
United States Patent (19)
Mohiuddin et al.

11) Patent Number:
45 Date of Patent:

4,652,856
Mar. 24, 1987

54 MULTIPLICATION-FREE
MULT-ALPHABET ARTHMETC CODE

75 Inventors: Kottappuram M. A. Mohiuddin, San
Jose; Jorma J. Rissanen, Los Gatos,
both of Calif.

International Business Machines
Corporation, Armonk, N.Y.

21 Appl. No.: 825,831

73) Assignee:

(22 Filed: Feb. 4, 1986
51 Int. Cl. .. H03M 7/30
52 U.S. Cl. ... 340/347 DD
58 Field of Search 340/347 DD; 235/310;

364/200,900
56) References Cited

U.S. PATENT DOCUMENTS

4,122,440 10/1978 Langdon, Jr. et al. 340/347
4,259,693 3/1981 Aaron et al. 358/261
4,286,256 8/1981 Langdon, Jr. et al. 340/347
4,295,125 0/1981 Langdon, Jr. 340/347
4,420,771 12/1983 Pirsch 358/261
4,467,317 8/1984 Langdon ... 340/347 DD
4,494,108 l/1985 Langdon 340/347 DD

OTHER PUBLICATIONS

"Method for Converting Counts to Coding Parame
ters,” by G. G. Langdon, Jr. and J. J. Rissanen, IBM
Technical Disclosure Bulletin, vol. 22, No. 7, Dec.
1979.
"Integer-Length Arithmetic Code for Conditional Bi
nary Sources,' by G. G. Langdon, Jr. and J. J. Ris
sanen, IBM Technical Disclosure Bulletin, vol. 22, No.
10, Mar. 1980.
"Method for Carry-Over Control in a Fifo Arithmetic

Code String,” by G. G. Langdon, Jr., IBM Technical
Disclosure Bulletin, vol. 23, No. 1, Jun. 1980.
"Apparatus Supporting Half-Duplexed Encoding/De
coding Action,' by G. G. Langdon, Jr., IBM Technical
Disclosure Bulletin, vol. 23, No. 11, Apr. 1981.
Primary Examiner-Charles D. Miller
Attorney, Agent, or Firm-Brown, Martin, Haller &
Meador

57 ABSTRACT
Method and apparatus which cyclically generate a com
pressed, arithmetically-coded binary stream in response
to binary occurrence counts of symbols in an uncoded
string. The symbols in the uncoded string are drawn
from a multi-character alphabet which is not necessarily
a binary one. Coding operations and hardware are sim
plified by deriving from the binary occurrence counts
an estimate of the probability of each unencoded sym
bol at its precise lexical location. The probability esti
mation eliminates any requirement for division or multi
plication by employing magnitude-shifting of the binary
occurrence counts. The encoded stream is augmented
by the estimated symbol probability at the same time
that an internal variable is updated with an estimate of
the portion of a probability interval remaining after
coding the current symbol, the interval estimate being
obtained from the left-shifted occurrence counts. De
coding is the dual of encoding. The unencoded symbol
stream is extracted, symbol-by-symbol, by subtracting
the estimated symbol probability that comes closest to,
but does not exceed the magnitude of the compressed
stream, re-estimating the symbol probabilities based
upon the decoding, and testing the difference of the
subtraction against the re-estimated probability.

12 Claims, 7 Drawing Figures

i = m.

MODELLING

UNT

TOTAL COUNT, N W

CUMULATIVE COUNT, Q(i) W

CUMULATIVE COUNT, Q(m
iN DiVIDUAL COUNT OF in i W

EN CODNG

UNT

4.

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 1 of 16

U.S. Patent Mar. 24, 1987 Sheet 1 of6 4,652,856

TOTAL COUNT N. W

CUMULATIVE COUNT, Q(t) | ENCODING
UNT

CUMULATIVE COUNT, Q

INDIVIDUAL COUNT OF in

MODELLING

UNIT
W

W

2 4.

F. G.

SHIFT
SELECT

FG. 7

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 2 of 16

U.S. Patent Mar. 24, 1987 Sheet 2 of6 4,652,856

GET UPDATED OCCURENCE
COUNTS FOR NEXTSYMBOL i

N, ni , Q(i) Q(m)

C-C+(2* Q)
A-A-(2,q)

NORMALZE
A, SHIFT C

YES
FG. 2

SHFT C LEFT
W POST ONS

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 3 of 16

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 4 of 16

U.S. Patent Mar. 24, 1987 She 4 of6 4,652,856

B
COMPARATOR

w As B

SEL.

CONDITIONAL SHIFT

LEFT BY

SEL

CONDITIONAL SHF
R GHT BY

SEL

CONDITIONAL SHIFT
RGHT BY

NDVDuA
COUNT ACC

NPUT CODE
STREAM, C(s)

DECODEDSYMBOL, i SUCH THAT Q(i+1)2C22Q i) FG. 4

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 5 of 16

U.S. Patent Mar. 24, 1987 Sheet 5 of6 4,652,856

DECODED SYMBOL, i
SUCH THAT Q(i+1) > Ce q(i)

COUNTS

UPDATE
LOGC

DEC ODING

LOG C

COMPARATOR
A> B

B
N-N-
MODELLING COMPARATOR
UNT ACB

Q(i)

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 6 of 16

U.S. Patent Mar. 24, 1987 Sheet 6 of6 4,652,856

GET n, LPS

SCURRENT
sMBg- LPS

SHIFT AC LEFT TO
BRING ATO (0.75, 1.5)

SHFT C LEFT
w POST ONS

FIG.6

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 7 of 16

4,652,856
1

MULTIPLICATION-FREE MULTALPHABET
ARTHMETC CODE

BACKGROUND OF THE INVENTION

This invention relates to arithmetic compression cod
ing of multi-alphabet sources, and more particularly to
arithmetic coding wherein each symbol of a multi
alphabet symbol stream is encoded according to a prob
ability interval variable whose value is cyclically read
justed with the coding of each symbol to reflect an
estimate of the probability of the portion of the symbol
stream already encoded.

