
United States Patent (19)
Langdon, Jr. et al.

54 METHOD AND MEANS FOR ARITHMETIC
STRING CODING

75) Inventors: Glenn George Langdon, Jr.; Jorma
Johannen Rissanen, both of San Jose,
Calif.

International Business Machines
Corporation, Armonk, N.Y.

21 Appl. No.: 774,365

73) Assignee:

22 Filed: Mar. 4, 1977
51) Int. Cl’... H03K 13/24
52 U.S.C. ... 340/347 DD
58) Field of Search 340/347 DD; 235/310
(56) References Cited

PUBLICATIONS

Pasco, "Source Coding Algorithms for Fast Data Com
pression' Doctoral Dissertation Stanford University,
(C) 1976.
Rissanen, "IBM J. Res. Develop', vol. 20, No.3, pp
198-203, May 1976.
Primary Examiner-Charles D. Miller
Attorney, Agent, or Firm-Robert Bruce Brodie
57 ABSTRACT
There is disclosed a method and means for compacting
(encoding) and decompacting (decoding) binary bit
strings which avoids the blocking of string elements
required by Huffman coding and the ever increasing
memory as is the case in simple enumerative coding.
The method and means arithmetically encodes succes
sive terms or symbols in a symbol strings=a a..., in
which each new termain a source alphabet of N sym
bols gives rise to a new encoded string C(sa) and a new
length indicator L(sa). The method and means com

-----4----

11) 4,122,440
45 Oct. 24, 1978

prises the steps of forming L(sa) from the recursion
L(sa)=L(s)--i(a), where (a) is a rational approxima
tion of log2 1/p(a), p(a) being the apriori probability
of occurrence of a, and la) being so constrained that
the Kraft inequality is satisfied:

S 2-laps 1;
ks 1

and forming C(sa) from the recursion
C(s)--P-12-0, where:

k-1
P- = X. p(a),

is 1

and where P-1 is the cumulative probability of occur
rence of an arbitrary ordering of all symbols.
Instead of assigning a'priori code words to each symbol
as in Huffman coding, the method and means ascertains
the new encoded string C(sa) from the ordinal number
(position number k) of the symbola, in the arbitrary
ordering, the value of the fractional part of L(sa), and
the last few bits of the previous compressed symbol
string C(s). This results in the generation of two quanti
ties i.e. the encoded string of compressed characters and
the fractional length indicators. The use of only a few
bits of the last encoded string C(s) for determining
C(sa) limits the requisite memory to a constant value.
During each encoding cycle, the least significant num
ber of bits of C(s) are shifted out as determined by the
integrer part of L(sa).

13 Claims, 7 Drawing Figures

------------ ARTETC STRING EcoER

List (LG)+1)"yth its
clo-c-f-a-cap"
2"ct-act)+.

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 1 of 14

U.S. Patent oct. 24, 1978 Sheet 1 of 4 4,122,440

BUFFER/ LFO BUFFER/

IAN core STORACE |ONE U.A.N
ENCODER UNIT DECODER

e
DECODER

dijk
23

FIG. A

9a (PRIOR ART) - - - - - - (PRIOR ART) -23
- -

E RE ENCODER 43
INPUT

REGISTER
SHIFT

CONTROLS
ADDRESS

MEMORY

25
OUTPUT REGISTER

- or- - - - - - ---

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 2 of 14

U.S. Patent Oct. 24, 1978 Sheet 2 of 4 4,122,440

--9

ARTHMETIC STRING ENCODER (A)
Ok

3.

Nuit Clock

MEMORY

XLATOR if
53

59 NT. FRACT.
L(sa)-(L(s)+ (g)"y(sq)+k(s)
C(so)- C(s)+ Pk- (s). cete;" k

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 3 of 14

2

U.S. Patent Oct. 24, 1978 Sheet 3 of 4 4,122,440

-4---

y(scs) CK) (ND Artistic stancocoE
5

9. 1 t 22
:

Clse is ye. NITALIZATION
r FM.2 23

93
r

coal
95 CLOCK

r

CG) 97 x(so)

MEMORY
99 FOR

k

k My
405." 2(a)-ya)+x(a) GH)

O7 (sg.) 5
x(0) 19 k al MEMORY k

09 FOR

A P-2' 12
r 423 t s x(s)
A (C) . (E, "-i" (y(s) (e)

Clso) SUBTRACTOR -3
ky O5 O

k k
r (D-1, n 25/ askets)

CK)
----------------------- -

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 4 of 14

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 5 of 14

4,122,440 1

METHOD AND MEANS FOR ARITHMETIC
STRING CODING

BACKGROUND OF THE INVENTION
The invention relates to the encoding and decoding

of strings of symbols from finite source alphabets,
which encoding takes advantage of the relative fre
quency of occurrence of the symbols in order to achieve
compaction. More particularly, the invention relates to
an improvement over both the enumerative encoding
technique and the Huffman compaction technique. As
may be recalled, Huffman taught a method for compac
tion by assigning a variable length code word to each
character in the source alphabet, in which the length of
the code word was inversely related to the relative fre
quency of occurrence of the character. The statistics of
occurrence were either stationary or semi-stationary.
That is, the method did not contemplate a constant
adaptive reordering and reassignment of code words.

Since Huffman's original paper in September 1952,
Proceedings of the IRE, pages 1098-1101, "A Method
for the Construction of Minimum Redundancy Codes,'
modifications have been made as represented by a series
of U.S. patents; namely, U.S. Pat. Nos. 3,675,211;
3,675,212; 3,701,111; 3,694,813; 3,717,851; and
T925,002. A useful source of background information is
the book by Norman Abramson, "Information Theory
and Coding,” McGraw Hill, 1963, chapters 3 and 4. It
remains, nevertheless, a classical code possessing certain
attributes. These attributes include words formed from
a fixed sequence of a priori symbols, all of the words
being distinct (nonsingularity), and no word of the code
being a prefix of another code word (unique decodabil

Enumerative coding is the encoding of, say, each
permutation of binary string of n symbols by first order
ing the 2 terms and representing the term by an ordinal
number. Reference may be made to T. M. Cover, "Enu
merative Source Encoding," IEEE Transactions on
Information Theory, January, 1973, pages 73-77. More
specifically, given a binary string of n binary digits, m of
which are 1's, then let T(n, m) denote the set of all
strings of n binary digits having m ones. It is necessary
to "order' (arrange) the terms in a consistent manner,
i.e., by size (lexicographically) with predetermined pri
ority (left-to-right). As an example, if n=3 and m = 2,
then 011<101 < 110 would be an ordering. If one as
signs a position number to each term in the ordering,
then the last term is the binomial coefficient

(i) = n/(- m) Iml
All other position numbers (code words) are smaller.

