
The Data
Compression

Book

Featuring fast, efficient data
compression techniques in C

Mark Nelson

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 1 of 20

The Data
Compression

Book

Featuring fast, efficient data
compression techniques in C

Mark Nelson

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 2 of 20

M&T Books

115 West 18th Street

New York, NY 10011

© 1992 by M&T Publishing, Inc.

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and
retrieval sytem, without prior written pemission from the Publisher. Contact the Publisher for
information on foreign rights.

Limits of Liability and Disclaimer of Warranty
The Author and Publisher of this book have used their best efforts in preparing the book and the
programs contained in it. These efforts include the development, research, and testing of the theories
and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with regard to these
programs or the documentation contained in this book. The Author and Publisher shall not be liable in
any event for incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

Library of Congress Cataloging-in-Publication Data

Nelson, Mark, 1958 -
The Data Compression Book/by Mark Nelson

p. cm.
Includes index.
ISBN 1-55851-214-4: $29.95
1. Data Compression (Computer Science)
QA76.9.D33N46 1991
005. 7 4' 6--dc20

ISBN 1-55851-216-0 (book/disk set): $39.95
I. Title

91-23080
CIP

Project Editor: Tova Fliegel
Copy Editor: Shayne Bell
Technical Reviewer: Robert Jung

Cover Design: Lauren Smith Design
Layout: Marni Tapscott

95 94 93 4 3 2

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 3 of 20

CHAPTER 2

The Data-Compression
Lexicon, with a History

Like any other scientific or engineering disCipline, data compression has a vocabu­

lary that at first can seem overwhelmingly strange to an outsider. Terms like Lempe/­

Ziv compression, arithmetic coding,- and statistical modeling get tossed around with

reckless abandon.

While the list of buzzwords is long enough to merit a glossary, mastering them is

not as daunting a project as it may first seem. With a bit of study and a few notes, any

programmer should hold his or her own at a cocktail-party argument over data­

compression techniques.

The Two Kingdoms
Data-compression techniques can be divided into two major families: lossy and

lossless. Lossy data compression concedes a certain loss of accuracy in exchange for

greatly increased compression. Lossy compression proves effective when applied to

graphics images and digitized voice. By their very nature, these digitized representa­

tions of analog phenomena are not perfect to begin with, so the idea of output and

input not matching exactly is a little more acceptable. Most lossy compression

techniques can be adjusted to different quality levels, gaining higher accuracy in

exchange for less effective compression. Until recently, lossy compression has been

primarily implemented using dedicated hardware. In the past few years, powerful

lossy-compression programs have been moved to desktop CPUs, but even so the field

is still dominated by hardware implementations.

13

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 4 of 20

THE DATA COMPRESSION BOOK

Lossless compression consists of those techniques guaranteed to generate an exact

duplicate of the input data stream after a compress/expand cycle. This is the type of

compression used when storing database records, spreadsheets, or word processing

files. In these applications, the loss of even a single bit could be catastrophic. Most

techniques discussed in this book will be lossless.

Data Compression = Modeling + Coding
In general, data compression consists of taking a stream of symbols and transform­

ing them into codes. If the compression is effective, the resulting stream of codes will

be smaller than the original symbols. The decision to output a certain code for a certain

symbol or set of symbols is based on a model. The model is simply a collection of data

and rules used to process input symbols and determine which code(s) to output. A

program uses the model to accurately define the probabilities for each symbol and the

coder to produce an appropriate code based on those probabilities.

Modeling and coding are two distinctly different things. People frequently use the

term coding to refer to the entire data-compression process instead of just a single

component of that process. You will hear the phrases "Huffman coding" or "Run­

Length Encoding," for example, to describe a data-compression technique, when in

fact they are just coding methods used in conjunction with a model to compress data.

Using the example of Huffman coding, a breakdown of the compression process

looks something like this:

Input

Stream

Symbols
-

Probabilities
Model llB>- Encoder

Figure 2-1. A Statistical Model with a Huffman Encoder.

