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CHAPTER 5 

Huffman One Better: 
Arithmetic Coding 

The last two chapters show that Huffman coding uses knowledge about information 

content to efficiently encode symbols. If the probability of a symbol's appearance in 
a message is known, Huffman techniques can encode that symbol using a minimal 

number of bits. Huffman coding has been proven the best fixed-length coding method 
available. 

Difficulties 
Huffman codes have to be an integral number of bits long, and this can sometimes 

be a problem. If the probability of a character is 1/3, for example, the optimum number 

of bits to code that character is around 1.6. Huffman coding has to assign either one 

or two bits to the code, and either choice leads to a longer compressed message than 

is theoretically possible. 

This nonoptimal coding becomes a noticeable problem when the probability of a 

character is very high. If a statistical method could assign a 90 percent probability to a given 

character, the optimal code size would be 0.15 bits. The Huffman coding system would 

probably assign a -bit code to the symbol, which is six times longer than necessary. 

This would be a problem when compressing two-color images, like those coming 

from a fax machine. Since there are only two colors, an ordinary coding method would 

assign the 1 bit to one color and the 0 bit to the other. Since both codes have only a 

single bit, Huffman coding is not going to be able to compress this data at all. No 

matter how high the probability of one of the bits, we are still going to have to encode 

it using one bit. 
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The conventional solution to this problem is to group the bits into packets and 

apply Huffman coding. But this weakness prevents Huffman coding from being 

a universal compressor. 

Arithmetic Coding: A Step Forward 
Only in the last ten years has a respectable candidate to replace Huffman coding 

been successfully demonstrated: arithmetic coding. Arithmetic coding bypasses the 

idea of replacing an input symbol with a specific code. It replaces a stream of input 

symbols with a single floating-point output number. More bits are needed in the output 

number for longer, complex messages. This concept has been known for some time, 

but only recently were practical methods found to implement arithmetic coding on 
computers with fixed-sized registers. 

The output from an arithmetic coding process is a single number less than 1 and 
greater than or equal to 0. This single number can be uniquely decoded to create the 
exact stream of symbols that went into its construction. To construct the output 
number, the symbols are assigned a set probabilities. The message "BILL GATES," 
for example, would have a probability distribution like this: 

Character Probability 
SPACE 1/10 

A 1/10 
B 1/10 
E 1/10 
G 1/10 

1/10 
2/10 

S 1/10 
T 1/10 
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Once character probabilities are known, individual symbols need to be assigned a 
range along a "probability line," nominally 0 to 1. It doesn't matter which characters 
are assigned which segment of the range, as long as it is done in the same manner by 
both the encoder and the decoder. The nine-character symbol set used here would look 
like the following: 

Character Probability Range 
SPACE 1/10 0.00 >= r > 0.10 

A 1/10 0.10 >= r > 0.20 
B 1/10 0.20 >= r> 0.30 
E 1/10 0.30 ›-- r > 0.40 
G 1/10 0.40 >-- r > 0.50 

I 1/10 0.50 >= r> 0.60 
L 2/10 0.60 >= r > 0.80 
S 1/10 0.80 >= r > 0.90 
T 1/10 0.90 >-= r > 1.00 

Each character is assigned the portion of the 0 to 1 range that corresponds to its 

probability of appearance. Note that the character "owns" everything up to, but not 

including, the higher number. So the letter T in fact has the range .90 to .9999 

The most significant portion of an arithmetic-coded message belongs to the first 

symbol—or B, in the message "BILL GATES." To decode the first character properly, 

the final coded message has to be a number greater than or equal to .20 and less than 

.30. To encode this number, track the range it could fall in, After the first character is 

encoded, the low end for this range is .20 and the high end is .30. 

During the rest of the encoding process, each new symbol will further restrict the 

possible range of the output number. The next character to be encoded, the letter I, 

owns the range .50 to .60 in the new subrange of .2 to .3. So the new encoded number 

will fall somewhere in the 50th to 60th percentile of the currently established range. 

Applying this logic will further restrict our number to .25 to .26. The algorithm to 

accomplish this for a message of any length is shown here: 

low = 0.0; 
high — 1.0; 
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while ( ( c = getc( input ) ) !— EOF ) 

range — high - low; 

high = low + range * high_range( c )1 

low — low + range low_range( c ); 

1 
output( low ); 

Following this process to its natural conclusion with our message results in the 

following table: 

New Character Low value High Value 

0.0 1.0 

B 0.2 0.3 

I 0.25 0.26 

L 0.256 0.258 

L 0.2572 0.2576 

SPACE 0.25720 0.25724 

G 0.257216 0.257220 

A 0.2572164 0.2572168 

T 0.25721676 0.2572168 

5 0.257216772 0.257216776 

S 0.251216/752 0.2572167756 

So the final low value, .2572167752, will uniquely encode the message "BILL 

GATES" using our present coding scheme. 
Given this encoding scheme, it is relatively easy to see how the decoding process 

operates. Find the first symbol in the message by seeing which symbol owns the space 

our encoded message falls in. Since .2572167752 falls between .2 and .3, the first 
character must be B. Then remove B from the encoded number. Since we know the 
low and high ranges of B, remove their effects by reversing the process that put them 
in. First, subtract the low value of B, giving .0572167752. Then divide by the width 
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of the range of B, or .1. This gives a value of .572167752. Then calculate where that 

lands, which is in the range of the next letter, I. The algorithm for decoding the 
incoming number is shown next: 

number = input_code(); 

for ( ; ) 

symbol = find_symbol_straddling_this_range( number ); 

putc( symbol ); 

range - high_range( symbol ) - low_range( symbol ); 

number = number - low_range( symbol ); 

number - number / range: 

I have conveniently ignored the problem of how to decide when there are no more 

symbols left to decode. This can be handled either by encoding a special end-of-file 

symbol or by carrying the stream length with the encoded message. In the example in 

this chapter, as elsewhere in the book, I carry along a special end-of-stream symbol 

that tells the decoder when it is out of symbols. The decoding algorithm for the "BILL 

GATES" message will proceed as shown: 

Encoded Number Output Symbol Low High Range 
0.2572167752 B 0.2 0.3 0.1 

0.572167752 I 0.5 0.6 0.1 

0.72167752 1. 0.6 0.8 0.2 

0.6083876 L 0.6 0.8 0.2 

0.041938 SPACE 0.0 0.1 0.1 

0.41938 G 0.4 0.5 0.1 

0.1938 A 0.2 0.3 0.1 

0.938 T 0.9 1.0 0.1 

0.38 E 0.3 0.4 0.1 

0.8 S 0.6 0.9 0.1 

0.0 
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In summary, the encoding process is simply one of' narrowing the range of possible 

numbers with every new symbol. The new range is proportional to the predefined 

probability attached to that symbol. Decoding is the inverse procedure, in which the 

range is expanded in proportion to the probability of each symbol as it is extracted. 

Practical Matters. Encoding and decoding a stream of symbols using arithmetic 

coding is not too complicated. But at first glance it seems completely impractical. Most 

computers support floating-point numbers of around 80 bits. So do you have to start over 

every time you encode ten or fifteen symbols? Do you need a floating-point processor? 