In both Huffman and enumerative coding, the attain
able average per symbol length has a lower bound de
termined by the appropriate entropy function for source
symbol frequencies.
Given a source symbol string s where s=aa . . .

grows to the right; let Sak denote the new string ob
tained by appending the new symbol a where k runs
from 1 to N, to the end of old strings. In the Huffman
codings, the encoded representation of sais obtained by
appending or concatenating the codeword A of the
symbol a to the right end of the code of s. This means

10

15

20

25

30

35

40

45

50

55

2
strings, Huffman coding produces either no compaction
or for small alphabets may produce insufficient compac
tion.

In order to obtain improved Huffman compaction,
then, for small source alphabets; a technique known as
blocking has been employed. In blocking, the new
source symbols of the new source alphabet are the jux
taposition of two or more of the original source sym
bols. Taking k symbols at a time increases the source
alphabet size to N*.
As is apparent, enumerative coding does not require

blocking. However, the calculation of each new code
word C(sa) requires information of all of the bits of the
old string C(s). This, in turn, requires an indefinitely
growing memory.

SUMMARY
It is an object of this invention to devise a method and

means for compaction and decompaction of code
strings, especially binary bit strings. Related, the
method and means should avoid both the blocking re
quirement of the Huffman technique and the infinite
(ever increasing) memory necessary to support simple
enumerative coding.

It is yet another object that the method and means
constitute a unitary string coding technique, which
technique is substantially invariant to arbitrary order
ings of the symbols, as well as being invariant to source
alphabet size. These objects should hold so long as the
relative frequency of occurrence of the source symbols
are either known or capable of being estimated.

It is still another object that the method and means
exhibit a specifiable compaction ratio approaching the
entropy bound in the limit, see Abramson pages 65-74.
Given a strings=aa,. . . of symbols, then Huffman

would assign an a'priori code word to each unique
symbol in the finite source alphabet from which the
symbols were drawn. In enumerative coding, the string
s would be represented by a coded string C(s) such that
in response to the next symbol at the new code string
C(sa) would require taking into account all of the C(s)
string.

It was unexpectedly observed that the new string
C(sa) could be formulated from the ordinal or position
number k of a of an arbitrary ordering of all the sym
bols in the source alphabet, the fractional as well as
integer values of a length attribute, and the last few
digits of the prior code string C(s). These observations
are embodied in a method and means which requires
first, the determination of the length attribute and sec
ond, unique utilization of the fractional and integer
parts thereof in generation of the new codestring. In the
coding procedure, the length attribute L(sa) for the
new code string is first determined. After this the new
code string is calculated. This is succintly expressed in
the following recursions:

where L(s) is the length attribute for code string C(s),
65

that the code word length would grow with a whole
number of bits for each symbol independent of the sym
bol frequencies. This further means for binary source

l(a) is the rational number approximation for log
(l/p(a), p(a) being the a'priori probability of occur
rence. The length indicator la) must further satisfy the
Kraft inequality

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 6 of 14

4,122,440

2'(a) s 1 k = 1

for an N symbol alphabet.
P-1 is the cumulative probability of occurrence of an

arbitrary ordering of the symbols in the alphabet such
that

k-1
P-1 = i p(a), where P = 0, PN = 1

Where P=0, P=1.
It is also considered as a part of this invention that

fractional as well as the integer parts of the length attri
bute can be advantageously utilized. For example,

L(sa)=L(s) + I(a)=integery + fraction x =y(sa)
+ x(sa)

This is applied to the second recursion with the follow
ing result:

Sincey is an integer, then multiplication of a term in
a register by 2ty constitutes a left shift for +y and a
right shift for -y, The factor 2 can be approximated by
g bits i.e. e(x) at 2'. This lends itself to table look up.
As a result of these considerations, one embodiment

of the apparatus of the invention for encoding purposes
provides for generating a new encoded string by:

(1) table look up for lca)
(2) addition to obtain L(sa)

- (3) table look for e(x)s2
-(4) multiplication of P-1 and e(x)
(5) left shift by y bits
(6) the addition of C(s) and P-1e(x)2.
Another embodiment combines steps (3) and (4) and

shifts right in step (5). This results from rewriting the
recursion: -

where A=P-2(R). The revised procedure is:
(1) table look up for lca)
(2) addition to x(s) to obtain L(sa)=y(sa)+c(sa)
(3) table look up for A -
(4) right shift of C(s) by y(sa) bit positions
(5) addition of A and 2 (R.C(s)

10

15

20

25

30

35

45

50

This alternative simplifies calculation of the new
codestring. It requires only the addition of Akto the old
shifted code string. This is based upon the fact that Ak
is merely a function of the position number k and the
fraction x(sa). More significantly, the alternative takes
advantage that A and C(s) retain the same relative
positions with respect to the binary point. In this con
text, it should be recalled that P-1 and x(sa) lie in the
range between 0 and 1.

In so far as the encoding is concerned, a source sym
bol string is serially applied to the apparatus and an
encoded binary string is generated therefrom. The en
coded binary string can only be decoded by taking into

55

account the starting points and end point of the string. If 65
C(sa) is restricted to having a magnitude between 0 and
2, then the binary point of C(sa) can be aligned with the
last augend A. Consequently, the left most (leading) bit

4.
of C(sa) represents an integer and the bits to the right
thereof are fractional.
Of some interest is the fact that the string within the

encoder consists of "r' digits, "r" digits is also the index
of precision for A. For every y of the least significant
digits of C(s) that are shifted out of the encoder during
a cycle, y digits of the most significant digits are ap
pended to the string in the new calculation. The param
eter "r' preferably should be set 2 log(1/p), P is the
probability of occurrence of the rarest symbol.
Decoding requires the use of a length attribute in

order to "parse' the compressed bit string into decoda
ble characters and then "detach' the characters from
the string in a dual manner to encoding. More particu
larly, if the decoder contains a memory of 29 words
where r is the length in bits of Athen decoding re
quires:

(1) locating the beginning of the encoded string
C(sa),

(2) addressing the memory with the next r bits of
C(sa) and g bits of the retained fraction x(sa) an
retrieving ak and la).

