
USOO6309424B1

(12) United States Patent (10) Patent No.: US 6,309,424 B1
Fallon (45) Date of Patent: Oct. 30, 2001

(54) CONTENT INDEPENDENT DATA 5,495,244 2/1996 Je-Chang et al. .
COMPRESSION METHOD AND SYSTEM 5,533,051 7/1996 James.

5,583,500 12/1996 Allen et al..
(75) Inventor: James J. Fallon, Bronxville, NY (US) 5,627.534 5/1997 Craft.

5,654,703 8/1997 Clark, II.
(73) Assignee: Realtime Data LLC, New York, NY 5,668,737 9/1997 Iler.

(US) 5,717,393 2/1998 Nakano et al. .
5,717,394 2/1998 Schwartz et al. .

(*) Notice: Subject to any disclaimer, the term of this 57.6 so insti. al. .
patent is extended or adjusted under 35 5,771,340 6/1998 Nakazato et al. .
U.S.C. 154(b) by 0 days. 5,784,572 7/1998 Rostoker et al..

(21) Appl. No.: 09/705,446 (List continued on next page.)
(22) Filed: Nov. 3, 2000 Primary Examiner Patrick Wamsley

(74) Attorney, Agent, or Firm-Frank V. DeRosa; F. Chau
Related U.S. Application Data & ASSociates, LLP

(63) Continuation of application No. 09/210,491, filed on Dec. (57) ABSTRACT
11, 1998. Systems and methods for providing content independent

7 lossleSS data compression and decompression. A data com
(51) Int. Cl." H03M 7/34; H03M 7/38 pression System includes a plurality of encoders that are
(52) U.S. Cl. ... 3410/51; 704/220 configured to Simultaneously or Sequentially compress data
58) Field of Search 341/51, 79, 60; independent of the data content. The results of the various p

348/458; 386/96; 707/200; 375/240; 704/220; encoders are compared to determine if compression is
710/68; 711/112;382/253 achieved and to determine which encoder wields the highest y 9.

lossleSS compression ratio. The encoded data with the high
(56) References Cited est lossleSS compression ratio is then Selected for Subsequent

U.S. PATENT DOCUMENTS data processing, Storage, or transmittal. A compression iden
tification descriptor may be appended to the encoded data

4,872,009 10/1989 Tsukiyama et al.. with the highest compression ratio to enable Subsequent
E. 3.o R t al decompression and data interpretation. Furthermore, a timer
2 - - - 2 ICC C a may be added to measure the time elapsed during the

2. to: E".' ' al. . encoding process against an a priori-specified time limit.
5.331492 7/1993 Dangi et al. When the time limit expires, only the data output from those
5.243,341 9/1993 Seroussi et al. . encoders that have completed the encoding proceSS are
5,243,348 9/1993 Jackson. compared. The encoded data with the highest compression
5,270.832 12/1993 Balkanski et al.. ratio is Selected for data processing, Storage, or transmittal.
5,379,036 1/1995 Storer. The imposed time limit ensures that the real-time or pseudo
5,381,145 1/1995 Allen et al. real-time nature of the data encoding is preserved. Buffering
5,394,534 2/1995 Kulakowski et al.. the output from each encoder allows additional encoders to
SE . Niile et al. . be sequentially applied to the output of the previous encoder,
5.471.206 11 /1995 Allen et al yielding a more optimal lossleSS data compression ratio.
5,479,587 12/1995 Campbell et al..
5,486,826 1/1996 Remilard. 13 Claims, 16 Drawing Sheets

NCORE BUFFER
DATA STREAM COUNTR 1

ENCODED DATA
BUFFER STREAMW

ENCODERE2 COUNTER2 DESCRIPTOR

DATA NU BUFFER COMESSION ||compression
BLOCK H DATA H ENCODER E3 H). -> - TYPE COUNTER3 TrMINAONf
COUNTR BUFFER COMPARSON DESCRIPTION

1o- 20 -- so 50

BUFFER
ENCODERE COUNRn

30 40

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 1 of 27

US 6,309,424 B1
Page 2

5,799,110
5,805,932
5,809, 176
5,818,368
5,818,530
5,819,215
5,825,424
5,839,100

U.S. PATENT DOCUMENTS

8/1998
9/1998
9/1998
10/1998
10/1998
10/1998
10/1998

* 11/1998

Israelsen et al. .
Kawashima et al. .
Yajima.
Langley .
Canfield et al. .
Dobson et al. .
Canfield et al. .
Wegener 704/220

5,847,762
5,861,824
5,917,438
5,964.842
5.991,515
6,031,939

12/1998
1/1999
6/1999
10/1999
11/1999
2/2000

6,141,053 * 10/2000

* cited by examiner

Canfield et al. .
Ryu et al. .
Ando .
Packard.
Fall et al. .
Gilbert et al. .
Saukkonen 375/240

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 2 of 27

U.S. Patent Oct. 30, 2001 Sheet 1 of 16 US 6,309,424 B1

INPUT DATA STREAM

GENERATE DATA TYPE IDENTIFICATION
SIGNAL

IDENTIFY INPUT DATA TYPE AND 2

D SIGNAL

COMPRESS DATAN ACCORDANCE WITH 3

DATA TYPE

IDENTIFIED DATA TYPE

COMPRESSED DATA STREAM

RETRIEVE DATA TYPE
INFORMATION OF COMPRESSED

DATA STREAM

DECOMPRESS DATAN ACCORDANCE
WITH IDENTIFIED DATA TYPE

FIG. 1
PRIOR ART

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 3 of 27

Z "SO|-

US 6,309,424 B1 U.S. Patent

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 4 of 27

U.S. Patent Oct. 30, 2001 Sheet 3 of 16 US 6,309,424 B1

RECEIVE INITIAL 300
DATABLOCK FROM
INPUT DATA STREAM

COUNT SIZE OF 3O2
B DATA BLOCK

304
BUFFER DATA BLOCK

COMPRESS DATA
BLOCKWTH

ENABLED ENCODERS

BUFFERENCODED
DATA BLOCK OUTPUT 308

FROM EACH
ENCODER

COUNT SIZE OF 31 O
ENCODED DATA

BLOCKS

CALCULATE 312
COMPRESSION

RATIOS

COMPARE
COMPRESSION 314
RATIOS WITH

THRESHOLD LIMIT

FIG. 3a

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 5 of 27

U.S. Patent Oct. 30, 2001 Sheet 4 of 16 US 6,309,424 B1

A

316
1S

COMPRESSION
RATIO OF AT LEAST ONE
ENCODED DATA BLOCK

GREATER THAN
THRESHOLD?

NO

SELECT ENCODED
DATA BLOCKWITH

GREATEST
COMPRESSION RATIO

APPEND NULL
DESCRIPTOR TO

UNENCODED INPUT
DATABLOCK

APPEND
CORRESPONDING
DESCRIPTOR

OUTPUT UNENCODED
DATABLOCKWITH
NULL DESCRIPTOR

OUTPUT ENCODED
DATA BLOCKWITH

DESCRIPTOR

MORE
DATA BLOCKS IN INPUT

STREAM?

TERMINATE DATA
COMPRESSION
PROCESS

RECEIVE NEXT DATA
BLOCK FROM INPUT

STREAM

330

FIG. 3b

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 6 of 27

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 7 of 27

U.S. Patent Oct. 30, 2001 Sheet 6 of 16 US 6,309,424 B1

RECEIVE INTIAL 500
DATA BLOCK FROM
INPUT DATA STREAM

B COUNT SIZE OF 5O2
DATA BLOCK

504
BUFFER DATABLOCK

COMPRESS DATA -506 BLOCKWITH
ENABLED ENCODERS

APPEND CORRESPONDING 508
DESRABILITY FACTORS TO
ENCODED DATABLOCKS

BUFFERENCODED DATA
BLOCK OUTPUT

FROM EACHENCODER

510

COUNT SIZE OF
ENCODED DATA 512

BLOCKS

CALCULATE
COMPRESSION 514

RATIOS

COMPARE COMPRESSION 516
RATIOS WITH THRESHOLD

LIMIT

F.G. 5a

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 8 of 27

U.S. Patent

TERMINATE DATA
COMPRESSION
PROCESS

Oct. 30, 2001 Sheet 7 of 16 US 6,309,424 B1

A

518
IS

COMPRESSION
RATIO OF AT LEAST ONE
ENCODED DATA BLOCK

GREATER THAN
THRESHOLD?

