
United States Patent (19)
Langdon, Jr. et al.

54

75

73

(21)

22)

(86)

(87)

(51)
(52)
58

(56)

HIGH-SPEED ARTHMETC
COMPRESSION CODNG USING
CONCURRENT VALUE UPDATING

Inventors: Glen G. Langdon, Jr., San Jose;
Jorma J. Rissanen, Los Gatos, both
of Calif.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appl. No.: 281,734

PCT Filed: Mar. 30, 1981

PCT No.: PCT/US81/00400

S371 Date: Mar. 30, 1981
S 102(e) Date: Mar. 30, 1981
PCT Pub. No.: WO82/03514

PCT Pub. Date: Oct. 14, 1982

Int. Cl. ... H03K 13/00
U.S. Cl. a o so as 340/347 DD; 235/310
Field of Search 340/347 DD; 235/310,

235/311

References Cited
U.S. PATENT DOCUMENTS

4,286,256 8/1981 Langdon 340/347 DD

Cr CCK5),0
T a .000. ... O F
C(O-K-) TO BUF l

SHIFT LEFT
KBITS, ZERO

11) Patent Number: 4,467,317
(45) Date of Patent: Aug. 21, 1984

OTHER PUBLICATIONS

Rissanen, "IEEE Transactions on Information The
ory", vol. IT-27, No. 1, Jan. 1981, pp. 12-23.
Rissanen, "IBM Journal of Research & Development',
vol. 23, No. 2, Mar. 1979, pp. 149-162.
Langdon, "IBM Technical Disclosure Bulletin', vol.
23, No. 1, Jun. 1980, pp. 310-312.
Primary Examiner-C. D. Miller
Attorney, Agent, or Firm-R. Bruce Brodie
(57 ABSTRACT
A method and apparatus for recursively generating an
arithmetically compressed binary number stream re
sponsive to the binary string from conditional sources.
Throughput is increased by reducing the number of
operations required to encode each binary symbol so
that only a single shift of k bits is required upon receipt
of each least-probable symbol or an "add time', foll
lowed by a decision and a one-bit shift in response to
each most-probable symbol encoding. The concurrent
augmentation of the compressed stream and an internal
variable involves only the function of a probability
interval estimate of the most-probable symbol, and not
upon the past encoding state of either variable (2-k, 49,
63, C, T). Each binary symbol may be recovered by
subtracting 2k from the q-most-significant bits of the
compressed stream and testing the leading bit of the
difference.

4 Claims, 3 Drawing Figures

INTIALIZE

C/OUT TO BUF SHIFT LEFT
ONE BIT, ZERO
FILL

YES:NORMAZE

T-T (-5),0
C=C(-5),0
CCO) SPOBUF

Cisco Systems, Inc., IPR2018-01384, Ex. 1023, p. 1 of 8

U.S. Patent Aug. 21, 1984 Sheet 1 of 2 4,467,317

BUFFER UNIT
(BUF)

SOURCE s

m-- - - -a - - -a -us am--a mu-man norm arm an umaia -

FG.

C = 0.00 NITIALIZE
T = .00

GET K MPS

C = C(K45), O SHIFT LEFT T. T-2K
T is .000... O BS,7ER C. C+2K
C(O-K -) TO BUF C/OUT TO BUF SHIFT LEFT

EBTER

C(O)SPILLTOBUF

Cisco Systems, Inc., IPR2018-01384, Ex. 1023, p. 2 of 8

U.S. Patent Aug. 21, 1984 Sheet 2 of 2 4,467,317

------------------- 2
7

3, K ENCODER

13-4 31-xOR 1
69

37 DECODER

-K
PS fall 2

--

SHIFT LEFT
KFNOT MPS

9.
2
23

C 6

evi /
C/OUT 2.
C(O)
NORM O

|-- 377

Cisco Systems, Inc., IPR2018-01384, Ex. 1023, p. 3 of 8

4,467,317
1.

HIGH-SPEED ARITHMETIC COMPRESSION
CODNG USNG CONCURRENT VALUE

UPDATING

DESCRIPTION
1. Technical Field
This invention relates to arithmetic compression cod

ing of conditional binary sources, the coding being
controlled by a parameter whose values correspond to
predetermined source probability intervals.

