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A COHERENT DIGITAL DEMODULATOR FOR
MINIMUM SHIFT KEY AND RELATED MODULATION
SCHEMES

by R. J. MURRAY and R. W. GIBSON
Philips Research Laboratories, Redhill, Surrey, RHI 5HA, UK.

Abstract

We show that in a coherent digital demodulator both the clock and carrier
signals can be recovered from the hard-limited outputs of the two qua-
drature channels. Clock and carrier are recovered simultaneously thus per-
mitting fast-acquisition direct-conversion radio receivers.

MSK, TFM, GMSK and similar schemes can be demodulated. Measured
Bit-Error—Rates for TEM were within 0.5 dB of that obtained with a
reference clock and carrier. Acquisition within 30 bits was achieved with a
degradation in performance of less than 1 dB: shorter acquisition times are
possible with some further loss of performance.

EECS numbers: 61, 64.

1. Introduction

The possibility of fully integrated radio receivers has renewed interest in
direct demodulation (zero i.f.) techniques. At the same time applications are
beginning to arise for receivers which are required to handle digital signals
only. One class of digital signal particularly suited to radio is Minimum Shift
Key (MSK) and its derivatives Tamed Frequency Modulation (TFM) and
Gaussian Minimum Shift Key (GMSK) *?). It may be observed that the
coherent demodulator for this class of signals is almost identical in layout to a
direct demodulation radio receiver. Hence the possibility arises of combining
the two functions.

Figure 1 shows the form of a combined receiver and demodulator. The
modulated r.f. signal is shifted down to baseband by a pair of quadrature
mixers and then lowpass filtered. Since the lowpass filters provide the selec-
tivity of the receiver it follows that both carrier and clock recovery must be
performed downstream of these filters. Thus we have to recover both clock
and catrier from the baseband signal; this is different from many versions of
the coherent demodulator which recover the carrier by a phase locked loop at
r.f. (or at a conventional non-zero i.f.). Also, since MSK is a constant en-
velope signal it is advantageous to amplify the filter outputs in hard limiting
amplifiers, thus avoiding problems of a.g.c.

Philips Journal of Research Vol. 39 Nos 1/2 1984
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Fig. 1. Combined receiver and demodulator.

We will now proceed to show, both by theory and experimental results, that
it is possible to recover both the clock and carrier signals solely from the hard
limited baseband signals. Moreover the technique employed allows simultane-
ous acquisition of the clock and carrier and is thus suitable for systems
requiring fast acquisition.

2. Principles of the clock and carrier recovery technique

Since we propose to recover both the clock and carrier solely from the hard
limited outputs of the two quadrature channels the only information available
to us is contained in the timing of the zero crossings. The technique will be
explained with reference to fig. 2 in which the phase trajectories shown
represent either MSK with no bandwidth restrictions (the sharp angles),
or TFM, GMSK, etc. (the smoothed curve). The curve shows the phase of
the modulated r.f. signal relative to its carrier. But the phase of the signal is
transferred directly through the two quadrature mixers, subject only to two
constant shifts separated by 90 degrees. We can therefore label the phase axis
of the diagram with the equivalent phases at the outputs of the I and Q chan-
nels.

The zero crossings in the I and Q channels then correspond to the trajectory
crossing the horizontal lines which are spaced at 90 degrees of phase. The solid
lines represent the zero and 180 degree phases in the Q channel and the dashed
lines the zero and 180 degree phases in the I channel. The solid vertical lines
represent the instants at which the Q channel is expected to have a transition
and the I channel to be at the centre of its eye. The dashed vertical lines cor-
respond to the I channel transitions and the eye centres of the Q channel.

2 Philips Journal of Rcsenrlcib ﬁﬁb 1‘185_1425g8?
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Fig. 2. Phase trajectories.

On this diagram an error in the carrier phase shows as a vertical shift of the
trajectory. Similarly, an error in the clock phase shows as a horizontal shift.
Figure 3 shows errors in both carrier and clock phase; the clock is running
early by x and the carrier oscillator phase is early by y.

The error observed in the times of the zero crossings depends on the slope of
the trajectory, i.e. on whether the instantaneous frequency is higher or lower

than the carrier.
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Fig. 3. Combined effect of clock and carrier phase errors.

Philips Journal of Research Vol. 39 Nos 1/2 1984

3
IPR2018-1557
HTC EX1023, Page 8




R. J. Murray and R. W. Gibson

From the diagram

Eg=x-y
and
Er=x+y,
whence
Er + Eg
x‘( 2 )
and _(EL—EH)
y'_ 2 .

Therefore, in principle, on a noise-free, unlimited-bandwidth, MSK signal
we would only need one high frequency transition and one low frequency
transition to be able to set the phase of both the carrier and clock oscillators.
What is more, this can be done in two simple steps as follows:

Assume errors x and y as above.

If the first transition is due to a low frequency, then we measure Er = x + y.
Apply a phase correction of (x -+ y)/2 to both clock and carrier oscillators,
any subsequent low frequency transition sees zero error but the next high fre-
quency transition sees:

En = (xzy) - (yzx) Xy

A correction of (x — y)/2 is applied to the clock and — (x — ¥)/2 applied to
the carrier, giving zero residual error to both.

In practice the signal is always bandlimited and the phase trajectory is not a
set of straight lines and sharp angles. The simple two step correction given
above is therefore not practical. Nevertheless, if we apply partial corrections
the process will converge on the desired position. The optimum strategy will
depend on what compromise between error performance and acquisition time
we wish to adopt and also on the relative stabilities of the carrier and clock
oscillators. ' _

The corrections to the phase of the clock and carrier oscillators can be
derived from the following rules: '

(a) CLOCK
If a transition is early, advance the clock.
If a transition is late, retard the clock.
(b) CARRIER
In this case we use the same rule as above or ifs inverse according to whether
the transition was due to a high or a low frequency. The rule is thus:

4 ilips Journal of Resea: 0 08
e o e bR2G 18557
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Coherent digital demodulator for MSK and RM schemes

fransition Jfrequency action
late low advance
late high retard
early low retard
early high advance

We can determine whether a transition corresponds to a high or low fre-
quency by observing the sign of the other channel at the moment the transition
occurred.

Since in many cases the carrier phase will need more frequent correction
than the clock, we adopted the following strategy:

For each transition, detected in either the I or Q outputs, determine whether
the transition is early or late, then:

(i) always adjust the carrier phase so as to reduce the error,

(i) only adjust the clock phase if the transition corresponds to a frequency
different from that of the previous transition (different meaning above the
carrier as compared to below the carrier or vice versa).

This rule ensures that a relatively stable clock oscillator will not be unduly
disturbed by carrier phase fluctuations. There is scope for a fuller investiga-
tion as to how necessary or advantageous this approach is.

3. Circuit realisation

The clock and carrier synchronisation rules described above may be imple-
mented by means of simple digital circuits.’ .

The synchronising circuits are fed with the hard limited I and Q signals and
from these produce separate control signals for the carrier and clock oscilla-
tors. The control signals are positive or negative pulses superimposed on the
d.c. levels which control the frequéncies of the clock and carrier oscillators.
The effect of the pulses is to momentarily speed up or slow down the oscillator
and thus nudge the phase of the oscillator in the required direction. Two forms
of demodulator were investigated; a constant nudge demodulator (the cor-
rection pulses having fixed duration of 1 bit period) and a proportional nudge
demodulator (the pulse duration being directly proportional to how early or
late the transitions occur).

4. Experimental results

A proportional nudge demodulator circuit was constructed using 4000B
. series CMOS digital integrated circuits.

For experimental purposes a TFM signal was used with a bit rate of
69.27 kbps and carrier frequency 138.5 kHz. The TFM modulator incor-

—— — m— e e ke o ot
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R. J. Murray and R. W. Gibson

porated a ROM and D/A converter *). The data was differentially encoded by
taking the exclusive-OR of the current data bit and the previous data bit from
the differentially encoded output.

The demodulator clock and carrier VCO’s were each implemented using the
VCO of a 4046B. The sensitivities of the oscillators could be adjusted to per-
mit phase corrections per bit period of more than 60 degrees for both clock
and carrier. We can then define /oop gain in terms of:

phase nudge applied to oscillator
timing (phase) error measured

loop gain =

The gains of the carrier and clock loops were individually adjustable.

The I and Q channel arm filters used were low pass 4th order Butterworth
filters. It should be emphasised that these filters are non-optimum and so
cause intersymbol interference and have an excessive noise bandwidth and
cause degradation of the demodulator performance. Two filter bandwidths
were used:

(1) 25 kHz, which was found to give best results for the steady state bit error
rate measurements,

(2) 30 kHz, which was the narrowest bandwidth to give well defined cross-
overs in the I and Q channel eye diagrams, which is best for fast acquisition.

4.1. Steady state bit error rates

Measurements of bit error rate as a function of S/N ratio were carried out
for many different loop gains (fig. 4). The channel filters were set to 25 kHz
(= 0.36 fb). Also shown for comparison is the equivalent curve using a perfect
clock and carrier (taken directly from the modulator, suitably delayed).

With perfect clock and carrier the measured bit error rate curve is 2.6 dB
below MSK optimum at an error rate of 102 and 4.5 dB below MSK optimum
at an error rate of 1072, The MSK optimum curve includes the effect of dif-
ferential encoding. Some of the degradation is due to the use of non-optimum
arm filters.

The recovered clock and carrier measurements show that for loop gains of
0.11 for carrier and 0.028 for clock the measured bit error rate performance is
only slightly degraded compared to the perfect clock and carrier measurement
(approximately 0.5 dB). As the loop gains are increased the measured bit error
rate curve moves further away from that of the perfect clock and carrier. This
is as expected since small corrections in the presence of noise cause only slight
jitter in the recovered clock and carrier and so few errors, whereas large cor-
rections will cause more jitter and hence more errors.

6 Philips Journal of Rcscnrlnllb §0281 lgi ;‘Z5g87
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Fig. 4. Steady state BER curves. Filter bandwidth 25 kHz.

With a filter bandwidth of 30 kHz the steady state bit error rate performance
is slightly degraded (less than 0.5 dB).

4.2. Acquisition measurements

It is difficult to precisely define the acquisition time of a demodulator, par-
ticularly in the presence of noise. We therefore measured the bit error rate of
individual data bits in an acquisition pattern as a function of S/N ratio. The
measurements were carried out for a number of combinations of clock and
carrier loop gains. In all cases a bandwidth of 30 kHz was used for the I and Q
channel arm filters. The acquisition pattern used was ....000111000111000....
after differential encoding. The appendix describes why this sequence was

Philips Journal of Research
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chosen and also why the bit error rates for a zero are greater than for a
one.

As an example of the measurements fig. 5 shows the measured bit error
rates of the 16th bit (a one) for a variety of clock and carrier loop gains. As the
loop gains are increased the degradation is initially reduced but eventually
becomes more severe. The optimum loop gain is approximately 0.33 for car-
rier and 0.083 for clock, however the optimum is very broad and the case 0.22
for carrier and 0.11 for clock is also good. For the 30th and 31st bits similar
behaviour is observed, in this case all of the curves are closer to the MSK
optimum than for the 15th and 16th bits. Again a rather broad range of
optimum loop gains is observed, the optimum being approximately 0.33
for the carrier and 0.083 for the clock. Figure 6 shows the measured error

filter bandwidth 30 kHz

bit no.16 (1)
carrier loop clock loop
gain gain
a=0.11 0.028
0 b= 022 0.056
107 c=0.33 0.083
d= 0.44 0.11
e = 0.55 0.14
f =011 0.11
g =022 o0.11
N
-1
& 10
o Xo——x
< X 0
(.
[8]
<
5
x
had
g -2 x
310 N
N
IN—d
\\v d
aJ1¢
~T
g

MSK optimum with
differential encoding

- P ETUS P R ISP S S
10 0 4 8 12 16
— signal to noise ratio in bit rate bandwidth aB)

Fig. 5. Error rate of the 16th bit in the acquisition sequence.
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filter bandwidth 30kHz
carrier loop gain =033
clock loop gain = 0.083
a = bit no. 15 (0)
b = bit no. 16 (1)
700 c = bit no.30(0)

d = bit no, 31(1)
e = zeroininfinite sequence
f = one in infinite sequence

-1
a0
g
§ \ T —y —a
b
e
= a2
510
\,(
T \g\/b
O™ —C
0.
ﬂ\ €
107 AN
f
MSK optimum with
_ differential encoding
10
70‘5 L 1 1 | 1 L. 1 I I I 1 | 2 1

0 4 8 12 16
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Fig. 6. Bit error rate for selected bits in acquisition sequence.

rates for the 15th, 16th, 30th and 31st bits for a carrier loop gain 0of 0.33 and a
clock loop gain of 0.083.

5. Conclusion

We have described a coherent digital demodulator which extracts the neces-
sary synchronisation information from the hard limited baseband signals.
Experiments show that good steady state performance and moderately fast
acquisition times (approximately 16~30 bits) can be achieved with relatively
simple versions of the coherent demodulator. The theoretical limits of the
technique have not been investigated.

Some modifications could be made to the demodulator. These include:

Philips Journal of Research Vol. 39 Nos 1/2 1984
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(a) the use of optimum filters in the I and Q channels,

(b) theuseof acrystal derived clock, which could be adjusted by direct switch-
ing of the phase in a digital divider. This would allow virtually instantane-
ous phase correction.

(c) integration and filtering of the VCO control signals. This would convert
the control loops from type 1 to type 2 or higher*).

APPENDIX
Acquisition patterns

The oscillator synchronisation information is derived from the crossovers
of the hard limited baseband eye diagrams. All crossovers provide informa-
tion which was used in adjusting the phase of the carrier oscillator but only
some crossovers (denoted different) provide information to adjust the phase
of the clock oscillator. For fast acquisition it is necessary to use an acquisi-
tion pattern with many transitions and preferably with mainly different tran-
sitions.

It should be noted that the sequence ....10101010101010.... (after differen-
tial encoding) is not always useful as an acquisition pattern with this type of
demodulator. This is because the phase trajectory of the TFM or GMSK
signal is substantially a constant 45 degrees and results in I and Q channel
signals which have no transitions and so provide no synchronisation infor-
mation.

Three fast-acquisition sequences have been considered, ...110011001100...
(sequence 1), ...0001100011000... (sequence 2) and ...111000111000... (se-
quence 3). These sequences represent the data after differential encoding. For
all three sequences the data eye opening corresponding to a zero is less than
that corresponding to a one. So, for all three sequences the demodulator will,
in the presence of noise, produce more errors for data zeros than for data
ones. Sequence 1 does not give reliable fast acquisition because it allows an
unstable false lock with no transitions in either channel. Sequences 2 and 3 do
not permit a long term false lock and so give better acquisition. Experiment
shows that sequence 3 results in better acquisition than either of sequences 1
or 2. For this reason sequence 3 was used for the detailed measurements
described in sec. 4.
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IN QUEST OF THE SPIKE: ENERGY DEPENDENCE
OF THE SPUTTERING YIELD OF ZINC BOMBARDED
WITH NEON AND XENON IONS

by P. C. ZALM and L. J. BECKERS
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Abstract

Sputtering yields of Zn were determined for bombardment with Ne and Xe
ions at normal incidence in the energy range 0.2-20 keV under ultrahigh
vacuum conditions. Mass selection was employed and the energy spread was
limited to a few electron volts. High fluences of the order of 3x 107 cm=2
were used to obtain stationary state yields. The yields were determined from
accurate weighing of the samples prior to and after the irradiation stage.
The measured yields obtained in low current density bombardments are in
excellent agreement with predictions from Sigmund’s linear cascade theory.
There is no evidence of an anomalous, spike-like, cascade behaviour, in
sharp contrast to what could be expected on the basis of experimental sys-
tematics or theoretical considerations. Yields measured for 20 keV Ne*
bombardment of Zn at high flux show a sharp deviation from the Sigmund
estimate. Tests have revealed this to be induced by beam heating of the
target. The huge yields observed, however, cannot be attributed to a simple
evaporation process but must be interpreted as tentative evidence of a so-
called thermal spike.

PACS numbers: 79.20.Nc, 61.80.Jh, 34.90. +q.

1. Introduction, outline and theoretical preliminaries

Many observed regularities in the sputtering behaviour of amorphous
elemental targets bombarded with atomic ions can satisfactorily be accounted
for by the linear cascade theory as formulated by Sigmund?!). In this model
the penetrating projectile shares its energy with target atoms initially at rest in
a series of binary collisions, a process in which fast recoils are created. These,
in turn, set other target atoms in motion and a continuously increasing num-
ber of progressively slower atoms results until transferable energies are less
than the displacement threshold. At this stage the elastic collision cascade is
damped by energy dissipation through e.g. phonon-assisted processes. The
sputtering yield for an ion with incident energy E; is given by !)

Y(E) = A - Fp(Ei, x = 0), 09)

where Fp stands for the amount of energy deposited at the surface (x = 0) in
the form of target atom motion and A is a material parameter containing the

Philips Journal of Research  Vol. 39 Nos 1/2 1984
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angle-, depth- and recoil-energy averaged, escape probability for target atoms.
Fp is linearly proportional to the reduced nuclear stopping cross-section and A
is inversely proportional to a surface escape barrier U, (usually taken as the
sublimation energy).

The assumptions underlying the description leading to eq. (1) are known to
break down in two cases:

i) for low-energy (E; <1 keV) light projectiles (e.g. H*, He*), where the
energy transferred is insufficient to generate energetic recoils;

ii) for high-energy (E; = 50 keV) heavy ions, where the number of energetic
recoils is so high that locally all atoms are instantaneously moving.

The latter situation, the so-called spike regime, has attracted considerable

attention in the literature 2-°). In particular the possible role of the target tem-

perature (at T = § Tmer) in invoking spikes?) is still very much a subject of

debate %9).

Nonlinear effects in heavy-ion sputtering have been studied extensively by
Andersen and Bay ®). They investigated in particular the projectile atomic num-
ber dependence (Z, = 10 — 80) of the sputtering yields of Si, Cu, Ag and Au
targets bombarded with 45 keV ions. These authors also reported sputtering
results with diatomic (homonuclear) molecular heavy ions at various energies.

A very systematic study of “collisionally induced spikes”, involving both
projectile atomic number and bombarding energy dependences, has been car-
ried out by Thompson”). He collected sputtering yield data for Ag (Up =
2.95 eV), Au (3.80) and Pt (5.85) bombarded with a variety of heavy ions
ranging from P to Bi and clusters thereof at energies from 10 keV to 260 keV
per atom. Some interesting regularities were observed. First, a sharp break
away from the predicted eq. (1) was observed above a certain energy deposi-
tion density or critical yield. Above the critical yield the measured yields were
found empirically to be more or less proportional to the third power of the
energy deposition distribution function Fp(E,0). Secondly the critical yield, at
which this anomalous behaviour was seen to occur, seemed to be lin€arly
related to the sublimation energy of the target (Yeis = 4.5 Uy [eV]-atoms/ion).

In particular the latter conclusion, if not sheer coincidence or a measure-
ment artefact, would allow for a guided search for spike phenomena at lower
projectile energies. One only needs to select a target material with a low subli-
mation energy Up, as this both enhances the expected yield according to eq.
(1), since A < 1/Uy, and reduces the critical yield, since Yei < Up. In prin-
ciple frozen noble gases seem ideally suitable for such an experiment. Unfor-
tunately there is a sharp distinction between the binding forces in metals and
that in Van der Waals crystals, thus rendering any comparison dubious. A
more feasible alternative for a target could be found in the group I (Na, K, ...)

12 Philips Journal of Rcsex]rﬁ) Qﬁej’,l gn_s,flé 59?4
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and group II (Mg, Ca,...) elements, but then the extreme chemical reactivity
virtually prohibits their use as contamination problems will be severe and un-
avoidable. Yet another problem is that low-sublimation-energy materials and
ultra high vacuum (UHV) conditions, required for good quality sputtering
measurements, are hardly compatible. Moreover, one must be extremely care-
ful to prevent thermal evaporation effects from obscuring the outcome of the
experiment.