(3) shifting the string by y(sa) bits to align the de
coder with the next portion of the compressed
code string.

The invention represents a compaction method
which, in addition to avoidance of blocking and requir
ing only a finite memory, also permits the control of
error and memory size for code word tables.
For example, n-bit blocking is needed in the Huffman

coding of binary alphabets in order to guarantee the
existence of the upper bound in H(s)sL/n (H(s) + 1/n
(see Norman Abramson or Shannon's First Theorem, p.
73) where H(s) is the entropy, or theoretical minimum
average length per encoded symbol, and Ln/n is the
average length per encoded symbol by the coding
method. The size of the tables for the Huffman code
words will need a table of 2" code words, with many
code words having more than n bits.

In contrast, for the same upper bound of
H(s)--(1/n) arithmetic coding can use tables whose
size is on the order of n, where each word length is on
the order of log2n.

In addition to compaction of coded characters, arith
metic coding also provides an alternate compression
technique to strings of non-coded (raster coded data)
than the present sparse matrix techniques. The key here
is the expectation that a single compaction method exists
for binary string encoding, rather than distinct mecha
nisms for coded and non-coded source data.

BRIEF DESCRIPTION OF THE DRAWING
FIG. 1A depicts binary string coding apparatus used

conjunctively with a combination storage and transmis
sion system. .
FIGS. 1B and 1C represent functional block dia

grams of prior art Huffman encoders and decoders.
FIGS. 2 and 3 show functional logic diagrams of

respectively arithmetic string encoders and decoders
according to the invention.

FIGS. 4A and B is a sequencing and timing chart for
the encoder and decoder of FIGS. 2 and 3.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring now to FIG. 1, there is shown a general
ized binary string coding apparatus used conjunctively
with a combination storage and transmission system. In

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 7 of 14

5
this regard, an information source 1 applies a sequence
of source symbols a selected from a source alphabet:

tata: ... asan).
The symbols are serially applied to path 3 where they
are accumulated by buffer/controller 5. Buffer 5 pro
vides the necessary speed matching between the infor
mation source and any necessary signal conditioning or
code transformation required prior to subsequent trans
mission. A typical storage and transmission system
would include a last in/first out LIFO storage unit 15
driving a utilization device 29. Since speed matching
and code transformation is a usual concommitant of
utilization devices, then another buffer/controller 19 is
connected to the storage unit and the device over paths
17 and 27. Typically, a sequence of symbols from source
1 is accumulated by buffer 5 over path 3. The symbols
are then applied to a transformation device such as an
encoder 9 over requisite path 7. The encoder executes a
1 to 1 mapping and delivers the transformed symbols to
buffer 5 over path 11. Control information relating to
clocking and the length attribute of each code character
is transmitted over a separate parallel path 12. Likewise,
the transformation of characters received from storage
unit 15 as accumulated by buffer 19, is performed by
decoder 23. The decoder must recover the original
symbols generated by source 1. As such, it must extract
both the original characters and length attribute infor
mation in order to properly parse the binary string pres
ented to it on path 21 from buffer 19. Both the length
attribute and source character data is transmitted from
said buffer over paths 22 and 25 respectively.

Huffman Encoding/Decoding
Referring now to FIGS. 1B and 1C, there are de

picted functional block diagrams of prior art Huffman
encoders and decoders. It is desirable to spend a word
or two on some of the properties of Huffman codes. A
Huffman code takes advantage of the apriori probabili
ties of occurrence p(a) where (k=1,2,... N) of each
source symbol by assigning a corresponding code word
of variable length l(a) where p(a)22k and

N
X. 2'(a) is 1.

Where the encoded string consists of 0's and 1's, then
l(a) corresponds to the number of bits in the Huffman
code word for a
The Huffman encoding of the source string comprises

the steps of retrieving from a memory a code word A.
and length (a) responsive to each source symbol at
and shifting the previously encoded string C, la) bits
to the right or left, and appending the code word A.
The Huffman encoding of the source string aaa is then
represented by AAA. This is referred to as the concat
enation of the corresponding code words.

Referring now to FIG. 1B, accumulated source sym
bols aaa are serially sent from buffer 5 to encoder 9
over path 7 where they are lodged in input register 31.
The contents of memory address a consists of Huffman
code word Akand length attribute (a). These elements
are read into corresponding registers 35 and 37.
Aisin turn transferred from register 35 to a predeter

mined position in output shift register 41. The length
attribute l(a) located in register 37 operates shift con
trol 39 which moves code word A. a predetermined
number of positions so as to allow the entry of the next

4,122,440

5

10

15

20

25

30

35

45

50

55

65

6
character into the output register and placement upon
transmission path 11.

Referring now to FIG. 1C, there is shown a Huffman
decoder 23. This decoder is representative of the type
shown in Frank U.S. Pat. No. 3,883,847 issued on May
13, 1975 entitled “Uniform Decoding of Minimum Re
dundancy Codes.' The compressed code word string
from buffer controller 19 is applied to input register 43
over path 21. The maximum code word length is known
a'priori. Thus, for a memory size log2(1/p) words,
where log(1/p) is the length (the number of bits) of
the longest unit code word, then the first log(1/p) bits
are transferred into register 43 for the purpose of ad
dressing memory 47. The values retrieved from mem
ory 47 are source symbol at and its length la) is en
tered into register 49. The contents of register 49 are
used to shift register 43 through controls 45 so as to
align the new beginning point for the next code word
decoding.
Fractional Code Word Lengths Improve Compression

Efficiency
It is evident that the lengths of Huffman type com

pression code words are restricted to integer values. It
is asserted as a general truth of coding that in order to
be decoded, each code word of variable length la) is
related to its relative frequency of occurrence p in its
source alphabet by:

p(a)22p(a)=20+E;..I(a)=log(1/-
p(a)--E

It is apparent that if la) consists of integers, then p(a)
is nonrational. It follows that a compression coding
system of integer valued code word lengths cannot
have superior compression efficiency as a system in
which code word lengths are inclusive of fractional
values. This inclusion of fractional values in the case
-with enumerative and arithmetic string codes.

