
July 10, 2002 12:54 vra23151_fmt Sheet number 1 Page number i black

Fundamentals
of

Digital Logic with Verilog Design

Stephen Brown and Zvonko Vranesic
Department of Electrical and Computer Engineering

University of Toronto

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis
Bangkok Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

1 APPLE 1009

July 15, 2002 09:50 vra23151_cop Sheet number 1 Page number ii black

McGraw-Hill Higher Education
A Division of The McGraw-Hill Companies

FUNDAMENTALS OF DIGITAL LOGIC WITH VERILOG DESIGN

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. No part of
this publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.

International 1 2 3 4 5 6 7 8 9 0 QPF/QPF 0 9 8 7 6 5 4 3 2
Domestic 1 2 3 4 5 6 7 8 9 0 QPF/QPF 0 9 8 7 6 5 4 3 2

ISBN 0-07-282315-1
ISBN 0-07-121322-8 (ISE)

Publisher: Elizabeth A. Jones
Senior sponsoring editor: Carlise Paulson
Administrative assistant: Michaela M. Graham
Executive marketing manager: John Wannemacher
Senior project manager: Jill R. Peter
Production supervisor: Kara Kudronowicz
Lead media project manager: Judi David
Senior media technology producer: Phillip Meek
Coordinator of freelance design: Michelle D. Whitaker
Cover designer: Rokusek Design
Cover image: Stephen Brown and Zvonko Vranesic
Senior photo research coordinator: Lori Hancock
Compositor: Techsetters, Inc.
Typeface: 10/12 Times Roman
Printer: Quebecor World Fairfield, PA

Library of Congress Cataloging-in-Publication Data

Brown, Stephen D.
Fundamentals of digital logic with Verilog design / Stephen D. Brown, Zvonko G. Vranesic.—1st ed.

p. cm. (McGraw-Hill Series in electrical and computer engineering)
Includes index.
ISBN 0-07-282315-1
1. Logic circuits—Design and construction—Data processing. 2. Verilog (Computer hardware

description language). 3. Computer-aided design. I. Vranesic, Zvonko G. II. Title. III. Series.

TK7868.L6 B76 2003
621.39′2—dc21 2002071439

CIP

INTERNATIONAL EDITION ISBN 0-07-121322-8
Copyright © 2003. Exclusive rights by The McGraw-Hill Companies, Inc., for manufacture and export. This
book cannot be re-exported from the country to which is is sold by McGraw-Hill. The International Edition is
not available in North America.

www.mhhe.com

2

June 14, 2002 09:52 vra23151_ded Sheet number 1 Page number iii black

To Susan and Anne

3

June 20, 2002 09:49 vra23151_ata Sheet number 1 Page number v black

v

About the Authors

Stephen Brown received his B.A.Sc. degree in Electrical Engineering from the University
of New Brunswick, Canada, and the M.A.Sc. and Ph.D. degrees in Electrical Engineering
from the University of Toronto. He joined the University of Toronto faculty in 1992, where
he is now an Associate Professor in the Department of Electrical & Computer Engineering.
He is also Director of Software Development at the Altera Toronto Technology Center.

His research interests include field-programmable VLSI technology and computer
architecture. He won the Canadian Natural Sciences and Engineering Research Council’s
1992 Doctoral Prize for the best Ph.D. thesis in Canada.

He has won four awards for excellence in teaching electrical engineering, computer
engineering, and computer science courses. He is a coauthor of two other books: Funda-
mentals of Digital Logic with VHDL Design and Field-Programmable Gate Arrays.

Zvonko Vranesic received his B.A.Sc., M.A.Sc., and Ph.D. degrees, all in Electrical Engi-
neering, from the University of Toronto. From 1963–1965, he worked as a design engineer
with the Northern Electric Co. Ltd. in Bramalea, Ontario. In 1968 he joined the University
of Toronto, where he is now a Professor in the Departments of Electrical & Computer Engi-
neering and Computer Science. During the 1978–79 academic year, he was a Senior Visitor
at the University of Cambridge, England, and during 1984–85 he was at the University of
Paris, 6. From 1995 to 2000 he served as Chair of the Division of Engineering Science at
the University of Toronto. He is also involved in research and development at the Altera
Toronto Technology Center.

His current research interests include computer architecture, field-programmable VLSI
technology, and multiple-valued logic systems.

He is a coauthor of four other books: Computer Organization, 5th ed.; Fundamentals
of Digital Logic with VHDL Design; Microcomputer Structures; and Field-Programmable
Gate Arrays. In 1990, he received the Wighton Fellowship for “innovative and distinctive
contributions to undergraduate laboratory instruction.”

He has represented Canada in numerous chess competitions. He holds the title of
International Master.

4

June 13, 2002 15:36 vra23151_ch06 Sheet number 15 Page number 311 black

6.2 Decoders 311

f = w2fw2 + w2fw2

= w2(w3 + w1w4)+ w2(w1w3 + w3w4)

Observe that f w2
= fw2 ; hence only two 3-LUTs are needed, as illustrated in Figure 6.14b.

The LUT on the right implements the two-variable function w2fw2 + w2f w2
.