2. Background Art
The prior art of FIFO arithmetic string encoding is

detailed in the copending U.S. patent application Ser.
No. 098,285, filed on Nov. 28, 1979. Further, methods
for carry-over control in FIFO arithmetic code strings
are set outin copending U.S. patent application Ser. No.
048,319, filed on June 14, 1979, and the IBM Technical
Disclosure Bulletin, Vol. 23, pages 310-312, published
in June 1980.

Rissanen and Langdon, "Arithmetic Coding', IBM
Journal of Research and Development, Vol. 23, No. 2,
March 1979, discloses that in arithmetic coding, the
current code string is generated recursively by adding
augends to the previous code string which result from
the encoding of the previous binary source symbol.
Decoding involves examining the most significant part
of the code string and determining from its magnitude
the largest augend not exceeding the numerical value of
said code string. The augend is, in turn, subtracted out.
The decoded symbol is that source alphabet symbol
which corresponds to the subtracted-out augend.

Rissanen and Langdon, "Universal Modeling and
Coding", IEEE, Trans. Information Theory, Vol. IT
27, No. 1, January 1981, partition the data compression
problem in a modeling part and a coding part. The
present invention deals only with the coding aspect of
compression. The Rissanen and Langdon reference also
depicts the code string generated by a FIFO arithmetic
code as being a number in the interval (0,1), that is, a
semi-open interval on the numberline which includes 0,
but does not include 1. The code is constrained in order
to treat rational numbers along this interval. The source
string is encoded recursively, one source symbolb at a
time. Operatively, arithmetic coding successively subdi
vides this interval. A subinterval corresponding to a
so-far encoded sourcestrings=b(1), b(2) . . . b(i) is
defined by its lower bound, C(s), in the interval, and a
number T(s) defining the size of the interval. Signifi
cantly, the subinterval size is represented to a fixed
precision in that the number of significant digits in the
binary representation of T(s) is no more than a predeter
mined q bits in length. The subinterval thus defined may
be represented by C(s), C(s)--T(s)). The interval in
cludes the lower-bound C(s) and spans the range up to,
but not including, the number C(s)--TCs).
According to the prior art U.S. patent application

Ser. No. 098,285, in order to encode the next symbol,
the interval length T(s) should be subdivided into as
many parts as there are source symbol values. In the
binary case, each source symbol takes only one of two
symbol values. This requires that the interval be parti
tioned into two parts with two corresponding size val
ues T. The values. T are calculated according to an
integer-valued control parameter k. Thus, the two sizes
T resulting from the partitioning or subdivision opera
tion are assigned to the more probable symbol (MPS)
and the less probable symbol (LPS), respectively. For

10

15

20

25

30

35

45

50

55

65

2
the subdivision operation disclosed in the prior art,
specifically:

Size 1: T(s)x(1-2) (la)

Size 2: T(s)x2-k (1b)

The new subinterval would be encoded as:

if next symbol MPS: C(s),
C(s) -- size 1)

(2a)

if next symbol LPS: C(s) -- size 1,
C(s) -- size 2)

(2b)

In FIG.2b, size 1 is called the augend because size 1
is added to C(s) to form the new lower bound.
A stream of ones and zeros to be encoded can also be

represented as a run of MPS's terminated by an LPS.
The action of the encoder requires modification of the
code string value C(s) and the current subinterval mag
nitude T(s). Let s.b denote the so-far encoded string
following the recursive encoding of symbol b. The
prior art states that:

For each MPS

CCs. MPS)=C(s) (3a)

Ts. MPS)=T(s)x(1-2) (3b)

For each LPS

C(sLPS)=C(s)+Ts. MPS) (3.c)

Ts. LPS)=T(s)x2k (3d)

This means that,
Upon the occurrence of each LPS in a binary symbol

string, the worst-case cycle time requires an encoder to
perform four operations. These comprise the steps of (1)
decreasing by shift and subtract an internal variable T(s)
as a function of the control parameter kin order to form
T(s.MPS); (2) adding this variable to q of the least-sig
nificant bits of C(s); and (3) left-shifting both by a prede
termined amount.

. Upon the occurrence of each MPS, the encoder (1)
decreases the internal variable, as above; and (2) exe
cutes a normalizing left-shift of both C(s) and T(s) in the
absense of a leading 1. Significantly, since the results T
from a previous step (step 1) must be used in the next
step, (step 2), there is no possibility of simultaneous
updating using only current values.