Arithmetic codes of the FIFO-Form (first-in-first
out) are established in prior art and may be understood
by reference to Langdon and Rissanen, "A Simple Gen
eral Binary Source Code," IEEE Transactions On In
formation Theory, Volume IT-28, No. 5, September
1982. In the Langdon and Rissanen 1982 reference, and
in other references cited therein, arithmetic coding is
revealed as a cyclic process that generates a bindary
code string by augmenting a present code string result
ing from the encoding of previous source string sym
bols. The power of arithmetic codes is in the compres
sion they achieve, and their flexibility is in their ability
to encode strings modeled by stationary or non-station
ary sources with equal ease. Arithmetic codes permit
encoding of binary strings without the need for alphabet
extension, and also encode strings with symbols drawn
from alphabets containing more than two characters.
An arithmetic code basically updates the probability

P(s) of a so-far processed source strings, by the multi
plication P(s)P(i/s) where P(i/s) is a conditional proba
bility of the symbol i given s. The multiplication re
quired for augmenting the probability is relatively ex
pensive and slow, even in the case where the probabili
ties are represented by binary numbers having at most a
fixed number of significant digits.
A signal advance in simplifying the arithmetic encod

ing operation in the particular case of a binary alphabet
is described in U.S. Pat. No. 4,467,317. According to
that patent, the encoded binary string is a number in the
semi-open interval 0, 1) and the encoding method pro
vides for recursively augmenting the code string in
response to each symbol in the unencoded string. The
coding process is described as the successive subdivi
sion of the semi-open interval into a subinterval posi
tioned between a lower bound C(s) contained in the
interval, and an upper limit C(s) --TOs), also contained in
the interval, where T(s) is an internal coding variable
expressed as a function of numeral 2-k.
The prior art U.S. Pat. No. 4,467,317 teaches that the

generation of a binary arithmetically-encoded stream is
generated by the recursions of (1a)-(ld).
For each MPS:

C(sMPS)=C(s)+2-k (a)

TsMPS)=T(s)=2-k (1b)

For each LPS:

C(sLPS)=C(s) (c)

T(sLPS)=2-k (ld)

According to these equations, the magnitude of the
binary arithmetically-coded stream C(s) is altered only
on the occurrence of the more probable symbol (MPS),

5

10

15

20

25

30

35

45

50

55

65

2
instead of on the occurrence of the less probable signal
(LPS). Accordingly, an arithmetically-encoded binary
stream C(s) is recursively generated in high-to-low
position magnitude order in response to successive sym
bols b(i) of a binary symbol string s = b(1), b(2) ... b(i),
. . . b(n). The steps of generation are compounded of
entering the q-least-significant bits of the encoded
stream C(s) and an internal coding variable T(s) into
respective registers, and determining whether the next
symbol in the streams constitutes an MPS, while re
ceiving a binary integer parameter k which approxi
mates the probability 2-k of an LPS; upon the occur
rence of an MPS, simultaneously adding 2 k to the C
register and substracting it from the T register; and
left-shift normalizing both the Cand Tregister contents
if the T register contains a leading zero, or if the next
symbol of s is an LPS, left-shifting the C register con
tents by k. positions and entering the binary value 1.00.
... 00 into the Tregister. This recursive technique main
tains the working end of the code string C(s) in the C
register and in alignment with the significant bits of the
subinterval size T so that the code string is augmented
in the proper place. Further, the tracking of the C(s)
working end and the updating of T(s) are done concur
rently, which has the very desirable effect of increasing
the speed of the coding operation.

While, the recursive technique of U.S. Pat. No.
4,467,317 greatly simplified the encoding operation of a
binary symbol stream by approximating the probability
of the LPS with an integral power of , the same idea is
not generalized easily to non-binary alphabets for the
reason that the n-ary alphabet symbol probabilities can
not be approximated well enough as powers of . This
limitation is significant in view of the fact of growing
parallelism in the data structures and operations of pres
ent-day processors. A method and means for compres
sive arithmetic encoding of symbol streams embracing
more than two distinct alphabet characters would be
useful to encode, for example, a symbol stream consist
ing of a succession of data bytes. In this case, the alpha
bet would consist of 256 distinct characters (byte for
mats) and the stream would be encoded byte-by-byte.
At present, compressive arithmetic encoding encodes
and decodes on a bit-by-bit basis and requires serializa
tion of parallel data structures, which introduces com
plexity and delay into the coding process.

Further, the algorithmic approach to prior art arith
metic encoding depends upon the existence of a sophis
ticated modeling unit capable of calculating and provid
ing the source statistical characteristics k. As taught in
Langdon and Rissanen, 1982, implicit in the calculation
of k is the default of a skew number calculation opera
tion to the modeling unit, an operation which adds to
the complexity of the overall data compression problem
that comprehends modeling and encoding the data
SOCe,

At this point, then, arithmetic compression encoding
awaits an advance of the art to accommodate the arith
metic encoding of multi-character-alphabet data
sources by a method and means operating without mul
tiplication or division to generate a binary code stream
in response to simplified data source statistical charac
teristics that preserve the very desirable prior art prop
erty of concurrent updating of both the code stream and
an internal coding variable.

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 8 of 16

4,652,856
3

INVENTION SUMMARY
The technological advance afforded by this invention

is expressed as the compressive arithmetic encoding of
multi-character alphabet data sources in response to
elementary data source statistical characteristics by
means that preserve the increased concurrency of oper
ation embodied in the prior art arithmetic encoders. The
invention is based upon an encoding action that accepts
symbol occurrence counts in binary form, subjects
those counts to simple magnitude shift operations to
approximate the contextual probability of each symbol
of the symbol stream, augments the coded stream, and
then simultaneously locates the w least significant bits
(the working end) of the code stream and adjusts the
value of an internal coding variable determinative of the
next coding subinterval in response to one of the shifted
OCCurrence COuntS.
The invention resides in a method for recursive ma

chine modification of a code string C(s) of binary num
bers to produce C(si) where C(si) is a compressed repre
sentation of and responsive to the next symbol i in a
symbol strings. In this regard, the symbol strings is a
concatenation of symbols drawn from an alphabet hav
ing two or more characters, o, m. Further, the
method is premised on C(si) being a number in the semi
open coding range 0, 1) that is subdivided into intervals
during successive machine string modification cycles.
Each interval resulting from a coding recursion is de
fined by its lower bound C(s) and a coding parameter
A(s) such that the interval is C(s), C(s)--A(s)). The
method is executable upon a pair of registers C and A,
each having a finite size w.

In performing the method, the following steps are
executed: respective initial contents are placed in regis
ters A and C; for the next symboli in the strings, binary
symbol occurrence counts are read in for the portion of
s preceding i. In this regard, the occurrence counts
include ni, the count of occurrences of i, Q(t)=n0--n1
. . . --ni-1, the sum of counts for the symbols 0, 1, . . .
, i-1 preceding i in the alphabet, Q(m)=n0--n1-- . . .
--nm-1, the sum of counts for the symbols preceding m
in the alphabet, and N, the count of all symbols in the
portion. The occurrence statistics ni, Q(i), and Q(m) are
normalized by left-shifting an amount based upon the
placement of N in a predetermined range. Then, if the
next symbol i is not m, the normalized value of Q(i) is
added to the contents of C, the contents of A are re
placed with the normalized value of ni, and the contents
of C and A are shifted in a predetermined magnitude
direction until the contents of A lie within a predeter
mined range. Alternatively, if the next symboliism, the
normalized value of Q(n) is added to the contents of C
and subtracted from the contents of A, and the contents
of C and A are left-shifted until the contents of A lie
within the predetermined range. After the ultimate
symbol of s is encoded, the contents of Care left-shifted
by w positions. The coded string C(s) constitutes the
successive symbols emerging from the register C as a
consequence of the succession of left-shift operations
performed on its contents in execution of the method.

BRIEF SUMMARY OF THE DRAWINGS

5

10

15

25

30

35

40

45

50

55

60

FIG. 1 is a block diagram illustrating the provision of 65
elementary data source statistics and other control sig
nals by a modeling unit to an encoding unit in response
to a data source.