Since it is possible to implement any logic function using multiplexers, general-purpose
chips exist that contain multiplexers as their basic logic resources. Both Actel Corporation
[2] and QuickLogic Corporation [3] offer FPGAs in which the logic block comprises an ar-
rangement of multiplexers. Texas Instruments offers gate array chips that have multiplexer-
based logic blocks [4].

6.2 Decoders

Decoder circuits are used to decode encoded information. A binary decoder, depicted in
Figure 6.15, is a logic circuit with n inputs and 2n outputs. Only one output is asserted
at a time, and each output corresponds to one valuation of the inputs. The decoder also
has an enable input, En, that is used to disable the outputs; if En = 0, then none of the
decoder outputs is asserted. If En= 1, the valuation of wn−1 · · ·w1w0 determines which of
the outputs is asserted. An n-bit binary code in which exactly one of the bits is set to 1 at a
time is referred to as one-hot encoded, meaning that the single bit that is set to 1 is deemed
to be “hot.” The outputs of a binary decoder are one-hot encoded.

A 2-to-4 decoder is given in Figure 6.16. The two data inputs are w1 and w0. They
represent a two-bit number that causes the decoder to assert one of the outputs y0, . . . , y3.
Although a decoder can be designed to have either active-high or active-low outputs, in
Figure 6.16 active-high outputs are assumed. Setting the inputs w1w0 to 00, 01, 10, or 11
causes the output y0, y1, y2, or y3 to be set to 1, respectively. A graphical symbol for the
decoder is given in part (b) of the figure, and a logic circuit is shown in part (c).

Larger decoders can be built using the sum-of-products structure in Figure 6.16c, or
else they can be constructed from smaller decoders. Figure 6.17 shows how a 3-to-8 decoder
is built with two 2-to-4 decoders. The w2 input drives the enable inputs of the two decoders.
The top decoder is enabled if w2 = 0, and the bottom decoder is enabled if w2 = 1. This
concept can be applied for decoders of any size. Figure 6.18 shows how five 2-to-4 decoders
can be used to construct a 4-to-16 decoder. Because of its treelike structure, this type of
circuit is often referred to as a decoder tree.

w0

wn 1–

n
inputs

EnEnable

2n

outputs

y0

y2n 1–

Figure 6.15 An n-to-2n binary decoder.

5

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 16 Page number 312 black

312 C H A P T E R 6 • Combinational-Circuit Building Blocks

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y0w1

0

w0

(c) Logic circuit

w1

w0

x x

1
1

0

1
1

En

0
0
0

1

0

y1

1
0
0

0

0

y2

0
1
0

0

0

y3

0
0
1

0

0

y0

y1

y2

y3

En

w0

En

y0

w1 y1

y2

y3

Figure 6.16 A 2-to-4 decoder.

w2

w0 y0

y1

y2

y3

w0

En

y0

w1 y1

y2

y3

w0

En

y0

w1 y1

y2

y3

y4

y5

y6

y7

w1

En

Figure 6.17 A 3-to-8 decoder using two 2-to-4 decoders.

6

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 17 Page number 313 black

6.2 Decoders 313

w0

En

y0

w1 y1

y2

y3

y8

y9

y10

y11

w2

w0 y0

y1

y2

y3

w0

En

y0

w1 y1

y2

y3

w0

En

y0

w1 y1

y2

y3

y4

y5

y6

y7

w1

w0

En

y0

w1 y1

y2

y3

y12

y13

y14

y15

w0

En

y0

w1 y1

y2

y3

w3

En

Figure 6.18 A 4-to-16 decoder built using a decoder tree.

Example 6.9Decoders are useful for many practical purposes. In Figure 6.2c we showed the sum-of-
products implementation of the 4-to-1 multiplexer, which requiresAND gates to distinguish
the four different valuations of the select inputs s1 and s0. Since a decoder evaluates the
values on its inputs, it can be used to build a multiplexer as illustrated in Figure 6.19. The
enable input of the decoder is not needed in this case, and it is set to 1. The four outputs of
the decoder represent the four valuations of the select inputs.

Example 6.10In Figure 3.59 we showed how a 2-to-1 multiplexer can be constructed using two tri-state
buffers. This concept can be applied to any size of multiplexer, with the addition of a
decoder. An example is shown in Figure 6.20. The decoder enables one of the tri-state
buffers for each valuation of the select lines, and that tri-state buffer drives the output, f ,
with the selected data input. We have now seen that multiplexers can be implemented in
various ways. The choice of whether to employ the sum-of-products form, transmission
gates, or tri-state buffers depends on the resources available in the chip being used. For

7

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 18 Page number 314 black

314 C H A P T E R 6 • Combinational-Circuit Building Blocks

w1

w0

w0

En

y0

w1 y1

y2

y3

w2

w3

f

s0
s1

1

Figure 6.19 A 4-to-1 multiplexer built using a decoder.

instance, most FPGAs that use lookup tables for their logic blocks do not contain tri-state
buffers. Hence multiplexers must be implemented in the sum-of-products form using the
lookup tables (see problem 6.15).