THE INVENTION

The technical problem sought to be solved by this
invention is that of increasing the throughput of a FIFO
arithmetic encoder by increasing the concurrency of
the operations in each encoding and decoding cycle. In
this regard, the invention is premised on first inverting
the order of the subinternal division of Eq. 2. Now the
magnitude alteration of the compressed code stream
C(s) occurs for each MPS, instead of LPS. Secondly, a
left-shifting of C(s) a predetermined amount is condi
tioned by the occurrence of each LPS; instead of incre
menting C(s) by a function of the internal variable T(s).
The unnormalized internal variable becomes 2-k,
which is normalized by merely a left-shift. Thirdly,
concurrency is attained by updating both C(s) and T(s)

Cisco Systems, Inc., IPR2018-01384, Ex. 1023, p. 4 of 8

4,467,317
3

as a function of the control parameter kindependent of
the previous value of T(s). As a consequence, the num
ber of sequential operations required to encode one
binary symbol is reduced to: either a single shift of kbits
(LPS) or an "add' time, followed by a decision and a
one-bit shift (MPS).
The advance may be seen to rest upon the unexpected

observation that a function of a parameter whose values
correspond to predetermined source alphabet probabil
ity intervals for each MPS could be used to concur
rently augment both C(s) and T(s) because it was not a
function of the past state of either. This is in contrast
with the prior FIFO arithmetic coding art which re
quired updating first T(s) and then C(s) upon the occur
rence of each LPS.
The invention is then perceived as a method and

apparatus for recursively generating an arithmetically
compressed binary stream C(s.b) in high-to-low position
magnitude order responsive to successive symbols b(i)
from a binary symbol string s= b(1), b(2) . . . b(i), . . .
b(n). The steps include (1) writing the q-least-significant
bits of C(s) and an internal variable T(s) into respective
first and second registers; (2) for each b(i), ascertaining
whether it constitutes an MPS and receiving an integer
parameter approximation k for the expectation of an
LPS being roughly 2-k; (3) if boi) is an MPS, then con
currently incrementing the first register contents and
decrementing the second register contents by 2-k and
left-shift normalizing both register contents if the sec
ond register contains a leading zero; and (4) if b(i) is
LPS, then left-shifting the first register contents by k
positions and setting the second register contents to
unity.

BRIEF SUMMARY OF THE DRAWINGS

FIG. 1 is a block diagram showing the encoded inter
face to both a source and model.

FIG. 2 is a flow diagram of the encoding algorithm.

O

15

20

25

30

35

FIG. 3 is a two-ALU loop encoding apparatus for
practicing the method of the invention.

BEST MODE AND INDUSTRIAL
APPLICABILITY

The following recursions define the encoding action
according to the invention, exclusive of normalization,
which is discussed in a subsequent passage:

For each MPS

C(MPS)=C(s)+2-k (4a)

Ts. MPS)=T-2-k (4b)

For each LPS

C(sLPS)=C(s) (4c)

T(sLPS)=2-k (4d)

It is recognized that it is necessary to maintain the
alignment of the significant bits of subinterval size T to
the working end of C(s) in order to add the augend in
the proper place. Following this addition, it is necessary
to realign the working end of the code string C(s.b).
The operations of renormalization and code string re
alignment require the following steps. If the symbol
LPS is encoded, then the unnormalized size is 2-k of
the form 0.00... 0100. The number of leading zeros is
"k'. This means that the normalized internal variable
T(s.LPS)= 1.00 . . . 0. The unnormalized working end

40

45

50

55

4.
of the code string C(s.LPS) is the same as that to be
found in the previous encoding cycle. Only a k-bit shift
is required. However, if the symbol to be encoded is
MPS, then the unnormalized internal variable is
T(s)-2-k. The unnormalized code string is C(s)+2-k,
These operations may be performed concurrently. Nev
ertheless, a carryover in C(s) may occur which may be
handled in accordance with copending patent applica
tion Ser. No. 048,319. Notwithstanding, the realign
ment, if required, is only a one-bit shift.

