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Abstract

In this paper we present several parallel implementations of an MPEG1 video en-
coder on a multiple instruction streams multiple data streams (MIMD), distributed
memory supercomputer. Since the MPEG compression algorithm is frame/block based,
video data can be distributed to the processors frame-wise (temporal parallelism) or
block-wise (spatial parallelism) without changing the overall computation complexity
of the algorithm. In our approaches, both spatial and temporal parallelism have been
exploited. For a supercomputer, such as the Intel Paragon, which is optimized for sci-
entific computation, it is difficult to maintain a huge data throughput which is required
for real-time video compression. While the Paragon has the computation capacity to
compress video sequences at a speed faster than real-time, we found that real-time
performance cannot be achieved if the Input/Output (I/O) techniques are not de-
signed properly. We present several schemes, corresponding to different types of data
parallelism, for managing the I/O operations and regulating the data flow. We show
their effect on increasing the overall speed of video compression. Using our algorithm,

real-time MPEG compression of CCIR 601 digital video sequences was achieved.
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1. Introduction

Video compression plays an important role in many digital video applications, such as digital
libraries, video on demand (VOD), and high definition television (HDTV). The main objec-
tive of a video compression algorithm is to exploit both the spatial and temporal redundancy
of a video sequence such that fewer bits can be used to represent a video sequence at an
acceptable visual quality level. An NTSC digital video sequence which conforms to the I'TU-
R (CCIR) Recommendation 601 (720 x 486 pixels per luminance frame, 4:2:2 chrominance
subsampling, 8 bits per pixel per color) has an uncompressed data rate of 168 mega-bits per
second (Mbps) [4, 13, 25]. A typical 2-hour movie would occupy approximately 150 giga-
bytes of disk space. This data rate would easily overwhelm most communication channels
or storage systems. One immediately sees the need for compression. Many compression
standards, such as ITU-T (CCITT) Recommendation H.261, ISO standards MPEG1 and
MPEG?2 [5, 11, 12, 20, 25|, have been proposed to address this problem. The MPEG stan-
dards have drawn a lot of attention because the US HDTV standard will adopt MPEG2 as
its compression algorithm [9].

The time needed to compress a video sequence is an important issue. Many applications,
such as live digital television broadcasting, require real-time video compression. Other ap-
plications, such as the creation of a digital video library, require very fast or real-time
compression. The time needed to compress a video sequence is affected by the computation
complexity of the algorithm, the efficiency in the implementation of the algorithm and the
speed of the computation facilities.

The computation complexity of the algorithm, along with the compressed data rate, and
the visual quality of the decoded video, are the three major factors used to evaluate a video
compression algorithm. An ideal algorithm should have a low computation complexity, a
low compressed data rate and a high visual quality for the decoded video. However, these
three factors usually cannot be achieved simultaneously. For an algorithm that generates
compressed video with high quality and low data rate, the computation cost is usually high.
It is highly likely that a compressed video sequence with a lower data rate will have a

poorer visual quality after being decompressed. Among these three factors, the computation
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complexity directly affects the time needed to compress a video sequence.

The MPEG standard defines the syntax of the bit stream of a compressed video sequence,
i.e. the decoder is defined and the implementation of the encoder is open to individual de-
signs. Thus, there is not a “standard” algorithm for MPEG video compression. Since block
based motion compensated prediction [14, 15, 18] is used in the MPEG standard, the encod-
ing algorithms have to search for the motion vectors, which is a computationally intensive
task. To encode a CCIR 601 video sequence in real-time, the amount of computation re-
quired for the search of the motion vectors is on the order of 10° operations per second
(Gflops) if a full search algorithm is used [22, 24]. Although many fast algorithms have been
proposed [14, 16, 19], the amount of computation is still overwhelming. Thus the MPEG
algorithm is notoriously asymmetric, i.e. the amount of computation required for the encod-
ing algorithm is much higher than that required for the decoding algorithm. Thus, real-time
video compression is difficult to achieve and is very expensive especially when the image size
is large, or high image quality and low data rates are required. Therefore, parallel process-
ing becomes a natural choice to meet the large computation requirement for real-time video
compression.

