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57 ABSTRACT 
There is disclosed a method and means for compacting 
(encoding) and decompacting (decoding) binary bit 
strings which avoids the blocking of string elements 
required by Huffman coding and the ever increasing 
memory as is the case in simple enumerative coding. 
The method and means arithmetically encodes succes 
sive terms or symbols in a symbol strings=a a..., in 
which each new termain a source alphabet of N sym 
bols gives rise to a new encoded string C(sa) and a new 
length indicator L(sa). The method and means com 

-----4---- 

11) 4,122,440 
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prises the steps of forming L(sa) from the recursion 
L(sa)=L(s)--i(a), where (a) is a rational approxima 
tion of log2 1/p(a), p(a) being the apriori probability 
of occurrence of a, and la) being so constrained that 
the Kraft inequality is satisfied: 

S 2-laps 1; 
ks 1 

and forming C(sa) from the recursion 
C(s)--P-12-0, where: 

k-1 
P- = X. p(a), 

is 1 

and where P-1 is the cumulative probability of occur 
rence of an arbitrary ordering of all symbols. 
Instead of assigning a'priori code words to each symbol 
as in Huffman coding, the method and means ascertains 
the new encoded string C(sa) from the ordinal number 
(position number k) of the symbola, in the arbitrary 
ordering, the value of the fractional part of L(sa), and 
the last few bits of the previous compressed symbol 
string C(s). This results in the generation of two quanti 
ties i.e. the encoded string of compressed characters and 
the fractional length indicators. The use of only a few 
bits of the last encoded string C(s) for determining 
C(sa) limits the requisite memory to a constant value. 
During each encoding cycle, the least significant num 
ber of bits of C(s) are shifted out as determined by the 
integrer part of L(sa). 

13 Claims, 7 Drawing Figures 
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METHOD AND MEANS FOR ARITHMETIC 
STRING CODING 

BACKGROUND OF THE INVENTION 
The invention relates to the encoding and decoding 

of strings of symbols from finite source alphabets, 
which encoding takes advantage of the relative fre 
quency of occurrence of the symbols in order to achieve 
compaction. More particularly, the invention relates to 
an improvement over both the enumerative encoding 
technique and the Huffman compaction technique. As 
may be recalled, Huffman taught a method for compac 
tion by assigning a variable length code word to each 
character in the source alphabet, in which the length of 
the code word was inversely related to the relative fre 
quency of occurrence of the character. The statistics of 
occurrence were either stationary or semi-stationary. 
That is, the method did not contemplate a constant 
adaptive reordering and reassignment of code words. 

Since Huffman's original paper in September 1952, 
Proceedings of the IRE, pages 1098-1101, "A Method 
for the Construction of Minimum Redundancy Codes,' 
modifications have been made as represented by a series 
of U.S. patents; namely, U.S. Pat. Nos. 3,675,211; 
3,675,212; 3,701,111; 3,694,813; 3,717,851; and 
T925,002. A useful source of background information is 
the book by Norman Abramson, "Information Theory 
and Coding,” McGraw Hill, 1963, chapters 3 and 4. It 
remains, nevertheless, a classical code possessing certain 
attributes. These attributes include words formed from 
a fixed sequence of a priori symbols, all of the words 
being distinct (nonsingularity), and no word of the code 
being a prefix of another code word (unique decodabil 

Enumerative coding is the encoding of, say, each 
permutation of binary string of n symbols by first order 
ing the 2 terms and representing the term by an ordinal 
number. Reference may be made to T. M. Cover, "Enu 
merative Source Encoding," IEEE Transactions on 
Information Theory, January, 1973, pages 73-77. More 
specifically, given a binary string of n binary digits, m of 
which are 1's, then let T(n, m) denote the set of all 
strings of n binary digits having m ones. It is necessary 
to "order' (arrange) the terms in a consistent manner, 
i.e., by size (lexicographically) with predetermined pri 
ority (left-to-right). As an example, if n=3 and m = 2, 
then 011<101 < 110 would be an ordering. If one as 
signs a position number to each term in the ordering, 
then the last term is the binomial coefficient 

(i) = n/( - m) Iml 
All other position numbers (code words) are smaller. 

In both Huffman and enumerative coding, the attain 
able average per symbol length has a lower bound de 
termined by the appropriate entropy function for source 
symbol frequencies. 
Given a source symbol string s where s=aa . . . 

grows to the right; let Sak denote the new string ob 
tained by appending the new symbol a where k runs 
from 1 to N, to the end of old strings. In the Huffman 
codings, the encoded representation of sais obtained by 
appending or concatenating the codeword A of the 
symbol a to the right end of the code of s. This means 
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2 
strings, Huffman coding produces either no compaction 
or for small alphabets may produce insufficient compac 
tion. 

In order to obtain improved Huffman compaction, 
then, for small source alphabets; a technique known as 
blocking has been employed. In blocking, the new 
source symbols of the new source alphabet are the jux 
taposition of two or more of the original source sym 
bols. Taking k symbols at a time increases the source 
alphabet size to N*. 
As is apparent, enumerative coding does not require 

blocking. However, the calculation of each new code 
word C(sa) requires information of all of the bits of the 
old string C(s). This, in turn, requires an indefinitely 
growing memory. 

SUMMARY 
It is an object of this invention to devise a method and 

means for compaction and decompaction of code 
strings, especially binary bit strings. Related, the 
method and means should avoid both the blocking re 
quirement of the Huffman technique and the infinite 
(ever increasing) memory necessary to support simple 
enumerative coding. 

It is yet another object that the method and means 
constitute a unitary string coding technique, which 
technique is substantially invariant to arbitrary order 
ings of the symbols, as well as being invariant to source 
alphabet size. These objects should hold so long as the 
relative frequency of occurrence of the source symbols 
are either known or capable of being estimated. 

It is still another object that the method and means 
exhibit a specifiable compaction ratio approaching the 
entropy bound in the limit, see Abramson pages 65-74. 
Given a strings=aa,. . . of symbols, then Huffman 

would assign an a'priori code word to each unique 
symbol in the finite source alphabet from which the 
symbols were drawn. In enumerative coding, the string 
s would be represented by a coded string C(s) such that 
in response to the next symbol at the new code string 
C(sa) would require taking into account all of the C(s) 
string. 