4.
FIG. 2 is a flow diagram of the encoding algorithm of

the invention.
FIG. 3 is a block diagram of arithmetic and logic

operations implicit in the FIG. 2 encoding algorithm.
FIG. 4 is a block diagram of a decoding apparatus

that decodes a compressed arithmetically-encoded
stream produced by the encoder of FIG. 3.
FIG. 5 is a block diagram showing in greater detail a

cumulative count memory required for the operation of
the FIG. 4 decoding unit.
FIG. 6 is a flow diagram illustrating the adaptation of

the FIG. 3 procedure to the special case where a binary
symbol stream is to be encoded.

DETALED DESCRIPTION OF THE
EMBODIMENT

To place the invention in a known environmental
context, reference is given to Rissanen and Langdon,
"Universal Modeling and Coding," IEEE, Transactions
on Information Theory, Volume IT-27, No. 1, January
1981, in which data compression is characterized as a
manifold task including modeling and coding aspects.
The data compression duality is illustrated in FIG. 1
where a modeling unit 12 receives a symbol streams
from a data source, not shown. The symbol streams is
a concatenation of symbols drawn from an alphabet
consisting of the symbol i=0, 1, m. s
Compression of the symbol string is accomplished b

an arithmetic coding method that encodes s, symbol for
symbol, in a high-to-low order magnitude direction.
When arithmetically encoding the next symboli, imme
diately following the so-far processed string s, the
method utilizes modelling parameters that represent the
conditional probability of the occurrence of i at its con
text, which is the entire portion of the strings that
precedesi. These model parameters are provided by the
modeling unit; in their most elemental form the parame
ters are provided in terms of integer-valued symbol
occurrence counts. The occurrence counts provided by
the modeling unit 12 are in binary form and include: ni,
the number of occurrences of i in the portion of the
string preceding its instant occurrence; N, the sum of all
of the counts ini, i=0, 1,..., m; Q(t)=n0+ . . . --ni-1, .
where Q(0)=0; and O(n) = 0-- . . . --n-1.
To enhance the speed of the coding process, the mod

eling unit 12 updates for each symbol i in the symbol
streams, not only the counts N and ni, but also all of the
cumulative counts QC), jci, which are affected by n1.
For certain reasons related to precision and approxi

mation that are described below, it is assumed that the
last symbol m of the alphabet is the symbol with the
highest count; that is, nnani, for all i. Signification of
the occurrence of m in the data streams is provided by
the modeling unit 12 on a signal line i=m.
The occurrence counts and the signification i- m are

provided by the modeling unit 12 to an encoding unit
14. The encoding unit 14 responds to the inputs pro
vided by the modeling unit to produce the binary, arith
metically-encoded string C(s).
The encoding unit 14 employs a method and means to

construct the code string C(s) as a cumulative probabil
ity of the portions of the data strings that precede the
current one in the lexical order of the strings. When
calculating this cumulative probability, the encoder 14
uses an approximation A(s) of the cumulative probabil
ity P(s). The encoding action according to the invention
calculates C(s) as a binary fractional number represent
ing the code; that is, the cumulative probability of the

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 9 of 16

4,652,856
5

strings. The following recursions define the encoding
action of the invention where the code C(s), the cumu
lative probability of the strings, is augmented to pro
duce the code C(si) of the one symbol longer string si:

C(si)=C(s)--A(sO)-- . . . --A(s(i-1)), i>0 (2b)

where, the notation s(i-1) is used for the string consist
ing of s followed by the symbol i-1 that precedes i in
the alphabet. The initial conditions of equations (2a) and
(2b) are CO)=0 and A(A)=1, where A denotes the
empty string.

It is recognized that the coding variable A(s), which
corresponds to the length of the available coding inter
val remaining after the calculation of C(s) according to
equations 2a and 2b must be recalculated to account for
the previous subdivision of the coding space repre
sented by the augend (A(s0)+ . . . --A(s(i-1)). The
encoding action of the invention performs that recalcu
lation based upon equation (3).

A(s)=A(so) . . . --A(m) (3)

As taught in the Rissanen and Langdon 1981 reference,
equation (3) ensures that C(s) will be decodable when
calculated according to equations (2a) and (2b). Fur
ther, as required by the theory expressed in the refer
ence, the initial value of 1.0 . . . 0 causes A(s) to define
a bona fide information source.
As described in the discussion following, the actual

arithmetic operations called for by the recursions of
equations (2a)-(3) are done in a pair of fixed-size regis
ters of width w, one register for C(s), and the other for
A(s). These register-based arithmetic operations are
possible if the normalized quantity a(s) is introduced,
and if a(s)=2-()A(s), where L(s) is a non-negative inte
ger determined by the requirement that acs) is a w-digit
binary number in a fixed range. For the purposes of
normalizing A(s) according to the invention, the fol
lowing range turns out to be suitable:

0.11(binary)sa(s)<1.1(binary) (4)

Given the normalization of A(s), the recursion of equa
tion (3) reads as follows:

a(s)=a(s0)-- . . . --a(sm) (5)

where a(si)=2-()A(si). One will appreciate that as the
magnitude of C(s) increases, as it will by equations (2a)
and (2b), the coding space available will shrink, with the
shrinkage represented in the decrease of A(s), as implied
by equation (3). As A(s) decreases, L(s) increases, acs) is
placed in the range (4) by left-shifting, relative to the
register A, and the quantities added to C(s) according to
equation (2b) move to the right, or, equivalently, the
code string C(s) is shifted left relative to the fixed regis
ter C where the augmentation of the w significant bits of
the string takes place.

In the general case of the alphabet containing more
than two characters, the probability approximations
required for recursions (2a) through (3) are obtained
from the occurrence counts provided by the modeling
unit 12. The approximations are obtained first by scaling
the binary representation of the total count N to make it
as nearly equal to the binary representation of A(s) as
possible. For this purpose the scaling quantity k(n) is

10

15

20

25

30

35

6
introduced as the value of the integer k which mini
mizes the absolute distance 2-kN-a(s) and places N
in the range (4). Then, the following normalized counts
are defined:

According to the invention, the approximations of
the right-hand terms in recursion (2b) are defined as
a(s)=ni, for all izm. The usefulness of this approxima
tion will be evident when it is considered that N = no
... --nn and that the probability P(i/s) of i at its lexical
position in s is given by

Pi/s)=n/N (7)

which, in the invention, is approximated by acsi)/acs).
Because a(s) and N are in the common range (4),

a(si)ani (8)
and

a(sm)=d(s)-2(m) (9)

This permits acsi) and acsm) to be obtained from the
occurrence counts by simple normalization, analo
gously with the normalization used to bring A(s) to the
range (4). It will be appreciated that if NasaCs), in effect,
the ideal probability (7) is well approximated as

hi

a(s)
- N -

as hi.

It will be recalled that the last alphabet symbol m is
40 assumed to have the highest count. Hence, it may be

45

50

55

60

65

that N> A(s), in which case the addend form, that is,
a(sm)=a(s)-O(m), may be negative. To avoid this
possibility, the magnitude of Q(m) is tested against a(s)
after the occurrence counts are scaled according to
(6a)-(6c). When the test indicates the negative case, k(n)
is replaced by k(n)+1, guaranteeing positivity of all of
the addends.

