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57 ABSTRACT 
Method and apparatus which cyclically generate a com 
pressed, arithmetically-coded binary stream in response 
to binary occurrence counts of symbols in an uncoded 
string. The symbols in the uncoded string are drawn 
from a multi-character alphabet which is not necessarily 
a binary one. Coding operations and hardware are sim 
plified by deriving from the binary occurrence counts 
an estimate of the probability of each unencoded sym 
bol at its precise lexical location. The probability esti 
mation eliminates any requirement for division or multi 
plication by employing magnitude-shifting of the binary 
occurrence counts. The encoded stream is augmented 
by the estimated symbol probability at the same time 
that an internal variable is updated with an estimate of 
the portion of a probability interval remaining after 
coding the current symbol, the interval estimate being 
obtained from the left-shifted occurrence counts. De 
coding is the dual of encoding. The unencoded symbol 
stream is extracted, symbol-by-symbol, by subtracting 
the estimated symbol probability that comes closest to, 
but does not exceed the magnitude of the compressed 
stream, re-estimating the symbol probabilities based 
upon the decoding, and testing the difference of the 
subtraction against the re-estimated probability. 

12 Claims, 7 Drawing Figures 
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MULTIPLICATION-FREE MULTALPHABET 
ARTHMETC CODE 

BACKGROUND OF THE INVENTION 

This invention relates to arithmetic compression cod 
ing of multi-alphabet sources, and more particularly to 
arithmetic coding wherein each symbol of a multi 
alphabet symbol stream is encoded according to a prob 
ability interval variable whose value is cyclically read 
justed with the coding of each symbol to reflect an 
estimate of the probability of the portion of the symbol 
stream already encoded. 

Arithmetic codes of the FIFO-Form (first-in-first 
out) are established in prior art and may be understood 
by reference to Langdon and Rissanen, "A Simple Gen 
eral Binary Source Code," IEEE Transactions On In 
formation Theory, Volume IT-28, No. 5, September 
1982. In the Langdon and Rissanen 1982 reference, and 
in other references cited therein, arithmetic coding is 
revealed as a cyclic process that generates a bindary 
code string by augmenting a present code string result 
ing from the encoding of previous source string sym 
bols. The power of arithmetic codes is in the compres 
sion they achieve, and their flexibility is in their ability 
to encode strings modeled by stationary or non-station 
ary sources with equal ease. Arithmetic codes permit 
encoding of binary strings without the need for alphabet 
extension, and also encode strings with symbols drawn 
from alphabets containing more than two characters. 
An arithmetic code basically updates the probability 

P(s) of a so-far processed source strings, by the multi 
plication P(s)P(i/s) where P(i/s) is a conditional proba 
bility of the symbol i given s. The multiplication re 
quired for augmenting the probability is relatively ex 
pensive and slow, even in the case where the probabili 
ties are represented by binary numbers having at most a 
fixed number of significant digits. 
A signal advance in simplifying the arithmetic encod 

ing operation in the particular case of a binary alphabet 
is described in U.S. Pat. No. 4,467,317. According to 
that patent, the encoded binary string is a number in the 
semi-open interval 0, 1) and the encoding method pro 
vides for recursively augmenting the code string in 
response to each symbol in the unencoded string. The 
coding process is described as the successive subdivi 
sion of the semi-open interval into a subinterval posi 
tioned between a lower bound C(s) contained in the 
interval, and an upper limit C(s) --TOs), also contained in 
the interval, where T(s) is an internal coding variable 
expressed as a function of numeral 2-k. 
The prior art U.S. Pat. No. 4,467,317 teaches that the 

generation of a binary arithmetically-encoded stream is 
generated by the recursions of (1a)-(ld). 
For each MPS: 

C(sMPS)=C(s)+2-k (a) 

TsMPS)=T(s)=2-k (1b) 

For each LPS: 

C(sLPS)=C(s) (c) 

T(sLPS)=2-k (ld) 

According to these equations, the magnitude of the 
binary arithmetically-coded stream C(s) is altered only 
on the occurrence of the more probable symbol (MPS), 
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2 
instead of on the occurrence of the less probable signal 
(LPS). Accordingly, an arithmetically-encoded binary 
stream C(s) is recursively generated in high-to-low 
position magnitude order in response to successive sym 
bols b(i) of a binary symbol string s = b(1), b(2) ... b(i), 
. . . b(n). The steps of generation are compounded of 
entering the q-least-significant bits of the encoded 
stream C(s) and an internal coding variable T(s) into 
respective registers, and determining whether the next 
symbol in the streams constitutes an MPS, while re 
ceiving a binary integer parameter k which approxi 
mates the probability 2-k of an LPS; upon the occur 
rence of an MPS, simultaneously adding 2 k to the C 
register and substracting it from the T register; and 
left-shift normalizing both the Cand Tregister contents 
if the T register contains a leading zero, or if the next 
symbol of s is an LPS, left-shifting the C register con 
tents by k. positions and entering the binary value 1.00. 
... 00 into the Tregister. This recursive technique main 
tains the working end of the code string C(s) in the C 
register and in alignment with the significant bits of the 
subinterval size T so that the code string is augmented 
in the proper place. Further, the tracking of the C(s) 
working end and the updating of T(s) are done concur 
rently, which has the very desirable effect of increasing 
the speed of the coding operation. 

While, the recursive technique of U.S. Pat. No. 
4,467,317 greatly simplified the encoding operation of a 
binary symbol stream by approximating the probability 
of the LPS with an integral power of , the same idea is 
not generalized easily to non-binary alphabets for the 
reason that the n-ary alphabet symbol probabilities can 
not be approximated well enough as powers of . This 
limitation is significant in view of the fact of growing 
parallelism in the data structures and operations of pres 
ent-day processors. A method and means for compres 
sive arithmetic encoding of symbol streams embracing 
more than two distinct alphabet characters would be 
useful to encode, for example, a symbol stream consist 
ing of a succession of data bytes. In this case, the alpha 
bet would consist of 256 distinct characters (byte for 
mats) and the stream would be encoded byte-by-byte. 
At present, compressive arithmetic encoding encodes 
and decodes on a bit-by-bit basis and requires serializa 
tion of parallel data structures, which introduces com 
plexity and delay into the coding process. 

Further, the algorithmic approach to prior art arith 
metic encoding depends upon the existence of a sophis 
ticated modeling unit capable of calculating and provid 
ing the source statistical characteristics k. As taught in 
Langdon and Rissanen, 1982, implicit in the calculation 
of k is the default of a skew number calculation opera 
tion to the modeling unit, an operation which adds to 
the complexity of the overall data compression problem 
that comprehends modeling and encoding the data 
SOCe, 

At this point, then, arithmetic compression encoding 
awaits an advance of the art to accommodate the arith 
metic encoding of multi-character-alphabet data 
sources by a method and means operating without mul 
tiplication or division to generate a binary code stream 
in response to simplified data source statistical charac 
teristics that preserve the very desirable prior art prop 
erty of concurrent updating of both the code stream and 
an internal coding variable. 

