
Push vs. Pull: Implications of Protocol Design on Controlling Unwanted
Traffic

Zhenhai Duan
Florida State University

Kartik Gopalan
Florida State University

Yingfei Dong
University of Hawaii

Abstract

In this paper we argue that the difficulties in control-

ling unwanted Internet traffic, such as email SPAM, stem

from the fact that many Internet applications are fun-

damentally sender-driven and distinctly lack receiver
control over traffic delivery. However, since only re-

ceivers know what they want to receive, receiver-driven

approaches may often have clear advantages in restrain-

ing unwanted traffic. In this paper, we re-examine the

implications of the two common traffic delivery mod-

els: sender-push and receiver-pull. In the sender-push

model, a sender can deliver traffic at will to a receiver,

who can only passively accept the traffic, such as in

the SMTP-based email delivery system. In contrast, in

the receiver-pull model, receivers can regulate if and
when they wish to retrieve data, such as the HTTP-based

web access system. We argue that the problem of un-

wanted Internet traffic can be mitigated to a great extent

if the receiver-pull model is employed by Internet ap-

plications, whenever appropriate. Using three popular

applications – email, mobile text messages, and asyn-

chronous voice messages – as examples, we demon-

strate that asynchronous communication protocols can

be easily designed using the receiver-pull communica-

tion model to suppress unwanted Internet traffic.

1 Introduction

In recent years the Internet has been increasingly plagued

by the seemingly-never-ending unwanted traffic, mani-

festing itself in large volumes of unsolicited bulk emails

(spam), frequent outbreaks of virus/worm attacks, and

large scale Distributed Denial of Services (DDoS) at-

tacks. For example, it was estimated that 32 billion spam

messages were sent daily on the Internet as of November

2003 [11]. Worse, spammers and virus/worm attackers

are increasingly joining force to automate spamming by

hijacking (home) user machines through virus/worm at-

tacks. A recent study reported that as high as 80% of

spam messages were sent from compromised user ma-

chines (zombies) [15]. In this paper, we focus our at-

tention on spam-like unwanted Internet traffic, which

plagues critical Internet applications and services such as

emails, mobile text messages, and asynchronous voice

messages (where a recorded voice message is sent to a

list of receivers). We refer to such applications collec-

tively as message services. In this paper, we are espe-

cially interested in the implications of the protocol de-

sign on controlling unwanted traffic on the Internet.

Given the importance of controlling spam for preserv-

ing the value of the messaging systems, this issue has at-

tracted a great amount of attention in both networking re-

search and industrial communities. Many different spam

control schemes (in the context of Internet emails) have

been proposed, and some of them have been deployed on

the Internet [3, 8, 9, 12, 13, 14]. On the other hand, de-

spite these anti-spam research and development efforts,

the proportion of spam seen on the Internet has been

continuously on the rise. It is estimated that nowadays

spam messages constitute 79% of all business emails, up

from 68% since the US federal Can-Spam Act of 2003

took effect in January 2004 [2]. It was also reported that

80% of mobile phone text messages were unsolicited in

Japan [16], where SMS (Short Message Services) is pop-

ular, and is therefore attractive to spammers.

In this paper we argue that the difficulties in restrain-

ing spam can be attributed to the lack of receiver control
over how messages should be delivered on the Internet.

For example, in the current SMTP-based email delivery

architecture [10], any user can send an email to another at

will, regardless of whether or not the receiver is willing

to accept the message. In the early days of the Internet

development, this was not a big problem as people on

the network largely trusted each other. However, since

the commercialization of the Internet in mid-1990, the

nature of the Internet community has changed. It has be-

come less trustworthy, and email spam is possibly one of

INTEL 1410

the most notable examples of the untrustworthy nature of

the Internet.

In order to effectively address the issue of spam in the

untrustworthy Internet, we argue that receivers must gain
greater control over if and when a message should be
delivered to them. Asynchronous messages on the Inter-

net are delivered primarily using two different models:

sender-push and receiver-pull (or a combination of the

two). They differ in who initiates the message delivery

process. In the sender-push model, senders control the

delivery of traffic, and receivers passively accept what-

ever the senders push to them. The current SMTP-based

email delivery system is a typical example of this model.