The Encoding Algorithm According to One
Embodiment of the Invention

Given a sequences of source symbols aa, each new
symbol a may be viewed as being appended to se
quences i.e. s=a a sa=aaak. If S is applied to an
encoder, its output is designated C(s). In both enumera
tive and string encoding,

sa->C(sa)
The encoding is defined recursively as follows:

L(sa)=length attribute= L(s) + (a)

C(sa)=compressed code string=C(s) + P-2'"

k-1

(a) = log,1/P(a); P-1 = 2, P(a); P = 0; P = 1

and where p(a) and la) are constrained such that

2(a) s 1. k-1

If the length attribute is factored into the sum of its
integer and fractional components, it is then possible to
more easily facilitate the computation of the com
pressed encoded string C(sa). Thus:

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 8 of 14

4,122,440

L(sa)=p(sa)--x(sa)

integer fraction

C(sa) = C(s) + P. 2.92xtsa)

Let

Then

Alternatively,

2C(sa)=2C(s) + A
0s P-Cl and 0s.x(sa)s 1.

Since A is a function of k and x, the value can be
determined by table look up on k and x. However, the
generation of the encoded string C(sa) requires the
careful alignment of the old encoded string C(s) with
the table derived value A. Restated, it is important that
the relative alignment between the old code string and
the derived value be maintained.

Referring now to FIG. 2, there is shown the arithme
tic 30 string encoder illustrating the alternate form of
the recursion. The encoder is responsive to a source
symbol at on path 7 for generating a compressed en
coded string C(sa) on path 11, together with control
information on path 12 consisting of the retained frac
tion on line 69 and the shift amount on line 77.

Timing Scheme
The timing schemes for the encoder and decoder are

straightforward, of the synchronous single-phase cate
gory, with sufficient time between clock pulses to allow
for the worst case combinational circuit delays, flip-flop
set-up times and propagation delays. See the book by J.
B. Peatman, The Design of Digital Systems, McGraw
Hill, 1972, pp. 161-170. In this regard, FIG. 4A shows
the relative location of these delays for the encoder, and
FIG. 4B shows them for the decoder. Clock skew is
presumed to be within the maximum allowable toler
ance (Peatman, p. 167-170).

Encoder memories 57 and 59, as with decoder memo
ries 99, 109 and 117 (FIG. 3), are loaded with the requi
site values during an initialization phase. The memories
may be of the "read/write' type, the "read-only' type,
or "programmable read-only memory'. Means to load
the memories are not described, these techniques per
tain to the known art i.e. Memory Design Handbook,
Intel Corp., Santa Clara, Calif. 95051, copyright 1975. C
register 87 is important to the development of the en
coded string as it holds the hightest-order r bits, or
arithmetic operand portion, of the previously encoded
string. X register 67 is important as it holds the q bit
retained fraction. These registers are usually initialized
to "0,” however, X register 67 may be initialized to any
value. The initialized value for C register 87 is con
strained to be equal to or less than the value (maxC),
depending on x, such value (maxC) as defined in the
section "Requirements for A and r." It is noted that for
enumerative coding, the arithmetic operand portion of
the previously encoded string C(s) is the entire length of
the string C(s). In the method herein disclosed, C regis
ter 87 holds the retained string segment, which are only
those highest-order r bits which may constitute an arith
metic operand of the previously encoded string C(s).

10

15

20

25

30

35

40

45

50

55

60

65

8
All lower-order bits are subjected only to shifting. Prior
to its arithmetic use, the C register 87 contents are sub
jected to a right shift by shift amounty(sa). When this
happens, they(sa) rightmost bits of the C Register 87
are called the output string segment for the step, and are
delivered to the buffer/controller 5 (FIG. 1A) over
path 11, with control signal shift amount y(sa) being
sent over its portion of path 12 (FIG. 1A) to indicate to
buffer controller 5 the number of bits it is to accept.
Each symbol a is received in input register 31 and

applied to a translator 53. The translator converts the
symbol to its position or order number equivalent k,
This number is applied over path 55 to memory 57.
Memory 57 contains the length la) according to the
relation:

(a) = log(1/p(a)) = p(a) + x(a)

t bits q bits

The integer portion y(a) comprises t bits while the
fraction portion x(a) consists of g bits. Parenthetically,
each path having a crosshatch mark references a multi
conductor parallel path. Thus, path 55 contains in con
ductors while path 61 and 71 contain respectively q and
it conductors.
Adder 63 and +1 adder 75 determine the integer

value y(sa). Adder 63 and the clocked output of X
register 67 determine the fractional value x(sa). The
value y(sa) is an integer. Its value corresponds to a
number of digits to be shifted in aligning the previous
encoded string C(s) in right shifter 79 with the A on
path 89 so that both may be combined in adder 83, to
obtain the highest order digits of C(sa).
The retained fraction, or the fractional value x(sa), at

the start of the next clock cycle will be placed in the X
register 67, just as the value x(s) was placed in X register
67 at the start of the present cycle. The value X(sa)
together with k accesses the augend value A by table
look up from memory 59. A requiring r bits, is applied
over path 89 to adder 83. The new code string C(sa) is
determined by summing A and the appropriately
shifted value of C(s) in adder 83 as previously men
tioned. Significantly, the y(sa) lowest order bits of the
previous r bit retained string segment of C(s) are pathed
to the buffer controller 5. At the next clock cycle, the
new retained segment of code string C(sa) passes to
register 87 over path 85. Also, the time period between
consecutive clock pulses is calculated in order to permit
x(sa) and C(sa) to stabilize, as determined by the maxi
mum delays inherent in the circuits involved. The regis
ters are "D' type flip flops which are "edge triggered
as exemplified by the 74 TTL family, type SN74174,
"The TTL Data Book for Design Engineers,' Texas
Instruments Inc., 1973, pages 363-368. In this regard,
buffer controller 5 may be adapted to provide the en
coder with a new symbola at each clock pulse as well
as removing they least significant digits of the previous
related string segment of C(s) which was shifted out.
Upon the encoding of the last symbol, the buffer con.
troller 5 accepts the final contents of C(sa) and receives
the value of the final retained fraction x(sa).