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 8 of 16
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INVENTION SUMMARY 
The technological advance afforded by this invention 

is expressed as the compressive arithmetic encoding of 
multi-character alphabet data sources in response to 
elementary data source statistical characteristics by 
means that preserve the increased concurrency of oper 
ation embodied in the prior art arithmetic encoders. The 
invention is based upon an encoding action that accepts 
symbol occurrence counts in binary form, subjects 
those counts to simple magnitude shift operations to 
approximate the contextual probability of each symbol 
of the symbol stream, augments the coded stream, and 
then simultaneously locates the w least significant bits 
(the working end) of the code stream and adjusts the 
value of an internal coding variable determinative of the 
next coding subinterval in response to one of the shifted 
OCCurrence COuntS. 
The invention resides in a method for recursive ma 

chine modification of a code string C(s) of binary num 
bers to produce C(si) where C(si) is a compressed repre 
sentation of and responsive to the next symbol i in a 
symbol strings. In this regard, the symbol strings is a 
concatenation of symbols drawn from an alphabet hav 
ing two or more characters, o, . . . . m. Further, the 
method is premised on C(si) being a number in the semi 
open coding range 0, 1) that is subdivided into intervals 
during successive machine string modification cycles. 
Each interval resulting from a coding recursion is de 
fined by its lower bound C(s) and a coding parameter 
A(s) such that the interval is C(s), C(s)--A(s)). The 
method is executable upon a pair of registers C and A, 
each having a finite size w. 

In performing the method, the following steps are 
executed: respective initial contents are placed in regis 
ters A and C; for the next symboli in the strings, binary 
symbol occurrence counts are read in for the portion of 
s preceding i. In this regard, the occurrence counts 
include ni, the count of occurrences of i, Q(t)=n0--n1 
. . . --ni-1, the sum of counts for the symbols 0, 1, . . . 
, i-1 preceding i in the alphabet, Q(m)=n0--n1-- . . . 
--nm-1, the sum of counts for the symbols preceding m 
in the alphabet, and N, the count of all symbols in the 
portion. The occurrence statistics ni, Q(i), and Q(m) are 
normalized by left-shifting an amount based upon the 
placement of N in a predetermined range. Then, if the 
next symbol i is not m, the normalized value of Q(i) is 
added to the contents of C, the contents of A are re 
placed with the normalized value of ni, and the contents 
of C and A are shifted in a predetermined magnitude 
direction until the contents of A lie within a predeter 
mined range. Alternatively, if the next symboliism, the 
normalized value of Q(n) is added to the contents of C 
and subtracted from the contents of A, and the contents 
of C and A are left-shifted until the contents of A lie 
within the predetermined range. After the ultimate 
symbol of s is encoded, the contents of Care left-shifted 
by w positions. The coded string C(s) constitutes the 
successive symbols emerging from the register C as a 
consequence of the succession of left-shift operations 
performed on its contents in execution of the method. 

BRIEF SUMMARY OF THE DRAWINGS 
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FIG. 1 is a block diagram illustrating the provision of 65 
elementary data source statistics and other control sig 
nals by a modeling unit to an encoding unit in response 
to a data source. 

4. 
FIG. 2 is a flow diagram of the encoding algorithm of 

the invention. 
FIG. 3 is a block diagram of arithmetic and logic 

operations implicit in the FIG. 2 encoding algorithm. 
FIG. 4 is a block diagram of a decoding apparatus 

that decodes a compressed arithmetically-encoded 
stream produced by the encoder of FIG. 3. 
FIG. 5 is a block diagram showing in greater detail a 

cumulative count memory required for the operation of 
the FIG. 4 decoding unit. 
FIG. 6 is a flow diagram illustrating the adaptation of 

the FIG. 3 procedure to the special case where a binary 
symbol stream is to be encoded. 

DETALED DESCRIPTION OF THE 
EMBODIMENT 

To place the invention in a known environmental 
context, reference is given to Rissanen and Langdon, 
"Universal Modeling and Coding," IEEE, Transactions 
on Information Theory, Volume IT-27, No. 1, January 
1981, in which data compression is characterized as a 
manifold task including modeling and coding aspects. 
The data compression duality is illustrated in FIG. 1 
where a modeling unit 12 receives a symbol streams 
from a data source, not shown. The symbol streams is 
a concatenation of symbols drawn from an alphabet 
consisting of the symbol i=0, 1, . . . . m. s 
Compression of the symbol string is accomplished b 

an arithmetic coding method that encodes s, symbol for 
symbol, in a high-to-low order magnitude direction. 
When arithmetically encoding the next symboli, imme 
diately following the so-far processed string s, the 
method utilizes modelling parameters that represent the 
conditional probability of the occurrence of i at its con 
text, which is the entire portion of the strings that 
precedesi. These model parameters are provided by the 
modeling unit; in their most elemental form the parame 
ters are provided in terms of integer-valued symbol 
occurrence counts. The occurrence counts provided by 
the modeling unit 12 are in binary form and include: ni, 
the number of occurrences of i in the portion of the 
string preceding its instant occurrence; N, the sum of all 
of the counts ini, i=0, 1,..., m; Q(t)=n0+ . . . --ni-1, . 
where Q(0)=0; and O(n) = 0-- . . . --n-1. 
To enhance the speed of the coding process, the mod 

eling unit 12 updates for each symbol i in the symbol 
streams, not only the counts N and ni, but also all of the 
cumulative counts QC), jci, which are affected by n1. 
For certain reasons related to precision and approxi 

mation that are described below, it is assumed that the 
last symbol m of the alphabet is the symbol with the 
highest count; that is, nnani, for all i. Signification of 
the occurrence of m in the data streams is provided by 
the modeling unit 12 on a signal line i=m. 
The occurrence counts and the signification i- m are 

provided by the modeling unit 12 to an encoding unit 
14. The encoding unit 14 responds to the inputs pro 
vided by the modeling unit to produce the binary, arith 
metically-encoded string C(s). 
The encoding unit 14 employs a method and means to 

construct the code string C(s) as a cumulative probabil 
ity of the portions of the data strings that precede the 
current one in the lexical order of the strings. When 
calculating this cumulative probability, the encoder 14 
uses an approximation A(s) of the cumulative probabil 
ity P(s). The encoding action according to the invention 
calculates C(s) as a binary fractional number represent 
ing the code; that is, the cumulative probability of the 

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 9 of 16
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strings. The following recursions define the encoding 
action of the invention where the code C(s), the cumu 
lative probability of the strings, is augmented to pro 
duce the code C(si) of the one symbol longer string si: 

C(si)=C(s)--A(sO)-- . . . --A(s(i-1)), i>0 (2b) 

where, the notation s(i-1) is used for the string consist 
ing of s followed by the symbol i-1 that precedes i in 
the alphabet. The initial conditions of equations (2a) and 
(2b) are CO)=0 and A(A)=1, where A denotes the 
empty string. 