CALCULATE FIGURE OF
MERIT FOREACHENCODED
DATA BLOCK WHICH EXCEED

THRESHOLD

APPEND NULL
DESCRIPTOR TO

UNENCODED INPUT
DATABLOCK

520

SELECT ENCODED DATA
BLOCK WITH GREATEST

FIGURE OF MERIT

APPEND OUTPUT UNENCODED
CORRESPONDING DATA BLOCKWITH
DESCRIPTOR NULL DESCRIPTOR

522

OUTPUT ENCODED
DATA BLOCKWITH
DESCRIPTOR

MORE
DATA BLOCKS IN
INPUT STREAM?

YES

RECEIVE NEXT DATA 534
BLOCK FROM INPUT

STREAM

FIG. 5b.

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 9 of 27

06

US 6,309,424 B1 U.S. Patent

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 10 of 27

U.S. Patent

702

704

708

INPUT INITIA
DATA BLOCK FROM

INPUT DATA STREAM

COUNT SIZE OF

Oct. 30, 2001 Sheet 9 of 16

L
710

TIME EXPRED?

DATA BLOCK

BUFFER DATABLOCK

INTIALIZE TIM

BEGIN
COMPRESSING

DATABLOCKWITH
ENCODERS

NO NO

ENCODING
COMPLETE2

ER

BUFFER
ENCODED DATA

COUNT SIZE OF
ENCODED DATA

BLOCKS

CALCULATE
COMPRESSION

RATIOS

LIMIT

FIG. 7a

ENCODING
PROCESS

BUFFERENCODED
DATA BLOCK FOREACH

ENCODER THAT BOCKOUT comperDENCODING
FROM EACH PROCESS
ENCODER WITHIN TIME LIMIT

COMPARE COMPRESSION
RATIOS WITH THRESHOLD

US 6,309,424 B1

STOP

718

720

722

724

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 11 of 27

U.S. Patent Oct. 30, 2001 Sheet 10 of 16 US 6,309,424 B1

A

726
S

COMPRESSION
RATIO OF AT LEAST ONE
ENCODED DATA BLOCK

GREATER THAN
THRESHOLD?

SELECT ENCODED
DATA BLOCKWITH

GREATEST
COMPRESSION RATIO

APPEND NULL
DESCRIPTOR TO

UNENCODED INPUT
DATA BLOCK

APPEND
CORRESPONDING
DESCRIPTOR

OUTPUT UNENCODED
DATA BLOCKWTH
NULL DESCRIPTOR

OUTPUT ENCODED
DATABLOCK WITH

DESCRIPTOR

MORE
DATA BLOCKS IN INPUT

STREAM?

TERMINATE DATA
COMPRESSION
PROCESS

RECEIVE NEXT DATA
BLOCK FROM INPUT

STREAM

740

FIG. 7b

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 12 of 27

US 6,309,424 B1 U.S. Patent

08

09

07

U HELNÍ TOO

0/

09

UE' XJECTIOONE £E NJEGJOONE ZE HEGJOONE ?E NJEGJOONE

06

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 13 of 27

US 6,309,424 B1 Sheet 12 of 16 Oct. 30, 2001 U.S. Patent

L'uu O/R

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 14 of 27

U.S. Patent

100
RECEIVE INITIAL

DATABLOCKFROM
INPUT DATA STREAM

102

B COUNT SIZE OF
DATABLOCK

BUFFER DATA
104 BLOCK

106 INITIALIZE TIMER

APPLY INPUT DATA
108 BLOCK TO FIRST

ENCODNG STAGE
IN CASCADED

ENCODER PATHS

Oct. 30, 2001 Sheet 13 of 16

110

TIME EXPRED?

APPLY OUTPUT
OF COMPLETED
ENCODING

STAGE TO NEXT
ENCODING
STAGE IN

CASCADE PATH

116

NO

BUFFER 114
ENCODED DATA
BLOCK OUTPUT

FROM YES
COMPLETED
ENCODING
STAGE

7-112 YES,
ENCODING
STAGE

COMPLETE

STOP ENCODING
PROCESS

SELECT BUFFERED OUTPUT OF LAST
ENCODING STAGE IN ENCODER

CASCADE THAT COMPLETED ENCODING
PROCESS WITHIN TIME LIMIT

COUNT SIZE OF
ENCODED DATA

BLOCKS
122

CALCULATE
COMPRESSION

RATIOS

124

COMPARE COMPRESSION
RATIOS WITH THRESHOLD

LIMIT
126

FIG 10a A

US 6,309,424 B1

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 15 of 27

U.S. Patent

134

136

140

TERMINATE DATA
COMPRESSION

PROCESS

Oct. 30, 2001 Sheet 14 of 16 US 6,309,424 B1

A

128
IS

COMPRESSION
RATIO OF AT LEAST ONE
ENCODED DATA BLOCK

GREATER THAN
THRESHOLD?

CALCULATE FIGURE OF
MERIT FOREACHENCODED
DATA BLOCK WHICH EXCEED

THRESHOLD

APPEND NULL
DESCRIPTOR TO

UNENCODED INPUT
DATABLOCK

SELECT ENCODED DATA
BLOCK WITH GREATEST

FIGURE OF MERIT

APPEND OUTPUT UNENCODED
138 CORRESPONDING DATA BLOCKWTH

DESCRIPTOR NULL DESCRIPTOR

OUTPUT ENCODED
DATABLOCKWITH

DESCRIPTOR

142 N MORE
DATA BLOCKS IN
INPUT STREAM?

YES

RECEIVE NEXT DATA /-144
BLOCK FROM INPUT

STREAM

B

F.G. 1 Ob

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 16 of 27

US 6,309,424 B1 Sheet 15 of 16 Oct. 30, 2001 U.S. Patent

WWE''}} 1S VIVCI

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 17 of 27

U.S. Patent Oct. 30, 2001 Sheet 16 of 16 US 6,309,424 B1

1200 RECEIVE INTIAL
DATABLOCK FROM
INPUT DATASTREAM

12O2
BUFFER DATABLOCK

EXTRACT DATA
COMPRESSION TYPE 1204

DESCRIPTOR

1206
S DATA

COMPRESSION
TYPE DESCRIPTOR

NULL2

SELECTDECODER(S)
CORRESPONDING TO

DESCRIPTOR

RECEIVE NEXT
DATA BLOCK IN
INPUT STREAM

OUTPUT
UNDECODED
DATA BLOCK DECODE DATABLOCK USING

SELECTED DECODER(S)

OUTPUT DECODED
DATA BLOCK

MORE DATA
BLOCKS IN INPUT

STREAM?

NO

TERMINATE
DECODING PROCESS

F.G. 12

1218

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 18 of 27

US 6,309,424 B1
1

CONTENT INDEPENDENT DATA
COMPRESSION METHOD AND SYSTEM

Cross-Reference To Related Application
This application is a Continuation of U.S. patent appli

cation Ser. No. 09/210,491, filed on Dec. 11, 1998.
BACKGROUND

1. Technical Field
The present invention relates generally to a data compres

Sion and decompression and, more particularly, to Systems
and methods for providing content independent lossleSS data
compression and decompression.

2. Description of the Related Art
Information may be represented in a variety of manners.

Discrete information Such as text and numbers are easily
represented in digital data. This type of data representation
is known as Symbolic digital data. Symbolic digital data is
thus an absolute representation of data Such as a letter,
figure, character, mark, machine code, or drawing,

Continuous information Such as Speech, music, audio,
images and Video, frequently exists in the natural world as
analog information. AS is well-known to those skilled in the
art, recent advances in very large Scale integration (VLSI)
digital computer technology have enabled both discrete and
analog information to be represented with digital data.
Continuous information represented as digital data is often
referred to as diffuse data. Diffuse digital data is thus a
representation of data that is of low information density and
is typically not easily recognizable to humans in its native
form.

There are many advantages associated with digital data
representation. For instance, digital data is more readily
processed, Stored, and transmitted due to its inherently high
noise immunity. In addition, the inclusion of redundancy in
digital data representation enables error detection and/or
correction. Error detection and/or correction capabilities are
dependent upon the amount and type of data redundancy,
available error detection and correction processing, and
extent of data corruption.
One outcome of digital data representation is the continu

ing need for increased capacity in data processing, Storage,
and transmittal. This is especially true for diffuse data where
increases in fidelity and resolution create exponentially
greater quantities of data. Data compression is widely used
to reduce the amount of data required to process, transmit,
or Store a given quantity of information. In general, there are
two types of data compression techniques that may be
utilized either Separately or jointly to encode/decode data:
lossleSS and lossy data compression.