6.2.1 Demultiplexers

We showed in section 6.1 that a multiplexer has one output, n data inputs, and � log2n �
select inputs. The purpose of the multiplexer circuit is to multiplex the n data inputs onto
the single data output under control of the select inputs. A circuit that performs the opposite
function, namely, placing the value of a single data input onto multiple data outputs, is

w1

w0

w0

En

y0

w1 y1

y2

y3

f

s0
s1

1 w2

w3

Figure 6.20 A 4-to-1 multiplexer built using a decoder and tri-state
buffers.

8

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 19 Page number 315 black

6.2 Decoders 315

called a demultiplexer. The demultiplexer can be implemented using a decoder circuit. For
example, the 2-to-4 decoder in Figure 6.16 can be used as a 1-to-4 demultiplexer. In this
case the En input serves as the data input for the demultiplexer, and the y0 to y3 outputs
are the data outputs. The valuation of w1w0 determines which of the outputs is set to the
value of En. To see how the circuit works, consider the truth table in Figure 6.16a. When
En = 0, all the outputs are set to 0, including the one selected by the valuation of w1w0.
When En = 1, the valuation of w1w0 sets the appropriate output to 1.

In general, an n-to-2n decoder circuit can be used as a 1-to-n demultiplexer. However, in
practice decoder circuits are used much more often as decoders rather than as demultiplexers.
In many applications the decoder’s En input is not actually needed; hence it can be omitted.
In this case the decoder always asserts one of its data outputs, y0, . . . , y2n−1, according to
the valuation of the data inputs, wn−1 . . . w0. Example 6.11 uses a decoder that does not
have the En input.

Example 6.11One of the most important applications of decoders is in memory blocks, which are used to
store information. Such memory blocks are included in digital systems, such as computers,
where there is a need to store large amounts of information electronically. One type of
memory block is called a read-only memory (ROM). A ROM consists of a collection of
storage cells, where each cell permanently stores a single logic value, either 0 or 1. Figure
6.21 shows an example of a ROM block. The storage cells are arranged in 2m rows with n

Sel2

Sel1

Sel0

Sel2m 1–

Address

Read

d0dn 1– dn 2–

m
-t

o-
2m

 d
ec

od
er

0/1 0/1 0/1

0/10/10/1

0/1 0/1 0/1

0/10/10/1

Data

a0

a1

am 1–

Figure 6.21 A 2m × n read-only memory (ROM) block.

9

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 20 Page number 316 black

316 C H A P T E R 6 • Combinational-Circuit Building Blocks

cells per row. Thus each row stores n bits of information. The location of each row in the
ROM is identified by its address. In the figure the row at the top of the ROM has address
0, and the row at the bottom has address 2m − 1. The information stored in the rows can
be accessed by asserting the select lines, Sel0 to Sel2m−1. As shown in the figure, a decoder
with m inputs and 2m outputs is used to generate the signals on the select lines. Since
the inputs to the decoder choose the particular address (row) selected, they are called the
address lines. The information stored in the row appears on the data outputs of the ROM,
dn−1, . . . , d0, which are called the data lines. Figure 6.21 shows that each data line has
an associated tri-state buffer that is enabled by the ROM input named Read. To access, or
read, data from the ROM, the address of the desired row is placed on the address lines and
Read is set to 1.

Many different types of memory blocks exist. In a ROM the stored information can
be read out of the storage cells, but it cannot be changed (see problem 6.31). Another
type of ROM allows information to be both read out of the storage cells and stored, or
written, into them. Reading its contents is the normal operation, whereas writing requires
a special procedure. Such a memory block is called a programmable ROM (PROM). The
storage cells in a PROM are usually implemented using EEPROM transistors. We discussed
EEPROM transistors in section 3.10 to show how they are used in PLDs. Other types of
memory blocks are discussed in section 10.1.

6.3 Encoders

An encoder performs the opposite function of a decoder. It encodes given information into
a more compact form.

6.3.1 Binary Encoders

A binary encoder encodes information from 2n inputs into an n-bit code, as indicated in
Figure 6.22. Exactly one of the input signals should have a value of 1, and the outputs
present the binary number that identifies which input is equal to 1. The truth table for a
4-to-2 encoder is provided in Figure 6.23a. Observe that the output y0 is 1 when either
input w1 or w3 is 1, and output y1 is 1 when input w2 or w3 is 1. Hence these outputs can be
generated by the circuit in Figure 6.23b. Note that we assume that the inputs are one-hot

2n

inputs

w0

w2n 1–

y0

yn 1–

n
outputs

Figure 6.22 A 2n-to-n binary encoder.

10

mzr
Rectangle

	chapter4 Optimized Implementation of Logic Functions
	chapter5 Number Representationand Arithmetic Circuits
	c h a p t e r6Combinational-Circuit BuildingBlocks
	c h a p t e r7Flip-Flops, Registers, Counters,and a Simple Processor
	c h a p t e r8Synchronous Sequential Circuits
	c h a p t e r9Asynchronous Sequential Circuits
	c h a p t e r10Digital System Design
	c h a p t e r11Testing of Logic Circuits
	a p p e n d i xAVerilog Reference
	a p p e n d i xB