In this paper we present a dedicated search for spike effects in the bombard-
ment of Zn (Up = 1.35 eV) with Ne* and Xe* ions at energies ranging from
0.2-20 keV. We shall see that zinc, when treated with caution, is a suitable
target material for providing answers to some open questions in the assess-
ment of phenomena accompanying or ascribed to spikes. Below we rehearse
the arguments leading to the conclusion that zinc is a likely spike-prone can-
didate.

For numerical evaluation, eq. (1), in the case of perpendicular incidence,
can be recast into the form1!)

Y(Ei) = Cp Su (Ei/ Epr), ' )

where C,, and E,, are characteristic constants depending on projectile and
target parameters (viz. atomic number, mass and Uj in €V) given by the ap-
proximate value!?)

(2, Z,)}
G530 @
and the exact expression
1 M, 1
Ep= 5o (1 + Tf) Z,Z0 (Z,4 + ZH)E keV. 4)

The nuclear stopping cross-section S,(¢) is well approximated by 1)

{In@ + 2 )

€ \3
¢+ (355)

The sputtering yields for Zn predicted a priori from eqs (2-5) range from
3-10 and 3-29 atoms/ion for bombardment with Ne* or Xe* ions, respectively,
in the energy range 0.2-20 keV. From the systematics observed by Thomp-
son”) a nonlinear behaviour would be expected above a critical yield Yo =~ 6.
If this value indeed marked the onset of the above-mentioned third-power-

of-Fp-like behaviour of the yield one could expect a yield of about 500-600
atoms/ion in the case of Zn bombarded with 20 keV Xe* ions, a huge effect

Sn(e) =
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indeed. On the basis of theoretical considerations Sigmund and Claussen 2)
predicted that pronounced spike contributions can be expected only if the
yield calculated through eq. (1) exceeds 10 atoms/ion.

Finally, Sigmund ?) stressed the importance of two quantities in determining
whether or not spike effects will occur and showed that two conditions have to
be fulfilled simultaneously. The effective maximum energy density 8o in the
central core of the spike must be larger than the sublimation energy U, and the
time constant T governing the quenching (exponential decay) of the spike must
exceed To, the slowing down time of the projectile. In fig. 1 a graphical repre-
sentation of these requirements is given by depicting the energy dependence
of 6o and 7 for 1-100 keV Xe* bombardment of Zn (calculated with eqgs (3),
(4) and (9) of ref. 9, with m =} applying in this case; as approximately !%)
Su(e) = §)/€, the range R(E;)«|/E; and consequently 7o R(E;)/ VE: is
roughly constant; a more elaborate estimate of 7o would show an increase
from 2 X 10713 sec to 3 x 10712 sec over this energy range). It is clear from fig. 1

3,
Uo.8o [eV]—»

T.Tosec] —»

2 s 2 L
100 2 5 10" 2 5 1022
EXe'[ keV]_>

Fig. 1. Spike parameters for Xe* ions incident on Zn, estimated according to ref. 9, versus bom-
bardment energy. 8y is the effective maximum energy density in the spike, 7 the time constant for
decay, and 7o the slowing down time of the projectile.

14 Philips Journal of Rescx]rﬁ R’Qﬁ,l 80_51/55?4
HTC EX1023, Page 19




Energy dependence of zinc bombarded with neon and xenon ions

that spike effects are to be expected in the range of 10 keV (T > 10) to 50 keV
(80 < Uy). Similar calculations for Ne* bombardment of Zn reveal that “col-
lisionally induced” spikes will certainly not be able to develop.

2. Experimental details
2.1. Ion beam equipment characteristics

Beams of single-charged, mass-selected, Ne* and Xe* ions at energies of
0.2-20 keV, with an energy spread limited to a few electron volts, were gen-
erated in our ion-beam apparatus discussed in detail elsewhere !®). For con-
venience, some pertinent information will be given though.

The ion beam apparatus, suitable for perpendicular incidence only, operates
in either of two modes, depending on whether bombarding energies from
about 10-25 keV or below 2.5 keV are required. In the latter case the im-
pinging ions, extracted at 15-20 keV, are decelerated at the very end of their
trajectory by mounting the target in an electrostatic lens kept at a high positive
potential. It was observed that by increasing the extraction (acceleration)
voltage to 20 keV, rather than the 15 keV used earlier !°), a laterally very uni-
form spot with a diameter of 10 mm resulted even with deceleration down to
200 eV. In this retardation mode the beam current, depending on the par-
ticular noble-gas ion species, ranged from 20-30 pA.

In the direct mode (no deceleration) the beam diameter was about 16 mm at
currents of up to 60 pA. Such high currents were avoided, however, in order
to prevent heating of the target, except in one particular series of experiments.

While in the retardation mode no secondary electrons will escape from the
target, greatly facilitating total current integration, electron emission will take
place in the direct mode. The target was therefore kept at a positive potential
of 30-100 V to prevent electron liberation. Elsewhere'*) we show that fairly
accurate measurements of ion bombardment induced secondary electron
emission can be made this way.

The background pressure prior to bombardment was always less than
2 % 10~7 Pa, the residual gas being hydrogen and water. During bombardment
the pressure rose by at most two orders of magnitude, the residual-gas analyser
spectra indicating only noble gas addition. In the course of the experiments,
which started with the highest bombarding energies, the background pressure
steadily improved due to the excellent gettering quality of the zinc sputter-de-
posited onto the wall of the vacuum chamber.

2.2. Target preparation and yield determination

Circular (& = 18 mm) targets were cut from 0.5 mm thick ultrapure
(99.999%) rolled Zn platelets. The targets were etched in a HNOs solution,
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rinsed in water and alcohol and finally baked at 400 K for 70 hr in a mild
vacuum (~ 102 Pa) environment to remove all residue. Subsequently the tar-
gets (on average 800 mg) were weighed with a sensitive Metler ME30 micro-
balance, with a claimed accuracy of I ug (and an observed 3 pg spread), and
stored in mild vacuum for later usage.

It was decided to combine accurate weight loss and integrated current meas-
urements to establish the yield. Trial dummy experiments revealed that a weight
increase, saturating at about 10 pg, could occur during target transport,
mounting and handling prior to and after the bombardment stage. Therefore
it was deemed necessary to remove at least 0.5 mg of material via irradiation
in order to obtain sufficiently reliable results. At the same time a total fluence
of about 3x 10! cm was considered necessary to ensure that the results
reflected steady-state sputtering conditions and to guarantee that pronounced
texturing (facet- and cone-generation) would not take place. Fortunately both
requirements could simultaneously be fulfilled according to calculations with
egs (2-5), even in the absence of spike-induced yield enhancement. Except for
the data points taken at 200 €V ion bombardment energy, always well over 1 mg
of Zn was removed. Inspection of the samples irradiated with 10-20 keV ions
with a scanning electron microscope revealed no significant cone formation.

A possible uptake of H,O, COgz, N2 or Oz from the air, which could be
responsible for the observed <10 ug weight increase, does not constitute a
serious problem. Auger electron spectroscopy (AES) spectra, like those shown
in fig. 2, taken in situ from samples after an ion fluence of the order of
108 cm~2, essentially showed a clean Zn target except for some trace contami-
nation with oxygen (generally less than 5% of a monolayer after such low
doses). Thus yields obtained with a high fluence will not be affected.

I 1 T T T

S »
dE

0

Zn

0 500
electron energy (eV)—»

Fig. 2. Auger spectrum of a Zn target after mild sputter cleaning (0.2 keV Xe* ions, dose
~ 10 cm™?). Trace oxygen contamination is visible. .
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3. Results and discussion
3.1. Low-density data

In order to avoid beam heating of the target the input power (beam current
times projectile energy) was limited to a maximum of 0.25 W. Since the most
interesting results were expected to occur with Xe* ions as a projectile (see
sec. 1), the majority of the experiments involved Xe rather than Ne. The sput-
tering yields determined in this study for Zn, bombarded with Ne* and Xe*
ions, are given in table I. The relative error is estimated to be 5%, but to
this an absolute error in the yield of AY = 0.2 must be added statistically.
This latter uncertainty is a direct consequence of the possible initial weight
increment.

TABLE I

Measured sputtering yields in (atoms/ion) for Ne* and Xe* bombardment
of Zn at normal incidence. An estimate of the experimental error is given
in the main text.

EikeV 0.2 0.5 1 2 10 15 20
Yne+ 2.4 6.1 8.5 7.8
Yxet 2.7 5.3 8.0 10.2 23.5 | 255 27.9

In fig. 3 the yield data are plotted as a function of energy. Also shown are
the curves predicted according to Sigmund’s linear collision cascade theory,
egs (2, 4 and 5), with C,, treated as an adjustable parameter to be fitted to the
data. The reason for this is that there exists some (10-25%) ambiguity in the
calculated values of C,, '%%), which becomes more pronounced for lighter
projectiles. In part this ambiguity arises from the fact that the experimental
sputtering yield data refer to a steady-state saturation loading condition of the
targets. For noble gas ions, with a maximum retention concentration of some
5%, the theoretically predicted energy dependence of the yield is hardly
affected although there can be some influence on its total magnitude. There-
fore a detailed comparison with theory can be made, in contrast to high-dose
experiments with chemically active or metallic ions where trapping is a severe
problem. Table 2 summarizes the parameters used for the curves plotted in
fig. 3, along with some information regarding the quality of the fit.

It may be concluded from fig. 3 and table 2 that there is excellent agreement
between linear cascade theory and experiment throughout the whole energy
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Fig. 3. Yield data for Ne* and Xe* bombardment of Zn as a function of energy. The estimates of
Sigmund’s linear cascade model Y(E) = Cy..So(E[Ey), where S,(g) is the nuclear stopping cross-
section taken from ref. 11 and Ej, (eq. 4) and Cp,, adjusted for optimal agreement, are character-
istic constants depending on the projectile-target combination (see table II and the main text).

range investigated. The immediate and important conclusion is that the data
deny the existence of any pronounced spike-effects, thereby refuting existing
theories and observed regularities. A second interesting observation is that the
theory apparently holds down to energies as low as 200 eV, a phenomenon
observed earlier 1°) for noble-gas sputtering of Si and Mo. This could be some-
what surprising, as the validity of a transport approach (as used in the theory),
which in the case of low energy cascades does not develop statistically, is

TABLE 1I

Parameters entering Sigmund’s linear cascade model for the description of
sputtering yield data for Ne* and Xe* bombardment of Zn. The root-mean-
square deviation in the yield and the normalized x* (with 3 and 6 degrees
of freedom, respectively) are included as a measure of the quality of
the agreement.

. Co — ]

Epe [keV] eq. (3) at I/A‘Y X2
Ne 46 28 23 0.3 1.0
Xe 733 117 115 0.5 0.9
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questionable. Perhaps the breakdown of this assumption is not too important
as its effects will, at least partially, be masked by another averaging mechan-
ism, namely that experimentally determined yields are a product of many
(~ 10" individual cascades (see also ref. 16).

One note of caution seems appropriate at this stage. Formally the character-
istic constant C, should contain a term that is weakly energy dependent. At
higher energies, where the electronic stopping cross-section becomes com-
parable to the nuclear stopping contribution of the total energy deposition,
this leads 17) to a slow decrease of C,,. By using C,, as an adjustable parameter
(although still keeping it within reasonable agreement with the value cal-
culated through eq. 3) one could compensate for this effect while at the same
time removing a possible discrepancy at lower energies. In our case the elec-
tronic stopping is negligible for Xe* ion bombardment of Zn (even at 20 keV
it amounts to less than 7% of the total stopping, as calculated with the results
from ref. 18), but not for Ne* ions (45% at 20 keV). Therefore only the Xe-
on-Zn data fully validate the above remarks.

A few results on noble gas ion sputtering of Zn, under a variety of experi-
mental conditions, have been reported earlier by several authors!®). As in all
cases (Art: 1, 5, 12.5 keV; Kr*: 39 keV, Xe*: 45 keV) only a single ionic species
at one bombardment energy was employed, no reliable systematics could be
inferred from these data. It suffices to note here that the communicated yields
agree to within some 15-20% with the predictions of eqs (2, 4 and 5) in ac-
cordance with our present observations.

3.2. High-density data

In an earlier series of measurements we studied the influence of the ion cur-
rent density on the Zn sputtering yield when bombarded by 20 keV Ne* ions
at beam currents of 10-60 pA. The irradiated target area was approximately
2 c¢cm? (see also sec. 2.1). Visual inspection of the targets after exposure to the
beam revealed texturing (macroscopic crystallite formation) above approx-
imately 0.7 W input power. Temperature increase of the targets due to beam
heating could only be measured directly with an optical pyrometer. Such an
instrument, however, is notably inaccurate at temperatures below 600 K and
hence could only provide reasonably reliable relative scaling. Thus an addi-
tional experiment for absolute calibration of the temperature was necessary.

The data obtained are depicted in fig. 4. A roughly exponential increase of
the yield with ion flux was observed. The temperature of the target, as indi-
cated by the pyrometer, is seen to increase rapidly with beam current but
apparently levels off at higher input power at a saturation value of 470 K. In
order to calibrate the temperature scale properly, we heated in situ a target

Philips Journal of Research Vol. 39 Nos1/2 1984

19
IPR2018-1557
HTC EX1023, Page 24




P. C. Zalm and L. J. Beckers

| 20keV Ne*—Zn

w
c
o
N
v
E
o
e
2
o
Rt
>

target temperature[K]—»

Tion [}JA]_’

Fig. 4. Beam current dependence of the sputtering yield of Zn bombarded with 20 keV Ne* ions to
a total dose of 3-4x10'7 (target area is 2.5 cm?). Also included is the ion-beam-induced tem-
perature increase of the targets as measured with an optical pyrometer. The trustworthiness of the
temperature estimates is discussed in the main text.

mounted on an oven for about one hour to the same saturation value, read off
the indication on the scale of the pyrometer, after short sputter-cleaning (1 keV
Ne*, dose 10'® cm?). A weight loss of about 1-2 pg/min was measured after-
wards. For a clean target this corresponds to a temperature of 450 + 15 K, in
fair agreement with the pyrometer data. The background pressure during this
test was sufficiently low (1 X 1077 Pa) to ensure that contamination effects
could not have had a serious influence on the rate of evaporation from the
target (and hence on the temperature estimate).

Consequently, the dramatic yield increase with ion flux observed in fig. 4
cannot be explained with thermal evaporation effects alone. Furthermore the
total fluence was always 3—4 x 10'7 (i.e. 17 nA-hr), hence the measurement time
decreased with increasing beam current thus slightly reducing the evaporation
contribution to the total yield. On the other hand, a current density increase
alone cannot explain the observations. The data presented in sec. 3.1 show
quite conclusively that local cascade predictions are obeyed for low ion
current densities. Even at the maximum current density (corresponding to
2x 10 Ne* jons/cm? sec), however, there is virtually zero probability of cas-
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cade overlap due to lack of correlation in space and time of ion arrival. Thus
one is led to the conclusion that synergistic effects, of combined ion bombard-
ment and temperature increase, could be responsible for the yield enhancement.
To check this further, a Zn target was bombarded with a 12 pA 20 keV Ne*
beam while being externally heated simultaneously to the saturation tempera-
ture. A huge yield of about 2500 atoms/ion was found. This point is indicated
in fig. 4 with an open square, its position on the current axis being estimated by

applied power (1.5 W)
acceleration voltage (20kV)

I=12pA +

The huge yields themselves offer a nice, be it tentative, explanation for the
observed ““temperature saturation effect”, as at such enormous particle ejec-
tion rates much of the input energy of the imping ion could leave the surface
as kinetic energy carried away by the massive amount of sputtered atoms. For
slow collisional, i.e. Sigmund-type sputtering the energy distribution of the
sputtered atoms should have the form (see e.g. ref. 4) ¢(E) < E/(E + Ug)3.
If such a distribution were to hold for sputtered atoms with energies up to
say 100 eV, one would expect the average energy (E’) carried away by one
sputtered atom to be about {E) = 6U,. It is, however, highly probable that
other processes, like e.g. prompt thermal sputtering (for a discussion see again
ref. 4), contribute to the total yield as well. This would lower (E substantially.
Nevertheless we may expect input energy loss through sputtered atoms to
be sizeable, the remainder perhaps being accounted for by conductive and
radiative losses.

Synergistic effects of the type discussed above have been reported previously.
In experiments where Ag, Au, Bi, Cu, Ge and Zr were bombarded with 45 keV
Xe* ions, Nelson?) observed an anomalous increase in the sputtering yield if
the target temperature exceeded about 75% of the melting temperature (for
Zn Tmerr = 693 K). Similar effects were reported for 5 keV Ar* bombardment
of pyrolytic graphite at elevated temperatures 2°). For low-energy (17-180 eV)
Ar* bombardment of solid and liquid In only a small (10%) difference in sput- .
tering yield was observed '), indicating that the condition of the target alone
is not sufficient to induce large abnormalities and that combined effects have
to be assumed. Hofer and co-workers ®) could not reproduce Nelson’s findings
for the particular case of Ag. Although still open to discussion, there has been
a strong tendency to discard Nelson’s data and ascribe his findings to thermal
evaporation problems (see e.g. ref. 22). It is difficult, however, to envisage
how thermal evaporation could have influenced his results for Bi, with its very
low vapour pressure of about 1078 Pa at § Tie:. Now our results for Zn too
seem to confirm Nelson’s earlier findings be it at a slightly lower temperature.
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More elaborate experimental tests will be required to resolve existing dis-
crepancies.

4. Conclusions

The low current-density sputtering yield data for Zn, bombarded with Ne*
and Xe* ions in the energy range 0.2-20 keV, measured in this study are both
qualitatively and quantitatively well described with Sigmund’s linear collision
cascade model *). No evidence has been found to support the existence of spike
effects. This implies that the empirical rules for such phenomena which can be
extracted from the systematics observed in Thompson’s experiments ?) cannot
readily be extrapolated to other projectile/target combinations. Theoretical
predictions 2°) for the onset of strongly nonlinear spike-like behaviour, which
were tested against data for heavy ion projectiles on heavy atom targets, are
not readily applicable to lighter mass targets. The fact that the most pro-
nounced effects in Thompson’s experimental work?) are encountered with
polyatomic projectiles (clusters) could well point to another, as yet unknown,
important mechanism governing spike effects.

The high current-density sputtering yield data, for Zn bombarded with
20 keV Ne* ions, presented in this paper indicate, although perhaps not en-
tirely conclusively, that target temperature plays an important role in invoking
spike effects, thereby confirming Nelson’s original study?®). From a theoretical
point of view 2%), however, it is difficult to envisage how a small increase in
vibrational amplitude of the target atoms, which would induce only minor
changes in the physics of the collisional cascade accompanying the penetration
of an energetic projectile, could have a major influence on the sputtering yield.
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COMPARISON BETWEEN ATTENUATION
CORRECTION METHODS IN TRANSAXIAL SINGLE
PHOTON EMISSION TOMOGRAPHY

by J. PERGRALE, C. BERCHE, D. IACHETTI and G. NORMAND
Laboratoires d’Electronique et de Physique Appliquée, 94450 Limeil Brévannes, France

Abstract

After a short recall of the main used or known techniques of image recon-
struction and of y-rays attenuation correction in transaxial single photon
emission tomography, a comparison is done between all these attenuation
corrections. A classification is derived from the ability to recover the true
activity values of a numerical phantom and from their robustness towards
some simulated experimental conditions.

PACS numbers: 07.85.

1. Introduction

Conventional gammagraphy techniques currently used in nuclear medicine,
produce two-dimensional images of a three-dimensional radioactivity dis-
tribution projected on the detector plane which is, in most cases, the large
scintillation crystal plate of a gamma-camera.