Referring again to FIG. 1, the encoding unit 14 re
sponds to the occurrence counts and signification i=n
provided by the modeling unit 12 by producing C(s)
according to the procedure illustrated in FIG. 2. The
procedure of FIG. 2 progresses using the two registers
C and A. Each register is capable of storing a w-bit
binary number. The content of register C is interpreted
as the w least significant bits of the binary fractional
number representing C(s), with the binary point to the
left of the left-most (most significant) storage cell of the
register. Register A also accommodates a w-bit binary
number decreasing in significance from left to right
with the binary point placed between the first and sec
ond storage positions on the left-hand side (most signifi
cant end) of the register.
The computational steps of the FIG. 2 flow diagram

accomplish the recursions (2b) and (3) using normalized
occurrence counts for the estimated values of equations
(4) and (5). Initially, registers C and A are set respec
tively to w-bit values 0.00. . . 0 and 1.00, ... 0. During
each encoding cycle, the encoder 14 is provided with

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 10 of 16

4,652,856
7

the binary occurrence counts-N, ni, Q(i), and Q(n)-as
well as a binary signification signal that indicates
whether or not the current symboli is m. A cycle of the
FIG. 2 method begins by testing the cumulative count
Q(m) against the current contents of the A register to
determine whether the addend a(sm) will be negative. If
Q(n) <A, a value (S) is set equal to 0; otherwise, (S) is
put at 1. In this regard, (3) is the value by which k(n) is
augmented as discussed above; essentially, (3) deter
mines whether the normalized occurrence counts are
further scaled by the quantity . As will be apparent to
those skilled in the art, if (3) = 1, the normalized occur
rence counts are scaled simply by right-shifting their
binary representations by 1 bit against a binary point
fixed in a shift register.
Once the magnitude test of Q(m) against A is com

pleted, the signification signal is consulted to determine
whether the current symboli is the last symbolm of the
alphabet. If the current symbol i is not the last, the
normalized quantity Q(i), scaled by 2-() is added to the
contents of the C register and the normalized value of
the individual occurrence count, ni, scaled by 2-(6), is
loaded into the A register. Thus, in this step the work
ing end of C(s) is augmented by using a(i) as the approx
imation of the contextual probability P(s)P(i/s), while
the approximation of the coding variable A(s) is
changed tonni to reflect the change in the coding inter
val implied by equation (3).

If, on the other hand, i=m, the scaled normalized
occurrence count Q(n) is added to the contents of the C
register and subtracted from the contents of the A regis
ter.

Following the augmentation of the code string C(s)
and the updating of the coding variable A(s), the con
tents of the C and A registers are left-shifted as many
positions as are needed to bring the contents of the A
register into the range (4), and the vacated C and A
register positions are filled with zeros. This joint shift
ing operation maintains the alignment of the significant
bits of the normalized coding interval to the working

... end, that is the w least significant bits, of the code string
C(s); it also ensures that the addend resulting from the
next cycle of the coding operation will be added at the
proper position in the code string. This shifting opera
tion corresponds to the placement of a(s) in the range
defined by equation (4).
When the end of the strings is reached, the contents

of the C register are shifted left w positions and the code
string C(s) is complete. As is known, data strings are
typically framed between symbols that uniquely iden
tify the beginning and end of a string. Left-shifting of
the C register contents by the required number of posi
tions when the end of a data source string is reached can
be done automatically if the end-of-string symbol is
arbitrarily assigned the value 2. In this case, the shift
ing step of the coding procedure will result in the con
tents of the C and A registers being left-shifted by w bit
positions.
As will be evident to those skilled in the art, when

ever the C register contents are left-shifted, the bits
"emitted' from the left end of the register will consti
tute the successive symbols in the code string C(s). The
shifted bits may either be transmitted or stored in an
appropriate storing device which can form a leftward
extension of the C register. Manifestly then, the code
string C(s) consists of all the symbols transmitted or
stored as a result of the left-shifting of the C register as
well as the symbols residing inside the register.

O

15

25

30

35

45

50

55

65

8
It may be that as numbers are added to the C register,

a carry-over from the w least significant bits of C(s) will
occur. Special bit stuffing routines are known in the art
(Langdon and Rissanen, 1982) which may be used to
handle such carries. Also, in order to reduce the fre
quency of the carry occurrences, the C register may be
augmented at its left end by another register of width w
to accommodate carries into the more significant bits of
C(s) that are shorter than w.
The following examples illustrate the encoding oper

ations of the invention.
Let the alphabet consist of the characters:

l, 2, 3.

define the source string as follows:

s= 1,2,2,3,1,1

assume the modeling unit 14 accumulates the occur
rence counts N, ni, and Q(i), where Q(1) is defined as 0,
and assume also that the coding unit 14 performs the
normalization of the occurrence counts based upon the
placement of N in the range (4). The modeling unit 12
will then accumulate occurrence counts and the coding
unit will normalize them based upon the scaling of N to
the range (4). Consider further that the modeling unit 12
initially assumes the alphabet symbols to have equal
probabilities of occurrence and implements this assump
tion by assigning each symbol an initial count of (binary).
Table I shows the accumulation of the occurrence
counts by the adapter, as well as the normalized occur
rence counts that are generated by the encoding unit 14,
that is, ni, Q(i), and Q(3).

TABLE I
Binary Values: O(1) = O(1) = 0

Counts S = 2 2 3 i

N 11 100 101 110 11 000 - -
in 01 10 10 10 10
2 O1 O1 10 11 11
n3 0. O1 O1 O1 10 10 m
Q(2) 0. O O O O 11 m
Q(3) 10 100 O O 10 a.
N 0.11 .00 1.01 0,110 0,1 100
iii 0.01 0.01 0.10 0.001 0.00 0.011 (0.00
Q(i) 0.00 0.10 0.10 0.01 0.00 0.0 0,000
Q(3) O,O 0. 1.00 0.01 0.101 0,11 0.1

From the values provided to the encoder 14 by the
modeling unit 12, the contents of C are augmented by
Q(i). If is is not equal to m, the coding variable repre
sented by the contents of the A register are given by ni,
otherwise, the variable is altered by subtracting Q(3)
from its present contents. Once the contents of C are
augmented and the contents of A are changed, C and A
are left-shifted in lock-step until the contents of A lie
within the specified range.
Table II lists the contents of both the C and A regis

ters after each symbol has been encoded according to
the FIG. 2 procedure.

