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CHAPTER 5

Huffman One Better:
Arithmetic Coding

The last two chapters show that Huffman coding uses knowledge about information
content to efficiently encode symbols. If the probability of a symbol’s appearance in
a message is known, Huffman techniques can encode that symbol using a minimal
number of bits. Huffman coding has been proven the best fixed-length coding method
available.

Difficulties

Huffman codes have to be an integral number of bits long, and this can sometimes
be a problem. If the probability of a character is 1/3, for example, the optimum number
of bits to code that character is around 1.6. Huffman coding has to assign either one
or two bits to the code, and either choice leads to a longer compressed message than
is theoretically possible.

This nonoptimal coding becomes a noticeable problem when the probability of a
character is very high. If a statistical method could assign a 90 percent probability to a given
character, the optimal code size would be 0.15 bits. The Huffman coding system would
probably assign a 1-bit code to the symbol, which is six times longer than necessary.

This would be a problem when compressing two-color images, like those coming
from a fax machine. Since there are only two colors, an ordinary coding method would
assign the 1 bit to one color and the 0 bit to the other. Since both codes have only a
single bit, Huffman coding is not going to be able to compress this data at all. No
matter how high the probability of one of the bits, we are still going to have to encode
it using one bit,

123
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The conventional solution to this problem is (o group the bits into packets and
apply Huffman coding. But this weakness prevents Huffman coding from being

a universal compressor.

Arithmetic Coding: A Step Forward

Only in the last ten years has a respectable candidate to replace Huffman coding
been successfully demonstrated: arithmetic coding. Arithmetic coding bypasses the
idea of replacing an input symbol with a specific code. It replaces a stream of input
symbols with a single floating-point output number. More bits are needed in the output
number for longer, complex messages. This concept has been known for some time,
but only recently were practical methods found to implement arithmetic coding on
computers with fixed-sized registers.

The output from an arithmetic coding process is a single number less than 1 and
greater than or equal to 0. This single number can be uniquely decoded to create the
exact stream of symbols that went into its construction. To construct the output
number, the symbols are assigned a set probabilities. The message “BILL GATES,”
for example, would have a probability distribution like this:

Character Probability
SPACE 110
A 110
1/10
1110
110
110
2/10
1/10

1/10

B
E
G

I
L
S
T
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ARITHMETIC CODING

Once character probabilities are known, individual symbols need to be assigned a
range along a “probability line,” nominally 0 to 1. It doesn’t matter which characters
are assigned which segment of the range, as long as it is done in the same manner by
both the encoder and the decoder. The nine-character symbol set used here would look
like the following:

Character  Probability Range
SPACE 110 0.00 >=r > 0.10
A 1/10 0.10 >=r> 0.20
B 110 0.20 >=r > 0.30
E 1/10 0.30 >=r>0.40
G 1/10 0.40 >=r > 0.50
| 110 0.50 >=r>0.60
L 2/10 0.60 >=r>0.80
S 1/10 0.80 >=r> 0.90
T 1/10 090 >=r>1.00

Each character is assigned the portion of the O to 1 range that corresponds to its
probability of appearance. Note that the character “owns” everything up to, but not
including, the higher number. So the letter T in fact has the range .90 to .9999. . .

The most significant portion of an arithmetic-coded message belongs to the first
symbol—or B, in the message “BILL GATES."” To decode the tirst character properly,
the final coded message has to be a number greater than or equal to .20 and less than
.30. To encode this number, track the range it could fall in. After the first character is
encoded, the low end for this range is .20 and the high end 1s .30.

During the rest of the encoding process, each new symbol will further restrict the
possible range of the output number. The next character to be encoded, the letter I,
owns the range .50 to .60 in the new subrange of .2 10 .3. So the new encoded number
will fall somewhere in the 50th to 60th percentile of the currently established range.
Applying this logic will further restrict our number to .25 to .26. The algorithm to
accomplish this for a message of any length is shown here:

low = 0.0;
high = 1.0;
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while ( ( ¢ = getc( input ) ) != EOF ) |

range = high - low:
high = low + range * high_range( ¢ ):
low = low + range * low_range( c );

}

output( low );

Following this process (o its natural conclusion with our message results in the
following table:

New Character Low value High Value
0.0 1.0
) B 0.2 0.3
I 0.25 02
L 0.256 0.258
L 0.2572 0.2576
SPACE 0.25720 0.25724
G 0.257216 0.257220
: A 0.2572164 0.2572168
: r 0.25721576 0.2572168
; E 0.257216772 0.257216776
5 0.2572167752 0.2572167756

, So the final low value, .2572167752, will uniquely encode the message “BILL
GATES” using our present coding scheme.

Given this encoding scheme, it is relatively easy to see how the decoding process
operates. Find the first symbol in the message by seeing which symbol owns the space
our encoded message falls in. Since 2572167752 falls between .2 and .3, the first
character must be B. Then remove B from the encoded number. Since we know the
low and high ranges of B, remove their effects by reversing the process that put them
in, First, subtract the low value of B, giving .0572167752. Then divide by the width
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of the range of B, or .1. This gives a value of .572167752. Then calculate where that
lands, which is in the range of the next letter, I. The algorithm for decoding the
incoming number is shown next:

number = input_code();
for (

)
symbol = find_symbol_straddiing_this_range( number );
putc( symbol );
range = high_range( symbol ) - low_range( symbol );
number = number - low_range( symbol );
number = number / range;

I have conveniently ignored the problem of how to decide when there are no more
symbols left to decode. This can be handled either by encoding a special end-of-file
symbol or by carrying the stream length with the encoded message. In the example in

this chapter, as elsewhere in the book, I carry along a special end-of-stream symbol
that tells the decoder when it is out of symbols. The decoding algorithm for the “BILL
GATES” message will proceed as shown:

Encoded Number Output Symbol Low High Range

0
0
0
0
0
0
0
0
0
©
0.

.2572167752 B 0.2 0.3 0.1
.572167752 [ 0.5 0.6 0.1
.72167752 L 0.6 0.8 0.2
.6083876 L 0.6 0.8 0.2
.041938 SPACE 0.0 0.1 0.1
.41938 G 0.4 0.5 0.1
.1938 A (M2 0.3 0.1
.938 T 0.9 1.0 0.1
.38 £ 0.3 0.4 0.1
8 S 0.8 0.9 0.1
0

Page 18



THE DATA COMPRESSION BOOK

In summary, the encoding process is simply one of narrowing the range of possible
numbers with every new symbol. The new range is proportional to the predefined
probability attached to that symbol. Decoding is the inverse procedure, in which the
range is expanded in proportion to the probability of each symbol as it is extracted,

Practical Matters. Encoding and decoding a stream of symbols using arithmetic
coding is not too complicated. But at first glance it seems completely impractical. Most
computers support floating-point numbers of around 80 bits. So do you have to start over
every time you encode ten or fifteen symbols? Do you need a floating-point processor?
Can machines with different floating-point formats communicate through arithmetic
coding?