In contrast, the receiver-pull model grants receivers the

control over if and when they want to retrieve data from

the senders. In this model, senders can only prepare the

data but they cannot push the data to receivers. Examples

of the receiver-pull model include the HTTP-based web

access services and the FTP-based file transfers.

As we will discuss in the next section, the receiver-

pull model comes with several appealing advantages be-

cause it grants receivers greater control over the message

delivery mechanism. It takes advantage of the fact that

receivers have more reliable knowledge of what traffic

they want to receive. Moreover, the receiver-pull model

may also simplify the challenging issues related to the

resource usage accountability and sender authentication.

For example, because spammers need to store and man-

age email messages on their own mail servers (waiting

for receivers to pull), it becomes relatively easier to hold

spammers responsible for the resources they consume.

As a proof of concept, in this paper we present examples

of three asynchronous messaging applications – emails,

mobile text messages, and asynchronous voice messages.

The objective of the paper is two-fold. First, through

the example designs of the message applications, we

would like to demonstrate the feasibility and advantages

of using receiver-pull model to design protocols for asyn-

chronous messaging applications. Second, and more

importantly, we want to raise the explicit awareness of

the difference between the sender-push and receiver-pull

models, and argue that, the receiver-pull model should

be the strongly favored design choice, whenever appro-

priate.

The rest of the paper is structured as follows. In Sec-

tion 2 we elaborate on the two different traffic models on

the Internet. We outline the example design to support

emails, mobile text messages, and asynchronous voice

messages using the receiver-pull model in Section 3. We

summarize the paper in Section 4.

2 Push vs. Pull: Implications of Protocol
Design Choice

The choices made during protocol design phase have

fundamental implications on security, usability, and ro-

bustness of any distributed message delivery system.

One such important design decision is whether to adopt

a sender-push or a receiver-pull model or a combination

of the two models (see Figure 1). In this section we dis-

cuss the implication of these design choices and make the

case that the receiver-pull model can prove to be highly

effective in discouraging unwanted traffic.

2.1 The Sender-Push Model

In the sender-push model, the sender knows the identity

of a receiver in advance and pushes the message in an

asynchronous manner to the receiver. The receiver ac-

cepts the entire message, may choose to optionally ex-

amine the message, and then accept or discard it. An

important aspect of sender-push model is that the entire

message is received before any receiver-side processing

is performed. A number of communication services in

the Internet rely on the sender-push model. A prime ex-

ample is email in which the sender relies on the Simple

Mail Transfer Protocol (SMTP) to push an entire email

message to a passive receiver. Asynchronous voice mes-

sages over the telephone network (both traditional and

IP based) represent another important application of the

sender-push model.

A common variant of the sender-push concept is the

receiver-intent-based sender-push (RISP) model. The

most common examples of the RISP model are the

subscription-based services such as mailing lists, where

user subscribes to a service which subsequently pushes

the data to the receiver. Other popular subscription-based

applications of the RISP model include stock and news

ticker applications and automatic software updates. Sim-

ilarly, Instant Messaging is another application where the

message itself is pushed by the sender, but the receiver

can allow or disallow messages from specific users.

A common feature among all the above examples is

that the content itself is pushed to the receiver, whereas

the receiver may optionally provide minimal control

feedback to the sender. The primary advantage of the

sender-push model is that its asynchronous message de-

livery framework is conceptually simple and fits natu-

rally for many useful applications such as email, text,

and voice messaging. Sender initiates message transfer

when the message is ready, the receiver simply waits pas-

sively for any message to arrive and accepts one when it

does arrive. Furthermore, there is no significant storage

requirement on the sender side.

The biggest disadvantage of the sender-push model is

2

(1) Intent to receive

(2) Content Push

Sender Receiver Sender ReceiverContent Pull

Sender Receiver Sender Receiver

(1) Intent to send

(2) Content Pull

Content Push

(b) Receiver Intent Based Sender Push (d) Sender Intent Based Receiver Pull

(a) Sender Push (c) Receiver Pull

Figure 1: Common message delivery models.

that it is the sender who completely controls what mes-

sage is delivered and when it is delivered. The receiver

has neither the knowledge of what message he/she will

receive, nor when the message will be received. The re-

ceiver is ideally expected to receive the entire message

before processing or discarding it. Apart from generat-

ing and transmitting the message, the sender does not

commit any resources for the transmitted message. On

the other hand, the receiver has to wait, receive, process

and store (or discard) the message even if the message is

not of interest to the receiver.

