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ABSTRACT

Shen, Ke. Ph.D., Purdue University, December 1997. A Study of Real-time and Rate
Scalable Image and Video Compression. Major Professor: Edward J. Delp.

In this thesis, we address two issues related to image and video compression.

The first issue is on how to accelerate the speed of video compression using parallel

processing, and the second is the development of a new approach to rate scalable

coding of images and video.

1. Several parallel implementations of an MPEG1 video encoder on MIMD high

performance systems, in particular the Intel Touchstone Delta and the Intel Paragon,

are presented. In our approach, both spatial and temporal parallelism have been

exploited. While the Paragon has the computation capacity to compress video se-

quences at a speed faster than real-time, we found that real-time performance cannot

be achieved if the Input/Output (I/O) is not designed properly. We present sev-

eral schemes, corresponding to different types of data parallelism, for managing the

I/O operations and regulating the data flow. Using our algorithm, real-time MPEG

compression of ITU-R 601 digital video sequences was achieved.

2. A new wavelet based rate scalable image and video compression algorithm

is presented. A new embedded zerotree wavelet (EZW) approach for color image

compression that exploits the interdependency between color components in the lu-

minance/chrominance color space is described. The algorithm is known as Color

Embedded Zerotree Wavelet (CEZW). The new video compression algorithm uses mo-

tion compensation to reduce temporal redundancy. The prediction error frames and

the intra-coded frames are encoded using CEZW. To address the error propagation

problem inherit to rate scalable video compression, an adaptive motion compensation

(AMC) scheme is designed. The rate scalable video compression algorithm is known
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as Scalable Adaptive Motion Compensation Wavelet (SAMCoW). We show that in

addition to providing a wide range of rate scalability, SAMCoW achieves comparable

performance to the more traditional hybrid video coders, such as MPEG1 and H.263.

Furthermore, SAMCoW allows the data rate to be dynamically changed during de-

coding, which is very appealing for network oriented applications.
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1. INTRODUCTION

Demand for video has been growing rapidly in the past few years, especially in

areas such as education, communications, entertainment, and publishing [1]. Com-

bining digital video, database technology, and communication networks technologies,

the ability of delivering video, together with text, images and audio through net-

works upon requests makes video more accessible and more useful. Applications such

as digital libraries, video databases (VDB), video-telephony/conferencing, and video-

on-demand (VOD) are already in service or on the point of turning into practical

services. However, capabilities such as storing huge amounts of data at a relatively

low cost, efficiently organizing the data, retrieving, delivering, and presenting the re-

quested data for easy access, need to be improved before these services can be broadly

accepted.

One of the major obstacles to deploying digital video in many applications is the

fact that the huge volume of uncompressed video data may easily overwhelm the

available communication channels and storage systems. For example, a digital video

sequence that conforms to the ITU-R 601 digital video recommendation (720x486

pixels per frame, 30 frames per second and 16 bits per pixel), which has a resolu-

tion comparable to the National Television System Committee (NTSC) analog video

signal, has an uncompressed data rate of 168 megabits per second (Mb/s) [2, 3]. A

typical two-hour movie would occupy approximately 150 giga-bytes of disk space.

High definition television (HDTV) video sequences (1920x1080 pixels per frame, 30

frames per second and 16 bits per pixel) have an uncompressed data rate of approxi-

mately 1 gigabits per second (Gb/s) [4]. A two-hour movie in uncompressed HDTV

format will occupy up to 900 gigabytes (GB) of storage space. However, a 6-MHz
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NTSC transmission channel can accommodate a data rate of approximately 19 Mb/s

using vestigial sideband (VSB) modulation [4]. By comparison, a dedicated DS-1

(or T1) line has a bandwidth of 1.5 Mb/s. The US Internet backbone, ANSNET,

using DS-3 lines has a bandwidth of 45 Mb/s, while the future Internet backbone

with optical based OC-3 lines will have a bandwidth of 155 Mb/s. None of the these

channels has a bandwidth that is large enough to accommodate either uncompressed

ITU-R 601 or HDTV signals. A 650 mega-bytes (MB) CD-ROM can store 5 seconds

of uncompressed HDTV video or 31 seconds of uncompressed ITU-R 601 video. In

videotelephony or videoconferencing, a QCIF (176x144 pixels per frames, 10 frames

per second, and 12 bits per pixel) sequence has a uncompressed data rate of 3 Mb/s,

which cannot be handled by a telephone line (POTS) with a bandwidth of 33.6 kilo-

bits per second (Kb/s). One immediately sees the need for video compression. Many

compression standards, such as ITU-T (CCITT) Recommendations H.261 and H.263,

ISO standards MPEG1 and MPEG2 [5, 6, 7, 8, 9], have been proposed to address

this problem.

The main objective of a video compression algorithm is to exploit both the spatial

and temporal redundancy of a video sequence such that fewer bits can be used to

represent a video sequence at an acceptable visual distortion. For different applica-

tions, different resolutions, visual quality and, consequently, different data rates are

required. For HDTV signal, the target compressed data rate should be within the

capacity of a 6-MHz NTSC transmission channel, or 19 Mb/s. For NTSC resolution

(ITU-R 601) signals, a possible application is the digital versatile disk (DVD) which

delivers up to 9.8 Mb/s and 17 GB of storage per disk (double-sided/dual layer).

CIF (352x288) sequences are commonly used by video CD (VCD), popular in the

European and Asian markets, which has a storage capacity of 650 MB per CD-ROM

and data a rate of 1.5 Mb/s. Videotelephony and videoconferencing signals (QCIF

sequences at 5–15 frames per second) often need to be transmitted on 33.6 Kb/s

telephone lines.
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In this thesis, we will address two issues related to video compression. One is how

to accelerate the processing speed of video compression. The other is the scalable

coding of digital images and video.

1.1 Parallel Processing in Video Compression

The time needed to compress a video sequence is an important issue. Real-time

performance is necessary for many applications such as live digital television broad-

casting and video conferencing. However, some applications may require “faster-

than-real-time” performance. For example, suppose one wanted to convert an analog

video library that contains 10,000 movie titles into a digital library. If each title is

2 hours in length, it would require more than 2 years to complete the project using

real-time compression. “Faster-than-real-time” compression could reduce this process

to several months.

The computation complexity of the algorithm, along with the compressed data

rate, and the visual quality or distortion of the decoded video, are the three major

factors used to evaluate a video compression algorithm. An ideal algorithm should

have a low computation complexity, a low compressed data rate and a high visual

quality (or low distortion) of the decoded video. However, these three factors usually

cannot be achieved simultaneously. For an algorithm that generates compressed video

with high quality and low data rate, the computation cost is usually high. It is highly

likely that a compressed video sequence with a lower data rate will have a poorer

visual quality after being decompressed. Among these three factors, the computation

complexity directly affects the time needed to compress a video sequence. For exam-

ple, the MPEG standard uses block based motion compensated prediction [10, 11, 12].

The MPEG encoding algorithms have to search for the motion vectors, which is a

computationally intensive task. For example, if the sequence has a resolution of

720x480 pixels per frame (ITU-R 601), the search space is a 15× 15 pixel array, and

the motion vector search is performed on 20 frames (P frames and B frames) every
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second, the processor must be able to handle

720× 480× 15× 15× 20 ≈ 1.55× 109

pixels per second for the motion vector search [13, 14]. Although many fast algorithms

have been proposed [10, 15, 16], the amount of computation is still overwhelming.

Thus the MPEG algorithm is notoriously asymmetric, i.e. the amount of computa-

tion required for the encoding algorithm is much larger than that required for the

decoding algorithm. Thus, real-time video compression is difficult to achieve and is

very expensive especially when the image size is large, or high image quality and low

data rates are required. The time needed to compress a video sequence is affected by

the computation complexity of the algorithm, the efficiency in the implementation of

the algorithm and the speed of the computation facilities. Parallel processing then

becomes a natural choice to meet the large computation requirement for real-time

video compression.

Video compression algorithms are usually suitable for parallel processing. A video

sequence can be treated as a three dimensional signal, with two spatial dimensions and

one temporal dimension. Many video compression algorithms are block based, which

makes it feasible to parallelize an algorithm in the spatial domain, i.e. each processing

element (PE) is required to process part of a video frame. Also a video sequence is

a contiguous series of frames in time. Hence, it is also a nature choice to parallelize

an algorithm in the temporal direction, i.e. each PE is assigned with one or more

frames. Almost all hardware based video encoders incorporate some degree of parallel

processing, including circuit level (on-chip) parallelism and system level parallelism.

Many software based video encoders have also adopted parallel approaches, especially

for networks of workstations (NOW) [17]. However, the speed of a NOW, under the

bottleneck of network bandwidth and overall computation power, cannot fulfill the

requirement of real-time video compression.

High performance parallel computers have been extensively used for scientific

computing, such as solving partial differential equations (PDEs) and modeling the
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molecular structure of DNA [18, 19, 20]. The tremendous computation power and

the programmable nature of parallel computers make them very attractive for video

server applications, especially video compression. In this thesis, we investigate the

use of parallel computers for video compression. We present several schemes, cor-

responding to different types of data parallelism, for managing the I/O operations

and regulating the data flow. We show their effect on increasing the overall speed of

video compression. Using our algorithm, real-time MPEG compression of ITU-R 601

digital video sequences can be achieved.

1.2 Scalable Image and Video Compression

Many applications require that digital images/video be delivered over computer

networks. The available bandwidth of most computer networks almost always poses

a problem when video is to be delivered. A user may request an image or a video

sequence with a specific distortion. However, the variety of requests and the diversity

of the traffic on the network may make it difficult for an image or a video server to

predict, at the time the video is encoded and stored on the server, the video quality

and data rate it will provide to a particular user at a given time. One solution to

this problem is to compress and store an image or a video sequence at different data

rates. The server will then be able to deliver the requested image/video at the proper

rate, given network loading and specific user request. This approach requires more

resources to be used on the server in terms of disk space and management overhead.

Therefore scalability, the capability of decoding a compressed sequence at different

data rates, has become a very important issue in image and video coding. Scalable

image/video coding has applications in browsing, digital libraries, video database sys-

tem, video streaming, video telephony and multicast of television (including HDTV).

Scalability includes data rate scalability, spatial resolution scalability, temporal

resolution scalability and computational scalability. The MPEG-2 video compres-

sion standard has incorporated several scalable modes, including signal-to-noise ratio

(SNR) scalability, spatial scalability and temporal scalability [7, 21]. However, these
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modes are layered instead of being continuously scalable. Continuous rate scalability

provides the capability of arbitrarily selecting the data rate within the scalable range.

It is very flexible and allows the video server to tightly couple the available network

bandwidth and the data rate of the video being delivered.

A specific coding strategy known as embedded rate scalable coding is well suited for

continuous rate scalable applications [22]. In embedded coding, all the compressed

data is embedded in a single bit stream and can be decoded at different data rates. In

image compression, this is very similar to progressive transmission. The decompres-

sion algorithm receives the compressed data from the beginning of the bit stream up

to a point where a certain data rate requirement is achieved. A decompressed image at

that data rate can then be reconstructed and the visual quality corresponding to this

data rate can be achieved. Thus, to achieve best performance the bits that convey the

most important information need to be embedded at the beginning of the compressed

bit stream. For video compression, the situation can be more complicated since a

video sequence contains multiple images. Instead of sending the beginning portion

of the bit stream to the decoder, the sender needs to selectively provide the decoder

with portions of the bit stream corresponding to different frames or sections of frames

of the video sequence. These selected portions of the compressed data achieve the

data rate requirement and can then be decoded by the decoder. This approach can

be achieved if the position of the bits corresponding to each frame or each section of

frames can be identified.

In this thesis we describe a new wavelet based coding algorithm for color images

using a luminance/chrominance color space. Data rate scalability is achieved by using

an embedded coding scheme, which is similar to Shapiro’s embedded zerotree wavelet

(EZW) algorithm [22]. The interdependence between color components are exploited

in our algorithm. We denote this approach as the Color Embedded Zerotree Wavelet

(CEZW) algorithm. Based on CEZW, we also propose a new continuous rate scalable

hybrid video compression algorithm. We shall refer to this new technique as the

Scalable Adaptive Motion Compensated Wavelet (SAMCoW) algorithm. SAMCoW
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uses motion compensation to reduce temporal redundancy. The prediction error

frames (PEFs) and the intra-coded frames (I frames) are encoded using CEZW. The

novelty of this algorithm is that it uses an Adaptive Motion Compensation (AMC)

scheme to eliminate quality decay even at low data rates. The nature of SAMCoW

allows the decoding data rate to be dynamically changed so that the data rate can

be adjusted to meet network loading.

1.3 Organization of the Thesis

In Chapter 2 an overview of the parallel implementation of image and video com-

pression algorithms is presented. A temporal parallel algorithm for MPEG video

compression, with real-time performance for CIF sequences, is described in Chap-

ter 3. In Chapter 4, a spatial-temporal parallel MPEG compression algorithm that

achieves real-time performance for ITU-R 601 sequences is presented. CEZW is de-

scribed in Chapter 5. In Chapter 6, SAMCoW is described. A summary of the thesis

and future work is given in Chapter 7. A postscript version of this thesis as well

as the results presented in Chapter 5 for CEZW, including the original and decoded

images, is available via anonymous ftp at

ftp://skynet.enc.purdue.edu/pub/dist/delp/shen-thesis.