As it turns out, arithmetic coding is best accomplished using standard 16-bit and 32-
bit integer math. Floating-point math is neither required nor helpful. What is required
is an mcremental transmission scheme in which fixed-size integer state variables
receive new bits at the low end and shift them out at the high end, forming a single
number that can be as long as the number of bits on the computer.

Earlier, we saw that the algorithm works by keeping track of a high and low number
that brackets the range of the possible output number. When the algorithm first starts,
the low number is set to .0 and the high number is set to 1. The [irst simplification
made to work with integer math is to change the 1 t0.999 ..., or.111 ... in binary.
Mathematicians agree that .111 . . . binary is exactly the same as | binary, and we take
their assurance at face value. It simplifies encoding and decoding.

To store these numbers in integer registers, first justify them so the implied decimal
point is on the left side of the word. Then load as much of the initial high and low
values as will fit into the word size we are working with. My implementation uses 16-
bit unsigned math, so the initial value of high is OxFFFF, and low is (). We know that
the high value continucs with Fs forever, and the low continues with zeros forever—
so we can shift those extra bits in with impunity when needed.

If you imagine our “BILL GATES” example in a five-decimal digit register (I use
decimal digits in this example for clarity), the decimal equivalent of our setup would
look like what follows on the next page.
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HIGH: 99999 implied digits => 999969999,
LOW: 00000 implied digits => 000000000. ..

To find the new range of numbers, apply the encoding algorithm from the previous
section. First, calculate the range between the low and high values. The difference
between the two registers will be 100000, not 99999. This is because we assume the
high register has an infinite number of 9s added to it, so we need to increment the
calculated difference. We then compute the new high value using the formula from the
previous section:

high = low + high_range(symbol).

In this case, the high range was .30, which gives a new value for high of 30000.
Before storing the new valuc of high, we need to decrement it, once again because of
the implied digits appended to the integer value. So the new value of high is 29999.
The calculation of low follows the same procedure, with a resulting new value of
20000. So now high and low look like this:

high: 29999 (999...)
Tow: 20000 (G0O...).

At this point, the most significant digits of high and low match. Due to the nature
of our algorithm, high and low can continue to grow closer together without quite ever
matching. So once they match in the most significant digit, that digit will never
change. We can now output that digit as the first digit of our encoded number. This is
done by shifting both high and low left by one digit and shifting in a 9 in the least
significant digit of high. The equivalent operations are performed in binary in the C
implementation of this algorithm.

As this process continues, high and low continually grow closer together, shifting digits
out into the coded word. The process for our “BILL GATES” message is shown next.
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HIGH
Initial state 99999
Encode B (0.2-0.3) 29999
Shift out 2 99999
Encode I (0.5-0.6) 59999
Shift out 5 99999
Encode L (0.6-0.8) 79999
Encode L (0.6-0.8) 75999
Shift out 7 59999
Encode SPACE (0.0-0.1) 23999
Shift out 2 39999
Encode G (0.4-0.5) 19999
Shift out 1 99999
Encode A (0.1-0.2) 67999
Shift out 6 79999
Encode T (0.9-1.0) 79999
Shift out 7 99999
Encode E (0.3-0.4) 75999
Shift out 7 59999
Encode S (0.8-0.9) 55999
Shift out 5 59999
Shift out 2
Shift out 0

THE DATA COMPRESSION BOOK

LOW

00000
20000
00000
50000
00000
60000
72000
20000
20000
00000
16000
60000
64000
40000
76000
60000
72000
20000
52000
20000

RANGE CUMULATIVE OUTPUT

100000

10000 0l
St

100000 .25

20000 .25
.25

40000 .257
.257

40000 L2572
2572

40000 .25721
.25721

40000 .257216
.257216

40000 .2572167
02572167

40000 .25721677
.25721677
257216775
.2572167752
25721677520

After all the letters are accounted for, two extra digits need to be shifted out of either
the high or low value to finish the output word. This is so the decoder can properly
track the input data. Part of the information about the data stream is still in the high and
low registers, and we need to shift that information to the file for the decoder to use

later.

A Complication. This scheme works well for incrementally encoding a message.
Enough accuracy is retained during the double-precision integer calculations to ensure
that the message is accurately encoded. But there is potential for a loss of precision under

certain circumstances.
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If the encoded word has a string of Os or s in it, the high and low values will slowly
converge on a value, but they may not see their most significant digits match imme-
diately. High may be 700004, and low may be 699995. At this point, the calculated
range will be only a single digit long, which means the output word will not have
enough precision to be accurately encoded. Worse, after a few more iterations, high
could be 70000, and low could look be 69999.

At this point, the values are permanently stuck. The range between high and low
has become so small that any iteration through another symbol will leave high and low
at their same values. But since the most significant digits of both words are not equal,
the algorithm can’t output the digit and shift. Tt seems to have reached an impasse.

Defeat this underflow problem by preventing things from ever getting that bad. The
original algorithm said something like, “If the most significant digit of high and low
match, shift it out.” It the two digits don’t match, but are now on adjacent numbers, a
second test needs to be applied. If high and low are onc apart, we test to see if the
second most significant digit in high is a 0 and if the second digit in low is a 9. If so,
it means we are on the road to underflow and need to take action.

Head off underflow with a slightly different shift operation. Instead of shifting the
most significant digit out of the word, delete the second digits from high and low and
shift the rest of the digits left to fill the space. The most significant digit stays in place.
Then set an underflow counter to remember that we threw away a digit and aren’t quile
sure whether it was going to be a 0 or a 9. This process is shown here:

Before After
High: 40344 43449
Low: 39810 38100
Underflow: 0 1

After every recalculation, check for underflow digits again if the most significant digits
don’t match. If underflow digits are present, we shift them out and increment the counter.
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When the most significant digits do finally converge to a single value, output that
value. Then output the underflow digits previously discarded. The underflow digits
will all be 9s or 0s, depending on whether high and low converged on the higher or
Jower value. In the C implementation of this algorithm, the underflow counter keeps
track of how many ones or zeros to output.

Decoding. In the “ideal” decoding process, we had the entire input number to work
with, and the algorithm had to do things like “divide the encoded number by the symbol
probability.” In practice, we can’t perform an operation like that on a number that could
be billions of bytes long. As in the encoding process, however, the decoder can operate
using 16- and 32-bit integers for calculations.

Instead of using just two numbers, high and low, the decoder has to use three
numbers. The first two, high and low, correspond exactly to the high and low values
maintained by the encoder. The third number, code, contains the current bits being
read in from the input bit stream. The code value always falls between the high and
low values. As they come closer and closer to it, new shift operations will take place,
and high and low will move back away from code.

The high and low values in the decoder will be updated after every symbol, just as
they were in the encoder, and they should have exactly the same values. By perform-
ing the same comparison test on the upper digit of high and low, the decoder knows
when it is time to shift a new digit into the incoming code. The same underflow tests
are performed as well.