Referring now to FIG. 1, there is shown a logic block
diagram of a compression system apparatus. A binary
signal source 1 provides a sequence of bits on path 3 to
encoder 13, Source model 5 is a finite state machine
operative upon the history of the sourcestring to gener
ate a control parameter k on path 9 indicative of a
source alphabet probability interval, and an indication
on path 7 as to whether the symbol to be encoded is
either MPS or LPS. Encoder 13 alters the working end
of the code string C(s) and modifies its internal variable
T(s), according to whether the bit to be encoded is MPS
or LPS defined by the relations for a, b, and for c, d.
The output is passed to a buffer 15. This buffer retains
the segment of the code string most recently generated.
Further, it assembles fixed width words from C(s) and
passes them to the media on output bus 17. The en
coder/buffer interface can be implemented over a fixed
line parallel path. A signal on path 19 informs buffer 15
whether the symbol value encoded was MPS or LPS. If
the symbol was MPS, then the buffer unit 15 determines
a shift amount from the value k appearing on path 21.
Consequently, buffer 15 would then accept k bits from
encoder 13 over path 23. These would be bits CIO,
(k-1)). These bits would be shifted into the code string
segment being buffered. Consequently, buffer unit 15
may output a fixed-length segment over bus 17, as well
as performing a bit-stuffing operation to prevent carry
over propagation as described, for example, in copend
ing U.S. patent application Ser. No. 048,319.

If the bit operated upon by encoder 13 is LPS, as
indicated over line 19, then buffer 15 would add the
value of C/out 27 to the buffered code string segment.
If the value appearing on path 29 relating to normaliza
tion is inactive, then renormalization is not required. In
contrast, if the bit on path 29 is active, a one-bit renor
malization shift is performed by shifting bit value C(O)
onto the buffered codestring segment. The buffer oper
ations of outputting a fixed length or performing bit
stuffing apply as if the bit that was compression en
coded were MPS.

Referring now to FIG. 2, there is shown a flow dia
gram of the computational aspects for executing the
recursion pairs 4a, b and 4c, d. By designating a pair of
shift registers, respectively C and T, for the working
end (q bits) of C(s) and the internal variable T(s), the .
encoding actions can be understood with reference to
them as the only memory in the apparatus. Initially,
registers C and T are set respectively to q-bit values

65

0.00... 0 and 1.00... 0. During each encoding cycle,
the encoder is furnished the parameter k and an indica
tion of whether the symbol is MPS or LPS. If the sym
bol is LPS, then the contents of register T are set equal
to 1.00 and the code string register contents C are
shifted left by k bits with zeros being inserted into the
right-hand bit positions thus shifted left. If the symbolis
MPS, then the contents of the T register are decre
mented by 2-k, while the contents of the C register are

Cisco Systems, Inc., IPR2018-01384, Ex. 1023, p. 5 of 8

4,467,317
5

incremented by 2, and the contents of the most signif.
icant C register position are transferred to the buffer.
Next, the question is whether there exists a leading zero
in the T(0) position of the T register. If not, then the
encoder proceeds with the next encoding cycle. If there
is a leading zero, it is necessary to renormalize T and
realign the working end of the code string. This in
cludes the steps of shifting the contents of the T and C
registers, respectively, left by one bit position and in
serting a zero in the least-significant bit position. The 10
contents of the C(O), or most-significant bit position of
the Cregister, are transferred to the buffer over path 25,
After this, the next encoding cycle can be entertained.
The following examples illustrate the encoding re

sponse of the invention. 15
Let symbol 0 be the MPS and symbol 1 be the LPS.

Let the source string consist of 5 symbols b(1), b(2),
b(3), b(4), and b(5) whose values in that order are:

0, 1, 0, 0, 1. 20

Also, let the skew numbers for these bit positions be
denoted k(1), k(2), k(3), k)4), and k(5), as follows:

2, 4, 4, 3, 2.
25

The arithmetic is performed to five bits of precision
(q=5).
For the encoder, the model provides the value of k.

From this value, the nonzero augend is formed as 2-k,
If MPS, the augend is added to C to give C' and sub-30
tracted from T to give T. Carryovers are fed to the
encoder output buffer unit. If the leading bit in T is 1,
no normalization of T or realignment of C is needed. If
the leading bit in T is 0, then T is renormalized, and C'
is realigned into C by a one-bit left-shift with zero fili. 35

Initial State: C=0.0000; T = 1.0000
Note: Step (a) performs subdivision operation yield
ing C without normalizing. Step (b) shows data
handling part when T is normalized. The concur
rent operations on C and T are brought out by 40
placing them on the same line.