It is recognized that the coding variable A(s), which 
corresponds to the length of the available coding inter 
val remaining after the calculation of C(s) according to 
equations 2a and 2b must be recalculated to account for 
the previous subdivision of the coding space repre 
sented by the augend (A(s0)+ . . . --A(s(i-1)). The 
encoding action of the invention performs that recalcu 
lation based upon equation (3). 

A(s)=A(so) . . . --A(m) (3) 

As taught in the Rissanen and Langdon 1981 reference, 
equation (3) ensures that C(s) will be decodable when 
calculated according to equations (2a) and (2b). Fur 
ther, as required by the theory expressed in the refer 
ence, the initial value of 1.0 . . . 0 causes A(s) to define 
a bona fide information source. 
As described in the discussion following, the actual 

arithmetic operations called for by the recursions of 
equations (2a)-(3) are done in a pair of fixed-size regis 
ters of width w, one register for C(s), and the other for 
A(s). These register-based arithmetic operations are 
possible if the normalized quantity a(s) is introduced, 
and if a(s)=2-()A(s), where L(s) is a non-negative inte 
ger determined by the requirement that acs) is a w-digit 
binary number in a fixed range. For the purposes of 
normalizing A(s) according to the invention, the fol 
lowing range turns out to be suitable: 

0.11(binary)sa(s)<1.1(binary) (4) 

Given the normalization of A(s), the recursion of equa 
tion (3) reads as follows: 

a(s)=a(s0)-- . . . --a(sm) (5) 

where a(si)=2-()A(si). One will appreciate that as the 
magnitude of C(s) increases, as it will by equations (2a) 
and (2b), the coding space available will shrink, with the 
shrinkage represented in the decrease of A(s), as implied 
by equation (3). As A(s) decreases, L(s) increases, acs) is 
placed in the range (4) by left-shifting, relative to the 
register A, and the quantities added to C(s) according to 
equation (2b) move to the right, or, equivalently, the 
code string C(s) is shifted left relative to the fixed regis 
ter C where the augmentation of the w significant bits of 
the string takes place. 

In the general case of the alphabet containing more 
than two characters, the probability approximations 
required for recursions (2a) through (3) are obtained 
from the occurrence counts provided by the modeling 
unit 12. The approximations are obtained first by scaling 
the binary representation of the total count N to make it 
as nearly equal to the binary representation of A(s) as 
possible. For this purpose the scaling quantity k(n) is 
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introduced as the value of the integer k which mini 
mizes the absolute distance 2-kN-a(s) and places N 
in the range (4). Then, the following normalized counts 
are defined: 

According to the invention, the approximations of 
the right-hand terms in recursion (2b) are defined as 
a(s)=ni, for all izm. The usefulness of this approxima 
tion will be evident when it is considered that N = no 
... --nn and that the probability P(i/s) of i at its lexical 
position in s is given by 

Pi/s)=n/N (7) 

which, in the invention, is approximated by acsi)/acs). 
Because a(s) and N are in the common range (4), 

a(si)ani (8) 
and 

a(sm)=d(s)-2(m) (9) 

This permits acsi) and acsm) to be obtained from the 
occurrence counts by simple normalization, analo 
gously with the normalization used to bring A(s) to the 
range (4). It will be appreciated that if NasaCs), in effect, 
the ideal probability (7) is well approximated as 

hi 

a(s) 
- N - 

as hi. 

It will be recalled that the last alphabet symbol m is 
40 assumed to have the highest count. Hence, it may be 

45 

50 

55 

60 

65 

that N> A(s), in which case the addend form, that is, 
a(sm)=a(s)-O(m), may be negative. To avoid this 
possibility, the magnitude of Q(m) is tested against a(s) 
after the occurrence counts are scaled according to 
(6a)-(6c). When the test indicates the negative case, k(n) 
is replaced by k(n)+1, guaranteeing positivity of all of 
the addends. 

Referring again to FIG. 1, the encoding unit 14 re 
sponds to the occurrence counts and signification i=n 
provided by the modeling unit 12 by producing C(s) 
according to the procedure illustrated in FIG. 2. The 
procedure of FIG. 2 progresses using the two registers 
C and A. Each register is capable of storing a w-bit 
binary number. The content of register C is interpreted 
as the w least significant bits of the binary fractional 
number representing C(s), with the binary point to the 
left of the left-most (most significant) storage cell of the 
register. Register A also accommodates a w-bit binary 
number decreasing in significance from left to right 
with the binary point placed between the first and sec 
ond storage positions on the left-hand side (most signifi 
cant end) of the register. 
The computational steps of the FIG. 2 flow diagram 

accomplish the recursions (2b) and (3) using normalized 
occurrence counts for the estimated values of equations 
(4) and (5). Initially, registers C and A are set respec 
tively to w-bit values 0.00. . . 0 and 1.00, ... 0. During 
each encoding cycle, the encoder 14 is provided with 

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 10 of 16
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the binary occurrence counts-N, ni, Q(i), and Q(n)-as 
well as a binary signification signal that indicates 
whether or not the current symboli is m. A cycle of the 
FIG. 2 method begins by testing the cumulative count 
Q(m) against the current contents of the A register to 
determine whether the addend a(sm) will be negative. If 
Q(n) <A, a value (S) is set equal to 0; otherwise, (S) is 
put at 1. In this regard, (3) is the value by which k(n) is 
augmented as discussed above; essentially, (3) deter 
mines whether the normalized occurrence counts are 
further scaled by the quantity . As will be apparent to 
those skilled in the art, if (3) = 1, the normalized occur 
rence counts are scaled simply by right-shifting their 
binary representations by 1 bit against a binary point 
fixed in a shift register. 
Once the magnitude test of Q(m) against A is com 

pleted, the signification signal is consulted to determine 
whether the current symboli is the last symbolm of the 
alphabet. If the current symbol i is not the last, the 
normalized quantity Q(i), scaled by 2-() is added to the 
contents of the C register and the normalized value of 
the individual occurrence count, ni, scaled by 2-(6), is 
loaded into the A register. Thus, in this step the work 
ing end of C(s) is augmented by using a(i) as the approx 
imation of the contextual probability P(s)P(i/s), while 
the approximation of the coding variable A(s) is 
changed tonni to reflect the change in the coding inter 
val implied by equation (3). 

If, on the other hand, i=m, the scaled normalized 
occurrence count Q(n) is added to the contents of the C 
register and subtracted from the contents of the A regis 
ter. 

