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On Linear Unequal Error Protection Codes 
BURT MASNICK, MEMBER, IEEE, AND JACK WOLF, MEMBER, IEEE 

Abstract-The class of codes discussed in this paper has the 
property that its error-correction capability is described in terms 
of correcting errors in specific digits of a code word even though 
other digits in the code may be decoded incorrectly. To each digit 
of the code words is assigned an error protection level ft. Then, 
if f errors occur in the reception of a code word, all digits which 
have protection fi greater than or equal to f will be decoded cor- 
rectly even though the entire code word may not be decoded 
correctly. 

An example where UEP codes may find application is 
in the transmission of binary coded decimal digits. Con- 
sider the binary coded decimal representation of an 
integer M  whose magnitude may vary between 0 and 
2” - 1. 

M  = ms-,2’-’ + mb-228-2 + - - - + m, 

Methods for synthesizing these codes are described and illus- 
trated by examples. One method of synthesis involves combining 
the parity check matrices of two or more ordinary random error- 
correcting codes to form the parity check matrix of the new code. 
A decoding algorithm based upon the decoding algorithms of 
the component codes is presented. A second method of code gen- 
eration is described which follows from the observation that for 
a linear code, the columns of the parity check matrix correspond- 
ing to the check positions must span the column space of the matrix. 

where mi = 0 or 1. M  can be represented by the coeffi- 
cients mi as 

ms-lm,+2 - . - m,. 

Upper and lower bounds are derived for the number of check 
digits required for such codes. The lower bound is based upon 
counting the number of unique syndromes required for a speci- 
fied error-correction capability. The upper bound is the result 
of a constructive procedure for forming the parity check matrices 
of these codes. Tables of numerical values for the upper and lower 
bounds are presented. 

If an error changed the coefficient rnBel, the magnitude 
of M  would be changed by 2’-‘. On the other hand, if 
an error changed the digit m,, the magnitude of M  would 
be changed by 1. Thus if errors of large magnitude are 
more important (costly) than errors of small magnitude, 
it may be desirable to seek a coding scheme that provides 
more protection for the high-order digits than for the 
low-order digits. 

A 

LMOST all algebraic codes previously considered 
in the literature have the property that their 
error-correction capabilities are described in terms 

of correcting errors in code words rather than in correcting 
errors in individual digits of a code word. For example, 
a “t error correcting code” will decode to the correct 
code word if t or fewer errors occur in the transmitted 
word. 

In some circumstances it may be advisable to vary 
the amount, of error protection from block of digits to 
block of digits. Consider the problem of an observer 
transmitting the results of many simultaneous experi- 
ments (as from a satellite). Some of the experiments may 
be more important than others and therefore may be 
deserving of higher-error protection. While this could 
be accomplished by using a separate code for each ex- 
periment, it, would usually be more efficient, and more 
desirable to use one code, and thus one encoder and one 
decoder. 

In this paper, codes are investigated in which certain 
digits of a code word are protected against a greater 
number of errors than other digits in the code word. 
Specifically, assigned to each digit of the code words is 
an error protection level, denoted fi. Then if f errors 
occur in the transmission of a code word, all digits for 
which fi 2 f will be decoded correctly even though the 
entire word may be decoded incorrectly. Such codes will 
be called unequal error protection codes (UEP codes). 

This paper contains an analysis of the problem of linear 
codes[” for which the protection afforded each digit or 
set of digits can be different from the protection afforded 
some other digit or set, of digits. 

Manuscript received June 20, 1966; revised February 20, 1967. 
An abbreviated version of this paper was presented at the Mohawk 
Valley Communications Symposium (NATCOM), October 11-13, 
1965. The research in this work was supported by United States 
Air Force of Scientific Research Grant AF-AFOSR-499-65 and 
Contract AF-49-(638) 1600. 

B. Masnick is with the Research Department, Grumman Aircraft 
Engineering Corporation, Bethpage, L. I., N. Y. 11714. He was 
formerly with the Department of Electrical Engineering, New York 
University, Bronx, N. Y. 