In scintigraphic images thus obtained, the information on the location in
depth of the radioactive fixation and on the value of the locally fixed radio-
activity concentration are practically lost: these images are the result of a
weighed superimposition of the planes of the three-dimensional activity distri-
bution, parallel to the detector plane. The weighing is due to the attenuation
(absorption and diffusion) of the emitted gamma-rays by biological tissue.

Due to the increasing interest of the nuclear medicine for quantitative
studies, various methods have been suggested in order to avoid these draw-
backs; most of them are computer-assisted and include the analysis of multi-
incidence scintigrams. Transaxial single-photon emission-tomography is one
of these methods. It uses a general process similar in its principle to the one
developed in X-ray computerized transaxial tomography (for C.T. Scanner):
slices of activity distribution, perpendicular to a longitudinal axis of the
patient under examination, are calculated from informations included in the
multiincidence scintigrams. The juxtaposition of such adjacent slices allows to
reach the three-dimensional radioactive distribution; the scintigrams are ob-
tained by rotating a detector (usually a gamma-camera) around this patient.
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Correction methods in transaxial single photon emission tomography

Reconstructing a two-dimensional (2D) parameter distribution correspond-
ing to one slice from its one-dimensional (1D) projections, is a well-known
problem which has already found solutions commonly used in X-ray trans-
axial tomography. But in emission tomography, due to the attenuation of the
y-rays by biological tissue, the scintigrams are not true projections of the
radioactive distribution and the rough application of the known reconstruc-
tion methods to the scintigrams does not lead to the true activity values.

The introduction of attenuation correction in the reconstruction process
particularizes the emission tomography. Only approximative solutions have
been proposed to get rid of the attenuation effects, a practical rigorous
method would suppose that a y-ray attenuation coefficients map of the body at
the y-ray energy of the isotope which is used is available.

The introduction of the attenuation correction can be done in three different
ways:

— Modification of the rough projections deduced from scintigrams. The clas-
sical reconstruction methods can then be applied.

— Modification of the image reconstruction methods themselves.

— Modification of the results obtained by applying the classical reconstruc-
tion methods to the rough projections, combined to an iterative process.

A description of the various reconstruction processes used in transaxial
emission tomography will be given here. These processes include then a recon-
struction of an object from its projections associated to an attenuation correc-
tion and are mainly characterized by the kind of this latter. Comparison will
be done between the results obtained in the different cases by using phantoms
simulating cross sections of the human body with radioactive area and ac-
cording to the following criteria: image quality, ability of giving quantitative
results, robustness of the various methods relatively to the experimental con-
ditions and mainly to the “depth effect”” which is proper to the data acquisi-
tion in gammagraphy and which is not taken into account in the hypotheses of
the various methods.

2. Reconstruction of a plane object from its projections

Let us consider a plane object defined by a parameter distribution f(o,¢) in
polar coordinates. This object can be limited by a contour outside with the
function f(o,®) is nill. A projection p(r,0) of the object at the f-angle, r being
given, is defined by:

Y=+

p(r0) = [ fle.)dY with r=gcos(p —6) and Y=gsin(p — 0).

Y=-x
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Fig. 1. Parameters used in the definition of a projection p(r,8).

The transform f(o,p)— p(r,0) is called the Radon transform and the
reconstruction of the f(g,p) distribution knowing only its projections p(r,0)
is possible if a way of inverting practically this transform can be found.

Different ways to solve this problem have been proposed. Two of them are
analytical ones, the filtered back-projection and the Fourier synthesis, the
other ones lead to iterative algorithms. A brief recall of these techniques will
be done hereafter.

2.1. Filtered back-projection

This technique has been proposed by Radon 1), the basic principle is the fol-
lowing one: the image obtained by expanding the projections in the direction
opposite to the one from which these projections have been acquired and by
superimposing them, is related to the real object f(o,p). It has been demon-
strated that this image is the result of the convolution of the object f(g,p) with

the function l—;—l which acts as a blurring function. The restoration of the

object consists then in deblurring this image by filtering it with a filter which
compensates the effect of the convolution. The blurring effect corresponds to
a filtering of the spatial frequencies repartition of the object with the func-

~ tion | TIQ—I (the Fourier transform of l él) in the spatial frequencies domain
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(fig. 2a). The adequate compensating filter is then the function | R} which is
. commonly called “ramp filter” (fig. 2a). In practical cases, the projections are
sampled and digitized functions and Shannon’s theorem allows in that case a
limitation of the bandwidth of the useful spatial frequencies depending on the
sampling step. For a sampling step  the maximum frequency available in the

sampled projection is -21;, called Nyquist frequency. So, practically the de-

blurring filter is the ramp filter multiplied by a rectangular window limited at
the Nyquist frequency (fig. 2¢).

A ‘ /’
[} 11 ‘
] 1
AR
D R IRI
! A
’ \
7 \
// \\
al R
b} R
A
c) R

Fig. 2. a) Blurring function and compensating filter; b) Selecting window; c) Practical filter.

In fact, all the mathematical operations leading to the object f(2,9) from the
projections p(r,8) are linear ones and it can be more convenient to filter first
the projections (1D-filtering) and then to back-project the result.

It has to be noticed that the window associated to the ramp filter can be
different from the rectangular one and its choice depends on the statistical
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noise of the projections and on the a priori estimated spatial frequencies
repartition of the object. The emission tomography software available for the
present work includes 12 various filters, but in order to avoid any interference
between the filter effect and the studied attenuation correction effect on the
object reconstruction, only the ramp filter associated with a rectangular
window at the Nyquist frequency has been used.

The back-projection technique is the most commonly used in transaxial
tomography due to its implementation simplicity in the real domain.

2.2. Fourier synthesis

The Fourier synthesis is based on the ‘“Central slice theorem”: the 2D-
Fourier transform of the object, along a radial line at the 0-angle in the
Fourier domain, is equal to the 1D-Fourier transform of the projection of this
object obtained at the same angle (see fig. 3).

T / 2D Fourier transform \
real domain Fourier domain
6 projection e
angle

\L 1D Fourier transform —/

Fig. 3. “Central slice theorem” principle.

The principle of the reconstruction is the following one: the 1D-Fourier
transforms of the projections are radially placed in a 2D-axis system, each of
them at an angle equal to the angle of the corresponding projection. Accord-
ing to the central slice theorems, the so built 2D-function is the Fourier trans-
form of the original object. By calculating the 2D-inverse Fourier transform,
the object can be obtained. Practically, the algorithm used for calculating the
Fourier transform are numerical ones and can be only applied on numerical
functions defined in a cartesian coordinates system, so interpolation calcula-
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tions are necessary in order to replace the polar coordinates system in which
the Fourier transform of the object is built, by a cartesian coordinates
system. .

This reconstruction technique needs a lot of Fourier transform calculations
and was until now not too much used. But, due to the increasing use of fast
processors (Array processors) in tomographic equipments, the Fourier syn-
thesis is now more and more employed. The final results are comparable to the
ones obtained with the filtered back-projection technique.

2.3. Iterative methods

The general principle common to all the iterative reconstruction methods is
to modify inside iteration loops an estimated objeét in order to make the
projections calculated from this estimated object as close as possible to the
measured ones. The estimated object is equal to the real one when all the pro-
jections calculated from it are equal to the measured ones.

As an example the so-called ART (Algebraic Reconstruction Technique) is
very briefly described hereafter (see fig. 4): let us consider an estimated object
supposed constant inside its contour. The projection calculated from'this
object at the f-direction is different from the measured one at the same angle.
The difference between the two projections is back-projected on the estimated
object, in the same direction in such a way that, for this new estimated object,
the calculated and measured projections at the -angle are equal. The same
process is applied to the new estimated object for the following angle and
SO on.

estimated object new estimated object

back
projection

calculated

projection _ projection angle
g ~
measured
projection +
difference
projection

Fig. 4. ART principle.

The difference between the various iterative methods is mainly due to the
way of modifying the estimated object and to the way of doing the first esti-
mation and on the convergence criteria.
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The main difficulties occuring in the iterative methods are to know if the
used process is converging, if it is converging in all parts of the object, and
in that case, when it can be stopped and according to what criteria. Some
methods are very sensitive to the statistical noise, all are time-consuming.
They are not very much used except in particular attenuation correction as it
will be seen later.

3. Attenuation correction

The attenuation of the y-rays by the biological tissue modifies the expres-
sion of the Radon transform given in sec. 2. If f(o,p) is the radioactive con-
centration repartition defined inside the contour (f(e,¢) = 0 outside) and if
u(o,p) is the linear attenuation coefficient repartition for the y-rays emitted by
the isotope which is used (u(e,p) = 0 outside the contour), the projection
p'(r,0) taking into account the attenuation (in fact corresponding to the
measured one) is defined by

+ 00 +Y
p'(r,0) =_°f° BiCX)) exp(—_{o u'phdY’) dy,

Yi

flg.p)

X

projection
direction projection
\ 8 angle

p'(r.6)

Fig. 5. Parameters used in the definition of an attenuated projection p'(r,6).

+Y :
The coefficient exp(— [ u(e’,¢")dY')is the probability for a y quantum of

not being absorbed or scattered élong its trajectory between the considered
emission point M and the point P of the contour in the projection direction.
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The transform f(e,p)— p'(r,0) defines the attenuated Radon transform.
The problem of its inversion has no analytical solution but iteratives solu-
tions can be envisaged assuming that the u(o,9) repartition is known. Prac-
tically and until now this last kind of solution is difficult to use because a pre-
liminary examination has to be done on the patient in order to get on exact at-
tenuation coefficient repartition (for instance by using transmission tomo-
graphy with a monoenergetic source).

All the techniques studied here and used for getting rid of the attenuation
effect assume that u(o,¢) is constant over all the object surface. In that case,

+00
p'(r,0) becomes p'(r,0) = [ u(o,p)exp(—ul)dY. Some of these techniques

use other assumptions in order to simplify the calculations.

They can be classified in three parts: preprocessing techniques, intrinsic
techniques and iterative techniques. The general principle of each studied
technique will be briefly described hereafter.

3.1. Preprocessing techniques

In these methods the attenuation correction is realized by modifying the
rough projections. The obtained modified projections are supposed to be the
projections that would be obtained without attenuation on the object. The
classical reconstruction methods like the filtered back-projection can then be
applied.

3.1.1. Techniques using the geometrical mean of two opposite
projections

The theory is due to Sorenson?). The principle can be briefly explained in
two steps:

— Assuming that there is only a punctual source of activity A (fig. 6) in the
object and a constant linear attenuation coefficient 4, the two opposite at-
tenuated projections are given by p'(r,0) = A exp(—u!) and p'(r,6 + 1) =
Aexp(—u!'). The combination

VP p G+ myexn (L)

is found to be equal to the value of the projection at the same angle but
without attenuation.

— This principle can be applied to an extended source (fig. 7). Let us consider
two opposite projections the detection line of which crosses the active area
in a unique part (not fractioned) of length FLL (F being the active fraction
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Fig. 6. Parameters used in the attenuation correction for one punctual source.

of L), part on which the activity concentration A is supposed to be con-
stant. It can be demonstrated, always assuming 4 = constant that the com-

bination uFL o ( & )
7 P\ 72

. uFL
smh( 7 )

is equal to FL A, the value of the projection at the same angle without at-
tenuation.

Practically all the hypothesis are not satisfied but this projection combi-
nation is also applied to real cases. u is estimated a priori (generally it is taken
as being the linear attenuation coefficient of the water for the given p-rays
energy). L is deduced from the knowledge of the contour, which is either de-
duced from the measurement of the scattered y-rays or approximated by an
analytical curve like an ellipse. F is chosen a priori, having the same value for
all the projections for all the angles. This last a priori choice is not so critical
due to the fact that F is included in the function

uFL
T2
. uFL
sinh ( > )

which is slowly varying with F for current valves of 4 and L. Some authors 3-6)

Vp'(r,0) - p'(r,6 + m)
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Y

p'lr,8+7)

\ x
p'(r.8)

Fig. 7. Parameters used in the attenuation correction for a convex source with a constant activity
A, obtained by calculating the geometrical mean of two opposite projections.

assume F = 0.5 or F =1 for all the projections (the whole section is active)

and the correcting coefficient
uFL

2 uL
T uFL\ P (T)
sinh (—)
2
is reduced in this last case to
ulL

1 —exp(—ulL)’
Some authors assume the correcting coefficient is 1 and the present attenuation
correction method is reduced in calculating new projections by doing only the
geometrical mean of two opposite projections.

It has to be noticed that a good estimation of F can be done by doing a first
reconstruction and by estimating from the so obtained image activity lengthes
closer to the true ones. This process is time-consuming, because it needs two
reconstructions, and then is not commonly used.

The present study includes three attenuation corrections techniques in-
cluding the geometrical mean of two opposite projections:

— Simple geometrical mean.
— Geometrical mean and correcting coefficients calculated with F = 0.5.
— Geometrical mean and correcting coefficients calculated with F = 1.
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3.1.2. Techniques using the arithmetical mean of two opposite
projections

The hypotheses necessary for some of these methods are exactly the same as
the ones used for the methods above described. The geometrical mean is re-
placed by the arithmetical mean and in this case, the correcting coefficient be-
comes uFL ul

z = ( 2 )

sinh (,u gL) cosh (u Yo) _

differing from the correcting factor used with the geometrical mean by the
term cosh (4 Y,) at the denominator. Yj is the coordinate of the middle of the
active part referred to the middle of the total attenuation part (see fig. 8).

Yy

p'lr,8+ 1)

A

Fig. 8. Parameters used in the attenuation correction obtained by calculating the arithmetical
mean of two opposite projections.

Yy has to be a priori estimated. Generally it is taken to be equal to zero
(assuming that the active area has a center superposed to the center of the
object). In that case cosh (u Yo) =1 and the difference between this method
and the previous one is only the feplacemént of the geometrical mean by the
arithmetical one.

Three variants of the above described techniques including the arithmetical
mean of two opposite projections have been tested in this study: -
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— Simple arithmetical mean. _

— Arithmetical mean and correcting factors calculated with F = 0.5.

— Arithmetical mean and correcting factors calculated with F = 1.
Another approximate technique due to Kay7) including the arithmetical

mean has also been tested. The principle is the following one:

If no hypothesis is done on the activity distribution and assuming u is constant

in the whole studied slice, an attenuated projection p’'(r,6) is given by

P'e6) = ] f@0) exp(—u 1) dY

along the Y axis, and
+
p'(r,0 + m) =_£f(9,<0) exp(—ul'ydY

(see fig. 6).
The arithmetical mean is then

p'(rf) + g’(rﬂ t7) _ /f(g’qo) exp(—u /) ; exp(—1 1) 4y

In this method, the main assumption in addition to x4 constant is to say that
the coefficient

c() = exp(—ul) ; exp(—u!l') _ exp(=ul) + ;xp(—u(L - 1)

is constant. The value of this constant is taken a priori to be equal to the mean
value Cy between the maximum and the minimum of this function of /

1+ exp(—ulL)+ 2exp (— ﬁ;)
CM = 2 ’

in that case

PUHPCOXT _ ¢y [ fto.0) dY = Cun(rf)

and

1 p'(rnd) +p'(r,6 + m)

Prd) = &= A

A classical reconstruction method like the filtered back-projection is then
applied.
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3.1.3. Bellini’s technique

At the opposite of the other techniques, this technique due to Bellini?)
needs only the hypothesis of a constant 4 and is in this case a theoretically per-
fect attenuation correction method. It operates in the frequency domain by
correcting the influence of the attenuation on the spatial frequency spectrum
of the projections at a given angle. The principle is simple but the practical im-
plementation needs some mathematical development, a summarized descrip-
tion of which is given thereafter.

PRINCIPLE: The starting point is the “Central slice theorem” (see 2.2).

In polar coordinates, the 1D-Fourier transform TF:[p'(r,d)] of the pro-
jection at the @ angle or the radial line of the object 2D-Fourier transform
TF:[f(0,9)] at the same angle can be expressed by

FR,6) = TRp(0)] = TF:lf© 9] =
[ I 70 ewi-2ineR costy - O 0 de do

-0

(see fig. 9 for the variable definition).

AY

As

x

plr,8)
/

real domain Fourier domain

Fig. 9. Parameters used in Bellini’s technique of attenuation correction.

The introduction of the attenuation modifies the expression of the projec-
tions which becomes

P06 = [ (@.0) exp(~u 1) dY.
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In order to simplify the ulterior calculations, this attenuated projection is mul-
tiplied by exp(u D) (see fig. 9) assuming that the body contour is known and
becomes

p"(r,0) =_wa(9,¢) exp[—uosin(e — 0] dY.

The 1D-Fourier transform is depending on # and becomes

N 4+

. i .
GR 6 = [ ] F@w)exs|~2imoR(costy —6) - 5z sin(p ~ 0)) | ededo,
which is not the 2D-Fourier transform of f(g,9) because of the presence of the
g Y .
term R sin(p — 0) in the exponential argument.

The idea of Bellini is to do an adequate variable transformation on the’
Fourier variables (R,6) in order to obtain again a 2D-Fourier transform of
f(0,9) and so to find f(0,9), the unknown activity distribution, by including the
imaginary term inside a new real term which eliminates this complex expression.

By identifying the above expression and the following one, that has to be
obtained

— T

F&® =] [0 expl~2in Reostp — B o do dp,

and by assuming 6 = @ — if', we obtain easily
2

R R* + P
and
0=0—iarcsinh( ,u_)
. 27T R
with . U
@' = arcsinh (——_—)
2T R

The variable change R — R is easily done by an interpolation. The change
6 — 0 is more difficult to imagine but it can be realized after the following con-
siderations:

— From the projections we obtain G(R,0,u) but we wish to know G(R,6,0)
and we know that by replacing R and 8 by R and 0 in the expression of
G(R,0,1), we get G(R,0,u) = G(R,0,0) which is equal to F(R,0).

— For R constant G(R,0,u) is a periodic function H(6) of @ having the
period 2x. It possesses then a Fourier expansion

+o0 2n
H(H) =kz arexp(ik ) with ax = 51; [ H(6) exp(ik 6) db,
==c0 0

in the same way H(0) is also periodic because 6 = 6 — 19’ with 8' con-
stant for R constant so
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- e
H(6) =kz brexp(i k),
but H(6) = H(6) for 6 real, so

bi=ar and H(H) =kz axexp(i k 6),
then

_ +c0 +00 v
H(©) =kz arexp(—k0)exp(i k8 =kz ax exp(i k 6)

with
ax = arexp(—k@').

In summary, knowing G(R,8,u), its Fourier series development give the coeffi-
cients ax. By multiplying them by exp(—k6'), we obtain the coefficients aj of
the series corresponding to G(ﬁ,e_,,u) which allows to calculate the value of
G(R,0,u) = G(R,0,0). Practically, the coefficients a, are calculated by doing
the discrete Fourier transform of G(ﬁ,@,u), the multiplication by exp(—k8")
is in fact equivalent to a filtering, and the value of the new Fourier series
G(R,8,u) is obtained by calculating the reverse discrete Fourier transform of
the filtered function.

In fact, in practical cases, the ratio between the maximum and minimum
values of exp(— £ 8') can be very high, and it’s preferable to work on the arith-
metical mean of two opposite projections instead of working on single pro-
jection. It can be demonstrated that in this case the filtering is done with the
function cosh(k8'), more adapted to the numerical calculation than exp(—k8°).

There is still a problem when values of G(R,,u) have to be calculated with
R going to zero. It can be demonstrated that when R—>0 the function
G(R,0,u) tends towards

2n

1 u
ﬁ/ G Oone) a6
0
independent of 6.

After all these operations, G(R,0,0) or F(R,0) is known then, either a reverse
1D-Fourier transform is applied with R as variable giving so the corrected pro-
jections and the filtered back-projection can be applied in order to find the
object, or the Fourier synthesis is applied by using all the G(R,0,0) functions.