Parallel video compression algorithms can be implemented using either hardware or soft-
ware approaches [21]. In hardware approaches special architectures, specifically parallel
architectures, can be designed to accelerate the computation [2, 3, 8]. Such a video compres-
sion device is feasible for applications such as live TV broadcasting. These devices are very
expensive, e.g. a real-time MPEG2 encoder for CCIR 601 video costs in excess of $100,000.
In many cases only a single video stream can be processed at a time. Software approaches in-
clude the use of parallel supercomputers and networks of workstations [1, 6, 7, 17, 22, 24, 26].
Usually a software implementation offers more flexibility, e.g. parameters can be adjusted
easily and multiple video streams can be handled, which is essential for applications such
as a video server or a video database. Portability may also be an advantage of a software
implementation. A software approach is most suitable for algorithm development, digital
library servers, or massive production of compressed digital video.

A video sequence can be viewed as a 3-dimensional (3-D) signal with two dimensions

in the spatial domain and one in the temporal domain. Since many video compression
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algorithms are frame/block based, video data can be distributed to the processors frame-
wise (temporal parallelism) or block-wise (spatial parallelism) without changing the overall
computation complexity of the algorithm significantly. In spatial parallelism [1, 6, 17, 24, 26],
each frame of a video sequence is divided into several parts containing an integer number of
blocks and each part is encoded by a processing element (PE). The whole video sequence is
processed in a frame-by-frame fashion, which results in a minimum delay. However, there
is an upper limit on the number of PEs that can be used because of the limited spatial
resolution of a video sequence [1]. Also a massive spatial parallel algorithm usually needs to
tolerate a relatively high communication overhead. In temporal parallelism, different PEs
are assigned to process different video frames of a video sequence [7, 22]. There is no upper
limit on how many PEs can be used since a typical 2 hour motion picture contains more than
200,000 frames. A problem with this approach is that even though the overall performance
(throughput) can be faster than real-time the compression of a single frame may be slower
than real-time, which results in a constant delay.

A variation of the above approaches, which combines the temporal and spatial parallelism,
has been proposed [23]. In this paper, we describe the spatial-temporal parallel approach in
detail. New experimental results and an analysis of the execution time of each task module
of the algorithm are presented. A comparison of this method with other parallel approaches
are also given.

The rest of the paper is organized as follows. In section 2 and section 3, we overview the
MPEG standard and the Intel Paragon, respectively. In section 4, we discuss the problem and
the difficulties in achieving real-time performance. In section 5, our parallel approaches are
described. The experimental results are presented in section 6. Discussion and conclusions

are given in section 7 and section 8.

2. An Overview of MPEG1

MPEGT1 is an international standard for digital video compression developed by the Moving
Picture Experts Group [11, 20, 25]. MPEG1 divides the compressed video frames into three

types: I pictures, P pictures and B pictures (Figure 1). An I picture, or intracoded picture,
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is encoded without reference to other frames, exploiting only the spatial correlation within
the frame. A P picture (predictive coded picture) is encoded using motion compensated
prediction from a past I picture or P picture. A bidirectionally-predictive coded picture,
or B picture, requires both past and future reference frames (I pictures or P pictures) for
motion compensation. Since I and P pictures are used as reference pictures, it is necessary
to maintain a relatively high video quality for these pictures. On the contrary B pictures
which are never used as reference pictures can tolerate a relatively poorer video quality.
Thus the quantization steps for I and P pictures are set to be smaller, which correspond to
higher compressed data rates, than those for B pictures. Also, since the motion compensated
prediction is used for P and B pictures, the data needed to be coded in P and B pictures
have lower variances, which correspond to lower compressed data rates, than I pictures.
Therefore, usually I pictures have the highest data rate and the lowest motion artifacts,
while B pictures have the lowest data rate and the highest motion artifacts. The typical
data rate of an I picture is 1 bit per pixel while that of a P picture is 0.5 bits per pixel and
for a B picture, 0.25 bits per pixel. Obviously the use of P pictures and B pictures yields
a much lower data rate. However, it takes much longer time to compress a P or B picture
because the encoding algorithm need to search for the motion vectors.