The results of Chapter 6 for SAMCoW is available at

ftp://skynet.ecn.purdue.edu/pub/dist/delp/samcow.
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2. PARALLEL IMPLEMENTATIONS OF IMAGE AND
VIDEO COMPRESSION—AN OVERVIEW

The time needed to compress an image or a video sequence is very important in

many applications. The computation complexity of the algorithm, along with the

compressed data rate, and the visual quality of the decoded video, are the three

major factors used to evaluate an image/video compression algorithm. An ideal

algorithm should have a low compressed data rate, a high visual quality of the decoded

image/video and a low computation complexity. Among these three factors, the

computation complexity directly affects the time needed to compress a video sequence.

Traditionally, the increase in execution speed for an algorithm has been obtained

by increasing the processor speed. Unfortunately, many compression applications

demand execution time that cannot be achieved using a single serial microprocessor.

Parallel processing therefore becomes very attractive.

One of the characteristics of most image and video compression algorithms that

make them feasible for parallel processing is the fact that the algorithms are block

based. In block based compression methods, an image or a video frame is partitioned

into non-overlapping spatial blocks which are coded separately. Furthermore, since a

video sequence is a contiguous series of frames which represents a continuous action

in time, it is natural to parallelize the algorithm in the temporal direction, i.e. each

PE is assigned one or more frames.

Parallel video compression algorithms can be implemented using either hardware

or software approaches [23]. In hardware approaches special parallel architectures

can be designed to accelerate the computation [24, 25, 26]. Such an image or video

compression device is feasible for applications such as a digital camera or real-time

TV broadcasting. These devices are very expensive, e.g. a real-time MPEG2 encoder
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for ITU-R 601 video costs in excess of $25,000. In many cases only a single video

stream can be processed at a time. Software approaches include the use of parallel

computers and networks of workstations [27, 28, 17, 29, 13, 14, 30, 31]. Usually a

software implementation offers more flexibility, e.g. parameters can be adjusted easily

and multiple video streams can be handled, which is essential for applications such as a

video server or a video database. Portability may also be an advantage of a software

implementation. A software approach is most suitable for algorithm development,

digital library servers, or massive production of compressed digital video.

In this chapter we present an overview of techniques used to implement various

image and video compression algorithms using parallel processing. The approaches

used can largely be divided into three categories. The first is the use of special

purpose architectures designed specifically for image and video compression. The

use of VLSI techniques describes the second category. These include various chip

sets for JPEG and MPEG. Software based approaches, or the implementation of

algorithms on parallel or distributed computers, are the third category. Examples of

this approach are the use of a massively parallel computer such as the MasPar MP-1,

a coarse-grained machine such as the Intel Paragon, or a network of workstations

(NOW).

2.1 DSP Arrays

One way to perform image and video compression in parallel is to use special

architectures, usually an array of general-purpose digital signal processors (DSP).

Examples of applications using a group of DSPs for image and video compression

can be found in [32, 33]. In [32], 6 pairs of TMS320C30 DSPs and IMSA121 DCT

chips are employed to implement the CCITT H.261 algorithm used in videotelephony.

Each video frame is divided into 6 horizontal stripes, which are then assigned to each

processing element (PE). To perform the motion compensation, blocks in the adjacent

regions of the reference frame need to be read into each PE. For CIF (352 × 288)

sequences, encoding and decoding can be performed at 15 frames per second when
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motion estimation is not used. In [33], a parallel architecture using multiple DSPs is

presented to implement the decompression algorithms for JPEG, H.261 and MPEG1

standards. In this architecture up to four floating point digital signal processors are

connected to each other via fast serial links, while each processor has access to a

globally shared memory.

In addition to the performance of the individual DSP chip, the architecture of the

DSP array has a large impact on the execution speed of the algorithm. Okumura et

al. [34] proposed a multistage switching network to balance the load of each DSP. It

was found that with a balanced load the performance of the encoder is double that

of a conventional configuration.

Recently, DSP chips have been developed specifically for video and image pro-

cessing applications. These are known as video signal processors (VSP) or image

digital signal processors (IDSP). These special purpose DSP chips usually incorpo-

rate on-chip parallelism into their architectures and are optimized to execute image

processing tasks. VSPs with speeds up to 2 giga operations per second (GOPS) have

been reported [35, 36, 37, 38, 39, 40, 41, 42, 43]. One example of VSPs is the Texas

Instruments’ Multimedia Video Processor (MVP), which is a single chip MIMD mul-

tiprocessor with crossbar shared memory [26]. On this chip, a reduced instruction

set computer (RISC) is used to coordinate four DSPs. Real-time compression of CIF

(320x240) video sequences has been reported using the MVP [44].

The use of DSP chips for image and video compression has the following advan-

tages. First, the DSP chips are programmable and flexible, and can be configured

for different image compression algorithms. Second, this method has relatively low

cost. DSP chips and their peripherals, such as RAM and ROM memories, are quite

inexpensive. The disadvantage of using general purpose DSP chips is the relatively

slow arithmetic speed compared to an application specific VLSI design. This leads to

the requirement of a large number of DSP chips, especially if the application requires

real-time performance.
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2.2 VLSI Approaches

Although DSP arrays have been used for implementing image and video compres-

sion algorithms, the success of these methods depend on the speed of the DSP. To

overcome this problem, custom VLSI technology has been used to design application

specific chip sets suitable for image and video compression. Custom VLSI chips usu-

ally utilize a RISC core, which has better support in operating systems and compiler

design [24].

An example of this is Intel’s i750 video processor, which is compatible with In-

tel’s proprietary DVI motion video algorithm and the JPEG still image compression

standard [45]. The i750 processor consists of two processor: a pixel processor and a

display processor. The pixel processor performs decompression; the display processor

performs post-processing operations such as YUV to RGB conversion. LSI Logic’s

L64702 JPEG coprocessor, with an 8.25 MB/s processing rate, can compress and

decompress images with SIF resolution (352× 240 pixels per frame) at 30 frames per

second [46, 47].

C-Cube’s CL950 MPEG video processor is a pipelined arithmetic unit that can

decompress MPEG encoded SIF resolution video [48]. C-Cube Microsystems recently

introduced the VideoRISC Compression Processor (VCP) [49, 25]. Eight VCPs are

required to encode ITU-R 601 images using MPEG2 in real-time. Other examples of

custom VLSI chips are C-Cube’s JPEG and MPEG processors CL550, CL450 [48, 50].

VLSI chips have also been developed for DPCM encoders [51, 52]. Although the

performance of these processors has greatly improved, none of these chips can encode

real-time HDTV with a resolution of 1920×1080 pixels per frame.

Among the various methods that are employed to achieve high performance, on-

chip parallelism is one of the most commonly used approaches [38, 39, 41, 53]. A

P×64/MPEG encoder is reported in [54], and a video decoder for H.261/MPEG is
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described in [55]. Both chips use a single instruction multiple data (SIMD) configu-

ration. Some implementations have exploited the structure of the compression algo-

rithm to make it more suitable for on chip parallel implementation [56, 57, 58, 59, 60].

2.3 Parallel and Distributed Computers

The use of arrays of DSPs or VLSI technology plays an important roll in increasing

the processing speed of image/video compression. However, these approaches usually

have specific architecture. A change in the algorithm or application often requires

the redesign of the software as well as the architecture of the system. Flexibility is

compromised. Parallel computers are very flexible in that different algorithms can

be executed on the same computer without hardware reconfiguration. Almost every

image/video compression algorithm can be implemented on a parallel computer. Par-

allel computers are also programmable in high level languages. A parallel computer

is an ideal platform for the design of new parallel implementations of image and video

compression algorithms. The speed and capacity of high performance parallel com-

puters are very attractive to many applications where a large amount of imagery is

involved. Examples include a multimedia on-demand video system and the processing

of imagery used in remote sensing applications.

Implementations of MPEG-like encoders and DPCM on multiprocessor parallel

systems have been described in [61, 62, 63]. Also Intel’s DVI compression algorithm

has been implemented on the MEiKO M40 system [64]. Another example of this

approach is the implementation of Block Truncation Coding (BTC) on the multi-

microprocessor PASM system [65, 66].

Recently, the JPEG still image compression algorithm has been implemented on

the MasPar MP-1, a massively parallel SIMD computer [67, 68]. An image of size

1024×1024 was mapped to a 128×128 array of PEs so that each PE is assigned an 8×8

block of image data. Implementing the compression algorithm on a high performance

parallel computer presented some unique problems. For example, it was shown that

the most difficult part of the parallel implementation of the JPEG algorithm was not
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in the implementation of the algorithm, but in the manner in which the compressed

image data was output from the system [67, 68]. Also, the specific communication

paths among the processors must be addressed. Although many operations, such as

DCT and Huffman coding, can be performed within each processor, some operations

such as motion estimation need to be performed on image data which is not local to

the processor. The load balance between PEs may also be a problem [34]

In this thesis, we will present several parallel approaches to the implementation of

the MPEG1 compression algorithm on MIMD, distributed memory super computers,

in particular the Intel Touchstone Delta and the Intel Paragon. We will address the

above problems and show that high performance parallel computers can be used for

such applications.
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3. PARALLEL MPEG COMPRESSION: THE
TEMPORAL PARALLEL APPROACH

The Moving Pictures Experts Group (MPEG) has developed a standard, known

as MPEG1, for the compression of digital video signals (and associated audio) at a

data rate of 1.5 Mb/s [6, 11]. It utilizes motion compensated prediction to remove

temporal redundancy and discrete cosine transform (DCT) coding to remove spatial

redundancy. Motion compensated prediction is computationally intensive, however

it provides a lower data rate than using just intraframe approaches for a fixed image

quality. For a typical NTSC (ITU-R 601) video sequence motion compensated predic-

tion can require as much as several gigaflops per second. This immediately indicates

that MPEG will require some effort at real-time implementation.

Several software approaches have been described for the implementation of MPEG1.

A software MPEG1 encoder has been developed at the University of California at

Berkeley [17] that can compress video at a rate of 1.2 frames per second for images

with spatial resolution of 352x288 (CIF) on a Sun SPARCstation 10. To increase the

execution speed, this encoder is able to distribute the compression task to a group or

a cluster of workstations interconnected via a LAN or the Internet. For example, on

6 Sun workstations connected by a 10 Mb/s Ethernet a typical execution rate of 4.7

frames per second can be obtained. A software-based parallel MPEG2 video encoder

has also been reported [30]. However neither of these software encoders have reported

real-time performance (30 frames per second).

A video sequence can be viewed as a 3-dimensional (3-D) signal with two di-

mensions in the spatial domain and one in the temporal domain. Since many video

compression algorithms are frame/block based, video data can be distributed to the
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processors frame-wise (temporal parallelism) or block-wise (spatial parallelism) with-

out changing the overall computation complexity of the algorithm significantly. In

spatial parallelism [27, 28, 29, 14, 30, 69], each frame of a video sequence is divided

into several parts containing an integer number of blocks of pixels and each part

is encoded by a processing element (PE). The entire video sequence is processed in

a frame-by-frame fashion, which results in a minimum delay. However, there is an

upper limit on the number of PEs that can be used because of the limited spatial

resolution of the video sequence [27, 69]. Also a massive spatial parallel algorithm

usually needs to tolerate a relatively high communication overhead. In [27], strict

spatial parallelism was used and real-time performance on the compression of CIF

(352 × 288 pixels per luminance frame) video sequences was achieved. A maximum

compression speed of 31.14 frames per second was obtained using 330 processors on

an Intel Paragon. However, in their computation of compression speed (execution

time), the time needed for the I/O operations was not taken into account. When

I/O operations are included, the algorithm will not obtain real-time performance. In

temporal parallelism, different PEs are assigned to process different video frames of

a video sequence [17, 13, 31]. There is no upper limit on how many PEs can be used

since a typical 2 hour motion picture contains more than 200,000 frames. A problem

with this approach is that even though the overall performance (throughput) can be

faster than real-time the compression of a single frame may be slower than real-time,

which results in a constant delay.

In this chapter we describe a temporal parallel implementation of an MPEG1

encoder on the Intel Touchstone Delta and Intel Paragon [70, 71]. Due to the similarity

between MPEG1 and MPEG2, our implementation and results can be extended to

MPEG2 (main profile, main level).

3.1 An Overview of MPEG1

The MPEG1 standard defines the syntax of the bit stream of a compressed digital

video sequence [6, 11]. In other words, the decoder is defined and the implementation
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of the encoder is open to individual designs. MPEG divides the compressed video

frames into three types: I pictures, P pictures and B pictures (Figure 3.1). I pictures,

the intracoded pictures, are encoded without reference to other frames, exploiting only

the spatial correlation within a frame. P pictures, the predictive coded pictures, are

encoded using motion compensated prediction from a past I picture or P picture. The

bidirectionally-predictive coded pictures, or B pictures, require both past and future

reference frames (I pictures or P pictures) for motion compensation.

An MPEG1 encoder needs to specify which frames of the input video sequence

are to be compressed as an I, P, or B picture. This pattern of I, P and B pictures

may (or may not) be repeated throughout the the video sequence. An example of a

pattern of frames is IBBPBBPBBIBBP· · ·, where I, P, and B indicate an I picture, a

P picture and a B picture, respectively. Hence an input sequence could be:

I1B2B3P4B5B6P7B8B9I10B11B12P13B14B15P16B17B18I19B20B21P22B23B24P25B26B27I28 · · · ,

(3.1)

where the subscripts indicate the sequence frame numbers. The order of the frames

in the compressed sequence is rearranged according to the order in which an MPEG

decoder can decompress the frames with minimum frame buffering (a maximum of

three frame buffers). Hence, at the output of the encoder for the above sequence, the

frame order has the form

I1P4B2B3P7B5B6I10B8B9P13B11B12P16B14B15I19B17B18P22B20B21P25B23B24I28B26B27 · · · .

