
On-Chip vs. Off-Chip Memory: The Data
Partitioning Problem in Embedded
Processor-Based Systems

PREETI RANJAN PANDA
Synopsys, Inc.
and
NIKIL D. DUTT and ALEXANDRU NICOLAU
University of California at Irvine

Efficient utilization of on-chip memory space is extremely important in modern embedded
system applications based on processor cores. In addition to a data cache that interfaces with
slower off-chip memory, a fast on-chip SRAM, called Scratch-Pad memory, is often used in
several applications, so that critical data can be stored there with a guaranteed fast access
time. We present a technique for efficiently exploiting on-chip Scratch-Pad memory by
partitioning the application’s scalar and arrayed variables into off-chip DRAM and on-chip
Scratch-Pad SRAM, with the goal of minimizing the total execution time of embedded
applications. We also present extensions of our proposed memory assignment strategy to
handle context switching between multiple programs, as well as a generalized memory
hierarchy. Our experiments on code kernels from typical applications show that our technique
results in significant performance improvements.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache
memories; D.3.4 [Programming Languages]: Processors—Compilers

Additional Key Words and Phrases: Data cache, data partitioning, on-chip memory, memory
synthesis, scratch-pad memory, system design, system synthesis

1. INTRODUCTION
Modern embedded systems are characterized by a trend towards increasing
levels of chip-level integration. System design is gradually changing its

This work was partially supported by grants from NSF (CDA-9422095) and ONR (N00014-93-
1-1348). We are grateful for their support.
Authors’ addresses: P. R. Panda, Synopsys, Inc., 700 East Middlefield Road, Mountain View,
CA 94043; N. D. Dutt and A. Nicolau, Dept. of Information and Computer Science, University
of California at Irvine, Irvine, CA 92697.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 1084-4309/00/0700–0682 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000, Pages 682–704.

INTEL 1411

focus from the integration of chips on a board to the integration of complex
electronic components on the same chip. This shift in focus, which is
possibly due to increasing chip capacities, is driven by the goal of cost
reduction that stems from reduced chip count. Higher levels of on-chip
integration also imply that the basic building blocks used for chip design
change from register transfer level (RTL) components such as ALUs,
registers, multiplexers, etc., to system-level components such as processor
cores, memories, and coprocessors.

Flexibility and short design time considerations drive the use of CPU
cores as instantiable modules in system designs [Marwedel and Goosens
1995]. The flexibility of a processor core arises out of the fact that
parameters such as on-chip memory configuration can be suitably selected
for the specific application under consideration, whereas this choice is not
available in a packaged (off-the-shelf) processor. The short design time
arises from the fact that the processor core is a predesigned and debugged
macroblock. Examples of commercial processor cores commonly used in
system design are LSI Logic’s MIPS-based CW33000 series [LSI Logic
Corporation 1992] and the ARM series from Advanced RISC Machines
[Turley 1994].

Another important family of building blocks characterizing system design
is on-chip memory. The types of on-chip memory commonly integrated with
the processor on the same chip are instruction cache, data cache, and
on-chip SRAM. The instruction and data cache are fast local memory
serving an interface between the processor and the off-chip memory. The
on-chip SRAM, termed Scratch-Pad memory, refers to data memory
residing on-chip that is mapped into an address space disjoint from the
off-chip memory but connected to the same address and data buses. Both
the cache and Scratch-Pad SRAM allow fast access to their residing data,
whereas an access to off-chip memory (usually DRAM) requires relatively
longer access times. The main difference between the Scratch-Pad SRAM
and data cache is that the SRAM guarantees a single-cycle access time,
whereas an access to the cache is subject to compulsory, capacity, and
conflict misses [Patterson and Hennessy 1994].

The concept of Scratch-Pad memory is an important architectural consid-
eration in modern embedded systems, where advances in fabrication tech-
nology have made it possible to combine DRAM and ordinary logic on the
same chip. As a result, it is possible to incorporate embedded DRAMs along
with a processor core in the same chip [Margolin 1997; Wilson 1997]. Since
data stored in embedded DRAM can be accessed much faster than that in
off-chip DRAM, a related optimization problem that arises in this context is
how to identify critical data in an application for storage in on-chip
memory. In this paper we use the terminology Scratch-Pad SRAM to
include the embedded DRAM configuration.

When an embedded application is compiled, the accessed data can now be
stored either in the Scratch-Pad memory or in off-chip memory. In the
second case, it is accessed by the processor through the cache. We present a
technique for minimizing the total execution time of an embedded applica-

On-Chip vs. Off-Chip Memory • 683

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

tion by a careful partitioning of scalar and array variables used in the
application into off-chip DRAM (accessed through data cache) and Scratch-
Pad SRAM.

2. RELATED WORK

Several memory-related issues in system synthesis have been addressed in
recent years. The problem of mapping scalar variables into single- and
multiported on-chip memory structures is addressed in Balakrishnan et al.
[1988]; Ahmad and Chen [1991] ; Stok and Jess [1992]; Kim and Liu [1993].
An algorithm for clustering behavioral array variables to determine a
low-cost allocation of multiport memory modules was proposed by Ram-
achandran et al. [1994]. To avoid the offset addition operation during
synthesis, faster memory address generation techniques were proposed by
Karchmer and Rose [1994] and Schmit and Thomas [1995]. Techniques for
synthesizing physical memory structures from a library of memory compo-
nents are presented in Karchmer and Rose [1994]; Bakshi and Gajski
[1995]; Jha and Dutt [2000]. In Wuytack et al. [1996], the authors present a
flow graph balancing technique for reducing the worst-case memory access
bandwidth satisfying a given time constraint. The reduced bandwidth
results in a more cost-effective on-chip memory architecture.

Vanhoof et al. [1991] presented a strategy for storing data streams in
DSP applications in register files and SRAMs. In Lippens et al. [1993], the
authors present a hierarchical model of data streams and an algorithm for
mapping data streams into multiport memories implemented in the
PHIDEO synthesis system. Balasa et al. [1995] describe a dataflow analy-
sis-based technique for estimating the on-chip memory storage required for
multidimensional signals in a nonprocedural behavioral specification im-
plemented in the CATHEDRAL synthesis environment. The memory esti-
mation problem was also studied by Verbauwhede et al. [1994], who employ
an ILP formulation modeling the data dependence and execution se-
quences. Our work differs from the ones above in that we address the
problem of memory assignment to data in a hierarchical memory architec-
ture.