LOSSy data compression techniques provide for an inexact
representation of the original uncompressed data Such that
the decoded (or reconstructed) data differs from the original
unencoded/uncompressed data. LOSSy data compression is
also known as irreversible or noisy compression. Entropy is
defined as the quantity of information in a given set of data.
Thus, one obvious advantage of lossy data compression is
that the compression ratioS can be larger than the entropy
limit, all at the expense of information content. Many lossy
data compression techniques Seek to exploit various traits
within the human Senses to eliminate otherwise impercep
tible data. For example, lossy data compression of Visual
imagery might Seek to delete information content in exceSS
of the display resolution or contrast ratio.
On the other hand, lossleSS data compression techniques

provide an exact representation of the original uncom

15

25

35

40

45

50

55

60

65

2
pressed data. Simply stated, the decoded (or reconstructed)
data is identical to the original unencoded/uncompressed
data. LOSSleSS data compression is also known as reversible
or noiseleSS compression. Thus, loSSleSS data compression
has, as its current limit, a minimum representation defined
by the entropy of a given data Set.

There are various problems associated with the use of
lossleSS compression techniques. One fundamental problem
encountered with most lossleSS data compression techniques
are their content sensitive behavior. This is often referred to
as data dependency. Data dependency implies that the com
pression ratio achieved is highly contingent upon the content
of the data being compressed. For example, database files
often have large unused fields and high data redundancies,
offering the opportunity to compress data at ratios of 5 to 1
or more. In contrast, concise Software programs have little to
no data redundancy and, typically, will not losslessly com
press better than 2 to 1.

Another problem with lossleSS compression is that there
are significant variations in the compression ratio obtained
when using a Single lossleSS data compression technique for
data Streams having different data content and data size. This
process is known as natural variation.
A further problem is that negative compression may occur

when certain data compression techniques act upon many
types of highly compressed data. Highly compressed data
appears random and many data compression techniques will
Substantially expand, not compress this type of data.

For a given application, there are many factors which
govern the applicability of various data compression tech
niques. These factors include compression ratio, encoding
and decoding processing requirements, encoding and decod
ing time delays, compatibility with existing Standards, and
implementation complexity and cost, along with the adapt
ability and robustness to variations in input data. A direct
relationship exists in the current art between compression
ratio and the amount and complexity of processing required.
One of the limiting factors in most existing prior art lossleSS
data compression techniques is the rate at which the encod
ing and decoding processes are performed. Hardware and
Software implementation tradeoffs are often dictated by
encoder and decoder complexity along with cost.

Another problem asSociated with lossleSS compression
methods is determining the optimal compression technique
for a given set of input data and intended application. To
combat this problem, there are many conventional content
dependent techniques which may be utilized. For instance,
filetype descriptors are typically appended to file names to
describe the application programs that normally act upon the
data contained within the file. In this manner data types, data
Structures, and formats within a given file may be ascer
tained. Fundamental problems with this content dependent
technique are:

(1) the extremely large number of application programs,
Some of which do not possess published or documented
file formats, data structures, or data type descriptors,

(2) the ability for any data compression Supplier or
consortium to acquire, Store, and access the vast
amounts of data required to identify known file descrip
tors and associated data types, data Structures, and
formats, and

(3) the rate at which new application programs are devel
oped and the need to update file format data descrip
tions accordingly.

An alternative technique that approaches the problem of
Selecting an appropriate lossleSS data compression technique

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 19 of 27

US 6,309,424 B1
3

is disclosed in U.S. Pat. No. 5,467,087 to Chu entitled “High
Speed Lossless Data Compression System” (“Chu”). FIG. 1
illustrates an embodiment of this data compression and
decompression technique. Data compression 1 comprises
two phases, a data pre-compression phase 2 and a data
compression phase 3. Data decompression 4 of a com
pressed input data Stream is also comprised of two phases,
a data type retrieval phase 5 and a data decompression phase
6. During the data compression proceSS 1, the data pre
compressor 2 accepts an uncompressed data Stream, identi
fies the data type of the input Stream, and generates a data
type identification Signal. The data compressor 3 Selects a
data compression method from a preselected Set of methods
to compress the input data Stream, with the intention of
producing the best available compression ratio for that
particular data type.

There are several problems associated with the Chu
method. One Such problem is the need to unambiguously
identify various data types. While these might include such
common data types as ASCII, binary, or unicode, there, in
fact, exists abroad universe of data types that fall outside the
three most common data types. Examples of these alternate
data types include: Signed and unsigned integers of various
lengths, differing types and precision of floating point
numbers, pointers, other forms of character text, and a
multitude of user defined data types. Additionally, data types
may be interspersed or partially compressed, making data
type recognition difficult and/or impractical. Another prob
lem is that given a known data type, or mix of data types
within a specific Set or Subset of input data, it may be
difficult and/or impractical to predict which data encoding
technique yields the highest compression ratio.
Chu discloses an alternate embodiment wherein a data

compression rate control signal is provided to adjust specific
parameters of the Selected encoding algorithm to adjust the
compression time for compressing data. One problem with
this technique is that the length of time to compress a given
Set of input data may be difficult or impractical to predict.
Consequently, there is no guarantee that a given encoding
algorithm or Set of encoding algorithms will perform for all
possible combinations of input data for a Specific timing
constraint. Another problem is that, by altering the param
eters of the encoding process, it may be difficult and/or
impractical to predict the resultant compression ratio.

Other conventional techniques have been implemented to
address the aforementioned problems. For instance, U.S.
Pat. No. 5,243,341 to Seroussi et al: describes a class of
Lempel–Ziv lossleSS data compression algorithms that ulti
lize a memory based dictionary of finite size to facilitate the
compression and decompression of data. A Second Standby
dictionary is included comprised of those encoded data
entries that compress the greatest amount of input data.
When the current dictionary fills up and is reset, the standby
dictionary becomes the current dictionary, thereby maintain
ing a reasonable data compression ratio and freeing up
memory for newly encoded data Strings. Multiple dictionar
ies are employed within the same encoding technique to
increase the lossleSS data compression ratio. This technique
demonstrates the prior art of using multiple dictionaries
within a single encoding process to aid in reducing the data
dependency of a single encoding technique. One problem
with this method is that it does not address the difficulties in
dealing with a wide variety of data types.

U.S. Pat. No. 5,717,393 to Nakano, et al. teaches a
plurality of code tables Such as a high-usage code table and
a low-usage code table in an entropy encoding unit. A
block-Sorted last character String from a block-Sorting trans

15

25

35

40

45

50

55

60

65

4
forming unit is the move-to-front transforming unit is trans
formed into a move-to-front (MTF) code string. The entropy
encoding unit Switches the code tables at a discontinuous
part of the MTF code string to perform entropy coding. This
technique increases the compression rate without extending
the block size. Nakano employs multiple code tables within
a single entropy encoding unit to increase the lossleSS data
compression ratio for a given block size, Somewhat reducing
the data dependency of the encoding algorithm. Again, the
problem with this technique is that it does not address the
difficulties in dealing with a wide variety of data types.

U.S. Pat. No. 5,809,176 to Yajima discloses a technique of
dividing a native or uncompressed image data into a plu
rality of Streams for Subsequent encoding by a plurality of
identically functioning arithmetic encoders. This method
demonstrates the technique of employing multiple encoders
to reduce the time of encoding for a Single method of
compression.

U.S. Pat. Nos. 5,583,500 and 5,471,206 to Allen, at al.
disclose Systems for parallel decompression of a data Stream
comprised of multiple code words. At least two code words
are decoded simultaneously to enhance the decoding pro
ceSS. This technique demonstrates the prior art of utilizing
multiple decoders to expedite the data decompression pro
CCSS.

U.S. Pat. No. 5,627.534 to Craft teaches a two-stage
lossleSS compression process. A run length precompressed
output is post processed by a Lempel–Ziv dictionary sliding
window dictionary encoder that outputs a Succession of
fixed length data units. This yields a relatively high-speed
compression technique that provides a good match between
the capabilities and idiosyncrasies of the two encoding
techniques. This technique demonstrates the prior art of
employing Sequential lossleSS encoders to increase the data
compression ratio.