(3.2)

In an MPEG encoded sequence, several consecutive frames are combined to form

a structure known as a group of pictures (GOP). While a GOP can contain one or

more I pictures, the first picture in a GOP must be an I picture. The existence of

GOPs facilitates the implementation of features such as random access, fast forward,

or fast and normal reverse playback [11].
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The image color space used in the MPEG1 is the YCrCb space, in which Y rep-

resents the luminance component and Cr and Cb represent the chrominance com-

ponents, or the color difference components [6, 72, 8]. For an original video frame,

each spatial position (pixel) is represented by a Y component, a Cr component and

a Cb component. Thus, a video frame consists of 3 images of the same size, each

of which corresponds to the Y, the Cr or the Cb component. This is known as the

4:4:4 format [8, 72]. Observations have shown that the human visual system (HVS)

is less sensitive to chrominance signals than to luminance signals. In MPEG1, the

chrominance components are subsampled with respect to the luminance component

by half in both vertical and horizontal directions, known as the 4:2:0 format. A 2:1

compression is immediately achieved.

A video frame is divided into non-overlapping blocks of pixels, known as macro-

blocks, each of which contains 16x16 pixels of the luminance component, 8x8 pixels

of the Cr chrominance component and 8x8 pixels of the Cb chrominance component.

An 8× 8 luminance or chrominance pixel array is known as a block. Hence a macro-

block contains 4 luminance blocks and 2 chrominance blocks (one Cr block and one

Cb block). A video frame can also be divided into slices, each of which consists a

series of an arbitrary number of macro-blocks in raster-scan order from left to right

and top to bottom in the frame. Slices in a frame are non-overlapping and covering

all the macro-blocks.

In the compression of I pictures, discrete cosine transform (DCT) is used on

each block to decorrelated the pixel values. The DCT coefficients are quantized.

Different quantizer step sizes, set by the quantizer scale, can be used to control the

data rate. An increase in the quantizer step size results in a coarse quantization

and hence, a decrease in the output data rate. Differential pulse coding modulation

(DPCM), run length coding and variable length coding (VLC) are then used to code

the quantized coefficients. In the compression of P pictures and B pictures, motion

compensated prediction is used. Motion associated to a macro-block in a P or B

picture is represented by a two-dimensional vector, known as a motion vector, which
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specifies where to retrieve the macro-block from the reference frame (Figure 3.2).

The motion vectors are then encoded using DPCM and VLC. A predicted picture is

formed by replicating the pixels from the reference frame at new locations according

to the motion vectors. The difference picture, or the error picture, taken between

the current picture and the predicted picture is encoded using the same DCT-based

techniques used for the I pictures. If a motion vector cannot be found according to

the matching criterion, the macro-block will be coded as an intra-coded macro-block

(similar to the macro-blocks in an I picture).

The generation of the motion vector fields (MVFs) is up to individual algorithm

design. The motion vector associated with a macro-block is usually obtained by

matching the macro-block with pixel arrays within the spatial search range in the

reference frame. The displacement between the macro-block and the best matched

pixel array in the reference frame is used as the motion vector. The choice of a

matching criterion is open to individual design. Many different strategies can be used

to search for motion vectors, including full search and logarithmic search [10, 12]. If

full search, or exhaustive search, is used, all macro-block sized pixel arrays within the

chosen spatial search range need to be evaluated, which makes the computation very

intensive. Other methods, such as logarithmic search [10], use strategies to control the

search process so that only a subset of all the possible displacements are evaluated and

the amount of computation is reduced. For example, in logarithmic search (Figure 3.3)

a grid of 9 pixel displacements is evaluated and the search continues based on a smaller

grid centered on the position of the best match. For the macro-block centered at 1’,

pixel arrays centered at all the pixels marked 1 are examined. If the pixel array at

1* has the best match, the pixel arrays centered at 2 will be examined. Eventually

the pixel arrays centered at 3 will be examined and the one with the best match is

chosen. In the example, the motion vector will be a vector from pixel 3* to 1’.

Since I and P pictures are used as reference pictures, it is necessary to maintain a

relatively high video quality for these pictures. On the contrary B pictures which are

never used as reference pictures can tolerate a relatively poorer video quality. Thus
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the quantization steps for I and P pictures are set to be smaller, which correspond

to higher compressed data rates, than those for B pictures. Also, since the motion

compensated prediction is used for P and B pictures, the data needed to be coded

in P and B pictures have lower energy, which correspond to lower compressed data

rates, than I pictures. Therefore, usually I pictures have the highest data rate and the

lowest motion artifacts, while B pictures have the lowest data rate and the highest

motion artifacts. The typical data rate of an I picture is 1 bit per pixel while that of

a P picture is 0.5 bits per pixel and for a B picture, 0.25 bits per pixel. Obviously

the use of P pictures and B pictures yields a much lower data rate. However, it takes

much longer time to compress a P or B picture because the encoding algorithm need

to search for the motion vectors.

It it worth of knowing that the main profile main level MPEG2 has a very similar

structure to the MPEG1 algorithm described in this section.

3.2 An Overview of the Intel Paragon and the Intel Touchstone Delta

While our approach is very general and could be extended to any MIMD dis-

tributed memory architecture, in our experiments we used the Intel Touchstone Delta

and Intel Paragon as the implementation platform. The Intel Touchstone Delta con-

sists of 512 (16x32) Numerical Nodes (Figure 3.4) [71]. Each node is an Intel i860

processor which operates at 40 MHz with 16 MB of memory and has a peak speed of 60

Mflops double-precision or 80 Mflops single-precision. The overall peak speed of the

Touchstone Delta is 32 Gflops. Each Numerical Node is attached to one of the mesh

routing chips (MRCs) which are interconnected via a network with a two-dimensional

mesh topology. Since these nodes do not share memory, they must exchange messages

through the network to share information. The mesh is connected to a Concurrent

File System (CFS) with 90 Gbytes of disk space. The CFS consists of 64 disks which

are served by 32 I/O nodes, each of which serves two disks. The file system distributes

file blocks to all available disks using algorithms for reading and writing that allow
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several PEs to use the concurrent disks simultaneously [71]. The Touchstone Delta

is located at the Concurrent Supercomputing Consortium at Caltech.

The Intel Paragon XP/S parallel computer is a typical distributed memory, multi-

ple instruction streams multiple data streams (MIMD) parallel computer [70]. It has

a similar architecture to that of the Touchstone Delta and uses i860 XP processors

which operate at 50 MHz and have peak floating point performance of 75 Mflops

double-precision or 100 Mflops single-precision (Figure 3.5).

The mesh is connected to the Parallel File System (PFS), which distributes file

blocks to all available disks using algorithms for reading and writing that allow several

PEs to use the file systems simultaneously. The number of numeric nodes and the

number and size of PFSs in a Paragon computer vary relative to each configuration.

The Paragon computers we used for our experiments are the system located at the

Concurrent Supercomputing Consortium at Caltech which has 512 Numerical Nodes

and the one located at Purdue University which has 140 Numerical Nodes. The total

computation capacities exceed 38 Gflops and 10 Gflops, respectively. Both systems

have multiple PFSs.

The Touchstone Delta and Paragon have been used extensively in study of prob-

lems in scientific computing [18, 20].

3.3 Parallel Implementation

The parallel algorithms we developed use the Single Program Multiple Data

(SPMD) model of parallelism [73]. The data stream is divided in temporal paral-

lel and distributed to different PEs. We started by directly mapping the Berkeley

Encoder to the Touchstone Delta and Paragon. The algorithm was then modified

and a new I/O algorithm was developed.

3.3.1 Mapping of the Berkeley Encoder

The Berkeley Encoder is able to run on several interconnected workstations by

distributing the video data via a network file system (NFS) and passing messages
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through TCP/IP sockets [17]. Figure 3.6 shows the processing architecture used

when encoding a video sequence in parallel. The Master Server passes messages to

the Slaves via TCP/IP sockets directing the Slaves to compress selected frames. The

video sequence is stored on an NFS, with each video frame stored as an individual

file. The Slaves read the appropriate frames from the NFS and compress the frames

independently. The compressed frames are written to the NFS as individual files.

The Combine Server reads the compressed frames from the NFS in the correct order,

adds a sequence header, GOP headers and a sequence ender when appropriate, and

outputs the compressed data as a complete MPEG sequence in a single file.

Direct mapping of the Berkeley Encoder to the Touchstone Delta and Paragon is

straightforward if each PE is treated as a workstation. We divide the N processing

elements (PEs) into one Control PE and N-1 Compression PEs. The Control PE acts

similar to the Master Server in the Berkeley encoder and the Compression PEs act

similar to the Slaves. The communication between the PEs is performed by message

passing through the mesh network. The video sequence to be compressed is stored

on the CFSs of the Touchstone Delta or PFSs of the Paragon.

Because the compressed video data has different length for each frame and must

be output in the correct order, it is not feasible to output a single MPEG sequence in

parallel from different compression PEs. To write the compressed data into a single

file, a PE would have to wait for other PEs to complete their output operations,

which virtually makes the algorithm sequential. In our implementation, for the sake of

parallelism, the function of the Combine Server in the Berkeley encoder is eliminated.

Instead a list of file names of the compressed data is generated by the Control PE. The

only task that is not fulfilled in our program is the concatenation of the individual

files into a fully MPEG1 compatible sequence.

The direct mapping of the Berkeley Encoder does not execute fast enough. The

algorithm obtained from direct mapping of the Berkeley Encoder to the Touchstone

Delta and Paragon does not execute fast enough. The overall execution speed on the

Touchstone Delta in terms of frames per second, shown in Figure 3.7(a), is obtained by
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dividing the number of compressed frames by the overall execution time. Obviously,

it runs slower than the real-time rate of 30 frames per second. By examining the

running times of different modules of the software, we found that the average I/O

access time accounts for more than half of the total execution time. Excluding the I/O

time, the execution speed is linear with respect to the number of PEs and can exceed

500 frames per second (Figure 3.7(b)). Also, we found that the speed decreases when

the number of PEs exceeds 100, which we believe is also caused by I/O contention.

To further examine this effect, we observed the amount of time needed to read 512

CIF images as a function of the number of PEs. The images were equally distributed

to each PE and the average time used by the PEs is shown in Figure 3.8.

If the parallel computer had an ideal I/O system, one would expect the average

time to decrease linearly as the number of PEs increases. Our results indicate that the

average time decreases linearly only if the number of PEs is less than 32. Furthermore,

there is a decrease in the I/O speed when the number of PEs exceeds 128.

The approach used in the Berkeley Encoder relative to the I/O operation is not

suitable for parallel computers such as the Touchstone Delta and the Paragon. In

the CFS or PFS, I/O nodes and the mesh networks of the Touchstone Delta and the

Paragon are optimized for operations such as opening a file (parallel mode), read-

ing/writing a large amount of data from/to the file and then closing the file [71, 70].

In the Berkeley Encoder each file contains a single original frame at the input and

a single compressed frame at the output. Hence, a large number of files have to be

opened, read/written or closed simultaneously. This causes extreme I/O contention

on the Touchstone Delta and Paragon and is very inefficient. To overcome this bot-

tleneck we developed a new I/O algorithm.

3.3.2 A New I/O Algorithm

As mentioned above, the Touchstone Delta has 64 disk systems which are served

by 32 I/O nodes. The I/O subsystem uses an algorithm to distribute file blocks on

multiple disks so that data from a single file can be transferred between the disks
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and the mesh network in parallel. This feature makes reading or writing of a large

file very efficient. However, it is not optimal for our application. We need to open

a large number of files at the same time from different PEs. Since opening a large

number of small files for input and output is very inefficient for the Touchstone Delta

or Paragon, we grouped sections of consecutive frames into single files. It is ideal

if a PE can open and read from a single file that contains all the frames assigned

to it, including the necessary reference frames. A similar argument holds for the

output operation. Since an MPEG sequence requires the output frames to be in a

specific order, an arbitrary number of consecutive frames cannot be written into a

single file after compression. For example, in the sequence we described in (1) if

the section I1B2B3 is assigned to a PE, the compressed data cannot be written in

a single file because frame P4 needs to be inserted between I1 and B2B3. Hence,

there are only a limited number of ways to break a video sequence into sections.

For example the sequence described in (1) could be grouped as I1B2B3P4B5B6P7,

P7B8B9I10B11B12P13B14B15P16, and P16B17B18I19B20B21P22B23B24P25 in three files,

and then assigned to three PEs, respectively. The first PE will compress the frames

I1 · · ·P7. The second and third PEs will compress the frames B8 · · ·P16 and B17 · · ·P25,

using P7 and P16 as reference frames, respectively. The output will be in three files

I1P4B2B3P7B5B6, I10B8B9P13B11B12P16B14B15, and I19B17B18P22B20B21P25B23B24,

each of which is a GOP. The only task left is to concatenate these three files to obtain

an MPEG sequence.

Often there are more PEs executing I/O operations than the number of I/O nodes.

Hence, each I/O node has to serve several PEs at the same time, which increases the

contention problem. We want each I/O node to serve only one PE at a time. The

Touchstone Delta has a system call, restrictvol(), that restricts the disk volumes

to which a file can be allocated. By pre-allocating each file to a single disk volume,

we can guarantee that each file is served by a single I/O node. In practice, files are

allocated to disk volumes in a round-robin fashion, e.g. File1 on Volume1, File2 on

Volume2, . . . , File64 on Volume64, File65 on Volume1, etc. Since there are only 32
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I/O nodes, 32 PEs can be served at the same time. Other PEs that need to perform

I/O operations have to wait in a queue which serves I/O requests on a first-come-

first-serve basis. In this way, the entire compression task is pipelined in the following

sense. Certain number of PEs can perform I/O operations at the same time while

other PEs that need to perform I/O operations must wait in a queue. When a PE

finishes its I/O operation and starts computation, one I/O node is freed such that

a PE waiting in the queue can be served. Since the amount of time used to output

compressed data is much less than that used to input the original video data, this

I/O queue is used for input only.