3.2. Intrinsic techniques

These techniques realize the attenuation correction during the process of
image reconstruction itself. They lead to a weighed back-projection the com-
pensating filter of which varies with the kind of weighing. Although two
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methods have been studied in this work, only one will be reported here, the
other one giving presently too much artefacts for being of any interest °).

3.2.1. Gustafson’s technique

The principle!®), based on intuitive considerations, does not bring a
rigorous solution to the attenuation problem but gives rather good results as it
will be shown later.

The arithmetical mean of two opposite projections with constant attenua-
tion is expressed by

PCOPEE T / Flo [E2EE D+ epCul)] gy

(see fig. 6 for parameters definition).
In order to compensate the effect of the coefficient

C(l,ll) — exp(—,u 1) ';exp(—ﬂ l) ,

during the reconstruction process, a weighed back-projection is realized on this
arithmetical mean, the weighing factor being 1/C(/,!") for the corresponding
point and the corresponding 8 angle for each point (,¢) on the straight line -
defined by the equation r =g cos (6 — ¢). '

The filtering of the projections is still done with the standard ramp filter.

3.3. Iterative techniques

The general principle of these techniques is to modify during an iterative pro-
cess, an estimate of the object in order to make the projections calculated
from this estimated object (or reprojections) as close as possible to the meas-
ured ones.

3.3.1. Walters’ technique

This technique follows rigorously the principle above described '!):

a) From the measured projections a classical filtered back-projection is done
giving the first estimate of the object fo(e,9).

b) This estimate is projected by simulating an acquisition process with a con-
stant attenuation.

¢) These calculated projections are substracted from the corresponding meas-
ured projections. Error projections e(r,d) are then obtained.

d) The image reconstruction process is applied to these error projections lead-
ing to an error object fe(0,¢).
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€) The estimate fo(o,p) is corrected by the error object f.(0,¢) in the follow-
ing way,
S1(0,0) = fole,p) + A fe(o0,p)
giving a new estimate f1(0,¢) of the object. A is a damping factor (JA| < 1)
limiting the divergence posibility of the process.
f) The process restarts to b), for an other iteration. :

The main problem is to decide when the process has to be stopped. As some
authors recommended and as it has been confirmed in our study, it is not use-
ful to do more than one iteration, the improvement brought by additional
iterations being not significant, our data being without noise (except the
sampling noise) and with or without constant attenuation.

3.3.2. Chang’s technique %)

The general scheme of the Walters’ technique is kept but in addition a first
order attenuation correction is performed at the steps a) and d), the principle
of which is the following one 7).

Each point of the object f(o,9) participates to the projection at the angle 4,
weighed by the coefficient exp(—u /) (see fig. 5). If the object is reduced to just
one point source, a back-projection gives at this point a reconstructed value
equal to

2n
Ar= 5 [ A exp(—u 1) db,
A being the activity of the source and / being depending on 8,
1 2n
A=A ﬁof exp(—u 1) do.

An attenuation correction at this point can be done by dividing the recon-
structed activity value by

1 2n
2—n-ofexp(—/1 /) dé,

which is the mean value of global attenuation in all the directions for the con-
sidered point.

This principle is extended to a continuous source: each reconstructed
activity of the points of the source is divided by the corresponding mean at-
tenuation value. This technique needs then to built a correction matrix de-
pending on the object contour. It has been concluded in our study, as some
authors did, that the process can be stopped at the first estimate corrected at
the first order 13-15),
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4. Quantitative results: Comparison *)

All the above presented attenuation correction techniques have been as-
sociated to the filtered back-projection method for the image reconstruction,
and using the same ramp filter.

In the following parts they will be named by the corresponding author
names when possible (Kay, Bellini, Gustafson, Walters, Chang) or by some
abbreviation; GM, GM 0.5, GM 1 (for the simple geometrical mean, or the
corrected geometrical mean with F= 0.5 or F =1 (see part 3.1.1) and AM,
AMO.5, AM 1 (for the simple arithmetical mean or the corrected arithmetical
mean with ¥ = 0.5 and F = 1 (see part 3.1.2).

4.1. Means and methods

In order to separate the influence of the parameters which are implicated in
the real clinical cases, and not taken into account in the hypothesis of each cor-
rection method, the comparison has been done on the reconstruction results
obtained, from a simulated phantom: statistical noise and camera defects
(inhomogeneity of the field of view) have not been taken into account, but the
effects of a non uniform attenuating medium and of the variation of the
spatial resolution in function of the depth of the source (depth effect due to
the solid angle determined by the collimator geometry) have been studied. The
way of evaluating the results has been chosen close to the one used in clinical
environment and makes them by this fact directly interpretable for the same
kind of clinical images.

4.4.1. Numerical phantom

On an IBM 4341 computer projections of a numerical phantom simulating a
transverse section of the abdomen (liver and spleen) have been generated with
an angular sampling of 128 projections for 360° and a lateral sampling of 128
elements, 3 mm wide each (field of view: 38.4 cm in diameter).

The phantom (fig. 10) includes 6 radioactive zones with various activity con-
centrations indicated on the scheme. It simulates an hepatosplenic disease.

The projections have been generated four times:

* — With a constant auto-attenuation (the abdominal section has been modelled
by an ellipse with a linear attenuation coefficient equal to 0.16 cm™.

— With a non constant auto-attenuation (simulation of the rachis by a 6 cm
diameter cylinder with a linear attenuation coefficient equal to 0.27 cm™).

— Each of these two simulations have been made either without or with
depth-effect.

*) This part has been reported at the IEEE Nuclear Science Symposium at San Francisco
(October 19-21, 1983) and has been published in the corresponding “proceedings” !¢).
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activity of
1:100%
2:100%
3:100%
4L: 50%
5: 75%
6: 25%
organ diameter in mm of the regions of interest
1 spleen la 30 centered
1b 80 centered
2 vessel 2a 30 centered
2b max. of 2a
3 hyperfixation 3a 11 centered on 3
3b max. of 3a
4 right lobe 4a 111

4b 30 internal
4c 30 ant. ext.
4d 30 post. ext.

interlobar zone 5 30
6 left lobe 6a 30
6b 50

Fig. 10. Numerical phantom used for quantitative study.

For this last case, experimental point spread functions, measured with a
Philips large-field scintillation camera provided with a standard high resolu-
tion collimator have been used: the functions have been obtained by using a
point source located at various distances between 2 cm and 30 cm from the
front of the collimator and the FWHM (Full Width at Half Maximum)
of these point spread functions have been found varying respectively from
0.8 cm to 1.7 cm.
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4,1.2. Estimates

The obtained images have been visualized on a SAVC*) Philips imaging
console and the quantitative values have been estimated by using the software
included in this console. A first qualitative image analysis gave the global
characteristics of each technique and oriented us in the quantitative study.

The reconstruction artifacts (such as the ones due to the angular sampling)
did not allow to use a pixel by pixel-quantitative estimation. We chose to esti-
mate the value of the activity concentrations by taking the average of the values
obtained in each circular region of interest (ROI) as shown in fig. 10. The dis-
tribution of these average values have been used for comparison. For the
small zones (2 and 3) the maximum pixel values have also been considered.

Finally, 13 quantitative estimates for each image have been kept, 9 of them
concerning ROI having a diameter strictly greater than 30 mm.

4.1.3. Statistical study

The estimates of different kinds (average or maximum values) led us to use
non parametric techniques for the comparison of the results, such as the
Wilcoxon test for paired series which does not need any hypothesis on the
probability distributions under study. This test has mainly been used in order
to show the influence of the rachis and of the depth effect in each attenuation
correction method.

The average of all the estimates for each technique and the standard devia-
tions of their distributions have also been calculated in order to give a global
classification of the various methods.

4.2. Results
4.2.1. Qualitative analysis

The qualitative comparison of the 44 (11 correction techniques on the 4
variants of the phantom) reconstructed images allows to point out some
characteristics common to the various correction techniques. They can be
classified in two groups:

— Techniques with central under-compensation (see for example fig. 11a);
— Techniques with central over-compensation (see for example figs 115, 11¢
and 11d).

The first group is related to the corrected arithmetical and geometrical
means assuming the whole section is active (GM1, AM1) and to the Kay’s and
Walters’ techniques. Kay’s technique and the geometrical mean one show
in addition anterior and posterior over-compensations. The effect of the rachis

*) SAVC: Stand Alone Viewing Console.
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seems always practically negligible. Without depth effect, there is no image
distorsion and in this:case, Bellini’s technique can only be considered as an
exact one (fig. 11d). The taking into account of the depth effect implies two
consequences:
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— The parasitic ray structure due to the angular sampling disappears because
of the spatial resolution loss, except for Walters’ technique (fig. 11a).

— The images of the liver lobes are distorted except for the simple arith-
metical mean technique, Chang’s (fig. 115), Kay’s and Walters’ techniques
(fig. 11a).

In fact for all the techniques the depth effect seems to increase the defects
already existing without it. In all the cases the ROI3 (11 mm diameter) shows
an underestimate of the activity concentration. This is probably due to the
sampling and this led us to study the maxima for ROI having a diameter
smaller than 30 mm (ROI2 and 3).

4.2.2, Quantitative analysis: absolute results

The study of the estimates obtained from each technique (9 ROIx 4
variants of the phantom by excepting the ROI2 and 3) leads us to suggest the
following classification:

— Group 1: techniques giving estimates close to the true values (Bellini,
Gustafson, Chang and Walters).

— Group 2: techniques giving an over-estimate of the true values (GM 0.5
and AMO.5).

— Group 3: techniques giving an important under-estimate of the true values
(simple arithmetical and geometrical mean).

— Group 4: techniques giving an intermediate under-estimate between the
ones given by the groups 1 and 3: GM 1, AM 1, Kay).

These four groups can be represented in one drawing by reporting the
average of all the estimates for each technique (fig. 12a). A priori, only the
groups 1 and 2 seem clinically interesting for the direct evaluation of the
activity concentrations. The study of the distributions of the estimates leads us
to suggest another classification by using the standard deviations normalized
to the mean of true values. Three main groups can be defined in this way
(fig. 12b).

— Group A: techniques characterized by small standard deviations (about
10%) which mean a good reliability (Bellini, Gustafson and GM 0.5).

— Group C: techniques characterized by large standard deviations (more than
20%) (Kay, simple geometrical and arithmetical mean techniques).

— Group B: techniques characterized by intermediate standard deviations
(the other ones). '

Such classifications can be modified when considering the relative results
and a technique which does not allow to reach the true activity concentrations
could be satisfactory for the determination of the ratios between the various
concentrations.
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Fig. 12. a) Average values of all the estimates of the activity for each attenuation correction tech-
nique; b) normalized standard deviation of the distributions for each technique; AM: arithmetical
mean; GM: geometrical mean; AM 1, AMO0.5, GM 1, GM0.5: corrected arithmetical or geo-
metrical mean: W: Walters; G: Gustafson; B: Bellini; C: Chang; K: Kay.

4.2.3. Quantitative analysis: relative results

The estimate of the activity concentration in the ROI 1a has been used as
the normalization reference. We obtained in this way 11 relative estimated
values (15 being excluded).

In that case the estimate of activity concentration values in ROI 4, 5 and 6
are close to the true relative values but more or less spread according to the
technique which has been used. The estimates in ROI 2 and 3 are widely
spread in all the cases because both averages and maxima have been used.

In the same way as for the absolute results and with the same limitations, we
have calculated the relative standard deviations of the various estimates ob-
tained for each technique. They have been found to be very close to the ones
obtained for the absolute results (fig. 12b). The three previous groups remain
identical. That confirms the interest for Bellini’s and Gustafson’s techniques.

It has to be noticed that the Sorenson’s techniques (GM 1, GM 0.5, AM 1,
AM0.5) are strongly depending on the structure of the activity domain in the
studied section. The results can then vary from one section to another one if
the same hypothesis on the activity domain are kept. That is why we excluded
them from the following study keeping only the techniques of Bellini, Gustaf-
son, Chang and Walters.
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4.2.4. Influence of the depth effect and of a non-homogeneous
attenuating medium

The problem is to show the influence of the presence of the rachis and of the
depth effect on the various activity concentration estimates obtained by using
the four variants of the phantom.

A convenient way of representation is to draw for each of the 13 estimates
the differences between the results obtained with and without the rachis in the
phantom simulation. A curve showing the effect of the presence of the rachis
is then obtained for each correction technique. By drawing the “difference
curves” for phantom simulations with and without the depth effect, the
influence of this latter can be shown (fig. 13).

x 4

al ROI

~10 . -
c) ' ROI dl - RrROI

Fig. 13. “Difference curves” for 4 attenuation correction techniques: a) Walters; b) Chang;
¢) Gustafson; d) Bellini. Regions of interest (ROI): la, 1b, 2a, 2b, 3a, 3b, 4a, 4b, 4c, 4d, 5,
6a, 6b. Drawn line without depth effect, dotted line with depth effect.
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It can be pointed out in this way that Walters’ and Bellini’s techniques do
not show any significant differences when taking into account the depth effect
(figs 13a and 13d) (the paired series are not significantly different), contrary to
those of Gustafson and Chang (figs 134 and 13c¢).

It is useful to verify if there are significant variations for the small
ROI2 and 3 (diameters smaller than 30 mm). The activity concentration in the
ROI2 located in front of the rachis is under-estimated by about 10% on
the “difference curves” (except in Bellini’s technique) whereas the ROI3 at
the right lobe centre does not show any significant modification. The taking
into account of the depth effect leads to a recovering of 5% in the estimate
in the ROI2 except with Chang’s technique where a decrease of 7% is ob-
served.

Globally the Bellini, Gustafson and Walters techniques seem to be the least
sensitive ones to the presence of both the rachis and the depth effect.

It can be concluded that the Bellini and Gustafson techniques allow to ob-
tain correct evaluations of the activity concentrations even for the ones located
close to the rachis. The Walters technique, generally little sensitive to the bone
and the depth effect presence, is not convenient for the estimate of the activity
concentrations, close to the rachis. The Chang technique, sensitive to the bone
presence for the concentrations close to the rachis is globally sensitive to the
depth effect.

4.3. Discussion

The study reported here, concerning a phantom of the abdomen cannot be
directly extended to the thorax, the pelvis or the brain. In order to be able to
conclude in a general manner, it would be necessary to generate typical phan-
toms of these body regions and to do similar tests as the ones we did. Our
results however remain valid for the abdomen which is an important object of
medical examinations.

We chose variations of the activity concentrations from 1 to 4 corresponding
to the main variations generally encountered in the abdominal pathology. The
statistical fluctuations of clinical data could be of the same order as the lowest
concentration value. The measured point spread functions used for the depth -
effect simulation are compatible with the ones obtained with most of the
present tomographic systems. The gamma scattering effect has been partially
taken into account by the fact that these point spread functions have been
obtained in a scattering medium.

We did not study the influence of the statistical noise and of the non-uni-
formity of the camera field of view which can be analyzed 1ndependently of
the auto-attenuation correction methods. !
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We used for the reconstruction the classical filtered back-projection with the
ramp filter which only corrects the blurring introduced by this method. We did
not introduce any additional spatial frequency window which might have
screened the interesting results.

In the case of small active volumes we were obliged to use the maximum
values because of the too poor estimate obtained from the average value in the
corresponding ROI, as it is presently done in clinical examinations. Other
kinds of abdominal phantoms would possibly modify slightly the conclusions
but it can be expected that the studied parameters will remain in equivalent
ratios for the various correction techniques.

The techniques using the corrected or non-corrected geometrical or arith-
metical means have been rejected because they are connected too closely to the
structure of the activity and the attenuation domains. However a study of
Sorenson’s technique with an adaptation of the correcting coefficient to the
section structure would be interesting. The Walters’ and Chang’s techniques
have been used with only one iteration and the estimated values were close to
the true ones. The fact that these techniques do not take into account the bone
in their principles do not allow to hope to recover the true value after more
than one iteration. A map of the exact attenuation coefficients (obtained by
means of a C.T. scanner for example) would helpto reach more exact estimates.

The conclusion on the global sensitivity of the correction techniques to the
presence of the bone and of the depth effect has to be weighed by an examina-
tion of their ability to estimate the absolute concentration values in the small
active volumes. We saw that for the latter the use of a local maximum can
recover more or less an acceptable estimate. In clinical environment the size
of some active volumes is not known and it would be useful to estimate the
activity concentration and the volume at the same time. A complete solution
to this problem is not known but a better sampling can bring an improvement.

5. Conclusions

The increasing interest of nuclear medicine for quantitative studies in
various domains of applications (psychiatry, immunology using labelled
monoclonal antibodies, cardiology etc.) makes the choice of a good attenua-
tion correction method of great importance. The techniques of attenuation
correction which have been studied here associated to a classical image recon-
struction method, are the most used or described ones in the literature. Some
are interesting because of their principle (Bellini) or their generality (Walters).
Their comparison, carried out on a numerical abdominal phantom, allowed to
classify them in function of their ability to recover the true activity concentra-
tions. The study of the influence of a non-homogeneous medium and of the
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depth effect on reconstructions shows that some techniques allowing to ob-
tain globally good absolute or relative estimates also have a good behaviour
towards these two effects (Bellini, Gustafson, Walters). The other ones have to
be rejected (simple or arithmetical mean of two opposite projections) or care-
fully used in quantitative studies.
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AN EFFICIENT SILICON COLD CATHODE FOR
HIGH CURRENT DENSITIES

I. Experimental data and main results

by G. G. P. VAN GORKOM and A. M. E. HOEBERECHTS
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Abstract

Experimental data and main results of measurements on silicon p-n emit-
ter cold cathodes are described. It is shown that very shallow p—n junctions
(depth below the surface = 10 nm) biased in avalanche breakdown are.able
to emit electrons into vacuum with high efficiencies and current densities.
After cesiation of the surface, efficiencies of about 2% have been reached
and even higher after in situ (partial) cleaning of the surface. Current
densities in excess of 1000 A/cm? have been measured on emitters with a
diameter of 1 um and about 250 A/cm? for emitters of 6 pm diameter. The
effective electron temperature is found to be about 0.5 eV.

PACS numbers: 79.70.+q, 73.30.+y

1. Introduction

It has long been known that shallow p—n junctions in semiconductors are
able to emit electrons into a vacuum when biased in avalanche breakdown.
The first paper on this subject appeared in 1957'), and for a number of years
there was some research in this area, because it was thought that this phenom-

_enon might lead to a new type of cold cathode. Most experiments were done

on p—n junctions in silicon 2-*), and at first rather rarely on other semiconduc-
tors 2). However, at the end of the 1960’s and the beginning of the 1970’s, a lot
of work has been done on p-n emitters made of SiC5).

As far as we know, these investigations did not result in commercially avail-
able devices employing this type of cold cathode. The reason for this is not
quite clear. The early silicon devices suffered, probably, from too low efficien-
cies and low current densities. The SiC cathodes had some trouble with repro-

. ducibility and had rather uncomfortable geometries.
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In most of the studies mentioned above, the p-n junction intersected the
surface and the electrons emerged at the surface from a very small area around
the intersecting line. Bartelink et al.?®) studied electron emission from diodes
with the junction parallel to the surface. A modern version of this experiment
was performed by Shahriary et al.®). Besides electron emission into vacuum,
electron injection in SiO; layers has also been studied in detail since 19707),
mainly because of its importance in memory devices and in.device reliability
problems. In these cases as well two geometries were studied, one with the
junction intersecting the Si-SiO; interface ®) and one with the junction parallel
to the interface®). From refs 8 and 9 it can be concluded that high current den-
sities and high injection efficiencies for electron emission in SiO; layers can be
achieved. This stimulated us to look again at the electron emission into
vacuum and to try to increase this to levels at which practical application
would be possible, using the knowledge obtained from the oxide injection
experiments and by using modern silicon technology. As we shall show in the
followings we have come close to this goal indeed. Key factors for the success
are the availability and use of low energy ion implantation to produce very
shallow junctions and the notion that the dimensions of the emitters have to
be small to get high current densities.