14

Codes Output

Stream

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 5 of 20

DATA-COMPRESSION LEXICON

In the case of Huffman coding, the actual output of the encoder is determined by

a set of probabilities. When using this type of coding, a symbol that has a very high

probability of occurrence generates a code with very few bits. A symbol with a low

probability generates a code with a larger number of bits.

We think of the model and the program's coding process as different because of the

countless ways to model data, all of which can use the same coding process to produce

their output. A simple program using Huffman coding, for example, would use a

model that gave the raw probability of each symbol occurring anywhere in the input

stream. A more sophisticated program might calculate the probability based on the last

10 symbols in the input stream. Even though both programs use Huffman coding to

produce their output, their compression ratios would probably be radically different.

So when the topic of coding methods comes up at your next cocktail party, be alert

for statements like "Huffman coding in general doesn't produce very good compres­

sion ratios." Tbis would be your perfect opportunity to respond with "That's like

saying Converse sneakers don't go very fast. I always thought the leg power of the

runner had a lot to do with it." If the conversation has already dropped to the point

where you are discussing data compression, this might even go over as a real

demonstration of wit.

The Dawn Age
Data compression is perhaps the fundamental expression of Information Theory.

Information Theory is a branch of mathematics that had its genesis in the late 1940s

with the work of Claude Shannon at Bell Labs. It concerns itself with various questions

about information, including different ways of storing and communicating messages.

Data compression enters into the field of Information Theory because of its concern

with redundancy. Redundant information in a message takes extra bits to encode, and

if we can get rid of that extra information, we will have reduced the size of the message.

Information Theory uses the term entropy as a measure of how much information

is encoded in a message. The word entropy was borrowed from thermodynamics, and

it has a similar meaning. The higher the entropy of a message, the more information

15

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 6 of 20

THE DATA COMPRESSION BOOK

it contains. The entropy of a symbol is defined as the negative logarithm of its

probability. To determine the information content of a message in bits, we express the

entropy using the base 2 logarithm:

Number of bits = - Log base 2 (probability)

The entropy of an entire message is simply the sum of the entropy of all individual

symbols.

Entropy fits with data compression in its determination of how many bits of

information are actually present in a message. If the probability of the character 'e'

appearing in this manuscript is 1/16, for example, the information content of the

character is four bits. So the character string "eeeee" has a total content of 20 bits. If
we are using standard 8-bit ASCII characters to encode this message, we are actually

using 40 bits. The difference between the 20 bits of entropy and the 40 bits used to

encode the message is where the potential for data compression arises.

One important fact to note about entropy is that, unlike the thermodynamic measure

of entropy, we can use no absolute number for the information content of a given

message. The problem is that when we calculate entropy, we use a number that gives

us the probability of a given symbol. The probability figure we use is actually the

probability for a given model, not an absolute number. If we change the model, the

probability will change with it.

How probabilities change can be seen clearly when using different o.rders with a

statistical model. A statistical model tracks the probability of a symbol based on what

symbols appeared previously in the input stream. The order of the model determines

how many previous symbols are taken into account. An order-0 model, for example,

won't look at previous characters. An order-1 model looks at the previous character,

and so on.

The different order models can yield drastically different probabilities for a charac­

ter. The letter 'u' under an order-0 model, for example, may have only a 1 percent

probability of occurrence. But under an order-1 model, if the previous character was

'q,' the 'u' may have a 95 percent probability.

16

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 7 of 20

DATA-COMPRESSION LEXICON

Tbis seemingly unstable notion of a character's probability proves troublesome for

many people. They prefer that a character have a fixed "true" probability that told what

the chances of its "really" occurring are. Claude Shannon attempted to determine the

true information content of the English language with a "party game" experiment. He

would uncover a message concealed from his audience a single character at a time.

The audience guessed what the next character would be, one guess at a time, until they

got it right. Shannon could then determine the entropy of the message as a whole by

taking the logarithm of the guess count. Other researchers have done more experi­

ments using similar techniques.

While these experiments are useful, they don't circumvent the notion that a symbol's

probability depends on the model. The difference with these experiments is that the

. model is the one kept inside the human brain. Tbis may be one of the best models

available, but it is still a model, not an absolute truth.