TABLE II
Next or re- Shift

Symboli (niO(),Q(3) Result C Reg A Reg
Initialize 000 0000 1.000

(0.0100,000,0,100) 000 0000 0.010
00 000 0000 (shift) 1.000

2 (0.010,0,100,0,110) 000 000 0.00
00 010 0000 (shift) 1.000

2 (0.100,0,100,100) (scale by)

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 11 of 16

4,652,856
9

TABLE II-continued
Next Shift

Symboli (niO(),Q(3) Result C Reg A Reg
(0.010,0.010,0,100) 00000 0.00 5

01 001 0000 (shift) 1.000
3 (0.001,0.101,0.101) OO1 1010 0.01

O 011 0100 (shift) 0,110
1 (0.0100,000,0.01) 011 0100 0.010

O 101 0000 (shift) 1.00
1 (0.011,0,000,0,110) 10 0000 0.01

010 0000 (shift) 0.110 10
it O100 (shift by 4)

c(s) = 00 00 01001 0100 *

In Table II, the C register contents are illustrated as
the four least significant bits of C(s) to the right of three
guard bits. As stated above, the contents of the C regis
ter are initialized to 000.0000, while the A register is
initially set to 1.000. Now, for example, the first symbol
of the symbol string s, that is, 1, is encoded by adding
Q(1) to the contents of the C register, while n1 is entered
into the A register. Thus, before the shifting operation
following encoding of the first symbol, the C and A
register contents are as shown in Table II for the first
occurrence of the symbol 1. The shift operation follow
ing the augmentation of C contents and alteration of the
A register contents requires a left-shift of the C and A
register contents by two places, making the contents of
the A register 1.000, which is within range (4).
Of particular interest in the example Table II is the

scaling required prior to encoding the second occur
rence of 2. It will be noted that the value of Q(3) pro
vided to the encoder is 1.000, which is equal to the
contents of the A register. Consequently, before the
encoding of the symbol, the normalized occurrence
counts are scaled by as prescribed by the FIG. 2 pro
cedure.
The coding example embodied in Table II generates

the compressed string C(s)=00000100110100', where *
serves as an end-of-string marker.

Referring now to FIG. 3, it will be appreciated that
the encoderblock diagram accomplishes the steps of the
FIG. 2 procedure, that is, the comparison of Q(m) and
the contents of the A register, the concurrent yet inde
pendent generation of an augend for the code stream
C(s) and adjustment of the value of the coding variable 45
A(s), and the alignment of the w least significant bits of
the code stream C(s) as determined by the normaliza
tion of the contents of the A register.

In its most general expression, the encoder 14 will
respond to the unnormalized occurrence counts N, ni, 50
Q(i), and Q(m), and itself perform the normalization of
these values. Therefore, FIG. 3 includes a normaliza
tion network including a normalized control select cir
cuit (NCS) 15 and shift networks 16, 17, and 18. The
symbol count total N is provided to the NCS 15, while
the occurrence counts Q(m), Q(i), and ni, are terminated
in the shift networks 16, 17, and 18, respectively. The
NCS 15 operates conventionally, responding to the
non-normalized value for N to determine the number of
bits of shift that N has to undergo such that the shifted 60
number N will be in the range (4). The output of the
normalize control select circuit 15 is a binary SHIFT
SELECT signal whose magnitude corresponds to the
number of bits of shift required to normalize the param
eters Q(m), Q(i), and ni. Generally, if N has w bits, the 65
SHIFT SELECT output should have log2 w bits.
Refer to FIG. 7 for more detailed understanding of

the NCS 15. FIG.7 assumes that N has no more than 16

15

20

25

30

35

55

10
bits, b0, b1, . . . , b15, with bo the MSB and b15 the LSB.
Thus, the representation of the amount of shift provided
by the PLM 50 as an output would require a 4-bit wide
SHIFT SELECT signal. In FIG. 7 the SHIFT SE
LECT signal comprises the output bits A, B, C, and D,
with A being the most significant, and D the least signif.
icant bits. The FIG. 7 NCS is implemented in a pro
grammable logic array (PLA), indicated by reference
numeral 50. The PLA50 is conventionally programmed
using Boolean equations to determine the number of bits
of shift required to bring N into the range (4). The
direct combinatorial realization of the PLA 50 is exem
plified by the following Boolean partial equations:

D = (bo. b) + (bo. b. b2) + ...

C = (bo. b1b2) + (bo.b. b. b3) + . . .

B = (bo. B. b. b3. b. bs) +

etc.

etc.

(bo.b. b. b3, b4. 55. bs) + ..., etc.

A + (bo.b. b. b3. b. bs. 56 b, . b. bs) +

(bo. B. b. b3.54. 55.56 b, ... b3.bg. bio) + ..., etc.

A mapping of these functions is provided in Table III,
where 'x' corresponds to a "don't care' state and the
output is the binary representation of the number of bits
of shift required to bring N to the range (4).

TABLE III

MAPPING OF NSC TRANSFER FUNCTIONS
INPUT N OUTPUT

b0 bill b2 b3 b b14 b15 A B C D
1 X X X X X 0 O 0 0
1 O X X X X X 0 0 0 1
0 1 1 X X X X 0 0 0 1
0 1 0 X X X X 0 0 1 O
0 0 1 1 X X X 0 0 1 0
0 0 1 0 X X X 0 0 1
0 0 O O 0 1 1 1 1 1 0
O O O O O 1 O 1 1 1
0 0 O 0 0 0 1 1 1 1

For understanding Table III, assume the radix point is
immediately to the left of bo in the unnormalized N
input to the NSC. The output specifies the number of
places of left-shift that must be applied to N to bring it
to the range (4), that is, the interval 0.1100... 0, 1.100
... 0). The output therefore corresponds to the SHIFT
SELECT signal.
The SHIFT SELECT signal is provided to the left

shift networks 16-18, and each responds by left-shifting
its respective terminated occurrence count by the num
ber of bits required to bring N to the range (4). This
completes the process of normalization of the occur
rence counts by the encoder.

In accomplishing the coding operations of the FIG. 2
method, the encoder 14 utilizes a comparison and con
trol loop including a comparator 20, a pair of shift net
works 20 and 24, and a pair of multiplexers 26 and 28.
Operations on the contents of the A register 30 are
performed by a computation loop including a subtractor
32, a multiplexer 34, and a left-shift network 36. The
contents of the C register 40 are processed in a loop
including an adder 42 and a shift network 44. The C
register is illustrated as a pair of registers C1 and C2. In
this regard, C1 is the guard register described above,

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 12 of 16

4,652,856
11

while C2 has the w least significant bits of C(s). The
binary point is between C1 and C2; C(s) is augmented by
adding into C2.

