowledge about a particu-
lar part that was not evident at the beginning of the
consultation.

START)

CONSIDER THE I
FIRST

I CONDITION I

NO

GET
INFORMATION

NO

STOP

~,.INFORMATION
AVAILABLE

?

MATCHING
" PREMISES

YES

YES

Fig. 6. Flow chart of the inference engine.

CONSIDER THE
NEXT

I CONDITION

~L

I PROViDr:
SUGGESTIONS

MAKE
ASSERTIONS

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 9 of 13

26 M a n o h a r a n , W a n g a n d S o o m

CHECK THE
KK3 F LE

 t,N o
CHECK THE

CAD F LE

~ YES

INFER VALUE
FROM

AVAILABLE
RULES

~ ASK THE
USER

Fig. 7. Flow chart of the search mechanism.

Next, it will be examined to see whether there are more
conditions to be evaluated. If so, the next condition will be
considered for testing and the procedure is called recursive-
ly. If there are no more conditions to be tested, the system
gathers all the suggestions and exits.

Once the search module is invoked by the inference
mechanism as shown in Fig. 7, the module first infers the
main part shape, a and fl symmetry, weight, accuracy,
material, etc. based on KK3 code and postprocessed CAD
data. It then checks whether the value of part attributes
(taper, slot, etc.) could be inferred from the KK3 code of
the particular part. If so, it would check the KK3 code and
return with the value of the attribute. If not, a check is
made to see whether the value could be got from the CAD
postprocessor file. Next the system checks to see whether
any rules are present, that could possibly lead to the
answer. Both design for assembly rules (a and/3 symmetry)
and feature identification rules (attributes) are employed.

The concept of backtracking is used to deduce the value
of the attributes from other rules. If the system is unsuc-
cessful in deducing the value from the available rules, it
comes back to the user for the value. Thus the user is not

posed with unnecessary questions which could have been
inferred by the system in the first place. At present the
system does not handle uncertainty, but can be incorpo-
rated at a later stage.

At present, the knowledge acquisition module, explana-
tion mechanism and the user interface modules are in a
very nascent stage. But, since building expert systems is an
incremental process, these modules can be built upon the
existing framework of the system at a later stage.

3.3. Example and discussion

The redesign methodology for a product will be illustrated
by the assembly of a ball bearing journal bracket for a
ceiling fan, shown in Fig. 8. The bracket was originally
designed to take two clamps between which the bearing
was held.

Now, considering the present product, there might be
scope for eliminating parts. One of the clamps appears to
be redundant, because, the clamp and the bearing bracket
need not be of different material, they need never move
relative to each other and they need never be taken apart.
Therefore, the top clamp and the bracket are combined, so
that the operations of machining the clamp and screwing it
on the bracket are eliminated. While one of the clamps is
eliminated, the other clamp is necessary, since the clamp
has to be taken apart to fit the bracket with the ball bearing
which is standard and has to be of a different material than
the bracket.

2
7 _~I___ 3

6
s

I - D zl;
P - - --II
I 4 I

-

L _ _ I
F ~ - I

1 BOLT

2 TOP CLAHP
3 BEARING BRACKET
4 BEARING
5 BOTTGN CLAHP
6 NUT

3 4 ~ __ r-I

f BEARIN6 BRACKET
2 BEARING
3 BOTTOH CLAHP
4 SCRE~

Fig. 8. Component design.

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 10 of 13

An expert system for design for robotic assembly 27

Initially, the above parts are held together by a bolt and
nut assembly. Usually, parts whose only function is to
fasten other parts are potentially redundant. The best
situation would be totally to eliminate the nut and bolt
assembly and provide snap-on or push-fit parts, but since
there is a shaft which is going to have relative motion with
respect to the above parts, the force exerted might be too
high for a snap-fit part to handle.

Thus, the next best alternative would be to provide for a
one-handed adjustment, by having screw connections
instead of a bolt and nut assembly. Considering that screws
were used to fasten the parts together, the next step would
be to design the right screw point for ease of assembly.
Screws should be provided with cone or oval points so that
it is easy to locate and align.

Once the product has been examined for the necessity of
each part, we get a theoretical minimum number of three
parts, the bracket, bearing and clamp, with three screws to
connect these parts together. Now these parts have to be
analyzed to discover whether problems would arise during
feeding, orienting, manipulating or inserting the parts.

1
REDESIGN

I

I
, \

DESIGN

/

Fig. 9. Providing flats to aid in orientation.