An MPEG1 encoder needs to specify which frames of the input video sequence are to
be compressed as an I, P, or B picture. This pattern of I, P and B pictures may (or
may not) be repeated throughout the video sequence. An example of a frame pattern is
IBBPBBPBBIBBP:- - -, where I, P, and B indicate an I picture, a P picture and a B picture,
respectively. In an MPEG encoded sequence, several consecutive frames are combined to
form a structure known as a group of pictures (GOP). While a GOP can contain one or
more [ pictures, the first picture in a GOP must be an I picture.

The image color space used in the MPEGT1 is the YC,C,, space, in which Y represents
the luminance component and C, and C,, represent the chrominance components, or the
color difference components [11, 13, 20]. For an original video frame, each spatial position
(pixel) is represented by a Y component, a C, component and a Cp component. Thus,
a video frame consists of 3 images of the same size, each of which corresponds to the Y,

the C, or the C,, component. This is known as the 4:4:4 format [20]. In MPEGI, the
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chrominance components are subsampled with respect to the luminance component by half
in both vertical and horizontal directions, known as the 4:2:0 format. A video frame consists
of non-overlapping blocks of pixels, or macro-blocks, each of which contains 16 x 16 pixels
of the luminance image, 8 x 8 pixels of the C, chrominance image and 8 x 8 pixels of the
Cp, chrominance image. An 8 x 8 pixel array is known as a block. Hence a macro-block
contains 4 luminance blocks and 2 chrominance blocks (one C, block and one C;, block). A
video frame is divided into slices, each of which consists of a series of an arbitrary number
of macro-blocks in raster-scan order from left to right and top to bottom in a frame. Slices
in a frame are non-overlapping and covering all the macro-blocks.

In the compression of I pictures, each block of the picture is discrete cosine transformed
(DCT) and the DCT coefficients are quantized. Different quantizer step sizes, set by the
quantizer scale, can be used to control the data rate. Differential pulse coding modula-
tion (DPCM), run length coding and variable length coding (VLC) are then performed on
the quantized DCT coeflicients. In the compression of P pictures and B pictures, motion
compensated prediction is used. Motion associated to a macro-block in a P or B picture is
represented by a two-dimensional vector, known as motion vector, which specifies where to
retrieve the macro-block from the reference frame. Integer and half pixel displacements are
allowed in motion vectors . The motion vector associated to a macro-block is obtained by
matching the macro-block with pixel arrays in the reference frame within the spatial search
range. The displacement between the macro-block and the best matched pixel array in the
reference frame is used as the motion vector. Many different strategies can be used to search
for motion vectors, including full search and logarithmic search [11, 14, 18]. If full search, or
exhaustive search, is used, all macro-block sized pixel arrays within the chosen spatial search
range need to be evaluated, which makes the computation very intensive. Other methods,
such as logarithmic search [14], use strategies to control the search process so that not all
of the possible displacements are evaluated and the amount of computation is reduced. The
motion vectors are then encoded using DPCM and VLC. A predicted picture is formed by
replicating the pixels from the reference frame at new locations according to the motion
vectors. The difference picture (error picture) between the current picture and the predicted

picture is encoded using the same DCT-based techniques used for the I pictures. If a motion
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vector cannot be found according to the matching criterion, the macro-block will be coded

as an intra-coded macro-block (similar to the macro-blocks in an I picture).