The problem of efficiently utilizing memory banks in DSPs was recently
addressed. Techniques for partitioning variables for simultaneous access
into two memory banks of the Motorola 56000 DSP processor are reported
in Sudarsanam and Malik [1995] and Saghir et al. [1996]. However,
parallel access is not the objective of the partitioning problem we are
addressing—we wish to maximize performance in the sequential access
scenario.

For embedded processor-based systems, Liao et al. [1995a; 1995b] de-
scribe a technique for reducing the size of compiled code targeting DSP
architectures, with the objective of minimizing on-chip instruction ROM.
Tomiyama and Yasuura [1996a] have studied the problem of code place-
ment for improving instruction cache performance. However, the code
placement strategy could lead to large increases in memory size. In

684 • P. R. Panda et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

Tomiyama and Yasuura [1996b], they present a technique for code place-
ment targeting instruction cache performance improvement under a code
size constraint. Similarly, optimization techniques for improving the data
cache performance of programs have been reported [Lam et al. 1991; Rawat
1993; Panda et al. 1996]. The analysis in Rawat [1993] is limited to scalars,
and hence not generally applicable. Iteration space blocking for improving
data locality is studied in Lam et al. [1991]. This technique is also limited
to the type of code that yields naturally to blocking. In Panda et al. [1996],
a data layout strategy for avoiding cache conflicts is presented. However, in
many cases, the array access patterns are too complex to be statically
analyzable using this method. The availability of an on-chip SRAM with
guaranteed fast access time creates an opportunity for overcoming some of
the conflict problems.

3. PROBLEM DESCRIPTION

Figure 1 shows the architectural block diagram of an application employing
a typical embedded core processor,1 where the parts enclosed in the dotted
rectangle are implemented in one chip, interfacing with an off-chip mem-
ory, usually realized with DRAM. The address and data buses from the
CPU core connect to the data cache, Scratch-Pad memory, and the external
memory interface (EMI) blocks. On a memory access request from the CPU,
the data cache indicates a cache hit to the EMI block through the C_HIT

1For example, the LSI Logic CW33000 RISC Microprocessor core [LSI Logic Corporation
1992].

CPU Core

Data Cache

Interface
Memory
External

DRAM

SRAM
I/F

SRAM

ScratchPad MemoryAddress Data

C_HIT
S_HIT

Fig. 1. Block diagram of a typical embedded processor configuration.

On-Chip vs. Off-Chip Memory • 685

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

signal. Similarly, if the SRAM interface circuitry in the Scratch-Pad
memory determines that the referenced memory address maps into the
on-chip SRAM, it assumes control of the data bus and indicates this status
to the EMI through signal S_HIT. If both the cache and SRAM report
misses, the EMI transfers a block of data of the appropriate size (equal to
the cache line size) between the cache and the DRAM.

The data address space mapping is shown in Figure 2, for a sample
addressable memory of size N data words. Memory addresses 0. . . P � 1
map into the on-chip Scratch-Pad memory and have a single processor cycle
access time. Thus, in Figure 1, S_HIT would be asserted whenever the
processor attempts to access any address in the range 0. . . P � 1. Memory
addresses P. . . N � 1 map into the off-chip DRAM, and are accessed by
the CPU through the data cache. A cache hit for an address in the range
P. . . N � 1 results in a single-cycle delay, whereas a cache miss, which
leads to a block transfer between off-chip and cache memory, results in a
delay of 10–20 processor cycles.

In this memory-partitioning work, we assume that register allocation,
the task that assigns frequently accessed program variables such as loop
indices to processor registers, has already been performed. Given the
embedded application code, our goal is to determine the mapping of each
scalar and arrayed program variable into local Scratch-Pad SRAM or
off-chip DRAM, while maximizing the application’s overall memory access
performance.

The sizes of the data cache and the Scratch-Pad SRAM are limited by the
total area available on-chip, as well as by the single cycle access time
constraint. Hence, we must first justify the need for both the data cache
and SRAM. We motivate the need for both types of on-chip memory using
the following example. Suppose the embedded core processor in Figure 1
can support a total of 2 KBytes for the data cache and the SRAM. We can
analyze the pros and cons of four extreme configurations of the cache and
SRAM:

Data
Cache

SRAM
(onchip)

DRAM
(offchip)

0

P1
P

N1

CPU

1 cycle

1 cycle cycles

Memory
Address
Space

1020

Fig. 2. Division of data address space between SRAM and DRAM.

686 • P. R. Panda et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

(1) No local memory: In this case we have the CPU accessing off-chip
memory directly, and spending 10–20 processor cycles on every access.
Data locality is not exploited and the performance is clearly inferior in
most cases.

(2) Scratch-Pad memory of size 2K: In this case we have an on-chip SRAM
of larger size, but no cache. The CPU has an interface both to the
SRAM and the off-chip memory. When large arrays that do not fit into
the SRAM are present, the direct interface to external memory has to
be used, thereby degrading performance.

(3) Data cache of size 2K: Here we have a larger data cache, but no
separate local SRAM. In many cases, having only a cache results in
certain unavoidable cache misses that degrade performance due to
stalled CPU cycles. We illustrate this with the following example of a
histogram evaluation code from a typical image processing application,
which builds a histogram of 256 brightness levels for the pixels of an
N � N image.

char BrightnessLevel [512][512];
int Hist [256]; /* Elements initialized to 0 */
· · ·
for (i � 0;i � N;i � �)

for (j � 0; j � N; j � �)
/* For each pixel �i, j� in image */
level � BrightnessLevel 	i
	 j
;
Hist [level] � Hist [level] � 1;

end for
end for

The performance is degraded by the conflict misses in the cache
between elements of the two arrays Hist and BrightnessLevel. Data
layout techniques such as Panda et al. [1996] are not effective in
eliminating the above types of conflict because accesses to Hist are
data-dependent. Note that this problem occurs in both direct-mapped as
well as set-associative caches.

(4) 1K Data cache � 1K Scratch-Pad SRAM: The problem incurred in (3)
above could be elegantly solved using the architecture of Figure 1, with
a 1K data cache and 1K SRAM. Since the Hist array is relatively small,
we can store it in the SRAM so that it does not conflict with Bright-
nessLevel in the data cache. This storage assignment improves the
performance of the histogram evaluation code significantly. The single-
cycle access time guarantee for data stored in SRAM and the possibility
of avoiding conflicts makes the architecture with a combination of cache
and Scratch-Pad memory superior to cache alone.

