
LIBRARY OF CONGRESS

Office of Business Enterprises
Duplication Services Section

THIS IS TO CERTIFY that the collections of the Library of Congress contain a bound
volume entitled A GUIDE TO DATA COMPRESSION METHODS, David Salomon, call
number QA 76.9.D33 S28 2002, Copy 2. The attached - Title Page, Copyright Page, Table of
Contents Pages and Introduction Pages - are a true and complete representation from that work.

IN WITNESS WHEREOF, the seal of the Library of Congress is affixed hereto on
May 18, 2018.

Deirdre Scott Scott
Business Enterprises Officer
Office of Business Enterprises
Library of Congress

101 Independence Avenue, SE Washington, DC 20540-4917 Tel 202.707.5650 www.loc.gov; duplicationservices@loc.gov

HULU LLC

Exhibit 1011

IPR2018-01187

Page 1

HULU LLC
Exhibit 1011

IPR2018-01187

Page 1

FT MEADE
MRC

OA 76

.9

.D33

S28

2002

COPY 2

PRINGER PROFESSIONAL COMPUTING

A Guide to

DATA
DMPRESSION
METHODS

David Salomon

CD-ROM
INCLUDED wir;

Page 2 Page 2

A Guide to

DATA
COMPRESSION

METHODS

David Salomon

With 92 Illustrations

Includes a CD-ROM ,miad

Springer

Page 3 Page 3

David Salomon
Department of Computer Science

California State University, Northridge

Northridge, CA 91330-8281

USA
david.salamon@rsun.edu

Cover Illustration: "Abstract: Yellow, Blue'', 1993, Patricia S. Brown/Superstock.

library of Congress Cataloging-in-Publication Data
Salomon, D. (David),1938—
A guide to data compression methods/David Salomon.

p. cm.
Includes bibliographical references and index.
ISBN 0-387-95260-8 (pbk.: alk, paper)
I. Data compression (Computer science). I. Title.

QA76.9D33 S28 2001
005.74'6—dc21 2001-032844

Printed on acid-free paper.

,

D 2002 Springer-Verlag New York, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts
in connection with reviews or scholarly analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not
especially identified, is not to be taken as a sign that such names, us understood by the Trade Marks and
Merchandise Marks Ad, may accordingly be used freely by anyone.

Production managed by Frank McGuckin; manufacturing supervised by Erica Bresler.
Camera-ready copy prepared from the author's TeX files.
Printed and bound by Hamilton Printing Co., Rensselaer, NY.
Printed in the United States of America.

9 8 7 6 5 4 3 2 1

ISBN 0-387-95260-8 SPIN 10796580

Springer-Verlag New York Berlin Heidelberg A member of Bertelsmaiinspringer Science tltosiness Media GmbH

Page 4 Page 4

Contents

1.

Preface ix

Introduction 1

Statistical Methods 9

1 Entropy
2 Variable-Size Codes
3 Decoding
4 Huffman Coding
5 Adaptive Huffman Coding
6 Facsimile Compression
7 Arithmetic Coding
8 Adaptive Arithmetic Coding

10
12
12
22
32
40
52

2. Dictionary Methods 57

1 LZ77 (Sliding Window) 59
2 LZSS 62
3 LZ78 66
4 L ZW 69

5 Summary 80

3. Image Compression -- 81

1 Introduction 82
2 Image Types 87
3 Approaches to Image Compression 88
4 intuitive Methods 103
5 Image Transforms 104

6 Progressive Image Compression 135

7 MEG 140

8 JPEG-LS 159

Page 5 Page 5

viii

4.

Contents

167 Wavelet Methods

1 Averaging and Diflerencing 167

2 The Haar Transform 181

3 Subband Transforms 185

4 Filter Banks 190

5 Deriving the Filter Coefficients 197

6 The DWT 199

7 Examples 203

8 The Daubechies Wavelets 207

9 SP1HT 214

5. Video Compression 227

1. Basic Principles 227
2 Suboptimal Search Methods 233

6. Audio Compression 241

i. Sound 242
2 Digital Audio 245
3 The Human Auditory System 247
4 Conventional Methods 250
5 MPEG-1 Audio Layers 253

Bibliography 269

Glossary 275

Joining the Data Compression Community 284

Appendix of Algorithms __ 285

Index 287

Thus a rigidly chronological series of letters would
present a patchwork of subjects, each of which would

be difficult to follow. The Table of Contents will show
in what way I have attempted to avoid this result.