Following the augmentation of the code string C(s) 
and the updating of the coding variable A(s), the con 
tents of the C and A registers are left-shifted as many 
positions as are needed to bring the contents of the A 
register into the range (4), and the vacated C and A 
register positions are filled with zeros. This joint shift 
ing operation maintains the alignment of the significant 
bits of the normalized coding interval to the working 

... end, that is the w least significant bits, of the code string 
C(s); it also ensures that the addend resulting from the 
next cycle of the coding operation will be added at the 
proper position in the code string. This shifting opera 
tion corresponds to the placement of a(s) in the range 
defined by equation (4). 
When the end of the strings is reached, the contents 

of the C register are shifted left w positions and the code 
string C(s) is complete. As is known, data strings are 
typically framed between symbols that uniquely iden 
tify the beginning and end of a string. Left-shifting of 
the C register contents by the required number of posi 
tions when the end of a data source string is reached can 
be done automatically if the end-of-string symbol is 
arbitrarily assigned the value 2. In this case, the shift 
ing step of the coding procedure will result in the con 
tents of the C and A registers being left-shifted by w bit 
positions. 
As will be evident to those skilled in the art, when 

ever the C register contents are left-shifted, the bits 
"emitted' from the left end of the register will consti 
tute the successive symbols in the code string C(s). The 
shifted bits may either be transmitted or stored in an 
appropriate storing device which can form a leftward 
extension of the C register. Manifestly then, the code 
string C(s) consists of all the symbols transmitted or 
stored as a result of the left-shifting of the C register as 
well as the symbols residing inside the register. 
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It may be that as numbers are added to the C register, 

a carry-over from the w least significant bits of C(s) will 
occur. Special bit stuffing routines are known in the art 
(Langdon and Rissanen, 1982) which may be used to 
handle such carries. Also, in order to reduce the fre 
quency of the carry occurrences, the C register may be 
augmented at its left end by another register of width w 
to accommodate carries into the more significant bits of 
C(s) that are shorter than w. 
The following examples illustrate the encoding oper 

ations of the invention. 
Let the alphabet consist of the characters: 

l, 2, 3. 

define the source string as follows: 

s= 1,2,2,3,1,1 

assume the modeling unit 14 accumulates the occur 
rence counts N, ni, and Q(i), where Q(1) is defined as 0, 
and assume also that the coding unit 14 performs the 
normalization of the occurrence counts based upon the 
placement of N in the range (4). The modeling unit 12 
will then accumulate occurrence counts and the coding 
unit will normalize them based upon the scaling of N to 
the range (4). Consider further that the modeling unit 12 
initially assumes the alphabet symbols to have equal 
probabilities of occurrence and implements this assump 
tion by assigning each symbol an initial count of (binary). 
Table I shows the accumulation of the occurrence 
counts by the adapter, as well as the normalized occur 
rence counts that are generated by the encoding unit 14, 
that is, ni, Q(i), and Q(3). 

TABLE I 
Binary Values: O(1) = O(1) = 0 

Counts S = 2 2 3 i 

N 11 100 101 110 11 000 - - 
in 01 10 10 10 10 
2 O1 O1 10 11 11 
n3 0. O1 O1 O1 10 10 m 
Q(2) 0. O O O O 11 m 
Q(3) 10 100 O O 10 a. 
N 0.11 .00 1.01 0,110 0,1 100 
iii 0.01 0.01 0.10 0.001 0.00 0.011 (0.00 
Q(i) 0.00 0.10 0.10 0.01 0.00 0.0 0,000 
Q(3) O,O 0. 1.00 0.01 0.101 0,11 0.1 

From the values provided to the encoder 14 by the 
modeling unit 12, the contents of C are augmented by 
Q(i). If is is not equal to m, the coding variable repre 
sented by the contents of the A register are given by ni, 
otherwise, the variable is altered by subtracting Q(3) 
from its present contents. Once the contents of C are 
augmented and the contents of A are changed, C and A 
are left-shifted in lock-step until the contents of A lie 
within the specified range. 
Table II lists the contents of both the C and A regis 

ters after each symbol has been encoded according to 
the FIG. 2 procedure. 

TABLE II 
Next or re- Shift 

Symboli (niO(),Q(3) Result C Reg A Reg 
Initialize 000 0000 1.000 

(0.0100,000,0,100) 000 0000 0.010 
00 000 0000 (shift) 1.000 

2 (0.010,0,100,0,110) 000 000 0.00 
00 010 0000 (shift) 1.000 

2 (0.100,0,100,100) (scale by ) 
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TABLE II-continued 
Next Shift 

Symboli (niO(),Q(3) Result C Reg A Reg 
(0.010,0.010,0,100) 00000 0.00 5 

01 001 0000 (shift) 1.000 
3 (0.001,0.101,0.101) OO1 1010 0.01 

O 011 0100 (shift) 0,110 
1 (0.0100,000,0.01) 011 0100 0.010 

O 101 0000 (shift) 1.00 
1 (0.011,0,000,0,110) 10 0000 0.01 

010 0000 (shift) 0.110 10 
it O100 (shift by 4) 

c(s) = 00 00 01001 0100 * 

In Table II, the C register contents are illustrated as 
the four least significant bits of C(s) to the right of three 
guard bits. As stated above, the contents of the C regis 
ter are initialized to 000.0000, while the A register is 
initially set to 1.000. Now, for example, the first symbol 
of the symbol string s, that is, 1, is encoded by adding 
Q(1) to the contents of the C register, while n1 is entered 
into the A register. Thus, before the shifting operation 
following encoding of the first symbol, the C and A 
register contents are as shown in Table II for the first 
occurrence of the symbol 1. The shift operation follow 
ing the augmentation of C contents and alteration of the 
A register contents requires a left-shift of the C and A 
register contents by two places, making the contents of 
the A register 1.000, which is within range (4). 
Of particular interest in the example Table II is the 

scaling required prior to encoding the second occur 
rence of 2. It will be noted that the value of Q(3) pro 
vided to the encoder is 1.000, which is equal to the 
contents of the A register. Consequently, before the 
encoding of the symbol, the normalized occurrence 
counts are scaled by as prescribed by the FIG. 2 pro 
cedure. 
The coding example embodied in Table II generates 

the compressed string C(s)=00000100110100', where * 
serves as an end-of-string marker. 

Referring now to FIG. 3, it will be appreciated that 
the encoderblock diagram accomplishes the steps of the 
FIG. 2 procedure, that is, the comparison of Q(m) and 
the contents of the A register, the concurrent yet inde 
pendent generation of an augend for the code stream 
C(s) and adjustment of the value of the coding variable 45 
A(s), and the alignment of the w least significant bits of 
the code stream C(s) as determined by the normaliza 
tion of the contents of the A register. 