In order to compress data well, we need to select models that predict symbols with

high probabilities. A symbol that has a high probability has a low information content

and will need fewer bits to encode. Once the model is producing high probabilities, the

next step is to encode the symbols using an appropriate number of bits.

Coding
Once Information Theory had advanced to where the number of bits of information

in a symbol could be determined, the next step was to develop new methods for

encoding information. To compress data, we need to encode symbols with exactly the

number of bits of information the symbol contains. If the character 'e' only gives us

four bits of information, then it should be coded with exactly four bits. If 'x' contains

twelve bits, it should be coded with twelve bits.

By encoding characters using EBCDIC or ASCII, we clearly aren't going to be

very close to an optimum method. Since every character is encoded using the same

number of bits, we introduce lots of error in both directions, with most of the codes in

a message being too long and some being too short.

17

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 8 of 20

THE DATA COMPRESSION BOOK

Solving this coding problem in a reasonable manner was one of the first problems

tackled by practitioners of Information Theory. Two approaches that worked well

were Shannon-Pano coding and Huffman coding-two different ways of generating

variable-length codes when given a probability table for a given set of symbols.

Huffman coding, named for its inventor D. A. Huffman, achieves the minimum

amount of redundancy possible in a fixed set of variable-length codes. This doesn't

mean that Huffman coding is an optimal coding method. It means that it provides the

best approximation for coding symbols when using fixed-width codes.

The problem with Huffman or Shannon-Pano coding is that they use an integral

number of bits in each code. If the entropy of a given character is 2.5 bits, the Huffman

code for that character must be either 2 or 3 bits, not 2.5. Because of this, Huffman

coding can't be considered an optimal coding method, but it is the best approximation

that uses fixed codes with an integral number of bits. Here is a sample of Huffman codes:

Symbol

E

T

A

x
0

z

Huffman Code

100

101

1100

11010

01101111

01101110001

01101110000

An Improvement. Though Huffman coding is inefficient due to using an integral

number of bits per code, it is relatively easy to implement and very efficient for both

coding and decoding. Huffman first published his paper on coding in 1952, and it

instantly became the most-cited paper in Information Theory. It probably still is.

Huffman's original work spawned numerous minor variations, and it dominated the

coding world till the early 1980s.

As the cost of CPU cycles went down, new possibilities for more efficient coding

techniques emerged. One in particular, arithmetic coding, is a viable successor to

Huffman coding.

18

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 9 of 20

DATA-COMPRESSION LEXICON

Arithmetic coding is somewhat more complicated in both concept and implemen­

tation than standard variable-width codes. It does not produce a single code for each

symbol. Instead, it produces a code for an entire message. Each symbol added to the

message incrementally modifies the output code. This is an improvement because the

net effect of each input symbol on the output code can be a fractional number of bits

instead of an integral number. So if the entropy for character 'e' is 2.5 bits, it is possible

to add exactly 2.5 bits to the output code.

An example of why this can be more effective is shown in the following table, the

analysis of an imaginary message. In it, Huffman coding would yield a total message

length of 89 bits, but arithmetic coding would approach the true information content

of the message, or 83.69 bits. The difference in the two messages works out to

approximately 6 percent. Here are some sample message probabilities:

Symbol Information Huffman Code Number of

Content Bit Count Occurrences

E 1.26 bit 1 bits 20

A 1.26 bit 2 bits 20
x 4.00 bit 3 bits 3
y 4.00 bit 4 bits 3

z 4.58 bit 4 bits 2

The problem with Huffman coding in the above message is that it can't create codes

with the exact information content required. In most cases it is a little above or a little

below, leading to deviations from the optimum. But arithmetic coding gets to within

a fraction of a percent of the actual inf onnation content, resulting in more accurate coding.

Arithmetic coding requires more CPU power than was available until recently.

Even now it will generally suffer from a significant speed disadvantage when com­

pared to older coding methods. But the gains from switching to this method are

significant enough to ensure that arithmetic coding will be the coding method of

choice when the cost of storing or sending infonnation is high enough.