Previous approaches to this problem include the work 
of Gray,’ ‘j’ Bedrosian,14’ Bellman and Kalaba,“’ and 
Buchner. “’ Gray proposed a kind of magnitude pro- 
tection code with no redundancy for the problem of 
analog to digital conversion of position data. Bedrosian 
and Bellman and Kalaba analyzed weighted PCM systems 
where greater signal amplitude and power are allocated 
to the higher-order binary digits. Buchner considered 
sending information with some information digits en- 
coded by a Hamming single-error-correcting code and 
other information digits uncoded. He also evolved a 
figure of merit for such schemes. 

THEORYOF UEP CODES 
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Polytechnic Institute of Brooklyr), Brooklyn, N. Y. He was formerly 
with the Department of Electrical Engineering, New York Uni- ., - .T TV 

Sufficient conditions for the generation of unequal 
error protection codes, hereafter called UEP codes, are 

versity, Bronx, IV. Y . presented in the following theorems. 
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The discussion is mainly concerned with the properties 
of the parity check matrix”’ H of UEP codes. Consider 
those digits corresponding to the columns of H which are 
linearly dependent on 2fi or 2fi + 1 (but no fewer) other 
columns of H. Call these digits fi protected. Denote by 
fl the lowest protection level and by fZ the highest pro- 
tection level and adopt the convention that fi is fl + 
j- 1.’ Vector quantities will have a bar above as in 
B. The ith column of H will be denoted Ei and the syn- 
drome”’ of a vector B will be denoted X(S). Unless other- 
wise stated, the results discussed hold for nonbinary as 
well as binary codes so that, in general, the components of 
all vectors and matrices will be elements from a finite 
field containing p elements. 

of H including the column &, is linearly dependent, con- 
trary to hypothesis. Therefore the assumption that the 
error patterns i?, and 8, can be found such that S(i!?,) = - 
X(E,) is false. 

Assume there exists an error pattern 8, and an error 
pattern i?, such that X(s,) = x(E,). Then 

g (elj - e3$G = 0. 

Since e3= is unequal to both 0 and elp, then a set of at 
most 2fi - 1 columns of H, including the column 5 is 
linearly dependent, contrary to hypothesis. Therefore, 
the assumption that error patterns i?l and i?, can be 
found such that &‘(E,) = ,!3(&) is false. 

Thus if any error pattern of weight less than or equal 
to fi occurs which involves the pth digit, the syndrome 
will specify the particular error which occurred in this 
pth digit. Also if an error pattern of weight less than or 
equal to fi occurs which does not involve the pth digit, 
the fact that the pth digit is correct can be determined 
from the syndrome. Therefore, the theorem is proved. 

The codes described in Theorem 1 have the following 
properties. If an error pattern of weight no greater than 
fj but greater than fl involves the pth digit, the syndrome 
will identify the error in the pth digit, thereby permitting 
the correction of this digit. However, some incorrect 
digits may remain incorrect and some correct digits may 
be erroneously “corrected” to become incorrect digits. 
This can occur since the syndrome may be the same as 
the syndrome of some other error pattern of weight less 
than or equal to fi that has the same error in the pth 
digit. For example let E, and E, be given as 

and 

Z = kb, fh, - . - , elp f 0, - . * , elJ, 

fl < w(El> I fi7 

J% = kb, ez2, - -- , ezp = elp, se- , e$, 
fi < 4-&J 5 fi. 

If x(E,) = S(E,) then 

Theorem 1 
Consider a code V which consists of all vectors in the 

null space of a parity check matrix H. The code V can 
correct any pattern of weight fl or less. In addition, if 
any error pattern of weight fi or less occurs, any fi or 
greater protected digit can be decoded correctly. 

Proof: Since no linear dependence relation involving 
fewer than 2fl + 1 columns can exist, the code V must 
be able to correct any error of weight less than or equal 
to fl. 