It was unexpectedly observed that the new string 
C(sa) could be formulated from the ordinal or position 
number k of a of an arbitrary ordering of all the sym 
bols in the source alphabet, the fractional as well as 
integer values of a length attribute, and the last few 
digits of the prior code string C(s). These observations 
are embodied in a method and means which requires 
first, the determination of the length attribute and sec 
ond, unique utilization of the fractional and integer 
parts thereof in generation of the new codestring. In the 
coding procedure, the length attribute L(sa) for the 
new code string is first determined. After this the new 
code string is calculated. This is succintly expressed in 
the following recursions: 

where L(s) is the length attribute for code string C(s), 
65 

that the code word length would grow with a whole 
number of bits for each symbol independent of the sym 
bol frequencies. This further means for binary source 

l(a) is the rational number approximation for log 
(l/p(a), p(a) being the a'priori probability of occur 
rence. The length indicator la) must further satisfy the 
Kraft inequality 
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2'(a) s 1 k = 1 

for an N symbol alphabet. 
P-1 is the cumulative probability of occurrence of an 

arbitrary ordering of the symbols in the alphabet such 
that 

k-1 
P-1 = i p(a), where P = 0, PN = 1 

Where P=0, P=1. 
It is also considered as a part of this invention that 

fractional as well as the integer parts of the length attri 
bute can be advantageously utilized. For example, 

L(sa)=L(s) + I(a)=integery + fraction x =y(sa) 
+ x(sa) 

This is applied to the second recursion with the follow 
ing result: 

Sincey is an integer, then multiplication of a term in 
a register by 2ty constitutes a left shift for +y and a 
right shift for -y, The factor 2 can be approximated by 
g bits i.e. e(x) at 2'. This lends itself to table look up. 
As a result of these considerations, one embodiment 

of the apparatus of the invention for encoding purposes 
provides for generating a new encoded string by: 

(1) table look up for lca) 
(2) addition to obtain L(sa) 

- (3) table look for e(x)s2 
-(4) multiplication of P-1 and e(x) 
(5) left shift by y bits 
(6) the addition of C(s) and P-1e(x)2. 
Another embodiment combines steps (3) and (4) and 

shifts right in step (5). This results from rewriting the 
recursion: - 

where A=P-2(R). The revised procedure is: 
(1) table look up for lca) 
(2) addition to x(s) to obtain L(sa)=y(sa)+c(sa) 
(3) table look up for A - 
(4) right shift of C(s) by y(sa) bit positions 
(5) addition of A and 2 (R.C(s) 
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This alternative simplifies calculation of the new 
codestring. It requires only the addition of Akto the old 
shifted code string. This is based upon the fact that Ak 
is merely a function of the position number k and the 
fraction x(sa). More significantly, the alternative takes 
advantage that A and C(s) retain the same relative 
positions with respect to the binary point. In this con 
text, it should be recalled that P-1 and x(sa) lie in the 
range between 0 and 1. 

In so far as the encoding is concerned, a source sym 
bol string is serially applied to the apparatus and an 
encoded binary string is generated therefrom. The en 
coded binary string can only be decoded by taking into 

55 

account the starting points and end point of the string. If 65 
C(sa) is restricted to having a magnitude between 0 and 
2, then the binary point of C(sa) can be aligned with the 
last augend A. Consequently, the left most (leading) bit 

4. 
of C(sa) represents an integer and the bits to the right 
thereof are fractional. 
Of some interest is the fact that the string within the 

encoder consists of "r' digits, "r" digits is also the index 
of precision for A. For every y of the least significant 
digits of C(s) that are shifted out of the encoder during 
a cycle, y digits of the most significant digits are ap 
pended to the string in the new calculation. The param 
eter "r' preferably should be set 2 log(1/p), P is the 
probability of occurrence of the rarest symbol. 
Decoding requires the use of a length attribute in 

order to "parse' the compressed bit string into decoda 
ble characters and then "detach' the characters from 
the string in a dual manner to encoding. More particu 
larly, if the decoder contains a memory of 29 words 
where r is the length in bits of Athen decoding re 
quires: 

(1) locating the beginning of the encoded string 
C(sa), 

(2) addressing the memory with the next r bits of 
C(sa) and g bits of the retained fraction x(sa) an 
retrieving ak and la). 

(3) shifting the string by y(sa) bits to align the de 
coder with the next portion of the compressed 
code string. 

The invention represents a compaction method 
which, in addition to avoidance of blocking and requir 
ing only a finite memory, also permits the control of 
error and memory size for code word tables. 
For example, n-bit blocking is needed in the Huffman 

coding of binary alphabets in order to guarantee the 
existence of the upper bound in H(s)sL/n (H(s) + 1/n 
(see Norman Abramson or Shannon's First Theorem, p. 
73) where H(s) is the entropy, or theoretical minimum 
average length per encoded symbol, and Ln/n is the 
average length per encoded symbol by the coding 
method. The size of the tables for the Huffman code 
words will need a table of 2" code words, with many 
code words having more than n bits. 

In contrast, for the same upper bound of 
H(s)--(1/n) arithmetic coding can use tables whose 
size is on the order of n, where each word length is on 
the order of log2n. 

In addition to compaction of coded characters, arith 
metic coding also provides an alternate compression 
technique to strings of non-coded (raster coded data) 
than the present sparse matrix techniques. The key here 
is the expectation that a single compaction method exists 
for binary string encoding, rather than distinct mecha 
nisms for coded and non-coded source data. 

BRIEF DESCRIPTION OF THE DRAWING 
FIG. 1A depicts binary string coding apparatus used 

conjunctively with a combination storage and transmis 
sion system. . 
FIGS. 1B and 1C represent functional block dia 

grams of prior art Huffman encoders and decoders. 
FIGS. 2 and 3 show functional logic diagrams of 

respectively arithmetic string encoders and decoders 
according to the invention. 