The RISP model alleviates this concern to some extent

by allowing receivers to provide control feedback. How-

ever it is not easy to implement in many popular applica-

tions. For example, adopting the RISP model for email,

mobile text and voice messages requires the receiver to

maintain an exhaustive white-list or black-list of email

addresses and phone numbers of potential senders. In-

deed, approaches such as Reverse Black Lists (RBL) [13]

adopt this philosophy in trying to blacklist email spam-

mers. However most potential correspondents, such as

first time senders, fall in neither of the two categories.

To handle such unclassified cases, receivers end up rely-

ing on content-based-filters, i.e. they receive the entire

message, scan it to determine if it is wanted and then ei-

ther accept or discard it. The fundamental problem here
lies in having to accept and examine the entire message
before culling it.

An additional disadvantage of the sender-push model

is that the sender can vanish (go offline) immediately af-

ter pushing unwanted content to the receiver. This makes

it quick and easy for a malicious sender to hide its iden-

tity. Once the receiver accepts the content, it is difficult

at best to trace back a malicious sender.

In summary, while the sender-push model is both sim-

ple and convenient, it comes with a serious baggage,

namely, that senders control what to send and when to

send, and cannot be easily held accountable for sending

unwanted content to receivers.

2.2 The Receiver-Pull Model

In the receiver-pull model, it is the receiver who initiates

the message transfer by explicitly contacting the sender.

The sender passively waits for the receiver and delivers

the entire content upon receiving a request. Since it is

the receiver who initiates the message transfer, the re-

ceiver would have explicit greater control over the mes-

sage transfer and implicit greater trust in the received

content, than in the sender-push model.

A number of successful communication services rely

on the receiver-pull model. The most important ex-

amples using the receiver-pull model are the FTP and

HTTP protocols. In both cases, the receiver initiates

the data transfer by opening an FTP connection or by

typing/clicking on a URL, respectively. (Interestingly,

HTTP supports both receiver-pull and as well as RISP

variant of sender-push, though the former is more com-

monly used. Examples of RISP model techniques in

HTTP include automatic page refreshes and the hugely

unpopular popup windows).

An interesting and useful variation of receiver-pull

model, which is of special interest to us, is the sender-
intent-based-receiver-pull (SIRP). In this model, the

sender first expresses an intent to send content to the re-

ceiver via a small intention message. If the receiver hap-

pens to be interested, it contacts the sender and retrieves

the content. A common example of the SIRP model is

the pager service. Here the caller expresses an intent to

talk to a callee by paging the latter and leaving a call-

back number. If the callee is interested, he/she contacts

the caller back on the callback number. The main feature

of the SIRP model is that the content itself is pulled by

the receiver whereas only a short intent is pushed by the

sender.

The primary advantage of the receiver-pull model is

that a receiver exercises control over when and what it

receives. The receiver has the freedom to first determine

its own level of interest in the content (as well as the

reputation of the sender) before it actually requests the

content. Secondly, it becomes the responsibility of the

sender to store and manage the content till the receiver is

ready to retrieve it. For instance, an FTP or web server

needs to store and manage its own files whereas receivers

access it only when they are interested. Thirdly, there is

a large window of time over which a malicious sender

is forced to stay online and reveal its identity. For the

pure receiver-pull model, this window is from the mo-

3

ment content is generated and named till the content is

retrieved by the receiver. For the SIRP model, this win-

dow is from the moment sender expresses its intent to

send till the time receiver retrieves the content. Thus,

unlike the sender push model, there is a large window

of time in which the receiver is free to verify a sender’s

identity.