The important parameters of the p—n cold cathode are the efficiency of the
emission process, the energy spread of the emitted electrons, the obtainable
current density (sometimes called cathode load) and total currents. These will
be described in a series of 3 papers. This first one deals with experimental data
and with our most important results. In our second paper (which will be
referred to as HGII) these results will be discussed in detail and the experiments
compared with theory. Emission stability problems (caused by desorption and
drift of the cesium atoms) will be the subject of the third paper (GH III).

In a previous paper!°), we reported the energy distribution of the emitted
electrons for both types of emitters, namely with the junction intersecting the
surface (class I) and with the junction parallel to the surface (class II). It was
found that the former (class I) devices produced very broad energy distribu-
tions, which is of course a distinct disadvantage if these emitters are to be used
in, for instance, cathode ray tubes. Furthermore it was found that after de-
positing a monolayer of cesium on the surface of class I emitters (as is neces-
sary for reaching sufficient emission currents, as will be discussed later) a
stability problem was encountered, due to the fact that the cesium atoms
(which are fractionally charged) were forced to drift in the very large electric
field parallel to the surface. For these two reasons, the class I cathodes are
unsuitable for almost all applications. In the following we shall therefore deal
with the class II emitters only.
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2. Experimental
2.1. Silicon cold cathode preparation

. There are several ways of producing a p—# avalanche cathode within the sili-
con technology. Here we describe roughly a typical version in circular geom-
etry. Other geometries and processing methods will be described in HGII.
The measurements on emitters made by different methods and on different
geometries all yielded similar results regarding efficiencies and energy spread.

The device structure is drawn schematically in fig. 1. The design is such that
we create two types of diodes:
1) a diode which merely acts as a contact and a protection;
2) a small diode, the electron-emitting diode.

9
I \

_____

7.

Fig. 1. Schematic drawing of the silicon p-n emitter cold cathode with circular geometry. The
actlvep area has a radius r, in the range from 0.5 to 3 pm. The radius of the hole in the gate (rg)
is usually 5-10 pm.

The breakdown voltage of the contact diode, produced by n-type diffusion
in a p~type substrate, is 4-20 volts higher than that of the active diode, de-
pending on geometry and process conditions. By locally diffusing boron (in
this description a circular area with radius o) we lower the breakdown voltage
to about 5 volts. This provides a good compromise between the avalanche
contribution to the diode current and the onset of the tunnelling current con-
tribution. To reduce the series resistance an epitaxial layer on a heav1ly doped
substrate can be used. Details are listed in table I.

The process starts with an oxidation of a {(100) (epitaxial) substrate. The
oxidation conditions are chosen such that the oxide can withstand a phos-
phorous deposition and diffusion. With a conventional photolithographic
technique (using projection imaging of masks) and subsequent etching of the
glass, a window is formed for a phosphorous deposition and diffusion. Within
the n* area a circular oxide island is left with a diameter of about 20 microns.
Using a second mask this island is removed. Within the (circular) p-type
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Substrate
_thickness

resistivity

orientation

Epitaxial layer
thickness
concentration

Diffusion contact
impurity

surface concentration
depth

Diffusion n-channel
impurity

surface concentration
depth (at p*)

Dielectric layer
material
thickness

Gate (grid)
material
thickness

Mounting

Bonding
material
wire
method

p-type

~ 380 um
< 0.01 Qcm
{100}

p-type
~6 um
2x10'* cm™®

phosphorus
>5x 10 ¢cm
~3 pm

arsenic/antimony
2x10* cm™
10 nm

oxide or oxide/nitride
~1 um

polysilicon/Al
~0.5 um

SOT 14

Al
25-40 pm
ultrasonic *

region just defined, a circular region is defined by developing a window in
photolacquer. The active area (with radius r,), is defined by boron implanta-
tion, cleaning and subsequent oxidation. On top of the oxide layer a con-
ductive layer can be deposited. Because this work started from MOS transistor
studies we call this layer the gate. The gate is structured in a subsequent litho-
graphic step leaving the oxide layer covered for almost the complete chip. In
operation, the gate can act as an anode or a grid or, when connected to the n
layer, it serves simply to avoid charging of the dielectric layer by spurious
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electrons. At the outer edge room is left for a contact window in the uncovered
oxide area. This window is defined together with an area around the active
diode. A final implantation of arsenic or antimony ions followed by annealing
completes the high temperature part of the process. From fig. 1 it can be seen
that this last formed shallow layer makes contact with the phosphorus-dif-
fused area and that it defines the earlier mentioned active area. Several con-
ditions of implantation doses and energies are tested and will be described in
a subsequent paper. In general the conditions end up with the metallurgical
junction at a depth around 10 nm.

The surface of the active diode is left with an unsaturated ‘natural’ oxide
which is etched just before mounting in a UHV system or tube. If an HF based
etch is used aluminium metallization patterns are severely attacked at steps.
For ease of preparation we just mount a chip on a standard header and ultra-
sonically bond wires directly on silicon and, if present, on polysilicon. Etching
of the thus completed chip gives no complications concerning reliability, even
after prolonged heating of UHV equipment or tubes.

To avoid contamination by deposits when the devices are operated in air,
testing is done only with the protective natural oxide layer present and to
about 5 V reverse bias only. A typical characteristic of one of our diodes is
given in fig. 2. -

5.300
0 e

=

/
[

-47.70 [
-13.95 0 1550
e Vd (V)

Fig. 2. I-V characteristic of a p-n emitter with r, = 3 pm.

2.2. Vacuum conditions

Most experiments reported here were done in a getter-ion-pumped stainless
steel UHV system. Pumping down from atmospheric pressure proceeds using
an oil-free rotating pump and cryosorption pumps. The whole system is baked
at a temperature of about 250 °C overnight. After cooling down an ultimate
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pressure below 1078 Pa is redched. This UHV system contains the spherical
symmetric retarding field energy analyser, described in some detail in ref. 10,
which is used to measure the total energy distribution ') of the emitted elec-
trons. The resolution is about 0.1 eV.
A number of experiments were performed on emitters mounted in cathode
ray tubes. These tubes were pumped using turbo-molecular pumps and were
baked at 380 °C overnight. In most cases the emission efficiency was found to
be somewhat lower in the tubes and the results showed a larger spread in the
‘ results, as compared with the UHYV results. This could be due to the fact that
in tubes it is more difficult to evaporate a clean monolayer of cesium on the
surface than in a UHYV system.

2.3. Cesium deposition

As will be discussed further in sec. 3, a monolayer of cesium on the surface
is necessary to produce high emission efficiency. This is, of course, due to the
lower work function of a cesiated surface. To get the best results it is impor-
tant to evaporate a pure cesium layer. Unfortunately, the commonly used dis-
penser cesium sources (consisting of cesium chromate and a reducing agent)
produce a lot of gas, including also oxidizing gases (O2, H2O, CO2) which are
harmful for the emission. It is therefore important to degas the cesium source
thoroughly before evaporating the cesium. But even then, the release of
cesium is still accompanied by some gas. So, in order to get the best results,
the cesium has to be deposited on some intermediate surface and after that,
when the pressure in the system is again low enough, it is re-evaporated and
deposited on the p~n emitter. Such procedure is followed in our UHV system
but in tubes this is clearly more difficult and this leads to a loss in performance
of the cold cathode in such tubes.

3. Main results

We are interested in the following cathode properties: efficiency, energy dis-
tribution, current density (sometimes called cathode load) and total emission
current.

3.1. Efficiency
~ The efficiency # of the p-n emitter is defined as

- iVﬂC — ivac (1)

id + ivac - id

where iy is the emitted electron current and /4 the (non-emitted) diode cur-
rent. As will be discussed in HGII, the value of 7 is determined by the electric
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field in the depletion layer, the mean free path of the electrons within the sili-
con, the depth of the non-depleted part of the very shallow n* layer and the
work function of the surface. The measured values for the devices as sketched
in fig. 1 are:

n = 1-5x107% pure silicon

n = 1-2x 1072 silicon-cesium.

The gain by a factor of about 200-1000 when cesium is used is due to the
lowering of the work function from ~ 4.7 eV (pure Si) to ~1.7 eV (Si-Cs).
The spread in the results is due to residual contaminations on the surface e.g.
oxygen and carbon, which apparently differ somewhat from one emitter to
another.

In a separate experiment'?), p—n emitters were mounted in a scanning
Auger microscope (SAM 590 from Physical Electronics) enabling us to meas-
ure the elemental composition of the surface. It was found that at an efficiency
of about 2%, oxygen was still present on the surface. This oxygen could be
partly removed by using the electron beam (electron stimulated desorption).
After this treatment an efficiency #7 = 3.6% was measured. An even higher
efficiency was obtained by sputter-cleaning of the surface with 500 eV argon
jons. This resulted in # = 7.25% (after re-deposition of cesium, but without
a thermal anneal). :

3.2. Energy distribution

Due to the fact that we use a spherical symmetric energy analyser we meas-
ure the so-called total energy distribution !!). In ref. 10 we reported e.g. the
energy distribution of a class II emitter which was produced using 25 keV
arsenic ion implantation as the final step. The shape of the measured curve
could be fitted well to a Maxwellian distribution with an electron temperature
kT. = 0.18 eV. A simpler method of deducing electron temperatures from
energy distribution is by using the full width at half maximum AU of the dis-
tribution curve. The electron temperature then follows from):

AU
kT, = 545 2)

In the former case a AU = 0.50 eV was found, leading to k7. = 0.20 eV. This
is somewhat higher than the value obtained from the fitting procedures, the
difference is caused by the resolution of the energy analyser (~ 0.1 eV).

The energy distribution of p-n emitters with 5 keV arsenic implantation is,
without cesium on the surface, found to be Maxwellian again with AU =
0.93 eV. Without corrections for the resolution, this leads to kT. = 0.38 eV.
With cesium on the surface, the shape is not Maxwellian, see fig. 3. As will be
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Fig. 3. Energy distribution of a cesiated p-n emitter. The full width at half maximum is AU.

discussed in HGII, this is probably caused by the structure in the density of
states of the silicon conduction band. However, the deviation from the Max-
wellian shape is not too large and so it seems reasonable to use eq. (2) again
to find an effective electron temperature which, from the measured value
AU = 1.20 eV, results in (kTe)esr = 0.49 €V. '

3.3. Current density

The current density into vacuum j., is simply given by
jvac = ﬂde_: (3)

where j4, is the current density in the diode perpendicular to the surface, see
fig. 4. To achieve high current densities (at a given value of #) this jq , should
be as large as possible. However, the limiting factor is not j4, but Jay (fig. 4),
because of the fact that the non-emitted diode current has to be squeezed into
the very shallow n* channel. As the thickness of the channel must be of the
order of 10 nm to obtain high efficiencies, it will be clear that less current
crowding will occur with small emitters and so the highest current densities
can be expected from the smallest emitters. This turns out to be the case. As
will be discussed in detail in GH III, we have found empirically that, for stable
emission (apart from instabilities due to poor vacuum conditions) Jay has to
be restricted to
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Fig. 4. The current density ja,, in the very thin n* channel (~ 10 nm) is much larger than the cur-
rent density jq, in the avalanche region. It is jg, that limits the maximum available vacuum
current density jvac.

Jay $2.5%10% Afcm?. 4

From fig. 4 and assuming a homogeneous avalanche breakdown it can easily
be seen that the relation between ja, and the maximum value of jaj, jay is
given by

_ chh .m

Jag = 'To‘Jd// (%)

and so, using de, = 107® ¢cm, egs (3) and (4)

jue s 2L, ©
ro

where r, has to be expressed in cm, jvac is then given in A/cm®. For an emitter
with 7o = 5% 10~ cm this leads to jac <7 -10% Afcm?.

For 1 = 1-2% this results in jvac = 1000-2000 A/cm?. In practice we have
indeed achieved current densities in excess of 1000 A/cm? with good stability.
For emitters with ro = 3x10~% cm, current densities jwac = 250 A/cm? have
been obtained.

3.4. Total emission currents

In normal thermionic cathodes almost any total current can be obtained at a
certain current density just by increasing the emitting area. For p—n emitters
the case is more complex. The obtainable total vacuum current ivac is (see
eq. (1)) given by

fvac = 1 l4. @)
. Having a certain value for #, the vacuum current can be increased by increas-
ing the diode current is. This is, again, limited by the maximum permissible
value of jq;,. The corresponding maximum diode current i§" is given by

lén =27 I‘odchjd'/'/'. (8)

Using ja;, $2.5%10% A/cm? and den = 107® cm, we find from eq. (7) and (8)
ivae S5, (roin cm, iq in amps). ()]
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It follows that (if 7 = 1.5 X 1072) iy <10 pA for emitters with r, = 5 X 10-% cm,
and Jvac $60 pA for emitters with 7o = 3 X 10~* cm. These values are in agree-
ment with the experiments.

If larger total currents are needed, r, has to be increased (eq. (9)) but this
leads to a decrease in the current density, eq. (6). At some point, as will be dis-
cussed further in HGII, it is better to leave the concept of a homogeneous cir-
cular emitter and to go over to concentric annular emitters or to some other
geometry.

4. Conclusions

The conclusions that can be drawn from the measurements of the emission
properties of silicon p-n junction emitters covered with a monolayer of
cesium are
— efficiencies of max. ~ 2% are attainable,

— the energy spread is rather large and corresponds to an effective electron
temperature of ~ 0.5 €V,

— very high current densities can be obtained, especially with small emitters,

— the total available emission current depends on the geometry and can be
increased at the expense of current density.
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SECONDARY ELECTRON YIELDS FROM CLEAN
POLYCRYSTALLINE METAL SURFACES BOMBARDED
BY 520 kev HYDROGEN OR NOBLE GAS IONS

by P. C. ZALM and L. J. BECKERS
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Abstract

Ion-induced secondary electron yields for clean polycrystalline Al, Ti,
Ni, Cu, Zn, Mo, Ag, Au and Pb bombarded at normal incidence with
5-20 keV H*, Hj, He*, Ne*, Ar*, Kr* or Xe* jons at current densities of
about 10 pA/cm? have been measured. Ultra-high vacuum conditions
(P < 1x10°" Pa) and mass-selected particle beams were employed. Target
cleaning was achieved by sputtering and monitored by Auger electron spec-
troscopy. A relatively simple electron yield determination method was used,
employing direct current measurement combined with a variable positive
target bias voltage. Good overall agreement was found with the scarce ex-
perimental data available for the same energy range. A confrontation with
predictions of recent sophisticated theoretical work reveals that, even qua-
litatively, the features of the bombardment-energy dependence of the ion-
induced secondary electron yields are not well understood.

" PACS numbers: 79.20.Nc, 61.80.Jh, 34.90. +q

1. Introduction, outline and theoretical preliminaries

Bombardment of a solid surface with swift particles generally leads to elec-
tron emission. This phenomenon has consequences for e.g. ion current meas-
urements, plasma-wall interactions etc. Also, total electron yield, energy dis-
tribution of the emitted electrons and their angular ejection pattern may reflect
properties of detail processes of the particle-solid interaction. For these reasons
secondary electron emission has for many years received considerable atten- .
tion in the literature. Excellent recent reviews of both the experimental and
theoretical status of this subject can be found in refs 1-3. The present study
deals with the particular case of the total yield of secondary electrons emitted
from elemental (polycrystalline metal) surfaces bombarded by energetic (posi-
tive) ions. :

Conventionally, two independent mechanisms are distinguished for positiv
ion bombardment-induced secondary electron emission. Potential emission is
associated with the neutralization of the impinging ion immediately prior to
hitting the surface. The process can take place if the neutralization energy of

Philips Journal of Research Vol. 39 No.3 1984 61

IPR2018-1557
HTC EX1023. Page 68




P. C. Zalm and L. J. Beckers

the ion, E;, exceeds twice the work function, ¢, of the solid. It has no kinetic
threshold. Consequently, at low ion energies (<1 keV), potential electron
emission will be fairly constant and dominant, while it is expected to decrease
rapidly at higher projectile velocities. In a theoretical study of the Auger
neutralization model, Kishinevskii*) arrived at the approximate estimate for
the low-energy potential electron emission yield

_ 0.2(0.8 E; — 2¢)
= o ,

YrEE ¢))
-where ¢f is the Fermi enefgy of the target electrons. Baragiola et al.!) pro-
posed a slightly different semi-empirical prediction, which reads

yeee = 0.032(0.78 E; — 2¢). 19

Both egs (1) and (1) agree reasonably well (~ 25%) with experimental data %),

with ionization energies E;, taken from ref. 7, work functions ¢, taken from a

recent compilation ®), and Fermi energies er, taken as described in ref. 9. The

main ambiguity in applying egs (1 and 1’) stems from the values of ¢, which in

a particular experiment may be influenced by trace contamination of the sur-

face.

The second mechanism governing electron ejection is called kinetic electron
emission. It is associated with the ionizing collisions taking place after the inci-
dent ion penetrates the surface. A four-step process governs the emission 2)
— ionization by the bombarding ions,

— secondary ionization by energetic recoils, electrons or photons,

— transport of liberated electrons to the surface,

— electron ejection through the surface barrier.

Kinetic emission depends on a large number of parameters

— energy Ep, atomic number Z,, mass M}, and angle of incidence of the pro-
jectile; .

— atomic number Z, mass M, work function and Fermi energy of the target
as well as its surface structure and temperature and possible contamination
effects. :

Whereas the total electron yield for potential emission is fairly well under-
stood, the same cannot be said for kinetic emission. By now, there is mutual
agreement among theoreticians that for light projectiles (e.g. H*, He') on
heavy atom targets the electronic stopping, i.e. the energy loss through excita-
tion of target electrons, dominates the electron ejection outside the potential
emission regime. Likewise, for heavier projectiles at high energy (=100 keV)
one should expect a near proportionality between total electron yield and elec-
tronic stopping cross section (Vg « Se(Ef)), owing to the negligible influence
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of the energetic recoil atoms, created through elastic collisions governed by a
nuclear stopping cross-section S, (E}), which is small compared to Se(Ey). The
contribution from such energetic recoils has become clear from the theoretical
work of Schou??). In analogy to Sigmund’s successful theory for sputtering
he solved a system of Boltzmann transport equations describing the ionization
cascade in a random, semi-infinite monoatomic medium to arrive at

vkee = AD(Ey, x = 0). 2

Here A is an assumed target material constant, which contains the energy-,
depth- and angle-averaged escape probability for electrons liberated inside the
target and encomprises the surface barrier. D stands for the mean energy de-
posited in electronic excitation at the surface (x = 0) by an incident ion with
energy Ep. In a slightly more transparant form eq. (2) can be rewritten as

yse = AN |Bo Se(Ep) + p TEZE (“ E") Su(En)] &)
where N is the target density and u = 4M,,J\l,/(Mp + M)? the maximum energy
transfer factor. S.(E;) and Sy(Ey) are the projectiles electronic and nuclear
stopping powers, respectively, evaluated at the surface. In our energy regime
Se(Ep) = K [/ Ep and Sn(Ep) = Cpe I/Ep/(l + 4.5 &) where the reduced energy
¢ is given by & = E, /2, with

S = 3215 (1 + AAfI")zp Zo(Zo% + Z5)H keV.
Here K. and Cy, are characteristic constants depending on projectile and
target atomic number and mass.
[Some numerical values: Ky = 0.05 A? keV# for H* and He* ions and ranges
from 0.06-0.18 A2 keV# for the heavier noble gasionsin Z, = 13-82 materials;
Cy is around 0.3/Z, A%keV# for H* and He* and varies from 0.6 A? keV}
for Ne*— Al to 1.3 A? keV? for Xe*— Pb.]
Bo (=1 for higher energies) and B(= [M, + M,]/10M, for M,/M, <10 and
levels off to around 2.0(* 0.5) for M; > M,) are dimensionless factors ac-
counting for energy transport through the surface by backscattered primary
ions, excited target electrons and swift recoils. These factors are weakly de-
pendent on energy and the target/projectile atomic mass ratio. The factor
n(uEp)uEy, roughly equal to 0.3 Zﬁ(/zé:)"'2 (deduced from data in ref. 10),
reflects the secondary electron generation by recoil atoms. It is an almost uni-
versal function, which depends only weakly on target parameters. Although
eq. (3) is synthesized from a complete physical picture, and therefore most
suited for prediction, it is not readily applicable to experiment because of the
large number of functional forms that are involved and have to be evaluated.
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In spite of the fact that the investigation of ion-induced secondary electron
emission is an old subject, accurate experimental data are not abundant,
owing to ill-defined measurement conditions, as for example poor vacuum.
Moreover, the main body of high-quality data refers to the energy range of the

“potential emission regime. In this paper we report on measurements of total
electron yields for 5-20 keV H3, He*, Ne*, Ar*, Kr* and Xe" ions incident on
clean targets of Al, Ti, Ni, Cu, Zn, Mo, Ag, Au and Pb to offer a sizeable,
self-contained, data set for future theoretical reference. The energy range is
such that the potential electron emission mechanism will play a minor role,
but that the contribution of energetic recoils to the total yield may be expected
to be considerable if not dominant, for the heavier noble gas ions. Our data
are compared with reliable results recently obtained elsewhere and confron-
tated with some qualitative predictions from theory.