Let w(E) be the Hamming ,weight of the vector E. 
To prove the second part of the theorem it is sufficient 
to show that the syndrome of any error pattern i?,, 0 < 
w(,!?,) 5 fj, which contains an error in the pth digit which 
is fi protected is unique from both 1) the syndrome of 
any error pattern & 0 < w&z) 5 fl, which does not 
include an error in the pth digit, and 2) the syndrome of 
any error pattern E,, 0 2 w(&) 5 fi, which contains 
a different error in the pth digit.2 

Let fi be any code word in V 

E& = [e 11, e12, e13, -. - , elp Z 0, - * * , elnl 

B, = [e2,, e22, ez3, . -- , ezn = 0, -- - , e,,] 

E3 = 
[ 

e31, e32, e33, -. - , e3= # fl:---,e3n]. 

Then 

X@) = 0, X$ + El) = S(El), X(@ + I%‘,> = S(B2)) 

so that 

Assume there exists an error pattern i?, and an error 
pattern B2 such that i3(E,) = &‘(E,). Then 

g (eli - e2J& = 0. 

Since e,, # 0 and ezp = 0, then a set of at most 2fi columns 
1 Note that for some values of j there may be no digits which 

are fj = fl + j - 1 protected. 
2 This condition need not be considered for binary codes since 

only one type of error can then occur in any digit. 

2 (C&i - ezi)Ei = 6. 
i=1 

Let t be the number of nonzero terms in this summation. 
Then, there is a set of t linearly dependent columns of 
H which does not include the column &,. Since t is at 
most 2fi - 2, so long as 2f, < t 5 2fi - 2 and none of 
the t columns corresponds to a digit that is [t/2] or greater 
protected, it is possible for #(El) to be the same as 
S(&,). (The notation [x] indicates the integer part of z.) 

It can also be true that if an error pattern of weight 
greater than fl but no greater than fi occurs which does 
not involve the pth digit, the resulting syndrome may 
erroneously indicate an incorrect error pattern but will 
not indicate an error in the pth digit. 

The following theorem considers conditions for an en- 
tire word to be decoded correctly. 
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Theorem 2 

Let there be a linear group code with t, digits fl pro- 
tected, t, digits f2 protected, . . . , t, digits fL protected. 
In addition to the digit protection discussed in Theorem 
1, any error pattern can be corrected provided that there 
are fi or fewer errors in the fi or less protected digits, 
j = 1, 2, . . . , 2. 

Proof: It will be sufficient to show that the syndrome 
of any error pattern i?, which satisfies the above con- 
ditions is unique from: 1) the syndrome of any other 
error pattern Eiz which also satisfies the above conditions, 
and 2) the syndrome of any error pattern, E,, not neces- 
sarily satisfying the above condition, where w(i%) 5 
w(fi;l,) and E3 is distinct from El. 

Assume error patterns i?, and i?, exist such that 
x(E,) = S(R’,). Therefore, 

g hi - ezi)h = 0. 

Since El and E, differ, there must be a most highly 
protected digit in which they differ. Assume that the 
most highly protected digit in which 8, and i??, differ is 
p protected. By hypothesis, 2, and B, may each have no 
more than p errors in digits that are b or less protected. 
Therefore, the relation above describes a set of at most 
2~ columns of H, including one that corresponds to a p 
protected digit, which is linearly dependent, contrary to 
hypothesis. Therefore, no most highly protected digit 
in which El and i?, differ can be found and hence if 
S(nl) = X(&J, then E, = i?,. 

Suppose error patterns i?, and i?, exist such that 

S(El) = X(R3). 

Then 

g (elf - e3i)Ai = 6. 

