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Introduction 
Those who use compression software are familiar with terms such as "zip," "implode," 
"stuffit," "diet," and "squeeze." These are names of programs or methods for compress-
ing data, names chosen to imply compression. However, such names do not reflect the 
true nature of data compression. Compressing data is not done by stuffing or squeezing 
it, but, by removing any redundancy that's present in the data. The concept. of redun-
dancy is central to data compression. Data with redundancy can be compressed. Data 
without any redundancy cannot be compressed, period. 

We all know what information is. We intuitively understand it but we consider it a 
qualitative concept. Information seems to be one of those entities that cannot be quan-
tified and dealt with rigorously. There is, however, a. mathematical field called informa-
tion theory, where information is handled quantitatively. Among its other achieverneMs, 
information theory shows how to precisely define redundancy. Here, we try to under-
stand this concept intuitively by pointing out the redundancy in two common types of 
computer data and trying to understand why redundant data is used in the first place. 

The first type of data is text•. Text is an important example of computer data. 
Many computer applications, such as word processing and software compilation, are 
non numeric; they deal with data whose elementary components are characters of text. 
The computer can store and process only binary information (zeros and ones), so each 
character of text must be assigned a binary code. Present-day computers use the ASCII 
code (pronounced "ass-key." short for "American Standard Code for Information In-
terchange"), although more and more computers use the new Unicode. ASCII is a 
fixed-size code where each character is assigned an 8-bit code (the code itself occupies 
seven of the eight bits, and the eighth bit is parity, designed to increase the reliability 
of the code). A fixed-size code is a natural choice because it makes it easy for Soft-
ware applications to handle characters of text. On the other hand, a fixed-size code is 
inherently redundant. 

In a file of random text, we expect each character to occur approximately the same 
number of times. However, files used in practice are rarely random. They contain 
meaningful text, and we know from experience that in typical English text certain 
letters, such as "E," "T," and "A" are common, whereas other letters, such as "Z" and 
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2 Introduction 

"Q," are rare. This explains why the ASCII code is redundant and also points the way 
to eliminating the redundancy. ASCII is 'redundant because it. assigns to each character, 
common or rare, the .same number (eight) of bits. Removing the redundancy can be 
clone by assigning variable-size codes to the characters, with short codes assigned to 
the common characters and long codes assigned to the rare ones. This is precisely how 
Huffman coding (Section 1.4) works. 

Imagine two text files A and B with the same text, where A uses ASCII codes and 
B has variable-size codes. We expect B to be smaller than A and we say that A has 
been compressed to B. It is obvious that the amount of compression depends on the 
redundancy of the particular text and on the particular variable-size codes used in file 
B. Text where certain characters are very common while others are very rare has much 
redundancy and will compress well if the variable-size codes are properly assigned. In 
such a file, the codes of the common characters should be very short, while those of the 
rare characters can be long. The long codes would not degrade the compression because 
they would rarely appear in B. Most of B would consist of the short cedes. Random 
text, on the other hand, does not benefit from. replacing ASCII with variable-size codes, 
because the compression achieved by the short codes is cancelled out. by the long codes. 
This is a special case of a general rule that says that random data cannot be compressed 
because it has no redundancy. 

The second type of cornmon computer data is digital images. A digital image 
is a rectangular array of colored clots, called pixels. Each pixel is represented in the. 
computer by its color code. (In the remainder of this section, the terra "pixel" is used 
for the pixel's color code.) In order to simplify the software applications that handle 
images, the pixels are all the same size. The size of a pixel depends on the number of 
colors in the image, and this number is normally a power of 2. If there are 2' colors in 
an image, then each pixel is a k-bit number. 

There are two types of redundancy in a digital image. The first type is similar to 
redundancy in text. In any particular image, certain colors may dominate, while others 
may be infrequent. This redundancy can he removed by assigning variable-size codes to 
the pixels, as is done with text. The other type 'of redundancy is much more important 
and is the result of pixel correation. As our eyes move along the image from pixel to 
pixel, we find that in most cases, adjacent pixels have similar colors. Imagine an image 
containing blue sky, white clouds, brown mountains, and green trees. As long as we 
look at a mountain, adjacent pixels tend to be similar; all or almost all of them are 
shades of brown. Similarly, adjacent pixels in the sky are shades of blue. It is only on 
the horizon, where mountain meets sky, that adjacent pixels may have very different 
colors. The individual pixels are therefore not completely independent, and we say that 
neighboring pixels in an image tend t•o be correlated. This type of redundancy earl be 
exploited in many ways, as described in Chapter 3. 