Can machines with different floating-point formats communicate through arithmetic 

coding? 

As it turns out, arithmetic coding is best accomplished using standard 16-bit and 32-

bit integer math. Floating-point math is neither required nor helpful. What is required 

is an incremental transmission scheme in which fixed-size integer state variables 

receive new bits at the low end and shift them out at the high end, forming a single 

number that can be as long as the number of bits on the computer. 

Earlier, we saw that the algorithm works by keeping track of a high and low number 

that: brackets the range of the possible output number. When the algorithm first starts, 

the low number is set to .0 and the high number is set to 1. The first simplification 

made to work with integer math is to change the 1 to .999 . . . , or . 1] 1 . . . in binary. 

Mathematicians agree that .111 . . . binary is exactly the same as I binary, and we take, 
their assurance at face value. It simplifies encoding and decoding. 

To store these numbers in integer registers, first justify them so the implied decimal 
point is on the left side of the word. Then load as much of the initial high and low 
values as will fit into the word size we are working with. My implementation uses 16-
bit unsigned math, so the initial value of high is Oxillf, and low is 0. We know that 
the high value continues with Fs forever, and the low continues with zeros forever—
so we can shift those extra bits in with impunity when needed. 

If you imagine our "BILL GATES" example in a five-decimal digit register (I use 
decimal digits in this example for clarity), the decimal equivalent of our setup would 
look like what follows on the next page. 
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HIGH: 99999 implied digits => 999999999... 

LOW: 00000 implied digits —> 000000000... 

To find the new range of numbers, apply the encoding algorithm from the previous 
section. First, calculate the range between the low and high values. The difference 
between the two registers will be 100000, not 99999. This is because we assume the 

high register has an infinite number of 9s added to it, so we need to increment the 
calculated difference. We then compute the new high value using the formula from the 

previous section: 

high = low + high_range(symbol). 

In this case, the high range was .30, which gives a new value for high of 30000. 

Before storing the new value of high, we need to decrement it, once again because of 

the implied digits appended to the integer value. So the new value of high is 29999. 

The calculation of low follows the same procedure, with a resulting new value of 

20000. So now high and low look like this: 

high: 29999 (999,..); 

low: 20000 (000...). 

At this point, the most significant digits of high and low match. Due to the nature 

of our algorithm, high and low can continue to grow closer together without quite ever 

matching. So once they match in the most significant digit, that digit will never 

change. We can now output that digit as the first digit of our encoded number. This is 

done by shifting both high and low left by one digit and shifting in a 9 in the least 

significant digit of high. The equivalent operations are performed in binary in the C 

implementation of this algorithm. 

As this process continues, high and low continually grow closer together, shifting digits 

out into the coded word. The process for our "BILL GATES" message is shown next. 
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HIGH LOW 

Initial state 99999 00000 

Encode B (0.2-0.3) 29999 20000 

BOOK 

RANGE 

100000 

CUMULATIVE OUTPUT 

Shift out 2 99999 00000 10000 .2 

Encode I (0.5-0.6) 59999 50000 .2 

Shift out 5 99999 00000 100000 .25 

Encode L (0.6-0.8) /9999 60000 20000 ,25 

Encode L (0.6-0.8) 75999 72000 .25 

Shift out 7 59999 20000 40000 .257 

Encode SPACE (0.0-0.1) 23999 20000 .257 

Shift out 2 39999 00000 40003 .257? 

Encode G (0.4-0.5) 19999 16000 .2572 

Shift out 1 99999 60000 40000 .25721 

Encode A (0.1-0.2) 67999 64000 .25721 

Shift out 6 79999 40000 40000 .257216 

Encode T (0.9-1.0) 79999 76000 .257216 

Shift out 7 99999 60000 40000 ..2572167 

Encode E (0.3-0.4) 75999 72000 .2572167 

Shift out 7 59999 20000 40000 .25721677 

Encode S (0.8-0.9) 55999 52000 .25/21677 

Shift out 5 59999 20000 .257216775 

Shift out 2 .2572167752 

Shift out 0 .25721677E20 

After all the letters are accounted for, two extra digits need to be shifted out of either 
the high or low value to finish the output word, This is so the decoder can properly 
track the input data. Part of the information about the data stream is still in the high and 
low registers, and we need to shift that information to the file for the decoder to use 
later. 

A Complication. This scheme works well for incrementally encoding a message. 
Enough accuracy is retained during the double-precision integer calculations to ensure 
that the message is accurately encoded. But there is potential for a loss of precision under 
certain circumstances. 
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If the encoded word has a string of Os or 9s in it, the high and low values will slowly 
converge on a value, but they may not see their most significant digits match imme-
diately. High may be 700004, and low may be 699995. At this point, the calculated 
range will be only a single digit long, which means the output word will not have 
enough precision to be accurately encoded. Worse, after a few more iterations, high 
could be 70000, and low could look be 69999. 

At this point, the values are permanently stuck. The range between high and low 

has become so small that any iteration through another symbol will leave high and low 

at their same values. But since the most significant digits of both words are not equal, 

the algorithm can't output the digit and shift. It seems to have reached an impasse. 
Defeat this underflow problem by preventing things from ever getting that bad. The 

original algorithm said something like, "If the most significant digit of high and low 

match, shift it out." If the two digits don't match, but are now on adjacent numbers, a 

second test needs to be applied. If high and low are one apart, we test to see if the 

second most significant digit in high is a 0 and if the second digit in low is a 9. If so, 

it means we are on the road to underflow and need to take action. 

Head off undertlow with a slightly different shift operation. Instead of shifting the 

most significant digit out of the word, delete the second digits from high and low and 

shift the rest of the digits left to fill the space. The most significant digit stays in place. 

Then set an underflow counter to remember that we threw away a digit and aren't quite 

sure whether it was going to be a 0 or a 9. This process is shown here: 

Before After 

High: 40344 43449 

Low: 39810 38100 

Underflow: 0 1 

After every recalculation, check for underflow digits again if the most significant digits 

don't match. If underflow digits are present, we shift them out and increment the counter. 
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When the most significant digits do finally converge to a single value, output that 

value. Then output the underflow digits previously discarded. The underflow digits 

will all be 9s or Os, depending on whether high and low converged on the higher or 

lower value, In the C implementation of this algorithm, the underflow counter keeps 

track of how many ones or zeros to output. 

Decoding. In the "ideal" decoding process, we had the entire input number to work 

with, and the algorithm had to do things like "divide the encoded number by the symbol 

probability." In practice, we can't perform an operation like that on a number that could 

be billions of bytes long. As in the encoding process, however, the decoder can operate 

using 16- and 32-bit integers for calculations. 

Instead of using just two numbers, high and low, the decoder has to use three 

numbers. The first two, high and low, correspond exactly to the high and low values 

maintained by the encoder. The third number, code, contains the current bits being 

read in from the input bit stream. The code value always falls between the high and 

low values. As they come closer and closer to it, new shift operations will take place, 

and high and low will move back away from code. 

The high and low values in the decoder will he updated after every symbol, just as 
they were in the encoder, and they should have exactly the same values. By perform-
ing the same comparison test on the upper digit of high and low, the decoder knows 
when it is time to shift a new digit into the incoming code. The same underflow tests 
are performed as well. 