19

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 10 of 20

THE DATA COMPRESSION BOOK

Modeling
If we use a an automotive metaphor for data compression, coding would be the

wheels, but modeling would be the engine. Regardless of the efficiency of the coder,

if it doesn't have a model feeding it good probabilities, it won't compress data.

Lossless data compression is generally implemented using one of two different

types of modeling: statistical or dictionary-based. Statistical modeling reads in and

encodes a single symbol at a time using the probability of that character's appearance.

Dictionary-based modeling uses a single code to replace strings of symbols. In

dictionary-based modeling, the coding problem is reduced in significance, leaving the

model supremely important.

Statistical Modeling. The simplest forms of statistical modeling use a static table of

probabilities. In the earliest days of information theory, the CPU cost of analyzing data

and building a Huffman tree was considered significant, so it wasn't frequently

performed. Instead, representative blocks of data were analyzed once, giving a table of

character-frequency counts. Huffman encoding/decoding trees were then built and

stored. Compression programs had access to this static model and would compress data

using it.

But using a universal static model has limitations. If an input stream doesn't match

well with the previously accumulated statistics, the compression ratio will be de­

graded-possibly to the point where the output stream becomes larger than the input

stream. The next obvious enhancement is to build a statistics table for every unique

input stream.

Building a static Huffman table for each file to be compressed has its advantages.

The table is uniquely adapted to that particular file, so it should give better compres­

sion than a universal table. But there is additional overhead since the table (or the

statistics used to build the table) has to be passed to the decoder ahead of the

compressed code stream.

For an order-0 compression table, the actual statistics used to create the table may

take up as little as 256 bytes-not a very large amount of overhead. But trying to

achieve better compression through use of a higher order table will make the statistics

that need to be passed to the decoder grow at an alarming rate. Just moving to an order-

20

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 11 of 20

DATA-COMPRESSION LEXICON

1 model can boost the statistics table from 256 to 65,536 bytes. Though compression

ratios will undoubtedly improve when moving to order-1, the overhead of passing the

statistics table will probably wipe out any gains.

For this reason, compression research in the last 10 years has concentrated on

adpative models. When using an adaptive model, data does not have to be scanned

once in order to generate statistics. Instead, the statistics are continually modified as

new characters are read in and coded. The general flow of a program using an adaptive

model looks something like that shown in figures 2-2 and 2-3.

-
Read Input Encode Update Output

Symbols --Jiio-- --Jiio-- Symbol
--Jiio--

Model --Jiio-- ----fioo- Codes
Symbol Code

~
~~·~

Model I•

Figure 2-2. General Adaptive Compression.

~

Read Input Decode Update Output
Codes --Jiio-- . --Jiio-- Symbol

--Jiio--
Model --Jiio-- _____.,... Symbols

Code Symbol
~ ----

Model ...
-~-

Figure 2-3. General Adaptive Decompression.

21

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 12 of 20

THE DATA COMPRESSION BOOK

The important point in making this system work is that the box labeled "Update

Model" has to work exactly the same way for both the compression and decompres­

sion programs. After each character (or group of characters) is read in, it is encoded or

decoded. Only after the encoding or decoding is complete can the model be updated

to take into account the most recent symbol or group of symbols.

One problem with adaptive models is that they start knowing essentially nothing

about the data. So when the program first starts, it doesn't do a very good job of

compression. Most adaptive algorithms tend to adjust quickly to the data stream and

will begin turning in respectable compression ratios after only a few thousand bytes.

Likewise, it doesn't take long for the compression-ratio curve to flatten out so that

reading in more data doesn't improve the compression ratio.

One advantage that adaptive models have over static models is the ability to adapt

to local conditions. When compressing executable files, for example, the character of

the input data may change drastically as the program file changes from binary program

code to binary data. A well-written adaptive program will weight the most recent data

higher than old data, so it will modify its statistics to better suit changed data.

Dictionary Schemes. Statistical models generally encode a single symbol at a

time-reading it in, calculating a probability, then outputting a single code. A dictionary­

based compression scheme uses a different concept. It reads in input data and looks for

groups of symbols that appear in a dictionary. If a string match is found, a pointeror index

into the dictionary can be output instead of the code forthe symbol. The longer the match,

the better the compression ratio.