On the Paragon, the feature of restricting the disk volumes to which a file can be

allocated is not available. However the I/O queue is still used to limit the number of

PEs performing I/O operations simultaneously.

A block diagram of the data flow in the temporal parallel algorithm is shown in

Figure 3.9.

3.4 RESULTS

The parallel algorithms have been tested on different video sequences, including

CIF (360x288) versions of the Salesman and Flowergarden sequences and a ITU-R

601 (704x480) version of the Football sequence. The video source is stored in the YUV

color space, which can be transformed to the YCrCb color space, with the chrominance

components, U and V, subsampled to 4:2:0 format [72]. In our experiments, we set

the quantizer scales to be 8 for I pictures, 10 for P pictures and 25 for B pictures and

the frame pattern to be IBBPBB. The GOP size is set to 12 frames. The logarithmic

search scheme was used on half pixel displacements with the search range set to 10

pixels. The reduction in data rate after compression is significant. For example,

the Football sequence has an uncompressed data rate of 120 Mb/s, while the average

compressed data rate is reduced to 3.8 Mb/s, which yields a compression ratio of

31:1. The two CIF sequences have an uncompressed data rate of 38 Mb/s, while

the average compressed data rate is 1.5 Mb/s for the Flowergarden sequence and 400
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Kb/s for the Salesman sequence, which makes the compression ratio to be 24:1 and

92:1, respectively. While the performance of the algorithm in terms of data rate and

image quality is satisfactory, the execution time becomes the major concern. The

results we report in this paper are based on the Salesman sequence which consists of

450 frames. We expanded this video sequence to more than 9000 frames (5 minutes)

by replicating the sequence.

From the data shown above, one can see that I/O contention is the bottleneck

in our encoder. Our new I/O algorithm improves the I/O efficiency and hence the

overall execution time. The execution speed of the encoder on the Touchstone Delta

with the modified I/O algorithm is shown in Figure 3.10. An execution speed of

more than 41 frames per second has been obtained on 144 PEs. Notice that the I/O

queue algorithm speeds up the compression by almost 100%. The comparison of the

execution times of the algorithms with and without the I/O queue on the Paragon

is shown in Figure 3.11. Although the function of restricting the disk volumes to

which a file can be allocated is not available on the Paragon, limiting the number of

PEs allowed to perform I/O operations simultaneously reduces the I/O contention

efficiently. A speed of more than 41 frames per second has been obtained on 100 PEs.

Hence faster than real-time compression has been achieved.

For ITU-R 601 video sequences, the overall performance of the temporal only par-

allel algorithm on the Paragon in terms of compression speed is shown in Figure 3.12.

We can see that the algorithm has near linear speedup when the number of processors

involved are less than 380. When the number of PEs exceeds 380, increasing the num-

ber of PEs does not result in any more speedup. The reason is that the I/O utilization

is so close to the system’s I/O bandwidth limit that the increase in the number of

processors only increases I/O contention. This effect can be seen from Figure 3.13

and Figure 3.14. In Figure 3.13, the percentage of time used by a certain module is

defined as the ratio between the summation of the time used for this module on all

the processors and the summation of the total running time on all the processors. In

Figure 3.14, the virtual number of processors used for a certain module is defined as
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the percentage of running time used for this module multiplied by the total number

of processors. This number indicates how many processors are required for a certain

module if 100% of the running time of these processors are devoted to this module.

We can see that while the number of PEs increases, the percentage of the computer

cycles used on compression decreases and the percentage of computer cycles used on

I/O increases dramatically (Figure 3.13). The overall computation power that is used

on compression does not increase when the number of PEs exceeds 380 (Figure 3.14).
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Fig. 3.1. An example of a video sequence with the I picture, P picture or B picture
assigned to each frame.
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Fig. 3.2. Motion is described by a two-dimensional vector that specifies where to
retrieve a macro-block from the reference frames.
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Fig. 3.7. (a) The overall performance on the Touchstone Delta of the parallel
algorithm obtained by directly mapping the Berkeley Encoder. (b) The performance
obtained by examining only the computation time. The overall performance is also

shown for comparison.

  1   2   4   8  16  32  64 128 256 512
   4

   8

  16

  32

  64

 128

 256

 512

1024

PE

T
im

e 
(s

ec
)

T
im

e 
(s

ec
on

ds
)

Fig. 3.8. Time needed to read a total of 512 images on the Touchstone Delta. The
numbers of images are equally assigned to each node.

Cisco Systems, Inc., IPR2018-01384, Ex. 1009, p. 47 of 134



- 31 -

Compression
Node

Compression
Node

Compression
Node

I/O Queue
Control

PFS (I)

Original Data

PFS (II)

Compressed Data

Fig. 3.9. Block diagram of the temporal algorithm.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

PEs

F
ra

m
es

/s
ec

on
d

o--with I/O queue

+--withoutI/O queue

Fig. 3.10. The overall performance on the Touchstone Delta with the new I/O
algorithm. The performance before modification is also shown for comparison.

Cisco Systems, Inc., IPR2018-01384, Ex. 1009, p. 48 of 134



- 32 -

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

PEs

F
ra

m
es

/s
ec

on
d

o--with I/O queue

+--without I/O queue

Fig. 3.11. The overall performance on the Paragon with the new I/O algorithm.
The performance of the algorithm without the I/O queue is also shown for

comparison

0 100 200 300 400 500 600
0

5

10

15

20

25

30

Number of PEs

F
ra

m
es

 p
er

 s
ec

on
d

Fig. 3.12. The overall speed on the Paragon for the compression of ITU-R 601
video using temporal parallelism.

Cisco Systems, Inc., IPR2018-01384, Ex. 1009, p. 49 of 134



- 33 -

Computation

Input      

Output     

0 100 200 300 400 500 600
  0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

Number of PEs

P
er

ce
nt

ag
e 

of
 r

un
ni

ng
 ti

m
e

Fig. 3.13. The percentage of running time on the Paragon used by different
modules in the temporal parallel algorithm.

Computation

Input      

Output     

0 100 200 300 400 500 600
0

50

100

150

200

250

300

Number of PEs

N
um

be
r 

of
 P

E
s

Fig. 3.14. The virtual number of processors on the Paragon used for different
modules in the temporal parallel algorithm

Cisco Systems, Inc., IPR2018-01384, Ex. 1009, p. 50 of 134



- 34 -

4. PARALLEL MPEG COMPRESSION: THE
SPATIAL-TEMPORAL PARALLEL APPROACH

The main objective of the work has been to develop parallel implementations that

provide real-time throughput. In our experiments, we found that a single node on

the Paragon can compress a ITU-R 601 video sequence at a speed of 0.09 frames per

second with 95.4% of the time used for computation. Since the parallel algorithm

does not reduce the overall amount of computation required, to achieve real-time

performance 320 nodes are needed if 100% of the time is used for computation. Thus

it is critical to minimize the time spent on tasks other than computation, such as

I/O, communications and data distribution/assemblage, in the implementation. For

a high performance parallel computer, such as the Intel Paragon, which is optimized

for scientific computation, the problem can be difficult when a huge data throughput

needs to be maintained. Recent work has shown that the performance of the I/O sys-

tem can greatly affect the performance of the whole algorithm in parallel image/video

processing where the data set is huge [27, 28, 13]. The efficiency of the parallel al-

gorithms is determined by how the algorithm can reduce the overhead, including the

I/O operations, communications and data distribution/assemblage. For the 512-node

Paragon used in our experiments, the goal of our work can be reiterated as follows:

develop a parallel algorithm that, on average, less than 1 − 320/512 = 37.5% of the

time is used for I/O, communications and data distribution/assemblage.

In [27], strict spatial parallelism was used and real-time performance on the com-

pression of CIF (352×288 pixels per luminance frame) video sequences was achieved.

A maximum compression speed of 31.14 frames per second was obtained using 330

processors on an Intel Paragon. In the previous chapter, we presented a temporal

parallel approach which can provide faster than real time compression for CIF video
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sequences using the Intel Touchstone Delta and the Intel Paragon. However, for ITU-

R 601 images (720 × 486 pixels per luminance frame) the compression speed is less

than 30 frames per second using the temporal parallel algorithm. The reason is that

a ITU-R 601 frame is almost 4 times the size of a CIF sized frame, which increases

both the computation and the I/O time.

In this chapter, we will introduce the spatial-temporal parallel approach imple-

mented on the Intel Paragon which will further reduce the I/O contention. We will

show that real-time performance can be achieved for ITU-R 601 video.

4.1 Spatial-Temporal Parallel Algorithm

The spatial-temporal parallel algorithm is based on the temporal parallel algo-

rithm. The PEs are divided into groups and the temporal parallelism is achieved by

assigning different video sections to different PE groups. The compression of each

video section is conducted by a PE group in a spatial parallel mode, i.e. each frame

in the video section is spatially divided into slices that are compressed in parallel by

the PEs in the group. More specifically, all of the PEs are evenly divided into groups,

each of which contains n PEs. Among the n PEs in each group, m PEs (m ≤ n) are

used for computation (denoted as computation PEs). The rest of the PEs are reserved

for special purposes. One of the PEs in a group reads a video section and sends the

data to those m computation PEs in the same group through message passing. Each

frame in the video section is spatially divided into m slices which are processed by the

m computation PEs in parallel. Since each PE on the Paragon has sufficient memory,

even though a computation PE processes only a part of each frame, the entire video

section is sent to all of the computation PEs. Therefore, we do not have to divide a

video section into frames or a frame into several parts and send different parts to dif-

ferent PEs using multiple send and receive operations. The communication overhead

is reduced. According to the number of PEs in a group and the size of the images,

each PE is able to determine the portions of data in the entire video section that need

to be compressed locally. The compressed data from each computation PE is then
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sent to one of the PEs in that group, where the compressed data is assembled and

written to the disk (denoted as the output PE).

The data flow in each group of PEs along with the I/O and the communication

operations of the algorithm are summarized as follows. A single video section is read

by one of the PEs in a group using one read operation. Then the video section is

sent to all the m computation PEs in the group using one send operation. The video

section is compressed frame by frame, with each computation PE processing only a

part of each frame. The compressed data of each frame is then sent to the output

PE. Suppose there are i frames in the video section, then i ×m send operations are

used by the computation PEs and i ×m receive operations are used by the output

PE. The output PE assembles the compressed data and writes the compressed data

of the entire video section using one write operation. Thus, a minimum number of

I/O and communications operations are used.

We used two different schemes in our experiments to realize the spatial parallelism.

Scheme 1

A block diagram of the data flow in this scheme is shown in Figure 4.1.

In each group of n PEs, one PE is devoted to I/O operations, which is

denoted as the I/O node. The rest of the PEs are used for computation.

Thus, m = n − 1. The I/O node reads a section of video data from the

disk, distributes the data to the computation PEs in the group. Each

computation PE compresses a part of each of the frames in the video

section and send the compressed data back to the I/O node. The I/O node

assembles the compressed data and writes it to the disk. A timing diagram

of the task modules for each PE in a group is shown in Figure 4.2. In the

diagram we assume that n = 4 and there are 3 frames in each video section.

To minimize the idle time of the computation PEs, the I/O node reads

the next video section from the disk before the I/O node starts collecting
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compressed data for the current section, i.e. while the computation PEs

are compressing the current section. For the same reason, it distributes

the video data for the next section to the computation PEs before it writes

the compressed data for the current section to the disk.

Scheme 2

A block diagram of the data flow in this scheme is shown in Figure 4.3.

In this scheme, no PEs are devoted to I/O operations. Thus, m = n.

All the PEs conduct the compression task. Meanwhile one of the PEs

is in charge of the data input operations and another one is in charge of

the data output operations. The PE that is in charge of the data input

operations reads the video data from the disk and distributes it to other

PEs in the group. All the PEs in the group participate in computation,

with each PE processing a part of each frame in parallel. The compressed

data is sent to the PE that is in charge of the data output operations,

where the data is assembled and written to the disk. A timing diagram

of the task modules for each PE in a group is shown in Figure 4.4.

From the timing diagrams, we can see that both Scheme 1 and Scheme 2 have

advantages and disadvantages. For Scheme 1, the computation PEs do not have to

wait for the video data to be read in. Therefore it is more efficient for the computation

PEs. However, since one PE in each group is dedicated to I/O operations, the total

number of PEs involved in the compression is reduced. For Scheme 2, each PE is

involved in computation. However, when two of the PEs are conducting input and

output operations the rest of the PEs in the group have to wait. Hence, for these two

schemes there is a trade off between the number of PEs involved in the computation

and the amount of idle time for the computation PEs.
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4.2 Results

The parallel computers we used for the experiments are the Intel Paragon at Cal-

tech and the Intel Paragon at Purdue. The video sequences used in our experiments

are several ITU-R 601 (704× 480 pixels per luminance frame) test sequences. From

experimentation, we found that the performance of the MPEG compression algorithm

is almost invariant when different data sets are used. Thus, here we only present the

results obtained from one MPEG test sequence, known as the football sequence. The

original sequence has 150 frames, subsampled to the 4:2:0 format in the YUV color

space [72, 8]. We extended the sequence to more than 10,000 frames by repeating

the original sequence. The video sequence was grouped into sections (GOPs), each of

which contained 12 frames to be compressed and a reference frame. A frame pattern

of IBBPBBIBBPBB was used. In each of our experiments, 4–6 sections were com-

pressed by each group of PEs. The average speed of a group is defined as the number

of frames compressed by the group divided by the overall execution time of the group,

including the I/O time, the computation time and the communications time. The

overall speed was obtained by summing the average speeds of all the groups. The mo-

tion vector search algorithm used is the logarithmic algorithm and produces integer

pixel motion vectors.

