
IEEE Network • March/April 200124

ntil recently, Internet routers provided only best-
effort service, servicing packets in a first-come-
first-served manner. Routers are now called on to
provide different qualities of service to different

applications, which means routers need new mechanisms
such as admission control, resource reservation, per-flow
queuing, and fair scheduling. All of these mechanisms
require the router to distinguish packets belonging to differ-
ent flows.

Flows are specified by rules applied to incoming packets.
We call a collection of rules a classifier. Each rule specifies a
flow to which a packet may belong based on some criteria
applied to the packet header (shown in Fig. 1). To illustrate
the variety of classifiers, consider some examples of how pack-
et classification can be used by an Internet service provider
(ISP) to provide different services. Figure 2 shows ISP1 con-
nected to three different sites: enterprise networks E1 and E2,
and a network access point1 (NAP), which is in turn connect-
ed to ISP2 and ISP3. ISP1 provides a number of different ser-
vices to its customers, as shown in Table 1.

Table 2 shows the flows into which an incoming packet
must be classified by the router at interface X. Note that the
flows specified may or may not be mutually exclusive. For
example, the first and second flow in Table 2 overlap. This is
common in practice, and when no explicit priorities are speci-
fied, we follow the convention that rules closer to the top of
the list take priority.

Problem Statement
Each rule of a classifier has d components. R[i] is the ith com-
ponent of rule R, and is a regular expression on the ith field
of the packet header. A packet P is said to match rule R, if "i,
the ith field of the header of P, satisfies the regular expression
R[i]. In practice, a rule component is not a general regular
expression but is often limited by syntax to a simple
address/mask or operator/number(s) specification. In an
address/mask specification, a 0 (1) at bit position x in the
mask denotes that the corresponding bit in the address is a
don’t care (significant) bit. Examples of operator/number(s)
specifications are eq 1232 and range 34-9339. Note that a pre-
fix can be specified as an address/mask pair where the mask is
contiguous (i.e., all bits with value 1 appear to the left of bits
with value 0 in the mask). It can also be specified as a range
of width equal to 2t where t = 32 – prefixlength. Most com-
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Abstract
The process of categorizing packets into “flows” in an Internet router is called packet
classification. All packets belonging to the same flow obey a predefined rule and
are processed in a similar manner by the router. For example, all packets with the
same source and destination IP addresses may be defined to form a flow. Packet
classification is needed for non-best-effort services, such as firewalls and quality of
service; services that require the capability to distinguish and isolate traffic in differ-
ent flows for suitable processing. In general, packet classification on multiple fields is
a difficult problem. Hence, researchers have proposed a variety of algorithms which,
broadly speaking, can be categorized as basic search algorithms, geometric algorithms,
heuristic algorithms, or hardware-specific search algorithms. In this tutorial we
describe algorithms that are representative of each category, and discuss which type
of algorithm might be suitable for different applications.

UU

■ Table 1. Customer services provided by ISP1.

Packet filtering Deny all traffic from ISP3 (on interface X)
destined to E2.

Policy routing Send all voice-over-IP traffic arriving from
E1 (on interface Y) and destined to E2
via a separate ATM network.

Accounting and Treat all video traffic to E1 (via interface Y)
as highest priority and perform accounting
for the traffic sent this way.

Traffic rate limiting Ensure that ISP2 does not inject more than
10 Mb/s of e-mail traffic and 50 Mb/s of
total traffic on interface X.

Traffic shaping Ensure that no more than 50 Mb/s of Web
traffic is injected into ISP2 on interface X.

Service Example

■ Table 2. Flows into which an incoming packet must be classi-
fied by the router at interface X.

Email and from ISP2 Source link-layer address, source transport
port number

From ISP2 Source link-layer address

From ISP3 and going Source link-layer address,
to E2 destination network-layer address

Flow Relevant packet fields

1 A network access point is a network site which acts as an exchange point for
Internet traffic. ISPs connect to the NAP to exchange traffic with other ISPs.
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monly occurring specifications can be
represented by ranges.

An example real-life classifier in
four dimensions is shown in Table 3.
By convention, the first rule R1 is of
highest priority, and rule R7 is of low-
est priority. Some example classifica-
tion results are shown in Table 4.

Longest prefix matching for routing
lookups is a special case of one-dimen-
sional packet classification. All packets
destined to the set of addresses
described by a common prefix may be
considered to be part of the same flow.
The address of the next hop to which the packet should
be forwarded is the associated action. The length of the
prefix defines the priority of the rule.