One of the prime objectives was to provide for stacked or
layered assembly and to reduce the number of directions of
insertion. Originally, the parts have to be either inserted
horizontally or the whole product has to flipped over, to
connect them together with the bolt and nut. In the
redesigned product, the parts can be inserted along the
vertical direction, starting with the integrated bracket and
then the rest of the parts can be stacked on in the vertical
direction from the top.

Further examination shows that the clamp is easy to
handle, but a little difficult to assemble. It seems likely that
the orientation of the clamp will cause problems, since the
clamp is asymmetrical about its plane of orientation. It
would be best to make the clamp symmetrical, by providing
a fourth screw hole, but that is going to increase the number
of parts, which is undesirable. The next best alternative
would be to aid orientation by providing tabs or fiats as
shown in Fig. 9. This would reduce the number of possible
orientations of the part. Furthermore, it is best to eliminate
sharp corners, by providing generous tapers and chamfers
on the mating parts, which would aid in the insertion
process.

The redesign analysis is shown in Table 2 and Table 3.
Thus, the output from the program lists all the parts in the
new design along with their individual assembly cycle
times. The total number of parts along with the total
assembly cycle time is also provided. The total estimated
assembly cycle time for the new design is 31.5 seconds. As
before, the theoretical minimum number of parts is six as
compared to ten in the original design. This gives a design
efficiency of 57 per cent and a saving in time over the
original of 23.4 seconds.

4. Concluding remarks

Since assembly operations account for more than half the
production cost for a particular product, there has been an
increased interest in the field of assembly automation. The
area of design for assembly deserves due attention, because
of the impact it has, over the overall operating costs of a
manufacturing plant.

Since the product is the key to efficiency of the assembly
system, it is important that the design of the product is in
sympathy with automated assembly practices and philo-
sophies. To this effect, rules were developed to advise the
designers on how to improve the 'assemblability' of a
product, but are often overlooked. It was clear therefore,
that in order for the designer to solve the assembly
problem, the designer needs access to a higher level of
automatic knowhow than that available in these rules.

Moreover, most knowledge in this domain existed as
rules-of-thumb and as acquired experience. One solution
to code this knowledge into the computer, was to use the

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 11 of 13

28 Manoharan, Wang and Soom

Table 2: Analysis before redesign

Part No. Cycle time(sec)

Top clamp 1 6.0

Bracket 1 6.0

Bottom clamp 1 6.0

Bearing 1 2.4

Bolt 3 19.5

Nut 3 15.0

Total assembly cycle time
Total number of parts
Design efficiency

54.9
10
0.33

Table 3: Analysis after redesign

Part No. Cycle time(sec)

Bracket 1 4.8

Bottom clamp 1 4.8

Bearing 1 2.4

Screw 3 19.5

Total assembly cycle time
Total number of parts
Design efficiency

31.5
6
0.57

concept of expert systems, an emerging technology that is
making its impact felt in almost every facet of modern life.

In keeping up with the objectives of this research, this
system was developed, and it shows that the principle of an
expert system can be applied to the domain of redesign for
ease of assembly. An attempt was made at eliciting
geometric data about the parts, directly from a CAD post
processor, in conjunction with the KK3 code. Although, at
present, the above concept works only for rotational
symmetric parts, an attempt was made to show how this
system can be integrated directly with a CAD system.

The concept of O-A-V triplets were used to represent
most of the domain specific knowledge. The whole expert
system was implemented as a production system, which
consists of rules or productions to represent relationships in
terms of condition-action pairs. O-A-V triplets could be
used to represent, both static and dynamic aspects of the
knowledge base.

The main focal point of this study was to develop an
effective control strategy or inference mechanism, to work
with the facts and rules. The problem-solving process was
structured as a search through a state space. A simple way
to implement any search strategy is as a tree traversal.

However, this process often results in the same node being
node generated as part of several paths. Thus, a directed
graph was used to implement the rules. Treating the search
process as a graph search rather than as a tree search,
reduces the amount of effort that is spent exploring
essentially the same path several times.

One of the goals of this system was to produce a design
with a minimum number of parts and to minimize the total
assembly cycle time for the product. In the previous
section, the redesign of a bearing bracket journal clamp
was discussed in detail. In keeping up with the objectives of
the system, the theoretical minimum number of parts was
reduced from ten to six. All of the aforementioned design
principles were incorporated in the redesign of the product.
The total assembly cycle time of the product was also
reduced considerably.

In conclusion, the redesigned product suggested by the
system is good from a robotic assembly viewpoint. Howev-
er, other factors such as manufacturability, cost, etc.
should also be taken into account, in order to get a viable
product design.