FIGS. 4A and B is a sequencing and timing chart for 
the encoder and decoder of FIGS. 2 and 3. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

Referring now to FIG. 1, there is shown a general 
ized binary string coding apparatus used conjunctively 
with a combination storage and transmission system. In 
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5 
this regard, an information source 1 applies a sequence 
of source symbols a selected from a source alphabet: 

tata: ... as . . . .an). 
The symbols are serially applied to path 3 where they 
are accumulated by buffer/controller 5. Buffer 5 pro 
vides the necessary speed matching between the infor 
mation source and any necessary signal conditioning or 
code transformation required prior to subsequent trans 
mission. A typical storage and transmission system 
would include a last in/first out LIFO storage unit 15 
driving a utilization device 29. Since speed matching 
and code transformation is a usual concommitant of 
utilization devices, then another buffer/controller 19 is 
connected to the storage unit and the device over paths 
17 and 27. Typically, a sequence of symbols from source 
1 is accumulated by buffer 5 over path 3. The symbols 
are then applied to a transformation device such as an 
encoder 9 over requisite path 7. The encoder executes a 
1 to 1 mapping and delivers the transformed symbols to 
buffer 5 over path 11. Control information relating to 
clocking and the length attribute of each code character 
is transmitted over a separate parallel path 12. Likewise, 
the transformation of characters received from storage 
unit 15 as accumulated by buffer 19, is performed by 
decoder 23. The decoder must recover the original 
symbols generated by source 1. As such, it must extract 
both the original characters and length attribute infor 
mation in order to properly parse the binary string pres 
ented to it on path 21 from buffer 19. Both the length 
attribute and source character data is transmitted from 
said buffer over paths 22 and 25 respectively. 

Huffman Encoding/Decoding 
Referring now to FIGS. 1B and 1C, there are de 

picted functional block diagrams of prior art Huffman 
encoders and decoders. It is desirable to spend a word 
or two on some of the properties of Huffman codes. A 
Huffman code takes advantage of the apriori probabili 
ties of occurrence p(a) where (k=1,2,... N) of each 
source symbol by assigning a corresponding code word 
of variable length l(a) where p(a)22k and 

N 
X. 2'(a) is 1. 

Where the encoded string consists of 0's and 1's, then 
l(a) corresponds to the number of bits in the Huffman 
code word for a 
The Huffman encoding of the source string comprises 

the steps of retrieving from a memory a code word A. 
and length (a) responsive to each source symbol at 
and shifting the previously encoded string C, la) bits 
to the right or left, and appending the code word A. 
The Huffman encoding of the source string aaa is then 
represented by AAA. This is referred to as the concat 
enation of the corresponding code words. 

Referring now to FIG. 1B, accumulated source sym 
bols aaa are serially sent from buffer 5 to encoder 9 
over path 7 where they are lodged in input register 31. 
The contents of memory address a consists of Huffman 
code word Akand length attribute (a). These elements 
are read into corresponding registers 35 and 37. 
Aisin turn transferred from register 35 to a predeter 

mined position in output shift register 41. The length 
attribute l(a) located in register 37 operates shift con 
trol 39 which moves code word A. a predetermined 
number of positions so as to allow the entry of the next 

4,122,440 
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6 
character into the output register and placement upon 
transmission path 11. 

Referring now to FIG. 1C, there is shown a Huffman 
decoder 23. This decoder is representative of the type 
shown in Frank U.S. Pat. No. 3,883,847 issued on May 
13, 1975 entitled “Uniform Decoding of Minimum Re 
dundancy Codes.' The compressed code word string 
from buffer controller 19 is applied to input register 43 
over path 21. The maximum code word length is known 
a'priori. Thus, for a memory size log2(1/p) words, 
where log(1/p) is the length (the number of bits) of 
the longest unit code word, then the first log(1/p) bits 
are transferred into register 43 for the purpose of ad 
dressing memory 47. The values retrieved from mem 
ory 47 are source symbol at and its length la) is en 
tered into register 49. The contents of register 49 are 
used to shift register 43 through controls 45 so as to 
align the new beginning point for the next code word 
decoding. 
Fractional Code Word Lengths Improve Compression 

Efficiency 
It is evident that the lengths of Huffman type com 

pression code words are restricted to integer values. It 
is asserted as a general truth of coding that in order to 
be decoded, each code word of variable length la) is 
related to its relative frequency of occurrence p in its 
source alphabet by: 

p(a)22p(a)=20+E;..I(a)=log(1/- 
p(a)--E 

It is apparent that if la) consists of integers, then p(a) 
is nonrational. It follows that a compression coding 
system of integer valued code word lengths cannot 
have superior compression efficiency as a system in 
which code word lengths are inclusive of fractional 
values. This inclusion of fractional values in the case 
-with enumerative and arithmetic string codes. 

The Encoding Algorithm According to One 
Embodiment of the Invention 

Given a sequences of source symbols aa, each new 
symbol a may be viewed as being appended to se 
quences i.e. s=a a sa=aaak. If S is applied to an 
encoder, its output is designated C(s). In both enumera 
tive and string encoding, 

sa->C(sa) 
The encoding is defined recursively as follows: 

L(sa)=length attribute= L(s) + (a) 

C(sa)=compressed code string=C(s) + P-2'" 

k-1 

(a) = log,1/P(a); P-1 = 2, P(a); P = 0; P = 1 

and where p(a) and la) are constrained such that 

2(a) s 1. k-1 

If the length attribute is factored into the sum of its 
integer and fractional components, it is then possible to 
more easily facilitate the computation of the com 
pressed encoded string C(sa). Thus: 

Cisco Systems, Inc., IPR2018-01384, Ex. 1025, p. 8 of 14
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L(sa)=p(sa)--x(sa) 

integer fraction 

C(sa) = C(s) + P. 2.92xtsa) 

Let 

Then 

Alternatively, 

2C(sa)=2C(s) + A 
0s P-Cl and 0s.x(sa)s 1. 

Since A is a function of k and x, the value can be 
determined by table look up on k and x. However, the 
generation of the encoded string C(sa) requires the 
careful alignment of the old encoded string C(s) with 
the table derived value A. Restated, it is important that 
the relative alignment between the old code string and 
the derived value be maintained. 

Referring now to FIG. 2, there is shown the arithme 
tic 30 string encoder illustrating the alternate form of 
the recursion. The encoder is responsive to a source 
symbol at on path 7 for generating a compressed en 
coded string C(sa) on path 11, together with control 
information on path 12 consisting of the retained frac 
tion on line 69 and the shift amount on line 77. 