The Size of Parameters “r” and "g'
As previously mentioned C(sa) represents the en

coded string responsive to symbol a being applied to
encoder 9. C(s) is the previously encoded string. Its
length in bits consists of the summation of all of the

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 9 of 14

4,122,440 9
previous length attributes la)'s of previously encoded
characters. However, how many bits are retained inside
the encoder of this string C(s)? The answer is a prede
termined number "r' of the highest order bits, Of these r
retained bits of C(s), y(sa) of the lowest order bits of
C(s) are shifted out when the new length attribute
L(sa) is determined. This leaves r-y(sa) bits of C(s)
remaining for use as an arithmetic operand, right justi
fied to the lowest order bits of A Recalling:

L(a)=L()+Kap-rap+x(a).
However, the only portion of L(s) retained was the
fractional part x(s) i.e. L(s)=X(s). The integer portion
y(s) was used in shifting strings in the encoding process.
It follows that L(sa)=x(s)--l(a)=integer y(sa)--frac-.
tion x(sa).
In the encoding operation, the value Akis obtained by

table lookup from memory 59. The address for access
ing the memory comprise n bits of k (position number
for a) and g bits of the retained fraction X(sa). In this
regard, the numberg is treated as an independent design
parameter.
The r bits of an extracted A must be aligned cor

rectly with the r-y (sa) bits of C(s). In order to ac
complish this, C(s) is right shifted y(sa) bit positions.
Consequently, the lowest order bits in both A and
shifted C(s) will be correctly aligned. To understand
this computation, it will be recalled that in the case
where A is left-shifted, C(sa)=C(s)+A2(sa). If C(s)
is right shifted with respect to A, this is the same as
multiplying both sides of the recursion by 2k i.e.

The number r determines the precision required of
A. One significant design factor is the probability pof
the least frequently occurring source symbol. Note, that
A=P2. Given the possibility that for:

and

where x(sa)=X(sa), then it is necessary to discrimi
nate between the P's in order to discriminate between
the A's. Thus, to ensure that Pd P-1, then
r2log(1/p). Other considerations affecting the value
of "r' are implicit in the subsequent discussed examples.
The numberg of bits in the retained fraction x(sa) is

a measure of how close the actual code word length
approximates the ideal. As can be appreciated, the ideal
length is log(1/p(a)). Because Huffman code word
lengths are restricted to integer values, then it cannot
approach the ideal. As g increases, a closer approxima
tion to the ideal can be obtained.

The Right Shift Versus Left Shift
Allowing a parenthesized superscript to denote a

symbol's position in the source string, let C(=0 be the
initial value of the encoded string and L=0 be the
initial value of the length. In order to encode the first
symbol act) of a string, determine L0)==y+x),
and A(x). Instead of shifting A(1) lefty bits and
adding to C(; it is possible to shift Crighty bits and
add it to Aaay: C(=A(1)+0.29.

In order to encode string aca, then; the new rela
tive length indicator is L= --x(). In this step, the

5

10

15

20

25

30

35

45

50

55

65

10
failure to shift the fractional bit amount x()is accounted
for by adding it to I2), Let:y()=y(a()a(2) denote the
integral portion of L(2), and X)=x(a)a(2) denote the
fractional portion of L. The new encoded string is as
follows:

To encode the (i)-th source symbol, given encoded
string C) and retained fraction X), the recursions
become:

L0-10--- 1)- Y(0-x()

C=A(X)+2 Kicki-1)

In terms of adding source symbol a to source string
(s) which has already been encoded as C(s) with re
tained fraction X(s), the recursions are:

Requirements for A and "r'
At this point, we pause to describe the key technique

which enables decoding. Corresponding to each symbol
akis a length l, which influences the amount of shifting
C(s) during encoding. The other factor which influ
ences the shift amount is the old retained fraction x(s).
The shift amounty(sa), new retained fration x(sa) and
the augend A satisfy the following important inequal
ity, called the arithmetic coding inequality:

A12A +2"PC(s)

In other words, the augend amounts Aki and A corre
sponding to "adjacent” symbols at and a must be
suitably diferent in magnitude and the shift amount
sufficiently large to make 2.0.COs) sufficiently small
such that the sum is less than A1. If that relationship
does not hold, arithmetic coding will not work. Con
sider the decoding process for C(sa); we know C(sa)
as at least as large as A, since that was an augend. It is
also known from the above inequality that C(sa) is less
than Akt1. It is also the case that the operand portion of
C(sa) has only r bits, and x(sa) has q bits. Therefore,
only 29 possible combinations of C(sa) and X(sa)
exists. For each such combination, the symbol a which
gave rise to C(sa) is predetermined, and its ordinal k
may be stored in the corresponding word a 24 word
memory.
Consider now the existence of a table of values A.

which enables encoding and decoding. From the arith
metic coding inequality; it is seen that

In practice, the values Akare approximations to r bits.
The precision of the augend values Adepends upon the
largest value C(s) can achieve. This in turn depends
upon the value X" of the previous retained fraction and
the index k' of the previously encoded symbol. Letting X
denote the present value of the retained fraction and X"
denote the prior value, y(a)--X=l(a)--X" so that
y(sa)= --l(a)--X-X. From this relationship, it is
seen that for a given value of X and k, X"=fractional
part of (1--X-fractional part of lak)). Since

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 10 of 14

4,122,440
11

AS) A > ... A(x),

then for a given retained fraction value of x, Max
C>A(x), where max C denotes the maximum value
of C(sa)=A(x)+2(k-C(s) which can be generated
(encoded) with a current retained fraction value of X.
The decoding criteria is then; for each k < N, and possi
ble fraction value of X:

The above equation places no direct constraints on
A(x). However if ANOx) is too large, then max C,
becomes larger, forcing the differences A1-A to
become larger which in turn forces A(x) still larger. To
contain this problem, upper bounds must be placed on
max C and A(x), such that this does not happen:

then (max C)S2.
When C is at a maximum and symbol A is encoded:

multiply each side by 2-x.

From the above equation, if for all x (Max C)=2, then
A(x)-2'--2n=1 and vice-versa. It can be shown
by induction that if for all x A(x)-2-2n), then
(max C)<2*. The construction of the values for A(k)
will be illustrated by an example.

The Decoding Algorithm According to One
Embodiment of the Invention

Referring now to FIG. 3, there is shown the arithme
tic string decoder. The decoder interacts with buffer/-
controller 19 in that it receives a compressed string over
path 21 and transmits to the buffer 19 the decoded sym
bols on path 25 together with length information neces
sary for shifting appropriate compressed bit string seg
ments from the buffer to the decoder. The shifting con
trol information is shifted over the portion of control
paths 22 consisting of line 123.