U.S. Pat. No. 5,799,110 to Israelsen, et al. discloses an
adaptive threshold technique for achieving a constant bit rate
on a hierarchical adaptive multistage vector quantization. A
Single compression technique is applied iteratively until the
residual is reduced below a prespecified threshold. The
threshold may be adapted to provide a constant bit rate
output. If the nth Stage is reached without the residual being
less than the threshold, a Smaller input vector is Selected.

U.S. Pat. No. 5,819,215 to Dobson, et al. teaches a method
of applying either lossy or lossleSS compression to achieve
a desired Subjective level of quality to the reconstructed
Signal. In certain embodiments this technique utilizes a
combination of run-length and Huffman encoding to take
advantage of other local and global Statistics. The tradeoffs
considered in the compression process are perceptible dis
tortion errorS versus a fixed bit rate output.

SUMMARY OF THE INVENTION

The present invention is directed to Systems and methods
for providing content independent lossleSS data compression
and decompression. In one aspect of the present invention,
a method for providing content independent lossleSS data
compression comprises the Steps of:

(a) receiving as input a block of data from a stream of
data, the data Stream comprising one of at least one data
block and a plurality of data blocks,

(b) counting the size of the input data block;
(c) encoding the input data block with a plurality of

lossleSS encoders to provide a plurality of encoded data
blocks;

(d) counting the size of each of the encoded data blocks;

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 20 of 27

US 6,309,424 B1
S

(e) determining a lossless data compression ratio obtained
for each of the encoders by taking the ratio of the size
of the encoded data block output from the encoders to
the size of the input data block,

(f) comparing each of the determined compression ratios
with an a priori user Specified compression threshold;

(g) Selecting for output the input data block and append
ing a null data type compression descriptor to the input
data block, if all of the encoder compression ratioS fall
below the a priori Specified compression threshold; and

(h) selecting for output the encoded data block having the
highest compression ratio and appending a correspond
ing data type compression descriptor to the Selected
encoded data block, if at least one of the compression
ratioS exceed the a priori Specified compression thresh
old.

In another aspect of the present invention, a timer is
preferably added to measure the time elapsed during the
encoding process against an a priori-specified time limit.
When the time limit expires, only the data output from those
encoders that have completed the present encoding cycle are
compared to determine the encoded data with the highest
compression ratio. The time limit ensures that the real-time
or pseudo real-time nature of the data encoding is preserved.

In another aspect of the present invention, the results from
each encoder are buffered to allow additional encoders to be
Sequentially applied to the output of the previous encoder,
yielding a more optimal lossleSS data compression ratio.

In another aspect of the present invention, a method for
providing content independent lossleSS data decompression
includes the Steps of receiving as input a block of data from
a stream of data, extracting an encoding type descriptor from
the input data block, decoding the input data block with one
or more of a plurality of available decoders in accordance
with the extracted encoding type descriptor, and outputting
the decoded data block. An input data block having a null
descriptor type extracted therefrom is output without being
decoded.

Advantageously, the present invention employs a plurality
of encoderS applying a plurality of compression techniques
on an input data Stream So as to achieve maximum com
pression in accordance with the real-time or pseudo real
time data rate constraint. Thus, the output bit rate is not fixed
and the amount, if any, of permissible data quality degra
dation is not adaptable, but is user or data Specified.

The present invention is realized due to recent improve
ments in processing Speed, inclusive of dedicated analog and
digital hardware circuits, central processing units, (and any
hybrid combinations thereof), which, coupled with reduc
tions in cost, are enabling of new content independent data
compression and decompression Solutions.

These and other aspects, features and advantages of the
present invention will become apparent from the following
detailed description of preferred embodiments, which is to
be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block/flow diagram of a content dependent
high-Speed lossleSS data compression and decompression
System/method according to the prior art;

FIG. 2 is a block diagram of a content independent data
compression System according to one embodiment of the
present invention;

FIGS. 3a and 3b comprise a flow diagram of a data
compression method according to one aspect of the present
invention which illustrates the operation of the data com
pression system of FIG. 2;

1O

15

25

35

40

45

50

55

60

65

6
FIG. 4 is a block diagram of a content independent data

compression System according to another embodiment of the
present invention having an enhanced metric for Selecting an
optimal encoding technique;

FIGS. 5a and 5b comprise a flow diagram of a data
compression method according to another aspect of the
present invention which illustrates the operation of the data
compression system of FIG. 4;

FIG. 6 is a block diagram of a content independent data
compression System according to another embodiment of the
present invention having an a priori Specified timer that
provides real-time or pseudo real-time of output data;

FIGS. 7a and 7b comprise a flow diagram of a data
compression method according to another aspect of the
present invention which illustrates the operation of the data
compression system of FIG. 6;

FIG. 8 is a block diagram of a content independent data
compression System according to another embodiment hav
ing an a priori Specified timer that provides real-time or
pseudo real-time of output data and an enhanced metric for
Selecting an optimal encoding technique;

FIG. 9 is a block diagram of a content independent data
compression System according to another embodiment of the
present invention having an encoding architecture compris
ing a plurality of Sets of Serially-cascaded encoders,

FIGS. 10a and 10b comprise a flow diagram of a data
compression method according to another aspect of the
present invention which illustrates the operation of the data
compression system of FIG. 9;

FIG. 11 is block diagram of a content independent data
decompression System according to one embodiment of the
present invention; and

FIG. 12 is a flow diagram of a data decompression method
according to one aspect of the present invention which
illustrates the operation of the data compression System of
FIG 11.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The present invention is directed to Systems and methods
for providing content independent lossleSS data compression
and decompression. In the following description, it is to be
understood that System elements having equivalent or Simi
lar functionality are designated with the same reference
numerals in the Figures. It is to be further understood that the
present invention may be implemented in various forms of
hardware, Software, firmware, or a combination thereof. In
particular, the System modules described herein are prefer
ably implemented in Software as an application program
which is loaded into and executed by a general purpose
computer having any Suitable and preferred microprocessor
architecture. Preferably, the present invention is imple
mented on a computer platform including hardware Such as
one or more central processing units (CPU), a random access
memory (RAM), and input/output (I/O) interface(s). The
computer platform also includes an operating System and
microinstruction code. The various processes and functions
described herein may be either part of the microinstruction
code or application programs which are executed via the
operating System. In addition, various other peripheral
devices may be connected to the computer platform Such as
an additional data Storage device and a printing device.

It is to be further understood that, because Some of the
constituent System components described herein are prefer
ably implemented as Software modules, the actual System

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 21 of 27

US 6,309,424 B1
7

connections shown in the Figures may differ depending
upon the manner in which the Systems are programmed. It
is to be appreciated that Special purpose microprocessors
may be employed to implement the present invention. Given
the teachings herein, one of ordinary skill in the related art
will be able to contemplate these and Similar implementa
tions or configurations of the present invention.

Referring now to FIG. 2 a block diagram illustrates a
content independent data compression System according to
one embodiment of the present invention. The data com
pression System includes a counter module 10 which
receives as input an uncompressed or compressed data
Stream. It is to be understood that the System processes the
input data Stream in data blocks that may range in size from
individual bits through complete files or collections of
multiple files. Additionally, the data block size may be fixed
or variable. The counter module 10 counts the size of each
input data block (i.e., the data block size is counted in bits,
bytes, words, any convenient data multiple or metric, or any
combination thereof).
An input data buffer 20, operatively connected to the

counter module 10, may be provided for buffering the input
data Stream in order to output an uncompressed data Stream
in the event that, as discussed in further detail below, every
encoder fails to achieve a level of compression that exceeds
an a priori Specified minimum compression ratio threshold.
It is to be understood that the input data buffer 20 is not
required for implementing the present invention.
An encoder module 30 is operatively connected to the

buffer 20 and comprises a set of encoders E1, E2, E3 ... En.
The encoder set E1, E2, E3 ... En may include any number
“n” of those lossleSS encoding techniques currently well
known within the art Such as run length, Huffman, Lempel
Ziv Dictionary Compression, arithmetic coding, data
compaction, and data null Suppression. It is to be understood
that the encoding techniques are Selected based upon their
ability to effectively encode different types of input data. It
is to be appreciated that a full complement of encoders are
preferably Selected to provide a broad coverage of existing
and future data types.
The encoder module 30 successively receives as input

each of the buffered input data blocks (or unbuffered input
data blocks from the counter module 10). Data compression
is performed by the encoder module 30 wherein each of the
encoderS E1 . . . En processes a given input data block and
outputs a corresponding Set of encoded data blockS. It is to
be appreciated that the System affords a user the option to
enable/disable any one or more of the encoders E1 . . . En
prior to operation. AS is understood by those skilled in the
art, Such feature allows the user to tailor the operation of the
data compression System for Specific applications. It is to be
further appreciated that the encoding proceSS may be per
formed either in parallel or Sequentially. In particular, the
encoders E1 through En of encoder module 30 may operate
in parallel (i.e., simultaneously processing a given input data
block by utilizing task multiplexing on a single central
processor, Via dedicated hardware, by executing on
a-plurality of processor or dedicated hardware Systems, or
any combination thereof). In addition, encoders E1 through
En may operate Sequentially on a given unbuffered or
buffered input data block. This process is intended to elimi
nate the complexity and additional processing overhead
asSociated with multiplexing concurrent encoding tech
niques on a Single central processor and/or dedicated
hardware, Set of central processors and/or dedicated
hardware, or any achievable combination. It is to be further
appreciated that encoders of the identical type may be