Timing Scheme 
The timing schemes for the encoder and decoder are 

straightforward, of the synchronous single-phase cate 
gory, with sufficient time between clock pulses to allow 
for the worst case combinational circuit delays, flip-flop 
set-up times and propagation delays. See the book by J. 
B. Peatman, The Design of Digital Systems, McGraw 
Hill, 1972, pp. 161-170. In this regard, FIG. 4A shows 
the relative location of these delays for the encoder, and 
FIG. 4B shows them for the decoder. Clock skew is 
presumed to be within the maximum allowable toler 
ance (Peatman, p. 167-170). 

Encoder memories 57 and 59, as with decoder memo 
ries 99, 109 and 117 (FIG. 3), are loaded with the requi 
site values during an initialization phase. The memories 
may be of the "read/write' type, the "read-only' type, 
or "programmable read-only memory'. Means to load 
the memories are not described, these techniques per 
tain to the known art i.e. Memory Design Handbook, 
Intel Corp., Santa Clara, Calif. 95051, copyright 1975. C 
register 87 is important to the development of the en 
coded string as it holds the hightest-order r bits, or 
arithmetic operand portion, of the previously encoded 
string. X register 67 is important as it holds the q bit 
retained fraction. These registers are usually initialized 
to "0,” however, X register 67 may be initialized to any 
value. The initialized value for C register 87 is con 
strained to be equal to or less than the value (maxC), 
depending on x, such value (maxC) as defined in the 
section "Requirements for A and r." It is noted that for 
enumerative coding, the arithmetic operand portion of 
the previously encoded string C(s) is the entire length of 
the string C(s). In the method herein disclosed, C regis 
ter 87 holds the retained string segment, which are only 
those highest-order r bits which may constitute an arith 
metic operand of the previously encoded string C(s). 
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8 
All lower-order bits are subjected only to shifting. Prior 
to its arithmetic use, the C register 87 contents are sub 
jected to a right shift by shift amounty(sa). When this 
happens, they(sa) rightmost bits of the C Register 87 
are called the output string segment for the step, and are 
delivered to the buffer/controller 5 (FIG. 1A) over 
path 11, with control signal shift amount y(sa) being 
sent over its portion of path 12 (FIG. 1A) to indicate to 
buffer controller 5 the number of bits it is to accept. 
Each symbol a is received in input register 31 and 

applied to a translator 53. The translator converts the 
symbol to its position or order number equivalent k, 
This number is applied over path 55 to memory 57. 
Memory 57 contains the length la) according to the 
relation: 

(a) = log(1/p(a)) = p(a) + x(a) 

t bits q bits 

The integer portion y(a) comprises t bits while the 
fraction portion x(a) consists of g bits. Parenthetically, 
each path having a crosshatch mark references a multi 
conductor parallel path. Thus, path 55 contains in con 
ductors while path 61 and 71 contain respectively q and 
it conductors. 
Adder 63 and +1 adder 75 determine the integer 

value y(sa). Adder 63 and the clocked output of X 
register 67 determine the fractional value x(sa). The 
value y(sa) is an integer. Its value corresponds to a 
number of digits to be shifted in aligning the previous 
encoded string C(s) in right shifter 79 with the A on 
path 89 so that both may be combined in adder 83, to 
obtain the highest order digits of C(sa). 
The retained fraction, or the fractional value x(sa), at 

the start of the next clock cycle will be placed in the X 
register 67, just as the value x(s) was placed in X register 
67 at the start of the present cycle. The value X(sa) 
together with k accesses the augend value A by table 
look up from memory 59. A requiring r bits, is applied 
over path 89 to adder 83. The new code string C(sa) is 
determined by summing A and the appropriately 
shifted value of C(s) in adder 83 as previously men 
tioned. Significantly, the y(sa) lowest order bits of the 
previous r bit retained string segment of C(s) are pathed 
to the buffer controller 5. At the next clock cycle, the 
new retained segment of code string C(sa) passes to 
register 87 over path 85. Also, the time period between 
consecutive clock pulses is calculated in order to permit 
x(sa) and C(sa) to stabilize, as determined by the maxi 
mum delays inherent in the circuits involved. The regis 
ters are "D' type flip flops which are "edge triggered 
as exemplified by the 74 TTL family, type SN74174, 
"The TTL Data Book for Design Engineers,' Texas 
Instruments Inc., 1973, pages 363-368. In this regard, 
buffer controller 5 may be adapted to provide the en 
coder with a new symbola at each clock pulse as well 
as removing they least significant digits of the previous 
related string segment of C(s) which was shifted out. 
Upon the encoding of the last symbol, the buffer con. 
troller 5 accepts the final contents of C(sa) and receives 
the value of the final retained fraction x(sa). 

The Size of Parameters “r” and "g' 
As previously mentioned C(sa) represents the en 

coded string responsive to symbol a being applied to 
encoder 9. C(s) is the previously encoded string. Its 
length in bits consists of the summation of all of the 
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4,122,440 9 
previous length attributes la)'s of previously encoded 
characters. However, how many bits are retained inside 
the encoder of this string C(s)? The answer is a prede 
termined number "r' of the highest order bits, Of these r 
retained bits of C(s), y(sa) of the lowest order bits of 
C(s) are shifted out when the new length attribute 
L(sa) is determined. This leaves r-y(sa) bits of C(s) 
remaining for use as an arithmetic operand, right justi 
fied to the lowest order bits of A Recalling: 

L(a)=L()+Kap-rap+x(a). 
However, the only portion of L(s) retained was the 
fractional part x(s) i.e. L(s)=X(s). The integer portion 
y(s) was used in shifting strings in the encoding process. 
It follows that L(sa)=x(s)--l(a)=integer y(sa)--frac-. 
tion x(sa). 
In the encoding operation, the value Akis obtained by 

table lookup from memory 59. The address for access 
ing the memory comprise n bits of k (position number 
for a) and g bits of the retained fraction X(sa). In this 
regard, the numberg is treated as an independent design 
parameter. 
The r bits of an extracted A must be aligned cor 

rectly with the r-y (sa) bits of C(s). In order to ac 
complish this, C(s) is right shifted y(sa) bit positions. 
Consequently, the lowest order bits in both A and 
shifted C(s) will be correctly aligned. To understand 
this computation, it will be recalled that in the case 
where A is left-shifted, C(sa)=C(s)+A2(sa). If C(s) 
is right shifted with respect to A, this is the same as 
multiplying both sides of the recursion by 2k i.e. 