In the ideal algorithm, it was possible to determine what the current encoded 
symbol was just by finding the symbol whose probabilities enclosed the present value 
of the code. In the integer math algorithm, things are somewhat more complicated. In 
this case, the probability scale is determined by the difference between high and low. 
So instead of the range being between .0 and 1.0, the range will he between two 
positive 16-bit integer counts. Where the present code value falls along that range 
determines current probability. Divide (value - low) by (high - low + 1) to get the 
actual probability for the present symbol. 

132 

Page 23 Page 23



ARITHMETIC CODING 

Where's the Beef? It is not immediately obvious why this encoding process is an 
improvement over Huffman coding. It becomes clear when we examine a case in which 
the probabilities are a little different. If we have to encode the stream "AAAAAAA," and 
the probability of A is known to be .9, there is a 90 percent chance that any incoming 
character will be the letter A. We set up our probability table so that A occupies the .0 

to .9 range, and the end-of-message symbol occupies the .9 to 1 range. The encoding 
process is shown next: 

New Character Low value 
0.0 

High Value 

1.0 

A 0.0 0.9 

A 0.0 0.81 

A 0.0 0.729 

A 0.0 0.6561 

A 0.0 0.59049 

A 0.0 0.531441 

A 0.0 0.4782969 

END 0.43046721 0.4782969 

Now that we know the range of high and low values, all that remains is to pick a 

number to encode this message. The number .45 will make this message uniquely 

decode to "AAAAAAA." Those two decimal digits take slightly less than seven bits 

to specify, which means we have encoded eight symbols in less than eight bits! An 

optimal Huffman message would have taken a minimum of nine bits. 

To take this point to an even further extreme, I set up a test that had only two 

symbols. In it, 0 had a 16382/16383 probability, and an end-of-file symbol had a 1/ 

:16383 probability. I then created a file filled with 100,000 Os. After compression using 

arithmetic coding, the output file was only three bytes long! The minimum size using 

Huffman coding would have been 12,501 bytes. This is obviously a contrived ex-

ample, but it shows that arithmetic coding compresses data at rates much better than 

one bit per byte when the symbol probabilities are right. 
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The Code 
The code supplied with this chapter in ARITRC is a simple module that performs 

arithmetic compression and decompression using a simple order 0 model. It works 

exactly like the nonadaptive Huffman coding program in chapter 3. It first makes a 

single pass over the data, counting the symbols. The data is then scaled down to make 

the counts fit into single, unsigned characters. The scaled counts are saved to the 

output file for the decompressor to get at later, then the arithmetic coding table is built. 

Finally, the compressor passes through the data, compressing each symbol as it 

appears. When done, the end-of-stream character is sent out, the arithmetic coder is 

flushed, and the program exits. 

The Compression Program. The compression portion of this program is shown 

shortly. The main module is called by the utility version of MAIN-E.C, which will have 

already taken care of opening files, parsing arguments, etc. Once we get to the 

compression phase of the program, things are ready to go. 

The compressor code breaks down neatly into three sections. The first two lines 
initialize the model and the encoder. The while loop plus an additional line after it 

performs the compression, and the last three lines shut things down. 

build_model( input, output-)file 

initialize_arithmetic_encoder(); 

while ( ( c = getc( input ) ) != EOF ) 

convert_int_to_symbol( c, &s 

encode_symbol( output, &s ); 

convert_int_to_symbol( END_OF_STREAM, /Cs ): 

encode_symbol( output, &s ); 

flush_arithmetic_encoder( output ); 

OutputBits( output, 01_, 16 ); 
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The build_model() routine has several responsibilities. It makes the first pass over 

the input data to count all the characters. It scales down the counts to fit in unsigned 

characters, then it takes those counts and builds the range table used by the coder. 

Finally, it writes the counts to the output file so the decompressor will have access to 
them later. 

The initialize arithmetic encoder routine is fairly simple. It just sets up the high- and 

low-integer variables used during the encoding. The encoding loop calls two different 

routines to encode the symbol. The first, convert_int_to_symbolO, takes the character 

read in from the file and looks up the range for the given symbol. The range is then 

stored in the symbol object, which has the structure shown: 

typedef struct 

unsigned short int low count; 

unsigned short int high_count; 

unsigned short int scale; 

I SYMBOL: 

These three values are all that are needed for the symbol to be encoded using the 

arithmetic encoder. The low-count and high-count values uniquely define where on the 0 to 

1 range the symbol lies, and the scale value tells what the total span of the 0 to 1 scale is. 

If 1,000 characters had been counted in a text file, for example, the low_count and 

high_count for A might be 178 and 199, and the scale would be 1,000. This would indicate 

that on the 0 to 1 number scale, A would own the range .178 to .199. 

Once the symbol object has been defined, it can be passed to the encoder. The 

arithmetic encoder needs only those three items to process the symbol and update the 

output number. It has the high- and low-range values and the underflow count stored 

internally as static variables, and it doesn't need anything else. 

The way we detached the modeling data from the coding data gives us a convenient 

mechanism for experimenting with new ways of modeling. We just have to come up with 

the numbers that get plugged into the symbol. The encoder doesn't care how we got those 

numbers as long as they were derived consistently so we can decode the file later. 
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When we reach the end of the input file, we encode and send the end-of-stream 

symbol. The decompression program will use it to determine when it is done. To 

finish, call a routine to flush the arithmetic encoder, which takes care of any undeiflow 

bits. Finally, we have to output an extra sixteen bits. The reason for this is simple. 

When decoding symbols from the input bit stream, the effective hits are in the most 

significant bit position of the input registers. To get the bits there, we have to load other 

hits into the lower positions and shift them over. At least 15 insignificant bits are 

needed to decode the last symbol. Outputting 16 bits at the end of the program ensures 
that the decoder won't get a premature end of file while decoding the input file. 

The Expansion Program. The main part of the expansion program follows the same 
pattern. First, the model is set up and the arithmetic coder is initialized. In this program, 

initializing the model means reading in the counts from the input file where the 

compressor put them. Initializing the arithmetic decoder means loading the low and high 

registers with 0000 and FFFF, then reading the first 16 hits from the input file into the 
current code. 

input_counts( input >file ); 

initialize_arithmetic_decoder( input ): 

for ( ; ; ) 

get_symbol_scale( &s ) ; 

count = get_currert_count( &s ); 
c = convert_symbol_Lo_inti count, &s 
if ( c == END_OF_STREAM ) 

break; 

remove_symbol_from_stream( input, &s ); 
putt( (char) c, output ) ; 

136 

Page 27 Page 27



ARITHMETIC CODING 

The decoding loop is a little more complicated in this routine to keep the modeling 
and decoding separate. First, get the scale for the current model to pass back to the 
arithmetic decoder. The decoder then converts its current input code into a count in the 

routine get_current_count. With the count, we can determine which symbol is the 
correct one to decode. This is done in the routine convert_symbol_to_intO. 

Though it seems strange, we don't remove the encoded symbol from the input bit 
stream till after we actually decode it. The process of removing it involves standard 

modifications of high and low and, if necessary, shifting in new bits from the input 

stream. Finally, the decoded character is written to the output file. 