This method of encoding changes the focus of dictionary compression. Simple coding

methods are generally used, and the focus of the program is on the modeling. In I2W

compression, for example, simple codes of uniform width are used for all substitutions.

A static dictionary is used like the list of references in an academic paper. Through

the text of a paper, the author may simply substitute a number that points to a list of

references instead of writing out the full title of a referenced work. The dictionary is

static because it is built up and transmitted with the text of the work-the reader does

not have to build it on the fly. The first time I see a number in the text like this-[2]­

I know it points to the static dictionary.

22

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 13 of 20

DATA-COMPRESSION LEXICON

The problem with a static dictionary is identical to the problem the user of a static

·statistical model faces: The dictionary needs to be transmitted along with the text,

resulting in a certain amount of overhead added to the compressed text. An adaptive

dictionary scheme helps avoid this problem.

Mentally, we are used to a type of adaptive dictionary when performing acronym

replacements in technical literature. The standard way to use this adaptive dictionary

is to spell out the acronym, then put its abbreviated substitution in parentheses. So the

first time I mention the Massachusetts Institute of Technology (MIT), I define both the

dictionary string and its substitution. From then on, referring to MIT in the text should

automatically invoke a mental substitution.

Ziv and lempel
Until 1980, most general-compression schemes used statistical modeling. But in

1977 and 1978, Jacob Ziv and Abraham Lempel described a pair of compression

methods using an adaptive dictionary. These two algorithms sparked a flood of new

techniques that used dictionary-based methods to achieve impressive new compres­

sion ratios.

LZ77. The first compression algorithm described by Ziv and Lempel is commonly

referred to as LZ77. It is relatively simple. The dictionary consists of all the strings in a

window into the previously read input stream. A file-compression program, for example,

could use a 4K-byte window as a dictionary. While new groups of symbols are beingread

in, the algorithm looks for matches with strings found in the previous 4K bytes of data

already read in. Any matches are encoded as pointers sent to the output stream.

LZ77 and its variants make attractive compression algorithms. Maintaining the

model is simple; encoding the output is simple; and programs that work very quickly

can be written using LZ77. Popular programs such as PKZIP and LHarc use variants

of the LZ77 algorithm, and they have proven very popular.

23

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 14 of 20

THE DATA COMPRESSION BOOK

LZ78. The LZ78 program takes a different approach to building and maintaining the

dictionary. Instead of having a limited-size window into the preceding text, LZ78 builds

its dictionary out of all of the previously seen symbols in the input text. But instead of

having carte blanche access to all the symbol strings in the preceding text, a dictionary

of strings is built a single character at a time. The first time the string "Mark" is seen, for

example, the string "Ma" is added to the dictionary. The next time, "Mar" is added. If
"Mark" is seen again, it is added to the dictionary.

This incremental procedure works very well at isolating frequently used strings and

adding them to the table. Unlike LZ77 methods, strings in LZ78 can be extremely

long, which allows for high-compression ratios. LZ78 was the first of the two Ziv­

Lempel algorithms to achieve popular success, due to the LZW adaptation by Teny

Welch, which forms the core of the UNIX COMPRESS program.

lossy Compression
Until recently, lossy compression has been primarily performed on special-purpose

hardware. The advent of inexpensive Digital Signal Processor (DSP) chips began

lossy compression's move off the circuit board and onto the desktop. CPU prices have

now dropped to where it is becoming practical to perform lossy compression on

general-purpose desktop PCs.

Lossy compression is fundamentally different from lossless compression in one

respect: it accepts a slight loss of data to facilitate compression. Lossy compression is

generally done on analog data stored digitally, with the primary applications being

graphics and sound files.

This type of compression frequently makes two passes. A first pass over the data

performs a high-level, signal-processing function. This frequently consists of trans­

forming the data into the frequency domain, using FFT-like algorithms. Once the data

has been transformed, it is "smoothed," rounding off high and low points. Loss of

signal occurs here. Finally, the frequency points are compressed using conventional

lossless techniques.