When the spatial-temporal parallel algorithm was used, the number of compu-

tation PEs m was set to 2, 4, 8, 15 and 30. The overall speed of compression of

these two schemes are shown in Figure 4.5 and Figure 4.11, respectively. The to-

tal time is broken down according to 5 different modules—computation, reading the

uncompressed data, distributing the uncompressed data among the processors in a

group, collecting the compressed data, and writing the compressed data to the PFS.

The percentages of the running time consumed by these modules in both schemes

are shown in Figures 4.6–4.10 and Figures 4.12–4.16, respectively. Since it is difficult

to accurately determine the idle time without introducing significant overhead, the

idling mode is not timed individually. Instead, it is included in the time consumed
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by other modules. For instance, the time used for data input includes the time the

I/O node spends in the I/O queue, and the time used for collecting the compressed

data includes the time the I/O node spends on waiting for the incoming compressed

data.

Several sets of the parameters of the spatial-temporal parallel algorithm with

faster-than-real-time performance is shown in Table 4.1. A maximum compression

speed of 43 frames per second was achieved when the Scheme 2 was used and m = 2.

Our I/O management methods are so effective that the time used for data input

is less than 2% in both schemes (Figure 4.7 and Figure 4.13). One major factor

that makes the I/O operations in the spatial-temporal parallel algorithms so much

more efficient than that in the temporal only parallel algorithm is that the spatial

parallelism greatly reduce the number of processors conducting data input operations

simultaneously. The maximum number of processors that perform data input oper-

ations is 256, when m = 2 and 512 nodes are used in Scheme 2. The distribution

of uncompressed data among processors within a group, instead of I/O operations,

consumes a large proportion of the running time, especially when m is large. When

m = 30, the time used for distributing the uncompressed data can be as much as 50%

to 70% of the total running time. Thus, keeping m small is a very important factor to

increase the efficiency of the algorithm. The percentage of time used for data output

in both schemes is very small (Figure 4.8 and Figure 4.14 ), which is the reason that

the I/O queue is not applied to data output.

One may notice that the percentage of the time used for collecting the compressed

data is very high when m is small in Scheme 1 (Figure 4.10), which contradicts

our intuition. This is caused by the fact that when m is small, a small number of

PEs compress a video section in parallel, resulting in a longer computation time to

compress a single section. Thus the I/O nodes have to wait in idle longer for the

incoming compressed data. Since this waiting time is included in the time used for

collecting data, we get a high percentage data collecting time when m is small. This

is also the reason why m = 2 is not the most efficient mode in Scheme 1.
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4.3 Discussion

The advantage of the spatial-temporal parallel algorithm is that a smaller number

of processors are allowed to perform I/O operations. Hence it effectively reduces the

I/O contention. However one may ask why the spatial parallelism is necessary. An-

other possible arrangement, the temporal-temporal parallelism, can be implemented

if we divide the video section read by a group of PEs into smaller sections, each of

which contains one or more consecutive frames, and distribute them to different PEs

within the group. It should have the same effect on reducing the I/O contention.

The problem is that in the temporal-temporal parallelism it is very difficult to main-

tain the load balance, since the time required to compress I, P and B frames are

different. In spatial-temporal parallelism, all the PEs in a group compress different

spatial locations of the same frame. Thus the load balance within a group of PEs in

the spatial-temporal parallel algorithm is much better maintained than that in the

temporal-temporal algorithm. One should notice that the load balance among differ-

ent groups is not as critical as that within a group, because if one group of PEs uses

less time to compress a section, a new section will be assigned to it immediately—no

efficiency is sacrificed here.

While real-time compression of ITU-R 601 video sequences can be achieved, there

exists a constant delay—the time used to read, compress and write the first video

section. The delay depends on the size of the video section and the number of PEs

in a group. This makes it undesirable for some applications, such as live digital TV

broadcasting. However, it is still very useful for applications such as the generation

of a digital video library, in which the throughput, instead of the delay, is the most

important issue.

Suppose each group of PEs has 2 processors and each video section has 12 frames,

the total number of frames that are needed to load the entire machine (512 PEs)

is about 3000 frames, or 100 seconds of video. Usually a video sequence is much

longer than 100 seconds. Hence it is not a problem to keep the Paragon in full
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operation, which is a problem for spatial only parallelism. In our experiments, all the

uncompressed data of a video sequence resides on the PFS before the compression

starts. In practical situations, it is not necessary to have all the data ready before

the compression. After the first round of loading, as long as the uncompressed data

can be provided to the system at a speed no less than the compression speed, the

compression process can be sustained without sacrificing the performance.

In our implementation, special arrangements are made for the input and output

algorithms. Instead of being saved in a single file, the compressed data is stored in

several files. An index list is generated to indicate the order in which the files should

be concatenated. This arrangement can be justified as follows. If the storage media

is the parallel file system, the file headers and the index list can be viewed as an

overhead on the compressed data, which is less than 0.01% of the total compressed

data. Thus compression ratio is sacrificed a little to achieve a huge gain in the com-

pression speed. If the compressed data is to be stored outside the parallel file system

directly and these files need to be concatenated while they are being compressed,

a dedicated system with a buffer and a multiplexer can easily handle this problem.

Also in our implementation, the input data stream is divided into sections of video

sequence instead of frames, which can be done when the video sequence is loaded to

the disk. In practical situations, the input stream may be fed to the parallel computer

directly from a digitizer or a network instead of the parallel file system. In this case

a multiplexer at the interface between the parallel computer and the network can be

used to group the video stream into appropriate sections.

In the experimentation, our algorithm was implemented on the Intel Paragon.

The implementation utilized the Paragon message passing library. Only the basic

parallel file system operations (read and write) and message passing operations (send

and receive) were used. Thus our implementation can be easily exported to other

MIMD computers with distributed memory and parallel file systems.

Since the MPEG2 main profile main level is very similar to MPEG1, our approach

can be easily extended to the encoding of MEPG2.
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Table 4.1 Real-time performance using the spatial-temporal parallel algorithm.

scheme m number of nodes frames/second

1 2 510 31.43

1 4 510 33.59

2 2 510 43.64

2 2 382 33.60

2 4 508 40.04

2 4 380 30.70

2 8 504 32.38
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Fig. 4.1. Block diagram of Scheme 1 of the spatial-temporal algorithm.
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Fig. 4.2. The timing diagram of task modules in Scheme 1. The task modules of a
group of 4 PEs are shown. A video section of 3 frames is assumed. Horizontal axis:

time, vertical axis: processors.
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Fig. 4.3. Block diagram of Scheme 2 of the spatial-temporal algorithm.
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Fig. 4.4. The timing diagram of task modules in Scheme 2. The task modules of a
group of 4 PEs are shown. A video section of 3 frames is assumed. Horizontal axis:

time, vertical axis: processors.
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Fig. 4.5. The overall speed for the compression of ITU-R 601 video using
spatial-temporal parallelism, Scheme 1.
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Fig. 4.6. The percentage of time used for computation in the spatial-temporal
parallel algorithm, Scheme 1.
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Fig. 4.7. The percentage of time used for data input in the spatial-temporal
parallel algorithm, Scheme 1.
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Fig. 4.8. The percentage of time used for data output in the spatial-temporal
parallel algorithm, Scheme 1.
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Fig. 4.9. The percentage of time used for distributing the uncompressed data
within each group in the spatial-temporal parallel algorithm, Scheme 1.
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Fig. 4.10. The percentage of time used for collecting the compressed data within
each group in the spatial-temporal parallel algorithm, Scheme 1.
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Fig. 4.11. The overall speed of the compression of ITU-R 601 video using
spatial-temporal parallelism, Scheme 2.
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Fig. 4.12. The percentage of time used for computation in the spatial-temporal
parallel algorithm, Scheme 2.
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Fig. 4.13. The percentage of time used for data input in the spatial-temporal
parallel algorithm, Scheme 2.
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Fig. 4.14. The percentage of time used for data output in the spatial-temporal
parallel algorithm, Scheme 2.
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Fig. 4.15. The percentage of time used for distributing the uncompressed data
within each group in the spatial-temporal parallel algorithm, Scheme 2.
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Fig. 4.16. The percentage of time used for collecting the compressed data within
each group in the spatial-temporal parallel algorithm, Scheme 2.
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5. COLOR EMBEDDED ZEROTREE WAVELET (CEZW):
A RATE SCALABLE COLOR IMAGE COMPRESSION

TECHNIQUE

Scalability, which includes data rate scalability, spatial resolution scalability, tem-

poral resolution scalability and computational scalability, has become a very impor-

tant issue in image and video coding. Different applications require different data

rates for the compressed image/video and different visual quality (or distortion) for

the decompressed image/video. Therefore scalability, the capability of decoding a

compressed image or video sequence at different data rates, has become a very im-

portant issue in image/video coding. A specific coding strategy known as embedded

rate scalable coding is well suited for this kind of multi-rate transmission [22]. In

embedded coding, all the compressed data is embedded in a single bit stream and

can be decoded at different data rates. The decompression algorithm receives the

compressed data, from the beginning of the bit stream up to a point when a certain

data rate requirement is met. A decompressed image at that data rate can then be

reconstructed and the visual quality corresponding to this data rate can be achieved.

Thus, to achieve best performance the bits that convey the most important informa-

tion need to be embedded at the beginning of a compressed bit stream.

Rate scalable image compression, or progressive transmission of images, has been

extensively investigated [74, 75, 76]. Reviews on this subject can be found in [77, 78].

Different transforms, such as the Laplacian pyramid [74], the discrete cosine trans-

form (DCT) [76], and the wavelet transform [22, 79], have been used for progressive

transmission.

Shapiro introduced a wavelet based embedded rate scalable image compression

algorithm. A spatial-orientation tree (SOT), known as a zerotree, was used to exploit
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the interdependence between the subbands of a wavelet decomposed image [22]. Since

then, variations of the algorithm have been proposed [80, 79, 81, 82], among which

the one proposed by Said and Pearlman [79] has attracted the most attention. In

[22] and [79], slightly different tree structures were used and good rate scalability was

achieved. However, both algorithms were developed for grayscale images. For color

images, the algorithm has to be used separately for the three color components. Thus,

the interdependence between the color components cannot be exploited. Taubman

and Zakhor’s subband coding algorithm used a Layered DPCM scheme to exploit the

correlation between the color components as well as the correlation between different

frequency bands [83]. However, the statistical correlations between the color com-

ponents and between the frequency bands are not significant when subband coding

and LC color spaces are used. For most color images, the spatial locations that show

large transitions in chrominance components also show large transitions in luminance

component, which can be exploited in image compression [84, 85]. In this chapter

we present a modified zero-tree wavelet image compression scheme that exploits the

interdependence between the color components.

5.1 Embedded Zerotree Wavelet Image Coding

A wavelet transform corresponds to two sets of analysis/synthesis filters, g/g̃ and

h/h̃, where g can be treated as a high pass filter and h can be viewed as a low pass

filter. By using the filters g and h, the image can be decomposed into four bands.

Subsampling is used to translate the subbands to a baseband image. This is the first

level of the wavelet transform (Figure 5.1). Usually this transform can be repeated to

the low-low (LL) band. Thus, a typical 2-D discrete wavelet transform used in image

processing will generate a hierarchical pyramidal structure shown in Figure 5.2. The

inverse wavelet transform is achieved by reversing the transform process and replacing

the analysis filters with the synthesis filters and down-sampling with up-sampling

(Figure 5.3). The wavelet transform can decorrelate the image pixel values and result
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in frequency and spatial-orientation separation. The transform coefficients in each

band exhibit unique statistical properties that can be used for encoding the image.

For image compression, quantizers can be designed specifically for each band.

The quantized coefficients can then be entropy coded using either Huffman coding or

arithmetic coding [86, 87, 88]. In embedded coding, a key issue is to embed the more

important information at the beginning of the bit stream. From a rate-distortion

point of view, one wants to quantize the coefficients that cause larger distortion first.

Let the wavelet transform be c = T (p), where p is the collection of image pixels and

c is the collection of transform coefficients. The reconstructed image p̂ is obtained

by the inverse transform p̂ = T−1(ĉ), where ĉ is the quantized transform coefficients.

The distortion introduced in the image is D(p − p̂) = D(c − ĉ) =
∑
iD(ci − ĉi),

where D(·) is the distortion metric and the summation is over the entire image.

The greatest distortion reduction can be achieved if the transform coefficient with

the largest magnitude is coded with infinite precision. Thus attempts have been

made to encode the transform coefficients with larger magnitudes first. Furthermore,

to strategically distribute the bits such that the decoded image will look “natural”,

instead of spending a lot of bits coding one coefficient precisely, progressive refinement

or bit-plane coding is used. Hence, in the coding procedure multiple passes through

the data are made. Let C be the largest magnitude in c. In the first pass, those

transform coefficients with magnitudes greater than 1
2
C are considered significant

and are quantized to 3
4
C. The rest are quantized to 0. In the second pass, those

coefficients that have been quantized to 0 but have magnitudes in between of 1
4
C and

1
2
C are considered significant and are quantized to 3

8
C. Again the rest are quantized

to zero. Also those significant coefficients in the last pass are refined to one more level

of precision, i.e. 5
8
C or 7

8
C. This process can be repeated until the data rate meets

the requirement or the quantization step is small enough. Thus, we can achieve

the largest distortion reduction with the smallest number of bits, while the coded

information is distributed across the image.
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However, to make this strategy work we need to code the position information

along with the magnitude information of the wavelet coefficients. It is critical that

the positions of the significant coefficients be coded efficiently. One could scan the

image in a given order that is known to both the encoder and decoder. A coefficient

is coded 0 if it is insignificant or 1 if it is significant relative to the threshold. However

observations have shown that the majority of the transform coefficients are insignif-

icant when compared to the threshold, especially when the threshold is high. These

coefficients will be quantized to zero, which will not reduce the distortion. However,

we still have to use at least one symbol to code each of them. Using more bits to

code these insignificant coefficients results in lower efficiency. It has been observed

that coefficients which are quantized to zero at a certain pass have structural simi-

larity across subbands in the same spatial orientation. Thus spatial-orientation trees

(SOTs) can be used to quantize large areas of insignificant coefficients efficiently (e.g.

zerotree in [22]).