2. Experimental procedure details
2.1. Ion beam equipment and characteristics

Beams of singly-charged, mass-selected H*, H3 or noble gas ions at energies
of Ep, = 5-20 keV were generated in the ion-beam apparatus discussed in
detail elsewhere!). A short description of its main features pertinent to the
appraisal of our results is given below.

The ions are formed in a hollow hot-cathode source in which a high-density
plasma is sustained at a low discharge voltage (= 40 V). The energy spread in
the beam is thus limited to a few electronvolts. Through a three-stage differen-
tially pumped focusing system, comprising two Einzel lenses with an EXB
Wien-type mass filter between them (with a selectivity of about MIAM = 16
at Ep = 10 keV), the beam impinges, at normal incidence, on the target in the
main UHV chamber. The base pressure in this chamber is always kept below
10-7 Pa prior to bombardment. During irradiation it was found to increase
to at the most 5 x 10~® Pa. Residual gas analysis showed this to be solely due
to leak-in from the source and reflection of (neutralized) projectiles from
the target. A final beam-defining diaphragm of 6 mm diameter is located at
40 cm from the target and 125 cm from the source. It is kept at +30 V to
prevent liberation of secondary electrons. The maximum attainable beam cur-
rents on the target are depicted in fig. 1a for the different ionic species used
in this work. The almost circular beam had a diameter of about 15 mm for
E, = 20 keV, decreasing roughly linearly to 10 mm at E, = 5 keV, owing to
the improved focusing abilities of the ion optical system at lower projectile
energies. For H3, He* and Ne* ions the extraction (acceleration) voltage was
limited to 20 keV as above this value an arc discharge was ignited between the
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Fig. 1. @) Maximum attainable primary ion currents /;, as a function of extraction energy, meas-
ured with our beam apparatus. &) Sketch of the set-up for the electron yield determination.
Details are discussed in the text. ¢) The relative secondary electron current as a function of target
bias voltage (Jse = [I(Vbias) — 1(100))/[1(0) — 1(100)]). All measurements, at 0(10)50 V, fall in the
hatched area.

ion source and the gas supply vessel. For Ar*, Xr* and Xe* ions 22.5 keV (and
occasionally 25 keV) could be reached.

2.2. Target preparation and handling

Circular (@ =18 mm) targets were cut from 1-3 mm thick ultrapure
(99.999%) optically flat metal platelets. The targets were etched in a mild acid
and rinsed in chemically pure water and alcohol or hexane. Subsequently the
targets were mounted on an oven, capable of heating to a temperature of
~ 800 °C, and inserted in the UHV chamber through a vacuum lock. Cleaning
in situ could thus be achieved by annealing, by sputtering or both. Auger
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Electron Spectroscopy (AES) was used to check the cleanliness of the targets
on an atomic scale. In general, it was observed that annealing alone was in-
sufficient and that sputtering to a total dose of about 1 x 10® jonscm™=? with
either Ar*, Kr™ or Xe™ at 10-20 keV was needed to obtain atomically clean
surfaces. In two cases trace impurity contamination of the order of 1% of a
. monolayer, viz. S in Ni and O in Mo, was present, even after sputter-cleaning.
The invariance with dose of the total electron yield, measured simultaneously,
provided in itself an accurate indication of the cleanliness of the surface.

No attempt was made to expel the implanted noble gas atoms from the
target by a heat treatment in order to avoid outdiffusion of impurities from
the bulk to the surface. It might be argued that loading of the target surface
(i.e. to a depth of ~1 nm), to a steady-state concentration of the order of
5-10%, with noble gas atoms could influence the measured total secondary
electron yield. We found, however, no differences for samples pre-saturated
with the respective noble gas species. Moreover, for Au targets, where an an-
nealing step was sufficient for cleaning, no measurable influence on the total
fluence was observed within the experimental accuracy. Nevertheless it was
decided always to employ a dose of at least 5 X 10*® ions cm™2 per ionic projec-
tile £ype to ensure maximum reproducibility and steady-state conditions. This
large dose prohibited the use of N* and N3 ions as bombarding species be-
cause it appeared that in most cases, for example with Al and Cu targets,
metal-nitride formation spoiled the experiment.

An ‘in situ’ Reflection High Energy Electron Diffraction (RHEED) facility
was available to check that the targets were polycrystalline (i.e. showed no
long-range ordering), even after prolonged exposure to the ion beam. As the
fluences used were rather high, Scanning Electron Microscopy (SEM) was used,
after completing the experiments on the most sputter-prone target materials
(Zn, Pb), to make sure that pronounced bombardment-induced texturing (facet
and/or cone formation) had not influenced the electron yield measurements.

2.3. Yield determination method

The set-up for the electron yield determination is shown schematically in
fig. 15. The beam hits the centre of the target to which a variable positive bias
voltage of 0—-100 V can be applied. Leakage currents caused by the bias volt-
age were normally negligibly small. At 0 V the total current measured is

10=Ip +‘[se+Isi, (4)

where I, is the primary beam current, /5. the current of secondary electrons
emitted from the target and I;; the total current of (positive and/or negative)
secondary heavy atomic and molecular ions ejected from the target during
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bombardment and reflected primaries which have not undergone neutraliza-
tion. At +100 V one measures approximately

Troo = Iy + Is;, &)

as the vast majority of secondary electrons will return to the target, having
energies well below 100 eV as can be seen in fig. 1¢, and the secondary ion cur-
rent will not be affected much. As this latter contribution is generally much
less than 0.1% of the primary ion current, as is known from Secondary Ion
Mass Spectrometry (SIMS) studies on atomically clean elemental targets, we
find the total electron yield per incident projectile as -

Iy
v=1.."L | (6)

Formally the influence of other potentially feasible processes, that have so
far been ignored in the evaluation of eq. (6), should be considered. Stray elec-
trons, created as backscattered primaries or fast secondary ions hit the wall of
the vacuum chamber, may be attracted to the target when it is biased at + 100V,
and may even reach it incidentally in the absence of any bias. In the latter case
the remedy is to apply a negative bias to the target '?). No measurable effect
was observed, however, so such a correction was not considered necessary. As
the effective solid angle subtended by the target is small, the distance from the
vacuum chamber wall being so large (=15 cm), such ternary contributions
could also be expected a priori to be negligible. A further conceivable source
of error is the existence of fast neutrals in the beam. These do not show up in
the measured primary ion current, but will nevertheless produce secondary
electrons. The long flight path (= 1.5 m) strongly reduces the possibility of a
sizeable neutral flux. In order to check this, a strong magnet was placed just in
front of the beam-defining aperture to deflect the ion beam away from the
target. No detectable secondary electron current was recorded. Finally the role
of the beam current density was examined. No effect was found at any ion
energy for fluxes in the range of about 1 pA/cm? to the maximum attainable
current densities (see fig. 1a).

The overall relative uncertainty in the total electron yields measured in this
way was estimated to be about 7% . Immediately after cleaning, measurements
commenced at the highest energy and going down to the lowest and up and
down once more. This resulted in three yield points per energy, which mutu-
ally agreed to within 3%, except for heavy noble gas ion bombardment of Zn
and Pb where the spread turned out to be twice as high. In a few cases the ex-
periments were repeated with another sample of the same metal. Agreement
with earlier results of a similar kind was always observed. Occasional irrepro-
ducibility of the result led us to discard the entire measurement and after addi-
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tional sputter-cleaning the measurement was performed again. As a con-
sequence, the energy dependence of the electron yield for a particular pro-
jectile/target combination emerging from the sketched experimental
procedure is expected to have a higher internal consistency than the accuracy
with respect to a comparison with data sets obtained elsewhere.

3. Results and discussion
3.1. Experimental data

For brevity we restrict the presentation of the data obtained in this work
largely to table I, for H* and H3 ions, and table II, for the noble gas ions.
Among the scarce results of older investigations available for comparison in
our energy regime, the data by Carlston et al.'®), for 1-10 keV Ne*, Ar*, Kr*
and Xe* bombardment of Al, Cu, Ni, Mo and Ag single crystals at different
surface orientations, provide the most complete and reliable data set. Their
experiments were performed at 10~8 Torr with high beam current densities to
keep the surface clean by sputtering. No additional chemical analysis of the
surface composition was made. The close-packed (111) face of the fcc lattices
is expected to resemble the polycrystalline situation best. Recent high-quality

TABLE I

Secondary electron yields (in electrons/ion) for H* and H3 ions as obtained
in the present work. Experimental errors are discussed in the text.

E; (keV)

Target | Ion =567 T 655 [ 7.5 | 8.75 | 10.0 | 12.5 | 15.0 | 17.5 | 20.0_
Al H* | 045 | 053 [ 057 | 0.62 | 0.65 [ 0.75 | 0.86 | 0.92 | 0.98
Hi | 050 | 059 | 0.69 | 0.71 | 0.76 | 0.84 | 0.95 | 1.02 | 1.07
Ti H* | 0.45 | 0.48 | 0.55 | 0.57 | 0.60 | 0.67 { 0.70 | 0.77 | 0.83
H; | 0.51 | 0.56 | 0.64 | 0.71 | 0.76 | 0.86 | 0.95 | 1.05 | 1.08
Ni | H*| o053 |05 |062]|069]|07 |08 |09 097|104
H | 0.68 | 0.76 | 0.86 | 0.93 | 0.98 | 1.09 | 1.17 | 1.26 | 1.35
Cu H* | 0.63 | 0.67 | 0.74 | 0.79 | 0.81 | 0.87 | 0.91 | 0.99 | 1.05
Hi | 080 | 0.85 [ 098 | 1.02 | 1.09 | 1.17 | 127 | 1.36 | 1.45
Mo H* | 079 | 0.87 | 094 | 1.02 | 1.05 [ 1.25 | 132 | 1.43 | 1.53
Hi | 1.00 | 112 | 1.21 | 1.35 | 1.46 | 1.63 | 1.80 | 1.95 | 2.10
Ag H* | 0.86 | 1.00 | 1.10 | 1.19 | 129 | 1.43 | 1.52 | 1.61 | 1.69
v Hi | 0.95 | 1.00 | 117 | 137 | 158 | 1.77 | 1.90 | 2.05 | 2.23
Au H* | 079 | 094 | 1.09 | 1.15 | 120 | 1.32 | 1.46 | 1.50 | 1.60
Hi | 094 | 113 | 128 | 1.37 | 1.46 | 1.74 | 2.02 | 2.14 | 2.25
Pb H* | 092 | 1.00 | 1.11 | 1.20 | 128 | 1.42 | 1.56 | 1.68 | 1.79
Hi | 1.00 | 1.6 | 137 | 1.46 | 161 | 1.79 | 2.00 | 2.20 | 2.38
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TABLE 1I

Secondary electron yields (in electrons/ion) for the noble gas ions on
Al, Ti, Ni, Cu, Zn, Mo, Ag, Au and Pb as obtained in the present work.
Experimental errors are discussed in the text.

E; (keV)
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

He* 0.60 | 0.70 | 0.78 0.85 0.90 0.96 1.02
Ne* 0.70 | 0.76 | 0.83 0.90 1.00 1.06 1.13
Al Ar' 0.38 | 0.53 0.70 | 0.86 1.00 1.10 1.29 1.43
Krt 0.20 | 0.26 | 0.35 0.40 0.49 0.55 | 0.63 0.70
Xe* 0.12 | 0.21 0.31 0.39 0.46 0.55 | 0.64 0.73

He* 0.51 0.64 | 0.75 0.84 | 0.92 1.60 | 1.07
Ne* 0.52 | 0.61 0.69 | 0.81 0.91 1.00 1.11
Ti Art 0.46 | 0.70 | 0.80 | 0.88 1.03 1.07 1.14 1.22
Kr* 0.16 | 0.29 | 0.41 0.61 0.82 0.95 1.11 1.28
Xe* 0.18 | 0.21 0.29 | 0.37 0.46 0.71 0.57 0.63

He' 0.46 | 0.58 0.69 0.76 0.83 0.91 0.97
Ne* 0.65 0.86 | 0.96 1.13 1.20 1.37 1.51
Ni Ar* 0.47 0.65 0.85 1.00 1.16 1.34 1.44 1.59
Kr* - 0.36 | 0.51 0.66 | 0.83 0.96 1.12 1.27 1.42
Xe* 0.22 | 0.37 0.47 0.61 | '0.72 0.88 | 0.92 1.03

He' 0.37 | 0.53 0.65 0.77 0.88 0.97 1.06
Ne* 0.49 | 0.67 | 0.87 1.00 1.16 1.36 1.52
Cu Art 0.54 | 0.73 0.95 1.14 1.33 1.46 1.61 1.71
Kr 0.46 | 0.63 0.83 1.05 1.24 1.47 1.66 1.86
Xet 0.29 | 0.47 0.61 0.73 0.86 1.00 1.10 1.31

He* 0.44 | 0.60 0.75 0.88 0.99 1.12 1.17 1.27
Ne* 0.53 0.75 0.93 1.12 1.27 1.49 1.69
Zn Ar’ 0.42 | 0.63 0.79 0.91 1.07 1.12 1.31 1.45
Kr* 0.44 | 0.63 0.83 1.07 1.29 1.53 1.72 1.94
Xe* 0.18 0.27 0.36 0.45 0.55 0.64 | 0.72 0.81

He* 0.65 0.80 1.03 1.14 1.28 1.39 1.50
Ne* 0.62 | 0.82 0.95 1.08 1.20 1.32 1.42
Mo Ar* 0.47 0.58 0.77 0.92 1.06 1.21 1.36 1.50
Kr* 0.12 0.20 0.34 0.47 0.60 0.72 | 0.85 0.98
Xe* 0.15 0.26 0.38 0.51 0.62 0.74 | 0.85 0.97

He* 0.60 | 0.83 1.09 1.24 1.47 1.60 1.70 1.79
Ne* 0.77 1.05 1.26 1.52 1.73 1.90 | 2.07 2.23
Ag Ar* 030 | 042 | 0.57 0.67 0.79 0.91 1.04 1.16
Kr* 0.12 | 0.19 0.27 0.37 0.48 0.52 - 0.58 0.70
Xe* 0.24 | 0.37 0.56 0.68 0.89 1.04 1.22 1.39

He* 0.60 | 0.79 1.00 1.19 1.38 1.52 | 1.66
Ne* 0.66 | 0.82 1.04 1.30 1.46 1.75 1.93
Au Art 0.21 034 | 0.43 0.57 0.65 0.75 | 0.87 0.98
Kr* 0.14 | 0.17 { 0.20 | 0.28 0.31 0.37 | 0.42 0.46
Xe* 0.11 0.19 | 0.33 0.38 | 0.49 0.58 | 0.67 0.76

He* 0.78 | 0.97 1.14 7] 1.32 1.43 1.53 1.66
Ne* 0.75 090 [ .1.10 1.27 1.42 1.52 1.66
Pb Art 0.29 | 0.43 0.60 [ 0.74 | 0.89 1.03 1.16 1.28
Kr* 0.09 | 0.15 0.20 | 0.28 0.35 0.45 | 0.52 0.60
Xe* 0.17 | 0.33 0.47 0.59 [ 0.74 0.92 1.04 1.15

Target Ion
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total electron yield results in the energy range discussed here stem almost ex-
clusively from Baragiola and co-workers »'*!%). They made extensive studies
of 2-50 keV light ion Hi, D3 and He* bombardment induced secondary
electron emission of Li, Al, Cr, Cu, Mo, Ag and Au'*), and the projectile

Aluminium
T T T T Vv T T T T

101 + s

Y [electrons /atom] —»

0.4 + 4
[)
X2
4 x+
02} ‘x*,-}' Kr+ 4 1_'_.“ Yo+ e
--_:f{ o x '
0 ] ] [l U\,_---- | ] 1 [
0 5 10 15 200 5 10 15 20

Fig. 2a). The energy dependence of the ion-bombardment-induced secondary electron yield for
Al Filled circles (e) this work; crosses (x) data from Baragiola and co-workers (refs 1, 14 and 15);

plus signs (+) data from Carlston et al. (ref. 13) for the (111) crystal face. The curves drawn are
mtended only to guide the eye. The dashed line at low energy gives the potential electron emission
contribution, calculated from eq. (1).
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atomic number and energy dependence for Al targets!®). These authors also
reported some less complete results for noble gas ions on Cu, Mo, Ag and Au.

The energy dependences of the electron yields reported in this paper for Al
and, as an example, for Cu targets, are shown in figs 2a and 2b, respectively,
and compared with the above-mentioned earlier results. The calculated poten-
tial electron emission contribution is indicated to stress its relative (un)impor-
tance. We see on the whole excellent agreement among reported data sets.
This proves that our relatively simple current measurement system is just as

Copper
12 T T T uf:p

101

08

06}

(07A

021

1.2F

T
+

08

e

v [electrons/atom]—»

=
o2}
T

o
[
T

Kr+ 4

1 LA
0 5 10 15 2000 5 10 15 20
E [keV]—s>
Fig. 2b. As fig. 2a), but now for Cu targets.
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satisfactory as various more elaborate charge collection systems pro-

posed %1418), Some additional remarks about the full comparison, which in-

cluded elements not shown, are made below.

a) Our results agree with the data by Carlston et al.'®) to within the experi-

* mental error, except in the case of Ni and Mo targets. For Ni, a difference
in sulphur surface contamination (see also sec. 2), which could be higher in
their experiments, is a likely source of this discrepancy.

b) While our H* and Hj results for Al, Cu, Mo, Ag and Au confirm the
results by Baragiola et al.!*) the He" ion results are systematically about
10% lower except for Al, where they are 25% higher. The reason for this is
not understood.

¢) Comparing our Ar*, Kr* and Xe" results on Cu, Mo, Ag and Au with those
of Baragiola et al., perfect agreement is found except for Kr* ion bombard-
ment of Au, where we find much higher yields at lower energy. Again no
explanation can be given, but our results seem to be more regular.

No attempt has been made to construct figures displaying the functional
dependence of the electron yields on the projectile or target atomic number.
Such plots are rather sensitive to the bombarding energy at which the com-
parison is made. This obscures possible trends and systematics.

3.2. Theoretical remarks

The energy dependence of our electron yield results for light ion bom-
bardment (H*, H} and He") can be fitted very well with the expression
Y(Ep) = Ap ]/Ep + By, with A, and By, as characteristic parameters for a cer-
tain projectile target combination. For the heavier noble gas ions the func-
tional form y(E,) = A Ep + By leads to the best results, except perhaps for
the data for Ar* on Al and Ti. It should be noted that the division into two
groups is not necessarily entirely meaningful as ]/Ecan be approximated by
a linear function of E to within 3% for E in the 520 keV range.