The smoothing function that operates on the frequency-domain data generally has a

"quality factor" built into it that detennines just how much smoothing occurs. The more the

data is massaged, the greater the signal loss-and more compression will occur.

24

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 15 of 20

DATA-COMPRESSION LEXICON

In the small systems world, a tremendous amount of work is being done on

graphical image compression, both for still and moving pictures. The International

Standards Organization (ISO) and the Consultive Committee for International Tele­

graph and Telephone (CCITT) have banded together to form two committees: The

Joint Photographic Experts Group (JPEG) and the Moving Pictures Expert Group

(MPEG). The JPEG committee is finalizing its compression standard, and many

vendors are shipping hardware and software that work with trial versions of the

standard. The MPEG committee is not as far along.

The JPEG standard uses the Discrete Cosine Transform (DCT) algorithm to

convert a graphics image to the frequency domain. The DCT algorithm has been used

for graphics transforms for many years, so efficient implementations are readily

available. JPEG specifies a quality factor of 0 to 100, and it lets the compressor

determine what factor to select.

Using the JPEG algorithm on images can result in dramatic compression ratios.

With little or no degradation, compression ratios of 5-10 percent are routine. Accept­

ing minor degradation achieves ratios as low as 1-2 percent.

Software implementations of the JPEG and MPEG algorithms are still struggling to

achieve real-time perfmmance. Most multimedia development software that uses this

type of compression still depends on the use of a coprocessor board to make the

compression take place in a reasonable amount of time. We are probably only a few

years away from software-only compression capabilities.

Programs to Know
General-purpose data-compression programs have been available only for the past

ten years or so. It wasn't until around 1980 that machines with the power to do the

analysis needed for effective compression started to become commonplace.

In the Unix world, one of the first general-purpose compression programs was

COMPACT. COMPACT is a relatively straightforward implementation of an order-0

compression program that uses adaptive Huffman coding. COMPACT produced good

enough compression to make it useful, but it was slow. COMPACT was also a

proprietary product, so it was not available to all Unix users.

25

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 16 of 20

THE DATA COMPRESSION BOOK

COMPRESS, a somewhat improved program, became available to Unix users a

few years later. It is a straightforward implementation of the LZW dictionary-based

compression scheme. COMPRESS gave significantly better compression than COM­

PACT, and it ran faster. Even better, the source code to COMPRESS was readily

available as a public-domain program, and it proved quite portable. COMPRESS is

still in wide use among UNIX users, though its continued use is questionable due to

th~ LZW patent held by Unisys.

In the early 1980s, desktop users of CP/M and MS-DOS systems were first exposed

to data compression through the SQ program. SQ performed order-0 compression

using a static Huffman tree passed in the file. SQ gave compression comparable to that

of the COMPACT program, and it was widely used by early pioneers in desktop

telecommunications.

As in the Unix world, Huffman coding soon gave way to LZW compression with

the advent of ARC. ARC is a general-purpose program that performs both file

compression and archiving, two features that often go hand in hand. (Unix users

typically archive files first using TAR, then they compress the entire archive.) ARC

could originally compress files using run-length encoding, order-0 static lfuffman

coding, or LZW compression. The original LZW code for ARC appears to be a

derivative of the Unix COMPRESS code.

Due to the rapid distribution possible using shareware and telecommunications,

ARC quickly became a de facto standard and began spawning imitators right and left.

The desktop world is now littered with dozens of archive/compression utility pro­

grams, some commercial, some freeware, some shareware.

Today ARC has undergone many major revisions, and it is still a very popular

commercial program. While there is not a clear-cut compression standard, in MS-DOS

the title is probably held by the shareware program PKZIP. PKZIP is a relatively

inexpensive program that offers both superior compression ratios and compression speed.

Two strong competitors to PKZIP's supremacy have recntly emerged. The first

LHarc, comes from Japan, and has several advantages over other archiving/com­

pression programs. First, the source to LHarc is freely available and has been ported

to numerous operating systems and hardware platforms. Second, the author of LHarc,

Haruyasu Yoshizaki (Yoshi), has explicitly granted the right to use his program for any

purpose, personal or commercial.