In its most general expression, the encoder 14 will 
respond to the unnormalized occurrence counts N, ni, 50 
Q(i), and Q(m), and itself perform the normalization of 
these values. Therefore, FIG. 3 includes a normaliza 
tion network including a normalized control select cir 
cuit (NCS) 15 and shift networks 16, 17, and 18. The 
symbol count total N is provided to the NCS 15, while 
the occurrence counts Q(m), Q(i), and ni, are terminated 
in the shift networks 16, 17, and 18, respectively. The 
NCS 15 operates conventionally, responding to the 
non-normalized value for N to determine the number of 
bits of shift that N has to undergo such that the shifted 60 
number N will be in the range (4). The output of the 
normalize control select circuit 15 is a binary SHIFT 
SELECT signal whose magnitude corresponds to the 
number of bits of shift required to normalize the param 
eters Q(m), Q(i), and ni. Generally, if N has w bits, the 65 
SHIFT SELECT output should have log2 w bits. 
Refer to FIG. 7 for more detailed understanding of 

the NCS 15. FIG.7 assumes that N has no more than 16 
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10 
bits, b0, b1, . . . , b15, with bo the MSB and b15 the LSB. 
Thus, the representation of the amount of shift provided 
by the PLM 50 as an output would require a 4-bit wide 
SHIFT SELECT signal. In FIG. 7 the SHIFT SE 
LECT signal comprises the output bits A, B, C, and D, 
with A being the most significant, and D the least signif. 
icant bits. The FIG. 7 NCS is implemented in a pro 
grammable logic array (PLA), indicated by reference 
numeral 50. The PLA50 is conventionally programmed 
using Boolean equations to determine the number of bits 
of shift required to bring N into the range (4). The 
direct combinatorial realization of the PLA 50 is exem 
plified by the following Boolean partial equations: 

D = (bo. b) + (bo. b. b2) + ... 

C = (bo. b1b2) + (bo.b. b. b3) + . . . 

B = (bo. B. b. b3. b. bs) + 

etc. 

etc. 

(bo.b. b. b3, b4. 55. bs) + ..., etc. 

A + (bo.b. b. b3. b. bs. 56 b, . b. bs) + 

(bo. B. b. b3.54. 55.56 b, ... b3.bg. bio) + ..., etc. 

A mapping of these functions is provided in Table III, 
where 'x' corresponds to a "don't care' state and the 
output is the binary representation of the number of bits 
of shift required to bring N to the range (4). 

TABLE III 

MAPPING OF NSC TRANSFER FUNCTIONS 
INPUT N OUTPUT 

b0 bill b2 b3 b b14 b15 A B C D 
1 X X X X X 0 O 0 0 
1 O X X X X X 0 0 0 1 
0 1 1 X X X X 0 0 0 1 
0 1 0 X X X X 0 0 1 O 
0 0 1 1 X X X 0 0 1 0 
0 0 1 0 X X X 0 0 1 
0 0 O O 0 1 1 1 1 1 0 
O O O O O 1 O 1 1 1 
0 0 O 0 0 0 1 1 1 1 

For understanding Table III, assume the radix point is 
immediately to the left of bo in the unnormalized N 
input to the NSC. The output specifies the number of 
places of left-shift that must be applied to N to bring it 
to the range (4), that is, the interval 0.1100... 0, 1.100 
... 0). The output therefore corresponds to the SHIFT 
SELECT signal. 
The SHIFT SELECT signal is provided to the left 

shift networks 16-18, and each responds by left-shifting 
its respective terminated occurrence count by the num 
ber of bits required to bring N to the range (4). This 
completes the process of normalization of the occur 
rence counts by the encoder. 

In accomplishing the coding operations of the FIG. 2 
method, the encoder 14 utilizes a comparison and con 
trol loop including a comparator 20, a pair of shift net 
works 20 and 24, and a pair of multiplexers 26 and 28. 
Operations on the contents of the A register 30 are 
performed by a computation loop including a subtractor 
32, a multiplexer 34, and a left-shift network 36. The 
contents of the C register 40 are processed in a loop 
including an adder 42 and a shift network 44. The C 
register is illustrated as a pair of registers C1 and C2. In 
this regard, C1 is the guard register described above, 
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while C2 has the w least significant bits of C(s). The 
binary point is between C1 and C2; C(s) is augmented by 
adding into C2. 

Both the C and A registers comprise conventional 
flip-flop or latch circuitry that is clocked at the end of 5 
each cycle of the encoding operation of FIG. 2. 
The normalized values Q(i) and ni are scaled by a 

right shift of one bit each in right-shift circuits 22 and 
24. Both the right-shifted (scaled) and the unscaled 
normalized occurrence counts are terminated at 0 and 1 
ports, respectively, of multiplexers 26 and 28. The mul 
tiplexers 26 and 28 operate to select the scaled or un 
scaled normalized values according to a select signal 
provided by the comparison circuit 20. Comparison 
circuit 20 is a conventional binary magnitude compara 
tor that receives the current value of Q(n) and the 
contents of the A register 30. If the magnitude of the 
normalized occurrence count Q(m) equals or exceeds 
the magnitude of the A register contents, the output of 
the comparator 20 will switch the respective outputs of 20 
the multiplexers 26 and 28 to their 0 ports, thereby 
selecting the scaled normalized values 2 Q(i) and 
2-lni, respectively. On the other hand, if the magnitude 
of the A register contents exceeds the magnitude of 
Q(m), the outputs of the multiplexers 26 and 28 will be 25 
switched to the unscaled normalized occurrence counts 
Q(i) and ni, respectively. 
The concurrent augmentation of the C register con 

tents and change of the internal coding variable a(s) are 
next described. The current contents of the C register 
are available as one input to a conventional binary adder 
42, which also accepts the value selected by the multi 
plexer 26. The adder 42 binarily adds the content of the 
C register with the scaled or unscaled value of Q(i) as 
determined by the multiplexer 26. The sum of the addi 
tion operation performed by the adder 42 is provided to 
a conventional digital shift circuit 44 for the left-shifting 
operation necessary to align the working end of the 
code stream C(s). In the event that the current symbol 
i is not m, the multiplexer 34 responds to the significa 
tion signal by connecting to its output the value selected 
by the multiplexer 28. Otherwise, if the current symbol 
i is m, the output of the multiplexer 34 is connected to 
the output of the conventional binary subtracter circuit 
32. The binary subtracter circuit 32 receives the con 
tents of the A register and subtracts from the contents 
the normalized Q(m) value selected by the multiplexer 
26. The output of the multiplexer 34 is provided both to 
the binary shift circuit 36 and to the normalize control 
select (NCS) circuit 48. 
The NCS 48 operates conventionally to respond to 

the non-normalized value for a(s) selected by the multi 
plexer 34 in order to determine the number of bits of 
shift that the unnormalized value must undergo to be 
placed into the range (4). The output of the NCS 48 55 
specifies the amount of shift for normalizing a(s) and 
aligning the working end of the code string C(s) with 
the normalized value of the coding variable. If the input 
to the NCS circuit 48 has w bits of significance, the 
output of the circuit will have log2 w bits. 
The number of bits of left-shift required to normalize 

the current value of a(s) and to align the working end of 
C(s) with the normalized value is fed to the left-shift 
circuits 36 and 44, which perform the left-shifting re 
quired for a(s) and C(s), respectively. The left-shifted 65 
values are provided, respectively, to the A register 30 
and the C register 40. The code string C(s) is obtained 
from the output of the shift circuit 44. 
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As is known in the art, decoding is the dual of encod 

ing. As with prior art arithmetic-encoding techniques, 
decoding of the compressed stream produced by the 
invention proceeds by examining the most significant 
part of the code string C(s) and determining from its 
magnitude the largest possible addend that does not 
exceed the current value of the code string. However, 
as with the encoding procedure of the invention, the 
augends tested against the most significant part of the 
compressed string are obtained from occurrence counts. 