In order to initialize the decoder, the value of the
final retained fraction x(sa) is placed by buffer/con
troller 19 in the X register 103, via line 101 of path 22.
The higher order r bits of C(sa) are placed in register
95. The r bits from register 95 together with the g bits
from retained fraction register 103 form an address for
obtaining the position number k of the ultimate symbol
to be decoded a this value being obtained from mem
ory 99. In turn, the value for A is obtained from mem
ory 109 when accessed by the n bits from k and the g
bits from x(sa) applied over respective paths 107 and
105.

It is clear that in order to extract the compressed
encoded element, it is necessary to obtain and maintain
the compressed encoded string without the new code
word C(s) in relative alignment with the string C(sa)
that includes the new symbol. This is accomplished in

10

12
part by obtaining the relative magnitude difference
between the encoded string obtained from path 97 and
A on path 111 as applied to subtractor 113. The shifted
string C(s) on path 115 is in turn applied to left shifter 91
to be restored to its alignment when encoded, with the
buffer/controller supplying the "fill' bits to the shifter.

In order to obtain the integer and fractional compo
nents for the value lCa), it is necessary to access a suit
able memory 117 over path 107. As indicated in the
figure, y(a) is applied to adder 121 over path 119 and
X(a) is applied to the subtrahend input of subtractor

15

20

25

30

35

40

45

50

55

65

125. The fractional value X(s) on path 129 is obtained
from the difference between the fractional value X(sa)
applied to the minuend input on path 105 andX(a). The
integer value of the length attribute of the new code
word, namely y(sa) is obtained from the +1 addition in
adder 121 between the complement of the borrow sig
nal from subtractor 125 through inverter 127 added to
J(a).
At the decoding of the final symbol, register 95

should have the initial value of C (usually 0) and register
103 should have the initial value of the retained fraction.
This can serve as a "check” on the storage and transmis
sion of the encoded string.
The actual symbol value for a is obtained when the

value k on path 105 is applied to translator 131. This
operation is the inverse as applied to translator 53 in the
encoder of FIG. 2. The output of translator 131 is sent
over path 125 back to buffer 19.
The invention will become even more apparent when

the embodiments and their clocking are described with
reference to the following examples of encoding and
decoding. The improvements are even further discern
ible when comparison is made with the Huffman en
coding/decoding of the same source alphabet.

Example: Determination of augends Ak
The use of arithmetic coding is illustrated by means

of an example. Consider a source alphabet S=(a1a2a3,
and a); where p=0.65, p=0.075, p=0.025 and
p=0.25. For source S, the entropy is 1.31729 bits per
symbol, and the lengths for the corresponding Huffman
code are l= 1, l=3, l=3 and l-2. The average
length per symbol is 1.45 bits, yielding an encoded
string which averages 72% of the length of the source
string, where we presume 2 bits per source symbol of S,
i.e. a =00, a=01, as= 10 and a F11. The theoretical
best compression is (1.317272) or 65.86% for source S.

Consider arithmetic coding, with one fractional bit
for the length, i.e. where g=1. The problem now is to
discover a set of lengths l l l and l which are ration
als with one binary fractional bit (i.e. l.2 is an inte
ger), which minimize the average length, subject to the
Kraft inequality. In this case, one can start with the
Huffman lengths, and can also calculate the "ideal”
lengths of (+log(1/p))=0.62149, 3.77370, 5.32193 and
2 respectively. These "ideal ' lengths give entropy
performance. Exhaustive variations about these values
leads to lengths lis-0.5, l-4, l=4.5 and l-2.5, the
Kraft inequality test yields 0.990578, which is less than
1. For source S, these lengths give an average length of
1.3625, or a compression of 68.125%, which is better
than single symbol Huffman coding of 72.5% compres
sion. To improve over this, Huffman code requires a
blocking of two symbols at a time to increase the source
code alphabet to 16 elements. In so doing, the compres
sion achieved is 66.76%.

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 11 of 14

4,122,440 13
In devising the values for A for lengths 0.5, 4, 4.5 and

2,5; consider the "ideal" probabilities p'-2-k which
would give rise to the above lengths: p"=0.7071,
p's-0.0625, p.'=0.04419 and p=0.17678.

For fraction x=0, the A0) values represent the 5
approximation, to g fractional bits, of the "ideal' cumu
lative probabilities p. 1'. At least 5 fractional bits are
suggested, as smallest p' in binary is 0.0000101101.

10
A (0) = po = 0.0 c 0.00.0
A. (0) = p = 0.7071067+ r 0.10110101000
A' (O) = P = 0.7696067+ c 0.11000101000
A (0) = P = 0.8138009+ R 0.1101000000

The task at hand is to approximate A'(0) to r(2) inte- 15
ger and r-1 fraction bits) such that the decodability
criteria are satisfied. Assume Max C<29 and max
Cos<29 are satisfied. Rounding to (r-1)=5 fractional
bits, 20

First Try (x = 0) A-A x' (2*).2k
A (0) = 0.0 71875 5 .7071067812
A (0) = (0.10111) = .71875 .0625 0 0625
A (0) = (0.11001), = .78125 0625 5 04419474
A (0) = (0.11011), = 84375 5 1767766953 25

Assuming max C= 1 and max Cos= 1.1414, then
A1(0)-A(O)x Max C02'k

30
for k=1, 2 and 3.
However, Ago24= 1.020526695> 1. This can be

corrected by going to (r-1)=6 fractional bits, and
subtracting 2 from A20), A(O) and A(O) for the first
try. 35

Second Try (x = 0) A1-A (2*).(2k)
A (0) = 0.0 703125 .7071067812
A (0) = (0.101101) = .703125 0625 .0625
A (0) = (0.110001) = .765625 0625 04494.174 40
A (0) = (0.110101) = 828.125 1767766953

In this case, A(0)-A(0)=0.0625 which is greater than
23=0.044194174 by more than 2, so Acan be made 45
less by 2-6:

Third Try (x = 0) A-A. (2).2'k't'
A (0) = 0 .703125 .7071067812
A (0) = (0.101101) = .703125 0625 0625 50
A(O) = (0.110001) = .765625 046875 .044194174
A (0) = (0.110100) = .8125 ..1767766953