Both the C and A registers comprise conventional
flip-flop or latch circuitry that is clocked at the end of 5
each cycle of the encoding operation of FIG. 2.
The normalized values Q(i) and ni are scaled by a

right shift of one bit each in right-shift circuits 22 and
24. Both the right-shifted (scaled) and the unscaled
normalized occurrence counts are terminated at 0 and 1
ports, respectively, of multiplexers 26 and 28. The mul
tiplexers 26 and 28 operate to select the scaled or un
scaled normalized values according to a select signal
provided by the comparison circuit 20. Comparison
circuit 20 is a conventional binary magnitude compara
tor that receives the current value of Q(n) and the
contents of the A register 30. If the magnitude of the
normalized occurrence count Q(m) equals or exceeds
the magnitude of the A register contents, the output of
the comparator 20 will switch the respective outputs of 20
the multiplexers 26 and 28 to their 0 ports, thereby
selecting the scaled normalized values 2 Q(i) and
2-lni, respectively. On the other hand, if the magnitude
of the A register contents exceeds the magnitude of
Q(m), the outputs of the multiplexers 26 and 28 will be 25
switched to the unscaled normalized occurrence counts
Q(i) and ni, respectively.
The concurrent augmentation of the C register con

tents and change of the internal coding variable a(s) are
next described. The current contents of the C register
are available as one input to a conventional binary adder
42, which also accepts the value selected by the multi
plexer 26. The adder 42 binarily adds the content of the
C register with the scaled or unscaled value of Q(i) as
determined by the multiplexer 26. The sum of the addi
tion operation performed by the adder 42 is provided to
a conventional digital shift circuit 44 for the left-shifting
operation necessary to align the working end of the
code stream C(s). In the event that the current symbol
i is not m, the multiplexer 34 responds to the significa
tion signal by connecting to its output the value selected
by the multiplexer 28. Otherwise, if the current symbol
i is m, the output of the multiplexer 34 is connected to
the output of the conventional binary subtracter circuit
32. The binary subtracter circuit 32 receives the con
tents of the A register and subtracts from the contents
the normalized Q(m) value selected by the multiplexer
26. The output of the multiplexer 34 is provided both to
the binary shift circuit 36 and to the normalize control
select (NCS) circuit 48.
The NCS 48 operates conventionally to respond to

the non-normalized value for a(s) selected by the multi
plexer 34 in order to determine the number of bits of
shift that the unnormalized value must undergo to be
placed into the range (4). The output of the NCS 48 55
specifies the amount of shift for normalizing a(s) and
aligning the working end of the code string C(s) with
the normalized value of the coding variable. If the input
to the NCS circuit 48 has w bits of significance, the
output of the circuit will have log2 w bits.
The number of bits of left-shift required to normalize

the current value of a(s) and to align the working end of
C(s) with the normalized value is fed to the left-shift
circuits 36 and 44, which perform the left-shifting re
quired for a(s) and C(s), respectively. The left-shifted 65
values are provided, respectively, to the A register 30
and the C register 40. The code string C(s) is obtained
from the output of the shift circuit 44.

10

15

30

35

45

50

60

12
As is known in the art, decoding is the dual of encod

ing. As with prior art arithmetic-encoding techniques,
decoding of the compressed stream produced by the
invention proceeds by examining the most significant
part of the code string C(s) and determining from its
magnitude the largest possible addend that does not
exceed the current value of the code string. However,
as with the encoding procedure of the invention, the
augends tested against the most significant part of the
compressed string are obtained from occurrence counts.

Generally, it can be said that the occurrence counts
for a decoder will be obtained from a modeling unit
corresponding to the modeling unit 12 associated with
the decoding unit 14. Thus, the decoder must receive
the cumulative occurrence count Q(n), Q(i), and ni. In
addition, the decoder must have the most significant
portion (w1+w MSB's) of the code string C(s). The
structure of the decoder will include a C register and an
A register corresponding to the identically-denoted
registers in the encoder, with the same interpretation of
their contents as binary fractional numbers. As with the
encoder 14, the decoder has provision for normalizing
the received occurrence counts.
The decoding is initiated by filling the C register with

thew first symbols of the code string to be decoded and
by setting the contents of the A register to 1.0 . . . 0.
Then, Q(m) is read for the next symbol and tested
against the contents of the A register. If Q(m) is less
than the magnitude of the A register contents, (3) is set
equal to 0, otherwise (3) is set equal to 1. Then, the
largest symbol j such that 2-(8)QG)sC is found. The
symbol is decoded as the so-found largest symbol, say,
i. If the decoded symbol i is not m, the value 2-(6)Q(i)
is subtracted from Cand 208)nis inserted into A. Other
wise, the quantity 2-(6)Q(m) is subtracted from both C
and A. Once C and A are updated, their contents are
simultaneously left-shifted as many positions as needed
to bring the contents of A to the range (4), after which
the remaining positions in C are filled with the next
most significant symbols from the code string. If the
end-of-string symbol is encountered, the process stops.
Otherwise, the process is repeated.
Table IV illustrates decoding of the code string C(s)

obtained by operation of the Table II coding example.
For convenience, the code string generated by that
example is C(s)=00000100110100*.

TABLE IV
Decoded
Symbol (Q(2), Q(3), iii) C REG A REG
Initialize 000,000 1000

1 (0.01,0,100.01) 000,000 0.010
shift 000,1001 1,000

2 (0.10.0.11,0.01) 000,000 0.00
shift 0000110 1000

2 (0.10, 1.000..10) scale by
(0.01.0.1,001) 000,000 0.00

shift 000.1010 1.000
3 (0.01,0.01,0.001) 000,0000 0.011

shift 000.0000 0.110
(0.01,0.101,0.01) 0000000 0.00

shift 00000 .000
(0.011,0.110,0.011) 00000 0.01

0000 0,110

As with the modeling unit 12 associated with the
encoder, the decoder modeling unit will assume at the
beginning that the probabilities of occurrence of the
symbols 1, 2, and 3 are equally likely, which means that
it will initially assign each of them an individual count

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 13 of 16

4,652,856
13

of 1. These occurrence counts are updated as symbols
are decoded in the compressed string. Further, as stated
above, the decoder C and A registers are initialized
with the first w bits of the code stream and 1.000, re
spectively.

In the first iteration of the decoding method, the
value in the C register is less than the normalized cumu
lative count Q(2), so the value of the normalized cumu
lative count Q(1), which is 0, is subtracted from the C
register contents, while the normalized initial count n is
inserted into A. A 1 is decoded and the contents of C
and A are shifted as many positions as is required to
bring A into the range (4) and the decoding process is
repeated.

It is noted that the decoding of the second 2 is pre
ceded by scaling the cumulative counts by , since the
normalized cumulative count Q(3) is not less than the
contents of A. Further, the subtraction of Q(3) from
both C and A follows the decoding of the symbol 3.

It will be evident to the skilled artisan that the em
bodiment of the decoder corresponds essentially to that
of the encoder. It includes a modeling unit to which
successive decoded symbols are applied to obtain the
normalized occurrence counts. However, in contrast to
the encoder, the decoder requires the ability to subtract
the normalized cumulative count from the contents of
C. Further, the decoder requires interpretative logic to
determine the largest symbolj as prescribed above.