Generally, it can be said that the occurrence counts 
for a decoder will be obtained from a modeling unit 
corresponding to the modeling unit 12 associated with 
the decoding unit 14. Thus, the decoder must receive 
the cumulative occurrence count Q(n), Q(i), and ni. In 
addition, the decoder must have the most significant 
portion (w1+w MSB's) of the code string C(s). The 
structure of the decoder will include a C register and an 
A register corresponding to the identically-denoted 
registers in the encoder, with the same interpretation of 
their contents as binary fractional numbers. As with the 
encoder 14, the decoder has provision for normalizing 
the received occurrence counts. 
The decoding is initiated by filling the C register with 

thew first symbols of the code string to be decoded and 
by setting the contents of the A register to 1.0 . . . 0. 
Then, Q(m) is read for the next symbol and tested 
against the contents of the A register. If Q(m) is less 
than the magnitude of the A register contents, (3) is set 
equal to 0, otherwise (3) is set equal to 1. Then, the 
largest symbol j such that 2-(8)QG)sC is found. The 
symbol is decoded as the so-found largest symbol, say, 
i. If the decoded symbol i is not m, the value 2-(6)Q(i) 
is subtracted from Cand 208)nis inserted into A. Other 
wise, the quantity 2-(6)Q(m) is subtracted from both C 
and A. Once C and A are updated, their contents are 
simultaneously left-shifted as many positions as needed 
to bring the contents of A to the range (4), after which 
the remaining positions in C are filled with the next 
most significant symbols from the code string. If the 
end-of-string symbol is encountered, the process stops. 
Otherwise, the process is repeated. 
Table IV illustrates decoding of the code string C(s) 

obtained by operation of the Table II coding example. 
For convenience, the code string generated by that 
example is C(s)=00000100110100*. 

TABLE IV 
Decoded 
Symbol (Q(2), Q(3), iii) C REG A REG 
Initialize 000,000 1000 

1 (0.01,0,100.01) 000,000 0.010 
shift 000,1001 1,000 

2 (0.10.0.11,0.01) 000,000 0.00 
shift 0000110 1000 

2 (0.10, 1.000..10) scale by 
(0.01.0.1,001) 000,000 0.00 

shift 000.1010 1.000 
3 (0.01,0.01,0.001) 000,0000 0.011 

shift 000.0000 0.110 
(0.01,0.101,0.01) 0000000 0.00 

shift 00000 .000 
(0.011,0.110,0.011) 00000 0.01 

0000 0,110 

As with the modeling unit 12 associated with the 
encoder, the decoder modeling unit will assume at the 
beginning that the probabilities of occurrence of the 
symbols 1, 2, and 3 are equally likely, which means that 
it will initially assign each of them an individual count 
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of 1. These occurrence counts are updated as symbols 
are decoded in the compressed string. Further, as stated 
above, the decoder C and A registers are initialized 
with the first w bits of the code stream and 1.000, re 
spectively. 

In the first iteration of the decoding method, the 
value in the C register is less than the normalized cumu 
lative count Q(2), so the value of the normalized cumu 
lative count Q(1), which is 0, is subtracted from the C 
register contents, while the normalized initial count n is 
inserted into A. A 1 is decoded and the contents of C 
and A are shifted as many positions as is required to 
bring A into the range (4) and the decoding process is 
repeated. 

It is noted that the decoding of the second 2 is pre 
ceded by scaling the cumulative counts by , since the 
normalized cumulative count Q(3) is not less than the 
contents of A. Further, the subtraction of Q(3) from 
both C and A follows the decoding of the symbol 3. 

It will be evident to the skilled artisan that the em 
bodiment of the decoder corresponds essentially to that 
of the encoder. It includes a modeling unit to which 
successive decoded symbols are applied to obtain the 
normalized occurrence counts. However, in contrast to 
the encoder, the decoder requires the ability to subtract 
the normalized cumulative count from the contents of 
C. Further, the decoder requires interpretative logic to 
determine the largest symbolj as prescribed above. 

Referring now to FIG. 4, the decoder block diagram 
performs the above-described decoding method by 
employing shift operations for the relative scaling of 
parameters when the magnitude of Q(m) equals or ex 
ceeds the magnitude of a(s), interpreting the w--w 
most significant bits of the code stream, decrementing 
the code stream following interpretation, and concur 
rently updating the variable and aligning the code 
Stream. 
The decoding unit operates in response to the unnor 

malized occurrence counts provided by its associated 
modeling unit; in this case, the normalization of the 
counts is performed as described above for the encoder, 

... but is not illustrated in FIG. 4. Initially, the first w bits 
of the code string C(s) are placed in the C2 portion of 
the C register 52 and provided therethrough to a condi 
tional left-shift circuit 54. The A register 55 is conven 
tionally initialized to a count of 1.0 . . . 0. The initial 
value of Q(m) is provided from the storage device 56 to 
binary comparator 60. The comparator 60 compares the 
magnitudes of Q(m) and the contents of the A register 
and, according to the outcome of the comparison, pro 
vides one of two states of a SHIFT SELECT signal to 
the conditional left-shift circuit 54 and to the condi 
tional right-shift circuits 62 and 64. If the magnitude of 
the A register contents is the greater, the shift circuits 
54, 62, and 64 will pass the binary values at their respec 
tive inputs to their respect outputs without shifting 
them. For the other state of the SHIFT SELECT sig 
nal, the conditional shift circuits will shift their respec 
tive binary input signals by one bit in the direction indi 
cated. Thus, if the magnitude of Q(m) exceeds the mag 
nitude of the A register contents, the w most significant 
bits of C(s) will be shifted left by one bit, corresponding 
to scaling the value represented by the bits by 2. The 
same condition of the SHIFT SELECT signal will 
cause Q(i) and ni to the right-shifted (scaled by ) by 
their respective associated shift circuits. 
The shifted or unshifted w most significant bits of the 

code stream are provided to decode logic 66, which 
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14 
finds the largest symbolj such that QG) is less than or 
equal to C (or numeral 2C if the SHIFT SELECT 
signal causes a left-shift). It will be understood that the 
left-shift of the most significant end of the code stream 
is equivalent to scaling QC) by as is done in the above 
description of the decoding method. 
The decoding logic can be better understood by ref. 