Let wl = w(J??,), w3 = w(E,). Assume the most highly 
protected digit in which El and E, disagree is p protected. 
Let E, and E3 agree in $ nonzero digits which are p or 
greater protected. Therefore, there are at most wl - II, 
nonzero eli that do not sum to zero with corresponding 
esi. There can be at most w8 - J/ nonzero e3? that are 
not summed to zero by corresponding e<i. But wl - 
# 5 E”, and since w3 5 w1 we know w3 - It, I: p. Thus the 
summation above indicates that there exists a set of 
2~ or fewer columns of H, including a column correspond- 
ing to a p protected digit which is linearly dependent, 
contrary to hypothesis. Hence there can be no highest 
protected digit in which E, and i?, differ and therefore 
no error patterns E, and E3 can be found such that 
X@J = 8(E3). Therefore, the theorem is proved. 

COSET DECODING 

Consider the decoding of a linear binary group code, 
to be used with the binary symmetric channel, by using ._. 
the standard array”’ as a decoding table. Then the For the V’ corresponding to H’, the digits m4, c4, and. 
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probability of correct decoding is as large as possible 
if each coset leader is chosen to have the minimum weight 
in its coset. These coset leaders are the correctable error 
patterns. The question now arises as to whether the use 
of the correctable error patterns of a UEP code as coset 
leaders would lead to a situation where a coset leader 
would not be the minimum weight vector in its coset, 
thereby producing a smaller probability of correct de- 
coding. Two vectors are in the same coset if, and only if, 
their syndromes are equal. Theorem 2 guarantees that 
no correctable error pattern has the same syndrome as 
any other error pattern of the same or lower weight. 
Therefore, coset decoding of a UEP code where the coset 
leaders are chosen t.o be the known correctable error 
patterns will lead to minimum probability of error de- 
coding. 

Another question to be considered is the minimum error 
protection requirement of the check digits in a UEP code. 
This question arises when one contemplates the generation 
of codes with highly protected information digits and 
little protected check digits. The check columns are 
linearly independent (as shown in Masnick”‘), and thus 
each check digit is involved in some linear dependence 
relation involving information digits. Therefore, each 
check digit is as protected as the least protected informa- 
tion digit with which it is involved in a linear dependence 
relation. 

A SIMPLE UEP CODE AND A GENERALIZATION 

In order to provide extra error protection for one digit 
in a group code one must make the column of the H 
matrix corresponding to that digit be of “higher linear 
independence” than the other columns of H. One method 
of accomplishing this for binary codes is to add a number 
of ones to the chosen column and add on a number of 
columns so that every column is involved in at least one 
linear dependence relation. The process is illustrated 
below. We start with the H matrix for a Hamming binary 
single-error correcting (7, 3) group code[” 

cl c2 ml c3 in, m3 m4 

H=[;t;; i ;]- 

Protection against any two errors involving digit m4 is 
provided by changing H to H’ where: 

cl c2 ml c3 In2 m3 m4 c4 c5 

r 000111100 
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binary overlap codes which makes use of the individual 
decoding algorithms for the component codes with check 
matrices H, and H,. (It is assumed that efficient decoding 
algorithms are available for the component codes as 
would be the case for BCH codes.) The proof of the 
validity of this procedure is given elsewhere.“’ This 
proof is long and is hence omitted from this paper. 

Consider the occurrence of e + fi errors in a code word 
from an e error-correcting linear group code. This occur- 
rence is referred to as overloading the H matrix for the 
code. Using syndrome decoding, one of three circumstances 
may result. 

1) The correct error is indicated. 
2) An incorrect error is indicated. 
3) An unrecognizable syndrome is generated, indicating 

an overload of the H matrix. 

In an overlap code the parity check matrices H, and 
H, are considered as the encoding and decoding matrices 
for the first n, and n, digits, respectively, of each code 
word. They may be used to compute the apparent errors 
in the first n, and n, digits. If these two apparent errors 
agree in the no& middle digits, and the weight requirements 
specified in Theorem 3 are met, the error has been deter- 
mined. 