In the ideal algorithm, it was possible to determine what the current encoded
symbol was just by finding the symbol whose probabilities enclosed the present value
of the code. In the integer math algorithm, things are somewhat more complicated. In
this case, the probability scale is determined by the diffcrence between high and low.
So instead of the range being between .0 and 1.0, the range will be between two
positive 16-bit integer counts. Where the present code value falls along that range
determines current probability. Divide (value - low) by (high - low + 1) to get the
actual probability for the present symbol.
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Where's the Beef? It is not immediately obvious why this encoding process is an
improvement over Huffman coding. It becomes clear when we examine a case in which
the probabilities are a little different. If we have to encode the stream “AAAAAAA,” and
the probability of A is known to be .9, there is a 90 percent chance that any incoming
character will be the letter A. We set up our probability table so that A occupies the .0
to .9 range, and the end-of-message symbol occupies the .9 to 1 range. The encoding
process is shown next:

New Character Low value High Value
1.0
0.9
0.81
0.729
0.6561
0
0
0
0

[ R e ]

> > >
o o o O O

A
A
A

END

.59049
.531441
.4782969
.4782969

o O O O
O OO O O

O

.43046721

Now that we know the range of high and low values, all that remains is to pick a
number to encode this message. The number .45 will make this message uniquely
decode to “AAAAAAA.” Those two decimal digits take slightly less than scven bits
to specify, which means we have encoded eight symbols in less than eight bits! An
optimal Huffman message would have taken a minimum of nine bits.

To take this point to an even further extreme, I set up a test that had only two
symbols. In it, 0 had a 16382/16383 probability, and an end-of-file symbol had a 1/
16383 probability. I then created a file filled with 100,000 Os. After compression using
arithmetic coding, the output file was only three bytes long! The minimum size using
Huffman coding would have been 12,501 bytes. This is obviously a contrived ex-
ample, but it shows that arithmetic coding compresses data at rates much better than
one bit per byte when the symbol probabilities are right.
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The Code
The code supplied with this chapter in ARITH.C is a simple module that performs

arithmetic compression and decompression using a simple order () model. It works
exactly like the nonadaptive Huffman coding program in chapter 3. It first makes a
single pass over the data, counting the symbols. The data is then scaled down to make
the counts fit into single, unsigned characters. The scaled counts are saved to the
output file for the decompressor Lo get at later, then the arithmetic coding table is built.
Finally, the compressor passes through the data, compressing each symbol as it
appears. When done, the end-of-stream character is sent oul, the arithmetic coder is
flushed, and the program exits.

The Compression Program. The compression portion of this program is shown
shortly. The main module is called by the utility version of MAIN-E.C, which will have
already taken care of opening files, parsing arguments, etc. Once we get to the
compression phase of the program, things are ready to go.

' The compressor code breaks down neatly into three sections. The first two lines
; initialize the model and the encoder. The while loop plus an additional line after it
i performs the compression, and the last three lines shut things down.

build_model( input, output->fiie );
initialize_arithmetic_encoder():

while ( ( c¢ = getc( input ) ) != EQF ) |
convert_int_to_symbol( c, &s );
encode_symbol( output, &s );
}
; convert int_to_symbol( END_OF_STREAM, &s ):
! encode_symbol( output, &s J;
flush_arithmetic_encoder( output );
OutputBits( output, 0L, 16 )

i
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The build_model() routine has several responsibilities. It makes the first pass over
the input data to count all the characters. It scales down the counts to fit in unsigned
characters, then it takes those counts and builds the range table used by the coder.
Finally, it writes the counts to the output file so the decompressor will have access to
them later.

The initialize arithmetic encoder routine is fairly simple. It just sets up the high- and
low-integer variables used during the encoding. The encoding loop calls two different
routines to encode the symbol. The first, convert_int_to_symbol(), takes the character
read in from the file and looks up the range for the given symbol. The range is then
stored in the symbol object, which has the structure shown:

typedef struct {
unsigned short int low_count;
unsigned short int high_count;
unsigned short int scale;

) SYMBOL:

These three values are all that are needed for the symbol to be encoded using the
arithmetic encoder. The low-count and high-count values uniquely define where on the O to
1 range the symbol lies, and the scale value tells what the total span of the O to 1 scale is.
If 1,000 characters had been counted in a text file, for example, the low_count and
high_count for A might be 178 and 199, and the scale would be 1,000. This would indicate
that on the O to 1 number scale, A would own the range .178 to .199.

Once the symbol object has been defined, it can be passed to the encoder. The
arithmetic encoder needs only those three items to process the symbol and update the
output number. It has the high- and low-range values and the underflow count stored
internally as static variables, and it doesn’t need anything else.

The way we detached the modeling data from the coding data gives us a convenient
mechanism for experimenting with new ways of modeling. We just have to come up with
the numbers that get plugged into the symbol. The encoder doesn’t care how we got those
numbers as long as they were derived consistently so we can decode the file later.

135

Page 26



THE DATA COMPRESSION BOOK

When we reach the end of the input file, we encode and send the end-of-stream
symbol. The decompression program will use it to determine when it is done. To
finish, call a routinc to flush the arithmetic encoder, which takes care of any underflow
bits. Finally, we have to output an extra sixteen bits. The reason for this is simple.
When decoding symbols from the input bit stream, the cffective bits are in the most
significant bit position of the input registers. To get the bits there, we have to load other
bits into the lower positions and shift them over. At least 15 insignificant bits are
needed to decode the last symbol. Outputting 16 bits at the end of the program ensures
that the decoder won’t get a premature end of file while decoding the input file.

The Expansion Program. The main part of the expansion program follows the same
pattern. First, the model is set up and the arithmetic coder is initialized. In this program,
initializing the model means reading in the counts from the input file where the
compressor put them. Initializing the arithmetic decoder means loading the low and high
registers with 0000 and FFFF, then reading the first 16 bits from the input file into the
current code.

input_counts{ input >file };
initialize_arithmetic_decoder( input J:
o[ (BN B ) |

get_symbol scale( &s J:

count = get_current_count{ &s ):

¢ = convert_symbol_to_int{ count, &s
if (¢ == END_OF_STREAM )
break;

remove _symbol_from_stream( input, &s );
putc(C (char) c, output

Page 27



ARITHMETIC CODING

The decoding loop is a little more complicated in this routine to keep the modeling
and decoding separate. First, get the scale for the current model to pass back to the
arithmetic decoder. The decoder then converts its current input code into a count in the
routine get_current_count. With the count, we can determine which symbol is the
correct one to decode. This is done in the routine convert_symbol_to_int().

Though it seems strange, we don’t remove the encoded symbol from the input bit
stream till after we actually decode it. The process of removing it involves standard
modifications of high and low and, if necessary, shifting in new bits from the input
stream. Finally, the decoded character is written to the output file.