erence to FIG. 5 where the updated occurrence counts 
are provided from modeling unit logic 70 to the decoder 
where they are normalized as described above and 
placed in storage devices 72-74. Each of the storage 
devices 72-74 holds a respective one of the cumulative 
occurrence counts Q(1)-Q(m). Each of the normalized 
Q counts is fed to a binary comparator where it is com 
pared against the output of the conditional left-shift 
circuit 54, that is the normalized most significant bits of 
the code stream. The decoding logic 80 detects QG) by 
determining at which point in the sequence of the com 
parators 76-78 output reversal takes place. When out 
put reversal is detected, the decoding logic 80 will iden 
tify Q() as the input to the comparator immediately 
preceding the output bit reversal; conversion to the 
decoded symbol i is simply a matter of encoding the 
position of the output reversal. 

Returning to FIG. 4, the decoding logic 66 provides 
the decoded symbol i and its associated cumulative 
count Q(i) as outputs. Decrementation of the most sig 
nificant bits of the code stream occur in the subtracter 
68, while the multiplexer 70 selects either the output of 
the conditional right-shift circuit 64 (that is, ni, shifted if 
indicated by the comparator 60) or the difference be 
tween the contents of the A register and the Q(m) avail 
able from the conditional right-shift 62 when the de 
coded symbol i is m; in this case the difference is given 
by the output of the subtracter 72. 
The output selected by the multiplexer 70 is fed to the 

normalize control select (NCS) circuit 75 which oper 
ates in the same manner as the NCS circuits described 
above for the encoder 14 to determine, from the non 
normalized value of the selected output the left-shift 
distance required to bring a(s) into the range (4). The 
shift networks 76 and 78 appropriately shift the A and C 
register contents according to the decoding method 
described above. 

It will be evident that the method and means de 
scribed hereinabove for encoding and decoding in the 
case of an n-ary alphabet is applicable also to the case of 
a binary symbol string. In this case, X denotes the sym 
bol to which the modeling unit 12 assigns the lower 
count; that is, nS N/2 digits. This low probability 
symbol (LPS), of course, depends on the portion of the 
string preceding the current symbol. The more proba 
ble symbol (MPS) is denoted by x'. Here k(n) is the 
number of binary digits in the total count N if it beings 
as 11; otherwise, k(n) is equal to the number of binary 
digits representing the total count N-1. As with the 
n-ary case, N=2-k(t)N, which puts N into the range 
(4). Further, n=2-k()ni. With this, the coding opera 
tion in terms of the two registers described above, Cand 
A, both having width w, is given by FIG. 6. 
As in FIG. 6, register C is initially filled with zeros 

and A is set to 1.0... 0. Then the next symbol causes the 
modeling unit to update the occurrence count. If the 
next symbol is the LPS, the contents of A are replaced 
by n; if the next symbol is the MPS, the normalized 
occurrence count n is added to register C and sub 
tracted from register A. In either case, once the con 
tents of register A are changed, both the C and A regis 
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ters are shifted left as many positions as required to 
bring the contents of A to the range (4). This procedure 
is followed for each symbol in a binary symbol stream. 
When the end of the binary symbol stream is detected, 
(for example, by detection of an end-of-string symbol), 
the contents of the C register are left-shifted w posi 
tions. Again, the symbols that are successively left 
shifted out of the high-magnitude end of the C register 
constitute the arithmetically-encoded symbol stream 
resulting from the compression of the unencoded binary 
Streal. 
The binary alphabet instantiation of the invention is 

implemented by stripping the FIG. 3 circuit of all of the 
hardware required for comparison of the normalized 
cumulative count for m with the contents of A and the 
associated right-shift and multiplexing circuitry. An 
additional multiplexer is required at the input to the 
shift circuit 44 that selects between the output of the 
adder 42 and the contents of the C register. The addi 
tional multiplexer and the multiplexer 34 provide for 
selection of operations based on whether the current 
symbol is an LPS. The inputs to the encoder in the 
binary case will be simply the normalized LPS occur 
rence countin and a binary signal indicating whether or 
not the current symbol is an LPS. 
Decoding in the binary case is performed by virtually 

reversing the steps of encoding. Decoding also case 
requires the presence of the Cand A registers, as well as 
a modeling unit to accumulate occurrence statistics and 
provide normalized occurrence counts to the decoder. 
As with the n-ary decoding case, the C and A regis 

ters are initialized with the w most significant symbols 
of the code string and 1.0 . . . 0, respectively. Next, the 
normalized LPS occurrence count is subtracted from 
the contents of the C register; if the difference is less 
than 0, the symbol is decoded as LPS and the A register 
is loaded with the normalized LPS count; otherwise, if 
the difference is greater than or equal to 0, the symbol 
is MPS, the C register is loaded with the difference, and 
the normalized LPS count, n, is subtracted from the A 
"register contents. Both registers are then shifted by as 
many positions as required to bring A to the range (4), 
while the same number of symbols are read from the 
code string into the vacated positions in the C register. 
If none exist, the process ceases. 
Although the encoding and decoding cases discussed 

hereinabove are premised on the provision of elemen 
tary occurrence counts and the normalization of those 
counts to the range (4) by the encoder or decoder, it is 
to be understood that the normalization procedure can 
be apportioned to the modeling unit, in which case 
encoding and decoding would invole simply testing, 
combining, and shifting the C and A register contents. 
Further, encoding and decoding according to the in 
vention can be adapted in a straightforward manner to 
respond to actual conditional probabilities, assuming the 
existence of a sophisticated modeling unit, Finally, the 
statistical counts used above are assumed to be provided 
from a non-stationary source. It is entirely within the 
scope of the invention to use stationary occurrence 
COunts. 

Obviously, many modifications and variations of the 
invention are possible in light of the above description. 
However, it will be understood by those skilled in the 
art that these alterations in the method and apparatus 
may be made without departing from the spirit or scope 
of the described invention. 
We claim: 
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1. A method for recursive machine modification of a 

string C(s) of binary numbers to produce C(si) where 
C(si) is a compressed representation of and responsive 
to the next symboli in a symbol strings, s being a con 
catenation of symbols drawn from an alphabet having at 
least two characters, 0, . . . m, C(si) being a number in 
the semi-open coding range (0,1), the coding range 
being subdivided into intervals during successive ma 
chine string modification cycles, each interval being 
defined by its lower bound C(s) and a parameter A(s) 
such that (CCs), C(s)--A(s)), said method being execut 
able upon a pair of registers C and A, each having a 
finite dimension, w, comprising the steps of: 

(a) placing respective initial contents in registers A 
and C; 

(b) for the next symbol i in the string s, reading in 
binary symbol occurrence statistics for the portion 
ofs preceding i, said occurrence statistics including 
ni, the count of occurrences of i, C(i)=n0--n 1-- . . 