3. An Overview of the Intel Paragon

While our approach is very general and could be extended to any MIMD distributed memory
architecture, in our experiments, we used the Intel Paragon as the implementation platform.
The Intel Paragon XP/S supercomputer is a typical distributed memory, multiple instruc-
tion streams multiple data streams (MIMD) parallel supercomputer [10]. It uses i860 XP
processors as its Numerical Nodes which operate at 50 MHz and have peak floating point
performance of 75 Mflops double-precision or 100 Mflops single-precision. Each Numerical
Node is attached to a mesh routing chips (MRC). The MRCs are interconnected via a net-
work with a two-dimensional mesh topology. Since these nodes do not share memory, they
must exchange messages through the network to share information. The mesh is connected
to the Parallel File System (PFS), which distributes file blocks to all available disks using
algorithms for reading and writing that allow several PEs to use the file systems simulta-
neously. The number of Numerical Nodes and the number and size of PFSs in a Paragon
computer vary relative to the configuration. The Paragon computers we used for our experi-
ments are the system located at the Concurrent Supercomputing Consortium which has 512
Numerical Nodes and the one located at Purdue University which has 140 Numeric Nodes.
The total computation capacities exceed 38 Gflops and 10 Gflops, respectively. Both systems
have multiple PFSs.

4. Problem Description

Several approaches have been proposed to map the MPEG algorithm on to the Intel Paragon [1,
22, 23]. The main objective of the work has been to develop parallel implementations that
provide real-time throughput. In our experiments, we found that a single node on the
Paragon can compress a CCIR 601 video sequence at a speed of 0.09 frames per second

with 95.4% of the time used for computation. Since the parallel algorithm does not reduce
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the overall amount of computation required, to achieve real-time performance 320 nodes are
needed if 100% of the time is used for computation. Thus it is critical to minimize the time
spent on tasks other than computation, such as I/O, communications and data distribu-
tion/assemblage, in the implementation. For a supercomputer, such as the Intel Paragon,
which is optimized for scientific computation, the problem can be difficult when a huge data
throughput needs to be maintained. Recent work has shown that the performance of the I/O
system can greatly affect the performance of the whole algorithm in parallel image/video
processing where the data set is huge [1, 6, 22]. For the 512-node Paragon used in our exper-
iments, the goal of our work can be reiterated as follows: develop a parallel algorithm that,
on average, less than 1 — 320/512 = 37.5% of the time is used for I/O, communications and
data distribution/assemblage.

A video sequence can be divided into parallel data streams spatially, temporally, or
spatial-temporally. In [1], strict spatial parallelism was used and real-time performance on
the compression of CIF (352 x 288 pixels per luminance frame) video sequences, which is a
quarter of the image size of CCIR 601 sequences [20], was achieved. A maximum compression
speed of 31.14 frames per second was obtained using 330 processors on an Intel Paragon.
However, in their computation of compression speed (execution time), the time needed for
the I/O operations was not taken into account. When I/O operations are included, the
algorithm will not obtain real-time performance.

In [22], we used temporal parallelism to achieve faster than real time compression of CIF
video sequences using the Intel Touchstone Delta and Intel Paragon. The implementation
was based on a greatly modified version of the software MPEG encoder developed at the
University of California at Berkeley [7]. We assumed that the video sequences are stored
on the PFS of the parallel computer. The algorithm reads a video stream from the PFS,
compresses the sequence and then writes the compressed data to the PFS. The end-to-
end execution time (including I/O time) is used to compute the compression speed. I/O
contention was found to be the main bottleneck because a large number of PEs needed to
read different frames from the PFS simultaneously, which resulted in I/O congestion. An
I/O management algorithm was used to minimize the I/O contention. Frame rates of over

41 frames per second were achieved using 100 processors on the Touchstone Delta or 144
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processors on the Paragon. However, for CCIR 601 images (720 x 486 pixels per luminance
frame) the compression speed is less than 30 frames per second using the temporal parallel
algorithm. The reason is that a CCIR 601 frame is almost 4 times the size of a CIF sized
frame, which increases both the computation and the I/O time.

In [23], a spatial-temporal parallelism was introduced. The number of PEs that need to
perform I/O operations at the same time is reduced because more than one of the PEs share
the same I/O operations. The I/O contention is also reduced.

The efficiency of these parallel algorithms is determined by how the algorithm can
reduce the overhead, including the I/O operations, communications and data distribu-
tion/assemblage. In the following two sections, we compare the performance of the algo-

rithms using temporal parallelism and spatial-temporal parallelism.

5. Parallel Implementation of the Encoder

In this section, we describe several parallel approaches to MPEG video compression. For the
purpose of clarity, we describe the temporal parallel algorithm first. The spatial-temporal

parallel algorithm is then described in detail.