Regardless of the method used to compress an image, the effectiveness of the com-

pression depends on the amount of redundancy in the image. One extreme cane is a 
uniform image. Such an image has maximum redundancy because adjacent pixels are 
identical. Obviously, such an image is not interesting and is rarely, if ever, used in 
practice. However, it will compress very well under any image compression method. 
The other extreme example is an image with uncorrelated pixels. All adjacent pixels 
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Introduction 3 

in such an image are very different, so the image redundancy is zero. Such an image 
will not compress, regardless of the compression method used. However, such an image 
tends to look like a random jumble of dots and is therefore uninteresting. We rarely 
need to keep and manipulate such an image, so we rarely need to compress it. Also, a 
truly random image features small or zero correlation between pixels. 

What with all the ARC war flames going around, and arguments about which program 
is host, I decided to do something about it and write my OWN. 
You've heard of crunching, jamming, squeezing, squashing, packing, crushing, implod-
ing, etc.. . . 
Now there's TRASHING. 
TRASH compresses a file to the smallest, size possible: 0 bytes! NOTHING compresses 
a file better than TRASH! Date/time stamp are not affected, and since the file is zero 
bytes long, it doesn't even take up any space on your hard disk! 
And TRASH is FAST! Files can he TRASHED in microseconds! In fact, it takes 
longer to go through the various parameter screens than it does to trash the file! 
This prerelease version of TRASH is yours to keep and evaluate. I would recommend 
backing up any files you intend to TRASH first., though. . . . 
The next version of TRASH will have graphics and take wildcards: 
TRASH C:\PAYROLL\*.* 
. . . and will even work on entire drives: 
TRASH D: 
... or be first on your block to trash your system ON PURPOSE! 
TRASH ALL 
We're even hoping to come up with a way to RECOVER TRASHed fi les! 

From MO News, 23 April 1990 

The following simple argument illustrates the essence of the statement "Data com-
pression is achieved by reducing or removing redundancy in the data." The argument 
shows that, most data files cannot be compressed, no matter what compression method 
is used. This seems strange at first because we compress our data files all the time. 
The point is that most files cannot be compressed because they are random or close 
to random and therefore have no redundancy. The (relatively') few files that can be 
compressed are the ones that, we want to compress; they are the files we use all the 
time. They have redundancy, are nonrandom and therefore useful and interesting. 

Given two different files A and R that are compressed to files C and D, respectively, 
it is clear that. C and D must be different. If they were identical, there would he no 
way to decompress them and get back file A or file B. 

Suppose that s file of size m bits is given and we want to compress it efficiently. 
Any compression method that; can compress this file to, say, 10 bits would be welcome. 
Even compressing it to 11 bits or 12 bits would be great.. We therefore (somewhat 
arbitrarily) assume that compressing such a file to half its size or better is considered 
good compression. There are 2" n-bit files and they would have to be compressed into 
2" different files of sizes less than or equal n/2. However, the total number of these files 
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4 Introduction 

is 
N= 1 + 2 + 4 + • • • + 211/2 = 21+11/2 - 1 2 1+n/ 2 , 

so only N of the 2' original files have a chance of being compressed efficiently. The 
problem is that N is much smaller than 211. Here are two examples of the ratio between 
these two numbers. 

For n = 100 (files with just 100 bits), the total number of files is 2100 and the 
number of files that can be compressed efficiently is 251. The ratio of these numbers is 
the ridiculously small fraction 2-49 1.78 - 10 15

For 7t = 1000 (files with just 1000 bits, about 125 bytes), the total member of files 
is 211") and the number of files that can be compressed efficiently is 2501. The ratio of 
these numbers is the incredibly small fraction 2-499 9.82 • 10-91. 

Most files of interest are at least some thousands of bytes long. For such files, 
the percentage of files that can be efficiently compressed is so small that it cannot be 
computed with floating-point numbers even on a supercomputer (the result is zero). 