Performance Metrics for Classification
Algorithms
• Search speed — Faster links require faster classifica-

tion. For example, links running at 10 Gb/s can
bring 31.25 million packets/s (assuming minimum-
sized 40-byte TCP/IP packets).

• Low storage requirements — Small storage require-
ments enable the use of fast memory technologies
like static random access memory (SRAM). SRAM
can be used as an on-chip cache by a software algo-
rithm and as on-chip SRAM for a hardware algorithm.

• Ability to handle large real-life classifiers.
• Fast updates — As the classifier changes, the data struc-

ture needs to be updated. We can categorize data struc-
tures into those which can add or delete entries
incrementally, and those which need to be reconstructed
from scratch each time the classifier changes. When the
data structure is reconstructed from scratch, we call it pre-
processing. The update rate differs among different appli-
cations: a very low update rate may be sufficient in
firewalls where entries are added manually or infrequent-
ly, whereas a router with per-flow queues may require very
frequent updates.

• Scalability in the number of header fields used for classification.

• Flexibility in specification — A classification algorithm should
support general rules, including prefixes, operators (range,
less than, greater than, equal to, etc.), and wildcards. In some
applications, noncontiguous masks may be required.

Classification Algorithms
Background
For the next few sections, we will use the example classifier in
Table 5 repeatedly. The classifier has six rules in two fields
labeled F1 and F2; each specification is a prefix of maximum
length 3 bits. We will refer to the classifier as C = {Rj} and
each rule Rj as a 2-tuple: <Rjl, Rj2>.

■ Figure 1. This figure shows some of the header fields (and their widths) that might be used
for classifying the packet. Although not shown in this figure, higher-layer (e.g., application-
level) headers may also be used.

L2: Layer 2 (e.g., Ethernet)
L3: Layer 3 (e.g., IP)
L4: Layer 4 (e.g., TCP)

DA: Destination address
SA: Source address
PROT: Protocol
SP: Source port
DP: Destination port

Payload L4-SP
16b

L4-DP
16b

L4-PROT
8b

L3-SA
32b

L3-DA
32b

L3-PROT
8b

L2-SA
48b

L2-DA
48b

Transport layer header Network layer header Link layer header

■ Figure 2. An example network of an ISP (ISP1) connected to two enter-
prise networks (E1 and E2) and to two other ISP networks across a net-
work access point (NAP).

X
Z

Y

Router

ISP2

ISP1

ISP3

NAP

E1

E2

■ Table 3. A real-life classifier in four dimensions.

R1 152.163.190.69/255.255.255.255 152.163.80.11/255.255.255.255 * * Deny

R2 152.168.3.0/255.255.255.0 152.163.200.157/255.255.255.255 eq www udp Deny

R5 152.163.198.4/255.255.255.255 152.163.160.0/255.255.252.0 gt 1023 tcp Permit

R6 0.0.0.0/0.0.0.0 0.0.0.0/0.0.0.0 * * Permit

Rule Network-layer destination Network-layer source (address/ Transport-layer Transport-layer Action
(address/mask) mask) destination protocol

■ Table 4. Example classification results.

P1 152.163.190.69 152.163.80.11 www tcp R1, deny

P2 152.168.3.21 152.163.200.157 www udp R2, deny

P3 152.168.198.4 152.163.160.10 1024 tcp R5, permit

Packet Network-layer destination Network-layer source Transport-layer Transport-layer protocol Best matching rule,
header destination action
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Bounds from Computational Geometry — There is a simple geo-
metric interpretation of packet classification. While a prefix repre-
sents a contiguous interval on the number line, a two-dimensional
rule represents a rectangle in two-dimensional Euclidean
space, and a rule in d dimensions represents a d-dimen-
sional hyper-rectangle. A classifier is therefore a collec-
tion of prioritized hyper-rectangles, and a packet header
represents a point in d dimensions. For example, Fig. 3
shows the classifier in Table 5 geometrically in which
high-priority rules overlay lower-priority rules. Classify-
ing a packet is equivalent to finding the highest-priority
rectangle that contains the point representing the pack-
et. For example, point P(011,110) in Fig. 3 would be
classified by rule R5.