The algorithms proposed by Shapiro (EZW) [22], and Said and Pearlman (SPIHT) [79]

use slightly different SOTs (shown in Figure 5.4). The major difference between these

two algorithms lies in the fact that they use different strategies to scan the transformed

pixels. Comparing the results of SPIHT and EZW, one can see that the SOT used

by Said and Pearlman [79] is more efficient than Shapiro’s [22].

5.2 Embedded Coding of Color Images

Many wavelet based rate scalable algorithms, such as EZW [22] and SPIHT [79],were

developed for grayscale images. To code a color image, the color components are

treated as three individual grayscale images and the same coding scheme is used for

each component [82]. The interdependence between the color components is not ex-

ploited. To exploit the interdependence between color components, the algorithm

may also be used on the decorrelated color components generated by a linear trans-

form. In Said and Pearlman’s algorithm [79], the Karhunen-Loeve (KL) transform is

used [89]. The KL transform is optimal in the sense that the transform coefficients
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are uncorrelated. The KL transform, however, is image dependent, i.e. the transform

matrix needs to be obtained for each image and transmitted along with the coded

image. Also the bits allocation for each color component has to be determined before

the compression [82].

The red-green-blue (RGB) color space is commonly used because it is compatible

with the mechanism of color display devices. However, the color components in the

RGB space are significantly correlated. Other color spaces are used, among these are

the luminance and chrominance (LC) spaces which are popular in video/television

applications. An LC space, e.g., YCrCb, YUV or YIQ, consists of a luminance

component and two chrominance (color difference) components. The LC spaces are

popular because the luminance signal can be used to generate a grayscale image, which

is compatible with monochrome systems, and the three color components have little

correlation, which facilitates the encoding and/or modulation of the signal [90, 91].

Although the three components in a LC space are uncorrelated, they are not inde-

pendent. Observations have shown that at the spatial locations where chrominance

signals have large transitions, the luminance signal also has large transitions [84, 85].

Transitions in an image usually correspond to coefficients with large magnitudes in

high frequency bands of the wavelet transformed image. Thus, if a transform coef-

ficient in a high frequency band of the luminance signal has small magnitude, the

transform coefficient of the chrominance components at the corresponding spatial lo-

cation and frequency band should also have small magnitude [92, 93]. In embedded

zerotree coding, if a zerotree occurs in the luminance component, a zerotree at the

same location in the chrominance components is highly likely to occur. This interde-

pendence of the transform coefficients signals between the color components can be

exploited.

In our new algorithm, the YUV space is used. We refer to this approach as Color

Embedded Zerotree Wavelet (CEZW). The SOT is established as follows: The original

SOT structure in Shapiro’s algorithm is used for all three color components. Besides

that, each chrominance node is also a child node of the luminance node of the same
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location. Thus each chrominance node has two parent nodes: one is of the same

chrominance component in a lower frequency band, and the other is of the luminance

component. A diagram of the SOT is shown in Figure 5.5.

In CEZW, the coding strategy is similar to Shapiro’s algorithm [22]. The algo-

rithm also consists of dominant passes and subordinate passes. The symbols used

in the dominant pass are positive significant, negative significant, isolated zero and

zerotree. In the dominant pass, the luminance component is first scanned. For each

luminance pixel, all descendents, including those of the luminance component and

those of the chrominance components, are examined and appropriate symbols are as-

signed. The zerotree symbol is assigned if the current coefficient and its descendents

in the luminance and chrominance components are all insignificant. The two chromi-

nance components are alternately scanned after the luminance component is scanned.

The coefficients in the chrominance that have already been encoded as part of a ze-

rotree while scanning the luminance component are not examined. The subordinate

pass, which is the refinement of the coefficients that have been coded as significant in

previous passes, is essentially the same as that in Shapiro’s algorithm. A summary

of CEZW is shown in Figure 5.6.

5.3 Results and Discussion

In our experiments, the original images are in YUV 4:1:1 format. For the SPIHT1

and JPEG algorithms, the images are converted to RGB 4:4:4 format from the

YUV 4:1:1 format. In our experiments, the wavelet decomposition was based on

Daubechies’ 9-7 tap filter bank [94]. Adaptive arithmetic coding is used as the en-

tropy encoder [87, 88]. The size of the image, the levels of wavelet transform, the

initial threshold T , and the maximum data rate is embedded at the beginning of the

bit stream as the header information. The image is decoded at different data rates

within the range of 0.5 bits per pixels (bpp) to 1.5 bpp. The comparison of decoded

1The demonstration program was obtained from Said and Pearlman’s web page at
http://ipl.rpi.edu:80/SPIHT.
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images using CEZW, JPEG, and SPIHT at 0.5 bpp is shown in Figures 5.7–5.112. En-

hanced difference images between the original images and the decoded images using

CEZW, JPEG, and SPIHT at 0.5 bpp are shown in Figures 5.12–5.16. Our subjective

experiments have shown that CEZW produces images with better quality than that

from Said and Pearlman’s SPIHT as well as JPEG at the same data rate. The peak

signal-to-noise (PSNR) ratios from CEZW are compared with that from SPIHT and

JPEG in Table 5.1, where the PSNR is obtained as

10 log10
2552

(MSE(Y ) +MSE(U) +MSE(V ))/3

or

10 log10
2552

(MSE(R) +MSE(G) +MSE(B))/3

for YUV or RGB color spaces, respectively. The PSNR from CEZW is 4 dB higher

than that from SPIHT at all data rates. Here we want to point out that the PSNR

numbers are possibly biased in favor of CEZW since the YUV color space is used as

the base color space.

CEZW does not require image-dependent transforms such as KL transforms used

in Said and Pearlman’s algorithm to decorrelate color components. A spatial-orientation

tree that links not only the frequency bands but also the color channels is used for

scanning the wavelet coefficients, such that the interdependence between different

color components in LC spaces is automatically exploited. Also there is no need

for specifically allocating the bits among color components because of the alternate

scanning of all the color components. Since CEZW is designed for color spaces with

LC components, it can be readily applied to the rate scalable video compression

algorithm, which is presented in the next chapter.

2Only the grayscale images are reproduced in this thesis. The color images are available at
ftp://skynet.enc.purdue.edu/pub/dist/delp/shen-thesis.
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Table 5.1 PSNR of decoded images using CEZW, SPIHT and JPEG.

images girls lenna model peppers tiger

CEZW 36.1 36.9 37.4 41.9 31.9

0.5 bpp SPIHT 32.3 33.3 33.2 37.8 27.9

JPEG 29.7 30.3 30.8 34.6 25.1

CEZW 39.3 40.1 40.5 44.8 35.1

1.0 bpp SPIHT 35.7 35.9 36.1 39.8 31.4

JPEG 32.9 33.5 33.8 37.2 28.8

CEZW 42.3 42.7 43.0 45.9 38.3

1.5 bpp SPIHT 38.0 37.6 38.2 41.3 34.0

JPEG 35.0 35.2 35.7 38.4 31.2
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Initial image
corresponding to
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level m-1

Initial image
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level m

Detail images
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Fig. 5.1. One level of the wavelet transform.
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Fig. 5.2. Pyramid structure of a wavelet decomposed image. Three levels of the
wavelet decomposition are shown.
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Initial image
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level m
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Fig. 5.3. One level of the inverse wavelet transform.
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(a) (b)

Fig. 5.4. Diagrams of the parent-descendent relationships in the spatial-orientation
trees. (a) Shapiro’s algorithm. Notice that the pixel in the LL band has 3 children.
Other pixels, except for those in the highest frequency bands, have 4 children. (b)
Said and Pearlman’s algorithm. One pixel in the LL bands (noted with “*”) does
not have a child. Other pixels, except for those in the highest frequency bands, have

4 children.
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Y

U V

Fig. 5.5. Diagram of the parent-descendent relationships in the CEZW algorithm.
This tree is developed on the basis of the tree structure in Shapiro’s algorithm. The

YUV color space is used.
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1. Wavelet transform is performed on each of the three color components sepa-
rately. Let T be the largest magnitude in wavelet transform coefficients c.

2. While bit budget is not exhausted

(a) T = 1
2
T .

(b) Dominant pass:

i. The Y component is scanned and for each Y node its children in Y
component as well as those in U and V components are compared with
T . Symbols of Positive significant (POS), Negative significant (NEG),
Zerotree (ZT) and Isolated Zero (IZ) are assigned and entropy coded.

ii. The U and V components are alternately scanned. The coefficients
and their children nodes are compared with T . Those coefficients that
have been coded as part of a zerotree in step (i) are not examined.
Symbols of POS, NEG, ZT and IZ are assigned and entropy coded.

(c) Subordinate pass

i. The coefficients that have been coded as significant in previous passes
(excluding the dominant pass just preceding this subordinate pass) are
examined. The quantization error is compared with T and symbols
of Significant (SIG) and Insignificant (INS) are assigned and entropy
coded.

Fig. 5.6. A description of CEZW.
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(Original) (JPEG)

(SPIHT) (CEZW)

Fig. 5.7. The original and the decoded images of Girls at 0.5 bpp using CEZW,
JPEG and SPIHT.
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(Original) (JPEG)

(SPIHT) (CEZW)

Fig. 5.8. The original and the decoded images of Lenna at 0.5 bpp using CEZW,
JPEG and SPIHT.
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(Original) (JPEG)

(SPIHT) (CEZW)

Fig. 5.9. The original and the decoded images of Model at 0.5 bpp using CEZW,
JPEG and SPIHT.
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(Original) (JPEG)

(SPIHT) (CEZW)

Fig. 5.10. The original and the decoded images of Peppers at 0.5 bpp using CEZW,
JPEG and SPIHT.
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(Original) (JPEG)

(SPIHT) (CEZW)

Fig. 5.11. The original and the decoded images of Tiger at 0.5 bpp using CEZW,
JPEG and SPIHT.
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(Original) (JPEG)

(SPIHT) (CEZW)

Fig. 5.12. The original and the difference images of Girls at 0.5 bpp using CEZW,
JPEG and SPIHT. The difference images are enhanced by a factor of 3.64 to show

the coding artifacts.
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(Original) (JPEG)

(SPIHT) (CEZW)

Fig. 5.13. The original and the difference images of Lenna at 0.5 bpp using CEZW,
JPEG and SPIHT. The difference images are enhanced by a factor of 3.64 to show

the coding artifacts.
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(Original) (JPEG)

(SPIHT) (CEZW)

Fig. 5.14. The original and the difference images of Model at 0.5 bpp using CEZW,
JPEG and SPIHT. The difference images are enhanced by a factor of 3.64 to show

the coding artifacts.
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(Original) (JPEG)

(SPIHT) (CEZW)

Fig. 5.15. The original and the difference images of Peppers at 0.5 bpp using
CEZW, JPEG and SPIHT. The difference images are enhanced by a factor of 3.64

to show the coding artifacts.
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(Original) (JPEG)

(SPIHT) (CEZW)

Fig. 5.16. The original and the difference images of Tiger at 0.5 bpp using CEZW,
JPEG and SPIHT. The difference images are enhanced by a factor of 3.64 to show

the coding artifacts.
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6. RATE SCALABLE VIDEO CODING

Recently, scalable video compression algorithms have become popular. These

algorithms have applications in digital libraries, delivery of video over computer net-

works, video telephony and multicast of regular resolution TV and high definition

TV (HDTV). The MPEG2 video compression standard incorporated several scalable

modes, including signal-to-noise ratio (SNR) scalability, spatial scalability and tem-

poral scalability [7, 21]. However, these modes are layered instead of continuously

scalable.

For video compression, the embedded coding scheme can be more complicated

when compared with progressive image compression since a video sequence contains

multiple images. Instead of sending the beginning portion of the bit stream to the

decoder, the sender need to selectively provide the decoder with portions of the bit

stream corresponding to different frames or sections of frames of the video sequence.

These selected portions of the compressed data meet the data rate requirement and

can be decoded by the decoder. This approach can be achieved if the position of the

bits corresponding to each frame or each section of frames can be identified.

One could achieve continuous rate scalability for a video coder by using a rate

scalable still image compression algorithms such as [76, 22, 79] for each video frame.

This is known as the “intracoded frames (I frames) only” approach. We applied

Shapiro’s algorithm [22] separately to 3 color components of each video frame of

the football sequence. The rate-distortion performance is shown in Figure 6.1. A

visually acceptable decoded sequence is available only when the data rate is larger

than 2.5 Mb/s for a CIF (352x240) sequence. This low performance is due to the fact

that the temporal redundancy in a video sequence is not exploited. Taubman and
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Zakhor proposed a embedded scalable video compression algorithm using 3-D subband

coding [83]. Some draw backs of their scheme are that the 3-D subband algorithm can

not exploit the temporal correlation of the video sequence very efficiently, especially

when there is a great deal of motion. Also since 3-D subband decomposition requires

multiple frames to be processed at the same time, it requires more memory for both

the encoder and the decoder, and results in a longer delay than motion compensated

hybrid video compression algorithms such as MPEG and H.263 [6, 7, 9].