15

25

35

40

45

50

55

60

65

8
applied in parallel to enhance encoding Speed. For instance,
encoder E.1 may comprise two parallel Huffman encoders
for parallel processing of an input data block.
A buffer/counter module 40 is operatively connected to

the encoding module 30 for buffering and counting the size
of each of the encoded data blocks output from encoder
module 30. Specifically, the buffer/counter 30 comprises a
plurality of buffer/counters BC1, BC2, BC3 . . . BCn, each
operatively associated with a corresponding one of the
encoders E1 . . . En. A compression ratio module 50,
operatively connected to the output buffer/counter 40, deter
mines the compression ratio obtained for each of the enabled
encoderS E1... En by taking the ratio of the size of the input
data block to the size of the output data block stored in the
corresponding buffer/counters BC1 ... BCn. In addition, the
compression ratio module 50 compares each compression
ratio with an a priori-Specified compression ratio threshold
limit to determine if at least one of the encoded data blocks
output from the enabled encoderS E1 . . . En achieves a
compression that exceeds an a priori-specified threshold. AS
is understood by those skilled in the art, the threshold limit
may be specified as any value inclusive of data expansion,
no data compression or expansion, or any arbitrarily desired
compression limit. A description module 60, operatively
coupled to the compression ratio module 50, appends a
corresponding compression type descriptor to each encoded
data block which is Selected for output So as to indicate the
type of compression format of the encoded data block.
The operation of the data compression system of FIG. 2

will now be discussed in further detail with reference to the
flow diagram of FIGS. 3a and 3b. A data stream comprising
one or more data blockS is input into the data compression
System and the first data block in the stream is received (step
300). As stated above, data compression is performed on a
per data block basis. Accordingly, the first input data block
in the input data Stream is input into the counter module 10
which counts the size of the data block (step 302). The data
block is then stored in the buffer 20 (step 304). The data
block is then sent to the encoder module 30 and compressed
by each (enabled) encoder E1 . . . En (step 306). Upon
completion of the encoding of the input data block, an
encoded data block is output from each (enabled) encoder
E1 . . . En and maintained in a corresponding buffer (Step
308), and the encoded data block size is counted (step 310).

Next, a compression ratio is calculated for each encoded
data block by taking the ratio of the Size of the input data
block (as determined by the input counter 10) to the size of
each encoded data block output from the enabled encoders
(step 312). Each compression ratio is then compared with an
a priori-specified compression ratio threshold (step 314). It
is to be understood that the threshold limit may be specified
as any value inclusive of data expansion, no data compres
Sion or expansion, or any arbitrarily desired compression
limit. It is to be further understood that notwithstanding that
the current limit for lossleSS data compression is the entropy
limit (the present definition of information content) for the
data, the present invention does not preclude the use of
future developments in lossleSS data compression that may
increase lossleSS data compression ratios beyond what is
currently known within the art.

After the compression ratios are compared with the
threshold, a determination is made as to whether the com
pression ratio of at least one of the encoded data blockS
exceeds the threshold limit (step 316). If there are no
encoded data blocks having a compression ratio that exceeds
the compression ratio threshold limit (negative determina
tion in Step 316), then the original unencoded input data

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 22 of 27

US 6,309,424 B1
9

block is Selected for Output and a null data compression type
descriptor is appended thereto (Step 318). A null data com
pression type descriptor is defined as any recognizable data
token or descriptor that indicates no data encoding has been
applied to the input data block. Accordingly, the unencoded
input data block with its corresponding null data compres
Sion type descriptor is then output for Subsequent data
processing, storage, or transmittal (step 320).
On the other hand, if one or more of the encoded data

blockS possess a compression ratio greater than the com
pression ratio threshold limit (affirmative result in step 316),
then the encoded data block having the greatest compression
ratio is selected (step 322). An appropriate data compression
type descriptor is then appended (step 324). A data com
pression type descriptor is defined as any recognizable data
token or descriptor that indicates which data encoding
technique has been applied to the data. It is to be understood
that, Since encoders of the identical type may be applied in
parallel to enhance encoding speed (as discussed above), the
data compression type descriptor identifies the correspond
ing encoding technique applied to the encoded data block,
not necessarily the Specific encoder. The encoded data block
having the greatest compression ratio along with its corre
sponding data compression type descriptor is then output for
Subsequent data processing, storage, or transmittal (Step
326).

After the encoded data block or the unencoded data input
data block is output (steps 326 and 320), a determination is
made as to whether the input data Stream contains additional
data blocks to be processed (step 328). If the input data
Stream includes additional data blocks (affirmative result in
Step 328), the next Successive data block is received (Step
330), its block size is counted (return to step 302) and the
data compression process in repeated. This proceSS is iter
ated for each data block in the input data Stream. Once the
final input data block is processed (negative result in Step
328), data compression of the input data stream is finished
(step 322).

Since a multitude of data types may be present within a
given input data block, it is often difficult and/or impractical
to predict the level of compression that will be achieved by
a specific encoder. Consequently, by processing the input
data blocks with a plurality of encoding techniques and
comparing the compression results, content free data com
pression is advantageously achieved. It is to be appreciated
that this approach is Scalable through future generations of
processors, dedicated hardware, and Software. AS processing
capacity increases and costs reduce, the benefits provided by
the present invention will continue to increase. It should
again be noted that the present invention may employ any
lossleSS data encoding technique.

Referring now to FIG. 4, a block diagram illustrates a
content independent data compression System according to
another embodiment of the present invention. The data
compression System depicted in FIG. 4 is Similar to the data
compression system of FIG. 2 except that the embodiment
of FIG. 4 includes an enhanced metric functionality for
Selecting an optimal encoding technique. In particular, each
of the encoders E1 ... En in the encoder module 30 is tagged
with a corresponding one of user-Selected encoder desirabil
ity factors 70. Encoder desirability is defined as an a priori
user Specified factor that takes into account any number of
user considerations including, but not limited to, compat
ibility of the encoded data with existing Standards, data error
robustness, or any other aggregation of factors that the user
wishes to consider for a particular application. Each encoded
data block output from the encoder module 30 has a corre

15

25

35

40

45

50

55

60

65

10
sponding desirability factor appended thereto. A figure of
merit module 80, operatively coupled to the compression
ratio module 50 and the descriptor module 60, is provided
for calculating a figure of merit for each of the encoded data
blocks which possess a compression ratio greater than the
compression ratio threshold limit. The figure of merit for
each encoded data block is comprised of a weighted average
of the a priori user Specified threshold and the corresponding
encoder desirability factor. As discussed below in further
detail with reference to FIGS. 5a and 5b, the figure of merit
Substitutes the a priori user compression threshold limit for
Selecting and outputting encoded data blockS.
The operation of the data compression system of FIG. 4

will now be discussed in further detail with reference to the
flow diagram of FIGS. 5a and 5b. A data stream comprising
one or more data blockS is input into the data compression
System and the first data block in the stream is received (Step
500). The size of the first data block is then determined by
the counter module 10 (step 502). The data block is then
stored in the buffer20 (step 504). The data block is then sent
to the encoder module 30 and compressed by each (enabled)
encoder in the encoder set E1 . . . En (step 506). Each
encoded data block processed in the encoder module 30 is
tagged with an encoder desirability factor which corre
sponds the particular encoding technique applied to the
encoded data block (step 508). Upon completion of the
encoding of the input data block, an encoded data block with
its corresponding desirability factor is output from each
(enabled) encoder E1 . . . En and maintained in a corre
sponding buffer (step 510), and the encoded data block size
is counted (step 512).