Now we note 0.8125-2-4=0.9892766953 < 29.
However, there is a problem with A(0)-A1(0)<21. 55
But if max Cosis small enough, the decodability criteria
may still be satisfied based on the actual values of max
C<29 and max Cos<29.
As with the x=0 case, begin with the "ideal' augend

amounts A'(0.5)=2'p-1:

A'(0.5)=1=(1.0000000),
A'(0.5)=1.088388348= 1.00010110+
A'(0.5)=1.150888348= 1.00100110+

First try (x=0.5): Round up the "ideal' values

60

65

Ak A-A x's. (2).2k
A (5) = 0.000000 = 0 1 O 1

14
-continued

Ak. A-A x' (2).2k''
A, (5) = 1.000000 = 1 0.09375 5 0.08838834765
A, (5) = 1.000110 = 1.09375 0.0625 0 0.0625
A, (5) = 1.001010 = 1.15625 0 0.25

For the test on A(0.5), A(0.5)--20-k=1.40625
<2 = 1.41421, and it is satisfied with the knowledge of
A40) and A4(0.5); (Max C) and (max. Cos) can be deter
mined by encoding a string of symbols a Cis initialized
to zero; and C is bounded above by 29, Cosis bounded
above by 29; these monotonically increasing sequences
converge to max C and max Cos respectively. Max C.
has been determined to be 0.9879032758, which in bi
nary is 0.111111001110011100111 . . . 00111 . . . Max
Cos is 1.403225806 which in binary is
1.01.1001110011100111... 00111... with this new value
of max Cos; A2(0)-A1(0)=0.703125 is tested against
(max Cos) 2-1-05-(1,403225806). (0.5)=
0.701612903; and is seen to satisfy the decodability crite

a.

Had this last attempt failed to meet the decodability
criteria, then the strategy would be to increase the num
ber of fractional bits (r-1) to more closely approximate
the "ideal" augends A'(x). As long as X.2-k1, a solu
tion for q>0 (i.e. noninteger (fractional) lengths l)
always exists.
To continue the example, the encoder and decoder

memories must be loaded. Encoder memory 57 con
tains:

address (k) value (l)
00 (000.1),
O1 (100.0),
10 (100.1),
11 (010.1),

Memory 59 contains:

Address (x,k) Value (A (x)
000 (0.000000),
0,01 (0.101101),
0,10 (0,110001),
0,11 (0.110100),
100 (0.000000),
101 (1.000000),
1,10 (1.000110),
1,11 (1.001010),

For the decoder, memories 109 and 117 are the same as
memories 59 and 57 respectively of the encoder. Mem
ory 99 is as follows:

Encoding fork Address X, Cx Symbol
00.000000 p at
00:510 00
00.101101 g a2
ooloo O1
00.11000 10. a

oolool b
00.110100 1. a.

olin h
1,0000000 00 al

10thin ch
l, 1.000000 9. a.

01
10

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 12 of 14

15
-continued

Address X, Cx Encoding fork Symbol

1,10101 h
1, 1.001010 ; a4.
1.1.hi 11

This memory implements a simultaneous comparison

4,122,440

of the value of C (retained fraction x) against the Ai(x). 10
EXAMPLE: Encoing a symbol string

Suppose now the string agazaia is to be encoded. Let
C denote the C-register C(i) the entire encoded string
including C at the ith step to be encoded. The stops are 1
as follows:

Clock (1)
Clock (2) a)

Clock (3) a)

Clock (4) a)

all = 4; Y = 4, X = 0.5; A(.5) = 1. 85i shifted righ 4 places and added
to(A(.5): C) 1.0001001010. The lowest order 4
bits go to the buffer/controller, C is 1.000100.
als O.5; Y = 1, X = 0 and A (0) = 0 di shifted fight place with the lowest
bit going to the buffer/controller and
added to A (0):
C3) =0,1000id:01010; C = 0.100010,
o = 4.5, Y = 4, X = .5; 68 s: 1.000110 () is shifted right 4 places (0.000010,

with a 0-bit to buffer/controller and
added to A (0): isió666001001010; c = 1.001000.

Consider now the task of the decoder, given string
C= 1.00100000001010 and retained fraction X=0.5.
The decoder is initialized to register x=0 and the 7-bit
C register is given 1.001000.

Clock () a)
b)

c)

d)

Clock (2) a)

Clock (3) a)

Clock (4)

d)

Address XC (1,1001000) to memory 99
extractsk(10) as
ls 4.5; new X will be 0, Y = 1 + new X
present X = 4
A (5) = 1.000110 is subtracted from 6600 666616,
this is shifted left 4 places, filled
with the next 4 bits from the buffer
controller (0010) to be stored in C:
0.100010, (C in buffer = 01010)
Address X,C(0,0,100010) to memory 99
extracts K(00) = a.
1 = 0.5, so new X = 0 and Y = 0.5 + 0.5 = i
A. (5) = 0.000000 is subtracted from
Cast 0.0000
this is shifted left 1 place, with 1 bit (0) .
supplied from buffer; C = 1.000100; C in
buffer = 010,
Address X,C(1,1.000100) to memory 99
extracts k(01) is a
1 = 4; so new X as .5, Y = 4.5 - 5 = 4.0
Á, (5) = 1.000000 is subtracted from
C = 1.000100, yielding 0.000100
this is shifted left 4 places, with 4
bits (1010) supplied from the buffer
controller, C - 1.001010; buffer/controller
empty.
by controller empty, signalling "last
step').
Address X,C(1.001010) to memory 99
extracts k(11) = a
1 = 2.5, so new X = 0; Y = 2,
A (.5) = 1001010 is subtracted from
C - 1.001010 to yield 0.000000.
the buffer-controller ignores the shift
amount, Decoding is complete.

As a check, the C-register is left all 0's and the X
register is also at its initial value of 0. Were this not the
case, then an error must have occurred.

It is to be understood that the particular embodiment
of the invention described above and shown in the
drawings is merely illustrative and not restrictive on the

20

25

30

35

45

50

55

60

65

16
broad invention, that various changes in design, struc
ture and arrangement may be made without departure
from the spirit of the broader aspects of the invention as
defined in the appended claims.
We claim:
1. An apparatus for arithmetically encoding succes

sive symbols in a symbol string from a finite source
alphabet, said apparatus comprising:
means including means responsive to each symbol for

deriving a length indication therefrom and means
for adding said length indication to a prior length
attribute for recursively calculating a new length
attribute for each string segment of arithmetically
encoded data, each such new length attribute con
sisting of an integery and fractional part;

means for generating an r digit value Akindicative of
each particular new length attribute and the cumu
lative probability occurrence of an arbitrary order
ing of the symbols;

means for recursively computing the new string seg
ment of arithmetically encoded data by adding the
r digit value A to a predetermined number r of
digits of the prior string segment; and

means responsive to the integer part of the new
length attribute for shifting out of the apparatus J
of the least significant digits of the prior string
segment of encoded data.