5.1 Temporal Parallel Algorithm

A block diagram of the data flow in the temporal parallel algorithm is shown in Figure 2.
The input video sequence is divided into sections, each of which contains the video frames
to be compressed and the necessary reference frames. These sections are stored on the PFS
as individual files. This arrangement is used to reduce the number of read operations, hence
the I/O contention. Each PE is assigned a section of the video sequence at one time. The
assigned section is read and then compressed by the PE. The compressed data is saved on
the PFS and the PE is then assigned to compress another video section. An I/O queue
is used to reduce I/O contention. At any given time only a certain number of PEs can
read from the PFS. Other PEs have to wait in the queue and gain access to the I/O on a
first-come first-serve basis. The compressed data of each section resides on the PFS as an

individual file. A better solution seemed to be the use of a PE to assemble the compressed
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data from different PEs into a single data stream before saving the data to the PFS. However,
experiments showed that a single PE cannot assemble and save the data fast enough to fulfill

the real-time video compression requirement [22].

5.2 Spatial-Temporal Parallel Algorithm

The spatial-temporal parallel algorithm is based on the temporal parallel algorithm. The
compression of each video section is conducted by a group of PEs in a spatial parallel mode,
i.e. each frame in the video section is spatially divided into pieces that are compressed in
parallel by the PEs in the group. More specifically, all of the PEs are evenly divided into
groups, each of which contains n PEs. Among the n PEs in each group, m PEs (m < n) are
used for computation (denoted as computation PEs). The rest of the PEs are reserved for
special purposes. One of the PEs in a group reads a video section and sends the data to those
m computation PEs in the same group through message passing. Each frame in the video
section is spatially divided into m slices which are processed by the m computation PEs in
parallel. Since each PE on the Paragon has sufficient memory, even though a computation PE
processes only a part of each frame, the entire video section is sent to all of the computation
PEs. Therefore, we do not have to divide a video section into frames or a frame into several
parts and send different parts to different PEs using multiple send and receive operations.
Thus, the communication overhead is reduced. According to the number of PEs in a group
and the size of the images, each PE is able to determine the portions of data in the entire video
section that need to be compressed locally. The compressed data from each computation PE
is then sent to one of the PEs in that group, where the compressed data is assembled and
written to the disk (denoted as the output PE).

The data flow in each group of PEs along with the I/O and the communication operations
of the algorithm are summarized as follows. A single video section is read by one of the PEs
in a group using one read operation. Then the video section is sent to all the m computation
PEs in the group using one send operation. The video section is compressed frame by frame,
with each computation PE processing only a part of each frame. The compressed data of

each frame is then sent to the output PE. Suppose there are ¢ frames in the video section,
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then i x m send operations are used by the computation PEs and ¢ x m receive operations
are used by the output PE. The output PE assembles the compressed data and writes the
compressed data of the entire video section using one write operation. Thus, a minimum
number of I/O and communications operations are used.

We used two different schemes in our experiments to realize the spatial parallelism.

Scheme 1

A block diagram of the data flow in this scheme is shown in Figure 3. In each
group of n PEs; one PE is devoted to I/O operations, which is denoted as the
I/O node. The rest of the PEs are used for computation. Thus, m = n — 1.
The I/O node reads a section of video data from the disk, distributes the data
to the computation PEs in the group. Each computation PE compresses a part
of each of the frames in the video section and send the compressed data back to
the I/O node. The I/O node assembles the compressed data and writes it to the
disk. A timing diagram of the task modules for each PE in a group is shown in
Figure 4. In the diagram we assume that n = 4 and there are 3 frames in each
video section. To minimize the idle time of the computation PEs, the I/O node
reads the next video section from the disk before the I/O node starts collecting
compressed data for the current section, i.e. while the computation PEs are
compressing the current section. For the same reason, it distributes the video
data for the next section to the computation PEs before it writes the compressed

data for the current section to the disk.