Next, a compression ratio obtained by each enabled
encoder is calculated by taking the ratio of the size of the
input data block (as determined by the input counter 10) to
the size of the encoded data block output from each enabled
encoder (step 514). Each compression ratio is then com
pared with an a priori-specified compression ratio threshold
(step 516). A determination is made as to whether the
compression ratio of at least one of the encoded data blockS
exceeds the threshold limit (step 518). If there are no
encoded data blocks having a compression ratio that exceeds
the compression ratio threshold limit (negative determina
tion in Step 518), then the original unencoded input data
block is Selected for output and a null data compression type
descriptor (as discussed above) is appended thereto (Step
520). Accordingly, the original unencoded input data with its
corresponding null data compression type descriptor is then
output for Subsequent data processing, Storage, or transmittal
(step 522).
On the other hand, if one or more of the encoded data

blocks possess a compression ratio greater than the com
pression ratio threshold limit (affirmative result in step 518),
then a figure of merit is calculated for each encoded data
block having a compression ratio which exceeds the com
pression ratio threshold limit (step 524). Again, the figure of
merit for a given encoded data block is comprised of a
weighted average of the a priori user Specified threshold and
the corresponding encoder desirability factor associated
with the encoded data block. Next, the encoded data block
having the greatest figure of merit is selected for output (Step
526). An appropriate data compression type descriptor is
then appended (Step 528) to indicate the data encoding
technique applied to the encoded data block. The encoded
data block (which has the greatest figure of merit) along with
its corresponding data compression type descriptor is then
output for Subsequent data processing, Storage, or transmittal
(step 530).

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 23 of 27

US 6,309,424 B1
11

After the encoded data block or the unencoded input data
block is output (steps 530 and 522), a determination is made
as to whether the input data Stream contains additional data
blocks to be processed (step 532). If the input data stream
includes additional data blocks (affirmative result in Step
532), then the next successive data block is received (step
534), its block size is counted (return to step 502) and the
data compression process is iterated for each Successive data
block in the input data Stream. Once the final input data
block is processed (negative result in Step 532), data com
pression of the input data stream is finished (step 536).

Referring now to FIG. 6, a block diagram illustrates a data
compression System according to another embodiment of the
present invention. The data compression System depicted in
FIG. 6 is similar to the data compression System discussed
in detail above with reference to FIG. 2 except that the
embodiment of FIG. 6 includes an a priori specified timer
that provides real-time or pseudo real-time output data. In
particular, an interval timer 90, operatively coupled to the
encoder module 30, is preloaded with a user specified time
value. The role of the interval timer (as will be explained in
greater detail below with reference to FIGS. 7a and 7b) is to
limit the processing time for each input data block processed
by the encoder module 30 so as to ensure that the real-time,
pseudo real-time, or other time critical nature of the data
compression processes is preserved.

The operation of the data compression system of FIG. 6
will now be discussed in further detail with reference to the
flow diagram of FIGS. 7a and 7b. A data stream comprising
one or more data blockS is input into the data compression
System and the first data block in the data Stream is received
(step 700), and its size is determined by the counter module
10 (step 702). The data block is then stored in buffer 20 (step
704).

Next, concurrent with the completion of the receipt and
counting of the first data block, the interval timer 90 is
initialized (step 706) and starts counting towards a user
specified time limit. The input data block is then sent to the
encoder module 30 wherein data compression of the data
block by each (enabled) encoder E1... En commences (step
708). Next, a determination is made as to whether the user
Specified time expires before the completion of the encoding
process (steps 710 and 712). If the encoding process is
completed before or at the expiration of the timer, i.e., each
encoder (E1 through En) completes its respective encoding
process (negative result in step 710 and affirmative result in
Step 712), then an encoded data block is output from each
(enabled) encoder E1 . . . En and maintained in a corre
sponding buffer (step 714).
On the other hand, if the timer expires (affirmative result

in 710), the encoding process is halted (step 716). Then,
encoded data blocks from only those enabled encoders
E1 . . . En that have completed the encoding process are
selected and maintained in buffers (step 718). It is to be
appreciated that it is not necessary (or in Some cases
desirable) that Some or all of the encoders complete the
encoding process before the interval timer expires.
Specifically, due to encoder data dependency and natural
variation, it is possible that certain encoderS may not operate
quickly enough and, therefore, do not comply with the
timing constraints of the end use. Accordingly, the time limit
ensures that the real-time or pseudo real-time nature of the
data encoding is preserved. the encoded data blocks are
buffered (step 714 or 718), the size of each encoded data
block is counted (step 720). Next, a compression ratio is
calculated for each encoded data block by taking the ratio of
the size of the input data block (as determined by the input

15

25

35

40

45

50

55

60

65

12
counter 10) to the size of the encoded data block output from
each enabled encoder (Step 722). Each compression ratio is
then compared with an a priori-specified compression ratio
threshold (step 724). A determination is made as to whether
the compression ratio of at least one of the encoded data
blocks exceeds the threshold limit (step 726). If there are no
encoded data blocks having a compression ratio that exceeds
the compression ratio threshold limit (negative determina
tion in Step 726), then the original unencoded input data
block is Selected for output and a null data compression type
descriptor is appended thereto (step 728). The original
unencoded input data block with its corresponding null data
compression type descriptor is then output for Subsequent
data processing, storage, or transmittal (step 730).
On the other hand, if one or more of the encoded data

blocks possess a compression ratio greater than the com
pression ratio threshold limit (affirmative result in step 726),
then the encoded data block having the greatest compression
ratio is selected (Step 732). An appropriate data compression
type descriptor is then appended (step 734). The encoded
data block having the greatest compression ratio along with
its corresponding data compression type descriptor is then
output for Subsequent data processing, Storage, or transmittal
(step 736).

After the encoded data block or the unencoded input data
block is output (steps 730 or 736), a determination is made
as to whether the input data Stream contains additional data
blocks to be processed (step 738). If the input data stream
includes additional data blocks (affirmative result in Step
738), the next successive data block is received (step 740),
its block size is counted (return to step 702) and the data
compression proceSS in repeated. This process is iterated for
each data block in the input data stream, with each data
block being processed within the user-specified time limit as
discussed above. Once the final input data block is processed
(negative result in Step 738), data compression of the input
data stream is complete (step 742).

Referring now to FIG. 8, a block diagram illustrates a
content independent data compression System according to
another embodiment of the present System. The data com
pression system of FIG. 8 incorporates all of the features
discussed above in connection with the System embodiments
of FIGS. 2, 4, and 6. For example, the system of FIG. 8
incorporates both the a priori Specified timer for providing
real-time or pseudo real-time of output data, as well as the
enhanced metric for Selecting an optimal encoding tech
nique. Based on the foregoing discussion, the operation of
the system of FIG. 8 is understood by those skilled in the art.