At first sight a square-root-like energy dependence of the light-ion electron
yield looks promising from a theoretical point of view. In the energy regime

»studied the electronic stopping for the incident ion is proportional to velocity
[Se(Ep) = K ]/Ep see also discussion following eq. (3)], and yield contributions
from recoiling target atoms will be negligible #1?%). The ‘correction factor’ By
can be attributed to a combination of the potential electron emission contribu-
tion, discussed in sec. 1, and a term reflecting the threshold for direct knock-
on electron liberation !418), (i.e. B= yprs—A ]/E_.h). Thus one would expect
the ratio of the fitted constants Au.+/An+ for a specific target to be equal to the
ratio of the corresponding electron stopping-power prefactors (i.e. Kuet/Ku+), as -
any dependence on the angle-, energy- and depth-averaged escape probability
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for liberated target electrons will drop out. Energy reflection is small and

similar for H* and He" ions in the energy regime described here'?), so it may

be discarded in this discussion. Unfortunately this prediction was never ful-

filled, even after a fit of the yield data to experimental stopping-power data!®),

which in particular for He" ions may deviate slightly from the E* dependence.
Our data substantiate the ‘molecular’ effect

R JELE)

= %@, E) " @

discussed by Baragiola et al. »'*). We found on average R = 0.90 £ 0.03, in-
dependent of energy, with the exception of R(Al) = 0.82 and R(Mo) = 0.96.
If one assumes fragmentation of the impinging Hz molecule in its two con-
stituent H atoms, which each get equal energy, the theory of eq. (3) would pre-
dict R = 1. A slightly asymmetrical energy distribution over the two H atoms
would not reduce the ratio R by more than 1-2% given a square-root-like
energy dependence of the secondary electron yield. Even taking into account
the difference in potential electron emission contributions for H3 and two H*
ions (yree(H32) = yeee(H") = 0.05, for the metals discussed here except Ni and
Au where ypee = 0.01; see also egs (1, 1), one cannot explain the observed
discrepancy. Moreover with increasing energy the influence of the potential
electron emission should diminish (i.e. R—1). As an explanation for the
‘molecular’ effect we therefore propose a higher particle reflection coefficient
- of (the fragments of) the H, dumbell molecule than for single H atoms. This
suggestion is supported by the fact that for heavier molecular ions (e.g. N3
and O%) the ratio R differs less from unity.

As for the heavier noble gas ion results, we were unable to reconstruct the
observed energy dependences for the various targets on the basis of Schou’s
theory (see sec. 1 and ref. 10). The experimentally determined variation with
energy was always much stronger than could be accounted for by eq. (3). Asa
possible explanation we suggest that the factors So and [: are not as energy
independent as was assumed. Also the averaged escape probability A is not
independent of the energy spectrum of liberated target electrons, which in
turn varies with projectile type and bombardment energy, so we assume the
discrepancy can be resolved along these lines. Of course this further reduces
the predictive power of eq. (3). A more qualitative, somewhat less stringent,
test of Schou’s theory can be carried out with our data for Cu and Zn. These
two elements have nearly equal electronic stopping powers Se(Ep) for the pro-
jectiles studied here'®'%). Moreover they have also almost equal mass and
atomic number and consequently the factors Sa(Ep), Bo, B and n(UE,)/LE)
will be approximately the same. Thus eq. (3) predicts that the ratio of the
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secondary electron yields for Zn and Cu for a specific projectile would be a
constant (Yzn/Ycu = AznNzalA cuNeu), independent of energy, as potential
electron emission contributions are not materially different. This is excellently
fulfilled by the experimental data from table II as shown in fig. 3. On the other

1.25 T T T T T T T T
v
___i__v__v__v__v___He
7———-.———-—i——-——5—Ne
+ ¢ ¢ ¢ Kr
L e
L]
>
=)
= ¢ o .
e R ——— — —— —-Ar
(= . °
N 075F _
>
-‘—-—-——-——‘—:—‘——‘—-‘—Xe
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1 1 ] ] ] 1 1 [l
050 5 10 15 20

——Ep(keV)

Fig. 3. The ratio of the ion induced secondary electron yields for Zn and Cu for different projec-
tiles as a function of energy. According to the theory (see text) this ratio should be a constant
independent of projectile type.

hand eq. (3) predicts that these constants are independent of projectile type,
which is not true! Similar results emerge from the comparison of electron
yields for the pair Ni/Cu, although only the data obtained with Ar*, Kr* and
-Xe* ions can be used because for H*, He* and Ne* either Se(Ep) Or ypgs or
both differ considerably. The ratios ymi/yc. = 0.89, 0.78, 0.81 for Ar*, Kr*
and Xe*, respectively, differ much less than in the case of the Zn/Cu pair. The
conclusion must be that the averaged electron escape probability can be de-
composed in a universal (?) energy dependent part and a characteristic projec-
tile/target factor. Presumably this latter quantity is at least strongly dependent
on projectile properties.

Finally, one other observation is worth mentioning. According to calcula-
tions by Sigmund *°), high-density atomic collision cascades can be expected
for energetic (10-20 keV) heavy-ion bombardment of Zn. The occurrence of
such, so-called, spike effectsin Ag, Au and Pt have been correlated by Thomp-
son ?!') with a pronounced nonlinearity of the sputtered particle yield. His data
suggest, or are at least consistent with, an anomalous enhancement of the
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elastic energy deposition. The latter quantity is normally proportional to
Sa(Ep). Thus, from Schou’s theory one could also expect a steep increase in .
the ion-induced secondary electron yield for Zn bombarded by e.g. Xe* at the
onset of the ‘spike’ regime (i.e. for E, 210 keV). No such behaviour is found,
however, in perfect agreement with the observations of Thum and Hofer ?%)
who found no enhanced electron emission on stainless steel bombarded with
Vaor Nba(rn=1,2,...,9) clusters at 12.5-25 keV. Nevertheless, there too the
experimental conditions guaranteed very high-density atomic collision cas-
cades. The conclusion must be that the contribution of elastic collision spikes
to the secondary electron emission is negligible.

4. Conclusions

It has been shown that reliable ion induced secondary electron yields can be
obtained from simple current measurements, provided adequate precautions
have been taken to avoid target contamination. Conversely a decrease of the
electron yield to its stationary value during sputtering may serve as a good
indication that the ultimate level of cleanliness (or the steadystate contamina-
tion situation) for a particular target has been reached.

The almost ‘universal’ theoretical prediction that for very light ions the
energy dependence of the electron yield is linearly proportional to the elec-
tronic stopping power is only seemingly fulfilled. A thorough confrontation
with the data reveals a remnant lack of understanding of process details. For
heavier ion bombardment with energies of the order of 10 keV, where the con-
tribution of fast recoils will be appreciable, theoretical understanding of the
experimental observations is even less complete. Some promising results have
been discussed for the ratios of electron yield data for Zn and Cu, almost
equal-mass targets with an identical stopping power behaviour, but even such
a restricted test of the theory was not fully satisfactory. More experimental
information on such pairs of ‘similar’ targets will be helpful to sort out the
remaining problems.
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THE CRYSTAL STRUCTURE OF LaNiSn

by J. L. C. DAAMS and K. H. J. BUSCHOW
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Abstract

The crystal structure of the compound LaNiSn has been determined; it
is found to be homotypic with the orthorhombic oP12 (C23) structure.
LaNiSn is isotypic with &-TiNiSi and shows great resemblance with the
structure of CeCus.

PACS numbers: 61.55.Hg.

1. Introduction

The growing interest being shown in the study of ternary intermetallic com-
pounds is due to particular properties of ternary compounds not found in
binary intermetallics. These properties comprise, for instance, the occurrence
of superconductivity and magnetic ordering in one and the same compound ),
the observation of huge values for the magneto-optical Kerr rotation %) and a
pronounced first-order spinflop transition with a transition hysteresis of more
than 30 kOe 3). Ternary compounds have also attracted much attention from
the theoretical point of view %°). The Cls-type Heusler compounds, in par-
ticular, were found to have unusual features in their band structure, leading to
100% spin polarization of the conduction electrons.

In a previous investigation ) the occurrence of Heusler-type compounds
based on Sn was studied. It was found that the combination of Sn and 3d
elements with rare earths did not lead to the formation of such ternary com-
pounds, but that other ternary compounds were formed instead. In the present
investigation we have studied the crystal structure of the compound LaNiSn.

2. Experimental procedures and results

The sample was prepared by arc melting in purified argon gas, followed by
vacuum annealing for two weeks at 800 °C. After annealing the sample was
pulverized and stress released by heating in vacuum at 500 °C for three hours.
X-ray diagrams were obtained by means of a Philips PW 1700 diffraction
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system. CuKe radiation was used in combination with a graphite mono-
chromator.

We indexed the X-ray diffraction diagram of LaNiSn on the basis of a
primitive orthorhombic unit cell with the lattice constants a = 7.671 A,
.b=4.652 A and ¢ =7.592 A. From the systematic extinctions we derived

TABLE I.

Observed and calculated diffraction angles @ (in degrees) aﬁd intensities J
(in arbitrary units) of the intermetallic compound LaNiSn.

observed . calculated

h k 1 7} I )

1 0 1 8.21 2 8.21 5.4
0 1 1 11.20 : 4 11.20 8.7
2 0 0 11.61 0.5 11.59 0.6
0 0 2 11.74 1 11.71 4.4
1 1 1 12.63 11 12.63 11.9
2 0 1 0.5 13.00 0.1
1 0 2 13.09 15 13.08 14.4
2 1 0 15.09 13.5 15.09 13.1
2 1 1 16.22 75.4
1 1 2 16.24 128 16.29 52.8
2 0 2 16.60 50 16.59 46.3
3 0 1 18.53 50 18.53 44.3
1 0 3 18.70 18 18.69 14.3
2 1 2 0.5 19.27 0.0
0 2 0 19.34 30 19.34 40.8
0 1 3 20.27 41 20.27 39.3
3 1 1 21.00 2.5 21.00 1.3
1 2 1 21.14 2.0
1 1 3 J21.12 1.5 21.15 0.0
3 0 2 0.5 21.30 0.0
2 0 3 21.38 3 21.39 3.3
2 2 0 0.5 22.78 1.7
0 2 2 22.88 1 22.85 3.0
3 1 2 23.53 6.5 23.53 6.1
2 2 1 ' 23.60 0.1
2 1 3 23.61 7.6
1 2 2 23.64 11.5 . 23.65 4.5
4 0 0 23.68 0.9
0 0 4 23.96 1 23.94 0.0
4 0 1 24.47 10.5 24.47 2.4
1 0 4

24.67 1.5 24.71 1.3

78
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Pnma (62) 7) as the most probable space group. In table I the indexing together
with the observed reflecting angles are compared with the calculated angles.

3. Structure determination

The crystal structure was determined by using the trial structure obtained by
means of a cell-filling program ?). After seven refinement cycles we reached
convergence with an ultimate reliability factor R = 13.92% based on intensi-
ties. The atomic position parameters are:

4Snind4(¢) x=0.185 y=0.750 =z =0.070
4Niind(c) x=0.312 y=0.750 2z =0.452
4Lain4(c) x=0478 y=0.250 2z =0.191

The value of B occurring in the expression of the Debije-Waller temperature
factor was found to be equal to 2.6- 1071 cm? for the Sn sites, 4.4-10718 cm?
for the Ni sites and 12.4- 107! cm? for the La sites. Table I also gives a com-
parison of the observed intensities and the calculated intensities. In table II the
interatomic distances up to 4 A are given. A schematic representation of the
structure is given in fig. 1, where the viewing direction is almost perpendicular
to the (100) plane.

TABLE II

Number of neighbours and interatomic distances in LaNiSn.

atom  neighbour  number  distance (A)

Sn Sn 2 3.825
Ni Ni 2 3.781
Ni Sn 2 2.494
1 2.871
1 3.055
La La 2 3.737
2 3.938
La Ni 1 2.869
1 3.154
2 3.309
2 3.626
La Sn 1 3.137
1 3.259
2 3.350
2 3.360
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Fig. 1. Schematic representation of the crystal structure of LaNiSn.

4. Discussion

The formation of the compound LaNiSn is accompanied by a substantial
contraction of the atomic volumes compared to the pure starting materials
(36.9 A3, 10.9 A® and 26.9 A3 for La, Ni and Sn respectively). From the lattice
constants of LaNiSn given above one finds a volume per unit cell equal to
270.9 A3, which is more than 9% smaller than the value calculated on the basis
of the atomic volumes of the elements.

The crystal structure of LaNiSn can be regarded as a distortion of the hexa-
gonal NizIn structure ?). As in the other members of the RNiSn compounds,
the distortion is relatively strong, due to the large difference in metallic radii
between the constituent metal atoms. Our values for the lattice constants are
in good agreement with those given by Dwight !?). Dwight reports that his
value for « falls significantly below that expected on the basis of the linear
relationship between the values of @ and the radii of the R component in the
remainder of the RNiSn compounds. By contrast, the @ value found by us is
in good agreement with the linear relationship mentioned. Closer inspection
of Dwight’s data showed that the values for ¢ and ¢ of LaNiSn are apparently
interchanged in his plot, so that deviations from the linear behaviour remain
restricted to the b and the c¢ axis.

If one compares the atomic positions found in the course of the present
investigation for LaNiSn with those of TiNiSi!"'?) one notices substantial
differences between the two compounds. Owing to this difference in the atomic
position, a slight shift in coordination of the atoms in LaNiSn has taken place
with respect to TiNiSi. In the latter compound the Ti, Ni and Si atoms are
coordinated by 15, 12 and 9 atoms respectively. As can be derived from the
data listed in table II, in LaNiSn the coordination of La, Ni and Sn corres-
ponds to 16, 10 and 10, respectively. These changes in coordination are in
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accordance with the metallic radii of the constituent elements. The La and Sn
atoms are larger than the Ti and Si atoms, respectively. For the former atoms
the coordination number has increased. By contrast, Ni in LaNiSn is sur-
rounded by larger atoms than Ni in TiNiSi. For Ni therefore the coordination
number has decreased. However there is a more striking resemblance between
the LaNiSn structure and the structure of CeCusz. CeCu; has a bodycentered
orthorhombic unit cell with lattice constants @ = 4.425 A, b = 7.057 A and
c=17.475 A, space group 74 Imma 12-14),

- REFERENCES

1) J.R.Remeika, G. P. Espinosa, A. S. Cooper, H. Barz, J. M. Rowerll, D. B. McWan,
J. H. Vandenberg, D. E. Moncton, Z. Fisk, L. D. Woolf, H. C. Hamaker, M. B.
Maple, G. Shirane and W. Thomlinson, Solid State Commun. 34, 923 (1980).

2) P.G.van Engen, K. H. J. Buschow, R. Jongebreur and M. Erman, Appl. Phys. Lett.
42, 202 (1983).

%) T. T. M. Palstra, J. A. Mydosh, G. J. Nieuwenhuys, F. R. de Boer and K. H. J.
Buschow (to be published). .

4 J. Kiibler, A. R. Williams and C. B. Sommers, Phys. Rev. (B) 28, 1745 (1983).

% R. A. de Groot, F. M. Mueller, P. G. van Engen and K. H. J. Buschow, Phys. Rev.
Lett. 50, 2024 (1983).

%) P. G.van Engen, K. H. J. Buschow and M. Erman, J. Magn. Mat. 30, 374 (1983).

) N. F. M. Henry and K. Lonsdale (eds), International tables for crystallography, Vol. 1,
Kynoch Press, Birmingham, 1952.

8 W. P. J. Fontein, J. M. M., Verbakel and J. H. N. van Vucht, Philips J. Res. 34, 238
(1979).

%) W. B. Pearson, The crystal chemistry and physics of metals and alloys, John Wiley and Sons
Inc., New York, 1972; cf. p. 532-534.

19 A, E. Dwight, J. Less-Common Met. 93, 411 (1983)

1) C. B. Shoemaker and D. P. Shoemaker, Acta Cryst. 18, 900 (1965).

12) W, B. Pearson, A handbook of lattice spacings and structures of metals and alloys, Vol. 2,
Pergamon Press, 1965; cf. p. 1142-1143.

18) A. C. Larson and D. T. Cromer, Acta Cryst. 14, 73 (1961).

14y E. Hovestreydt, N. Engel, K. Klepp, B. Chabot and E. Parthé, J. Less-Common Met.
85, 247 (1982).

Philips Journal of Research Vol. 39 No.3 1984

81
IPR2018-1557
HTC EX1023, Page 88




Philips J. Res. 39, 82-93, 1984 R 1083

MAGNETO-OPTICAL PROPERTIES OF RARE EARTH
COBALT COMPOUNDS AND AMORPHOUS ALLOYS

by K. H. J. BUSCHOW and P. G. VAN ENGEN
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Abstract

The polar Kerr rotation spectra of Co-rich intermetallic compounds in
which Co is combined with one of the rare earth elements La, Y or Gd
were investigated at room temperature. The most prominent feature of the
La-Co and Y-Co compounds is the reduction in Kerr intensity associated
with the reduction in magnetization with increasing rare earth content. The
spectra of the Gd-Co compounds and amorphous alloys consist of two
separate contributions due to Gd and Co. The effect of surface oxidation is
briefly discussed.

PACS numbers: 78.20.L.

1. Introduction

Amorphous thin films composed of Gd and either Co or Fe have attracted
much interest owing to their favourable magneto-optical and thermomagnetic
properties, making them good starting materials for erasable magneto-optical
recording devices ¥). While the role of the Gd atoms is well established as
regards the magnetic and thermomagnetic properties, it is still not quite clear
in how far the Gd atoms contribute to the magneto-optical properties. In
order to be able to evaluate the influence of the Gd atoms on the Kerr rotation
spectra we investigated the magneto-optical properties of several Gd—Co inter-
metallic compounds and compared them with those of similar rare earth com-
pounds in which the rare earth component consists of nonmagnetic La or Y
instead of Gd. Conclusions arrived at from these investigations were then used
to interpret the Kerr rotation spectra of amorphous Gd—Co alloys.

2. Experimental

The crystalline samples were prepared by means of arc melting, using an
atmosphere of purified argon and starting from 99.9 pure metals. After arc
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melting the samples were wrapped in Ta foil and vacuum annealed in the tem-
perature range 900-1000 °C for about 10 days. X-ray diffraction was used to
establish whether the annealing had resulted in single-phase samples. The
amorphous Gd;-.Co, films were prepared by means of two-source evapora-
tion onto quartz substrates 1 cm in diameter. The film thickness was about
200 nm. Composition and homogeneity of the samples were controlled by in-
dependent monitoring of the evaporation rates of the two electron gun sources,
using quasi-continuously operating feedback-stabilized Airo Temescal film
deposition controllers (TDC-700-1). The base pressure of the high-vacuum sys-
tem was equal to 5 x 1078 Torr. Thickness calibration was made on pure crys-
talline films, using Talystep techniques.

The polar Kerr rotation (2¢k) and the ellipticity (2ex) were measured at
room temperature in the range 0.6-4.4 ¢V, with an accuracy better than 0.005
degrees over most of the energy range considered. A Faraday modulator was
used for polarization modulation, allowing phase-sensitive detection of the
optical output signal. The Kerr ellipticity was determined by using a number
of quarter-wave plates, the retardation of which had been carefully measured
as a function of the wavelength. The magneto-optical measurements were
made on the film side of the samples prepared by vapour deposition. Measure-
ments on the crystalline samples were made on flat portions, polished with
diamond paste. The magnetization direction was kept perpendicular to the
mirror surface during the magneto-optical measurements by means of an ex-
ternal field of 920 kA/m. The mean angle of incidence of the light beam on the
sample surface was smaller than 4.5 °C.