Scheme 2

A block diagram of the data flow in this scheme is shown in Figure 5. In this
scheme, no PEs are devoted to I/O operations. Thus, m = n. All the PEs
conduct the compression task. Meanwhile one of the PEs is in charge of the data

input operations and another one is in charge of the data output operations.
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The PE that is in charge of the data input operations reads the video data from
the disk and distributes it to other PEs in the group. All the PEs in the group
participate in computation, with each PE processing a part of each frame in
parallel. The compressed data is sent to the PE that is in charge of the data
output operations, where the data is assembled and written to the disk. A timing

diagram of the task modules for each PE in a group is shown in Figure 6.

From the timing diagrams, we can see that both Scheme 1 and Scheme 2 have advantages
and disadvantages. For Scheme 1, the computation PEs do not have to wait for the video
data to be read in. Therefore it is more efficient for the computation PEs. However, since
one PE in each group is dedicated to I/O operations, the total number of PEs involved in
the compression is reduced. For Scheme 2, each PE is involved in computation. However,
when two of the PEs are conducting input and output operations the rest of the PEs in the
group have to wait. Hence, for these two schemes there is a trade off between the number

of PEs involved in the computation and the amount of idle time for the computation PEs.

6. Results

The video sequences used in our experiments are several CCIR 601 (704 x 480 pixels per
luminance frame) test sequences. From experimentation, we found that the performance
of the MPEG compression algorithm is almost invariant when different data sets are used.
Thus, in this paper we only present the results obtained from one MPEG test sequence,
known as the football sequence. The original sequence has 150 frames, subsampled to the
4:2:0 format in the YUV color space [13, 20]. We extended the sequence to more than
10,000 frames by repeating the original sequence. The video sequence was grouped into
sections (GOPs), each of which contained 12 frames to be compressed and a reference frame.
A frame pattern of IBBPBBIBBPBB was used. In each of our experiments, 4-6 sections
were compressed by each group of PEs. The average speed of a group is defined as the
number of frames compressed by the group divided by the overall execution time of the

group, including the I/O time, the computation time and the communications time. The
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overall speed was obtained by summing the average speeds of all the groups. The motion
vector search algorithm used is the logarithmic algorithm and produces integer pixel motion
vectors.

The overall performance of the temporal only parallel algorithm in terms of compression
speed is shown in Figure 7. We can see that the algorithm has near linear speedup when
the number of processors involved are less than 380. When the number of PEs exceeds
380, increasing the number of PEs does not result in any more speedup. The reason is that
the I/O utilization is so close to the system’s I/O bandwidth limit that the increase in the
number of processors only increases /O contention. This effect can be seen from Figure 8
and Figure 9. In Figure 8, the percentage of time used by a certain module is defined as the
ratio between the summation of the time used for this module on all the processors and the
summation of the total running time on all the processors. In Figure 9, the virtual number
of processors used for a certain module is defined as the percentage of running time used for
this module multiplied by the total number of processors. This number indicates how many
processors are required for a certain module if 100% of the running time of these processors
are devoted to this module.

When the spatial-temporal parallel algorithms were used, the number of computation
PEs m was set to 2, 4, 8, 15 and 30. The overall speed of compression of these two schemes
are shown in Figure 10 and Figure 16, respectively. The total time is broken down according
to b different modules—computation, reading the uncompressed data, distributing the un-
compressed data among the processors in a group, collecting the compressed the data, and
writing the compressed data to the PFS. The percentages of the running time consumed by
these modules in both schemes are shown in Figures 11-15 and Figures 17-21, respectively.
Since it is difficult to accurately determine the idle time without introducing significant over-
head, the idling mode is not timed individually. Instead, it is included in the time consumed
by other modules. For instance, the time used for data input includes the time the 1/O node
spends in the I/O queue, and the time used for collecting the compressed data includes the
time the I/O node spends on waiting for the incoming compressed data.

Several sets of the parameters of the spatial-temporal parallel algorithm with faster-than-

real-time performance is shown in Table I. A maximum compression speed of 43 frames per
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second was achieved when the Scheme 2 was used and m = 2.