—Charles Darwin. Life and Letters of Charles Darwin

Page 6 Page 6

Introduction
Those who use compression software are familiar with terms such as "zip," "implode,"
"stuffit," "diet," and "squeeze." These are names of programs or methods for compress-
ing data, names chosen to imply compression. However, such names do not reflect the
true nature of data compression. Compressing data is not done by stuffing or squeezing
it, but, by removing any redundancy that's present in the data. The concept. of redun-
dancy is central to data compression. Data with redundancy can be compressed. Data
without any redundancy cannot be compressed, period.

We all know what information is. We intuitively understand it but we consider it a
qualitative concept. Information seems to be one of those entities that cannot be quan-
tified and dealt with rigorously. There is, however, a. mathematical field called informa-
tion theory, where information is handled quantitatively. Among its other achieverneMs,
information theory shows how to precisely define redundancy. Here, we try to under-
stand this concept intuitively by pointing out the redundancy in two common types of
computer data and trying to understand why redundant data is used in the first place.

The first type of data is text•. Text is an important example of computer data.
Many computer applications, such as word processing and software compilation, are
non numeric; they deal with data whose elementary components are characters of text.
The computer can store and process only binary information (zeros and ones), so each
character of text must be assigned a binary code. Present-day computers use the ASCII
code (pronounced "ass-key." short for "American Standard Code for Information In-
terchange"), although more and more computers use the new Unicode. ASCII is a
fixed-size code where each character is assigned an 8-bit code (the code itself occupies
seven of the eight bits, and the eighth bit is parity, designed to increase the reliability
of the code). A fixed-size code is a natural choice because it makes it easy for Soft-
ware applications to handle characters of text. On the other hand, a fixed-size code is
inherently redundant.

In a file of random text, we expect each character to occur approximately the same
number of times. However, files used in practice are rarely random. They contain
meaningful text, and we know from experience that in typical English text certain
letters, such as "E," "T," and "A" are common, whereas other letters, such as "Z" and

Page 7 Page 7

2 Introduction

"Q," are rare. This explains why the ASCII code is redundant and also points the way
to eliminating the redundancy. ASCII is 'redundant because it. assigns to each character,
common or rare, the .same number (eight) of bits. Removing the redundancy can be
clone by assigning variable-size codes to the characters, with short codes assigned to
the common characters and long codes assigned to the rare ones. This is precisely how
Huffman coding (Section 1.4) works.

Imagine two text files A and B with the same text, where A uses ASCII codes and
B has variable-size codes. We expect B to be smaller than A and we say that A has
been compressed to B. It is obvious that the amount of compression depends on the
redundancy of the particular text and on the particular variable-size codes used in file
B. Text where certain characters are very common while others are very rare has much
redundancy and will compress well if the variable-size codes are properly assigned. In
such a file, the codes of the common characters should be very short, while those of the
rare characters can be long. The long codes would not degrade the compression because
they would rarely appear in B. Most of B would consist of the short cedes. Random
text, on the other hand, does not benefit from. replacing ASCII with variable-size codes,
because the compression achieved by the short codes is cancelled out. by the long codes.
This is a special case of a general rule that says that random data cannot be compressed
because it has no redundancy.

The second type of cornmon computer data is digital images. A digital image
is a rectangular array of colored clots, called pixels. Each pixel is represented in the.
computer by its color code. (In the remainder of this section, the terra "pixel" is used
for the pixel's color code.) In order to simplify the software applications that handle
images, the pixels are all the same size. The size of a pixel depends on the number of
colors in the image, and this number is normally a power of 2. If there are 2' colors in
an image, then each pixel is a k-bit number.