However, the possibility exists that either H, or H, 
or both are overloaded. In these events, further steps are 
necessary. If either H, or H, is overloaded, and a recogniz- 
able syndrome results, the apparent errors will either 
not satisfy Theorem 3 or they will not agree in the noL 
middle digits. On perceiving this the procedure is to 
subtract from the received vector the apparent error 
in the noL middle digits as determined by H,. Recompute 
the syndromes and apparent errors. If the apparent errors 
now satisfy Theorem 3 and the apparent error in the 
noL middle digits is 6 according to H,, the error has been 
determined. The actual error in the first nl digits is the 
apparent error obtained in the first pass by H,. The actual 
error in the last n2 - noL digits is the apparent error 
obtained in the second pass by H,. If the new apparent 
errors do not satisfy Theorem 3, the procedure is to 
subtract from the received vector the apparent error 
in the noL middle digits as originally determined by H, 
and proceed as above. If this does not yield an error 
pattern that satisfies Theorem 3, both H, and H, are 
overloaded. In that event, complement the middle noL 
digits in the received vector. Then decoding with H, and 
H, must give the correct errors in the first n, - noL digits 
and the last n, - noL digits. The errors in the middle 
noL digits are then readily determined. 

THE BASIS METHOD OF CODE GENERATION[~’ 

A procedure is shown in the following for constructing 
UEP codes, based upon the observation”’ that the p 
columns of the parity check matrix corresponding to 
the p check positions must form a basis for the column 
space. Choose k the number of information digits, and 
hi the error protection for the ith information digit, 

ti 

‘I- “OL -- 

L “z--j 
Fig. 1. Check matrix with overlapping snbmatrices. 

c5 are protected against 2 errors and the digits cl, c2, ml, 
cB, m,, and m3 are protected against single errors. 

This technique can be generalized as follows. Let there 
be two check matrices with elements from GF(Q); HI 
with n, columns and random error-correcting capacity 
el, and Hz with n, columns and random error capacity 
ez, where e, 5 e,. Let H, and H, be joined as submatrices 
of H where H, and H, overlap, as shown in Fig. 1. The 
composite matrix H has n, + n, - noL columns. Let 
noL - e2. < 

Theorem 3’ 
The code V for which H is the check matrix will protect 

the first n, - noL digits against at least e, errors, the 
last n, - noL digits against at least e, errors and the 
noL middle digits against at least e, + e2 - [(noL - 1)/2] 
errors. 

Proof: Every column in the first n, - noL columns of 
H is involved in no linear dependence relation involving 
2e, or fewer columns. Every column in the last n, - noL 
columns of H is involved in no linear dependence relation 
involving 2e, or fewer columns. Therefore, the first 
nl - noL digits are protected against at least e, errors 
and the last ez - noL digits are protected against at least 
e, errors. 

Consider the jth column (from the left) of the noL 
overlapping columns. This column is involved in a linear 
dependence relation involving at least 2e, other columns 
of H, and at least 2e, other columns of H,. Since noL 
is less than or equal to e,, the jth column must be in- 
volved in a linear dependence relation involving at least 
2e, + 1 - j columns to its right and at least 2e, - noL + j 
columns to its left or at least 2e, + 2e, + 1 - n,, other 
columns of H. Since the jth column was typical of the 
noL middle columns, the noL middle digits are protected 
against at least e, + e, - [(n,, - 1)/2] errors. 

Theorem 3 provides the basis for creating codes with 
three different degrees of error protection depending upon 
the two matrices originally chosen and on the number of 
overlapping columns. For example using this method one 
can always provide protection against one more error for 
one information digit by adding on two extra check 
digits. In this case e, = 1 and nol. = 1. More general 
techniques involving the overlapping of more than two 
matrices can be developed. 

Provided in the following is a decoding procedure for 
IPR2018-1557 
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Fig. 2. UEP check matrix constructed by basis method. 

i = 1 to k. Choose a set of p linearly independent p- 
tuples to form the basis (check columns of H). Then 
choose a linear combination of 2bi or more basis elements 
for the ith information column of H such that no linear 
combination of t columns thatminvolves the ith information 
column is itself a combination of fewer than 2b, + 1 - t 
basis vectors (check columns). The results of such a pro- 
cedure are illustrated in Fig. 2. In Fig. 2 there are lc = 5 
information digits. 