Our I/O management methods are so effective that the time used for data input is less
than 2% in both schemes (Figure 12 and Figure 18). One major factor that makes the I/O
operations in the spatial-temporal parallel algorithms so much more efficient than that in the
temporal only parallel algorithm is that the spatial parallelism greatly reduce the number
of processors conducting data input operations simultaneously. The maximum number of
processors that perform data input operations is 256, when m = 2 and 512 nodes are used in
Scheme 2. The distribution of uncompressed data among processors within a group, instead
of 1/O operations, consumes a large proportion of the running time, especially when m is
large. When m = 30, the time used for distributing the uncompressed data can be as much
as 50% to 70% of the total running time. Thus, keeping m small is a very important factor
to increase the efficiency of the algorithm. The percentage of time used for data output in
both schemes is very small (Figure 13 and Figure 19 ), which is the reason that the I/O
queue is not applied to data output.

One may notice that the percentage of the time used for collecting the compressed data
is very high when m is small in Scheme 1 (Figure 15), which contradicts our intuition. This
is caused by the fact that when m is small, a small number of PEs compress a video section
in parallel, resulting in a longer computation time to compress a single section. Thus the
I/O nodes have to wait in idle longer for the incoming compressed data. Since this waiting
time is included in the time used for collecting data, we get a high percentage data collecting
time when m is small. This is also the reason why m = 2 is not the most efficient mode in

Scheme 1.

7. Discussion

The advantage of the spatial-temporal parallel algorithm is that a smaller number of proces-
sors are allowed to perform I/O operations. Hence it effectively reduces the I/O contention.
However one may ask why the spatial parallelism is necessary. Another possible arrange-
ment, the temporal-temporal parallelism, can be implemented if we divide the video section

read by a group of PEs into smaller sections, each of which contains one or more consecutive
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frames, and distribute them to different PEs within the group. It should have the same effect
on reducing the I/O contention. The problem is that in the temporal-temporal parallelism
it is very difficult to maintain the load balance. Since the time required to compress I, P
and B frames are different, the time needed to compress a frame (or a section of frames)
may be very different from the time needed for another frame (or a section of frames). In
spatial-temporal parallelism, all the PEs in a group compress different spatial locations of
the same frame. Thus the load balance within a group of PEs in the spatial-temporal parallel
algorithm is much better maintained than that in the temporal-temporal algorithm. One
should notice that the load balance among different groups is not as critical as that within
a group, because if one group of PEs uses less time to compress a section, a new section will
be assigned to it immediately—no efficiency is sacrificed here.

While real-time compression of CCIR. 601 video sequences can be achieved, there exists a
constant delay—the time used to read, compress and write the first video section. The delay
depends on the size of the video section and the number of PEs in a group. This makes it
unsuitable for some applications, such as live digital TV broadcasting. However, it is still
very useful for applications such as the generation of a digital video library, in which the
throughput, instead of the delay, is the most important issue.

Suppose each group of PEs has 2 processors and each video section has 12 frames, the
total number of frames that are needed to load the entire machine (512 PEs) is about 3000
frames, or 100 seconds of video. Usually a video sequence is much longer than 100 seconds.
Hence it is not a problem to keep the Paragon in full operation. In our experiments, all the
uncompressed data of a video sequence resides on the PF'S before the compression starts. In
practical situations, it is not necessary to have all the data ready before the compression.
After the first round of loading, as long as the uncompressed data can be provided to the
system at a speed no less than the compression speed, the compression process can be
sustained without sacrificing the performance.

In our implementation, special arrangements are made for the input and output algo-
rithms. Instead of being saved in a single file, the compressed data is stored in several files.
An index list is generated to indicate the order in which the files should be concatenated.

This arrangement can be justified as follows. If the storage media is the parallel file system,
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the file headers and the index list can be viewed as an overhead on the compressed data,
which is less than 0.01% of the total compressed data. Thus compression ratio is sacrificed a
little to achieve a huge gain in the compression speed. If the compressed data is to be stored
outside the parallel file system directly and these files need to be concatenated while they are
being compressed, a dedicated system with a buffer and a multiplexer can easily handle this
problem. Also in our implementation, the input data stream is divided into sections of video
sequence instead of frames, which can be done when the video sequence is loaded to the
disk. In practical situations, the input stream may be fed to the parallel computer directly
from a digitizer or a network instead of the parallel file system. In this case a multiplexer at
the interface between the parallel computer and the network can be used to group the video
stream into appropriate sections.