There are two types of redundancy in a digital image. The first type is similar to
redundancy in text. In any particular image, certain colors may dominate, while others
may be infrequent. This redundancy can he removed by assigning variable-size codes to
the pixels, as is done with text. The other type 'of redundancy is much more important
and is the result of pixel correation. As our eyes move along the image from pixel to
pixel, we find that in most cases, adjacent pixels have similar colors. Imagine an image
containing blue sky, white clouds, brown mountains, and green trees. As long as we
look at a mountain, adjacent pixels tend to be similar; all or almost all of them are
shades of brown. Similarly, adjacent pixels in the sky are shades of blue. It is only on
the horizon, where mountain meets sky, that adjacent pixels may have very different
colors. The individual pixels are therefore not completely independent, and we say that
neighboring pixels in an image tend t•o be correlated. This type of redundancy earl be
exploited in many ways, as described in Chapter 3.

Regardless of the method used to compress an image, the effectiveness of the com-

pression depends on the amount of redundancy in the image. One extreme cane is a
uniform image. Such an image has maximum redundancy because adjacent pixels are
identical. Obviously, such an image is not interesting and is rarely, if ever, used in
practice. However, it will compress very well under any image compression method.
The other extreme example is an image with uncorrelated pixels. All adjacent pixels

Page 8 Page 8

Introduction 3

in such an image are very different, so the image redundancy is zero. Such an image
will not compress, regardless of the compression method used. However, such an image
tends to look like a random jumble of dots and is therefore uninteresting. We rarely
need to keep and manipulate such an image, so we rarely need to compress it. Also, a
truly random image features small or zero correlation between pixels.

What with all the ARC war flames going around, and arguments about which program
is host, I decided to do something about it and write my OWN.
You've heard of crunching, jamming, squeezing, squashing, packing, crushing, implod-
ing, etc.. . .
Now there's TRASHING.
TRASH compresses a file to the smallest, size possible: 0 bytes! NOTHING compresses
a file better than TRASH! Date/time stamp are not affected, and since the file is zero
bytes long, it doesn't even take up any space on your hard disk!
And TRASH is FAST! Files can he TRASHED in microseconds! In fact, it takes
longer to go through the various parameter screens than it does to trash the file!
This prerelease version of TRASH is yours to keep and evaluate. I would recommend
backing up any files you intend to TRASH first., though. . . .
The next version of TRASH will have graphics and take wildcards:
TRASH C:\PAYROLL*.*
. . . and will even work on entire drives:
TRASH D:
... or be first on your block to trash your system ON PURPOSE!
TRASH ALL
We're even hoping to come up with a way to RECOVER TRASHed fi les!

From MO News, 23 April 1990

The following simple argument illustrates the essence of the statement "Data com-
pression is achieved by reducing or removing redundancy in the data." The argument
shows that, most data files cannot be compressed, no matter what compression method
is used. This seems strange at first because we compress our data files all the time.
The point is that most files cannot be compressed because they are random or close
to random and therefore have no redundancy. The (relatively') few files that can be
compressed are the ones that, we want to compress; they are the files we use all the
time. They have redundancy, are nonrandom and therefore useful and interesting.

Given two different files A and R that are compressed to files C and D, respectively,
it is clear that. C and D must be different. If they were identical, there would he no
way to decompress them and get back file A or file B.

Suppose that s file of size m bits is given and we want to compress it efficiently.
Any compression method that; can compress this file to, say, 10 bits would be welcome.
Even compressing it to 11 bits or 12 bits would be great.. We therefore (somewhat
arbitrarily) assume that compressing such a file to half its size or better is considered
good compression. There are 2" n-bit files and they would have to be compressed into
2" different files of sizes less than or equal n/2. However, the total number of these files

Page 9 Page 9

4 Introduction

is
N= 1 + 2 + 4 + • • • + 211/2 = 21+11/2 - 1 2 1+n/ 2 ,

so only N of the 2' original files have a chance of being compressed efficiently. The
problem is that N is much smaller than 211. Here are two examples of the ratio between
these two numbers.

For n = 100 (files with just 100 bits), the total number of files is 2100 and the
number of files that can be compressed efficiently is 251. The ratio of these numbers is
the ridiculously small fraction 2-49 1.78 - 10 15

For 7t = 1000 (files with just 1000 bits, about 125 bytes), the total member of files
is 211") and the number of files that can be compressed efficiently is 2501. The ratio of
these numbers is the incredibly small fraction 2-499 9.82 • 10-91.