Digit m, is protected against up to 1 error 

Digit m, is protected against up to 2 errors 

Digit m3 is protected against up to 3 errors 

Digit m4 is protected against up to 4 errors 

Digit m, is protected against up to 5 errors. 

The method of basis elements becomes difficult for 
more than five information digits when an attempt is 
made to use the fewest possible check digits. 

CYCLIC AND PSEUDO-CYCLIC CODES 

Since cyclic codes are very easily instrumented for 
encoding and decoding,“’ it is appropriate .to ask if a 
cyclic code can provide unequal protection for the various 
digits. The answer, unfortunately, is no, as is shown in 
the following theorem. 

Theorem 4 
A cyclic code cannot provide greater protection from 

random errors for any particular digit than it does for 
any other digit. The proof follows by assuming that a 
cyclic code can provide greater protection to one digit 
than to another digit and proving a contradiction. 

However, shortened-cyclic codes, which have much 
of the ease of instrumentation of cyclic codes, can be 
UEP codes. A hand constructed example of a binary 
shortened-cyclic code which can correct all single errors 
and all double errors that involve the x5 digit is shown 
in the following. 

Let the code words be all multiples of g(z) = x6 + 
x5 + x4 + 2’ + 1 of degree < 10. This code has five 
information digits and six redundant digits. Since de- 
coding of cyclic and shortened-cyclic codes can be ac- 
complished by dividing the altered code word by the 
generator polynomial and determining the error by the 
remainder, let us establish the remainders of the powers 
of x from x0 through x1’. 

Power of x Remainder when divided by g(z) 

1 
5 
X2 

;: 
X6 
x5 + x4 + 2% + 1 
x4 + x3 + 2% + x + 1 
x6 + x4 + 23 + x2 + x 
x3 + 1 
x4 + 2 

Note that the sum of the remainder of x5 and the 
remainder of any other single error cannot be duplicated 
by the sum of any two other remainders whereas the 
remainder of the error x4 + x can be duplicated by the 
remainder of x1’ and the remainder of the error x3 + x0 
can be duplicated by the remainder of x9. 

BOUNDS 

In this section, upper and lower bounds on the required 
redundancy for UEP codes are investigated. 

Modified Hamming Bound”’ 
By counting the number of unique syndromes necessary 

to achieve a specified level of error protection it is pos- 
sible to give a lower bound on the number of redundant 
digits. Consider an (n, k) linear code over the field of 4 
symbols, having $-” unique syndromes. Let there be 
tj digits j protected, j = 1, . . . , s, where 

&ti =n. 
Let Ai be the number of correctable error patterns of 
weight i. Let Ti be the number of code digits that are 
i or more protected. 

Ti = f=ti. 

Number the code digits as follows. The z protected digits 
are numbered from 1 to T,. The z - 1 protected digits 
are numbered from T, + 1 to T,-,, etc. 

We now give a procedure to determine the Ai. We 
construct a “graph” of every error pattern as follows. 
Between x = 1 and x = 1 + 1, we plot on the y axis the 
number of errors in the digit positions with numbers 
greater than 1. For an error of weight i the graph must 
have the value y = i between x = 0 and z = 1, and must 
fall to y = 0 at or before x = n. The graph of a correctable 
error pattern must be at or below y = j for each set of 
j protected digits, which corresponds to x between Tj-, 
and Tis 

Example: Consider a code with 

10 digits 1 protected, 
4 digits 2 protected, and 
2 digits 3 protected. 

IPR2018-1557 
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cl 123 4 5 6 7 8 9 10 II 12 I3 14 15 16 x 

T, T2 T, 

Fig. 3. Typical map of correctible error patterns. 