There are several standard geometry problems
(e.g., ray shooting, point location, and rectangle
enclosure) that resemble packet classification. Point
location involves finding the enclosing region of a
point, given a set of nonoverlapping regions. The
best bounds for point location in N rectangular
regions and d > 3 dimensions are O(logN) time with
O(Nd) space;2 or O(logN)d–1) time with O(N) space
[1, 2]. In packet classification, hyper-rectangles can
overlap, making classification at least as hard as
point location. Hence, a solution is either impracti-
cably large (with 100 rules and 4 fields, Nd space is
about 100 MBytes) or too slow ((logN)d–1 is about
350 memory accesses).

We can conclude that:
• Multifield classification is considerably more com-

plex than one-dimensional longest prefix matching.
• Complexity may require that practical solutions

use heuristics.

Range Lookups — Packet classification is made yet
more complex by the need to match on ranges as
well as prefixes. A range lookup for a dimension of
W width bits can be defined as:

Definition 1 — Given a set of N disjoint ranges G = {Gi = [li,
ui]} that form a partition of the number line [0,2W – 1], i.e., li
and ui are such that l1 = 0, li £ ui, li+1 = ui + 1, uN = 2W – 1;
the range lookup problem is to find the range GP (and any asso-
ciated information) that contains an incoming point.

To assess the increased complexity of ranges, we can con-
vert each range to a set of prefixes (a prefix of length corre-
sponds to a range where the least significant bits of l are all 0
and those of u are all 1) and use a longest prefix matching
algorithm. Table 6 shows some examples of range-to-prefix
conversions for W = 4.

A W-bit range can be represented by at most 2W – 2 prefixes
(see the last row of Table 6 as an example), which means a pre-
fix matching algorithm can find ranges with times as much stor-
age. Feldman and Muthukrishnan [3] show a reduction of
ranges to prefix lookup with a twofold storage increase that can
be used in some specific multidimensional classification schemes.

Taxonomy of Classification Algorithms
The classification algorithms we will describe here can be cat-
egorized into the four classes shown in Table 7.

We now proceed to describe representative algorithms
from each class.

Basic Data Structures
Linear Search — The simplest data structure is a linked list of
rules stored in order of decreasing priority. A packet is com-
pared with each rule sequentially until a rule is found that

■ Figure 4. A hierarchical trie data structure. The gray pointers are the next-
trie pointers. The path traversed by the query algorithm on an incoming
packet (000, 010) is shown.
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■ Figure 3. A geometric representation of the classifier in Table 5.
A packet represents a point, for instance P(011,110), in two-
dimensional space. Note that R4 is hidden by R1 and R2.
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■ Figure 5. A set-pruning trie data structure. The gray pointers are the "next-
trie" pointers. The path traversed by the query algorithm on an incoming
packet (000, 010) is shown.
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2 The time bound for d ≤ 3 is O(loglogN) [1] but has large
constant factors.
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matches all relevant fields. While simple and stor-
age-efficient, this algorithm clearly has poor scaling
properties; the time to classify a packet grows lin-
early with the number of rules.

Hierarchical Tries — A d-dimensional hierarchical
radix trie is a simple extension of the one dimen-
sional radix trie data structure, and is constructed
recursively as follows. If d is greater than 1, we first
construct a 1-dimensional trie, called the F1-trie,
on the set of prefixes {Rj1}, belonging to dimension
F1 of all rules in the classifier, C = {Rj}. For each
prefix, p, in the F1-trie, we recursively
construct a (d – 1) -dimensional hierar-
chical trie, Tp, on those rules which
specify exactly p in dimension F1, that
is, the set of rules {Rj:Rj1 = p}. Prefix
p is linked to the trie Tp using a next-
trie pointer. The storage complexity of
the data structure for an N-rule classi-
fier is O(NdW). The data structure for
the classifier in Table 5 is shown in Fig.
4. Hierarchical tries are sometimes
called multilevel tries, backtracking-
search tries, or trie-of-tries.

Classification of an incoming packet (n1, n2, …, nd) pro-
ceeds as follows. The query algorithm first traverses the F1-
trie based on the bits in n1. At each F1-trie node encountered,
the algorithm follows the next-trie pointer (if present) and tra-
verses the (d – 1)-dimensional trie. The query time complexity
for d dimensions is therefore O(Wd). Incremental updates can
be carried out similarly in O(d2W) time since each component
of the updated rule is stored in exactly one location at maxi-
mum depth O(dW).