From the above, it is clear that both the SRAM and data cache are
desirable. Note that there could be applications where the Scratch-Pad

On-Chip vs. Off-Chip Memory • 687

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

SRAM offers no particular advantage over a single cache—for example,
when all arrays are too big to fit into SRAM, or there is little temporal
reuse among the arrays so that the cache conflicts do not cause any
performance penalty. However, we noticed in our experiments that the
SRAM improves performance in most typical applications.

We present a strategy for partitioning scalar and arrayed variables in an
application code into Scratch-Pad memory and off-chip DRAM accessed
through data cache, to maximize the performance by selectively mapping to
the SRAM those variables that are estimated to cause the maximum
number of conflicts in the data cache. We assume in this work that the
array sizes and loop bounds are known, either statically or through
profiling.2

4. THE PARTITIONING STRATEGY

The overall approach in partitioning program variables into Scratch-Pad
memory and DRAM is to minimize the cross-interference between different
variables in the data cache. We first outline the different features of the
code affecting partitioning, and then present a partitioning strategy based
on these features.

4.1 Features Affecting Partitioning

The partitioning of variables is governed by the following code characteris-
tics: (1) scalar variables and constants; (2) size of arrays; (3) life-times of
variables; (4) access frequency of variables; and (5) conflicts in loops. We
describe below each of the above factors and how our partitioning strategy
addresses the features.

4.1.1 Scalar Variables and Constants. In order to prevent interference
with arrays in the data cache, we map all scalar variables and constants to
the Scratch-Pad memory. This assignment helps avoid the kind of conflicts
mentioned in Section 3. If scalars are mapped to the DRAM (and conse-
quently accessed through the cache), it may be impossible to avoid cache
conflicts with arrays because arrays are assigned to contiguous blocks of
memory, parts of which will map into the same cache line as the scalars,
causing conflict misses.

It is possible to do a more sophisticated analysis of the most frequently
accessed scalars to the SRAM, but our decision to map all scalars to the
SRAM is based on our observation that, for most applications, the memory
space attributable to scalars is negligible compared to that occupied by
arrays.

4.1.2 Size of Arrays. We map arrays that are larger than the SRAM
into off-chip memory, so that these arrays are accessed through the data
cache. Mapping large arrays to the off-chip memory is the natural choice,
as it simplifies the array addressing. If a part of the array were to map into

2This is a reasonable assumption for many embedded applications.

688 • P. R. Panda et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

the SRAM, the compiler would have to generate book-keeping code that
keeps track of which region of the array is addressed, thereby making the
code inefficient. Further, since most loops access array elements more or
less uniformly, there is little or no motivation to map different parts of the
same array to memories with different characteristics.

4.1.3 Lifetimes of Variables. The lifetime of a variable, defined as the
period between its definition and last use [Aho et al. 1993], is an important
metric affecting register allocation. Variables with disjoint lifetimes can be
stored in the same processor register. The same analysis, when applied to
arrays, allows different arrays to share the same memory space.

Life-time information can also be used to avoid possible conflicts among
arrays. To simplify the conflict analysis, we assume that an array variable
accessed inside a loop is alive throughout the loop. Figure 3 shows an
example lifetime distribution of four array variables, a, b, c, and d. Since
b and c have disjoint lifetimes, the memory space allocated to array b can
be reused for array c. Since arrays a and d have intersecting lifetimes,
cache conflicts among them can be avoided by mapping one of them to the
SRAM. However, since on-chip resources are scarce, we need to determine
which array is more critical. The quantification of this criticality depends
on the access frequency of the variables.

4.1.4 Access Frequency of Variables. To obtain an estimate of the extent
of conflicts, we have to consider the frequency of accesses. For example, in
Figure 3, note that array d could potentially conflict with all the other
three arrays, so we could consider storing d in the SRAM. However, if the
number of accesses to d is relatively small, it is worth considering some
other array (e.g., a) first for inclusion in SRAM, since d does not play a
significant role in cache conflicts. For each variable u, we define the
variable access count, VAC�u�, to be the number of accesses to elements of
u during its lifetime.

Similarly, the number of accesses to other variables during the lifetime of
a variable is an equally important determinant of cache conflicts. For each

a

b

c
d

Time

Fig. 3. Example lifetime distribution.

On-Chip vs. Off-Chip Memory • 689

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

variable u, we define the interference access count, IAC�u�, to be the
number of accesses to other variables during the lifetime of u.

We note that each of the factors discussed above, VAC�u� and IAC�u�,
taken individually, could give a misleading idea about the possible conflicts
involving variable u. Clearly, the conflicts are determined jointly by the
two factors considered together. A good indicator of the conflicts involving
array u is given by the sum of the two metrics. We define the interference
factor, IF, of a variable u as

IF�u� � VAC�u� � IAC�u� (1)

A high IF value for u indicates that u is likely to be involved in a large
number of cache conflicts if mapped to DRAM. Hence, we choose to map
variables with high IF values into the SRAM.

4.1.5 Conflicts in Loops. The IF factor defined in the previous section
can be used to estimate conflicts in straightline code and conditionals (i.e.,
nonloop code). In the case of arrays accessed in loops, it is possible to make
a finer distinction based on the array access patterns. Consider a section of
a code in which three arrays a, b, and c are accessed as shown in Figure
4(a).

We notice that arrays a and b have an identical access pattern, which is
different from that of c. Data alignment techniques [Panda et al. 1996] can
be used to avoid data cache conflicts between a and b—the arrays can be
appropriately displaced in memory so that they never conflict in the cache.
However, when the access patterns are different, cache conflicts are un-
avoidable (e.g., between b and c—the access patterns are different due to
differing coefficients of the loop variables in their index expressions). In
such circumstances, conflicts can be minimized by mapping one of the

(b)

LCF (a) = k (a) + (k (c)) = N + 2 N = 3N

LCF (b) = k (b) + (k (c)) = N + 2 N = 3N

LCF (c) = k (c) + (k (a) + k(b)) = 2N + N + N = 4 N

(a)

for i = 0 to N1
access a [i]
access b [i]
access c [2 i]
access c [2 i + 1]

end for

Conflicts avoided by Data Alignment

Conflicts cannot be avoided by
Data Alignment

Fig. 4. (a) Example loop; (b) computation of LCF values.