Initializing the Model. The model for a program using arithmetic coding needs to
have three pieces of information for each symbol: the low end of its range, the high end
of its range, and the scale of the entire alphabet’s range (this is the same for all symbols
in the alphabet). Since the top of a given symbol’s range is the bottom of the next, we
only need to keep track of N + 1 numbers for N symbols in the alphabet.

An example of how the range information would be created is shown for symbols
A, B, C, D, and E. These symbols have the counts 5, 2, 3, 3, and 8 respectively. The
numbers can be arranged in any order along the range, if done consistently.

Range I 21
E : 13
D 2 10
C : 7
B : 5
A 0

In this case, the alphabet has five symbols, and the number of counts to keep track
of is six. The array is formed by creating the cumulative total at each symbol, starting
at zero and working up to the range.
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Given a structure like this, it is simple to derive the three items of information that
define the symbol for the arithmetic encoder. For symbol x in the array, the low count
can be found at totals[ x ], the high count at totals[ x + 1 ], and the range of scale at
totals[ N ], N being the number of symbols in the alphabet.

The routines that do compression create this array. In this program, the array is
named totals[], and it has 258 elements. The number of symbols in the alphabet is 257,
the normal 256 plus one for the end-of-stream symbol.

One additional constraint is placed on these counts. Two things determine the
highest possible count: the number of bits available in the high and low registers and
the number of bits in the code values. Since floating-point calculations are performed
in fixed-length registers, we have to minimize the amount of precision needed in our
calculations so errors do not occur.

As it happens, there are two restrictions on the number of bits used in arithmetic
coding: (1) the bits in the frequency values must be at least two less than the number
of bits in the high and low registers; and (2) the bits in the frequency values plus the
bits used in either the high and low registers must not exceed the bits used in arithmetic
calculations during the coding process.

During calculations on the arithmetic registers, use unsigned long values, which
give 32 bits to work with. Since our high and low registers and our frequency counts
are limited to 16 bits in unsigned short ints, we meet restriction 2 implicitly. Restric-
tion 1, however, requires more modifications. Since we are only using 16-bit registers
for our high and low values, we have to restrict the highest cumulative counts in the
totals[] array to no more than 14 bits, or 16,384.

The code to make sure that our total count of symbols is less than 16,384 is in the
build_model routine called on initialization of the model. It takes the process a step
further, scaling the counts down so they all fitin a single byte. This is done so that the
count data stored in the output file takes a minimal amount of space.

During the compression phase of the program, the build_model() routine is called
to perform all the necessary chores associated with the order-0 modeling used in this
program. The four lines of code from build_model() are shown here:

count_bytes( input, counts )Y
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scale_counts( counts, scaied_counts ):
output_countst{ outpul, scaled counts )i
build_tectals{ scaled_counts );
build_model does no work on its own. It calls a series of four worker routines to handle
the data for it. The first routine is count_bytes(). It does just that, counting all the occurrences
of cach symbol in the file and maintaining the total in an array, like so:

input_marker = ftell( input );
while ( ( ¢ = getc( input )) != EQF )
counts[ ¢ J#=+;

fseek{ input, input_marker, SEEK_SET )3

The code for count_bytes scans the entire input file, then returns the input pointer
to where it was when called. We assume that the number of counts of a given symbol
in the file cannot exceed the span of an unsigned long. If this is not true, other
measures will need to be taken to avoid overflow of the counts[] array elements.

After the array has been counted, the counts have to be scaled down. This is done
in the scale_counts() routine. The first step here is to scale down the unsigned long
counts[] array to fit it in an array of unsigned characters. This stores the counts in less
space in the output file. The code for this is listed here.

max_count = Q:
for (1 =0 ; i < 256 ; ‘b )}
if ( counts[ i ] > max_count )}
max_count = counts[ i 1;

scale = max_count / 256;

scale = scale + 1;

for ( i = 0. ; i € 256 ; i+t ) |
scaled_counts{ i ] = (unsigned char ) ( counts{ 1 7] /scale ):
f ( scaled counts[ i ] == 0 && counts{ i j != 0 )

scaled_counts[ 1 1 =
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After this is complete, one more scaling may need to be done. As part of the
limitations on performing arithmetic coding using fixed-length registers, we have to
restrict the total of our counts to less than 16,384, or fourteen bits. The second part of
scale counts does this with brute force, checking the total, then dividing by either two
or fo;r to get the correct results. An additional count has to be added because of the

single count used by the end-of-stream character.

total = 1;

(0 (R = (g (6 e )
total += scaled_counts[ 1 I;

if ( total > ( 32767 - 256 ) )

scale = 4;

else if ( total > 16383 )
scale = 2;

else
return;

O R Rt Un B B AL G il )

scaled_counts{ i ] /= scale;

There is certainly room in the scale_counts() routine for more sophistication. Every
time we lose some of the accuracy in our counts by scaling, we also lose a certain
amount of compression. An ideal scaling routine would scale down the counts to fit in
the correct range while doing as little scaling as possible. The routines listed here don't
work very hard at doing that.

Once the counts have been scaled down to fit in the unsigned character array. the
output_counts() routine is called to save them to the output file. This program employs
the same method to store the counts as used in chapter 3 for the Huffman coding
example. Instead of storing the entire array of counts, we only store runs on nonzero
values. For details on this, refer to chapter 3.
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The last step in building the model is to set up the cumulative totals array in totals[].
This is the array used when actually performing the arithmetic coding. The code
shown below builds that array. Remember that after the totals[] array has been built,
the range for symbol x is found in totals| x ] and totals| x + 1 ]. The range used for the
entire alphabet is found in totals[ END_OF_STREAM + 1 |.

totals( 0 1 = 0;

for (1 = 0 ; i < END_OF_STREAM ; i+ )
totais{ 1 + 1 ] = totals[ i ] + scaled counts? i 1:
Lotals[ END_OF_STREAM + 1 ] = totals[ END_GF _STREAM 1 + 1;

Reading the Model. For expansion, the code needs to build the same model array in
totals(] that was used in the compression routine. Since the original file is not available
to scan for counts, the program reads in the scaled_counts[] array stored in the
compressed file. The code that accomplishes this is identical to the Huffman expansion
code in chapter 3. Refer to chapter 3 for details on how this code works.

After the scaled_counts[] array has been read in, the same routine used by the
compression code can be invoked to build the totals[] array. Calling build_totals() in
both the compression and expansion routines helps ensure that we are working with
the same array.