Referring now to FIG. 9, a block diagram illustrates a data
compression System according to a preferred embodiment of
the present invention. The system of FIG. 9 contains many
of the features of the previous embodiments discussed
above. However, this embodiment advantageously includes
a cascaded encoder module 30c having an encoding archi
tecture comprising a plurality of Sets of Serially-cascaded
encoderS Em,n, where “m” refers to the encoding path (i.e.,
the encoder set) and where “n” refers to the number of
encoders in the respective path. It is to be understood that
each Set of Serially-cascaded encoderS can include any
number of disparate and/or similar encoders (i.e., n can be
any value for a given path m).
The system of FIG. 9 also includes a output buffer module

40c which comprises a plurality of buffer/counters B/C m,n,
each associated with a corresponding one of the encoders
Em,n. In this embodiment, an input data block is Sequen
tially applied to Successive encoders (encoder Stages) in the

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 24 of 27

US 6,309,424 B1
13

encoder path So as to increase the data compression ratio.
For example, the output data block from a first encoder E1.1,
is buffered and counted in B/C1,1, for Subsequent processing
by a Second encoder E.1.2. Advantageously, these parallel
Sets of Sequential encoders are applied to the input data
Stream to effect content free lossleSS data compression. This
embodiment provides for multi-stage Sequential encoding of
data with the maximum number of encoding StepS. Subject to
the available real-time, pseudo real-time, or other timing
constraints.
AS with each previously discussed embodiment, the

encoderS Em,n may include those lossleSS encoding tech
niques currently well known within the art, including: run
length, Huffman, Lempel–Ziv Dictionary Compression,
arithmetic coding, data compaction, and data null Suppres
Sion. Encoding techniques are Selected based upon their
ability to effectively encode different types of input data. A
full complement of encoderS provides for broad coverage of
existing and future data types. The input data blockS may be
applied simultaneously to the encoder paths (i.e., the
encoder paths may operate in parallel, utilizing task multi
plexing on a Single central processor, or via dedicated
hardware, or by executing on a plurality of processor or
dedicated hardware Systems, or any combination thereof). In
addition, an input data block may be sequentially applied to
the encoder paths. Moreover, each Serially-cascaded encoder
path may comprise a fixed (predetermined) sequence of
encode rS or a random Sequence of encode rS.
Advantageously, by Simultaneously or Sequentially process
ing input data blockS via a plurality of Sets of Serially
cascaded encoders, content free data compression is
achieved.
The operation of the data compression system of FIG. 9

will now be discussed in further detail with reference to the
flow diagram of FIGS. 10a and 10b. A data stream com
prising one or more data blockS is input into the data
compression System and the first data block in the data
stream is received (step 100), and its size is determined by
the counter module 10 (step 102). The data block is then
stored in buffer 20 (step 104).

Next, concurrent with the completion of the receipt and
counting of the first data block, the interval timer 90 is
initialized (step 106) and starts counting towards a user
specified time limit. The input data block is then sent to the
cascade encoder module 3.0C wherein the input data block is
applied to the first encoder (i.e., first encoding stage) in each
of the cascaded encoder paths E1.1 . . . Em.1 (step 108).
Next, a determination is made as to whether the user
Specified time expires before the completion of the first stage
encoding process (StepS 110 and 112). If the first stage
encoding process is completed before the expiration of the
timer, i.e., each encoder (E1.1 . . . Em, 1) completes its
encoding process (negative result in Step 110 and affirmative
result in Step 112), then an encoded data block is output from
each encoder E1.1 . . . Em, 1 and maintained in a corre
sponding buffer (step 114). Then for each cascade encoder
path, the output of the completed encoding Stage is applied
to the next Successive encoding Stage in the cascade path
(step 116). This process (steps 110, 112, 114, and 116) is
repeated until the earlier of the timer expiration (affirmative
result in step 110) or the completion of encoding by each
encoder Stage in the Serially-cascaded paths, at which time
the encoding process is halted (step 118).

Then, for each cascade encoder path, the buffered
encoded data block output by the last encoder Stage that
completes the encoding process before the expiration of the
timer is selected for further processing (step 120).

15

25

35

40

45

50

55

60

65

14
Advantageously, the interim Stages of the multi-stage data
encoding process are preserved. For example, the results of
encoder E1.1 are preserved even after encoder E1.2 begins
encoding the output of encoder E1.1. If the interval timer
expires after encoder E1.1 completes its respective encoding
process but before encoder E1.2 completes its respective
encoding process, the encoded data block from encoder E1.1
is complete and is utilized for calculating the compression
ratio for the corresponding encoder path. The incomplete
encoded data block from encoder E12 is either discarded or
ignored.

It is to be appreciated that it is not necessary (or in Some
cases desirable) that Some or all of the encoders in the
cascade encoder paths complete the encoding proceSS before
the interval timer expires. Specifically, due to encoder data
dependency, natural variation and the Sequential application
of the cascaded encoders, it is possible that certain encoders
may not operate quickly enough and therefore do not
comply with the timing constraints of the end use.
Accordingly, the time limit ensures that the real-time or
pseudo real-time nature of the data encoding is preserved.

After the encoded data blocks are selected (step 120), the
Size of each encoded data block is counted (step 122). Next,
a compression ratio is calculated for each encoded data
block by taking the ratio of the size of the input data block
(as determined by the input counter 10) to the size of the
encoded data block output from each encoder (step 124).
Each compression ratio is then compared with an a priori
Specified compression ratio threshold (step 126). A determi
nation is made as to whether the compression ratio of at least
one of the encoded data blocks exceeds the threshold limit
(step 128). If there are no encoded data blocks having a
compression ratio that exceeds the compression ratio thresh
old limit (negative determination in step 128), then the
original unencoded input data block is Selected for output
and a null data compression type descriptor is appended
thereto (step 130). The original unencoded data block and its
corresponding null data compression type descriptor is then
output for Subsequent data processing, Storage, or transmittal
(step 132).
On the other hand, if one or more of the encoded data

blocks possess a compression ratio greater than the com
pression ratio threshold limit (affirmative result in step 128),
then a figure of merit is calculated for each encoded data
block having a compression ratio which exceeds the com
pression ratio threshold limit (step 134). Again, the figure of
merit for a given encoded data block is comprised of a
weighted average of the a priori user Specified threshold and
the corresponding encoder desirability factor associated
with the encoded data block. Next, the encoded data block
having the greatest figure of merit is selected (step 136). An
appropriate data compression type descriptor is then
appended (step 138) to indicate the data encoding technique
applied to the encoded data block. For instance, the data type
compression descriptor can indicate that the encoded data
block was processed by either a single encoding type, a
plurality of Sequential encoding types, and a plurality of
random encoding types. The encoded data block (which has
the greatest figure of merit) along with its corresponding
data compression type descriptor is then output for Subse
quent data processing, storage, or transmittal (Step 140).

After the unencoded data block or the encoded data input
data block is output (steps 132 and 140), a determination is
made as to whether the input data Stream contains additional
data blocks to be processed (step 142). If the input data
Stream includes additional data blocks (affirmative result in
Step 142), then the next Successive data block is received

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 25 of 27

US 6,309,424 B1
15

(step 144), its block size is counted (return to step 102) and
the data compression proceSS is iterated for each Successive
data block in the input data Stream. Once the final input data
block is processed (negative result in Step 142), data com
pression of the input data stream is finished (step 146).

Referring now to FIG. 11, a block diagram illustrates a
data decompression System according to one embodiment of
the present invention. The data decompression System pref
erably includes an input buffer 1100 which receives as input
an uncompressed or compressed data Stream comprising one
or more data blocks. The data blockS may range in size from
individual bits through complete files or collections of
multiple files. Additionally, the data block size may be fixed
or variable. The input data buffer 1100 is preferably included
(not required) to provide Storage of input data for various
hardware implementations. A descriptor extraction module
1102 receives the buffered (or unbuffered) input data block
and then parses, lexically, Syntactically, or otherwise ana
lyzes the input data block using methods known by those
skilled in the art to extract the data compression type
descriptor associated with the data block. The data com
pression type descriptor may possess values corresponding
to null (no encoding applied), a single applied encoding
technique, or multiple encoding techniques applied in a
Specific or random order (in accordance with the data
compression System embodiments and methods discussed
above).
A decoder module 1104 includes a plurality of decoders

D1 ... Dn for decoding the input data block using a decoder,
Set of decoders, or a Sequential Set of decoderS correspond
ing to the extracted compression type descriptor. The decod
erS D1 . . . Dn may include those lossleSS encoding tech
niques currently well known within the art, including: run
length, Huffman, Lempel–Ziv Dictionary Compression,
arithmetic coding, data compaction, and data null Suppres
Sion. Decoding techniques are Selected based upon their
ability to effectively decode the various different types of
encoded input data generated by the data compression
Systems described above or originating from any other
desired Source. AS with the data compression Systems dis
cussed above, the decoder module 1104 may include mul
tiple decoders of the same type applied in parallel So as to
reduce the data decoding time.

The data decompression System also includes an output
data buffer 1106 for buffering the decoded data block output
from the decoder module 1104.