k(t)=2, b(t)=0; Augend = .01
(a) C = 0.0000--0.01

a 0,000
(b) C = 00.1000 (realign)

k(2)=4, b(2)= 1 Augend = 0

= 0,100
T = 1.000

(a) C" = 00..1000 (to be shifted 4) T = 0.0001
(b) C = 001000,0000 (realign) T = 1.0000

k(3)=4, b(3)=0; Augend = .0001 50
(a) C = 00 10000000+.0001 T's 10000-0001

= OO 1000,0001 c. 0.1111
(b) C = 001 00000010 (realign) T is 1.110

k(4)3, b(4)=0; Augend = 0010
(a) C" = 001 00000010-0010 T is 1.1110-0010

at 001 0000,0100 = 1.1100 55
(b) C as 001 00000100

(no realignment needed) T as 1,100
k(5)=2, b(5)=1: Augend = 0

(a) C" = 001 00000100--0 T = 0,000
(b) C = 0 0100 0001.0000 T = 1.0000

(realign by shift left 2) 60

Let the decoder receive string 0010000010000+,
where # serves as an end-of-string marker,

Referring now to FIG. 3, it should be appreciated
that the encoder block diagram has as its objective the 65
independent and concurrent computation of new values
for the code stream C(s) and internal variable T(s) and
the realignment of the working end of the codestring in

T = .0000-0100 45

6
respect of these new values. To accomplish this, the
encoder embodiment uses a pair of computation loops,
A first loop includes shift register C41, adder 49, multi
plexer 53, and path 37. A second loop includes shift
register T59, subtracter 63, multiplexer 55, and path 57.
Thus, the only memory elements in the encoder are the
registers C41 and T59. These registers are constructed
from edge-triggered D-type flip-flops which are
clocked at the end of a recursion cycle. The time dura
tion between successive active transitions of the clock
exceeds the worst-case combinational circuit delays in
the loop feeding each register. In the case of register T
59, there is a "clear' input responsive to a level-sensi
tive signal in contrast to an edge-triggered signal. An
active level on the "clear' input line takes precedence
over the edge-triggered input, as is the case with most
D-type flip-flops.

Exclusive OR gate XOR. 31 terminates the
: MPS/LPS indication from source model 5 over path 7
and the binary symbol value of zero or one, from the
symbol source 1 over path.3. The output from gate 31
constitutes the characterization of the symbol to be

: encoded as either MPS or LPS. This is achieved by way
of adder 49 combining the contents of register C over
path 43 and the operand 2 k on the other adder input.
The contents of register C constitute the q-least-signifi
cant bits (working end) of the code string C(s). The
resulting sum of this, addition may generate an active
carry-out signal over output path 27 to the buffer. On an
encoding of an MPS cycle, a one-bit renormalization
shift may be required. This occurs when the most-sig
nificant bit position in register T is zero. Then, a signal
over path 29 appropriately selects the outputs through
multiplexers 53 and 55, as well as being pathed to the
buffer over path 29. In this regard, the realignment of
the working end of C(s) is the function of multiplexer
53, and the most significant bit of register C, i.e., C(O),
appears on path 25 to the buffer. The left input of multi
plexer 53 is formed from the left-shifted output, while
the right input is the unchanged output of adder 49 over
path 51. Multiplexer 53 has an output bus 37 which is
fed to the right input of multiplexer 35. Here the output
is passed to the data input of the C register. It is loaded
into said register at the end of a clock cycle.

If the signal on path 33 is LPS, then the contents of
register Care left-shifted under control of shifting net
work 47 operative over path 39 into multiplexer 35.The
shift magnitude is governed by the control parameter k
applied thereto over four-bit-wide path 9 from source
model 5. In addition to regulating the shift network 47,
parameter k is also supplied to the buffer over path 21.
Concurrent with the LPS indication on path 33, a clear
signal is applied to register T 59. This sets the most
significant bit position to 1. It is the case, that what is
moved to the buffer from register C 41 are the k-most
significant bits therein, i.e., from position C(O) to
C(K-1). This means that the value of C(s) is un
changed, but the working end of the code string is re
aligned to the left-shift of k bits. Shifter 47 is of the
barrel shifter type with a zero fill performing this opera
tion. The shifter output 39 is fed to the Cregister via the
right input of data selector and multiplexer 35. The
right input is selected when the control signal is active
indicative of an LPS. This passes the shifter output to
the register C input, where it is loaded into the C regis
ter at the end of the cycle. On this cycle, the buffer 15
must accept the k-leading bits of the C register. Path 23

Cisco Systems, Inc., IPR2018-01384, Ex. 1023, p. 6 of 8

4,467,317
7

conveys all bits of C to the buffer 15. The buffer must
select the correct amount under control of the value k
applied to it over path 21.