Initializing the Encoder. Before compression can begin, we have to initialize the
variables that constitute the arithmetic encoder. Three 16-bit variables define the
arithmetic encoder: low, high, and underflow_bits. When the encoder first starts to run,
the range of the output floating-point number is anywhere between 0 and 1. The low
variable is initialized to 0 and the high to OxFFFF. These two variables have an implied
decimal point just ahead of the most significant bit and an infinite trail of ones or zeros.
The ones will be shifted into the high variable and the zeros into the low.

low = 0;
high = Oxffff;

urnderflow_bits = 0;
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The Encoding Process. At this point, the program is ready to begin the actual
encoding process. This consists of looping through the entire file, feading in a character,
determiningits range variables, thenencodingit. Afterthe file hasbeen scanned, the final

step is to encode the end-of-stream symbol.

while { ( ¢ = getc( input ) ) != EOF ) |
convert_int_to_symbol( ¢, &s J:
encede_symbei{ output, &s );
)
convert_int_to_symbol{ END_OF_STREAM, &s )
encode_symbcl( output, &s J;
Two routines encode a symbol. convert_int_to_symbol() looks up the modeling
information for the symbol and retrieves the numbers needed to perform the arithmetic
coding. This consists of stuffing numbers into the three elements of the symbol’s

structure, as shown here:

s-»scale = totals[ END_OF_STREAM + 1 I3
s->low_count = totals([ ¢ 1J;:
s->high_count = totals[ ¢ + 1 1;

After the symbol information is present, we are ready to encode the symbol using
the arithmetic encoding routine. The C code to do this, listed in encode_symbol(). has
two distinct steps. The first is to adjust the high and low variables based on the symbol
data passed to the encoder.

range = (long) ( high-low )} + 1;
high = low + (unsigned short int)

(C rarge * s-dhigh_count ) / s->scale - 1 ):
low = low + (unsigned short int)

(C range * s->low_count ) / s->scale ):

The code shown below restricts the range of high and low by the amount indicated

in the symbol information. The range of the symbol is defined by s->low_count and
s->high_count. These two counts are measured relative to the s->scale variable. After

142
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the adjustments are made, low and high will both be greater than or equal to their

previous values. The range, or the distance between the two, will be less than or equal
to its previous value.

for ¢ 3 &+ ) A |
if ¢ ( high & 0x8000 ) == ( low & 0x8000 ) ) | !
QutputBit( stream, high & (0x8000 );
while ( underflow_bits > 0 ) |
QutputBit( stream, ~high & 0x8000 );
underflow_bits—;
}

] else if ( ( low & 0x4000 ) && !( high & 0x4000 ))
underflow_bits += 1;
Tow &= Ox3fff;
high |= 0x4000;
| else
return
low <<= 1;
high <<= 1:
high |= 1;

After high and low have been adjusted, the routine needs to shift out any bits
available for shifting. After a given arithmelic adjustment, it is never certain how many
bits will need to be shifted out. If the encoded symbol has a very high probability, the
number of bits will be low. If the encoded symbol has a low probability, the number
of bits may be high.

Since the number isn’t known in advance, the encoding routine sits in a loop
shifting bits until there are no more shifts possible. The routine tests for two conditions
to see if shifting is necessary. The first occurs when the most significant bits of the low
and high word are the same. Because of the math being used, once the two bits are
identical, they will never change. When this occurs, the bit is sent to the output file,
and the high and low values are shifted.
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Before shifting out the bit found when the most MSBs match, however, we have to
transmit any underflow bits previously saved up. The underflow bits will be a
sequence of bits set to the opposite value of the MSB. When we have an underflow,
we have a binary sequence that ends up looking like that shown above. The number
of underflow bits is found in the underflow_bits variable.

high = .100000...
low = 011111...

Which leads to the second condition under which high and low variables require
shifting: underflow. This occurs when the high and low words are growing danger-
ously close together but have not yet had their most signilicant bits match, a situation
similar to that shown above.

When words begin growing close together like this, the dynamic range becomes
dangerously low. Test for this condition after determining that the two most significant
bits don’t match. If they don’t, check to see if the next bit is () in the high word and 1
in the low word. If they are, perform an underflow shift.

The underflow shift operation consists of throwing away the underflow bit (the one
next to the most significant digit), shifting the remaining bits over one by one to fill the
gap, and incrementing the underflow counter. The code (o do this is somewhat opaque,
but it performs this operation.

The underflow code takes advantage of the fact that when in danger of underflow,
we know two things. First, we know that the most significant bit in the high word is
1 and in the low word 0. Second, the bit we throw away from the high word is 0 and
from the low word 1,

Since we know the value of the highest two bits, we can simplify the shift operation.
The code used in this chapter toggles the second most significant bit in both the high
and low registers, then performs the normal shift operation. It looks as though the
lower 14 bits were shifted left and the MSB was left alone.
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If we check for both possible shift conditions and don’t flag either one, we are done
shifting bits out and can end the encoding operation. If either of the tests passed, the
actual shift operation can take place. Both the high and low words are shifted le{t one
bit position. The high word has a 1 shifted in to the LLSB, and the low word has a 0
shifted in. The loop then repeats, outputting and shifting additional bits as necessary.

Flushing the Encoder. Aftercencoding, itis necessary to flush the arithmetic encoder.
The code [or this is in the flush_arithmetic_encoder() routine. It outputs two bits and any
additional underflow bits added along the way.

The Decoding Process. Before arithmetic decoding can start, we need to initialize
the arithmetic decoder variables. While encoding, we had just a high and low variable.
Both are maintained by the decoder with a code variable, which contains the current bit
stream read in from the input file.

During arithmetic decoding, the high and low variables should track exactly the
same values they had during the encoding process, and the code variable should reflect
the bit stream as it is read in from the input file. The only exception to this is that the
code variable has underflow bits taken from it and thrown away. as with the high and
low variables.

codge = 0

for € i =G ; 1 ¢ 16 ; i%+.)
code <<= 1;
code 4= InputBit{ stream

H

low = 0;

nigh = Oxffff;

This implementation of the arithmetic decoding process requires four separate steps
to decode each character. The first is to get the current scale for the symbol. This is
simply a matter of looking in the current model data. In this implementation, the scale
is found at totals] END_OF_STREAM + 1 ]. The reason for breaking this out as a
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separate routine rather than coding it in-line is that future expansions to the basic
compression program may use different modeling techniques. If a different model is
used, determining the scale of the model could end up being more complex. This
happens in the program used in the next chapter.

Once the current scale for the model is known, a second call is made to get the count for
the current arithmetic code. This involves translating the decoders range, expressed by the
high and low variables, into the range used by the model, which is in the scale variable.

range = (long) ( high - Tow ) + 1;
count = (short int)
((((long) ( code - low ) + 1 ) * s->scale-1 ) / range );

return( ccunt );

The count returned to the expansion program is in essence a simple translation of
the code variable from one scale to another. Once the count has been determined, we
can determine what symbol has been encoded. Since we know the low and high range
of the count for every symbol in the alphabet, determining which symbol goes with
which count is just a matter of looking through the counts listed in the totals[] array.

for ( ¢ = END_OF_STREAM ; count < totals[ ¢ ] : c— )

s->high_count = totals[ ¢ + 1 J:
s->low_count = totals[ ¢ ];
return( ¢ );

The implementation of the convert_symbol_to_int() used here determines the correct
symbol with brute force. It simply starts looking at the top of the totals[] array for a count
that fits with the current symbol, and it works down till if finds one that does. This is not
optimal, since it could take 257 comparisons to locate the correct symbol.