One obvious disadvantage of receiver-pull model is

that the sender is burdened with greater content man-

agement complexity. The sender needs to store outgo-

ing messages and keep them available at least till the in-

tended receivers are willing to retrieve them, and needs

to have a deletion policy if a message is never retrieved

by the receiver. Another issue that the sender needs to

grapple with is to ensure that the party retrieving a mes-

sage is indeed the originally intended receiver. However,

another angle to look at these disadvantages is that, in

the sender-push model, it is the receiver who needs to

deal with the very same issues.

2.3 Implications on Unwanted Traffic

Given that the receiver-pull model grants more control to

receivers in terms of traffic delivery, and only receivers

know what they want to receive, the receiver-pull model

has clear advantages in restraining unwanted traffic com-

pared to the sender-push model. Moreover, the above

discussion also makes it clear that the sender is account-

able to a greater degree in the receiver-pull model than

in the sender-push model. This brings us to the follow-

ing key idea which underlies the theme of this paper:

When designing any communication protocol, it is ad-
vantageous to first consider using a receiver-pull model
which inherently provides greater protection against un-
wanted traffic.

The receiver-pull based model is a relatively low-cost

design choice that can be considered early during any

communication system design. Even if the receiver-pull

model results in slightly greater protocol complexity, it

can greatly help to simplify accountability and authenti-

cation issues by placing the overheads where they truly

belong – at the sender of the unwanted traffic.

A legitimate concern with a receiver-pull model is that

it may end up increasing the cost of sending messages for

malicious as well as legitimate senders. We will show in

the next section through an example of a receiver-pull

based email architecture that, using simple design opti-

mizations, one can easily lower the sending cost for le-

gitimate senders while still holding senders of unwanted

content accountable.

We do not claim that a receiver-pull based model may

be universally suitable for all forms of communications.

For example, soldiers in the middle of a desert war may

not want to rely on remote senders being reachable when

Sender MUA

Sender MTA Receiver MTA

Receiver MUA

MSID(msid)

GTML(msid)

Figure 2: An email delivery architecture with receiver-

pull model.

trying to retrieve their messages. However, in many im-

portant applications, such as civilian use of email, mo-

bile text messages, and asynchronous voice messages,

the receiver-pull architecture appears to offer strong ad-

vantages in fight against unwanted traffic.

3 Applications of the Receiver-Pull Model

In order to illustrate the feasibility and advantages of the

sender-intent-based-receiver-pull (SIRP) model in sup-

porting asynchronous applications, in this section we

outline the design of three important applications us-

ing the model: emails, mobile text messages, and asyn-

chronous voice messages. We present the design of the

SIRP based email system in greater detail and briefly

sketch the design for the other two applications using a

framework similar to the email design. (IM2000 [1] is

another email architecture using the receiver-pull model,

however it is not backward compatible.) We emphasize

that these designs only illustrate the feasibility and effec-

tiveness of supporting message services using the SIRP

model, in reducing unwanted traffic. Many design details

are omitted (see [4, 5] for supporting the Internet email

application using the SIRP model).

3.1 SIRP based email System

In the SIRP based email delivery system, senders can-

not directly push messages to arbitrary receivers. In-

stead, receivers decide if and when they want to retrieve

(or pull) messages from senders. Figure 2 illustrates

the basic architecture of the new email delivery system.

In the following we will present the new system from

both the senders’ and receivers’ perspectives. Before

we delve into details, it is worth noting that the new

system extends the current Simple Mail Transfer Proto-

col (SMTP) [10] by adding two new commands: MSID

and GTML. In other words, all the commands and reply

codes in SMTP are also supported in the new system. We

will explain the two new commands when we use them.

4

3.1.1 Sender: Message Composition and Receiver
Notification

Like in the current email architecture, a sender uses

a Mail User Agent (MUA) to compose outgoing mes-

sages [10]. After a message is composed by the sender,

the sender delivers the message to the sender Mail Trans-

fer Agent (MTA). For simplicity, we refer to a sender

MTA server as an SMTA, and a receiver MTA server as

an RMTA.

All the outgoing messages are stored at the SMTA. For

this purpose, the SMTA maintains an outgoing message

folder for each sender. Instead of the complete mes-

sage being directly pushed from the SMTA to the RMTA,

only the envelopes (headers) of the messages are deliv-

ered. In particular, the SMTA notifies the RMTA about

a new message by the new message identifier command

MSID, which contains the unique identifier msid of the

message. The identifier of a message is generated based

on the sender, the message, the receiver, and a secret key

of the sender.