Most files of interest are at least some thousands of bytes long. For such files,
the percentage of files that can be efficiently compressed is so small that it cannot be
computed with floating-point numbers even on a supercomputer (the result is zero).

It is therefore clear that. no compression method can hope to compress all files or
even a significant percentage of them. In order to compress a data file, the compression
algorithm has to examine the data, find redundancies in it, and try to remove them,
Since the redundancies in data depend on the type of data. (text, images, sound, etc.),
any compression method has to be developed for a specific type of data and works best
on this type. There is no such thing as a universal, efficient data compression algorithm.

The rest of this introduction covers important technical terms used in the field of
data compression.

▪ The compressor or encoder is the program that compresses the raw data in the
input file and creates an output file with compressed (low-redundancy) data. The de-
compressor or decoder converts in the opposite direction. Notice that the. term encoding
is very general and has wide meaning, but since we discuss only data compression, we
use the name encoder to mean data compressor. The term codec is sometimes used to
describe both the encoder and decoder. Similarly, the term companding is short for
"compre.ssing/exp an ding."

• A nonadaptive compression method is rigid and does not modify its operations,
its parameters, or its tables in response to the particular data being compressed. Such
a method is best used to compress data that is all of a single type. Examples are
the Group 3 and Group 4 methods for facsimile compression (Section 1.6). They are
specifically designed for facsimile compression and would do a poor job compressing
any other data. In contrast, an adaptive method examines the raw data and modifies
its operations and/or its parameters accordingly. An example is the adaptive Huffman
method of Section 1.5. Some compression methods use a two-pass algorithm, where the
first pass reads the input file to collect statistics on the data to be compressed, and
the second pass does the actual compressing using parameters or codes set by the first
pass. Such a method may be called semiadaptive. A data compression method can
also be locally adaptive, meaning it adapts itself to local conditions in the input file and
varies this adaptation as it moves from area to area in the input. An example is the
move-to-front method [Salomon 2000].

Page 10 Page 10

Introduction

Lossyjlossless compression: Certain compression methods are lossy. They achieve
better compression by losing some information. When the compressed file is decom-
pressed, the result. is not identical t•o the original data. Such a method makes sense
when compressing images, movies, or sounds. If the loss of data is small, we may not
be able to tell the difference. In contrast, text files, especially files containing computer•
programs, may become worthless if even one bit, gets modified. Such files should be
compressed only by a lossless compression method. [Two points should be mentioned
regarding text files: (1) If a. text file contains the source code of a program, many blank
spaces can normally be eliminated, since they are disregarded by the compiler anyway.
(2) When the output of a word processor is saved in a text fi le, the file may contain in-
formation about the different fonts used in the text. Such information may be discarded
if the user wants to save just the text.]

■ Symmetric compression is the case where the compressor and decompressor use the
same basic algorithm but work in "opposite" directions. Such a method makes sense
for general work, where the same number of files are compressed as are decompressed.
In an asymmetric compression method, either the compressor or the decompressor may
have to work significantly harder. Such methods have their uses and are not necessarily
bad. A compression method where the compressor executes a slow, complex algorithm
and the decompressor is simple is a natural choice when files are compressed into an
archive, where they will be decompressed and used very often, such as mp3 audio files
on a CD. The opposite case is useful in environments where files are updated all the
time and backups are made. There is only a small chance that a backup file will be
used, so the decompressor isn't used very often.

a Compression performance: Several quantities are commonly used to express the
performance of a compression method.

1. The compression ratio is defined as

size of the output. file
Compression ratio =

size of the input .file

A value of 0.6 means that the data occupies 60% of its original size after compression.
Values greater than 1 indicate an output file bigger than the input file (negative com-
pression). The compression ratio can also be called bpb (bit per bit.), since it equals
the number of bits in the compressed file needed, on average, to compress one bit, in the
input file. In image compression, the similar term bpp stands for "bits per pixel." In
modern, efficient text compression. methods, it makes sense to talk about bpc (bits per
character), the number of bits it takes, on average, to compress one character in the
input file.