The number r determines the precision required of 
A. One significant design factor is the probability pof 
the least frequently occurring source symbol. Note, that 
A=P2. Given the possibility that for: 

and 

where x(sa)=X(sa), then it is necessary to discrimi 
nate between the P's in order to discriminate between 
the A's. Thus, to ensure that Pd P-1, then 
r2log(1/p). Other considerations affecting the value 
of "r' are implicit in the subsequent discussed examples. 
The numberg of bits in the retained fraction x(sa) is 

a measure of how close the actual code word length 
approximates the ideal. As can be appreciated, the ideal 
length is log(1/p(a)). Because Huffman code word 
lengths are restricted to integer values, then it cannot 
approach the ideal. As g increases, a closer approxima 
tion to the ideal can be obtained. 

The Right Shift Versus Left Shift 
Allowing a parenthesized superscript to denote a 

symbol's position in the source string, let C(=0 be the 
initial value of the encoded string and L=0 be the 
initial value of the length. In order to encode the first 
symbol act) of a string, determine L0)==y+x), 
and A(x). Instead of shifting A(1) lefty bits and 
adding to C(; it is possible to shift Crighty bits and 
add it to Aaay: C(=A(1)+0.29. 

In order to encode string aca, then; the new rela 
tive length indicator is L= --x(). In this step, the 
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10 
failure to shift the fractional bit amount x()is accounted 
for by adding it to I2), Let:y()=y(a()a(2) denote the 
integral portion of L(2), and X)=x(a)a(2) denote the 
fractional portion of L. The new encoded string is as 
follows: 

To encode the (i)-th source symbol, given encoded 
string C) and retained fraction X), the recursions 
become: 

L0-10--- 1)- Y(0-x() 

C=A(X)+2 Kicki-1) 

In terms of adding source symbol a to source string 
(s) which has already been encoded as C(s) with re 
tained fraction X(s), the recursions are: 

Requirements for A and "r' 
At this point, we pause to describe the key technique 

which enables decoding. Corresponding to each symbol 
akis a length l, which influences the amount of shifting 
C(s) during encoding. The other factor which influ 
ences the shift amount is the old retained fraction x(s). 
The shift amounty(sa), new retained fration x(sa) and 
the augend A satisfy the following important inequal 
ity, called the arithmetic coding inequality: 

A12A +2"PC(s) 

In other words, the augend amounts Aki and A corre 
sponding to "adjacent” symbols at and a must be 
suitably diferent in magnitude and the shift amount 
sufficiently large to make 2.0.COs) sufficiently small 
such that the sum is less than A1. If that relationship 
does not hold, arithmetic coding will not work. Con 
sider the decoding process for C(sa); we know C(sa) 
as at least as large as A, since that was an augend. It is 
also known from the above inequality that C(sa) is less 
than Akt1. It is also the case that the operand portion of 
C(sa) has only r bits, and x(sa) has q bits. Therefore, 
only 29 possible combinations of C(sa) and X(sa) 
exists. For each such combination, the symbol a which 
gave rise to C(sa) is predetermined, and its ordinal k 
may be stored in the corresponding word a 24 word 
memory. 
Consider now the existence of a table of values A. 

which enables encoding and decoding. From the arith 
metic coding inequality; it is seen that 

In practice, the values Akare approximations to r bits. 
The precision of the augend values Adepends upon the 
largest value C(s) can achieve. This in turn depends 
upon the value X" of the previous retained fraction and 
the index k' of the previously encoded symbol. Letting X 
denote the present value of the retained fraction and X" 
denote the prior value, y(a)--X=l(a)--X" so that 
y(sa)= --l(a)--X-X. From this relationship, it is 
seen that for a given value of X and k, X"=fractional 
part of (1--X-fractional part of lak)). Since 
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AS) A > ... A(x), 

then for a given retained fraction value of x, Max 
C>A(x), where max C denotes the maximum value 
of C(sa)=A(x)+2(k-C(s) which can be generated 
(encoded) with a current retained fraction value of X. 
The decoding criteria is then; for each k < N, and possi 
ble fraction value of X: 

The above equation places no direct constraints on 
A(x). However if ANOx) is too large, then max C, 
becomes larger, forcing the differences A1-A to 
become larger which in turn forces A(x) still larger. To 
contain this problem, upper bounds must be placed on 
max C and A(x), such that this does not happen: 

then (max C)S2. 
When C is at a maximum and symbol A is encoded: 

multiply each side by 2-x. 

From the above equation, if for all x (Max C)=2, then 
A(x)-2'--2n=1 and vice-versa. It can be shown 
by induction that if for all x A(x)-2-2n), then 
(max C)<2*. The construction of the values for A(k) 
will be illustrated by an example. 

The Decoding Algorithm According to One 
Embodiment of the Invention 

Referring now to FIG. 3, there is shown the arithme 
tic string decoder. The decoder interacts with buffer/- 
controller 19 in that it receives a compressed string over 
path 21 and transmits to the buffer 19 the decoded sym 
bols on path 25 together with length information neces 
sary for shifting appropriate compressed bit string seg 
ments from the buffer to the decoder. The shifting con 
trol information is shifted over the portion of control 
paths 22 consisting of line 123. 

In order to initialize the decoder, the value of the 
final retained fraction x(sa) is placed by buffer/con 
troller 19 in the X register 103, via line 101 of path 22. 
The higher order r bits of C(sa) are placed in register 
95. The r bits from register 95 together with the g bits 
from retained fraction register 103 form an address for 
obtaining the position number k of the ultimate symbol 
to be decoded a this value being obtained from mem 
ory 99. In turn, the value for A is obtained from mem 
ory 109 when accessed by the n bits from k and the g 
bits from x(sa) applied over respective paths 107 and 
105. 

It is clear that in order to extract the compressed 
encoded element, it is necessary to obtain and maintain 
the compressed encoded string without the new code 
word C(s) in relative alignment with the string C(sa) 
that includes the new symbol. This is accomplished in 

10 

12 
part by obtaining the relative magnitude difference 
between the encoded string obtained from path 97 and 
A on path 111 as applied to subtractor 113. The shifted 
string C(s) on path 115 is in turn applied to left shifter 91 
to be restored to its alignment when encoded, with the 
buffer/controller supplying the "fill' bits to the shifter. 