If the signal upon path 33 is MPS, then the unnormal
ized value of T is calculated by applying the contents of 5
the register as one operand input to subtracter 63 over
path 61 with the other operand input being 23 k, de
rived from decoder 69. The unnormalized difference
appears on path 65. The leading bit of the difference
obtained from subtracter 63 is tested to ascertain if it is
a leading zero. If said most-significant bit is a leading
zero, then a left-shift of one bit position is executed at
the left input of multiplexer 55. In the absence of a
leading zero, the subtracter output over path 65 is
passed without change through the multiplexer 55 and
returned to the Tregister. It is clocked into the T regis
ter at the end of the cycle.

It is well recognized that decoding is the dual of
encoding. As previously mentioned, decoding is done
by examining the most significant part of a code string
and determining from its magnitude the largest augend
which does not exceed the value of the codestring. This
augend is subtracted out, and the decoded symbol is
that which corresponds to that augend. The two pieces
of information which the decoder must receive, in addi
tion to the most significant part of the code stream C(s),
are the control parameter k and the MPS value. It
should, with this information, decode the symbol which
has previously been encoded at that point. According to
the principles of this invention, such a result may be
achieved through a simple modification of the encoder
apparatus depicted in FIG.3 and herein below de
scribed.

In what follows, assume the MPS value is 0. It is not
known which symbol b(i) was encoded, but there is
known the coding parameter k(), so that a nonzero
augend can be formed. To determine b(i), form trial
augend 2-k and subtract it from C to form trial result R.
There is simultaneously subtracted the trial augend
from T to form T. If trial result R is negative,
b(i)=LPS, or i in our example. Otherwise, b(i)=MPS,
which is 0 in our example, and R is the unrealigned new
value for C. Adjust recursion variable T in accordance
with the result. In the following, step (a) shows the trial

10

15

20

25

30

35

a 45
subtraction resulting in R (trial value of C). In step (b)
the symbol is decoded. In step (c), T is adjusted accord
ingly and T and C are realigned.

Initial State: 50
C = 0.0100 0001 0000 T = 1.0000
k(1)=2: Trial Augend = .01
(a) R=0.0100001 000-01

=0.0000 0001 0000 T = .0000-01s1100
(b) R20; b(1)=0. Keep results, normalize and, realign.
(c) C = 00.0000 0010000+ T - 1.1000 55
K(2)=4: Trial Augend = .0001
(a) R=000000 0010 000-0001

NEGATIVE . T = 1.011
(b) RC0: b(2)= 1. Shift Cleft by k=4 bits,

Reset T to 1. 60
(c) C = 0.0010000+ T a .0000
k(3)=4: Trial Augend = .0001
(a) R=0.000100 000#-0001

=0.0001 000 T = 1.0000-0001 =0,1111
(b) R20; b{3)=0. Keep trial results. Normalize and realign.
(c) R=0.001000# T = 1.1110 65
k(4)=3: Trial Augend = .000
(a) R=0.001000#-0010

=0.000000: T = 1.1110-000-1.1100
(b) R20; b(4)=0. Keep trial results. No renormalization.

40

8
-continued

T = 1.100 (c) C = 0.000000f
K(5)=2: Trial Augend = 0100
(a) R=0000000f-.01.00

NEGATIVE T's 1.1100-000s.1000
(b) R(0; b(5)=1. Shift Cleft by k=2 bits,

Reset T to 1.
(c) C = 0.0000+ T = 10000

End of code string has reached 5 significant bits of C;
and C is zero, Decoding process is over.
The decoder is implemented the same as the encoder.