Initializing the Model. The mode] for a program using arithmetic coding needs to 

nave three pieces of information for each symbol: the low end of its range, the high end 

of its range, and the scale of the entire alphabet's range (this is the same for all symbols 

in the alphabet). Since the top of a given symbol's range is the bottom of the next, we 

only need to keep track of N + 1 numbers for N symbols in the alphabet. 

An example of how the range information would be created is shown for symbols 

A, 13, C, D, and E. These symbols have the counts 5, 2, 3, 3, and 8 respectively. The 

numbers can be arranged in any order along the range, if done consistently. 

Range 21 

E 13 

D 10 

C 7 
B 5 

A 0 

In this case, the alphabet has five symbols, and the number of counts to keep track 

of is six. The array is formed by creating the cumulative total at each symbol, starting 

at zero and working up to the range. 
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Given a structure like this, it is simple to derive the three items of information that 

define the symbol for the arithmetic encoder. For symbol x in the array, the low count 

can be found at totals[ x ], the high count at totals[ x + 1 ], and the range of scale at 

totals[ N ], N being the number of symbols in the alphabet. 

The routines that do compression create this array. In this program, the array is 

named totals[], and it has 258 elements. The number of symbols in the alphabet is 257, 

the normal 256 plus one for the end-of-stream symbol. 

One additional constraint is placed on these counts. Two things determine the 

highest possible count: the number of bits available in the high and low registers and 

the number of bits in the code values. Since floating-point calculations are performed 

in fixed-length registers, we have to minimize the amount of precision needed in our 

calculations so errors do not occur. 

As it happens, there are two restrictions on the number of bits used in arithmetic 

coding: (1) the bits in the frequency values must be at least two less than the number 

of bits in the high and low registers; and (2) the bits in the frequency values plus the 

bits used in either the high and low registers must not exceed the bits used in arithmetic 
calculations during the coding process. 

During calculations on the arithmetic registers, use unsigned long values, which 
give 32 bits to work with. Since our high and low registers and our frequency counts 
are limited to 16 bits in unsigned short ints, we meet restriction 2 implicitly. Restric-
tion 1, however, requires more modifications. Since we are only using 16-bit registers 
for our high and low values, we have to restrict the highest cumulative counts in the 
totals[] array to no more than 14 bits, or 16,384. 

The code to make sure that our total count of symbols is less than 16,384 is in the 
build_model routine called on initialization of the model. It takes the process a step 
further, scaling the counts down so they all fit in a single byte. This is done so that the 
count data stored in the output file takes a minimal amount of space. 

During the compression phase of the program, the build_model() routine is called 
to perform all the necessary chores associated with the order-0 modeling used in this 
program. The four lines of code from build_model() are shown here: 

count_bytes( input, counts ); 
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scale_counts( counts, scaled_counts ): 

output_counts( output, scaled_counts )1 
bu.i ld_totals( scaled_counts ); 

build_model does no work on its own. It calls a series of four worker routines to handle 

the data for it. The first routine is count_bytes(). It does just that, counting all the occurrences 

of each symbol in the file and maintaining the total in an array, like so: 

input_marker = ftell( input ); 

while ( ( c — gets( input )) !— EOF ) 

counts[ c ]44: 

fseek( input, input_marker, SLEK_SFT ); 

The code for count_bytes scans the entire input file, then returns the input pointer 

to where it was when called. We assume that the number of counts of a given symbol 

in the file cannot exceed the span of an unsigned long. If this is not true, other 

measures will need to be taken to avoid overflow of the counts[] array elements. 

After the array has been counted, the counts have to be scaled down. This is done 

in the scale_counts() routine. The first step here is to scale down the unsigned long 

counts[] array to fit it in an array of unsigned characters. This stores the counts in less 

space in the output file. The code for this is listed here. 

max count = 0; 

for ( i 0 i < 256 ; r4 ) 

if counts[ i ] > max_count ) 

max_count — counts[ i ]: 

scale — max_count i 256; 

scale — scale + 1; 

for ( i = 0 ; i < 256 ; ) 

scaled_counts[ i ] — (unsigned char ) ( countsC 

if ( scaled_counts[ i ] 0 && counts[ i ] != 

scaled_counts[ i ] — 1 ; 

1 I /scale ): 

0 ) 
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After this is complete, one more scaling may need to be done. As part of the 

limitations on performing arithmetic coding using fixed-length registers, we have to 

restrict the total of our counts to less than 16,384, or fourteen bits. The second part of 

scale_counts does this with brute force, checking the total, then dividing by either two 

or four to get the correct results. An additional count has to be added because of the 

single count used by the end-of-stream character. 

total = 1; 

for ( i — 0 ; i < 256 i++ 

total += scaled_counts[ i J; 

if ( total > ( 32767 - 256 )

scale = 4; 

else if ( total ) 16383 ) 

scale — 2; 

else 

return: 
for ( i — 0 ; i < 256 ; ) 

sca'ed_counts[ i 1= scale; 

There is certainly room in the scale_counts() routine for more sophistication. Every 
time we lose some of the accuracy in our counts by scaling, we also lose a certain 
amount of compression. An ideal scaling routine would scale down the counts to fit in 
the correct range while doing as little scaling as possible. The routines listed here don't 
work very hard at doing that. 

Once the counts have been scaled down to fit in the unsigned character array. the 
output_counts0 routine is called to save them to the output file. This program employs 
the same method to store the counts as used in chapter 3 for the Huffman coding 
example. Instead of storing the entire array of counts, we only store runs on nonzero 
values. For details on this, refer to chapter 3. 
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The last step in building the model is to set up the cumulative totals array in totals[]. 
This is the array used when actually performing the arithmetic coding. The code 
shown below builds that array. Remember that after the totals[] array has been built, 
the range for symbol x is found in totals! x 1 and totals[ x + 1 The range used for the 
entire alphabet is found in totals[ END_OF_STREAM + 1 I. 

totals[ C 1 — 0: 

for ( 1 — 0 ; < END_OF_STREAM ; ) 

totals[ i — ] — totals[ i ] scaled counts[ i 1: 

totals[ END_OF_LSTVAM + 1 1 — totals[ END_OF_STREAM ] 

Reading the Model. For expansion, the code needs to build the same model array in 

totals[] that was used in the compression routine. Since the original file is not available 

to scan for counts, the program reads in the scaled_counts[] array stored in the 

compressed file. The code that accomplishes this is identical to the Huffman expansion 

code in chapter 3. Refer to chapter 3 for details on how this code works. 

After the scaled_counts[] array has been read in, the same routine used by the 

compression code can be invoked to build the totals[] array. Calling build_totals() in 

both the compression and expansion routines helps ensure that we are working with 

the same array. 

Initializing the Encoder. Before compression can begin, we have to initialize the 

variables that constitute the arithmetic encoder. Three 16-bit variables define the 

arithmetic encoder: low, high, and underflow_bits. When the encoder first starts to run, 

the range of the output floating-point number is anywhere between 0 and I. The low 

variable is initialized to 0 and the high to 0xFFFF. These two variables have an implied 

decimal point just ahead of the most significant bit and an infinite trail of ones or zeros. 