In order to obtain the integer and fractional compo 
nents for the value lCa), it is necessary to access a suit 
able memory 117 over path 107. As indicated in the 
figure, y(a) is applied to adder 121 over path 119 and 
X(a) is applied to the subtrahend input of subtractor 
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125. The fractional value X(s) on path 129 is obtained 
from the difference between the fractional value X(sa) 
applied to the minuend input on path 105 andX(a). The 
integer value of the length attribute of the new code 
word, namely y(sa) is obtained from the +1 addition in 
adder 121 between the complement of the borrow sig 
nal from subtractor 125 through inverter 127 added to 
J(a). 
At the decoding of the final symbol, register 95 

should have the initial value of C (usually 0) and register 
103 should have the initial value of the retained fraction. 
This can serve as a "check” on the storage and transmis 
sion of the encoded string. 
The actual symbol value for a is obtained when the 

value k on path 105 is applied to translator 131. This 
operation is the inverse as applied to translator 53 in the 
encoder of FIG. 2. The output of translator 131 is sent 
over path 125 back to buffer 19. 
The invention will become even more apparent when 

the embodiments and their clocking are described with 
reference to the following examples of encoding and 
decoding. The improvements are even further discern 
ible when comparison is made with the Huffman en 
coding/decoding of the same source alphabet. 

Example: Determination of augends Ak 
The use of arithmetic coding is illustrated by means 

of an example. Consider a source alphabet S=(a1a2a3, 
and a); where p=0.65, p=0.075, p=0.025 and 
p=0.25. For source S, the entropy is 1.31729 bits per 
symbol, and the lengths for the corresponding Huffman 
code are l= 1, l=3, l=3 and l-2. The average 
length per symbol is 1.45 bits, yielding an encoded 
string which averages 72% of the length of the source 
string, where we presume 2 bits per source symbol of S, 
i.e. a =00, a=01, as= 10 and a F11. The theoretical 
best compression is (1.317272) or 65.86% for source S. 

Consider arithmetic coding, with one fractional bit 
for the length, i.e. where g=1. The problem now is to 
discover a set of lengths l l l and l which are ration 
als with one binary fractional bit (i.e. l.2 is an inte 
ger), which minimize the average length, subject to the 
Kraft inequality. In this case, one can start with the 
Huffman lengths, and can also calculate the "ideal” 
lengths of (+log(1/p))=0.62149, 3.77370, 5.32193 and 
2 respectively. These "ideal ' lengths give entropy 
performance. Exhaustive variations about these values 
leads to lengths lis-0.5, l-4, l=4.5 and l-2.5, the 
Kraft inequality test yields 0.990578, which is less than 
1. For source S, these lengths give an average length of 
1.3625, or a compression of 68.125%, which is better 
than single symbol Huffman coding of 72.5% compres 
sion. To improve over this, Huffman code requires a 
blocking of two symbols at a time to increase the source 
code alphabet to 16 elements. In so doing, the compres 
sion achieved is 66.76%. 
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4,122,440 13 
In devising the values for A for lengths 0.5, 4, 4.5 and 

2,5; consider the "ideal" probabilities p'-2-k which 
would give rise to the above lengths: p"=0.7071, 
p's-0.0625, p.'=0.04419 and p=0.17678. 

For fraction x=0, the A0) values represent the 5 
approximation, to g fractional bits, of the "ideal' cumu 
lative probabilities p. 1'. At least 5 fractional bits are 
suggested, as smallest p' in binary is 0.0000101101. 

10 
A (0) = po = 0.0 c 0.00.0 
A. (0) = p = 0.7071067+ r 0.10110101000 
A' (O) = P = 0.7696067+ c 0.11000101000 
A (0) = P = 0.8138009+ R 0.1101000000 

The task at hand is to approximate A'(0) to r(2) inte- 15 
ger and r-1 fraction bits) such that the decodability 
criteria are satisfied. Assume Max C<29 and max 
Cos<29 are satisfied. Rounding to (r-1)=5 fractional 
bits, 20 

First Try (x = 0) A-A x' (2*).2k 
A (0) = 0.0 71875 5 .7071067812 
A (0) = (0.10111) = .71875 .0625 0 0625 
A (0) = (0.11001), = .78125 0625 5 04419474 
A (0) = (0.11011), = 84375 5 1767766953 25 

Assuming max C= 1 and max Cos= 1.1414, then 
A1(0)-A(O)x Max C02'k 

30 
for k=1, 2 and 3. 
However, Ago24= 1.020526695> 1. This can be 

corrected by going to (r-1)=6 fractional bits, and 
subtracting 2 from A20), A(O) and A(O) for the first 
try. 35 

Second Try (x = 0) A1-A (2*).(2k) 
A (0) = 0.0 703125 .7071067812 
A (0) = (0.101101) = .703125 0625 .0625 
A (0) = (0.110001) = .765625 0625 04494.174 40 
A (0) = (0.110101) = 828.125 1767766953 

In this case, A(0)-A(0)=0.0625 which is greater than 
23=0.044194174 by more than 2, so Acan be made 45 
less by 2-6: 

Third Try (x = 0) A-A. (2).2'k't' 
A (0) = 0 .703125 .7071067812 
A (0) = (0.101101) = .703125 0625 0625 50 
A(O) = (0.110001) = .765625 046875 .044194174 
A (0) = (0.110100) = .8125 ..1767766953 

Now we note 0.8125-2-4=0.9892766953 < 29. 
However, there is a problem with A(0)-A1(0)<21. 55 
But if max Cosis small enough, the decodability criteria 
may still be satisfied based on the actual values of max 
C<29 and max Cos<29. 
As with the x=0 case, begin with the "ideal' augend 

amounts A'(0.5)=2'p-1: 

A'(0.5)=1=(1.0000000), 
A'(0.5)=1.088388348= 1.00010110+ 
A'(0.5)=1.150888348= 1.00100110+ 

First try (x=0.5): Round up the "ideal' values 

60 

65 

Ak A-A x's. (2).2k 
A (5) = 0.000000 = 0 1 O 1 

14 
-continued 

Ak. A-A x' (2).2k'' 
A, (5) = 1.000000 = 1 0.09375 5 0.08838834765 
A, (5) = 1.000110 = 1.09375 0.0625 0 0.0625 
A, (5) = 1.001010 = 1.15625 0 0.25 

For the test on A(0.5), A(0.5)--20-k=1.40625 
<2 = 1.41421, and it is satisfied with the knowledge of 
A40) and A4(0.5); (Max C) and (max. Cos) can be deter 
mined by encoding a string of symbols a Cis initialized 
to zero; and C is bounded above by 29, Cosis bounded 
above by 29; these monotonically increasing sequences 
converge to max C and max Cos respectively. Max C. 
has been determined to be 0.9879032758, which in bi 
nary is 0.111111001110011100111 . . . 00111 . . . Max 
Cos is 1.403225806 which in binary is 
1.01.1001110011100111... 00111... with this new value 
of max Cos; A2(0)-A1(0)=0.703125 is tested against 
(max Cos) 2-1-05-(1,403225806). (0.5)= 
0.701612903; and is seen to satisfy the decodability crite 

a. 