2. An apparatus according to claim 1, wherein the
finite source alphabet includes symbols having at least
semi-stationary relative frequency of occurrence, the
arbitrary ordering of symbols is based upon a decreas
ing relative frequency of occurrence.

3. An apparatus according to claim 1, wherein the
predetermined number r of digits are the r most signifi
cant digits and the only portion of the prior spring of
encoded data functioning as an arithmetic operand.

4. An arithmetic string encoder comprising:
means including means responsive to each successive
symbol from a source of symbols from a finite
alphabet for generating a length attribute for a
string of encoded data, the means generating the
length attribute recursively from the sum of the
length attribute of a previous string and a q digit
rational approximation of the instant symbol; and

means jointly responsive to each successive symbol
and the generated length attribute for forming a
new string, said joint means forming the new string
recursively from the sum of the last string and the
product of the cumulative probability of occur
rence of an arbitrary ordering of all symbols ar
ranged down to but not inclusive of the symbol
being encoded and the integer two raised to a
power equal to the generated length attribute, said
joint means including means for shifting out of the
encoder the least significant number of digits of the
last string, which number is the greatest integer
equal to or less than the integer portion of the

: generated length attribute.
5. An apparatus for arithmetically decoding the string

C(sa) in order to extract symbol a which symbol was
encoded by apparatus according to claim 4, wherein
said decoding apparatus comprises:
means responsive to C(sa) and x(sa) for ascertaining

the largest index k of the arbitrary ordering of
symbols whose value A is less than the r most
significant digits of C(sa), 0s C(sa)<2, 0s A
k<2, and ralog(1/p); p, being the probability

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 13 of 14

4,122,440 17
least frequently occurring symbol in the source
alphabet.

6. An apparatus for arithmetically encoding succes
sive terms in a symbol strings=aa... from a source
alphabet of N symbols, the apparatus being of the type
in which each new term a gives rise to a new code
string C(sa) and a new code string length attribute
L(sa), where 1skSN, the apparatus comprising:
means (57, 61-77) including a table of concordance
between symbols at and their length indicators
l(a), where

2(a) < 1 k = 1 K

said means being responsive to each symbol a for ob
taining la) from the table and for generating the length
attribute, said attribute being inclusive of integery and
x values and being generated according to the recur
sion:
L(sa)=L(s) + I(a)=integer y(sax)=fraction x(sa);
and

means (59, 79-89) jointly responsive to each symbol
at and the new length indicator L(sa) for generat
ing the new code string C(sa) according to the
recursion:

where
P-=Xp(a), P=0, p=ll PN=1, P-1 being the
cumulative probability of occurrence of an arbi
trary ordering of the symbols; said jointly respon
sive means including means (77-85) for shifting out
of the encoder y(sa) of least significant digits of
C(s).

7. An apparatus for encoding successive terms in a
symbol string s=aa, . . . from a source alphabet of N
symbols, the apparatus being of a type in which each
new term a gives rise to a new code string C(sa) and a
new code string length indicator L(sa), comprising:

first means (57, 61-77) including a table of concor
dance between the symbols at and their length
indicators l(a), X2eoC1, said means being re
sponsive to each symbol a for obtaining la) from
the table and for generating an integer y(sa) and
fractional x(sa) portion of L(sa) according to the
recursion:

L(sa)=L(s)--i(a)=integery.(sa)--fraction x(sa)

second means (59) jointly responsive to at and x(sa)
for producing an intermediate r digit value
A= P2(k), where:
Ps)2P,

P=0, Py=1, P-being the cumulative probability
of occurrence for an arbitrary ordering of the sym
bols; and

third means (79–89) for generating 28.C(sa) ac
cording to the recursion:

10

15

20

25

30

35

45

50

55

65

18

said second and third means including means (77-85)
for shifting out of the apparatus y(sa) of the least
significant digits of C(s).

8. An apparatus according to claim 7, wherein the
length indicator L(sa) is determined by the recursion:

L(sa)=x(s)--(a).
9. An apparatus according to claim 7, wherein Allies

within the range:

P-2 (90-2-(-sAsP2(k)+2-(-).
10. An apparatus according to claim 7, wherein

r2log 1/p p being the probability of the least fre
quently occurring symbol.

11. An apparatus according to claim 7, wherein the
length indicator la) is a q digit rational number ap
proximation as rounded off to the inverse log of the
probability of occurrence of a

12. An apparatus for arithmetically decoding a code
string C(sa) utilizing a calculated length attribute
L(sa) thereof in order to extract symbol a comprising
means (21,91,115,123) for receiving r digits of C(sa)
and for receiving t digits of the integer value y(sa)
of the length attribute of the new code word;

first means (93.95,9799,105) accessed by the higher
order r digits of C(sa) and g digits of x(sa) for
generating position number k of an arbitrary order
of source alphabet symbols;

second means (105,107,109) responsive to position
number k and x(sa) for generating corresponding
value

k - 1
A = P-129, P- as i 2. 1 2P, P = O, P = 1,

where P-1 is the cumulative probability of occur
rence of the arbitrary order of source alphabet
symbols;

third means (93,111,113) for determining the differ
ence between C(sa) and A, forming thereby ther
digit quantity 2 RC(s);

fourth means (101,103,117-129) also responsive to
position number k and x (sa) for generating the
integer value y(sa) according to the recursion:

fifth means (91) for shifting 2-((R)-C(s) to the right by
y(sa) digit positions and for causing the receiving
means to input the next y(sa) higher order digits of
C(s) thereby completing the recursion or the r
highest ordered digits of the encoded string;

sixth means (123,105,129) for applying y(sa) to the
fifth means, x(sa) to the first and second means,
and x(s) to the fourth means;

seventh means (Xlator, 25) converting the position
number k into the symbol a

13. An apparatus according to claim 12, wherein the
decoded values of C(sa)=0 and x(sa)=0 are indica
tive of the end of the coded string.

. . . .

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 14 of 14