The ones will be shifted into the high variable and the zeros into the low. 

low — 0: 

high = Oxffff; 

underflow_bits — 0; 
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The Encoding Process. At this point, the program is ready to begin the actual 

encoding process. This consists of looping through the entire file, Leading in a character, 

determining its range variables, then encoding it. After the file has been scanned, the final 

step is to encode the end-of-stream symbol. 

while ( ( c = getc( input ) ) != [or ) I 

convert_int_to_symbol( c. &s ): 

encode_symbol( output. &s ); 

convert_int_to_symbol( END_OF_STREAM, &s ); 

encode_symbol( output, &s ); 

Two routines encode a symbol. convert_int_to_symbol() looks up the modeling 

information for the symbol and retrieves the numbers needed to perform the arithmetic 

coding. This consists of stuffing numbers into the three elements of the symbol's 

structure, as shown here: 

s ->scale = totals[ FND_OF_STRFAM + 1 

s->low_count m totals[ c 1; 

s->high_count = totals{ c 1 1; 

After the symbol information is present, we are ready to encode the symbol using 
the arithmetic encoding routine. The C code to do this, listed in encode_symbol(), has 
two distinct steps. The first is to adjust the high and low variables based on the symbol 
data passed to the encoder. 

range — (long) ( high-low ) + [; 
high = low (unsigned short int) 

(( range * s ->high_count ) / s ->scaie - 1 ); 
low = low + (unsigned short int) 

(( range * s ->low_count ) / s ->scale ); 

The code shown below restricts the range of high and low by the amount indicated 
in the. symbol information. The range of the symbol is defined by s->low_count and 
s->high_count. These two counts are measured relative to the s->scale variable. After 

142 

Page 33 Page 33



ARITHMETIC CODING 

the adjustments are made, low and high will both be greater than or equal to their 
previous values. The range, or the distance between the two, will be less than or equal 
to its previous value. 

for ( ; ; ) I 

if ( ( high & 0x8000 ) = ( low & 0x8000 ) ) I 

OutputBit( stream, high & 0x8000 ); 

while ( underflow_bits > 0 )

OutputBit( stream. —high & (1x8000 ); 

underflow_bits—; 

else if ( ( low & 0x4000 ) && !( high & 0x400D )) I 

underflow_bits += 1; 

low &= 0x3fff; 

high 1= 0x4000; 

I else 

return ; 

low <<= 1; 

high <<= 1; 

high 1= 1; 

1 

After high and low have been adjusted, the routine needs to shift out any bits 

available for shifting. After a given arithmetic adjustment, it is never certain how many 

bits will need to be shifted out, If the encoded symbol has a very high probability, the 

number of bits will he low. If the encoded symbol has a low probability, the number 

of bits may he high. 

Since the number isn't known in advance, the encoding routine sits in a loop 

shifting bits until there are no more shifts possible. The routine tests for two conditions 

to see if shifting is necessary. The first occurs when the most significant bits of the low 

and high word are the same. Because of the math being used, once the two bits are 

identical, they will never change. When this occurs, the bit is sent to the output file, 

and the high and low values are shifted. 
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Before shifting out the bit found when the most MSBs match, however, we have to 

transmit any underflow bits previously saved up. The underflow bits will be a 

sequence of bits set to the opposite value of the MSB. When we have an underflow, 

we have a binary sequence that ends up looking like that shown above. The number 

of underflow bits is found in the underflow_bits variable. 

high = 

low = :011111.,. 

Which leads to the second condition under which high and low variables require 

shifting: underflow. This occurs when the high and low words arc growing danger-

ously close together but have not yet had their most significant bits match, a situation 

similar to that shown above. 

When words begin growing close together like this, the dynamic range becomes 

dangerously low. Test for this condition after determining that the two most significant 

bits don't match. If they don't, check to see if the next hit is 0 in the high word and 1 

in the low word. if they are, perform an underflow shift. 

The underflow shift operation consists of throwing away the underflow bit (the one 

next to the most significant digit), shifting the remaining hits over one by one to fill the 

gap, and incrementing the underflow counter. The code to do this is somewhat opaque, 

but it performs this operation. 
The underflow code takes advantage of the fact that when in danger of underflow, 

we know two things. First, we know that the most significant hit in the high word is 
1 and in the low word 0. Second, the bit we throw away from the high word is 0 and 
from the low word 1. 

Since we know the value of the highest two bits, we can simplify the shift operation. 
The code used in this chapter toggles the second most significant bit in both the high 
and low registers, then performs the normal shift operation. It looks as though the 
lower 14 bits were shifted left and the MSB was left alone. 
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If we check for both possible shift conditions and don't [lag either one, we are done 
shifting bits out and can end the encoding operation. If either of the tests passed, the 
actual shift operation can take place. Both the high and low words are shifted left one 

bit position. The high word has a I shifted in to the LSB, and the low word has a 0 
shifted in. The loop then repeats, outputting and shifting additional bits as necessary. 

Flushing the Encoder. After encoding. it is necessary to flush the arithmetic encoder. 

The code for this is in the flush_arithmetic_encoder() routine. It outputs two bits and any 

additional underflow bits added along the way. 

The Decoding Process. Before arithmetic decoding can start, we need to initialize 

the arithmetic decoder variables. While encoding, we had just a high and low variable. 

Both are maintained by the decoder with a code variable, which contains the current bit 

stream read in from the input file. 

During arithmetic decoding, the high and low variables should track exactly the 

same values they had during the encoding process, and the code variable should reflect 

the bit stream as it is read in from the input file. The only exception to this is that the 

code variable has underflow bits taken from it and thrown away, as with the high and 

low variables. 

cote — 0: 

for 16 i++ ) 

code (<= 1: 

code 4.= InputBiti stream ); 

low = 0; 

high — Oxffff; 

This implementation of the arithmetic decoding process requires four separate steps 

to decode each character. The first is to gel the current scale for the symbol. This is 

simply a matter of looking in the current model data. In this implementation, the scale 

is found at totals[ END__OF_STREAM + 1 ]. The reason for breaking this out as a 
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separate routine rather than coding it in-line is that future expansions to the basic 

compression program may use different modeling techniques. If a different model is 

used, determining the scale of the model could end up being more complex. This 

happens in the program used in the next chapter. 

Once the current scale for the model is known, a second call is made to get the count for 

the current arithmetic code. This involves translating the decoders range, expressed by the 

high and low variables, into the range used by the model, which is in the scale variable. 

range = (long) ( high - low ) + 1; 

count = (short int) 

((((long) ( code - low ) + 1 ) * s->scale -1 ) / range ); 

return( count ); 

The count returned to the expansion program is in essence a simple translation of 

the code variable from one scale to another. Once the count has been determined, we 

can determine what symbol has been encoded. Since we know the low and high range 

of the count for every symbol in the alphabet, determining which symbol goes with 

which count is just a matter of looking through the counts listed in the totals[] array. 

for ( c = END_OF_STREAM ; count < totals[ c ] c—

s->high_count totals[ c 1 

s - >low_count = totals[ c ]; 

return( c ); 

The implementation of the convert_symbol_to_int0 used here determines the correct 
symbol with brute force. It simply starts looking at the top of the totals[] array for a count 
that fits with the current symbol, and it works down till if finds one that does. This is not 
optimal, since it could take 257 comparisons to locate the correct symbol. • 

An improved method of decoding would keep the symbols sorted so that the most 
frequently used symbols would be checked first. This would reduce the average time 
required to locate a symbol, though with random data we would not see much 
improvement. For simplicity, this was not the method used here. 
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Once convert_symbol_to_int() locates the correct symbol in the totals[] array, it 
takes the high and low counts and stores them in the symbol variable. They will be 
used in the next step of the decoding process. The correct value of the symbol is then 
returned to the calling program as an int. 