... --ni-1, the sum of counts for the symbols 0, 1, . . 
... i-1 preceding i in said alphabet, O(n)=n0--ni 
. . . --nn-1, the sum of counts for the symbols 
preceding m in the alphabet, and N, the count of all 
symbols in the portion, normalizing N to a prede 
termined range, and normalizing n(), Q(i), and 
Q(m) based upon the normalized value of N, and 
(1) if the next symboli is not m, adding the normal 

ized value of Q(i) to C, replacing the contents of 
A with the normalized value of ni, and shifting C 
and A in a predetermined direction until the 
contents of A lie within a predetermined range, 
O 

(2) if the next symboli is m, adding the normalized 
value of Q(m) to the contents of C, subtracting 
the normalized value of Q(m) from the contents 
of A, and shifting C and A in a predetermined 
direction until the contents of A lie within a 
predetermined range; and 

(c) if i is not the last symbol in s, then repeating step 
(b), or, if i is the last symbol in s, then shifting the 
contents of Cin said predetermined direction by w 
positions. 

2. The method of claim 1 further including, before the 
execution of steps (b)(1) or (b)(2), scaling the magni 
tudes of the normalized values of n(), Q(i), and Q(n) by 
a predetermined amount unless Q(m) is less than the 
contents of A. 

3. The method of claim 1 wherein said normalizing of 
the occurrence statistics N, ni, Q(i) and Q(m) includes 
register-shifting of said binary occurrence statistics in a 
predetermined direction corresponding to a direction of 
increasing register content magnitude. 

4. The method of claim 2 wherein said normalizing of 
said binary occurrence statistics includes register-shift 
ing said binary occurrence statistics in a predetermined 
direction corresponding to a direction of increasing 
register content magnitude. 

5. The method of claim 1 wherein the predetermined 
range is from 0.11binary to 1.1 binary, said initial C register 
contents are 0, and said initial A register contents are 
1.00 00. 

6. A method for the cyclic machine modification of a 
binary number string C(s) to produce C(si), where C(si) 
is a compressed representation of and responsive to the 
next symbol b(i) from a binary symbol string s= b(1), 
b(2), . . . , b(i), . . . b(n), C(si) being a number in the 
semi-open coding range (0,1), the coding range being 
subdivided into intervals during successive machine 
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string modification cycles, each interval being defined 
by its lower bound C(s) and a parameter A(s) such that 
(C(s), C(s)--A(s)), said method being executable upon a 
pair of registers A and C, each being of finite width w, 
comprising the steps of: 

(a) placing respective initial contents in registers C 
and A; 

(b) reading in, incrementally counting, and ascertain 
ing whether the next symbol b(i) is a least probable 
symbol (LPS) or a most probable symbol (MPS), 
and 
(1)if b(i) is the last symbolins, shifting the contents 
of C left by w positions, or 

(2) if b(i) is LPS, replacing the contents of A by the 
normalized count of LPS and shifting both A 
and C left until the contents of A lie within a 
predetermined range, or 

(3) if b(i) is MPS, adding to C and subtracting from 
A the normalized count of MPS and shifting 
both A and C left until the contents of A lie 
within a predetermined range; and 

(c) repeating step (b). 
7. A method according to claim 6, wherein the prede 

termined range is from 0.75 to 1.50; and the C and A 
registers are respectively initialized to the value 0 and 
1.00 . . . 00. 

8. An arithmetic encoder responsive to a symbol 
strings which is a concatenation of symbols drawn from 
an alphabet having two or more characters 0, . . . , m, 
and to occurrence statistics ni, Q(i), Q(m), and N which 
correspond respectively to the count of occurrences of 
the symbol i, the sum of the counts no through ni-1, the 
sum of the counts nothrough nin-1, and the count of all 
symbols in the portion of the string s preceding the 
symboli for recursively modifying a code string C(s) to 
produce C(si), where C(si) is a compressed representa 
tion of the string si and siis the strings followed by the 
symbol i, comprising: 

a first shift register containing the w-least-significant 
bits of C(si); 

a second shift register containing an interval coding 
variable; 

means responsive to N for normalizing ni, Q(i), and 
Q(m) based upon the normalization of N to a prede 
termined range; 

first arithmetic means for adding the normalized 
value of Q(i) to the contents of the first shift regis 
ter if it? m or for adding the normalized value of 
Q(m) to the contents of the first shift register if 
i=m; 
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second arithmetic means for placing the normalized 

value of ni into the second shift register if i7-m or 
for subtracting the normalized value of Q(m) from 
the contents of the second register if i=m; and 

shift means for concurrently shifting the contents of 
the first and second registers in a predetermined 
direction until the contents of the second register 
lie within said predetermined range. 

9. The arithmetic encoder of claim 8 wherein said 
predetermined range is (0.11binary, 1.1binary). 

10. The arithmetic encoder of claim 8 wherein said 
predetermined direction is a direction of increasing 
magnitude. 

11. A decoder for deriving a symbol streams, where 
s is a concatenation of symbols drawn from a multi 
character slphabet 0, ..., m, in response to an arithmeti 
cally-encoded symbol stream C(s) and to occurrence 
statistics ni, Q(i), Q(m), and N, which correspond re 
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spectively to the count of occurrences of the symbol i, 
the sum of the counts no through ni-1, the sum of the 
counts nothrough n-1, and the count of all symbols in 
the portion of the strings preceding the symbol i for 
recursively modifying a code string C(s) to produce 
C(si), where C(si) is a compressed representation of the 
string si and si is the strings followed by the symbol i, 
comprising: 

a first shift register containing the w-most-significant 
bits of C(s); 

a second shift register containing an interval decod 
ing variable; 

means responsive to N for normalizing ni, Q(i), and 
Q(m) based upon the normalization of N to a prede 
termined range; 

means for determining a symbol j in said alphabet 
such that the normalized value of Q()s the con 
tents of the first shift register; 

first arithmetic means for subtracting the normalized 
value of Q() from the contents of the first register; 

second arithmetic means for placing the normalized 
value of n into the second register ifj7-m or for 
subtracting the normalized value of Q(m) from the 
contents of the second register ifj=m; and 

shift means for simultaneously shifting the contents of 
the first and second registers in a predetermined 
magnitude direction until the contents of the sec 
ond register lie within said predetermined range 
and for shifting the next-most-significant portion of 
C(s) into the portion of the first register vacated by 
said simultaneous shifting. 

12. The decoder of claim 11 wherein said predeter 
mined range is 0.11binary, 1.1 binary). 
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