Set-Pruning Tries — A set-pruning trie data structure [4] is simi-
lar, but with reduced query time obtained by replicating rules to
eliminate recursive traversals. The data structure for the classifi-
er in Table 5 is shown in Fig. 5. The query algorithm for an
incoming packet (n1, n2, …, nd) need only traverse the F1-trie to
find the longest matching prefix of n1, follow its next-trie point-
er (if present), traverse the F2-trie to find the longest matching

prefix of n1, and so on for all dimensions. The rules
are replicated to ensure that every matching rule
will be encountered in the path. The query time is
reduced to O(dW) at the expense of increased stor-
age of O(NddW) since a rule may need to be repli-
cated O(Nd) times. Update complexity is O(Nd);
hence, this data structure works only for relatively
static classifiers.

Geometric Algorithms
Grid-of-tries — The grid-of-tries data structure,
proposed by Srinivasan et al. [5] for 2D classifica-

tion, reduces storages space by allo-
cating a rule to only one trie node as
in a hierarchical trie, and yet achieves
O(W) query time by precomputing
and storing a switch pointer in some
trie nodes. A switch pointer is labeled
0 or 1 and guides the search process.
The conditions that must be satisfied
for a switch pointer labeled b (b = 0
or 1) to exist from a node w in the
trie Tw to a node x of another trie Tx
are (Fig. 6):
• Tx and Tw are distinct tries built

on the prefix components of dimension F2. Tx and Tw are
pointed to by two distinct nodes, say r and s respectively of
the same trie, T, built on prefix components of dimension
F1.

• The bit-string that denotes the path from the root node to
node w in trie Tw concatenated with the bit b is identical to
the bit-string that denotes the path from the root node to
node x in the trie Tx.

• Node w does not have a child pointer labeled b.

■ Table 5. An exam-
ple classifier.

R1 00* 00*

R2 0* 01*

R3 1* 0*

R4 00* 0*

R5 0* 1*

R6 * 1*

Rule F1 F2

■ Table 6. Examples of range-to-prefix conver-
sions for W = 4.

[4,7] 01**

[3,8] 0011, 01**, 1000

[1,14] 0001, 001*, 01**, 10**, 110*, 1110

Range Constituent prefixes

■ Table 7. Four classes of classification algorithms.

Basic data structures Linear search, caching, hierarchical tries,
set-pruning tries

Geometry-based Grid-of-tries, AQT, FIS

Heuristic RFC, hierarchical cuttings, tuple-space
search

Hardware only Ternary CAM, bitmap-intersection

Category Algorithms

■ Figure 6. The conditions under which a switch pointer exists
from node w to x.

T
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W
x

y

Tw

F1-trie

F2-tries

Tx

■ Figure 7. The grid-of-tries data structure. The switch pointers
are shown dashed. The path traversed by the query algorithm on
an incoming packet (000, 010) is shown.
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• Node s in trie T is the closest ancestor of node r that satis-
fies the above conditions.
If the query algorithm traverses paths U1(s, root (Tx), y, x)

and U2(r, root (Tw), w) in a hierarchical trie, it need only tra-
verse the path (s, r, root (Tw), w, x) on a grid-of-tries. This is
because paths U1 and U2 are identical (by condition 2 above)
till U1 terminates at node w because it has no child branch
(by condition 3). The switch pointer eliminates the need for
backtracking in a hierarchical trie without the storage of a set-
pruning trie. Each bit of the packet header is examined at
most once, so the time complexity reduces to O(W), while
storage complexity O(NW) is the same as a 2D hierarchical
trie. However, switch pointers makes incremental updates dif-
ficult, so the authors [5] recommend rebuilding the data struc-
ture (in time O(NW)) for each update. An example of the
grid-of-tries data structure is shown in Fig. 7.

Reference [5] reports 2 Mbytes of storage for a 20,000 2D
classifier with destination and source IP prefixes. The stride of
the destination (source) prefix trie was 8 (5) bits, respectively,
leading to a maximum of nine memory accesses.

Grid-of-tries works well for 2D classification, and can be used
for the last two dimensions of a multidimensional hierarchical
trie, decreasing the classification time complexity by a factor of
W to O(NWd–1). As with hierarchical and set-pruning tries, grid-
of-tries handles range specifications by splitting into prefixes.