4.1. Future directions

Although this research has considered many aspects of the
problem of integrating AI with the domain of redesign,
there is still a whole range of avenues, yet to be explored.
This section briefly reviews some of these ideas, in the hope
that they may trigger future research in this area.

In this research, the redesign of a journal bearing clamp
assembly was considered. The first step in improving the
performance of the system is to enlarge its knowledge base,
to encompass a wider variety of products and parts.

Considerable improvement can be made in the field of
knowledge acquisition. Since technology is always chang-
ing, constant changes take place in the domain-specific
knowledge and the knowledge base has to be either
updated or modified. Thus, an efficient way of updating the
stored knowledge base is called for.

Two other modules that require consideration are the
explanation module and the user interface. Since a large
amount of interaction takes place between the system and
the user, the system has to be user friendly. The system
should be able to explain its line of reasoning at any time.
Since a lot of uncertainty is bound to be involved in the user
responses, the system should be able to incorporate
uncertainty in its reasoning.

One other way to improve the user interface is to provide
graphical output in the form of the drawing of the
redesigned product. This can be achieved by integrating
the system with a CAD system, so that a common database
could be accessed by both the systems. For this research,
knowledge about parts was extracted from a CAD post
processor, but only rotational parts were considered. A
more comprehensive CAD post processor should be avail-

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 12 of 13

A n expert system for design for robotic assembly 29

able so that other parts, like prismatic parts, could also be
considered.

In relation to the above premise, the KK3 code was used
to describe the parts. KK3 code is basically a machining
code, which classifies parts according to their machining
features. A comprehensive code, solely for the purpose of
grouping parts with respect to their ease of assembly, is yet
to be developed. Once this is done, much of the data input
would be reduced to a great extent.

References

Andreasen, M. M., Kahler, S. and Lund, T. (1983) Design for
Assembly, UK, IFS (Publications) Ltd.

Becker, T. (1986) 'Expert system for design for assembly',
Unpublished Masters Thesis, Department of Industrial En-
gineering, University of Rhode Island, Kingston, Rhode
Island.

Boothroyd, G. and Dewhurst, P. (1983) Design for Assembly: A
Designer's Handbook. Department of Mechanical Engineer-
ing, University of Massachusetts, Amherst, Mass.

Boothroyd, G. and Redford, A. H. (1968) MechanicalAssembly.
New York: McGraw-Hill.

Chang, T. C. and Wysk, R. A. (1985) An Introduction to
Automated Process Planning Systems. Engtewood Cliffs,
New Jersey: Prentice Hall.

Dewhurst, P. and Boothroyd, G. (1983) Computer Aided Design
for assembly. Assembly Engineering.

Field, R. P. and Russel, G. A. (1980) An Interactive Digital
Computer Program to Encode and Analyse the Manual
Assembly of Small Parts, NSF Report APR 77 10197 7.

Kumara, S. R. T. and Kashyap, R. L. (1985) 'Knowledge
Representation in Expert System via Entity-Relationships
and its application', Proceedings 1985 IEEE International
Conference on Systems, Man and Cybernetics, Tucson,
Arizona, November 12-15, 1985.

Rich, E. (1986) Artificial Intelligence, New York: McGraw-Hill.
Riley, F. J. (1982) The look of automatic assembly. Manufactur-

ing Engineering 89, 8.
Schraft, R. D. and Bassler, R. (1984) 'Possibilities to Realise

Assembly Oriented Product Design', Proceedings the 5th
International Conference on Assembly Automation, Paris,
France, May 1984.

Swift, K. G. (1987) Design for automation in assembly, Know-
ledge-Based Design for Manufacturing, Englewood Cliffs,
New Jersey: Prentice Hall.

Wang, H. P. (1986) 'Intelligent reasoning for process planning',
Unpublished PhD Thesis, The Pennsylvania State Univer-
sity, University Park, PA.

Wang, H. P. and Chang, H. (1988) Automated classification and
coding, Advanced Manufacturing Technology 2, 25-38.

Wood, B. O. (1985) 'Design for Robotic Assembly', Unpublished
Masters Thesis, Department of Industrial and Management
Systems Engineering, Pennsylvania State University, Uni-
versity Park, PA.

Design for Manufacture, New Jersey: Prentice Hall.

3M Company Exhibit 1062
3M Company, Merck & Co., Inc., and Merck Sharp & Dohme Corp., v. AptarFrance S.A.S. IPR2018-01055

Page 13 of 13

	Subpart 7 - it is desirable