Motion compensation is very effective in reducing the temporal redundancy and

is commonly used in video coding. A motion compensated hybrid video compression

algorithm usually consists of two major parts, the generation and compression of the

motion vector (MV) fields and the compression of the I frames and prediction error

frames. Motion compensation is usually block based, i.e. the current image is divided

into blocks and each block is matched with the reference frame. The best matched

block of pixels from the reference frame are then used in the current block. The

prediction error frame is obtained by taking the difference between the current frame

and the motion predicted frame. PEFs are usually encoded using either block-based

transforms, such as DCT [78], or non-block-based coding, such as subband coding

or the wavelet transform. DCT is used in MPEG and H.263 algorithms [6, 7, 9]. A

major problem with a block-based transform coding algorithm is the existence of the

visually unpleasant block artifacts, especially at low data rates. This problem can be

eliminated by using the wavelet transform, which is usually obtained over the entire

image. The wavelet transform has been used in video coding for the compression

of motion predicted error frames [95, 96]. However these algorithms are not scal-

able. If we use wavelet based rate scalable algorithms to compress the I frames and

PEFs, rate scalable video compression can be achieved. Recently, a wavelet based

rate scalable video coding algorithm has been proposed by Wang and Ghanbari [93].

In their scheme the motion compensation was done in the wavelet transform domain.

However, in the wavelet transform domain spatial shifting results in phase shifting,

hence motion compensation does not work well and may cause motion tracking errors
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in high frequency bands. In this chapter we propose a new continuous rate scal-

able hybrid video compression algorithm, the Scalable Adaptive Motion Compensated

Wavelet (SAMCoW) algorithm. In the SAMCoW algorithm, motion compensation

is done in the pixel domain.

6.1 Adaptive Motion Compensation (AMC)

One of the problems of any rate scalable compression algorithm is the ability

to maintain a constant visual quality at any data rate. Often the distortion of a

decoded video sequence varies from frame to frame. Since a video sequence is usually

decoded at 25 or 30 frames per second (or 5-15 frames per second for low data rate

applications), due to the temporal masking effect, the distortion of each frame may

not be discerned as accurately as when individual frames are examined. Yet, the

distortion of each frame contributes to the overall perception of the video sequence.

When the quality of successive frames decreases for a relatively long time, a viewer

will notice the change. This increase in distortion may be visually perceived as an

increase in fuzziness and/or blockiness. This phenomenon can occur due to error

propagation, which is very common when motion compensated prediction is used.

This can be even more serious when using a rate scalable codec.

Motion vector fields are generated by matching the current frame with its reference

frame. After the motion vector field is obtained for the current frame, the predicted

frame is generated by rearranging the pixels in the reference frame relative to m. We

denote this option by M(·), or

ppred =M(pref ,m).

The prediction error frame is obtained by taking the difference between the current

frame and the predicted frame

pdiff = p− ppred.
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At the decoder, the predicted frame is obtained by applying the decoded motion

vector field to the reference frame at the decoder

p̂pred =M(p̂ref , m̂).

The decoded frame is then obtained by adding the p̂pred to the decoded PEF p̂diff

p̂ = p̂pred + p̂diff .

Since the motion field is losslessly decoded, by maintaining the reference frame at the

encoder to be identical to that at the decoder, i.e. pref = p̂ref , then

p̂pred = ppred.

This results in the decoded PEF, p̂diff , being the only source of distortion inD(p−p̂).

Thus, one can achieve better performance if the encoder and decoder use the same

reference frame. For a fixed rate codec p̂ref is the previous decoded frame, this

is usually achieved by using a prediction feedback loop in the encoder so that the

decoded frames are used as reference frames (Figure 6.2). This procedure is commonly

used in MPEG or H.263. However, in our scalable codec, the decoded frames have

different distortions at different data rates. Hence, it is impossible for the encoder to

generate the exact reference frames as in the decoder for all the possible data rates.

One solution is to have the encoder lock on to a fixed data rate (usually the highest

data rate) and let the decoder run freely, as in Figure 6.2. The codec will work

exactly as the non-scalable codec, when decoding at the highest data rate. However,

when the decoder is decoding at a low data rate, the quality of the decoded reference

frames at the decoder will deviate from that at the encoder. Hence, both the motion

prediction and the decoding of the PEFs contribute to the increase in distortion of

the decoded video sequence. This distortion also propagates from one frame to the

next within a group of pictures (GOP). If the size of a GOP is large, the increase in

distortion can be unacceptable.

To maintain video quality, we need to keep the reference frames the same at both

the encoder and the decoder. This can be achieved by adding a feedback loop in the
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decoder (Figure 6.3), such that the decoded reference frames at both the encoder and

decoder are locked to the same data rate—the lowest data rate. We denote this scheme

as adaptive motion compensation (AMC) [97, 98]. We assume that the target data

rate R is within the range RL ≤ R ≤ RH and the bits required to encode the motion

vector fields have data rate RMV , where RMV < RL. At the encoder, since RMV is

known, the embedded bit stream can always be decoded at rate R∆ = RL − RMV ,

which is then added to the predicted frame to generate the reference frame p̂ref for

the next frame. At the decoder, the embedded bit stream is decoded at two data

rates, the targeted data rate R−RMV and the fixed data rate RL−RMV . The frame

decoded at rate R∆ = RL − RMV is added to the predicted frame to generate the

reference frame, which is exactly the same as the reference frame p̂ref used in the

encoder. The frame decoded at rate R − RMV is added to the predicted frame to

generate the final decoded frame. This way, the reference frames at the encoder and

the decoder are kept identical, which leaves the decoded PEF p̂diff to be the only

source of distortion. Hence, error propagation is eliminated.

6.2 Implementation of SAMCoW

We combine the CEZW and the AMC schemes to establish our new rate scalable

video compression algorithm, which is known as Scalable Adaptive Motion Compen-

sation Wavelet (SAMCoW). The discrete wavelet transform was implemented using

the biorthogonal wavelet bases from [94] — the 9-7 tap filter banks in particular.

Four to six levels of wavelet decomposition were used, depending on the image size.

The video sequences used in our experiments use the YUV color space with color

components downsampled to 4:2:0. Motion compensation is implemented using mac-

roblocks, i.e. 16x16 for the Y component and 8x8 for the U and V components,

respectively. The search range is ±15 luminance pixels in both the horizontal and

vertical directions. Motion vectors are restricted to integer precision. The spatially

corresponding blocks in Y, U and V components share the same motion vector. One

problem with block based motion compensation is that it introduces blockiness to
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the prediction error images. The blocking edges cannot be efficiently coded using the

wavelet transform and may introduce unpleasant ringing effects. To reduce the block-

iness in the prediction error images, overlapped block motion compensation is used

for the Y component [99, 95, 9]. Let Li,j be the ith row and jth column macroblock

of the luminance image and mi,j = [mi,jx ,m
i,j
y ] be its motion vector. The predicted

pixel values for Li,j are the weighted sum

Li,j(k, l) = wc(k, l)L
i,j
ref(k +m

i,j
y , l +m

i,j
x )

+wt(k, l)L
i,j
ref(k +m

i−1,j
y , l +mi−1,jx )

+wb(k, l)L
i,j
ref(k +m

i+1,j
y , l +mi+1,jx )

+wl(k, l)L
i,j
ref(k +m

i,j−1
y , l +mi,j−1x )

+wr(k, l)L
i,j
ref(k +m

i,j+1
y , l +mi,j+1x ),

where k, l ∈ {0 . . . 15}. The weighting values for the current block are

wc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 5 5 5 6 6 6 6 6 6 6 6 5 5 5 4
5 5 5 5 6 6 6 6 6 6 6 6 5 5 5 5
5 5 6 6 7 7 7 7 7 7 7 7 6 6 5 5
5 5 6 6 7 7 7 7 7 7 7 7 6 6 5 5
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
5 5 6 6 7 7 7 7 7 7 7 7 6 6 5 5
5 5 6 6 7 7 7 7 7 7 7 7 6 6 5 5
5 5 5 5 6 6 6 6 6 6 6 6 5 5 5 5
4 5 5 5 6 6 6 6 6 6 6 6 5 5 5 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

/8.
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The weighting values for the top block are

wt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

/8,

and the weighting values for the left block are

wl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

/8

The weighting values for the bottom and right blocks are wb(i, j) = wt(15 − i, j)

and wr(i, j) = wl(i, 15− j), respectively, where i, j ∈ {0 . . . 15}. Obviously, wt(i, j) +

wb(i, j) + wl(i, j) + wr(i, j) = 1, which is the necessary condition for overlapped

motion compensation. The motion vectors are differentially coded. The prediction

of the motion vector for the current macroblock is obtained by taking the median
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of the motion vectors of the left, the top and the top-right adjacent macroblocks.

The difference between the current motion vector and the predicted motion vector is

entropy coded.

In our experiments, the GOP size is 100 or 150 frames and the first frame of a

GOP is an intra-coded frame. To maintain the video quality of a GOP, the intra-

coded frames need to be encoded with relatively more bits. We encode an intra-coded

frame using 6 to 10 times the number of bits used for each predictively coded frame.

In our experiments, no bidirectionally predictive-coded frames (B frames) are used.

However, the nature of our algorithm does not preclude the use of B frames.

The embedded bit stream is arranged as follows. The necessary header informa-

tion, such as the resolution of the sequence and the number of levels of the wavelet

transform, is embedded at the beginning of the sequence. In each GOP, the I-frame

is coded first using our rate scalable coder. For each P-frame, the motion vectors

are differentially coded first. The PEF is then compressed using our rate scalable

algorithm. When decoding, after sending the bits of each frame, an end-of-frame

(EOF) symbol is transmitted. The decoder can then decode the sequence without

prior knowledge of the data rate. Therefore the data rate can be changed dynamically

in the process of decoding.

6.3 Experimental Results and Discussion

We use the term “visual quality” of a video sequence (or an image) to describe

the fidelity, or the closeness, of the decoded to the original video sequence (or image)

when perceived by a viewer. We are not aware of a computable metric that will

accurately predict how a human observer will perceive a decompressed video sequence.

In this paper we will use the peak signal-to-noise ratio (PSNR) based on mean-square

error as our “quality” measure. We feel this measure, while unsatisfactory, does track

“quality” in some sense. PSNR of the color component X, X ∈ {Y, U, V }, is obtained
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by:

SNRX = 10 log
2552

mse(X)
,

wheremse(X) is the mean square error ofX. When necessary, the overall or combined

PSNR is obtained by:

SNR = 10 log
2552

(mse(Y ) +mse(U) +mse(V ))/3
.

The effectiveness of using AMC is shown in Figure 6.4. From the figure we can

see that the non-AMC algorithm works better at the highest data rate, to which the

encoder feedback loop is locked. However, for any other data rates, the PSNR perfor-

mance of the non-AMC algorithm declines very rapidly while the error propagation

is eliminated in the AMC algorithm. Data rate scalability can be achieved and video

quality can be kept relatively constant even at a low data rate with AMC. One should

note that the AMC scheme can be incorporated into any motion compensated rate

scalable algorithm, no matter what kind of transform is used for the encoding of I

frames and PEFs.

In our experiment, two sets of video sequences are used. One set is CIF (352x240)

sequences with 30 frames per second. The other set is QCIF (176x144) sequences

with 10 frames per second or 15 frames per second 1.

The CIF sequences are decompressed using SAMCoW at data rates of 1 megabits

per second (Mb/s), 1.5 Mb/s, 2 Mb/s, 4 Mb/s and 6 Mb/s. The representative

frames decoded at the above rates is shown in Figures 6.5 and 6.6. At 6 Mb/s, the

distortion is imperceptible. The decoded video has an acceptable quality when the

data rate is 1 Mb/s. We used Taubman and Zakhor’s algorithm [83] and MPEG-1

to encode/decode the same sequences at the above data rates 2. Since MPEG-1 is

not scalable, the sequences were specifically compressed and decompressed at each

of the above data rates. The overall PSNRs of each frame in a GOP are shown in

Figures 6.7 and 6.8. The computational rate-distortion in terms of average PSNR

1The original sequences along with the decoded sequences using SAMCoW are available at
ftp://skynet.ecn.purdue.edu/pub/dist/delp/samcow.
2Taubman and Zakhor’s software was obtained from the authors.
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over a GOP is shown in Table 6.1. The data indicates that SAMCoW has very

comparable performance to the other methods tested. Comparison of the decoded

image quality using SAMCoW, Taubman and Zakhor’s algorithm and MPEG-1 is

shown in Figures 6.9 and 6.10. We can see that SAMCoW out performs Taubman

and Zakhor’s algorithm, visually and in terms of PSNR. Even though SAMCoW

does not perform as well as MPEG-1 in terms of PSNR, subjective experiments have

shown that our algorithm produces decoded video with comparable visual quality as

MPEG-1 at every tested data rate.

The QCIF sequences are compressed and decompressed using SAMCoW at data

rates of 20 kilobits per second (Kb/s), 32 Kb/s, 64 Kb/s, 128 Kb/s, and 256 Kb/s.