Had this last attempt failed to meet the decodability 
criteria, then the strategy would be to increase the num 
ber of fractional bits (r-1) to more closely approximate 
the "ideal" augends A'(x). As long as X.2-k1, a solu 
tion for q>0 (i.e. noninteger (fractional) lengths l) 
always exists. 
To continue the example, the encoder and decoder 

memories must be loaded. Encoder memory 57 con 
tains: 

address (k) value (l) 
00 (000.1), 
O1 (100.0), 
10 (100.1), 
11 (010.1), 

Memory 59 contains: 

Address (x,k) Value (A (x) 
000 (0.000000), 
0,01 (0.101101), 
0,10 (0,110001), 
0,11 (0.110100), 
100 (0.000000), 
101 (1.000000), 
1,10 (1.000110), 
1,11 (1.001010), 

For the decoder, memories 109 and 117 are the same as 
memories 59 and 57 respectively of the encoder. Mem 
ory 99 is as follows: 

Encoding fork Address X, Cx Symbol 
00.000000 p at 
00:510 00 
00.101101 g a2 
ooloo O1 
00.11000 10. a 

oolool b 
00.110100 1. a. 

olin h 
1,0000000 00 al 

10thin ch 
l, 1.000000 9. a. 

01 
10 
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-continued 

Address X, Cx Encoding fork Symbol 

1,10101 h 
1, 1.001010 ; a4. 
1.1.hi 11 

This memory implements a simultaneous comparison 

4,122,440 

of the value of C (retained fraction x) against the Ai(x). 10 
EXAMPLE: Encoing a symbol string 

Suppose now the string agazaia is to be encoded. Let 
C denote the C-register C(i) the entire encoded string 
including C at the ith step to be encoded. The stops are 1 
as follows: 

Clock (1) 
Clock (2) a) 

Clock (3) a) 

Clock (4) a) 

all = 4; Y = 4, X = 0.5; A(.5) = 1. 85i shifted righ 4 places and added 
to(A(.5): C) 1.0001001010. The lowest order 4 
bits go to the buffer/controller, C is 1.000100. 
als O.5; Y = 1, X = 0 and A (0) = 0 di shifted fight place with the lowest 
bit going to the buffer/controller and 
added to A (0): 
C3) =0,1000id:01010; C = 0.100010, 
o = 4.5, Y = 4, X = .5; 68 s: 1.000110 () is shifted right 4 places (0.000010, 

with a 0-bit to buffer/controller and 
added to A (0): isió666001001010; c = 1.001000. 

Consider now the task of the decoder, given string 
C= 1.00100000001010 and retained fraction X=0.5. 
The decoder is initialized to register x=0 and the 7-bit 
C register is given 1.001000. 

Clock () a) 
b) 

c) 

d) 

Clock (2) a) 

Clock (3) a) 

Clock (4) 

d) 

Address XC (1,1001000) to memory 99 
extractsk(10) as 
ls 4.5; new X will be 0, Y = 1 + new X 
present X = 4 
A (5) = 1.000110 is subtracted from 6600 666616, 
this is shifted left 4 places, filled 
with the next 4 bits from the buffer 
controller (0010) to be stored in C: 
0.100010, (C in buffer = 01010) 
Address X,C(0,0,100010) to memory 99 
extracts K(00) = a. 
1 = 0.5, so new X = 0 and Y = 0.5 + 0.5 = i 
A. (5) = 0.000000 is subtracted from 
Cast 0.0000 
this is shifted left 1 place, with 1 bit (0) . 
supplied from buffer; C = 1.000100; C in 
buffer = 010, 
Address X,C(1,1.000100) to memory 99 
extracts k(01) is a 
1 = 4; so new X as .5, Y = 4.5 - 5 = 4.0 
Á, (5) = 1.000000 is subtracted from 
C = 1.000100, yielding 0.000100 
this is shifted left 4 places, with 4 
bits (1010) supplied from the buffer 
controller, C - 1.001010; buffer/controller 
empty. 
by controller empty, signalling "last 
step'). 
Address X,C(1.001010) to memory 99 
extracts k(11) = a 
1 = 2.5, so new X = 0; Y = 2, 
A (.5) = 1001010 is subtracted from 
C - 1.001010 to yield 0.000000. 
the buffer-controller ignores the shift 
amount, Decoding is complete. 

As a check, the C-register is left all 0's and the X 
register is also at its initial value of 0. Were this not the 
case, then an error must have occurred. 

It is to be understood that the particular embodiment 
of the invention described above and shown in the 
drawings is merely illustrative and not restrictive on the 
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16 
broad invention, that various changes in design, struc 
ture and arrangement may be made without departure 
from the spirit of the broader aspects of the invention as 
defined in the appended claims. 
We claim: 
1. An apparatus for arithmetically encoding succes 

sive symbols in a symbol string from a finite source 
alphabet, said apparatus comprising: 
means including means responsive to each symbol for 

deriving a length indication therefrom and means 
for adding said length indication to a prior length 
attribute for recursively calculating a new length 
attribute for each string segment of arithmetically 
encoded data, each such new length attribute con 
sisting of an integery and fractional part; 

means for generating an r digit value Akindicative of 
each particular new length attribute and the cumu 
lative probability occurrence of an arbitrary order 
ing of the symbols; 

means for recursively computing the new string seg 
ment of arithmetically encoded data by adding the 
r digit value A to a predetermined number r of 
digits of the prior string segment; and 

means responsive to the integer part of the new 
length attribute for shifting out of the apparatus J 
of the least significant digits of the prior string 
segment of encoded data. 