Referring now to FIG. 4, the decoder block diagram
performs the above-described decoding method by
employing shift operations for the relative scaling of
parameters when the magnitude of Q(m) equals or ex
ceeds the magnitude of a(s), interpreting the w--w
most significant bits of the code stream, decrementing
the code stream following interpretation, and concur
rently updating the variable and aligning the code
Stream.
The decoding unit operates in response to the unnor

malized occurrence counts provided by its associated
modeling unit; in this case, the normalization of the
counts is performed as described above for the encoder,

... but is not illustrated in FIG. 4. Initially, the first w bits
of the code string C(s) are placed in the C2 portion of
the C register 52 and provided therethrough to a condi
tional left-shift circuit 54. The A register 55 is conven
tionally initialized to a count of 1.0 . . . 0. The initial
value of Q(m) is provided from the storage device 56 to
binary comparator 60. The comparator 60 compares the
magnitudes of Q(m) and the contents of the A register
and, according to the outcome of the comparison, pro
vides one of two states of a SHIFT SELECT signal to
the conditional left-shift circuit 54 and to the condi
tional right-shift circuits 62 and 64. If the magnitude of
the A register contents is the greater, the shift circuits
54, 62, and 64 will pass the binary values at their respec
tive inputs to their respect outputs without shifting
them. For the other state of the SHIFT SELECT sig
nal, the conditional shift circuits will shift their respec
tive binary input signals by one bit in the direction indi
cated. Thus, if the magnitude of Q(m) exceeds the mag
nitude of the A register contents, the w most significant
bits of C(s) will be shifted left by one bit, corresponding
to scaling the value represented by the bits by 2. The
same condition of the SHIFT SELECT signal will
cause Q(i) and ni to the right-shifted (scaled by) by
their respective associated shift circuits.
The shifted or unshifted w most significant bits of the

code stream are provided to decode logic 66, which

10

15

20

25

30

35

45

50

55

65

14
finds the largest symbolj such that QG) is less than or
equal to C (or numeral 2C if the SHIFT SELECT
signal causes a left-shift). It will be understood that the
left-shift of the most significant end of the code stream
is equivalent to scaling QC) by as is done in the above
description of the decoding method.
The decoding logic can be better understood by ref.

erence to FIG. 5 where the updated occurrence counts
are provided from modeling unit logic 70 to the decoder
where they are normalized as described above and
placed in storage devices 72-74. Each of the storage
devices 72-74 holds a respective one of the cumulative
occurrence counts Q(1)-Q(m). Each of the normalized
Q counts is fed to a binary comparator where it is com
pared against the output of the conditional left-shift
circuit 54, that is the normalized most significant bits of
the code stream. The decoding logic 80 detects QG) by
determining at which point in the sequence of the com
parators 76-78 output reversal takes place. When out
put reversal is detected, the decoding logic 80 will iden
tify Q() as the input to the comparator immediately
preceding the output bit reversal; conversion to the
decoded symbol i is simply a matter of encoding the
position of the output reversal.

Returning to FIG. 4, the decoding logic 66 provides
the decoded symbol i and its associated cumulative
count Q(i) as outputs. Decrementation of the most sig
nificant bits of the code stream occur in the subtracter
68, while the multiplexer 70 selects either the output of
the conditional right-shift circuit 64 (that is, ni, shifted if
indicated by the comparator 60) or the difference be
tween the contents of the A register and the Q(m) avail
able from the conditional right-shift 62 when the de
coded symbol i is m; in this case the difference is given
by the output of the subtracter 72.
The output selected by the multiplexer 70 is fed to the

normalize control select (NCS) circuit 75 which oper
ates in the same manner as the NCS circuits described
above for the encoder 14 to determine, from the non
normalized value of the selected output the left-shift
distance required to bring a(s) into the range (4). The
shift networks 76 and 78 appropriately shift the A and C
register contents according to the decoding method
described above.

It will be evident that the method and means de
scribed hereinabove for encoding and decoding in the
case of an n-ary alphabet is applicable also to the case of
a binary symbol string. In this case, X denotes the sym
bol to which the modeling unit 12 assigns the lower
count; that is, nS N/2 digits. This low probability
symbol (LPS), of course, depends on the portion of the
string preceding the current symbol. The more proba
ble symbol (MPS) is denoted by x'. Here k(n) is the
number of binary digits in the total count N if it beings
as 11; otherwise, k(n) is equal to the number of binary
digits representing the total count N-1. As with the
n-ary case, N=2-k(t)N, which puts N into the range
(4). Further, n=2-k()ni. With this, the coding opera
tion in terms of the two registers described above, Cand
A, both having width w, is given by FIG. 6.
As in FIG. 6, register C is initially filled with zeros

and A is set to 1.0... 0. Then the next symbol causes the
modeling unit to update the occurrence count. If the
next symbol is the LPS, the contents of A are replaced
by n; if the next symbol is the MPS, the normalized
occurrence count n is added to register C and sub
tracted from register A. In either case, once the con
tents of register A are changed, both the C and A regis

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 14 of 16

4,652,856
15

ters are shifted left as many positions as required to
bring the contents of A to the range (4). This procedure
is followed for each symbol in a binary symbol stream.
When the end of the binary symbol stream is detected,
(for example, by detection of an end-of-string symbol),
the contents of the C register are left-shifted w posi
tions. Again, the symbols that are successively left
shifted out of the high-magnitude end of the C register
constitute the arithmetically-encoded symbol stream
resulting from the compression of the unencoded binary
Streal.
The binary alphabet instantiation of the invention is

implemented by stripping the FIG. 3 circuit of all of the
hardware required for comparison of the normalized
cumulative count for m with the contents of A and the
associated right-shift and multiplexing circuitry. An
additional multiplexer is required at the input to the
shift circuit 44 that selects between the output of the
adder 42 and the contents of the C register. The addi
tional multiplexer and the multiplexer 34 provide for
selection of operations based on whether the current
symbol is an LPS. The inputs to the encoder in the
binary case will be simply the normalized LPS occur
rence countin and a binary signal indicating whether or
not the current symbol is an LPS.
Decoding in the binary case is performed by virtually

reversing the steps of encoding. Decoding also case
requires the presence of the Cand A registers, as well as
a modeling unit to accumulate occurrence statistics and
provide normalized occurrence counts to the decoder.
As with the n-ary decoding case, the C and A regis

ters are initialized with the w most significant symbols
of the code string and 1.0 . . . 0, respectively. Next, the
normalized LPS occurrence count is subtracted from
the contents of the C register; if the difference is less
than 0, the symbol is decoded as LPS and the A register
is loaded with the normalized LPS count; otherwise, if
the difference is greater than or equal to 0, the symbol
is MPS, the C register is loaded with the difference, and
the normalized LPS count, n, is subtracted from the A
"register contents. Both registers are then shifted by as
many positions as required to bring A to the range (4),
while the same number of symbols are read from the
code string into the vacated positions in the C register.
If none exist, the process ceases.
Although the encoding and decoding cases discussed

hereinabove are premised on the provision of elemen
tary occurrence counts and the normalization of those
counts to the range (4) by the encoder or decoder, it is
to be understood that the normalization procedure can
be apportioned to the modeling unit, in which case
encoding and decoding would invole simply testing,
combining, and shifting the C and A register contents.
Further, encoding and decoding according to the in
vention can be adapted in a straightforward manner to
respond to actual conditional probabilities, assuming the
existence of a sophisticated modeling unit, Finally, the
statistical counts used above are assumed to be provided
from a non-stationary source. It is entirely within the
scope of the invention to use stationary occurrence
COunts.