After the correct symbol value is set up in the symbol structure, 

remove_symbol_from_stream() is called. Arithmetic coding is unusual in that it 
determines what the symbol is before it removes the bits associated with it. Then it 

calls the routine that actually removes those bits from the code and sets up the input 
code for the next symbol. 

range — ( long)( high - low ) + l: 

high = low (unsigned short int) 

(( range * s->high_count ) / s->scale - 1 )•

low = low + (unsigned short int) 

(( range * s - >low_count ) / s ->scale ): 

for ( ; ) 

if ( ( high & 0)(8000 ) ( low & 0x8000 ) ) I 

1 else if ((low & 0x4000) == 0x4000 && (high & 0x4000) 0 ) 4 
code ^— 0x4000; 

low &— Ox3fff; 

high 1— 0x4000; 

I else 

return; 

low <<= 1; 

high <<— 1 ; 

high 1= 1 ; 

code << 1; 

code -F= InputBit( stream )4 

The code that removes the symbol from the stream is listed above. It operates 

almost as a mirror image of the encoding routine. It first rescales the high and low 

variables to their new ranges as dictated by the range of the symbol being removed. 

Then the shifting process begins. 
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As before, there are two possible reasons to shift in new bits. First, if high and low 

have the same most significant bit, they will be discarded and a new bit will be shifted 

in as a replacement. Second, if high and low don't have the same MSB, and the second 

most significant bits are threatening underflow, we will discard the second most 

significant bits and shift in new bits. 

If neither of the possible shift criteria are met, we can return, since the effects of the 

symbol have been entirely removed from the input stream. Otherwise, we shift high, 

low, and code. The lowest bit of high gets a 1, the lowest bit of low gets a 0, and the 

lowest bit of code gets a new bit from the input stream. This process continues indefinitely 

until all shifting is complete, at which point we return to the calling routine. 

Summary 
Arithmetic coding seems more complicated than Huffman coding, but the size of 

the program required to implement it is not significantly different. Runtime perfor-

mance is significantly slower than Huffinan coding, however, due to the computational 

burden imposed on the encoder and decoder. If squeezing the last bit of performance 

out of the coder is important, arithmetic coding will always provide as good or better 

performance than Huffman coding. But careful optimization is needed to get perfor-
mance up to acceptable levels. 

Code 

Start 

#include <stdio.h> 

//include <stdl ib.h> 

#include "errhand.h" 

#include "bitio.h" 

of ARITH.0 *******k**,,,*k***********/ 

/* 

* The SYMBOL structure is what is used to define a symbol in 
* arithmetic coding terms. A symbol is defined as a range between 
* 0 and 1. Since we are using integer math, instead of using 0 and 1 
* as our end points, we have an integer scale. The low_count and 
* high_count define where the symbol falls in the range. 
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* 

typedef struct I 

unsigned short int low count: 

unsigned short int high_count: 

unsigned short int scale; 

I SYMBOL; 

/* 

* Internal function prototypes, with or without ANSI prototypes. 
*/ 

__STDC 

void bui ld_model( FILL *input, FILE *output ); 

void scale_counts( unsigned long counts[], 

unsigned char scaled_counts[] ); 

void build_totals( unsigned char scaled_counts[] ); 

void count_bytes( FILE *input, unsigned long counts[] ); 

void output_counts( FILE *output, unsigned char scaled_counts[] 

void input_counts( FILL *stream I: 

void convert_int_to_symbol( int symbol , SYMBOL *s ); 

void get_symbol_scale( SYMBOL *s ); 

int convert_symbol to_int( int count, SYMBOL *s ): 

void initialize_arithmetic_encoder( void ): 

void encode_symbol( BIT_FILE *stream, SYMBOL *s ); 

void flush_arithmetic_encoder( BIT_FILE *stream ): 

short int get_current_count( SYMBOL 's ); 

void initialize_arithmetic_decoder( BITJILE *stream ); 

void remove_symbol from_stream( BIT_FILE *stream, SYMBOL *s): 

#else 

void bui ld_model(); 

void scale counts(); 

void build_totals(); 

void count_bytes(); 
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void output_counts(); 

void input_counts(); 

void convert_int±to_symbol(); 

void get_symbol_scale(); 

int convert_symbol to_int(); 

void initialize_arithmetic_encoder(); 

void encode_symbol(); 

void flosh_arithmetic_encoder(); 

short int get_current_count(); 

void initialize_arithmetic_decoder(); 

void remove_symbol from stream(); 

#endi f 

#define END_OF STREAM 256 

short int totals[ 25B ]; /* The cumulative totals */ 

char *CompressionName = "Adaptive order 0 model with arithmetic coding"; 

char *Usage = "in -file out-file\n\n"; 

/* 

* This compress file routine is a fairly orthodox compress routine. 

* It first gathers statistics, and initializes the arithmetic 

* encoder. It then encodes al l the characters in the file, followed 

* by the EOF character. The output stream is then flushed, and we 

* exit. Note that an extra two bytes are output. When decoding an arith-

* metic stream, we have to read in extra bits. The decoding process 

* takes place in the msb of the low and high range ints, so when we are 

* decoding our last bit we will still have to have at least 15 junk 

* bits loaded into the registers. The extra two bytes account for 
* that. 
*/ 

void CompressFile( input, output, argc, argv ) 
FILE *input; 

BIT_FILE *output; 

int argc: 

char *orgy[]; 
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int c: 

SYMBOL s; 

build_model( input, output->file ); 

initialize_arithmetic_encoder(); 

whi le ( ( c = getc( input ) ) EOF ) I 

convert_int_to symbol( c, &s ); 

encode symbol( output, &s ); 

convert_int_to_symbol( END_OF_STREAM, 8s )4 

encode_symbol( output, &s ); 

flush_arithmetic_encoder( output ): 

OutputBits( output, OL, 16 ); 

while ( argc— > 0 ) I 

printf( "Unused argument: %s\n", *argv 

argv++: 

/* 

* This expand routine is also very conventional. It reads in the 

* model , initializes the decoder, then sits in a loop reading in 

* characters. When we decode an FND_OF_STREAM, it means we can close 

* up the files and exit. Note decoding a single character is a three 

• step process: first we determine what the scale is for the current 

* symbol by looking at the difference between the high an low values, 

* We then see where the current input values fall in that range. 

* Finally. we look 'in our totals array to find out what symbol is 

* a match. After that is done, we still have to remove that symbol 

* from the decoder, Lots of work. 