We note that there is a fundamental difference between

message pull in the new email delivery system and URL

embedded in many current spam messages. The address

in the URL is normally not related to the sending ma-

chine of the message, which makes it hard to identify the

actual sender who is responsible for the spam message.

On the other hand, outgoing messages in the new email

system have to be stored on the sender mail servers in-

stead of third-party machines before they are retrieved.

In this way, we obtain several advantages in restricting

spam. For example, senders need to keep their mail

servers up until the messages are retrieved by receivers.

This presents less flexibility for senders to move around

by frequently changing their IP addresses and/or do-

mains. In contrast, in the current (sender-push) SMTP-

based architecture, spammers can send a large number of

spam messages and shut down their mail servers, which

makes it hard to hold spammers responsible for spam-

ming. Moreover, in the new system, senders have greater

responsibility to store and manage their outgoing email

messages in comparison to the current email architecture,

which imposes negligible responsibility on the senders.

In summary, while the current SMTP-based email de-

livery architecture provides a call-by-copy interface to

senders, the new system provides a call-by-reference in-

terface to senders [6].

3.1.2 Receiver: Pulling Messages from Senders

The new email delivery system grants more control to

receivers regarding if and when receivers want to read

a message, senders cannot arbitrarily push a message to

them. Receivers can be discriminate about which mes-

sages need to be retrieved, and which ones need not. If

the receiver indeed wants to read a message, he will in-

form his own RMTA, and the RMTA will retrieve the

message from the SMTA on behalf of the receiver. An

RMTA retrieves an email message using a get mail com-

mand GTML, which includes the identifier msid of the

message to be retrieved. After the message has been

pulled to the RMTA, conventional virus/worm scanning

tools and content-based spam filters can be applied to

further alert the receiver about potential virus or spam.

Therefore, the new email delivery system does not ex-
clude the use of existing email protection schemes. For

security reasons, when an SMTA receives the GTML
command, it needs to verify that the corresponding mes-

sage is for the intended receiver, and more importantly,

the requesting MTA is the mail server responsible for the

receiver (i.e. the one which was originally contacted for

message delivery).

By only delivering the envelope (including msid) of a

message from a sender to the receiver, less bandwidth,

storage, and processing time is used at the receiver side,

which is especially important for resource constrained

users, e.g., wireless, PDA, or dial-up users. On the other

hand, if the receiver indeed wants to read the message,

negligible extra time and bandwidth is required. Since

the receiver is less likely interested in messages from un-

known sources, the majority of such messages will not

be retrieved. As a result, considering the huge volume

of spam on the Internet, much less bandwidth will be

wasted by spam. For simple back of envelope calcula-

tion, assuming there are 30 billion spam messages sent

daily on the Internet [11] and the average size of these

messages is 5 KBytes [7]. We further assume the en-

velope of these messages occupies 1KBytes on average.

Then it is easy to see that we will have daily 120 Tera

Bytes worth of bandwidth saving on the Internet. Note

that if content-based filter is used alone, these spam mes-

sages are still delivered on the Internet.

3.1.3 Differentiating Message Deliveries

The simple SIRP model not only puts more burden on

spammers but also regular contacts of a receiver. To ad-

dress this issue a hybrid email delivery system can be

designed to support both the sender-push and receiver-

pull models. In such a system, each receiver maintains

a list of regular contacts, whose complete messages can

be directly pushed from the senders to the receiver using

the current SMTP protocol. In addition, a list of black-

listed contacts can be summarily declined. Messages

from non-regular contacts should be stored and managed

by the sender mail servers, and only the envelopes of

such messages are directly delivered to the receiver to

notify the pending messages.

5

Sending text
message

Message
header

Message id
Retrieving
message

Retrieving
message

Sender Receiver

Sender TMS Receiver TMS

Figure 3: Supporting mobile text messages with SIRP

model.

3.1.4 Practical Deployment Considerations

It can be shown that the new email delivery system can

be deployed incrementally, and popular message appli-

cations such as mailing lists can also be supported [4, 5].