Cross-Producting — Cross-producting [5] is suitable for an
arbitrary number of dimensions. Packets are classified by com-
posing the results of separate 1D range lookups for each
dimension, as explained below.

Constructing the data structure involves computing a set of

ranges, Gk, of size sk = |Gk|, projected by rule specifica-
tions in each dimension k,1 £ k £ d. Let r j

k, 1 £ j £ sk,
denote the jth range in Gk. A cross-product table CT of size

is constructed, and the best matching rule for each entry

is precomputed and stored. Classifying a packet (n1, n2,
…, nd) involves a range lookup in each dimension k to
identify the range r ik

k containing point vk. The tuple

is then found in the cross-product table CT which contains the
precomputed best matching rule. Figure 8 shows an example.

Given that N prefixes leads to at most 2N – 2 ranges, sk £ 2N
and CT is of size O(Nd). The lookup time is O(dtRL) where tRL is
the time complexity of finding a range in one dimension.
Because of its high worst case storage complexity, cross-product-
ing is suitable for very small classifiers. Reference [5] proposes
using an on-demand cross- producting scheme together with
caching for classifiers bigger than 50 rules in five dimensions.
Updates require reconstruction of the cross-product table, so
cross-producting is suitable for relatively static classifiers.

A 2D Classification Scheme [6] — Lakshman and Stiliadis [6]
propose a 2D classification algorithm where one dimension,
say F1, is restricted to have prefix specifications while the sec-
ond dimension, F2, is allowed to have arbitrary range specifi-
cations. The data structure first builds a trie on the prefixes of
dimension F1, and then associates a set Gw of nonoverlapping
ranges to each trie node, w, that represents prefix p. These
ranges are created by (possibly overlapping) projections on
dimension F2 of those rules, Sw, that specify exactly p in
dimension F1. A range lookup data structure (e.g., an array or
a binary search tree) is then constructed on Gw and associated
with trie node w. An example is shown in Fig. 9.

Searching for point P(n1, n2) involves a range lookup in data
structure Gw for each trie node, w, encountered. The search in
Gw returns the range containing n2, and hence the best match-
ing rule. The highest priority rule is selected from the rules
{Rw} for all trie nodes encountered during the traversal.

The storage complexity is O(NW) because each rule is
stored only once in the data structure. Queries take O(WlogN)
time because an O(logN) range lookup is performed for every

node encountered in the F1-trie. This can be reduced
to O(W + logN) using fractional cascading [7], but
that makes incremental updates impractical.

Area-Based Quadtree — The area-based quadtree
(AQT) was proposed by Buddhikot et al. [8] for 2D
classification. AQT allows incremental updates
whose complexity can be traded off with query time
by a tunable parameter. Each node of a quadtree [7]
represents a 2D space that is decomposed into four
equal-sized quadrants, each of which is represented
by a child node. The initial 2D space is recursively
decomposed into four equal-sized quadrants till each
quadrant has at most one rule in it (Fig. 10 shows an
example of the decomposition). Rules are allocated
to each node as follows. A rule is said to cross a
quadrant if it completely spans at least one dimen-
sion of the quadrant. For instance, rule R6 spans the
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■ Figure 8. The table produced by the cross-producting algorithm and
its geometric representation.
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■ Figure 9. The data structure for the example classifier of Table 5. The
search path for example packet P(011, 110) resulting in R5 is also shown.
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quadrant represented by the root node in
Fig. 10, while R5 does not. If we divide the
2D space into four quadrants, rule R5 cross-
es the northwest quadrant while rule R3
crosses the southwest quadrant. We call the
set of rules crossing the quadrant repre-
sented by a node in dimension k the k-
crossing filter set (k- CFS) of that node.

Two instances of the same data structure
are associated with each quadtree node —
each stores the rules in k-CFS (k = 1,2).
Since rules in crossing filter sets span at
least one dimension, only the range speci-
fied in the other dimension need be stored.
Queries proceed two bits at a time by trans-
posing one bit from each dimension, with
two 1D lookups being performed (one for
each dimension on k-CFS) at each node.
Figure 11 shows an example.

Reference [8] proposes an efficient update
algorithm that, for N two-dimensional rules,
has O(NW) space complexity, O(aW) search
time and O(aa÷N) update time, where a is a
tunable integer parameter.