690 • P. R. Panda et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

conflicting arrays to the SRAM. For instance, conflicts can be eliminated in
the example above by mapping a and b to the DRAM/cache and c to the
Scratch-Pad memory.

To accomplish this, we define the loop conflict factor, LCF for a variable
u as

LCF�u� � �
i�1

p

�k�u� � �
v

k�v�� (2)

where the summation �
i�1

p is over all loops (1. . . p) in which u is accessed

and �
v

is over all arrays (other than u) that are also accessed in loop i, and
for which it is not possible to use data placement techniques to completely
eliminate cache conflicts with u. In the example above, where we have only
one loop (p � 1), the LCF values shown in Figure 4(b) are generated. We
have one access to a and two to c in one iteration of the loop. Total number
of accesses to a and c combined is N � 2N � 3N. Thus, we have LCF�a�
� 3N, since cache conflicts between a and b can be completely eliminated
by data placement techniques.3 Similarly, LCF�b� � 3N, and LCF�c� �
4N. The LCF value gives us a metric to compare the criticality of loop
conflicts for all the arrays. In general, the higher the LCF number, the
more conflicts are likely for an array, and hence, the more desirable it is to
map the array to the Scratch-Pad memory.

4.2 Formulation of the Partitioning Problem

In Sections 4.1.4 and 4.1.5, we defined two factors, interference factor (IF)
and loop conflict factor (LCF). We integrate these two factors and arrive at
an estimate of the total number of accesses that could theoretically lead to
conflicts due to an array. We define the total conflict factor (TCF) for an
array u as

TCF�u� � IF�u� � LCF�u� (3)

where the IF�u� value is computed over a lifetime that excludes regions of
code where u is accessed inside loops. TCF�u� gives an indication of the
total number of accesses that are exposed to cache conflicts involving array
u, and hence denotes the importance of mapping u to the SRAM.

We formulate the data partitioning problem as follows: given a set of n
arrays A1. . . An, with TCF values TCF1. . . TCFn, sizes S1. . . Sn, and an
SRAM of size S, find an optimal subset Q � �1, 2, . . . , n
 such that
�

i�Q
Si � S and �

i�Q
TCFi is maximized.

3Conflicts between a and b can be eliminated because their respective array index expressions
differ only by a constant, i.e., independent of the loop variable.

On-Chip vs. Off-Chip Memory • 691

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

We note that the problem, as formulated above, is similar to the Knap-
sack Problem [Garey and Johnson 1979]. However, there is an additional
factor to consider in this case—several arrays with nonintersecting lifetimes
can share the same SRAM space. Thus, the data-partitioning problem is
NP-hard, since a polynomial-time algorithm for solving this problem, with
all variable life-times constrained to be identical, would also solve the
Knapsack problem in polynomial time.

4.3 Solution of the Partitioning Problem

An exhaustive-search algorithm to solve the memory assignment problem
would have to first generate clusters of all combinations of compatible
arrays (arrays that can share the same SRAM space) and then generate all
possible combinations of these clusters and pick the combination with total
size fitting into the SRAM that maximizes the cumulative TCF value. This
procedure requires O�22n

� time, which is unacceptably expensive, since the
function y � 22n

grows very rapidly, even for small values of n.
In our solution to the memory data-partitioning problem, we first group

arrays that could share SRAM space into clusters, and then use a variation
of the value-density approximation algorithm [Garey and Johnson 1979] for
the knapsack problem to assign clusters to the SRAM. The approximation
algorithm first sorts all the items in terms of value per weight (i.e., the
value density), and selects items in decreasing order of value density until
no more items can be accomodated. We define access density (AD) of a
cluster c as

AD�c� �
�v�cTCF�v�

max�size�v� � v � c

(4)

and use this factor to assign clusters of arrays into the SRAM. Note that
the denominator is the size of the largest array in the cluster. This is
because, at any time, only one of the arrays is live, and consequently the
arrays, which share the same memory space, need to be assigned only as
much memory as the largest in the cluster.

The memory data-partitioning algorithm MemoryAssign is shown in
Figure 5. The input to the algorithm is the SRAM size and the application
program P, with the register-allocated variables marked. The output is the
assignment of each variable to Scratch-Pad memory or DRAM.

The algorithm first assigns the scalar constants and variables to the
SRAM, and the arrays that are larger than the Scratch-Pad memory, to the
DRAM. For the remaining arrays, we first generate the compatibility graph
G, in which the nodes represent arrays in program P, and an edge exists
between two nodes if the corresponding arrays have disjoint lifetimes. The
analogous problem of mapping scalar variables into a register file is solved
by clique partitioning [Gajski et al. 1992] of the compatibility graph. A
clique is a fully connected subgraph of the compatibility graph and repre-
sents a single register—all nodes in a clique have disjoint lifetimes and can

692 • P. R. Panda et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

be mapped into the same register. The clique-partitioning problem, which
is known to be NP-complete [Garey and Johnson 1979], is to divide graph G
into a minimal number of disjoint cliques—this minimizes the number of
registers required for storing the scalar variables. However, we cannot
apply the clique-partitioning algorithm in a straightforward manner when
we cluster arrays because the cliques we are interested in are not necessar-
ily disjoint. For example, consider a clique consisting of three arrays, A,
B, and C, where size �A� is larger than size �B� and size �C�. Assuming
that the currently available SRAM space during one iteration of the
assignment is AvSpace, the clique �A, B, C
 will not fit into the SRAM if
size �A� � AvSpace. However, the subset �B, C
 will fit into the SRAM if

Fig. 5. Memory assignment of variables into SRAM/DRAM.

On-Chip vs. Off-Chip Memory • 693

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

size �B� and size �C� are smaller than AvSpace. Thus, we need to consider
both cliques �A, B, C
 and �B, C
 during the SRAM assignment phase.