An improved method of decoding would keep the symbols sorted so that the most
frequently used symbols would be checked first. This would reduce the average time
required to locate a symbol, though with random data we would not see much
improvement. For simplicity, this was not the method used here.
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Once convert_symbol_to_int() locates the correct symbol in the totals[] array, it
takes the high and low counts and stores them in the symbol variable. They will be
used in the next step of the decoding process. The correct value of the symbol is then
returned to the calling program as an int.

After the correct symbol value is set up in the symbol structure,
remove_symbol_from_stream() is called. Arithmetic coding is unusual in that it
determines what the symbol is before it removes the bits associated with it. Then it
calls the routine that actually removes those bits from the code and sets up the input
code for the next symbol.

range = (long)( high - ‘low ) + 1:
high = low + (unsigned short int)

({ range * s->high_count ) / s->scale - 1 );
Tow = low + (unsigned short int)

(( range * s->low_count )} / s->scale J;

for ¢ 5 o 3 |
if ( C high & 0x8000 ) == ( low & 0xB000 ) ) |
}oelse if ((low & 0x4000) == 0x4000 && (high & 0x4000) == 0 ) |

code ~= 0x4000;
lTow &= Ox3fff;
high |= 0x4000;
| else
return;
low <<= 1;
high <<= 1;
high |= 1;
code <<= 1;

\

code 4= InpulBit( stream )

The code that removes the symbol from the stream is listed above. It operates
almost as a mirror image of the encoding routine. It first rescales the high and low
variables to their new ranges as dictated by the range of the symbol being removed.
Then the shifting process begins.
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As before, there are two possible reasons to shift in new bits. First, if high and low
have the same most significant bit, they will be discarded and a new bit will be shifted
in as a replacement. Second, if high and low don’t have the same MSB, and the second
most significant bits are threatening underflow, we will discard the second most
significant bits and shift in new bits.

If neither of the possible shift criteria are met, we can return, since the effects of the
symbol have been entirely removed from the input stream. Otherwise, we shift high,
low, and code. The lowest bit of high gets a 1, the lowest bit of low gets a 0, and the
lowest bit of code gets a new bit from the input stream. This process continues indefinitely

until all shifting is complete, at which point we retum to the calling routine.

Summary
Arithmetic coding seems more complicated than Huffman coding, but the size of

the program required to implement it is not significantly different. Runtime perfor-
mance is significantly slower than Huffman coding, however, due to the computational
burden imposed on the encoder and decoder. If squeezing the last bit of performance
out of the coder is important, arithmetic coding will always provide as good or better
performance than Huffman coding. But careful optimization is needed to get perfor-

mance up to acceptable levels.

Code

/************k*******-A-***** Start Of ;“[{ITHC *A‘(*‘A‘**A':&*'A'*Ak%'k*x*‘k**\"k**‘k/
#include <stdio.h>

#inciude <stdlib.h>

##include “errhand.h”

ffinclude “bitio.h"

/*

* The SYMBOL structure is what is used to define a symbol in

* arithmetic coding terms. A symbol is defined as a range between

* 0 and 1. Since we are using integer math, instead of using O and 1
* as our end peints, we have an integer scale. The low_count and

* high_count define where the symbol falls in the range.

148
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typedef struct {
unsigned short int low count:
unsigned shcort int high_count:
unsigned short int scale;

] SYMBOL;

! %
i

* Internal function prototypes, with or without ANSI prototypes.
=

#tifdef __STOC__

void build_model( FILE *input, FILE *output ):
void scale_counts{ unsigned long counts[],
unsigned char scaled_counts(} );
void build_toctals( unsigned char scaled_counts[] );
void count_bytes( FILE *input, unsigned long counts(] );
void output_counts{ FILE *output, unsigned char scaled_counts[] J:
void input_counts( FILE *stream J;
void convert_int_to_symbol( int symbol, SYMBOL *s );
void get_symbol_scale( SYMBOL *s J;
int convert_symbol_to_int( int count, SYMBOL *s ):
veid initialize_arithmetic_encoder{ vocid J;
void encode_symbol{ BIT_FILE *stream, SYMBOL *s };
void flush_arithmetic_encoder( BIT_FILE *stream ):
short int get_current_count( SYMBOL *s );
void initialize_arithmetic_decoder( BIT_FILE *stream ).
void remove symbol from_stream( BIT_FILE *stream, SYMBOL *s);

ftelse

void build_model()
void scale_counts();
void build_totalsi)
void count_bytes();
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void output_counts();

void input_counts():

void convert_int_to_symbol();

void get_symbol_scale():

int convert_symbol_to_int():

yoid initialize_arithmetic_encoder();
void encode_symbol();

void flush_arithmetic_encoder()

short int get_current_count();

void initialize_arithmetic_decoder();
void remove_symbol_from_stream();

ffendi f

jtdefine END_OF_STREAM 256

short int totals[ 258 1: /* The cumulative totals */

char *CompressionName = “Adaptive order 0 model with arithmetic coding”;
char *Usage = “in-file out-file\n\n";

/*

* This compress file routine is a fairly orthodox compress routine.

* It first gathers statistics, and initializes the arithmetic

* encoder. It then encodes all the characters in the file, followed

* by the EOF character. The output stream is then flushed., and we

* exit. Note that an extra two bytes are output. When decoding an arith-
* metic stream, we have to read in extra bits. The decoding process
takes place in the msb of the low and high range ints, so when we are
* decoding our last bit we will still have to have at least 15 junk

* bits Tloaded into the registers. The extra two bytes account for
* that.

*/

void CompressFile( input, output, argc, argv )
ElEESSSTinpuLs;

BIT_FILE “*output;

int argc; .

char *argv{];
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int ¢;
SYMBOL s

build_model( input, output->file ):
initialize_arithmetic_encoder():

while ( ( ¢ = getc( input ) ) != EOF ) |
convert_int_to symbol( ¢, &s )
encode_symbol( output, &s ):

}

convert_int_to_symbol( END_OF_STREAM, &s )i

encode_symbol( output, &s );
flush_arithmetic_encoder( output );
CutputBits( output, OL, 16 );
while ( argc— > 0 ) |

printf( "Unused argument: %s\n"”, *argv

argvtt;

* This expand routine is also very conventional. It reads in the

* medel, initializes the decoder, then sits in a loop reading in

* cheracters. When we decode an END OF STREAM, it means we can close

* up the files and exit. Note decoding a single character is a three
* step process: first we determine what the scale is for the current

* symbol by looking at the difference between the high an low values,
* We then sece where the current input values fall in that range.