Obviously, many modifications and variations of the
invention are possible in light of the above description.
However, it will be understood by those skilled in the
art that these alterations in the method and apparatus
may be made without departing from the spirit or scope
of the described invention.
We claim:

O

15

20

25

30

35

45

50

55

65

16
1. A method for recursive machine modification of a

string C(s) of binary numbers to produce C(si) where
C(si) is a compressed representation of and responsive
to the next symboli in a symbol strings, s being a con
catenation of symbols drawn from an alphabet having at
least two characters, 0, . . . m, C(si) being a number in
the semi-open coding range (0,1), the coding range
being subdivided into intervals during successive ma
chine string modification cycles, each interval being
defined by its lower bound C(s) and a parameter A(s)
such that (CCs), C(s)--A(s)), said method being execut
able upon a pair of registers C and A, each having a
finite dimension, w, comprising the steps of:

(a) placing respective initial contents in registers A
and C;

(b) for the next symbol i in the string s, reading in
binary symbol occurrence statistics for the portion
ofs preceding i, said occurrence statistics including
ni, the count of occurrences of i, C(i)=n0--n 1-- . .

... --ni-1, the sum of counts for the symbols 0, 1, . .
... i-1 preceding i in said alphabet, O(n)=n0--ni
. . . --nn-1, the sum of counts for the symbols
preceding m in the alphabet, and N, the count of all
symbols in the portion, normalizing N to a prede
termined range, and normalizing n(), Q(i), and
Q(m) based upon the normalized value of N, and
(1) if the next symboli is not m, adding the normal

ized value of Q(i) to C, replacing the contents of
A with the normalized value of ni, and shifting C
and A in a predetermined direction until the
contents of A lie within a predetermined range,
O

(2) if the next symboli is m, adding the normalized
value of Q(m) to the contents of C, subtracting
the normalized value of Q(m) from the contents
of A, and shifting C and A in a predetermined
direction until the contents of A lie within a
predetermined range; and

(c) if i is not the last symbol in s, then repeating step
(b), or, if i is the last symbol in s, then shifting the
contents of Cin said predetermined direction by w
positions.

2. The method of claim 1 further including, before the
execution of steps (b)(1) or (b)(2), scaling the magni
tudes of the normalized values of n(), Q(i), and Q(n) by
a predetermined amount unless Q(m) is less than the
contents of A.

3. The method of claim 1 wherein said normalizing of
the occurrence statistics N, ni, Q(i) and Q(m) includes
register-shifting of said binary occurrence statistics in a
predetermined direction corresponding to a direction of
increasing register content magnitude.

4. The method of claim 2 wherein said normalizing of
said binary occurrence statistics includes register-shift
ing said binary occurrence statistics in a predetermined
direction corresponding to a direction of increasing
register content magnitude.

5. The method of claim 1 wherein the predetermined
range is from 0.11binary to 1.1 binary, said initial C register
contents are 0, and said initial A register contents are
1.00 00.

6. A method for the cyclic machine modification of a
binary number string C(s) to produce C(si), where C(si)
is a compressed representation of and responsive to the
next symbol b(i) from a binary symbol string s= b(1),
b(2), . . . , b(i), . . . b(n), C(si) being a number in the
semi-open coding range (0,1), the coding range being
subdivided into intervals during successive machine

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 15 of 16

4,652,856
17

string modification cycles, each interval being defined
by its lower bound C(s) and a parameter A(s) such that
(C(s), C(s)--A(s)), said method being executable upon a
pair of registers A and C, each being of finite width w,
comprising the steps of:

(a) placing respective initial contents in registers C
and A;

(b) reading in, incrementally counting, and ascertain
ing whether the next symbol b(i) is a least probable
symbol (LPS) or a most probable symbol (MPS),
and
(1)if b(i) is the last symbolins, shifting the contents
of C left by w positions, or

(2) if b(i) is LPS, replacing the contents of A by the
normalized count of LPS and shifting both A
and C left until the contents of A lie within a
predetermined range, or

(3) if b(i) is MPS, adding to C and subtracting from
A the normalized count of MPS and shifting
both A and C left until the contents of A lie
within a predetermined range; and

(c) repeating step (b).
7. A method according to claim 6, wherein the prede

termined range is from 0.75 to 1.50; and the C and A
registers are respectively initialized to the value 0 and
1.00 . . . 00.

8. An arithmetic encoder responsive to a symbol
strings which is a concatenation of symbols drawn from
an alphabet having two or more characters 0, . . . , m,
and to occurrence statistics ni, Q(i), Q(m), and N which
correspond respectively to the count of occurrences of
the symbol i, the sum of the counts no through ni-1, the
sum of the counts nothrough nin-1, and the count of all
symbols in the portion of the string s preceding the
symboli for recursively modifying a code string C(s) to
produce C(si), where C(si) is a compressed representa
tion of the string si and siis the strings followed by the
symbol i, comprising:

a first shift register containing the w-least-significant
bits of C(si);

a second shift register containing an interval coding
variable;

means responsive to N for normalizing ni, Q(i), and
Q(m) based upon the normalization of N to a prede
termined range;

first arithmetic means for adding the normalized
value of Q(i) to the contents of the first shift regis
ter if it? m or for adding the normalized value of
Q(m) to the contents of the first shift register if
i=m;

5

O

15

18
second arithmetic means for placing the normalized

value of ni into the second shift register if i7-m or
for subtracting the normalized value of Q(m) from
the contents of the second register if i=m; and

shift means for concurrently shifting the contents of
the first and second registers in a predetermined
direction until the contents of the second register
lie within said predetermined range.

9. The arithmetic encoder of claim 8 wherein said
predetermined range is (0.11binary, 1.1binary).

10. The arithmetic encoder of claim 8 wherein said
predetermined direction is a direction of increasing
magnitude.

11. A decoder for deriving a symbol streams, where
s is a concatenation of symbols drawn from a multi
character slphabet 0, ..., m, in response to an arithmeti
cally-encoded symbol stream C(s) and to occurrence
statistics ni, Q(i), Q(m), and N, which correspond re

25

30

35

45

50

55

65

spectively to the count of occurrences of the symbol i,
the sum of the counts no through ni-1, the sum of the
counts nothrough n-1, and the count of all symbols in
the portion of the strings preceding the symbol i for
recursively modifying a code string C(s) to produce
C(si), where C(si) is a compressed representation of the
string si and si is the strings followed by the symbol i,
comprising:

a first shift register containing the w-most-significant
bits of C(s);

a second shift register containing an interval decod
ing variable;

means responsive to N for normalizing ni, Q(i), and
Q(m) based upon the normalization of N to a prede
termined range;

means for determining a symbol j in said alphabet
such that the normalized value of Q()s the con
tents of the first shift register;

first arithmetic means for subtracting the normalized
value of Q() from the contents of the first register;

second arithmetic means for placing the normalized
value of n into the second register ifj7-m or for
subtracting the normalized value of Q(m) from the
contents of the second register ifj=m; and

shift means for simultaneously shifting the contents of
the first and second registers in a predetermined
magnitude direction until the contents of the sec
ond register lie within said predetermined range
and for shifting the next-most-significant portion of
C(s) into the portion of the first register vacated by
said simultaneous shifting.

12. The decoder of claim 11 wherein said predeter
mined range is 0.11binary, 1.1 binary).

Cisco Systems, Inc., IPR2018-01384, Ex. 1024, p. 16 of 16