The operation of the data decompression system of FIG.
11 will be discussed in further detail with reference to the
flow diagram of FIG. 12. A data Stream comprising one or
more data blocks of compressed or uncompressed data is
input into the data decompression System and the first data
block in the stream is received (step 1200) and maintained
in the buffer (step 1202). As with the data compression
Systems discussed above, data decompression is performed
on a per data block basis. The data compression type
descriptor is then extracted from the input data block (Step
1204). A determination is then made as to whether the data
compression type descriptor is null (step 1206). If the data
compression type descriptor is determined to be null
(affirmative result in step 1206), then no decoding is applied
to the input data block and the original undecoded data block
is output (or maintained in the output buffer) (step 1208).
On the other hand, if the data compression type descriptor

is determined to be any value other than null (negative result
in step 1206), the corresponding decoder or decoders are
then selected (step 1210) from the available set of decoders
D1 . . . Dn in the decoding module 1104. It is to be
understood that the data compression type descriptor may
mandate the application of a single Specific decoder, an
ordered Sequence of Specific decoders, a random order of

15

25

35

40

45

50

55

60

65

16
Specific decoders, a class or family of decoders, a mandatory
or optional application of parallel decoders, or any combi
nation or permutation thereof. The input data block is then
decoded using the Selected decoders (step 1212), and output
(or maintained in the output buffer 1106) for Subsequent data
processing, Storage, or transmittal (step 1214). A determi
nation is then made as to whether the input data Stream
contains additional data blocks to be processed (step 1216).
If the input data Stream includes additional data blockS
(affirmative result in Step 1216), the next Successive data
block is received (step 1220), and buffered (return to step
1202). Thereafter, the data decompression process is iterated
for each data block in the input data Stream. Once the final
input data block is processed (negative result in Step 1216),
data decompression of the input data stream is finished (Step
1218).

Although illustrative embodiments have been described
herein with reference to the accompanying drawings, it is to
be understood that the present invention is not limited to
those precise embodiments, and that various other changes
and modifications may be affected therein by one skilled in
the art without departing from the Scope or Spirit of the
invention. All Such changes and modifications are intended
to be included within the scope of the invention as defined
by the appended claims.
What is claimed is:
1. A program Storage device readable by machine, tangi

bly embodying a program of instructions executable by the
machine to perform method Steps for providing content
independent data compression, Said method StepS compris
Ing:

receiving as input a block of data from a stream of data;
encoding Said input data block with a plurality of encod

ers to provide a plurality of encoded data blocks,
determining a compression ratio obtained for each of Said

encoders
comparing each of Said determined compression ratioS

with an a priori user Specified compression threshold;
Selecting for output Said input data block and appending

a null compression descriptor to Said input data block,
if all of Said encoder compression ratioS fall below Said
a priori Specified compression threshold; and

Selecting for Output Said encoded data block having the
highest compression ratio and appending a correspond
ing compression type descriptor to Said Selected
encoded data block, if at least one of Said compression
ratioS exceed Said a priori Specified compression
threshold.

2. The program Storage device of claim 1, further com
prising instructions for performing the Steps of:

initializing a timer with a user-specified time interval
upon commencing the encoding of Said input data
block, and

terminating Said encoding Step upon the earlier of one of
the expiration of Said timer and the completion of Said
encoding of Said input data block by all of Said plurality
of encoders, wherein the Step of determining the com
pression ratioS is only performed for the encoders that
have completed encoding of Said input data block
before expiration of Said timer.

3. A program Storage device readable by machine, tangi
bly embodying a program of instructions executable by the
machine to perform method Steps for providing content
independent data compression, Said method StepS compris
Ing:

receiving as input a block of data from a stream of data;
compressing Said input data block with a plurality of

encoderS and appending a corresponding encoder desir

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 26 of 27

US 6,309,424 B1
17

ability factor to said encoded data block output from
each of Said encoders,

determining a compression ratio obtained by each of Said
encoders,

comparing each of Said determined compression ratioS
with an a priori user Specified compression threshold;

Selecting for output Said input data block and appending
a null compression descriptor to Said input data block,
if all of Said encoder compression ratioS fall below Said
a priori Specified compression threshold;

calculating a figure of merit for each encoded data block
having a compression ratio associated there with that
meets Said a priori user Specified compression
threshold, Said figure of merit comprising a weighted
average of Said a priori user Specified compression
threshold and Said corresponding encoder desirability
factor, and

Selecting for Output Said encoded data block having the
highest figure of merit and appending a corresponding
compression type descriptor to Said Selected encoded
data block.

4. The program Storage device of claim 3, further com
prising instructions for performing the Steps of:

initializing a timer with a user-specified time interval
upon commencing the encoding of Said input data
block, and

terminating Said encoding Step upon the earlier of one of
the expiration of Said timer and the completion of Said
encoding of Said input data block by all of Said plurality
of encoders,

wherein the Step of determining the compression ratioS is
performed only for the encoders that have completed
encoding of Said input data block before expiration of
Said timer.

5. A program Storage device readable by machine, tangi
bly embodying a program of instructions executable by the
machine to perform method Steps for providing content
independent data compression, Said method StepS compris
ing:

receiving as input a block of data from a stream of data;
compressing Said input data block with a plurality of

encoders, wherein each encoder comprises a plurality
of Serially-cascaded encoders,

appending a corresponding encoder desirability factor to
each of Said encoded data blocks output from each of
Said encoders,

determining a data compression ratio obtained by each of
Said encoders,

comparing each of Said determined compression ratioS
with an a priori user Specified compression threshold;

Selecting for output Said input data block and appending
a null compression descriptor to Said input data block,
if all of Said compression ratioS fall below Said a priori
Specified compression threshold;

calculating a figure of merit for each encoded data block
which exceeds Said a priori user Specified compression
threshold, Said figure of merit comprising a weighted
average of Said a priori user Specified threshold and
Said corresponding encoder desirability factor; and

Selecting for Output Said encoded data block having the
highest figure of merit and appending a corresponding
compression type descriptor to Said Selected encoded
data block.

6. The program Storage device of claim 5, wherein Said
corresponding compression type descriptor indicates one of
a single encoding type descriptor, a plurality of Sequential
encoding types descriptor, and a plurality of random encod
ing types descriptor.

15

25

35

40

45

50

55

60

65

18
7. The program Storage device of claim 5, further com

prising instructions for performing the Steps of:
initializing a timer with a user-specified time interval
upon commencing encoding of Said input data block;

buffering the encoded data block output from each
Serially-cascaded encoder;

terminating Said encoding by a Serially-cascaded encoder
upon the earlier of one of the expiration of Said timer
and the completion of Said encoding of Said input data
block by the Serially-cascaded encoder, wherein the
Step of determining the compression ratioS for each
encoder is performed by determining the compression
ratio for the corresponding last Serially-cascaded
encoder that has completed encoding of Said input data
block before expiration of said timer.

8. A method for compressing data, comprising the Steps
of:

receiving an input data Stream comprising a plurality of
disparate data types;

compressing the input data Stream using each of a plu
rality of different encoders;

generating an encoded data Stream by Selectively com
bining compressed data blocks output from each of the
encoderS based on compression ratioS obtained by the
encoderS.

9. The method of claim 8, wherein the step of compress
ing the input data Stream comprises compressing each data
block in the input data Stream using each of the encoders,
and wherein the Step of generating the encoded data Stream
comprises:

for each data block in the input Stream,
determining a compression ratio obtained from each of

the encoders,
Selecting for Output the input data block and appending

a null compression descriptor to input the data block,
if no compression ratio exceeds a predetermined
threshold; and

Selecting for output the encoded data block having the
greatest compression ratio associated therewith that
meets the predetermined threshold and appending a
compression type descriptor to the Selected encoded
data block.

10. The method of claim 9, further comprising the step of
applying a predetermined timing constraint to the compres
Sion process to provide real-time data compression of the
input data Stream.

11. The method of 10, wherein the step of applying a
predetermined time constraint comprises the Steps of

initializing a timer with a user-specified time interval
upon commencing compression of an input data block;
and

terminating Said encoding Step upon the earlier of one of
the expiration of Said timer and the completion of Said
encoding of Said input data block by all of Said plurality
of encoders, wherein the Step of determining the com
pression ratioS is only performed for the encoders that
have completed encoding of Said input data block
before expiration of Said timer.

12. The method of claim 8, wherein the step of generating
the encoded data Stream comprises tagging each compressed
data block with a compression type descriptor.

13. The method of claim 8, wherein the step of generating
the encoded data Stream comprises combining uncom
pressed data blocks from the input data Stream with the
compressed data blockS and tagging each uncompressed
data block with a null compression descriptor.

k k k k k

Cisco Systems, Inc., IPR2018-01384, Ex. 1006, p. 27 of 27