2. An apparatus according to claim 1, wherein the 
finite source alphabet includes symbols having at least 
semi-stationary relative frequency of occurrence, the 
arbitrary ordering of symbols is based upon a decreas 
ing relative frequency of occurrence. 

3. An apparatus according to claim 1, wherein the 
predetermined number r of digits are the r most signifi 
cant digits and the only portion of the prior spring of 
encoded data functioning as an arithmetic operand. 

4. An arithmetic string encoder comprising: 
means including means responsive to each successive 
symbol from a source of symbols from a finite 
alphabet for generating a length attribute for a 
string of encoded data, the means generating the 
length attribute recursively from the sum of the 
length attribute of a previous string and a q digit 
rational approximation of the instant symbol; and 

means jointly responsive to each successive symbol 
and the generated length attribute for forming a 
new string, said joint means forming the new string 
recursively from the sum of the last string and the 
product of the cumulative probability of occur 
rence of an arbitrary ordering of all symbols ar 
ranged down to but not inclusive of the symbol 
being encoded and the integer two raised to a 
power equal to the generated length attribute, said 
joint means including means for shifting out of the 
encoder the least significant number of digits of the 
last string, which number is the greatest integer 
equal to or less than the integer portion of the 

: generated length attribute. 
5. An apparatus for arithmetically decoding the string 

C(sa) in order to extract symbol a which symbol was 
encoded by apparatus according to claim 4, wherein 
said decoding apparatus comprises: 
means responsive to C(sa) and x(sa) for ascertaining 

the largest index k of the arbitrary ordering of 
symbols whose value A is less than the r most 
significant digits of C(sa), 0s C(sa)<2, 0s A 
k<2, and ralog(1/p); p, being the probability 
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least frequently occurring symbol in the source 
alphabet. 

6. An apparatus for arithmetically encoding succes 
sive terms in a symbol strings=aa... from a source 
alphabet of N symbols, the apparatus being of the type 
in which each new term a gives rise to a new code 
string C(sa) and a new code string length attribute 
L(sa), where 1skSN, the apparatus comprising: 
means (57, 61-77) including a table of concordance 
between symbols at and their length indicators 
l(a), where 

2(a) < 1 k = 1 K 

said means being responsive to each symbol a for ob 
taining la) from the table and for generating the length 
attribute, said attribute being inclusive of integery and 
x values and being generated according to the recur 
sion: 
L(sa)=L(s) + I(a)=integer y(sax)=fraction x(sa); 
and 

means (59, 79-89) jointly responsive to each symbol 
at and the new length indicator L(sa) for generat 
ing the new code string C(sa) according to the 
recursion: 

where 
P-=Xp(a), P=0, p=ll PN=1, P-1 being the 
cumulative probability of occurrence of an arbi 
trary ordering of the symbols; said jointly respon 
sive means including means (77-85) for shifting out 
of the encoder y(sa) of least significant digits of 
C(s). 

7. An apparatus for encoding successive terms in a 
symbol string s=aa, . . . from a source alphabet of N 
symbols, the apparatus being of a type in which each 
new term a gives rise to a new code string C(sa) and a 
new code string length indicator L(sa), comprising: 

first means (57, 61-77) including a table of concor 
dance between the symbols at and their length 
indicators l(a), X2eoC1, said means being re 
sponsive to each symbol a for obtaining la) from 
the table and for generating an integer y(sa) and 
fractional x(sa) portion of L(sa) according to the 
recursion: 

L(sa)=L(s)--i(a)=integery.(sa)--fraction x(sa) 

second means (59) jointly responsive to at and x(sa) 
for producing an intermediate r digit value 
A= P2(k), where: 
Ps)2P, 

P=0, Py=1, P-being the cumulative probability 
of occurrence for an arbitrary ordering of the sym 
bols; and 

third means (79–89) for generating 28.C(sa) ac 
cording to the recursion: 
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said second and third means including means (77-85) 
for shifting out of the apparatus y(sa) of the least 
significant digits of C(s). 

8. An apparatus according to claim 7, wherein the 
length indicator L(sa) is determined by the recursion: 

L(sa)=x(s)--(a). 
9. An apparatus according to claim 7, wherein Allies 

within the range: 

P-2 (90-2-(-sAsP2(k)+2-(-). 
10. An apparatus according to claim 7, wherein 

r2log 1/p p being the probability of the least fre 
quently occurring symbol. 

11. An apparatus according to claim 7, wherein the 
length indicator la) is a q digit rational number ap 
proximation as rounded off to the inverse log of the 
probability of occurrence of a 

12. An apparatus for arithmetically decoding a code 
string C(sa) utilizing a calculated length attribute 
L(sa) thereof in order to extract symbol a comprising 
means (21,91,115,123) for receiving r digits of C(sa) 
and for receiving t digits of the integer value y(sa) 
of the length attribute of the new code word; 

first means (93.95,9799,105) accessed by the higher 
order r digits of C(sa) and g digits of x(sa) for 
generating position number k of an arbitrary order 
of source alphabet symbols; 

second means (105,107,109) responsive to position 
number k and x(sa) for generating corresponding 
value 

k - 1 
A = P-129, P- as i 2. 1 2P, P = O, P = 1, 

where P-1 is the cumulative probability of occur 
rence of the arbitrary order of source alphabet 
symbols; 

third means (93,111,113) for determining the differ 
ence between C(sa) and A, forming thereby ther 
digit quantity 2 RC(s); 

fourth means (101,103,117-129) also responsive to 
position number k and x (sa) for generating the 
integer value y(sa) according to the recursion: 

fifth means (91) for shifting 2-((R)-C(s) to the right by 
y(sa) digit positions and for causing the receiving 
means to input the next y(sa) higher order digits of 
C(s) thereby completing the recursion or the r 
highest ordered digits of the encoded string; 

sixth means (123,105,129) for applying y(sa) to the 
fifth means, x(sa) to the first and second means, 
and x(s) to the fourth means; 

seventh means (Xlator, 25) converting the position 
number k into the symbol a 

13. An apparatus according to claim 12, wherein the 
decoded values of C(sa)=0 and x(sa)=0 are indica 
tive of the end of the coded string. 

. . . . 
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