It is therefore clear that. no compression method can hope to compress all files or 
even a significant percentage of them. In order to compress a data file, the compression 
algorithm has to examine the data, find redundancies in it, and try to remove them, 
Since the redundancies in data depend on the type of data. (text, images, sound, etc.), 
any compression method has to be developed for a specific type of data and works best 
on this type. There is no such thing as a universal, efficient data compression algorithm. 

The rest of this introduction covers important technical terms used in the field of 
data compression. 

▪ The compressor or encoder is the program that compresses the raw data in the 
input file and creates an output file with compressed (low-redundancy) data. The de-
compressor or decoder converts in the opposite direction. Notice that the. term encoding 
is very general and has wide meaning, but since we discuss only data compression, we 
use the name encoder to mean data compressor. The term codec is sometimes used to 
describe both the encoder and decoder. Similarly, the term companding is short for 
"compre.ssing/exp an ding." 

• A nonadaptive compression method is rigid and does not modify its operations, 
its parameters, or its tables in response to the particular data being compressed. Such 
a method is best used to compress data that is all of a single type. Examples are 
the Group 3 and Group 4 methods for facsimile compression (Section 1.6). They are 
specifically designed for facsimile compression and would do a poor job compressing 
any other data. In contrast, an adaptive method examines the raw data and modifies 
its operations and/or its parameters accordingly. An example is the adaptive Huffman 
method of Section 1.5. Some compression methods use a two-pass algorithm, where the 
first pass reads the input file to collect statistics on the data to be compressed, and 
the second pass does the actual compressing using parameters or codes set by the first 
pass. Such a method may be called semiadaptive. A data compression method can 
also be locally adaptive, meaning it adapts itself to local conditions in the input file and 
varies this adaptation as it moves from area to area in the input. An example is the 
move-to-front method [Salomon 2000]. 
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Introduction 

Lossyjlossless compression: Certain compression methods are lossy. They achieve 
better compression by losing some information. When the compressed file is decom-
pressed, the result. is not identical t•o the original data. Such a method makes sense 
when compressing images, movies, or sounds. If the loss of data is small, we may not 
be able to tell the difference. In contrast, text files, especially files containing computer• 
programs, may become worthless if even one bit, gets modified. Such files should be 
compressed only by a lossless compression method. [Two points should be mentioned 
regarding text files: (1) If a. text file contains the source code of a program, many blank 
spaces can normally be eliminated, since they are disregarded by the compiler anyway. 
(2) When the output of a word processor is saved in a text fi le, the file may contain in-
formation about the different fonts used in the text. Such information may be discarded 
if the user wants to save just the text.] 

■ Symmetric compression is the case where the compressor and decompressor use the 
same basic algorithm but work in "opposite" directions. Such a method makes sense 
for general work, where the same number of files are compressed as are decompressed. 
In an asymmetric compression method, either the compressor or the decompressor may 
have to work significantly harder. Such methods have their uses and are not necessarily 
bad. A compression method where the compressor executes a slow, complex algorithm 
and the decompressor is simple is a natural choice when files are compressed into an 
archive, where they will be decompressed and used very often, such as mp3 audio files 
on a CD. The opposite case is useful in environments where files are updated all the 
time and backups are made. There is only a small chance that a backup file will be 
used, so the decompressor isn't used very often. 

a Compression performance: Several quantities are commonly used to express the 
performance of a compression method. 

1. The compression ratio is defined as 

size of the output. file 
Compression ratio = 

size of the input .file 

A value of 0.6 means that the data occupies 60% of its original size after compression. 
Values greater than 1 indicate an output file bigger than the input file (negative com-
pression). The compression ratio can also be called bpb (bit per bit.), since it equals 
the number of bits in the compressed file needed, on average, to compress one bit, in the 
input file. In image compression, the similar term bpp stands for "bits per pixel." In 
modern, efficient text compression. methods, it makes sense to talk about bpc (bits per 
character), the number of bits it takes, on average, to compress one character in the 
input file. 