In Fig. 3 the heavy black line represents the boundary 
of the graph of a correctable error pattern. The shaded 
line represents the map of an error pattern of weight 3 
with errors in the lst, 4th, and 11th positions. Since a 
one to one mapping exists between error patterns and 
the graphs of an error pattern, the problem of counting 
the number of correctable error patterns of weight 3 
resolves to the problem of counting the number of graphs 
that begin at y = 3 and have y = 0 at x = 16 without 
going above the boundary (the thick black line) at any 
point. In general, we may establish the following formulas. 

4 = iT,l(q - 1) 

A2 = ((A, - 1) + (A, - 2) + (A, - 3) 
+ . . . + (A, - TJl(q - II2 

A, = {[A2 - (A, - 01 + [A, -(A, - 1) - (A, - 5% 
+ --- + [A, - (A, - 1) - (A, - 2) 

- -a- - (A, - TJ]}(q - 1)” 

A = ((A3 - [A, - (A, - 01) + (A, - [A, - (A, - 111 
- [A, - (A, - 1) - (A, - 211) 
+ --. + (A, - [A2 - (A, - Ul) 
- [A, - (A, - 1) - (A, - 211 

- s-s - [A, - (A, - 1) - (A, - 2) 

- -- - - (A, - T,)lXq - I>“, 
etc. 

Combining terms we find 

A, = V’J(q - 1) 
A2 = [T2.& - f$ i](q - 1)’ 
A, = T,.A, - z iAl + f$ g il(q - 1)” 

etc. 
These equations are simplified using the following 

relations. 

605 

IL-1 i-1 

where 0 = ~1 + 1. 
Consider the number of combinations of n things taken 

r at a time, denoted by y . 
0 

This number can be divided 

into those combinations which do include a certain item, 

of which there are and those which do not 

include a certain item, of which there are 

Similarly, 

so that n 
0 

can be written as 

(“1)=(:‘_:)I(‘I:::) 

+ *-* + t I :) = $, (r ” J 

Thus 

x (4 = (T3 3+ “) 

from which it follows that 

z .$ $ i = g (” z “) = x (3 = (” 4+ “) 

and 

2 . . . 5 ki= (“+:-l). 
#=I p=1 i=l 

Thus we have 

A, = 1 

A, = T,(p - 1) 

A2 = [($I - ("2' ')](P - ;I2 

A, = [($h - ("2' ')A'+ p; 2)](q - II3 

A, = [(:)A3 - (“2’ ‘)A2 

+ (T4 3+ “)A1 - (” 4f 3)](q - l>“, 

etc. 
IPR2018-1557 
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These equations reduce to the general form 

Ai = & (‘i +jj - l)A ,-,(-l)‘“(n - ui 
where A,, = 1. 

Thus we have derived a recursive relationship for 
the number of correctable error patterns of weight i in 
terms of the number of correctable error patterns of 
weight i - 1, i - 2, . . . , 1. 

A word of caution should be mentioned concerning 
the use of these recursive relations. .Suppose we have 
T, 1 or more protected digits and T, = T, 2 or more 
protected digits. In the formulas mentioned in the fore- 
going T, must be taken to be Tz - 1 since the highest 
numbered position on the second level of the error map 
could not be used. In general, if ti = 0, Ti must be reduced. 

Since each of the correctable error patterns must cor- 
respond to a distinct syndrome and since there are qn-” = 
q’ available syndromes, then a lower bound for the number 
of check digits, denoted rL, is given as 
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any 2fl - 1 or fewer previously chosen r-tuples. Choose 
t, r-tuples such that each is not a linear combination 
of any 2fz - 1 or fewer previously chosen r-tuples. . . . 
Choose t, - 1 r-tuples such that each is not a linear 
combination of any 2fZ - 1 or fewer previously chosen 
r-tuples. We now have n - 1 r-tuples or columns. In 
the worst case, all the linear combinations mentioned 
above may be distinct. If q’ is greater than the number 
of linear combinations listed above, one more column 
can be added to the matrix and the code, which is the 
null space of this matrix, must have at least the desired 
properties. Let rU be the smallest value of T such that 
the q’ is greater than all the linear combinations mentioned 
above. Then another column can be added which will 
correspond to the t,th fZ protected information digit and 
a code with the desired properties need have no more 
than rU check digits. Let 