In the experimentation, our algorithm was implemented on the Intel Paragon. The
implementation utilized the Paragon message passing library. Only the basic parallel file
system operations (read and write) and message passing operations (send and receive) were
used. Thus our implementation can be easily exported to other MIMD computers with

distributed memory and parallel file systems.

8. Summary

In this paper we presented several parallel approaches to the implementation of an MPEG
encoder on a MIMD supercomputer. We designed the I/O algorithm to reduce I/O con-
tention. The data flow is managed by the proper arrangement of the I/O nodes and the
computation nodes within a group of PEs. We showed that without changing either the
hardware configuration or the operating system of a supercomputer our approach is able to
compress CCIR 601 video sequences in real-time. Thus our results can be viewed as a lower
bound on the performance of the parallel MPEG compression algorithm on the Paragon.
If the I/O bandwidth of the Paragon can be increased, by changing either the hardware
configuration or the operating system, the overall performance can be further improved.

A postscript version of this paper and the commented software package are available via

anonymous ftp to skynet.ecn.purdue.edu in the directory /pub/dist/delp/p-mpeg.
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Table I: Real-time performance using the spatial-temporal parallel algorithm.

scheme | m | number of nodes | frames/second
1 2 510 31.43
1 4 510 33.59
2 2 510 43.64
2 2 382 33.60
2 4 508 40.04
2 4 380 30.70
2 8 504 32.38
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Figure 1: A video sequence with the I picture, P picture or B picture assigned to each frame.
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Figure 2: Block diagram of the temporal algorithm.
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Figure 3: Block diagram of Scheme 1 of the spatial-temporal algorithm.
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Write the compressed data to PFS Idle

Figure 4: The timing diagram of task modules in Scheme 1. The task modules of a group
of 4 PEs are shown. A video section of 3 frames is assumed. Horizontal axis: time, vertical
axis: processors.
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Figure 5: Block diagram of Scheme 2 of the spatial-temporal algorithm.
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Figure 6: The timing diagram of task modules in Scheme 2. The task modules of a group
of 4 PEs are shown. A video section of 3 frames is assumed. Horizontal axis: time, vertical
axis: processors.
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Figure 7: The overall speed for the compression of CCIR 601 video using temporal paral-
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Figure 8: The percentage of running time used by different modules in the temporal parallel
algorithm.
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Figure 9: The virtual number of processors used for different modules in the temporal parallel
algorithm
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Figure 10: The overall speed for the compression of CCIR 601 video using spatial-temporal
parallelism, Scheme 1.
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Figure 11: The percentage of time used for computation in the spatial-temporal parallel
algorithm, Scheme 1.
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Figure 12: The percentage of time used for data input in the spatial-temporal parallel
algorithm, Scheme 1.
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Figure 13: The percentage of time used for data output in the spatial-temporal parallel
algorithm, Scheme 1.
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Figure 14: The percentage of time used for distributing the uncompressed data within each
group in the spatial-temporal parallel algorithm, Scheme 1.
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Figure 15: The percentage of time used for collecting the compressed data within each group
in the spatial-temporal parallel algorithm, Scheme 1.
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Figure 16: The overall speed of the compression of CCIR 601 video using spatial-temporal
parallelism, Scheme 2.
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Figure 17: The percentage of time used for computation in the spatial-temporal parallel
algorithm, Scheme 2.
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Figure 18: The percentage of time used for data input in the spatial-temporal parallel
algorithm, Scheme 2.
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Figure 19: The percentage of time used for data output in the spatial-temporal parallel
algorithm, Scheme 2.
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Figure 20: The percentage of time used for distributing the uncompressed data within each
group in the spatial-temporal parallel algorithm, Scheme 2.
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Figure 21: The percentage of time used for collecting the compressed data within each group
in the spatial-temporal parallel algorithm, Scheme 2.
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