To handle the possibility of overlapping clusters, we generate one cluster
(clique in graph G) c�u� for every array u, which consists of u and all nodes
v in graph G, such that size �v� � size �u�, and the subgraph consisting of
the nodes of c�u� is fully connected. Thus, for each array u, we attempt to
select the clique with maximum access density AD�u� (i.e., largest �TCF,
since maximum memory space required � size(u)). This problem is easily
seen to be NP-hard by using an instance where TCF�u� � 1 and size �u� �
1 for every node u, and inferring a reduction from the maximal clique
problem [Garey and Johnson 1979]. We use a greedy heuristic [Tseng and
Siewiorek 1986], which starts with a single node clique consisting of node u
and iteratively adds neighbor v with maximum TCF�v�, provided size �v�
� size �u� and v has an edge with all nodes in the clique constructed so
far. After generating the cliques for each array u, we assign the one with
the highest access density to the SRAM, following which we delete all nodes
in the clique and connecting edges from the graph G. In case of more than
one array with the same access density, we choose the array with the larger
TCF value. After every SRAM assignment, we assign all the unassigned
arrays that are larger than the available SRAM space to the DRAM. We
then iterate through the process until all nodes in G have been considered.
Note that the clustering step is recomputed in every iteration because the
overlapping nature of the clusters might cause the optimal clustering to
change after a clique is removed.

Analyzing algorithm MemoryAssign for computational complexity, we
note that determining the largest clique is the computationally dominant
step, with our greedy heuristic requiring O�n2� time, where n is the
number of arrays in program P. Determining the cliques for all arrays
requires O�n3� time in each iteration. Since the algorithm could iterate a
maximum of O�n� times, the overall complexity is O�n4�.

When applying algorithm MemoryAssign to practical applications, we
noticed that the number of arrays n is not necessarily small, but the
number of arrays in a program with nonintersecting lifetimes is usually
small. Consequently, the compatibility graph of arrays for a program tends
to be sparse. This is in contrast to the corresponding graph for scalars,
which is usually dense. This indicates that an exhaustive-search algorithm
for determining the cliques might be acceptable. In our implementation, we
use exhaustive search if the number of edges in a compatibility graph is
� 2n, where n is the number of nodes, otherwise we use our greedy
heuristic.

5. CONTEXT SWITCHING

Although an embedded system based on a processor core is likely to execute
only a single program most of the time, some applications might require a

694 • P. R. Panda et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

context switch among different programs. In the architecture of Figure 1, if
the entire SRAM is allotted to one program, the rest of the programs would
not benefit from the presence of the SRAM in the architecture. One logical
solution is to partition the SRAM space and allocate different partitions to
different programs (Figure 6).4 This partitioning of the SRAM space is
acceptable because the number of programs involved is usually small in an
embedded system that executes only a single application.

The problem we address in this section is that of efficient utilization of
the SRAM in the presence of multiple application programs. To allocate the
SRAM space efficiently among arrays of different programs, we use the
same TCF metric identified in Eq. (3). We first build a compatibility graph
CG�i� for each program Pi, and build the forest G consisting of the union of
all CG�i�. Finally, we use the same procedure used in algorithm Memory-
Assign (Section 4.3) for the clustering and memory assignment of arrays of
different programs. Note that, since we have no prior knowledge of the
order in which the different programs will be executed, we assume that
arrays from different programs cannot share SRAM space. The partitioning
algorithm SRAMPartition is summarized in Figure 7.

As discussed in Section 4.3, the computational complexity of the parti-
tioning procedure is O�n4�, where n is now the total number of arrays in all
the programs. An important point to remember is that the SRAM space
needs to be partitioned among variables in different programs only if the
programs are expected to be executed in a threaded fashion. If the execu-
tion order of the programs is known to be sequential, then the entire SRAM

4Note that, unlike the register file, it is usually prohibitively expensive to save the contents of
the entire Scratch-Pad SRAM in external DRAM on a context switch because it would add a
considerable delay to the context-switching time.

P Data1

P Data2

P Data3

P Data1

P Data2

P Data3

ScratchPad
Memory

OffChip
Memory

Fig. 6. Memory space partitioned between data from different programs.

On-Chip vs. Off-Chip Memory • 695

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

is available to every program, and algorithm MemoryAssign can be used for
memory assignment by considering each program separately.

5.1 Programs with Priorities

Some embedded systems are characterized by programs with varying
priorities, which might arise from frequency of execution or the relative
criticality of the programs. In such a case, it is necessary to modify
algorithm SRAMPartition to take the relative priorities of programs
P1. . . Pg into account. The approach we adopt in this case is to weight the
TCF values for each array in a program by the priority of the respective

Fig. 7. Algorithm for partitioning SRAM space among multiple programs.

696 • P. R. Panda et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

program. That is, if the priorities of programs P1. . . Pg are given by
r1. . . rg, we update TCF�u� � TCF�u� � r�i� for every array u in pro-
gram Pi. The rest of the partitioning procedure remains the same as before.

6. GENERALIZED MEMORY HIERARCHY

The architecture shown in Figure 1 can be generalized into an n-level
hierarchy shown in Figure 8, with the data cache at each level acting as the
interface between the levels above and below it. The total Scratch-Pad
memory at level i is Si and the time required for the processor to access
data at that level is ti cycles. Such an architecture becomes realisitic with
the advent of embedded DRAM technology, where large amounts of mem-
ory can now be integrated on-chip.

Algorithm MemoryAssign (and algorithm SRAMPartition) can be gener-
alized in a straightforward manner to effect memory assignment to pro-
gram data in the hierarchical memory architecture shown in Figure 8.
Since the memory access times of the different levels follow the ordering
t1 � t2 � . . . � tn, we store the most critical data in level 1, followed by
level 2, etc. Thus, in the first iteration of the memory data partitioning, we
invoke algorithm MemoryAssign with the SRAM size � S1 and off-chip
memory size � S2 � S3 � . . . Sn. After the assignment to the first level
Scratch-Pad memory, we remove the variables assigned to the first level
and continue the assignment for the remaining variables, now with SRAM
size � S2 and off-chip memory size � S3 � S4 � . . . Sn. In other words,
at every level i, the most critical data, as determined by the metric in
Section 4.3, is mapped into the Scratch-Pad memory of size Si.

The above strategy is a greedy algorithm because it is an extension of the
MemoryAssign algorithm, which itself adopts a greedy strategy. As noted in
Section 4.3, if the number of arrays involved is small, then an exhaustive
search strategy could also be adopted for the memory assignment.

CPU

SRAM

Cache

SRAM

Cache

t1 cycles

t2 cycles

DRAM

tn cycles

S1

S2

Sn

Level 1 Level 2 Level n

Fig. 8. Generalized memory hierarchy.