Two more terms should be mentioned in connection with the compression ratio. 
The term bitr•atc (or "bit rate") is a. general term for bp1-.) and bpc:. Thus, the main 
goal of data compression is to represent any given data at low bit rates. The term bit 
budget refers to the functions of the individual hits in the compressed file. Imagine a 
compressed file where 90% of the hits ar•e variable-size codes of certain symbols and the 
remaining 10% are used to encode certain tables that are needed by the decompressor. 
The hit; budget for the tables is 10% in this case. 
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6 Introduction 

2. The inverse of the compression ratio is the compression factor: 

size of the input file 
Compression factor = • 

size of the output file 

In this case values greater than 1 indicate compression, and values less than 1 imply 
expansion. This measure seems natural to many people, since the bigger the factor, 
the better the compression. This measure is distantly related to the sparseness ratio, a 
performance measure discussed in Section 4.1.2. 
3. The expression 100 x (1 — compression ratio) is also a reasonable measure of compres-
sion performance. A value of 60 means that the output file occupies 40% of its original 
size (or that the compression has resulted in savings of 004 
4. In image compression, the quantity bpp (bits per pixel) is commonly used. It equals 
the number of bits needed, on average, to compress one pixel of the image. This quantity 
should always be compared with the bpp before compression. 

is The probability model. This concept is important in statistical data compression 
methods. Sometimes, a compression algorithm consists of two parts, a probability model 
and the compressor itself. Before the next data item (bit, byte, pixel, or anything else) 
can be. compressed, the model is invoked and is asked to estimate the probability of the 
data item. The item and the probability are then sent to the compressor, which uses 
the estimated probability to compress the item. The better the probability, the better 
the item is compressed. 

Here is an example of a simple model for a black and white image. Each pixel in 
such an image is a single bit. Assume that after reading 1000 pixels and compressing 
them, pixel 1001 is read. What is the probability that this pixel is black? The model 
can simply count the numbers of black and white pixels read so far. If 350 of the 1000 
pixels were black, then the model can assign pixel 1001 a probability of 350/1000 = 0.35 
of being black. The probability and the pixel (which may, of course be either black or 
white) are then sent. to the compressor. The point is that the decompressor can easily 
calculate the same probabilities before it decodes the 1001st pixel. 

✓ The term alphabet refers to the set of symbols in the data being compressed. An 
alphabet may consist of the two bits 0 and 1, of the 128 ASCII characters, of the 256 
possible 8-bit bytes, or of any other symbols. 

• The performance of any compression method is limited. No method can compress 
all data files efficiently. Imagine applying a. sophisticated compression algorithm X to a 
data file A and obtaining a compressed file of just 1 bit! Any method that can compress 
an entire file to a single hit is excellent. Even if the compressed file is 2 bits long, we still 
consider it to be highly compressed, and the same is true for compressed files of 3; 4, 5 
and even more bits. It seems reasonable to define efficient compression as compressing 
a file to at most half its original size. Thus, we may be satisfied (even happy) if we 
discover a method X that compresses any data file A to a file B of size less than or 
equal half the size of A. 

The point is that different files A should be compressed to different files B, since 
otherwise decompression is impossible. If method X compresses two files C and D to the 
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Introduction 7 

same file E, then the X decompressor cannot decompress E. Once. this is clear, it is easy 
to show that method X cannot compress all files efficiently. If file A is 71 bits long, then 
there are 27' different, files A. At the same time, the total number of all files B whose size 
is less than or equal half the size of A is 21+70 — 2. For n = 100. the number of A files 
is NA = 2100 1.27.103° but the number of B files is only ND = 21-Fse 2 2.25101s. 
The ratio NB/NA is the incredibly small fraction 1.77.10-15. For larger values of n this 
ratio is much smaller. 

The conclusion is that method X can compress efficiently just a small fraction of 
all the files A. The great majority of files A cannot be compressed efficiently since they 
are random or close to random. 

This sad conclusion, however, should not cause any reader to close the book with 
a sigh and turn to more promising pursuits. The interesting fact is that. out of the 2" 
files A, the ones we actually want to compress are normally the ones that compress 
well. The ones that compress badly are normally random or close to random and are 
therefore uninteresting, unimportant, and not. candidates for compression, transmission, 
or storage. 

The days just prior to marriage are like a 
snappy introduction to a tedious book. 

Wilson Mizner 
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