Fat Inverted Segment Tree (FIS-Tree) — Feld-
man and Muthukrishnan [3] propose the fat
inverted segment tree (FIS-tree) for 2D
classification as a modification of a segment
tree. A segment tree [7] stores a set S of
possibly overlapping line segments to
answer queries such as finding the highest priority line seg-
ment containing a given point. A segment tree is a balanced
binary search tree containing the endpoints of the line seg-
ments in S. Each node, w, represents a range Gw, leaves rep-
resent the original line segments in S, and parent nodes
represent the union of the ranges represented by their chil-
dren. A line segment is allocated to a node w if it contains Gw
but not Gparent(w). The highest-priority line segment allocated
to a node is precomputed and stored at the node. A query tra-
verses the segment tree from the root, calculating the highest
priority of all the precomputed segments encountered. Figure
12 shows an example segment tree.

An FIS-tree is a segment tree
with two modifications:
• The segment tree is compressed

(made “fat”) by increasing the
degree to more than two in order
to decrease its depth, and occu-
pies a given number of levels l.

• Up-pointers from child to parent
nodes are used.

The data structure for two dimen-
sions consists of an FIS-tree on
dimension F1 and a range lookup
data associated with each node. An
instance of the range lookup data
structure associated with node w of
the FIS-tree stores the ranges
formed by the F2-projections of
those classifier rules whose F1-pro-
jections were allocated to w.

A query for point P(n1, n2) first
solves the range lookup problem
on dimension F1. This returns a
leaf node of the FIS-tree represent-
ing the range containing the point

n1. The query algorithm then follows the up-pointers from this
leaf node toward the root node, carrying out 1D range lookups
at each node. The highest-priority rule containing the given
point is calculated at the end of the traversal.

Queries on an l-level FIS-tree have complexity O((l +
1)tRL) with storage complexity O(lnl+1), where tRL is the time
for a 1D range lookup. Storage space can be traded off with
search time by varying l. Modifications to the FIS-tree are
necessary to support incremental updates; even then, it is easi-
er to support inserts than deletes [3]. The static FIS-tree can
be extended to multiple dimensions by building hierarchical

■ Figure 10. A quadtree constructed by decomposition of two-dimensional space.
Each decomposition results in four quadrants.

NW (00)

SW (01)

NE (10) 00 01 10 11

SE (11)

■ Figure 11. An AQT data structure. The path traversed by the query algorithm for an
incoming packet P(001, 010), yields R1 as the best matching rule.
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■ Figure 12. The segment tree and the 2-level FIS-tree for the classifier of Table 5.
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FIS-trees, but the bounds are similar to other methods stud-
ied earlier [3].

Measurements on real-life 2D classifiers are reported in [3]
using the static FIS-tree data structure. Queries took 15 or
less memory operations with a two-level tree, 4–60K rules,
and 5 Mbytes of storage. Large classifiers with one million 2D
rules required three levels, 18 memory accesses per query, and
100 Mbytes of storage.

Heuristics
As we saw earlier, the packet classification problem is expen-
sive to solve in the worst case: theoretical bounds state that
solutions to multifield classification require either storage that
is geometric or a number of memory accesses that is polyloga-
rithmic in the number of classification rules. We can expect
that classifiers in real networks have considerable structure
and redundancy that might be exploited by a heuristic. That is
the motivation behind the algorithms described in this section.

Recursive Flow Classification — RFC [9] is a heuristic for packet
classification on multiple fields. Classifying a packet involves
mapping bits in the packet header to a T bit action identifier,
where T = logN, T « S. A simple but impractical method could
precompute the action for each of the
2S different packet headers, yielding the
action in one step. RFC attempts to
perform the same mapping over several
phases, as shown in Fig. 13; at each
stage the algorithm maps one set of val-
ues to a smaller set. In each phase a set
of memories return a value shorter (i.e.,
expressed in fewer bits) than the index
of the memory access. The algorithm,
illustrated in Fig. 14, operates as fol-
lows:
• In the first phase, d fields of the

packet header are split up into mul-
tiple chunks that are used to index
into multiple memories in parallel.
The contents of each memory are
chosen so that the result of the
lookup is narrower than the index.

• In subsequent phases, memories are
indexed using the results from earli-
er phases.

• In the final phase, the memory yields
the action.
The algorithm requires construction

of the contents of each memory,
detailed in [9].