* Finally. we look in our totals array to find oul what symbol is

* 3 match. After that is done, we still have to remove that symbol

* from the decoder. Lots of work
Ll

void ExpandFile( input, output, argc, argv )
BIT_FILE *input;
FILE *output;:

ARITHMETIC CODING
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int argc;
char *argvll;
{

SYMBOL s;

int ¢;

int count;

input_counts( input->file J);
initialize_arithmetic_decoder{ input );
for ¢ 5 5 ) |
get_symbol_scale( &s J;
count = gel_current_count{ &s );
¢ = convert_symbel_to_int{ count, &s );
if ( ¢ == END_CF_STREAM )
break;
remove_symbo!_from stream( input, &s );
putc( (char) c¢, output );
!
while ( argc— > 0 ) |
printf( “Unused argument: %sin”, *argv J};

argvit;

/‘k

* This is the routine that is called to scan the input file, scale
* the counts, build the tofals array, the output the scaled counts
* to the output file.

* /
/

void build_model( input, output )
FILE *input;
FILE *output;
{
unsigned long counts[ 256 1;
unsigned char scaled_counts[ 256 ]:
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count_bytes( input, counts ):

scale_counts({ counts, scaled_counts
cutpul_counts(

build totals(

output, scaled counts

scaled_counts );

(/ £

)

)

ARITHMETIC CODING

* This routine runs through the file and counts the appearances of

* each character,
*/
#ifndef SEEK_SEI

fidefine SEEK_SET ©
f#endif

void count_bytes( counts )
FILE *input;

unsigned

!
1

input,

lotig counls(];

long input_marker;

int i;

int ¢;

for (1 =0 : i < 256 ; i++ )

I =03
input_marker = ftell(

countsf i
input );

while ( ( ¢ = getc{ input )) != EOF
counts[ ¢ J++;
fseek( input, irput_marker, SEEK_SET
|
/’*
* This routine is called to scale

* types of scaling that musl be done.
that the
the counts need
16384.

* scaled down so individual

* char. Then,

counts is less than

)

]

the counts

First,

to be rescaled so that the

down. There are two

the counts need to be

total of

counts fit into a single unsigred

all
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void scale counts( counts, scaled_counts )
unsigned long counts[];
unsigned char scaled_counts(];
{
int i;
unsigned long max_count;
unsigned int total;
unsigned long scale;

/*
* The first section of code makes sure each count fits into a single
* byte.
27/
max_count = 0;
for (i =0 ; i < 256 ; i++ )
if ( counts[ i 1 > max_count )
max_count = counts( i J:
scale = max_count / 256;
scale = scale + 1;
ORI SE 0 S 255N
scaled_counts[ 1 ] = (unsigned char ) ( counts{ i 1 / scale )i
if ( scaled_counts[ i ] == 0 & counts{ i 1 = 0 )
scaled_counts[ i ] = 1:

/*
* This next section makes sure the total is less than 16384,
* I initialize the total to 1 instead of 0 because there will be an
* additional 1 added in for the END_OF_STREAM symbo!:
&/

total = 1;

for { i =0 ; i < 256 ; i++ )

total += scaled_counts[ i ];
if ( total > ( 32767 - 256 ) )

scale = 4;

else if ( total > 16383 )
scale = 2;

else
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return;
for (1 =0 ; i < 256 ; i++ )
scaled_counts( i ] /= scale;

/*

* This rouline is used by both the encoder and decoder to build the
* table of cumulative totals. The counts for the characters in the
* file are in the counls array, and we know that there will be a

* single instance of the FOF symbol.

2

void buiid_totals( scaled_counts )

unsigned char scaled_counts([];

{

int i;

totals[ 0 3]
for (i =0 i < END_OF_STREAM ; i++ )

totalsl + + 1 1 = totals[ i ) + scaled_counts[ i J:
totals[ END_OF_STREAM + 1 ] = totals[ END_OF STREAM ] + 1;

=0

* In order for the compresscr to build the same model, I have to

* store the symbol counts in the compressed file so the expander can
* read them in. In order to save space, | don't save all 256 symbols
* unconditionally. The format used to store cocunts looks like this:

* start, stop, counts, start, stop, counts, ... O

* This means that I store runs of counts, until all the non-zero

* counts have been stored. At this time the list is terminated by

* storing a start value of 0. Note that at least 1 run of counts has
* to be stored, so even if the first start value is 0, I read it in.
* [t also means that even in an empty file that has no counts, [ have

to pass at least one count.

ARITHMETIC CODING
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* In order to efficiently use this format, [ have to identify runs of

* non-zero counts. Because of the format used, 1 don't want to stop a

* pryn because of just one or two zeros in the count stream. So

T

L have
it i 1 i i more zero values
* to sit in a loop lcoking for strings of three or more ]

* in a row.

* This is simple in concept, but it ends up being cne of Lhe most
* complicated routines in the whole program. A routine that Just
* writes out 256 values without attempting to optimize would be much
* simpler, but would hurt compression quite a bit an small files.
*
/)
void output_counts( output, scaled_counts )
FILE *output;
unsigned char scaled_counts[];
[
int first;
int last;
int next;
e ks

first = 0;
while ( first < 255 && scaled_counisl first 1 == § )
first++;
%
* Bach time I hit the start of the lcop, I assume that first is the
* number for a run of non-zero values. The rest of the loop is
* concerned with finding the value for last, which is Lhe end of the
* run, and the value of next, which is the start of the next run.
* At the end of the loop, 1 assign next to first, s¢ it starts in en
* the next run.
/)
for (5 first < 256 ; first = next ) |
last = first + 1;
RO P (Rl B
for ( : last < 256 ; last++ )
if ( scaled_counts[ Tast ] == 0 )

156

Page 47



/*

*

*/

*/’

break;
last—;
for ( next =

break;

ARITHMETIC CODING

last + 1; next < 256 : next++ )
if ( scaied_counts[ next ] '= 0 }

if ( next > 255 )

break:

if ( ( next -
break;

last = next;

Here s where I output first, last, and all the counts in between.

if ( putc( first,

fatal_error(
if ( putc( last

fatal_error(
for ( i = first

autput ) != first )

“Error writing byte counts\n” );

. output ) !'= tast )

“Error wrilting byte countsin™ ):

i

<= Tast ; i# ) |

if ( putc( scated_counts( 1 ], output ) I=
(int) scaled_countsti i ] )

fatal_error

{ “Error writing byte countsin™ };

if ( putc( 0, output )
“Error wriling byte counts\n” ):

fatal_error(

When expanding, 1
quite a bit easier

y

1= 0 )

have to read in the same sel of counts. This is

that

the process of writing them out, since no

decision making needs to be done. A1l I do is read in first, check

to see if I am all done, and if not, read in last and a string of
counts.
void irput_counts( input )




o
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FILE *input;
{

int first;
int last;
int i,
int ¢;

unsigned char scaled_counts[ 256 ¥

forp (i =u 0 ; i <256 ;= it)

scaled_countsl i ] = 0;
if ( ( first = getc( input ) ) == EOF )

fatal _error{ “Error reading byte counts\n” );
if ( ( last getc( input ) ) == EOF )

fatal_error{ “frror reading byte counts\n” };
for C ¢ ¢ ) |

for ( i = first ; i <= last . i++ )

if ( ( ¢ = getc( input ) ) == EOF )
fatal _error( “Error reading byte counts\n” };

I

else
scaled_counts[ i ] = (unsigned int) c;
if ( ( first = getc( finput ) ) == LEOF )
fatal_error( “Error reading byte counts\n” );:
if ( first == 0 )
break;
if ( ( last = getc( input ) ) == EOQF )
fatal_error( “Error reading byte counts\n” );
}
build_totals( scaled_counts );

/*

* Everything from here down define the arithmetic coder section
* of the program.

w3/

/*
* These four variables define the current state of the arithmetic

158
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* coder/decoder. They are assumed to be 16 bits long.
* by declaring them as short ints,

Note that
they will actually be 16 bits

* on most 80X86 and 680X0 machines, as well as VAXen.