* 

void ExpandFile( input, output argc, argv ) 

B1T_FILE *input; 

FILE *output; 
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int argc; 

char *argvEl: 

SYMBOL s; 

int c; 

int count; 

input_counts( input->file ); 

initialize_arithmetic_clecoder( input ); 

for ( ; ; ) I 

get_symbol_scale( &s ); 

count — get_current_count( &s ); 

c = convert_symbol_to_int( count, &s ); 

if ( c == END_OF_STREAM ) 

break; 

remove_symbol_from_stream( input, &s ); 

putc( (char) c. output ); 

1 

while ( argc— > 0 ) 1 

printf( "Unused argument: %s\n". *argv ); 

argv++; 

1* 

* This is the routine that is called to scan the input fi le. scale 

* the counts, build the totals array, the output the scaled counts 

* to the output file. 
*1 

void build_model( input. output ) 

FILE *input; 

FILE *output; 

unsigned long counts[ 256 

unsigned char scaled_counts[ 256 ]: 
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count_bytes( input, counts )• 

scale_counts( counts, scaled_counts ); 
output_counts( output, scaled_counts )1 
bui ld_totals( scaled_counts ); 

* This routine runs through the file and counts the appearances of 

* each character. 
*1 

Ofndef SEEK_SEP 

//define SEEK_SET 0 

void count_bytes( input, counts ) 

FILE *input; 

unsigned long counts[]; 

long input_marker: 

int 

int c: 

for ( i 0 i < 256 ; ) 

counts[ i ] — 0; 

inplit_marker = ftell( input ); 

while ( ( c = getc( input )) != EOF j 

counts[ c ]++; 

fseek( input, input_marker, SEEK_SET 

/* 

• This routine is called to scale the counts down. There are two 

* types of scaling that must be done. First, the counts need to be 

* scaled down so that the individual counts fit into a single unsigned 

* char. Then, the counts need to be rescaled so that the total of all 

* counts is less than 16384. 
*1 
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void scale_counts( counts. scaled_counts ) 

unsigned long counts[]; 

unsigned char scaled_counts[]; 

1 

int i; 

unsigned long max_count; 

unsigned int total ; 

unsigned long scale; 

/* 

* The first section of code makes sure each count fits into a single 

* byte. 
* 

max_count = 0; 

for ( i = 0 i < 256 : i++ ) 

if ( counts[ i ] > max_count ) 

max_count = counts[ i ]: 

scale = max_count / 256; 

scale = scale + 1; 

for ( i = 0 ; i < 256 ; i++ ) 

scaled_counts[ i = (unsigned char ) ( counts[ i ] / scale ): 

if ( scaled_counts[ i ] == 0 && counts[ i !— 0 ) 

scaled_counts[ i ] — 1: 

/* 

* This next section makes sure the total is less than 16384. 
* I initialize the total to 1 instead of 0 because there wi ll be an 

* additional 1 added in for the END_OF_STREAM symbol ; 

total = 1; 

for ( i = 0 ; i < 256 ; i++ ) 
total += scaled_counts[ i ]; 

if ( total > ( 32767 - 256 ) ) 
scale = 4; 

else if ( total > 16383 ) 
scale — 2; 

else 
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return; 

for ( i = 0 ; i < 256 ; i++ ) 

scaled_counts[ i ] 1= scale; 

/* 

* This routine is used by both the encoder and decoder to bui ld the 

* table of cumulative totals. The counts for the characters in the 

* file are in the counts array, and we know that there will be a 

* single instance of the FOF symbol. 
*1 

void build_totals( scaled_counts ) 

unsigned char scaled countsIl; 

int i; 

totals[ 0 ] = 0; 

for ( i = 0 ; i < END_OF_STREAM ; i++ ) 

totals[ i + 1 ] = totals[ i ] scaled_counts[ 

totals[ END_OF_STREAM + 1 = totals[ END_OF_STREAM ] + 1; 

/* 

* In order for the compressor to build the same model , I have to 

* store the symbol counts in the compressed file so the expander can 

* read them in. In order to save space, 1 don't save all 256 symbols 

* unconditionally. The format used to store counts looks like this: 

* 

* start, stop, counts, start, stop, counts, ... 0 

* 

* This means that I store runs of counts, unti l all the non-zero 

* counts have been stored. At this time the list is terminated by 

* storing a start value of 0. Note that at least 1 run of counts has 

* to be stored, so even if the first start value is 0, I read it in. 

* It also means that even in an empty file that has no counts. I have 

* to pass at least one count. 

* 
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* In order Lo efficiently use this format, I have to identify runs of 

* non -zero counts. Because of the format used. I don't want to stop a 

* run because of just one or two zeros in the count stream. So I have 

• to sit in a loop looking for strings of three or more zero values 

* in a row. 

* This is simple in concept. but it ends up being one of the most 

* complicated routines in the whole program. A routine that just 

* writes out 256 values without attempting to optimize would be much 

* simpler, but would hurt compression quite a bit on small fi les. 

* 

*/ 

void output_counts( output, scaled_counts ) 

FILE *output; 

unsigned char scaled_counts[]; 

int first: 

int last; 

int next; 

int i; 

/* 

* 

first = 0; 

whi le ( first < 255 && scaled_counts[ first ] —= ) 

first-1+; 

Each time I hit the start of the loop, I assume that first is the 
* number for a run of non-zero values. The rest of the loop is 
* concerned with finding the value for last, which is the end of the 
* run, and the value of next, which is the start of the next run. 
* At the end of the loop, I assign next to first, so it starts in on 
* the next run. 
*1 

for ( ; first < 256 ; first = next ) 
last — first -1. 1; 

for ( ; ) I 

for ( ; last < 256 ; last+4 ) 
if ( scaled_counts[ last ] 0 ) 
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break; 

last—; 

for ( next — last 1; next < 756 ; next+1 ) 
if ( scaled_counts[ next ] != 0 ) 

break; 

if ( next > 255 ) 

break; 

if ( ( next - last ) > 3 ) 

break; 

last — next; 

/* 

* Here is where I output. first, last, and all the counts in between.
* 

if ( putc( first, output ) !— first ) 

fatal_error( "Error writing byte counts\n" ); 

if ( putc( last, output ) != last ) 

fatal_error( "Error writing byte counts\n" 

for ( i = first ; i <= last ; i++ )

if ( putc( scaled_countst i J. output ) !— 

(int.) scaled_countsl i ] ) 

fatal_error( "Error writing byte counts\n" 

putc( 0, output ) != 0 ) 

fatal_error( "Error writing byte counts\n" I: 

/* 

* When expanding, I have to read in the same set of counts. This is 

* quite a hit easier that the process of writing them out, since no 

* decision making needs to be done. All I do is read in first, check 

* to see if I am all done, and if not, read in last and a string of 

* counts. 
* 

void input_counts( input ) 
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FILE *input; 

int first; 

int last; 

int i ; 

int c: 

unsigned char scaled_counts[ 256 1: 

for ( i = 0 ; i < 256 ; i++ ) 

scaled_countsL i 1 — 0: 

if ( ( first - getc( input ) ) FOE ) 

fatal_error( "Error reading byte counts\n" ); 

if ( ( last = getc( input ) ) == EOF ) 

fatal_error( "Error reading byte counts\n" ): 

for ( ) 

for ( i = first ; i <= last : i++ ) 

if ( ( c = getc( input ) ) EOF ) 

fatal_error( "Error reading byte counts\n" 

else 

scaled_ counts[ i ] = (unsigned int) c: 

if ( ( First = getc( input ) ) EOF ) 

fatal_error( "Error reading byte counts\n" ); 

if ( first —= 0 ) 

break; 

if ( ( last = getc( input ) ) EDF ) 

fatal_error( "Error reading byte counts\n" ); 

build totals( scaled_counts ); 