On-Chip vs. Off-Chip Memory • 697

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

7. EXPERIMENTS

We performed simulation experiments on several benchmark examples that
frequently occur as code kernels in embedded applications, to evaluate the
efficacy of our Scratch-Pad memory/DRAM data-partitioning algorithm. We
used an example Scratch-Pad SRAM and a direct-mapped, write-back data
cache size of 1 KByte each. In order to demonstrate the soundness of our
technique, we compared the performance and measured the total number of
processor cycles required to access the data during execution of the exam-
ples of the following architecture and algorithm configurations: (A) data
cache of size 2K: in this case there is no SRAM in the architecture; (B)
Scratch-Pad memory of size 2K: in this case there is no data cache in the
architecture, and we use a simple algorithm that maps all scalar and as
many arrays as will fit into the SRAM and the rest into the off-chip
memory; (C) random partitioning: in this case we used a 1K SRAM and 1K
data cache and a random data-partitioning technique;5 and (D) our tech-
nique: here we used a 1K SRAM and 1K data cache, and algorithm
MemoryAssign for data partitioning. The size 2K was chosen in (A) and (B),
because the area occupied by the SRAM/cache would be roughly the same
as that occupied by 1K SRAM � 1K cache, to a degree of approximation,
ignoring the control circuitry. We use a direct-mapped data cache with line
size � 4 words and the following access times:

time to access one word from Scratch-Pad SRAM � 1 cycle;

time to access one word from off-chip memory (when there is no cache) �
10 cycles;

time to access a word from data cache on cache hit � 1 cycle;

time to access a block of memory from off-chip DRAM into cache � 10
cycles for initialization � 1 � cache line size � 10 � 1 � 4 � 14 cycles.
This is the time required to access the first word � time to access the
remaining (contiguous) words. This is a popular model for cache/off-chip
memory traffic.

7.1 Benchmark Examples

Table I shows a list of benchmark examples, on which we performed our
experiments, and their characteristics. Columns 1 and 2 show the name
and a brief description of the benchmarks. Columns 3 and 4 give the
number of scalar and array variables, respectively, in the behavioral
specifications. Column 5 gives the total size of the data in the benchmarks.

Beamformer [Panda and Dutt 1995], a DSP application, represents an
operation involving temporal alignment and summation of digitized signals
from an N-element antenna array. Dequant is the dequantization routine
in the MPEG decoder application [Gall 1991]. IDCT is the inverse discrete

5Variables were considered in the order they appeared in the code, and mapped into SRAM if
there was sufficient space.

698 • P. R. Panda et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

cosine transform, also used in the MPEG decoder. SOR is the successive
over-relaxation algorithm, frequently used in scientific computing [Press et
al. 1992]. MatrixMult is the matrix multiplication operation, optimized for
maximizing spatial and temporal locality by reordering the loops. FFT is
the fast Fourier transform application. DHRC encodes the differential heat
release computation algorithm, which models the heat release within a
combustion engine [Catthoor and Svensson 1993].

7.2 Detailed Example: Beamformer

Figure 9 shows the details of the memory accesses for the Beamformer
benchmark example. We note that configuration A has the largest number
of SRAM accesses because the large SRAM (2K) allows more variables to be
mapped into the Scratch-Pad memory. Configuration B has zero SRAM
accesses, since there is no SRAM in that configuration. Also, our technique
(D) results in far more SRAM accesses than the random-partitioning
technique because the random technique disregards the behavior when it
assigns precious SRAM space. Similarly, cache hits are the highest for B,
and zero for A. Our technique results in fewer cache hits than C because
many memory elements accessed through the cache in C, map into the
SRAM in our technique. Configuration A has a high DRAM access count
because the absence of the cache causes every memory access not mapping
into the SRAM to result in an expensive DRAM access. As a consequence,
we observe that the total number of processor cycles required to access all
the data is highest for A. Configuration D results in the fastest access time,
due to judicious mapping of the most frequently accessed and conflict-prone
elements into Scratch-Pad memory.6

7.3 Performance of SRAM-Based Memory Configuration

Figure 10 presents a comparison of the performance for the four configura-
tions A, B, C, and D mentioned earlier, on code kernels extracted from
seven benchmark-embedded applications. The number of cycles for each
application is normalized to 100. In the Dequant example, A slightly
outperforms D because all the data used in the application fits into the 2K

6Figure 9 shows the total number of cycles scaled down by a factor of 10

Table I. Profile of Benchmark Examples

Benchmark Description
No. of

Scalars
No. of
Arrays

Data Size
(Bytes)

Beamformer Radar Application 7 7 19676
Dequant Dequantization Routine (MPEG) 7 5 2332
FFT Fast Fourier Transform 20 4 4176
IDCT Inverse Discrete Cosine Transform 20 3 1616
MatrixMult Matrix Multiplication 5 3 3092
SOR Successive Over-Relaxation 4 7 7184
DHRC Differential Heat Release Computation 28 4 3856

On-Chip vs. Off-Chip Memory • 699

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

SRAM used in A, so that an off-chip access is never necessary, resulting in
the fastest possible performance. However, the data size is bigger than the
1K SRAM used in D, where the compulsory cache misses cause a slight
degradation of performance. The results of FFT and MatrixMult, both
highly computation-intensive applications, show that A is an inferior
configuration for highly computation-oriented applications amenable to
exploitation of locality of reference. Cache conflicts degrade performance of
B and C in SOR and DHRC, causing worse performance than A (where
there is no cache), and D (where conflicts are minimized by algorithm
AssignMemoryType). Our technique resulted in an average improvement of
31.4% over A, 30.0% over B, and 33.1% over C.

In summary, our experiments on code kernels from typical embedded
system applications show the usefulness of on-chip Scratch-Pad memory, in
addition to a data cache as well the effectiveness of our data-partitioning
strategy.

7.4 Performance in the Presence of Context Switching

To study the effectiveness of our technique for handling context switching
between multiple programs described in Section 5, we simulated the effect
of context switching between three benchmark programs: Beamformer,
Dequant, and DHRC, with the same SRAM/cache configuration as in
Section 7.3 (1KB SRAM and 1KB data cache).

In our experiment, we compared the performance of two different SRAM
assignment techniques: (1) the technique outlined in Section 5; and (2) a
random assignment technique (random), where one application (out of
three) is selected at random, and our technique for SRAM assignment for a
single program (configuration D in Figure 10) is used to assign SRAM
space. In case SRAM space is unused, another program is selected at
random, and so on.