3/

static unsigned short int code;/*
static unsigned short int low; /*
static unsigned short int high;/*
long underflow_bits: s

/‘k

The present input code value
Start of the current code range
End of the current code range
Number of underfiow bits pending

* This routine must be called to initialize the encoding process.

* The high register is initialized to all
* it has an infinite string of 1s to be shifted into the lower bit

* positions when needed.
< /]

void initialize_arithmetic_encoder() f{

fow = 0;
high = 0xffff;
underflow_bhits = 0;

/*

* At the end of the encoding process, there are still

significant

* pits left in the high and low registers. We output two bits,

* plus as many underflow bils as are necessary.

*/

void flush_arithmetic_encoder( stream )

BIT_FILE *stream;
[
JutputBit(
underflow_bits++;
underflow_bits— > 0 )

stream, low & 0x4000

while (
OQutputBit(

\

)5

stream, ~low & 0x4000 );

ARITHMETIC CODING

*/
*/
*/
*/

1s, and it is assumed that
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/‘ *

* Finding the low count, high count, and scale for a symbol

* js really easy, because of the way the totals are stored.

* This is the one redeeming feature of the data structure used
* in this implementation.

* /
/

void convert_int_to_symbol( c, s )

int ¢;

SYMBOL *s;

{
s->scale = totais[ END_OF_STREAM + 1 1:
s->low_count = totals[ ¢ 1:
s->high _count = totals[ ¢ + 1 J;

/*

* Getting the scale for the current context is easy.
k/’

void get_symhol scale( s )

SYMBOL *s;

s->scale = totais[ END_OF_STREAM + 1 1]:

* During decompression, we have Lo search through Lhe table until

* we find the symbol that straddles the “count” parameter. When

* it is found, it is returned. The reason for also setting the

* high count and low count is so that symbol can be properly removed
* from the arithmetic coded input.

=]

int convert_symbol_to_int( count, s)
int count;

SYMBOL *s;

{

e @8
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for £ ¢ = LND_GF_STREAM ; count < totals[ ¢ ] : o= )

s->high_court = totals( ¢ + 1 3
s->iow_count = totals[ ¢ ]:

N

returnC ¢ ).

] *
This routine is called to encode a symbcl. The symbol is passed
* in the SYMBOL structure as a low count, a high count, and a range,

* dnstead of the mere conventional probability ranges. The encoding

* process takes two steps. First., the values of high and low are

* updated Lo take intc account the range restricticn created by the

* new symboi. Then, as many bits as possible are shifted out to

* the output stream. Finaily, high and low are stable again and

* the routine returns.

*f

void encode_symbol( stream, 5 )

BIV_FILE *stream;

SYMBOL *s;
long renge;

/*

* These three lines rescale high and low for the new symbol

* 7
range = {long) ( high-iow )} + 1;
nigh = lew + {unsigned short int)
{( range * s->high_count )} / s->scale - 1 )i
low = low + (unsigned short int)
({ range * s->low_count ) / s->scale );
;x

* This loop turns out new Bits until high and low are far enoguah

* apart to have stabilized.

ARITHMETIC CODING
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/*
* If this test passes, it means that the MSDigits match, and can

* be sent to the output stream

=
if ( ( high & 0x8000 ) == ( low & 0x8000 ) ) {
QutputBit( stream, high & 0x8000 ):
while ( underflow_bits > 0 ) {
QutputBit( stream, ~high & 0x8000 );
underflow_bits—;
J
}
/*

* If this test passes, the numbers are in danger of underflow, because
* the MSDigits don’t match, and the 2nd digits are just one apart.
o/
else if ( ( low & 0x4000 ) && !'( high & 0x4G0C ) |
underflow_hits += 1;
Tow &= 0x3fff;
high |= 0x4000;
1 else
return ;
lTow <<= 1;
high <= 1;
high |= 1;

/*

* When decoding, this routine is called to figure out which symbol
* is presently waiting to be decoded. This routine expects to get

* the current model scale in the s->scale parameter, and it returns

* a count that corresponds to the present floating point code:
*

* code = count / s->scale
B/
short int get_current_count( s )
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SYMBOL *s;
long range;
short int count;

range = (long) ( high Tow ) + 1;
count = (short int)

((((long) { code - low ) + 1 ) * s-dscale-1 ) / range ):
return( count );

* This routine is cailed to initialize the state of the arithmetic
* decoder. This invoives initializing the high and low registers

* to their conventional starting values, plus reading the first

* 16 bits from the input stream into the code value.

*/
void initialize_arithmetic_decoder( stream )
BIT_FILE *stream;

inte g
code = 0;
for ( i =0 : 1 <16 ; i++ 3
code <<= 1;
code += InputBit{ stream J;
}
tow = 0;

high = Oxffff.

[%

* Just figuring out what the present symbol is doesn’t remove
* it from the input bit stream. After the character has been
* decoded, this routine has to be called to remove it from the

* input stream.

7

*/
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void remove_symbol_from_stream{ stream,
BIT_FILE *stream;
SYMBOL *s;
{
long range;

/*
* First, the range is expanded to account for the symbol removal,
*/
range = (long)( high - low ) + 1;
high = low + (unsigned short int)
{{ range * s->high_count ) / s->scale - 1 J;
Tow = low + (unsigned short int)

\

(( range * s->low_count ) / s->scale };

/*
* Next, any possible bits are shipped outl.
“iff
IO/ (e ) |
/*

* If the MSDigits match, the bits will be shifted out.
i/
if ¢ ( high & 0x8000 ) == ( low & §x8000 ) ) {
|
/*
* Else, if underflow is threatening, shift out the 2nd MSDigit.
i
else if ((low & 0x4000) == 0x4000 && (high & 0x4000) == 0
code "= 0x4000;
low &= Ox3fff;
high |= 0x4000;
) else
/*
* QOtherwise, nothing can be shifted out, so I return.
'/

Y
]
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return;
Tow <<= 1;
high <<=
high |= 1;
code <K= 1;
code 4= InputBit( stream );
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