/* 

* Everything from here down define the arithmetic coder section 
* of the program. 
*1 

1* 

* These four variables define the current state of the arithmetic 
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* coder/decoder. They are assumed to be 16 bits long. Note that 
* by declaring them as short ints, they will actually be 16 bits 
* on most 80X86 and 680X0 machines, as well as VAXen. 
*/ 

static unsigned short int code;/* The present input code value 

static unsigned short int low; /* Start of the current code range 

static unsigned short int high;/* End of the current code range 

long underflow_bits; /* Number of underflow bits pending 

/* 

*/ 

*/ 

*/ 

* 

* This routine must be called to initialize the encoding process. 

* The high register is initialized to all ls, and it is assumed that 

* it has an infinite string of Is to be shifted into the lower bit 

* positions when needed. 
*/ 

void initialize_arithmetic_encoder() 1 

low = 0; 

high = Oxffif; 

underflow_bits — 0; 

1 

/* 

* At the end of the encoding process, there are still significant 

* bits left in the high and low registers. We output two bits. 

* plus as many underflow hits as are necessary. 

* 

void flush_arithmetic_encoder( stream ) 

BIT_FILE *stream; 

OutputBit( stream, low & 0x4000 ); 

underflow_bits++; 

while ( underflow_bits— > 0 ) 

0utputBit( stream, —low & 0x4000 ); 
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/* 

* Finding the low count, high count, and scale for a symbol 

* is really easy, because of the way the totals are stored, 

* This is the one redeeming feature of the data structure used 

* in this implementation. 

*/ 

void convert_int_to_symbol( c. s ) 

int c; 

SYMBOL s; 

s->scale = totals( ENO_OF_STREAM + 1 ]: 

s->low_count = totals( c ]; 

s->high_count = totals(' c r 1 ]; 

1. 

/* 

* Getting the scale for the current context is easy. 
k/ 

void get_symbol_scale( s ) 

SYMBOL *s; 

s->scale = totals[ END_OF_STREAM + I ]; 

I* 

* During decompression, we have to search through the table until 
* we find the symbol that straddles the "count" parameter. When 
* it is found. it is returned. The reason for also setting the 
* high count and low count is so that symbol can be properly removed 
* from the arithmetic coded input. 
*/ 

int convert_symbol_to_int( count, s) 
int count; 

SYMBOL *s; 

int c; 
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for f c = LNU_OF STREAM : count < totals[ c ] ; 

s->high_count. Lotals[ c f 1 3; 

s->low_count = totals[ c ]; 

return( c ): 

/* 

* This routine is called to encode a symbol . The symbol is passed 

* in the SYMBOL structure as a low count, a high count, and a range, 

* instead of the more conventional probability ranges. the encoding 

* process takes two steps. First. the values of high and low are 

* undated to take into account the range restriction created by the 

* new symbol. Then, as many bits as possible are shifted out to 

* the output stream. Final ly, high and low are stable again and 

* the routine returns. 

void encode_symbol( stream, s ) 

BIT FILE *stream: 

SYMBOL *s; 

long range: 

/* 

* These three lines rescale high and low for the new symbol . 

range — (long) ( high-low ) + 1; 

high = low + (unsigned short int) 

(( range * s->high_count s->scale -

low = low + (unsigned short int) 

(( range * s->low. count ) / s->scale ): 

i* 

* This loop turns out new bits until high and low are far enough 

* apart to have stabil ized. 

*/ k 

for ( ;, 1 ) 
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/* 

* If this test passes, it means that the MSDigits 
match, and can 

* be sent to the output stream. 

if ( ( high & 0x8000 ) == ( low & 0x8000 ) ) ( 

OutputBit( stream, high & 0x8000 ): 

while ( underflow_bits > 0 ) 

OutputBit( stream. —high & 0x8000 ); 

underflow_bits—: 

/* 

* If this test passes, the numbers are in danger of underflow, because 

* the MSDigits don't match, and the 2nd digits are just one apart. 

* 

else if ( ( low & 0x4000 ) && !( high & 0x4000 )) 

underflow_bits += 1; 

low &= 0x3fff; 

high 1= 0x4000; 

l else 

return ; 

low <(= 1; 

high <<— 1; 

high 1= 1; 

/* 

* When decoding, this routine is called to figure out which symbol 
* is presently waiting to be decoded. 'his routine expects to get 
* the current model scale in the s->scale parameter, and it returns 
* a count that corresponds to the present floating point code: 
* 

* code = count / s->scale 
*/ 

short int get_current_count( s ) 
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SYMBOL *s; 

long range; 

short int count; 

range — (long) ( high - low ) + 1; 

count. = (short int) 

((((long) ( code - low ) 1 ) * s ->scale-1 ) / range )1 
return( count ); 

/* 

* This routine is called to initialize the state of the arithmetic 

* decoder. This involves initializing the high and low registers 

* to their conventional starting values, plus reading the first 

* 16 hits from the input stream into the code value, 

*/ 

void initial ize_arithmetic_decoder( stream ) 

BIT_FILE *stream; 

code = 0; 

for ( i = 0 i < 16 ; 1++ ) 

code <<= 1; 

code += InputBit( stream ); 

low — 0; 

high = Oxffff; 

/* 

* Just figuring out what the present symbol is doesn't remove 

* it from the input bit stream. After the character has been 

* decoded, this routine has to be called to remove it from the 

* input stream. 

*/ 
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void remove_symbol_from_stream( stream. s ) 

BIT_FILE *stream; 

SYMBOL *s: 

long range., 

/* 

* First, the range is expanded to account ror the symbol removal. 

*/ 

range — (long)( high - low ) r 1 ; 

high = low + (unsigned short int) 

(( range * s->high_count ) / s->scale - I ); 

low = low + (unsigned short int) 

(( range * s->low_count ) / s->scale ); 

/* 

* Next. any possible bits are shipped out. 
*/ 

for ( ; ) ( 

/* 

* If the MSDigits match, the bits will be shifted out. 
*/ 

if ( ( high & Ox8000 ) —= ( low & 0x8000 ) ) 

/* 

* Else, if underflow is threatening, shift out the 2nd MSDigit. 
* 

else if ((low & 0x4000) 0)(4000 && (high & Ox4000) 0 1 1 
code 0x4000; 

low &= 0x3fff: 

high l= 0x4000: 

) else 

/* 

* Otherwise, nothing can be shifted out, so I return. 
* 
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return; 

low <<— I; 

high <<= 1: 

high I= 1; 

code <<= 1; 

code InputBit( stream ); 

/******k******************* End of ARITH,C ****************** *******/ 
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