3.2 Mobile Text Messages and Asyn-
chronous Voice Messages

Figure 3 illustrates the architecture in supporting mobile

text messages using the SIRP model. Each mobile phone

service provider will deploy one or multiple text mes-

sage servers (TMS). When a user sends a text message

to another user (who may be with another provider), the

text message is stored in the sender provider’s TMS, and

only the message header (including the corresponding

phone number and a message id) is sent to the receiver

provider’s TMS. The receiver provider’s TMS will no-

tify the receiver about the message header. If the receiver

wants to read the message, the receiver provider’s TMS

will retrieve the message from the sender provider’s TMS

on behalf of the receiver.

Asynchronous voice messages are currently supported

by cell phone service providers, where a recorded voice

message is sent to a receiver, or a group of receivers. This

service can be potentially exploited by spammers given

its capability to send a voice message to a large number

of receivers with relatively little effort. Moreover, as the

service is being integrated into VoIP based applications,

it becomes even more attractive to spammers. This ser-

vice can be supported using the SIRP model instead of

the sender-push model essentially in the same manner as

mobile text messages. We skip the detailed discussion

due to space considerations.

4 Summary

In this paper we examined the fundamental implications

of the two different traffic delivery models, sender-push

vs. receiver-pull, on controlling unwanted traffic on the

Internet. Using examples of three popular applications

– email, mobile text messaging, and asynchronous voice

messaging – we illustrated that the receiver-pull model

can be effectively used for asynchronous messaging in

place of the current sender-push model to reduce un-

wanted Internet traffic. Another important contribution

of this paper is that, by examining the implications of

two traffic delivery models, we attempt to raise explicit

awareness of the impact of the two models on unwanted

Internet traffic, and argue that, a receiver-pull model

should be strongly favored, whenever appropriate.

References

[1] BERNSTEIN, D. Internet Mail 2000 (IM2000).

http://cr.yp.to/im2000.html.

[2] CLABURN, T. Big guns aim at spam. Information Week (Mar.

2004).

[3] DELANY, M. Domain-based email authentication using public-

keys avertised in the DNS (domainkeys). Internet Draft (Aug.

2004). [draft–delany-domainkeys–base–01.txt].

[4] DUAN, Z., DONG, Y., AND GOPALAN, K. DiffMail: A dif-

ferentiated message delivery architecture to control spam. Tech.

Rep. TR-041025, Department of Computer Science, Florida State

University (Oct. 2004).

[5] DUAN, Z., GOPALAN, K., AND DONG, Y. Receiver-driven ex-

tensions to SMTP. Internet Draft (May 2005). [draft–duan–smtp–

receiver–driven–00.txt].

[6] FU, K. Personal communication. MIT, (Mar. 2005).

[7] GOMES, L., CAZITA, C., ALMEIDA, J., ALMEIDA, V., AND

MEIRA, W. Charactering a spam traffic. In Proceedings of
IMC’04 (Oct. 2004).

[8] GRAHAM, P. A plan for spam

. http://www.paulgraham.com/spam.html (2003).

[9] JUELS, A., AND BRAINARD, J. Client puzzles: A cryptographic

defense against connection depletion attacks. In Proceedings of
NDSS-1999 (Networks and Distributed Security Systems) (Feb.

1999).

[10] KLENSIN, J. Simple mail transfer protocol. RFC 2821 (Apr.

2001).

[11] LAURIE, B., AND CLAYTON, R. ”Proof-of-Work” proves not to

work. http://www.apache-ssl.org/proofwork.pdf (May 2004).

[12] LYON, J., AND WONG, M. Sender ID: Authenticating e-mail.

Internet Draft (Aug. 2004). [draft–ietf–marid–core–03.txt].

[13] RBL. Real-time spam black lists (RBL). http://www.email-

policy.com/Spam-black-lists.htm.

[14] RISHI, V. Free lunch ends: e-mail to go paid. The Economic
Times (Feb. 2004).

[15] SANDVINE INCORPORATED. Trend analysis: Spam trojans and

their impact on broadband service providers (June 2004).

[16] THE WASHINGTON POST. FCC sets sights on mobile phone

spam (Mar. 2004).

6