The same set of sequences are compressed using the H.263 algorithm at the above data

rates 3. Again, since H.263 is not scalable, the sequences were specifically compressed

and decompressed at each of the above data rates. Decoded images using SAMCoW

at different data rates, along with that using H.263, are shown in Figures 6.11, 6.12

and 6.13. The overall PSNRs of each frame in a GOP are shown in Figures 6.14

and 6.15. The computational rate-distortion in terms of average PSNR over a GOP

is shown in Tables 6.2 and 6.3. Our subjective experiments have shown that at data

rates greater than 32 Kb/s SAMCoW performs similar to H.263. Below 32 Kb/s when

sequences with high motion are used, such as the Foreman sequence, our algorithm

is visually slightly inferior to H.263. This is partially due to the fact that the wavelet

transform is obtained for the entire image and the algorithm cannot allocate extra

bits to areas with high activity. It should be emphasized that the scalable nature of

SAMCoW makes it very attractive in many low bit rate applications, e.g. streaming

video on the Internet. Furthermore, the decoding data rate can be dynamically

changed.

3The H.263 software was obtained from ftp://bonde.nta.no/pub/tmn/software.
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Table 6.1 PSNR of CIF sequences, average over a GOP. (30 frames per second)

sequence football flowergarden

components All Y U V All Y U V

SAMCoW 27.1 25.8 26.6 29.9 24.3 22.4 24.4 27.3

1 Mb/s Taubman 25.2 21.5 28.8 32.2 21.1 17.3 24.7 28.9

MPEG-1 28.8 25.7 31.2 33.3 25.7 22.5 27.2 29.9

SAMCoW 28.1 27.1 27.7 30.1 25.4 24.1 25.2 27.8

1.5 Mb/s Taubman 26.3 22.6 29.6 32.8 21.6 17.9 25.0 29.4

MPEG-1 30.2 27.3 32.2 33.9 27.0 24.4 28.5 30.4

SAMCoW 28.8 28.2 28.4 30.4 26.7 25.7 26.6 28.4

2 Mb/s Taubman 26.7 23.1 30.1 33.0 22.3 18.7 25.5 29.6

MPEG-1 31.2 28.5 33.0 34.5 28.8 26.5 29.9 31.3

SAMCoW 30.9 30.9 30.4 31.8 28.7 28.8 28.2 29.3

4 Mb/s Taubman 28.9 25.0 31.5 33.9 24.1 20.6 26.7 30.7

MPEG-1 34.2 32.2 35.3 36.1 32.6 30.9 33.6 34.1

SAMCoW 34.9 35.3 34.6 35.1 33.8 34.8 33.4 33.4

6 Mb/s Taubman 29.8 26.5 32.6 34.6 25.6 22.3 28.1 31.0

MPEG-1 36.8 35.2 37.8 38.2 35.4 33.8 36.4 36.5
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Table 6.2 PSNR of QCIF sequences, averaged over a GOP. (15 frames per second)

sequence akiyo foreman

components All Y U V All Y U V

SAMCoW 32.8 31.7 32.3 35.0 28.6 26.1 30.4 31.4
20 Kb/s

H.263 37.5 35.6 38.1 40.1 30.3 27.2 33.5 33.6

SAMCoW 34.6 33.3 34.4 36.8 30.1 27.3 33.4 32.2
32 Kb/s

H.263 39.1 37.4 39.7 41.2 31.1 28.1 34.0 34.2

SAMCoW 38.3 37.2 38.7 39.4 31.6 29.4 33.6 33.4
64 Kb/s

H.263 43.1 40.8 44.8 45.1 33.9 31.1 36.2 36.8

SAMCoW 43.2 41.9 43.7 44.3 33.3 31.5 34.4 34.7
128 Kb/s

H.263 46.3 44.6 47.4 47.7 36.6 34.0 38.3 39.3

SAMCoW 47.5 46.8 47.9 48.1 35.2 34.1 35.5 36.4
256 Kb/s

H.263 49.1 48.4 49.3 49.7 38.4 36.1 39.8 41.1

Table 6.3 PSNR of QCIF sequences, averaged over a GOP. (10 frames per second)

sequence akiyo foreman

components All Y U V All Y U V

SAMCoW 34.0 32.5 33.9 36.3 29.5 26.6 32.7 31.9
20 Kb/s

H.263 39.3 36.6 41.4 42.4 30.4 27.1 33.9 34.2

SAMCoW 36.3 34.9 36.5 38.0 30.5 28.0 33.2 32.3
32 Kb/s

H.263 40.3 38.7 40.8 42.1 32.3 29.3 35.2 35.5

SAMCoW 40.3 38.9 40.8 41.5 32.0 30.0 33.6 33.7
64 Kb/s

H.263 43.4 42.1 44.0 44.8 34.8 32.0 37.0 37.7

SAMCoW 44.9 43.9 45.6 45.7 33.9 32.4 34.8 35.3
128 Kb/s

H.263 46.4 44.7 47.5 47.6 37.2 34.7 38.7 39.9

SAMCoW 48.8 48.6 48.7 49.0 36.1 35.3 36.0 37.3
256 Kb/s

H.263 49.3 48.7 49.5 49.9 39.3 37.1 40.5 41.9

Cisco Systems, Inc., IPR2018-01384, Ex. 1009, p. 107 of 134



- 91 -

  0   2500  5000  7500 10000 12500 15000 17500 20000 22500 25000
20

22

24

26

28

30

32

34

36

38

S
N

R
 (

db
)

Data Rate (kbps)

Fig. 6.1. Average PSNR of EZW encoded football sequence (I frame only) at
different data rates. (30 frames per second)
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original 6Mb/s

4Mb/s 2Mb/s

1.5Mb/s 1Mb/s

Fig. 6.5. Frame 35 of the football sequence, decoded at different data rates using
SAMCoW (CIF, 30 frames per second).
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original 6Mb/s

4Mb/s 2Mb/s

1.5Mb/s 1Mb/s

Fig. 6.6. Frame 35 of the flower sequence, decoded at different data rates using
SAMCoW (CIF, 30 frames per second).
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Fig. 6.7. Comparison of the performance of SAMCoW and Taubman and Zakhor’s
algorithm. Dashed lines: SAMCoW; solid lines: Taubman and Zakhor’s algorithm.
The sequences are decoded at 6 Mb/s, 4 Mb/s, 2 Mb/s, 1.5 Mb/s and 1 Mb/s,

which respectively correspond to the lines from top to bottom.
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Fig. 6.8. Comparison of the performance of SAMCoW and MPEG-1. Dashed lines:
SAMCoW; solid lines: MPEG-1. The sequences are decoded at 6 Mb/s, 4 Mb/s, 2
Mb/s, 1.5 Mb/s and 1 Mb/s, which respectively correspond to the lines from top to

bottom.
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original SAMCoW

MPEG-1 Taubman and Zakhor

Fig. 6.9. Frame 35 of the football sequence (CIF, 30 frames per second). The data
rate is 1.5 Mb/s
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original SAMCoW

MPEG-1 Taubman and Zakhor

Fig. 6.10. Frame 35 of the flower sequence (CIF, 30 frames per second). The data
rate is 1.5 Mb/s
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32Kb/s:

20Kb/s:

Fig. 6.11. Frame 78 of the Akiyo sequence (QCIF, 10 frames per second), decoded
at different data rates. Left column: SAMCoW, right column: H.263.
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64Kb/s:

32Kb/s:

20Kb/s:

Fig. 6.12. Frame 78 of the News sequence (QCIF, 10 frames per second), decoded
at different data rates. Left column: SAMCoW, right column: H.263.
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64Kb/s:

32Kb/s:

20Kb/s:

Fig. 6.13. Frame 35 of the Foreman sequence (QCIF, 10 frames per second),
decoded at different data rates. Left column: SAMCoW, right column: H.263
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Fig. 6.14. Comparison of the performance of SAMCoW and H.263. (QCIF at 15
frames per second) Dashed lines: SAMCoW; solid lines: H.263. The sequences are
decoded at 256 Kb/s, 128 Kb/s, 64 Kb/s, 32 Kb/s and 20 Kb/s, which respectively

correspond to the lines from top to bottom.
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Fig. 6.15. Comparison of the performance of SAMCoW and H.263. (QCIF at 10
frames per second) Dashed lines: SAMCoW; solid lines: H.263. The sequences are
decoded at 256 Kb/s, 128 Kb/s, 64 Kb/s, 32 Kb/s and 20 Kb/s, which respectively

correspond to the lines from top to bottom.
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7. SUMMARY

7.1 Summary

In this thesis, we addressed two issues related to video compression. One is how

to achieve real-time video compression using high performance parallel computers,

and the other is rate scalable image and video compression.

For a high performance parallel computer, such as the Intel Paragon, that is op-

timized for scientific computation, it is difficult to maintain a huge data throughput

which is required for real-time video compression. While the Paragon has the compu-

tation capacity to compress video sequences at a speed faster than real-time, we found

that real-time performance cannot be achieved if the Input/Output (I/O) techniques

are not designed properly.

In this thesis we presented several parallel approaches to the implementation of an

MPEG encoder on the Intel Touchstone Delta and the Intel Paragon. In particular,

the temporal and spatial-temporal parallel approaches were proposed. We designed

the I/O algorithm to reduce I/O contention. We showed that without changing either

the hardware configuration or the operating system of a parallel computer, real-

time performance in the case of ITU-R 601 video can be achieved using the spatial-

temporal approach. We also believe that if the I/O bandwidth of the Touchstone

Delta or Paragon can be increased, by changing either the hardware configuration or

the operating system, the overall performance can be further improved.

We also studied rate scalable image and video compression. A new wavelet based

coding algorithm for color images using a luminance/chrominance color space is pre-

sented. Data rate scalability is achieved by using an embedded coding scheme. A
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spatial-orientation tree that links not only the frequency bands but also the color com-

ponents to scan the wavelet coefficients was used. The interdependence between color

components is automatically exploited. This technique is known as the Color Embed-

ded Zerotree Wavelet (CEZW) algorithm. Based on the CEZW, we further proposed a

new continuous rate scalable hybrid video compression algorithm, the Scalable Adap-

tive Motion Compensated Wavelet (SAMCoW) algorithm. SAMCoW uses motion

compensation to reduce temporal redundancy. The prediction error frames (PEFs)

and the intra-coded frames (I frames) are encoded using our new rate scalable color

image compression algorithm. An adaptive motion compensation scheme is used,

which keeps the reference frames used in motion prediction at both the encoder and

decoder identical at any data rate. Thus error propagation can be eliminated, even at

a low data rate. Experimental results show that SAMCoW has a wide range of rate

scalability and achieves comparable performance to the more traditional hybrid video

coders, such as MPEG1 and H.263. The nature of SAMCoW allows the decoding

data rate to be dynamically changed. The data rate can be adjusted to meet network

loading, which is very appealing to network oriented applications.

7.2 Future Work

Parallel high performance computers have been mainly used as computational en-

gines for paradigms such as solving partial differential equations or modeling/visualizing

DNA structures [18, 19, 20]. Since the many tasks/functions of a video server, besides

video compression, are computationally intensive, parallel computers have the poten-

tial for being used as platforms for video servers. Some of the functions of a video

server that require intensive computation as well as the handling of huge amounts

of data include video parsing and video indexing [100]. Others include query han-

dling and video retrieval. Furthermore, a video server must be capable of handling

interactive requests from multiple users as well guaranteeing continuous data stream

transmission to each user. The use of parallel processing in the implementation of

such applications/functions warrants further investigation.
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The difference images obtained from motion compensation exhibit different statis-

tical properties as the original images. The difference images usually contain regions

with different activities. At regions where motion is well compensated, the energy

level is usually very low. At edges of these regions, the difference image usually con-

tains high frequency signals. At other regions where motion compensation can not

serve up to its purpose, such as regions that contain newly revealed objects, the be-

havior of the difference image is similar to that of the original images. An assumption

that the use of zerotree is based on is that for the same spatial location and orientation

the coefficient with higher frequency usually have lower magnitude. For those regions

contain mainly high frequency signals, this assumption may be violated. If regions

with different activities can be identified and segmented efficiently, the coding of the

difference images may be improved by using different coding strategies for different

regions.

Another possible improvement for the SAMCoW algorithm is to implement a rate

control scheme. Currently, the algorithm assigns same amount of bits for each frame

with the same type (I or P). If the bits allocation to each frame can be adaptive, the

performance of the algorithm may be improved.

7.3 Publications

Part of the work presented in this thesis has been published (or submitted) in the

following papers:

• “An overview of parallel processing approaches to image and video compres-

sion,” Proceedings of the SPIE Conference on Image and Video Compression,

1994 [23].

• “A parallel implementation of an MPEG encoder: Faster than real-time!” Pro-

ceedings of the SPIE Conference on Digital Video Compression: Algorithms and

Technologies, 1995 [13] .
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• “A Spatial-Temporal Parallel Approach for Real-Time MPEG Video Compres-

sion,” Proceedings of the 25th International Conference on Parallel Processing,

1996 [31] .

• “Parallel Scalable Libraries and Algorithms for Computer Vision,” Proceedings

of the 1994 12th International Conference on Pattern Recognition, 1994 [101].

• “Parallel Approaches To Real-Time MPEG Video Compression,” submitted to

Journal of Parallel and Distributed Computing [102].

• “Rate-scalable Video Coding Using a Zerotree Wavelet Approach,” Proceed-

ings of the Ninth IEEE Image and Multidimensional Digital Signal Processing

Workshop, 1996 [97].

• “A Control Scheme for a Data Rate Scalable Video Codec,” Proceedings of the

IEEE International Conference on Image Processing, 1996 [98].

• “Wavelet Based Rate Scalable Video Compression,” submitted to the IEEE

Transactions on Circuits and Systems for Video Technology [103].

• “A fast algorithm for video parsing using mpeg compressed sequences,” Proceed-

ings of the IEEE International Conference on Image Processin g, 1995 [100].
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