We use the following relative priorities (Section 5.1) for the three
examples: Beamformer - 1; Dequant - 2; and DHRC - 3. In the experiment,

0e+00

2e+05

4e+05

6e+05

8e+05

1e+06
A - SRAM Only (2K)
B - DCache Only (2K)
C - Random (1K SRAM + 1K DCache)
D - Our Technique (1K SRAM + 1K DCache)

SRAM
Accesses

Cache
Hits

DRAM
Accesses

Total
Cycles (x10)

Fig. 9. Memory access details for the Beamformer example.

700 • P. R. Panda et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

the priority value is reflected in the frequency of execution of the programs.
Thus, Beamformer is executed once, Dequant twice, and DHRC three times.

After performing the memory assignment, we generate a trace of memory
locations accessed by each program. The trace data structure is a list of
nodes where each nodes contains the memory address and the memory
access type (READ or WRITE) for each memory access. For the three
programs, Beamformer, Dequant, and DHRC, we generate 3 traces of
memory accesses: T1, T2, and T3 respectively. Since Dequant is executed
twice (priority � 2), we generate a new trace T�2 for Dequant by duplicating
and concatenating two copies of trace T2. Similarly, we generate T�3 for
DHRC by concatenating three copies of the T3 trace. We now simulate the
SRAM/data cache activity by randomly alternating execution between the
three traces: T1, T�2, and T�3.

Figure 11 shows the memory access details for the above experiment. The
number of SRAM accesses is very low for random because the number of
array accesses in the program whose arrays were assigned to the SRAM by
random is relatively lower. Cache hits were higher for random because it
assigned more accesses to DRAM data. In our technique, the number of
accesses to external DRAM was significantly lower because of efficient
SRAM utilization. Overall, there is a 37% reduction in the total processor
cycles due the memory accesses. This experiment indicates the utility of a
judicious SRAM partitioning/assignment strategy allowing for context
switching between different applications.

8. CONCLUSIONS

Modern embedded system applications use processor cores along with
memory and other coprocessor hardware on the same chip. Since the CPU
now forms only a part of the die, it is important to make optimal utilization

0

20

40

60

80

100

C
yc

le
s

(N
or

m
al

iz
ed

 to
 1

00
)

A - SRAM Only (2K)
B - DCache Only (2K)
C - Random (1K SRAM + 1 K DCache)
D - Our Technique (1K SRAM + 1K DCache)

Beamformer Dequant FFT IDCT MatrixMult SOR DHRC

Fig. 10. Performance comparisons of configurations A, B, C, and D.

On-Chip vs. Off-Chip Memory • 701

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

of the on-chip die area. In order to effectively use on-chip memory, we need
to leverage the advantages of both data cache (simple addressing) and
on-chip Scratch-Pad memory (guaranteed low access time) by including
both types of memory modules in the same chip, with the data memory
space being disjointly divided between the two.

We presented a strategy for partitioning variables (scalars and arrays) in
embedded code into Scratch-Pad memory and data cache that attempts to
minimize data cache conflicts. Our experiments on code kernels from
typical applications show significant performance improvements (29–33%
reduction in memory access time) over architectures of comparable area
and random-partitioning strategies. We also presented extensions of our
technique to handle context switching between different application pro-
grams, as well as a generalized hierarchical memory architecture.

Our data-partitioning algorithm has been incorporated into a memory
exploration strategy for determining the best on-chip memory configuration
for a given application [Panda 1998]. Data partitioning into on-chip and
off-chip memories is combined with a cache performance estimation tech-
nique to evaluate candidate divisions of a given on-chip memory space into
data cache and Scratch-Pad memory.

REFERENCES

AHMAD, I. AND CHEN, C. Y. R. 1991. Post-processor for data path synthesis using multiport
memories. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD ’91, Santa Clara, CA, Nov. 11-14, 1991), IEEE Computer Society Press, Los
Alamitos, CA, 276–279.

AHO, A., SETHI, R., AND ULLMAN, J. 1986. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA.

0

200000

400000

600000

800000
Random
Our Technique

SRAM
Accesses

Cache
Hits

DRAM
Accesses

Processor
Cycles (x 10)

Fig. 11. Performance in the presence of context switching between Beamformer, Dequant,
and DHRC examples.

702 • P. R. Panda et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

BAKSHI, S. AND GAJSKI, D. D. 1995. A memory selection algorithm for high-performance
pipelines. In Proceedings of the European Conference EURO-DAC ’95 with EURO-VHDL ’95
on Design Automation (Brighton, UK, Sept. 18–22), G. Musgrave, Ed. IEEE Computer
Society Press, Los Alamitos, CA, 124–129.

BALAKRISHNAN, M., BANERJI, D. K., MAJUMDAR, A. K., LINDERS, J. G., AND MAJITHIA, J.
C. 1990. Allocation of multiport memories in data path synthesis. IEEE Trans. Comput.-
Aided Des. 7, 4 (Apr. 1990), 536–540.

BALASA, F., CATTHOOR, F., AND DE MAN, H. 1995. Background memory area estimation for
multidimensional signal processing systems. IEEE Trans. Very Large Scale Integr. Syst. 3,
2 (June 1995), 157–172.

CATTHOOR, F. AND SVENSSON, L. 1993. Application-Driven Architecture Synthesis. Kluwer
Academic Publishers, Hingham, MA.

GAJSKI, D. D., DUTT, N. D., WU, A. C.-H., AND LIN, S. Y.-L. 1992. High-Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic Publishers, Hingham, MA.

LE GALL, D. 1991. MPEG: a video compression standard for multimedia applications.
Commun. ACM 34, 4 (Apr. 1991), 46–58.

GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., New York, NY.

JHA, P. K. AND DUTT, N. D. 2000. High-level library mapping for memories. ACM Trans. Des.
Autom. Electron. Syst. 5, 3 (July), 566–603.

KARCHMER, D. AND ROSE, J. 1994. Definition and solution of the memory packing problem for
field-programmable systems. In Proceedings of the IEEE/ACM International Conference on
Computer Aided Design (Nov. 1994), 20–26.

KIM, T. AND LIU, C. L. 1993. Utilization of multiport memories in data path synthesis. In
Proceedings of the 30th ACM/IEEE International Conference on Design Automation (DAC
’93, Dallas, TX, June 14–18), A. E. Dunlop, Ed. ACM Press, New York, NY, 298–302.