This includes a source model to which successive de
coded symbols b(i) are applied to obtain k(i). There are
several additions. First, the capability to subtract 2-k
from C is needed. Second, the carryout value becomes
a control input which indicates the b(i)=0 or b(i) = 1 for
the decoding cycle. Third, in the encoder, the normal
ization left shifts and LPS left shifts of C are with "zero
fill'. In the decoder, these shifts to C receive the "fill'
bits from the next leading bits in the decoder input
buffer.
Although the invention has been described with ref.

erence to a preferred embodiment thereof, it will be
understood by those skilled in the art that various
changes in the method and apparatus may be made
without departing from the spirit or scope of the inven
tion.
We claim:
1. A machine-implementable method for recursively

generating an arithmetically compressed binary number
steam C(sb) in high-to-low position magnitude order
responsive to successive symbols b(i) from a binary
symbol string s=b(1), b(2), . . . b(i), . . . , b(n), in a
reduced number of operations per encoding cycle, com
prising the steps of:

writing the q-least-significant bits of C(s) and an inter
nal variable T(s) into respective first and second
shift registers; and

ascertaining for each b(i) whether it constitutes a
most-probable symbol (MPS); and

deriving an integerk as a coding parameter indicative
of an expectation for the least-probable symbol
(LPS); characterized in that

the method comprises the further steps of:
concurrently incrementing the first register con

tents and decrementing the second register con
tents by 2-k and left-shift normalizing both reg
ister contents if the second register contains a
leading zero, if b0) is an MPS; and

left-shifting the first register contents by k. positions
and setting the second register contents to unity,
if b(i) is an LPS.

2. An encoding apparatus for recursively altering a
compressed bit stream representation of a string of bi
nary symbols in a reduced number of operations per
symbol encoding cycle comprising: .

a first (41) and second (59) shift register containing
the q-least-significant bits of the compressed stream
C(s) and an internal variable T(s); means (31, 33)
for characterizing each received symbol as either a
most-probable symbol (MPS) or a least-probable
symbol (LPS); characterized in that

the apparatus further comprises:
means (9, 35, 39, 47) responsive to an LPS symbol

characterization and to a parameter k whose
values correspond to a predetermined source
alphabet probability interval for shifting out the

Cisco Systems, Inc., IPR2018-01384, Ex. 1023, p. 7 of 8

4,467,317
k-most-significant bits in the first register and
zero-filling the k-least-significant bit positions
therein, said means further including means for
setting the second register contents to unity; and

means (49, 63,53,55) for concurrently increment
ing the first register contents by 2-k and decre
menting the second register contents by 2-k,
left-shift normalizing (67, 53, 55) both register
contents if the second register contains a leading
zero in response to an MPS symbol characteriza
tion and the parameter k.

3. An encoder for recursively generating an arithmet
ically compressed binary number stream C(sb) in high
to-low position magnitude order responsive to a binary
character string, each character being identified as ei
ther a most-probable symbol (MPS) or a least-probable
symbol (LPS) and having associated therewith a param
eter k whose value corresponds to a predetermined
source alphabet probability interval, comprising:
a first- (41) and second- (59) shift register containing

the q-least-significant bits of the compressed stream
and an internal variable; characterized in that

the encoder further comprises:
means (9, 47, 39, 35) responsive to each ordered

pair MPS, k for shifting out the k-most-signifi
cant bits and zero-filling the k-least-significant
bits of the first register and setting (CLEAR) the
second register contents to unity; and

a first and second computation loop (49, 51, 53, 37;
63, 65, 55, 57) for additively combining 2-k to
the first register contents and subtractively com
bining 2-k from the second register contents,

5

10

15

20

25

30

35

45

50

55

65

10
said first and second loop including means (67,
53, 55) for left-shift normalizing both register
contents if the second register contains a leading
zero responsive to each ordered pair of LPS, k.

4. A machine-implementable method for recursively
generating successive symbols b(i) of a binary symbol
string s=b(1), b(2), . . . b(i), . . . , b(n) responsive to
successive high-to-low position magnitude order bits of
an arithmetically compressed binary number stream
C(s.b) using a reduced number of operations per decod
ing cycle, comprising the steps of:

writing the q-most significant bits of C(s.b) and an
internal variable T(s) into respective first and sec
ond shift registers;

deriving an integerk(i) as a coding parameter indica
tive of an expectation that the decodable symbol is
a least-probable symbol (LPS); characterized in
that

the method comprises the further steps of:
concurrently decrementing the first and second

register contents by 2-k();
testing the most-significant bit position of the first

register;
left-shift normalizing both register contents if the

tested bit position is 1 and decoding the symbol
as a most-probable symbol; and

left-shifting the first register contents by k positions
and setting the second register contents to unity
if the tested bit position is a 0, and decoding the
symbol as an LPS.

st k + k is

Cisco Systems, Inc., IPR2018-01384, Ex. 1023, p. 8 of 8