and y be the number of r-tuples which have been banned. 
Then y can be shown to be given as 

y=[l+(yl) 02 - 1) + t ; l)(Y - 1j2 + . . . + (;,;‘I)(* - 1)=-l 

+ {( >( y n g’: ;s ‘) + (:)(n ;2T’; ‘) + . . . + (2f,T” 2)}k - 1)2/~--p 
+ {( )( : n ;Y2’:; ‘> + (:>in gT;; ‘) + *. . + (2f,T” l)}(q - l>2’a-1 
+ ( { F  )( n ,r,‘“; ‘) + (T))(n ;,T”; ‘) + * * * + (2f,T” 2)}(P - 1)21”-2 
+ ( i Ii’3 )( n iaT,; “> + (T))(n &‘;; ‘) + . . . + (2j,T” l)}(q - 1Y-l 

+ . . . 

MODIFIED VARSIIARMOV"~~-GILBERT""-SACHS'~~' Bourn It is known that 
This bound is established by considering a procedure 

which must realize a linear code with the desired error 
correction capacity. Let us establish a code that has g (4)(4 1:) = (9 

1) tl information digits I1 protected Hence 
2) t, information digit’s S2 protected 

2ri-1 7; 
= ( )( i=1 

;,yy_T;) = y-&(n -&Ti) 

z) t, information digits f. protected. and 
Choose r linearly independent r-t’uples. These will be 

the check columns for the parity check matrix. Choose tl r-tuples such that each is not a linear combination of 
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Therefore, 

y = ‘2’ n ; 1 
( ) (4 - ui i-0 

Thus rV is the smallest value of r such that q’ > y. The 
number rU serves as an upper bound on the redundancy 
required to construct a code with given error protection 
specifications. 

NUMERICAL EXAMPLES OF BOUNDS 

Numerical results obtained using the upper and lower 
bounds are presented in Table I. The first two numbers 
in each row are the number of information digits which 
are, respectively, one error and two error protected. The 
third and fourth numbers in each row are, respectively, 
the lower and upper bounds on the number of redundant 
digits needed for such a code. The upper bound is realiz- 
able in the sense that it follows from a construction pro- 
cedure for such codes. 

EVALUATION OFPERFORMANCE OF CODES 

The codes considered in this paper were motivated 
by the fact that in certain situations different weights 
(or “values of importance”) should be associated with 
different digits of the code words. The classical method of 
evaluating the performance of a coding system by cal- 
culating the average probability of error for a code word 
is not satisfactory in these situations since all errors are 
weighted equally in this calculation. 

Buchner[” introduced the criterion of average numerical 
error for the transmissions of quantized numerical data. 
A generalization of this criterion termed average error 
cost (AEC) as discussed by Masnick”’ is defined as 
follows. 

A “value” vi is assigned to the jth inforwzation digit 
of each code word. Then the code word 6, which 
contains the information digits m,,om,,, . . . a!or,k-l 
is said to have the value cf:i vim, ,i. 

If the code word 6, is transmitted but is decoded 
to e, at the receiver then the “cost” of this error is 
defined as the absolute value of the difference of these 
code words: i.e., Ix::: vim, ,i - c!:i vima,il. 

The average error cost is then defined as the average of 
this quantity, the average being taken over all transmitted 
and received code words. 

TAI 

r77 

The details of the calculation of the AEC and numerical 
examples are omitted from this paper and the interested 
reader is referred to Masnick. [” It should be stated, 
however, that the calculation involves a detailed knowl- 
edge of the structure of the code words. (The weights 
of all the code words are not sufficient information for 
this calculation.) 
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