Reference [9] reports that with real-

life 4D classifiers of up to 1700 rules, RFC
appears practical for 10 Gb/s line rates in
hardware and 2.5 Gb/s rates in software. How-
ever, the storage space and preprocessing time
grow rapidly for classifiers larger than about
6000 rules. An optimization described in [9]
reduces the storage requirement of a 15,000
four-field classifier to below 4 Mbytes.

Hierarchical Intelligent Cuttings — HiCuts [10]
partitions the multidimensional search space
guided by heuristics that exploit the structure
of the classifier. Each query leads to a leaf
node in the HiCuts tree, which stores a small
number of rules that can be searched sequen-
tially to find the best match. The characteris-

tics of the decision tree (its depth, degree of each node, and
the local search decision to be made at each node) are chosen
while preprocessing the classifier based on its characteristics
(see [10] for the heuristics used).

Each node, n, of the tree represents a portion of the geo-
metric search space. The root node represents the complete
d-dimensional space, which is partitioned into smaller geomet-
ric subspaces, represented by its child nodes, by cutting across
one of the d dimensions. Each subspace is recursively parti-
tioned until no subspace has more than B rules, where B is a
tunable parameter of the preprocessing algorithm. An exam-
ple is shown in Fig. 15 for two dimensions with B = 2.

Parameters of the HiCuts algorithm can be tuned to trade
off query time against storage requirements. On 40 real-life
4D classifiers with up to 1700 rules, HiCuts requires less than
1 Mbyte of storage with a worst case query time of 20 memory
accesses, and supports fast updates.

Tuple Space Search — The basic tuple space search algorithm
[11] decomposes a classification query into a number of exact
match queries. The algorithm first maps each d-dimensional
rule into a d-tuple whose ith component stores the length of the
prefix specified in the ith dimension of the rule (the scheme

■ Figure 13. Showing the basic idea of RFC. The reduction is carried out in multi-
ple phases, with a reduction in phase I being carried out recursively on the image
of the phase I – 1. The example shows the mapping of bits to bits in three phases.

2S=2128 2T=212

Phase 0 Phase 1 Phase 2 Phase 3

Simple one-step classification

Recursive classification

2S=2128 264 224 2T=212

■ Figure 14. Packet flow in RFC.
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supports only prefix specifications).
Hence, the set of rules mapped to
the same tuple are of a fixed and
known length, and can be stored in
a hash table. Queries perform exact
match operations on each of the
hash tables corresponding to all pos-
sible tuples in the classifier. An
example is shown in Fig. 16.

Query time is M hashed memory
accesses, where M is the number of
tuples in the classifier. Storage com-
plexity is O(N) since each rule is
stored in exactly one hash table.
Incremental updates are supported
and require just one hashed memo-
ry access to the hashed table associ-
ated with the tuple of the modified
rule. In summary, the tuple space
search algorithm performs well for
multiple dimensions in the average
case if the number of tuples is
small. However, the use of hashing
makes the time complexity of
searches and updates nondetermin-
istic. The number of tuples could
be very large, up to O(Wd), in the
worst case. Furthermore, since the
scheme supports only prefixes, the
storage complexity increases by a
factor of O(Wd) for generic rules
because each range could be split
into O(W) prefixes in the manner
explained earlier.

Hardware-Based Algorithms
Ternary CAMs — A TCAM stores each W-bit field as a (val,
mask) pair; where val and mask are each W-bit numbers. For
example, if W = 5, a prefix 10* will be stored as the pair
(10000, 11000). An element matches a given input key by
checking if those bits of val for which the mask bit is 1 match
those in the key.

A TCAM is used as shown in Fig. 17. The TCAM
memory array stores rules in decreasing order of pri-
orities, and compares an input key against every ele-
ment in the array in parallel. The N-bit bit vector,
matched, indicates which rules match, so the N-bit
priority encoder indicates the address of the highest-
priority match. The address is used to index into a
RAM to find the action associated with this prefix.

TCAMs are increasingly being deployed because
of their simplicity and speed (the promise of single
clock-cycle classification). Several companies produce
2 Mb TCAMs capable of single and multifield classi-
fication in as little as 10 ns. Both faster and denser
TCAMs can be expected in the near future. There
are, however, some disadvantages to TCAMs:
• A TCAM is less dense than a RAM, storing fewer

bits in the same chip area. One bit in an SRAM typ-
ically requires 4–6 transistors, while one bit in a
TCAM requires 11–15 transistors [12]. A 2 Mb
TCAM running at 100 MHz costs about $70 today,
while 8 Mb of SRAM running at 200 MHz costs
about $30. Furthermore, range specifications need
to be split into multiple masks, reducing the number
of entries by up to (2W–2)d in the worst case. If only
two 16-bit dimensions specify ranges, this is a multi-

plicative factor of 900. Newer TCAMs, based on DRAM
technology, have been proposed and promise higher densi-
ties. One unresolved issue with DRAM-based CAMs is the
detection of soft errors caused by alpha particles.