26

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 17 of 20

DATA-COMPRESSION LEXICON

The second competitor is ARJ by Robert Jung. ARJ is free for non-commercial use

and has managed to achieve compression ratios slightly better than the best LHarc can

offer. ARJ also has portable ANSI C source code for extracting files from ARJ

archives.

Some freeware and public-domain programs are included on the source diskette

with this book. See the index on the diskette for complete details.

27

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 18 of 20

CHAPTER 3

The Dawn Age: Minimum
Redundancy Coding

In the late 1940s, the early years of information theory, the idea of developing

efficient new coding techniques was just starting to be fleshed out Researchers were

exploring the ideas of entropy, information content, and redundancy. One popular

notion held that if the probability of symbols in a message were knowu, there ought

to be a way to code the symbols so that the message would take up less space.

Remarkably, this early work in data compression was being done before the advent

of the modem digital computer. Today it seems natural that information theory goes

hand in hand with computer programming, but just after World War II, for all practical

, purposes, there were no digital computers. So the idea of developing algorithms using

base 2 arithmetic for coding symbols was really a great leap forward.

The first well-knowu method for effectively coding symbols is now knowu as

Shannon-Pano coding. Claude Shannon at Bell Labs and R. M. Fano at M.I.T.

developed this method nearly simultaneously. It depended on simply knowing the

probability of each symbol's appearance in a message. Given the probabilities, a table

of codes could be constructed that has several important properties:

•Different codes have different numbers of bits.

•Codes for syinbols with low probabilities have more bits, and codes for sym­

bols with high probabilities have fewer bits.

•Though the codes are of different bit lengths, they can be uniquely decoded.

29

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 19 of 20

The Data Compression Book
This authoritative guide details various data compression techniques

used to write C programs far virtually any operating system or hardware
platform. It explores different data compression methods, explaining the
theory behind each and showing programmers how to apply them to signifi·
cantly increase the storage capacity of their system. Each technique is fully
illustrated with complete, working programs written in portable C. These
programs not only demonstrate how data compression works but can also be
used to build your own data compression programs.

Packed with expert tips, tricks, and techniques, The Data Compression
Book is certain to be a book you'll refer to again and again.

Topics include:

• The Shannon·Fano and Huffman coding techniques
• Differences between modeling and coding
• Expanding and improving Huffman coding with Adaptive Huffman

techniques
• Using arithmetic coding
• Implementing powerful statistical models
• Evaluating dictionary compression methods including the LZ77 and

LZ7B families
• Applying lossy compression techniques to computer graphics and digitized

sound data
• The JPEG compression algorithm
• Developing a complete archive program

The code in this book has been written to compile and run using sever·
al compilers and environments. These include Microsoft CIC++, Borland Ct+,
Zortech Ct+, and Interactive UNIX System v3.2. The disk contains all of the
source code.

Mark Nelson hos more lhon l 0 yeors experience os o professional programmer. He is a developer for
21 CenNel in Richardson, Texas. Mork is a regular contributor lo vorious technical publications including Dr.
Dobb's Journol, Computer Longuoge, and the C User's Journol.

Why this book is for you-See page 1.

"The best all·oround book
on this subject."
-Andrew lthulmon, Dr. Dobb's loumol

"Indispensable lo anyone
planning lo work in the field
of data compression."
-Bob llephan, Mon/erey Bay Users Guide

"The quality of the writing
is high, the technical figures
good, the tone informal; the
book hits its target audience
right between the eyes.
For a change, the first book
in a market may be the only
one we need."
-Jeff Ounlemann, PCTechniques

111111111111111111111111111111 53995

M&T Books

115 West 18th Street

New York, NY 10011

ADVANCED
PROGRAMMING/C

PC

llllllll/ 111 I
X000U89H1N

The Dai.a Compression Book

.l.~s~dl~ V~y ~~!_.~~ ic_O~TS J
>$39-95

Cisco Systems, Inc., IPR2018-01384, Ex. 1016, p. 20 of 20