LAM, M., ROTHBERG, E., AND WOLF, M. 1991. The cache performance and optimizations of
blocked algorithms. In Proceedings of the 4th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IV, Santa Clara, CA,
Apr. 8–11), D. A. Patterson, Ed. ACM Press, New York, NY, 63–74.

LIAO, S., DEVADAS, S., KEUTZER, K., TJIANG, S., AND WANG, A. 1995. Code optimization
techniques for embedded DSP microprocessors. In Proceedings of the 32nd ACM/IEEE
Conference on Design Automation (DAC ’95, San Francisco, CA, June 12–16, 1995), B. T.
Preas, Ed. ACM Press, New York, NY, 599–604.

LIAO, S., DEVADAS, S., KEUTZER, K., TJIANG, S., AND WANG, A. 1995. Storage assignment to
decrease code size. In Proceedings of the Conference on Programming Language Design and
Implementation (SIGPLAN ’95, La Jolla, CA, June 18–21), D. W. Wall, Ed. ACM Press,
New York, NY, 186–195.

LIPPENS, P. E. R., VAN MEERBERGEN, J. L., VERHAEGH, W. F. J., AND VAN DER WERF,
A. 1993. Allocation of multiport memories for hierarchical data stream. In Proceedings of
the International Conference on Computer-Aided Design (ICCAD ’93, Santa Clara, CA, Nov.
7–11), M. Lightner and J. A. G. Jess, Eds. IEEE Computer Society Press, Los Alamitos, CA,
728–735.

LSI LOGIC CORPORATION. 1992. CW33000 MIPS Embedded Processor User’s Manual. VLSI
Technologies, Inc..

MARGOLIN, B. 1997. Embedded systems to benefit from advances in dram technology.
Comput. Des., 76–86.

MARWEDEL, P. AND GOOSENS, J., Eds. 1995. Code Generation for Embedded
Processors. Kluwer Academic Publishers, Hingham, MA.

PANDA, P. R. 1998. Memory optimizations and exploration for embedded systems. Ph.D.
Dissertation. University of California at Irvine, Irvine, CA.

PANDA, P. R. AND DUTT, N. D. 1995. 1995 high level synthesis design repository. In
Proceedings of the Eighth International Symposium on System Synthesis (Cannes, France,
Sept. 13–15, 1995), P. G. Paulin and F. Mavaddat, Eds. ACM Press, New York, NY,
170–174.

On-Chip vs. Off-Chip Memory • 703

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

PANDA, P. R., DUTT, N. D., AND NICOLAU, A. 1996. Memory organization for improved data
cache performance in embedded processors. In Proceedings of the ACM/IEEE International
Symposium on System Synthesis (Nov. 1996), ACM Press, New York, NY, 90–95.

PATTERSON, D. A. AND HENNESSY, J. L. 1994. Computer Organization & Design—The
Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San Francisco, CA.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VETTERLING, W. T. 1988. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York, NY.

RAMACHANDRAN, L., GAJSKI, D., AND CHAIYAKUL, V. 1994. An algorithm for array variable
clustering. In Proceedings of the European Conference on Design Automation (Feb. 1994),

RAWAT, J. 1993. Static analysis of cache performance for real-time programming. Master’s
Thesis. Iowa State Univ., Ames, IA.

SAGHIR, M. A. R., CHOW, P., AND LEE, C. G. 1996. Exploiting dual data-memory banks in
digital signal processors. In Proceedings of the 7th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-VII, Cam-
bridge, MA, Oct. 1–5, 1996), B. Dally and S. Eggets, Eds. ACM Press, New York, NY,
234–243.

SCHMIT, H. AND THOMAS, D. E. 1995. Address generation for memories containing multiple
arrays. In Proceedings of the 1995 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD-95, San Jose, CA, Nov. 5–9), R. Rudell, Ed. IEEE Computer Society Press,
Los Alamitos, CA, 510–514.

STOK, L. AND JESS, J. A. G. 1992. Foreground memory management in data path
synthesis. Int. J. Circuits Theor. Appl. 20, 3, 235–255.

SUDARSANAM, A. AND MALIK, S. 1995. Memory bank and register allocation in software
synthesis for ASIPs. In Proceedings of the 1995 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD-95, San Jose, CA, Nov. 5–9), R. Rudell, Ed. IEEE
Computer Society Press, Los Alamitos, CA, 388–392.

TOMIYAMA, H. AND YASUURA, H. 1996. Optimal code placement of embedded software for
instruction caches. In Proceedings of the European Conference on Design and Test (Paris,
France, Mar. 1996), 96–101.

TOMIYAMA, H. AND YASUURA, H. 1996. Size-constrained code placement for cache miss rate
reduction. In Proceedings of the ACM/IEEE International Symposium on System Synthesis
(Nov. 1996), ACM Press, New York, NY, 96–101.

TSENG, C. AND SIEWIOREK, D. P. 1986. Automated synthesis of data paths in digital
systems. IEEE Trans. Comput.-Aided Des. 5, 3 (July 1986), 379–395.

TURLEY, J. L. 1994. New processor families join embedded fray. Microprocessor Report 8, 17
(Dec.), 1–8.

VANHOOF, J., BOLSENS, I., AND MAN, H. D. 1991. Compiling multi-dimensional data streams
into distributed DSP ASIC memory. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD ’91, Santa Clara, CA, Nov. 11-14,
1991), IEEE Computer Society Press, Los Alamitos, CA, 272–275.

VERBAUWHEDE, I. M., SCHEERS, C. J., AND RABAEY, J. M. 1994. Memory estimation for high
level synthesis. In Proceedings of the 31st Annual Conference on Design Automation (DAC
’94, San Diego, CA, June 6–10, 1994), M. Lorenzetti, Ed. ACM Press, New York, NY,
143–148.

WILSON, R. 1997. Graphics IC vendors take a shot at embedded DRAM. Elec. Eng. Times 938
(Jan.), 41–57.

WUYTACK, S., CATTHOOR, F., DE JONG, G., LIN, G. B., AND MAN, H. D. 1996. Flow graph
balancing for minimizing the required memory bandwidth. In Proceedings of the ACM/
IEEE International Symposium on System Synthesis (Nov. 1996), ACM Press, New York,
NY, 127–132.

Received: May 1997

704 • P. R. Panda et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