Two more terms should be mentioned in connection with the compression ratio.
The term bitr•atc (or "bit rate") is a. general term for bp1-.) and bpc:. Thus, the main
goal of data compression is to represent any given data at low bit rates. The term bit
budget refers to the functions of the individual hits in the compressed file. Imagine a
compressed file where 90% of the hits ar•e variable-size codes of certain symbols and the
remaining 10% are used to encode certain tables that are needed by the decompressor.
The hit; budget for the tables is 10% in this case.

Page 11 Page 11

6 Introduction

2. The inverse of the compression ratio is the compression factor:

size of the input file
Compression factor = •

size of the output file

In this case values greater than 1 indicate compression, and values less than 1 imply
expansion. This measure seems natural to many people, since the bigger the factor,
the better the compression. This measure is distantly related to the sparseness ratio, a
performance measure discussed in Section 4.1.2.
3. The expression 100 x (1 — compression ratio) is also a reasonable measure of compres-
sion performance. A value of 60 means that the output file occupies 40% of its original
size (or that the compression has resulted in savings of 004
4. In image compression, the quantity bpp (bits per pixel) is commonly used. It equals
the number of bits needed, on average, to compress one pixel of the image. This quantity
should always be compared with the bpp before compression.

is The probability model. This concept is important in statistical data compression
methods. Sometimes, a compression algorithm consists of two parts, a probability model
and the compressor itself. Before the next data item (bit, byte, pixel, or anything else)
can be. compressed, the model is invoked and is asked to estimate the probability of the
data item. The item and the probability are then sent to the compressor, which uses
the estimated probability to compress the item. The better the probability, the better
the item is compressed.

Here is an example of a simple model for a black and white image. Each pixel in
such an image is a single bit. Assume that after reading 1000 pixels and compressing
them, pixel 1001 is read. What is the probability that this pixel is black? The model
can simply count the numbers of black and white pixels read so far. If 350 of the 1000
pixels were black, then the model can assign pixel 1001 a probability of 350/1000 = 0.35
of being black. The probability and the pixel (which may, of course be either black or
white) are then sent. to the compressor. The point is that the decompressor can easily
calculate the same probabilities before it decodes the 1001st pixel.

✓ The term alphabet refers to the set of symbols in the data being compressed. An
alphabet may consist of the two bits 0 and 1, of the 128 ASCII characters, of the 256
possible 8-bit bytes, or of any other symbols.

• The performance of any compression method is limited. No method can compress
all data files efficiently. Imagine applying a. sophisticated compression algorithm X to a
data file A and obtaining a compressed file of just 1 bit! Any method that can compress
an entire file to a single hit is excellent. Even if the compressed file is 2 bits long, we still
consider it to be highly compressed, and the same is true for compressed files of 3; 4, 5
and even more bits. It seems reasonable to define efficient compression as compressing
a file to at most half its original size. Thus, we may be satisfied (even happy) if we
discover a method X that compresses any data file A to a file B of size less than or
equal half the size of A.

The point is that different files A should be compressed to different files B, since
otherwise decompression is impossible. If method X compresses two files C and D to the

Page 12 Page 12

Introduction 7

same file E, then the X decompressor cannot decompress E. Once. this is clear, it is easy
to show that method X cannot compress all files efficiently. If file A is 71 bits long, then
there are 27' different, files A. At the same time, the total number of all files B whose size
is less than or equal half the size of A is 21+70 — 2. For n = 100. the number of A files
is NA = 2100 1.27.103° but the number of B files is only ND = 21-Fse 2 2.25101s.
The ratio NB/NA is the incredibly small fraction 1.77.10-15. For larger values of n this
ratio is much smaller.

The conclusion is that method X can compress efficiently just a small fraction of
all the files A. The great majority of files A cannot be compressed efficiently since they
are random or close to random.

This sad conclusion, however, should not cause any reader to close the book with
a sigh and turn to more promising pursuits. The interesting fact is that. out of the 2"
files A, the ones we actually want to compress are normally the ones that compress
well. The ones that compress badly are normally random or close to random and are
therefore uninteresting, unimportant, and not. candidates for compression, transmission,
or storage.

The days just prior to marriage are like a
snappy introduction to a tedious book.

Wilson Mizner

Page 13 Page 13