• TCAMs dissipate more power than RAM solutions because an
address is compared against every TCAM element in parallel.
At the time of writing, a 2 Mb TCAM chip running at 50 MHz

■ Figure 15. A possible HiCuts tree for the example classifier in Table 5. Each ellipse in the tree
denotes an internal node with a tuple (size of 2D space represented, dimension to cut across,
number of children). Each square is a leaf node that contains the actual classifier rules.
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■ Figure 16. The tuples and associated hash tables in the tuple space search scheme for the
example classifier of Table 5.
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■ Figure 17. The lookup operation using a ternary CAM.
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dissipates about 7 W [13, 14]. In comparison, an 8 Mb SRAM
running at 200 MHz dissipates approximately 2 W [15].
TCAMs are appealing for relatively small classifiers, but

will probably remain unsuitable in the near future for:
• Large classifiers (256K–1M rules) used for microflow recog-

nition at the edge of the network
• Large classifiers (128–256K rules) used at edge routers that

manage thousands of subscribers (with a few rules per sub-
scriber)

• Extremely high-speed (greater than 200 Mpackets/s) classifi-
cation

• Price-sensitive applications

Bitmap-Intersection — The bitmap-intersection classification
scheme proposed in [6] is based on the observation that the
set of rules, S, that match a packet is the intersection of d
sets, Si, where Si is the set of rules that match the packet in
the ith dimension alone. While cross-producting precomputes
S and stores the best matching rule in S, this scheme com-
putes S and the best matching rule during each classification
operation.

In order to compute intersection of sets in hardware, each
set is encoded as an N-bit bitmap with each bit corresponding
to a rule. The set of matching rules is the set of rules whose
corresponding bits are 1 in the bitmap. A query is similar to
cross-producting: First, a range lookup is performed in each

of the d dimensions. Each lookup
returns a bitmap representing the
matching rules (precomputed for
each range) in that dimension. The
d sets are intersected (a simple bit-
wise AND operation) to give the
set of matching rules, from which
the best matching rule is found
(Fig. 18).

Since each bitmap is N bits wide,
and there are O(N) ranges in each
of d dimensions, the storage space
consumed is O(dN2). Query time is
O(dtRL + dN/w) where tRL is the
time to do one range lookup and w
is the memory width. Time com-

plexity can be reduced by a factor of d by looking up each
dimension independently in parallel. Incremental updates are
not supported.

Reference [6] reports that the scheme can support up to
512 rules with a 33 MHz field-programmable gate array and
five 1 Mb SRAMs, classifying 1 Mpacket/s. The scheme
works well for a small number of rules in multiple dimen-
sions, but suffers from a quadratic increase in storage space
and linear increase in classification time with the size of the
classifier. A variation is described in [6] that decreases stor-
age at the expense of increased query time.
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■ Figure 18. Bitmap tables used in the bitmap-intersection classification scheme. See Fig. 8 for a
description of the ranges. Also shown is a classification query on an example packet P(011, 110).

Query on P(011,010):

r1
1 110111{R1,R2,R4,R5,R6}

r1
2 010011{R2,R5,R6}

r1
3 001001{R3,R6}

Dimension 1

r2
1 101100{R1,R3,R4}

r2
2 011000{R2,R3}

r2
3 000111{R5,R6}

Dimension 2

R5

010011
000111

000011

Dimension 1 bitmap
Dimension 2 bitmap

Best matching rule

■ Table 8. A summary of classification schemes.

Linear search N N

Ternary CAM 1 N

Hierarchical tries Wd NdW

Set-pruning tries dW Nd

Grid-of-tries Wd–1 NdW

Cross-producting dW Nd

FIS-tree (l + 1)W l ¥ N1+1/l

RFC d Nd

Bitmap-intersection dW + N/memwidth dN2

HiCuts d Nd

Tuple space search N N

Algorithm Worst-case time Worst-case storage
complexity complexity
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