3. Experimental results

Comparison of the magneto-optical spectra obtained on several crystalline
La-Co samples with the spectrum of Co metal in fig. 1 shows that combining
La with Co has a considerable effect on the Kerr spectra. In LaCo,3 the first
| 29k | peak near 1.3 eV has shifted to lower energies and increased in intensity
relative to pure Co metal. The second peak near 3.8 eV has also shifted to
lower energy, although here a reduction in intensity has occurred. In the
spectra of the two compounds LaCo; and LazCo, the most obvious change
compared with Co metal is'the strong decrease in intensity of the first peak.
The decrease in intensity of the high-energy peak is much less strong.

Experimental results for the Y-Co compounds are shown in fig. 2. At
Co concentrations lower than corresponding to Y2Coi; there is a general
broadening of the two peaks. In all compounds the intensity has decreased
relative to Co metal, although the general shape of the spectra has remained
more or less the same.
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Fig. 1. Energy dependence of the Kerr rotation 2¢x in various La~Co compounds. For the com-
pound La;Cos the energy dependence of the ellipticity is also given (2ek, broken line).

Kerr spectra of Gd—Co compounds are shown in fig. 3. It follows from the
magnetic properties of these compounds that there is antiparallel coupling of
the Co moments and the Gd moments. With decreasing Co concentration the
relative strength of the Co sublattice magnetization decreases. At room tem-
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Fig. 2. Energy dependence of the Kerr rotation 2¢x in various Y-Co compounds. For the com-
pound YCos the energy dependence of the ellipticity is also given (2ex, broken line).

perature the total magnetization in Gd2Coy7 and GdCos is still dominated by
the Co sublattice magnetization (Mot =Mco —Maa) S0 that the Co moments
remain parallel to the external field. The situation has changed in GdCos and
GdCo;. Here bulk magnetic measurements showed that the Gd sublattice
magnetization dominates at room temperature (Mo =Mgs —Mco), the Co
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Fig. 3. Energy dependence of the Kerr rotation 2¢« in various Gd—Co compounds. For the com-
pounds GdCos and GdCos; the negative (positive) values associated with the 2pg axis have been
plotted in the upward (downward) direction. For all materials considered in this figure the Co
moments are parallel to the external field and their 2¢x contribution is in the downward direction.
The Gd moments are antiparallel to the external field and the corresponding 2¢x contribution is in
the upward direction. The locations of the two main peaks observed in Gd metal by Erskine and
Stern 8) have been included schematically in the top part of the figure (in arbitrary units).

moment being oriented antiparallel to the external field. In order to facilitate
a comparison of the spectra of the different compounds we have reversed the
direction of the vertical axis in fig. 3. When plotted in this way, all the Co
moments in the compounds considered have the same (parallel) orientation
relative to the external field. It will be clear from the results shown that in-
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Fig. 4. Concentration dependence of the Kerr rotation 2¢x observed in several amorphous
Gd,_«Cos alloys. (The contribution to 2¢k of the Co atoms is in the downward direction in all
cases; see fig. 3.) The broken line reflects the result of measurements obtained after keeping the
sample in air for an extended period.

creasing Gd concentration eventually leads to a completely different type of
Kerr spectra.

Kerr spectra obtained on thin vapour-deposited Gd-Co films are shown in
fig. 4. The room temperature magnetization changes from Co-dominated to
Gd-dominated at a concentration between 75 and 67 at% Co. This can be
inferred, for instance, from the sign reversal of the field dependence of the
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Fig. 5. Field dependence of the Kerr rotation in two amorphous Gd,_.Co, alloys.

Kerr rotation, as is shown in fig. 5. For comparative purposes we have there-
fore again interchanged the directions of the vertical axes of the spectrum of
the alloy richest in Gd (top part of fig. 4). Comparing the results of fig. 3 and
fig. 4 one may notice that the change of the Kerr spectra with increasing Gd
concentration is less marked in the case of the amorphous alloys.

In order to obtain an impression of the effect of changes in the magneto-
optical properties of the thin films when kept in air we re-examined the Gd-
richest film after a period of one week. The Gd-richest film was chosen be-
cause the tendency to deteriorate increases with rare earth concentration. The
results of the re-examination are included as a broken line. A marked decrease

88 Philips Journal of Research Vol.39 No.3 1984

IPR2018-1557
HTC EX1023, Page 95




Magneto-optical properties of rare earth cobalt compounds

of the Kerr intensity occurs primarily at the high energy side of the spectrum
while the changes at the low energy side are only very modest.

4. Discussion
4.1. Comparison with literature data

The magneto-optical properties of thin films of the compounds Nd2Coq,
NdCos and of Co metal were investigated by Stoffel in the limited energy range
from 1.8 €V to 3.1 eV as long ago as 1968 %). Stoffel found that increasing rare
earth content leads to a decrease of the longitudinal Kerr effect. These findings
are in agreement with the results displayed in the various figures.

Katayama and Hasegawa measured the polar Kerr spectrum of GdCogs on a
single crystal4). In the low energy range their spectrum is similar to that ob-
served by us. But in the high energy range (4-5 ¢V) these authors observed a
strong increase of 2¢pk reaching the value 2px = 0.7 degr at about 4.7 eV. Since
Katayama and Hasegawa did not use a protective coating on their samples and
performed their measurements in air (as we did) it cannot be excluded that the
discrepancy with our result (see fig. 3) reflects a different degree of surface
oxidation which becomes prominent at high photon energies in particular (see
also the discussion in section 4.2). However, it is possible that the large 2¢x
value found by them corresponds to a particular crystallographic direction,
since the hexagonal compound is strongly anisotropic.

Results obtained on amorphous Gd—-Co films by various authors are repro-
duced in fig. 6 after adapting the sign convention of gk to that used in the
present report. There is some ambiguity as to the sign convention used by
Visnovsky et al.?). These authors claim to apply the same sign convention as
that used by Kahn et al.%). After checking the numerous equations contained

0
A/_%O]G
~ i
%))
3 -040F B 079
& A 073
N c
T - 080}
- 1 1 ] [l
1205 10 2.0 30 4.0 50

— energy (eV]

Fig. 6. Comparison of 2¢x spectra of several amorphous Gd,-,Co; alloys reported in the litera-
ture (A: ref. 5; B: ref. 4; C: ref. 2). For the sign convention of 2¢k, see text.
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in the article by Kahn et al. we have the impression that their sign convention
is similar to ours. However, from the discussion given by Visnovsky et al. it
follows that 2¢k for Gd and Co is positive in the energy range considered,
making their sign convention opposite from that used here. The latter assump-
tion regarding their sign convention was used in reproducing their data in
fig. 6 (curve 4).

A comparison of the spectra in fig. 6 with the results given in fig. 4 shows
that good agreement with our data is found only with curve B, after taking
into consideration that the concentration corresponding to curve B is slightly
lower than that corresponding to the alloy with x = 0.83 in fig. 4. In part the
discrepancy between our data and curves A and C may be due to the fact that
all the films of fig. 6 were obtained by sputtering from targets of markedly
lower Co concentration than the film composition stated in fig. 6, while a large
bias voltage was applied. The latter fact, in particular, is known to lead to
substantial changes of the physical properties in thin amorphous rare-earth
transition metal films.

4.2, Interpretation of the spectra

The results shown in fig. 2 for various Y-Co compounds are rather well
suited for evaluating the changes of the Co contribution to the Kerr spectra in
compounds of Co with rare earth elements. Since Y has an atomic size and an
electronegativity similar to those of the lanthanide elements (R) one may
expect these changes to be the same in R-Co compounds and Y-Co com-
pounds. This similarity in behaviour is reflected also in the similarity of struc-
tural and magnetic properties. The advantage of Y in the description of mag-
neto-optical spectra is based on the fact that Y is nonmagnetic and magneto-
optically rather inactive in view of the small spin-orbit splitting of this element.
Accordingly, the results shown in fig. 2 behave more or less as one would have
expected from the reduction in magnetization associated with the compound
formation. There is some indication that the two | 2¢x| maxima present in Co
tend to approach each other in going from Co to YCos. Very likely this might
be the result of a decrease in 3d band width due to an increasing mean Co-Co
separation in the various compounds considered. '

Inspection of the results presented in fig. 1 shows that the situation in the
La-Co compounds is not that simple. Since LaCo,3 has a peculiar crystal
structure we will focus our attention first on the compounds LaCos and
LayCo7. Comparison with Co and with the corresponding Y-Co compounds
shows that the intensity of the low-energy | 2¢x| maximum has decreased to
about the same extent in both series. This part of the spectra therefore be-
haves in a normal way. However, it can be seen from fig. 1 that there is an ad-
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ditional strong intensity in the 4 eV region of the spectra which is not éxpected
to arise from the Co atoms (compare with Y2Cos and YCos in fig. 5). This ad-
ditional contribution increases in going from LaCos to LazCo and is ascribed
to the La atoms. As the spin-orbit coupling of Y is lower than that of La,
this additional contribution will not be present in the spectra of the Y com-
pounds.

Alternatively one may present arguments showing that of all the materials
considered in this paper the compounds LaCo; and LazCo~ are likely to give
rise to some surface oxidation. As will be shown below, this will lead to an en-
hanced negative contribution at photon energies corresponding to the second
2px peak of Co metal and be responsible for the additional intensity men-
tioned above.

The compound LaCo,s shows a rather peculiar Kerr spectrum compared to
Co and the other La-Co compounds, probably due to pecularities of its crys-
tal structure (cubic NaZn,s type). A schematic representation of this structure
type is shown in fig. 7. There are two crystallographically inequivalent Co sites

Fig. 7. Schematic representation of the crystal structure of LaCo,s.

designated by 8(b) and 96(/) in Wyckoff notation, The Co atoms at the 8(b)
sites and the La atoms have an atomic arrangement corresponding to the well-
known CsCl structure. Each of the Co; atoms is surrounded by an icosa-
hedron comprising 12Coz neighbours. These Co; icosahedra are packed in

. alternate orientations (see fig. 7). The shortest Co~Co separation is between
the Co; and Co, atoms and equals 0.2386 nm. It is shorter than the nearest
neighbour separation in Co metal. Erskine and Stern 7) ascribe the first | 2¢k |
maximum near 1.2 eV in Co to d— p transitions, starting from the top of the
majority band. The enhanced intensity of the Kerr spectrum in LaCo;s near
1.2 eV could then be interpreted as meaning that the peculiar Co coordination
in this material leads to a comparatively large density of states near the top of
the 3d band.
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The results given in fig. 3 are plotted in such a way that the Co moments are
always parallel to the applied field and Co contributes to 2¢x in the downward
direction. By contrast, the Gd moments are antiparallel to the applied field
and the contribution of the Gd atoms to 2¢ is in the upward direction. Results
obtained by Erskine and Stern 8) in Gd metal have been included in the top
part of fig. 3 by means of two vertical solid lines. The interpretation of the
evolution of the Kerr spectra of the Gd-Co compounds appears then to be
rather straightforward. With increasing Gd concentration the contribution
due to Co gradually decreases while that due to Gd gradually increases. The
compound Gd2Coi7 behaves somewhat differently in this respect. Here the
second 2¢px maximum appears to be slightly reduced. But in R2Co17 a feature
in atomic arrangement exists which is similar to that described already for
LaCo;s. Two of the 17 Co atoms in R:Co17 occupy positions known as dumb-
bell pairs, characterized by a mutual Co—-Co separation shorter than in Co
metal. Compared to LaCois, however, the number of short Co-Co separa-
tions is relatively small. Consequently their effect, though still discernible in
the spectra of Gd2Coi7 and Y2Co14, is much smaller than in LaCois.

Comparison of the results of figs 3 and 4 shows that the detrimental influence
of the increasing Gd content on |2¢x| is far less strong in the amorphous
alloys than in the crystalline materials. In the alloy with x = 0.83 the |2¢x]|
values are generally more than twice as large as in GdCos. This is mainly a

. consequence of the fact that the moment reduction due to the increasing rare
earth content is less strong in amorphous materials. This also becomes ap-
parent from a comparison of GdCos with amorphous Gdo.2sC00.75. In the
former material the Gd sublattice magnetization dominates at room tempera-
ture whereas in the latter there is still a dominant Co sublattice magnetization.

It is still unclear what causes the changes observed in relatively rare-earth
rich alloys after the sample has been kept in air for some time. Most likely the
rare earth at the surface will become preferentially oxidized, leaving Co metal
in the form of small clusters of metal atoms. The magnetic atoms within each
cluster will couple ferromagnetically but will be decoupled from the Gd atoms
of the main sample. The Gd2O3 formed is paramagnetic at room temperature
and does not contribute. The 2¢x values shown for the alloy x = 0.62 in the
top part of fig. 4 are positive. This is the result of the Co sublattice magnetiza-
tion being oriented antiparallel to the field applied and to the magnetically
dominant Gd sublattice magnetization, although the former still dominates
the Kerr intensity. Prolonged oxidation and the concomitant formation of Co
clusters will lead to an enhancement of negative contributions to 2¢x since the
Co clusters are decoupled from the Gd sublattice and will orient themselves
parallel to the external field, i.e. antiparallel to the Co moments in the main
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part of the sample. One expects therefore a general decrease of the positive
2¢x contributions. However, the effective depth associated with the Kerr effect
measurements is several tens of nm in the low energy region but only about
10 nm at the high energy side. A deterioration of only the topmost few nano-

“metres of the film would then lead to no more than minor changes in the low
energy region but to a substantial decrease of the positive 2¢k contribution at
higher photon energies, in agreement with the experiment. Moreover, the in-
terference effects associated with the oxide layer may also change the spec-
trum. Here, too, the effects at high photon energies are greater than at low
photon energies.

Conclusions

The study of the Kerr rotation spectra of several Y-Co compounds has
shown that the effect of decreasing Co concentration is a general reduction of
the Kerr intensity associated with the Co atoms, with no major changes in the
shape of the spectra.

The spectra of the Gd—Co can be explained as originating from a superposi-
tion of contributions due to Co and Gd. In the pure metals the main Kerr
intensity in the range 0.5-4.5 €V in Gd and Co has the same sign. In the com-
pounds these two contributions have a dissimilar sign owing to the antiparallel
coupling of the moments of Co and Gd.

In amorphous Gd-Co alloys the situation is similar to the one encountered
in the crystalline materials, albeit the Co sublattice magnetization and the cor-
responding Kerr contribution decrease much more slowly with increasing Gd
concentration. The effect of surface oxidation in alloys of relatively high Gd
content affects primarily the high energy part of the spectrum. No major
changes were observed in the range 1-2 eV corresponding to the wavelengths
of practical interest, using He-Ne or GaAs lasers (A = 633 nm and 830 nm,
respectively).
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APPLICATIONS OF A DIGITAL AUDIO-SIGNAL
PROCESSOR IN T.V. SETS

by W. J. W. KITZEN and P. M. BOERS
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Abstract

Digital audio-signal processors are already being used in professional

applications (mixing consoles, artificial reverberation etc.). In this paper

some applications of such a device in a consumer product, e.g. a television

set, are discussed. Apart from well-known functions such as tone, volume

and balance control the following rather new functions can also be im-

plemented using a digital processor:

— a pseudo-stereo circuit that can be used if the television set is equipped to
reproduce stereophonic signals, but the program is transmitted in mono,

— a stereo base expanding circuit to be used when the two loudspeakers
are closely spaced,

— a circuit for enhancing the impression of spaciousness,

— a volume control with combined loudness correction.

PACS number: 4388

1. Introduction

Until now, most of the applications of digital signal processors in the audio
field have been professional applications. Because of their rather complex
structures and the many components required, those processors were too ex-
pensive for consumer products. However VLSI now makes it possible for con-
sumer products to take advantage of digital processing. The advantages are:
— There is no signal distortion and no processing noise is added if the num-

ber of bits that represents the signals in the processor is large enough.
— A perfect delay line can be implemented digitally which is impossible in an
" analog way. For many applications a delay line is needed, e.g. a spacious-
ness enhancing circuit.

— Quite complex processing can be implemented rather easily.

— The implementation of a function in a digital processor is in fact a pro-
gram that consists of instructions, coefficients and (data) RAM addresses.
By changing this program, a different function can be implemented, so
many functions can be covered with a single processor.

In this paper, after a short discussion of the structure of a digital processor,
we discuss four applications that can be implemented and used in television sets.
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2, Structure of a digital processor

The basic structure of the digital processor used for our experiments is de-
picted in fig. 1. Via the I/O ports data from an external device such as an AD
converter can be stored in the data RAM. The multiplier can multiply these

address | | |data 2
| RAM RAM| — “ports
A
control coefficient ..
HP ™ interface [ RAM mU”’P@F
' |
_| control accu-
RAM mulator

Fig. 1. Basic structure of digital processor.

data by coefficients from the coefficient RAM. The results of some multiplica-
tions can be added in the accumulator, which is again connected with the data
RAM. Processed data are available for external devices such as a DA conver-
ter via the I/O ports. The processor is controlled by a program in the control,
address and coefficient RAMs. Each instruction consists of a control word and
if necessary a RAM address and a coefficient. A multiplication, for example,
involves data on a particular RAM address, a coefficient in the coefficient
RAM and a control word in the control RAM. Because we have used random
access memories for coefficients as well as for addresses and control words,
which can all be updated by a microprocessor via a control interface, the pro-
cessor is very flexible. This has turned out to be very useful for experiments
with different kinds of algorithms. Of course a digital processor has limita-
tions. One of them is the size of the data RAM, which fixes the maximum
delay time that can be implemented. The word-size of the coefficients deter-
mines the accuracy of the filters implemented, the word-size of the data RAM
the processing noise. The complexity of the applications depends among other
things on the speed of the processor, i.e. the speed of the RAMs, ROMs and
the multiplier. By using pipe-lining techniques the processor is speeded up.

3. Applications

Apart from well-known functions such as tone, volume and balance control
some rather new functions can also be implemented with a digital processor.
In this paper we discuss four of them. The first function is a pseudo-stereo cir-
cuit. At present few television programs are transmitted with stereophonic
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sound. With a pseudo-stereo circuit it is possible to convert a monophonic
input signal into pseudo-stereophonic output signals.

Another function that can be used in a television receiver is a stereo base
expanding circuit. In most television sets equipped to reproduce stereophonic
signals the two loudspeakers are closely spaced, so the physical stereo base is
rather small. By using a stereo base expanding circuit, the apparent stereo
base can be widened. :

We also discuss a spaciousness-enhancing circuit with which it is possible to
influence the listener’s sense of spaciousness.

Finally we describe a volume control with combined loudness correction.

]

3.1. A pseudo-stereo circuit

With monophonic reproduction the sound is localized in one direction. The
objective of a pseudo-stereo circuit is that the sound should be perceived as if
it arrives from many directions.

Several psycho-acoustical phenomena related to directional hearing can be
explained if we assume that our hearing system performs a short-time cross-
correlation process on the two ear-signals. A normalized binaural short-time
cross-correlation function as defined by Blauert?!) is:

1

[ 1B r@ +1)G@E—-1)do

-0

D =

V_/' 12(6) G(t - 6) de_f r2(6) G(¢ — 0) do

where /(¢) is the left signal, r(¢) is the right signal and G(¢) is a weighting func-
tion:

’ G@{) =exp(—tite).

The time constant 7. is, according to Blauert, certainly smaller than a few milli-
seconds. By determining the time 7 for which the cross-correlation function is
maximum, our hearing is able to localize the sound source. If the cross-cor-
relation function is very small for all values of 7, then, according to this theory,
the sound cannot be localized and the sound image is broadened or diffusely
localized. So in order to realize pseudo-stereo the binaural cross-correlation
function should be small for all values of 7. If a set-up with two loudspeakers
is used, a prerequisite for a small binaural cross-correlation is a small cross-
correlation between the two loudspeaker signals. This can be achieved by
realizing two impulse responses (from input to the left loudspeaker and from
input to the right loudspeaker) having little correlation. There are many prac-
tical ways of doing this. Because the localization of sounds is determined by
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about the first 5 ms of the impulse responses, the actual impulse responses
need not be longer than 5 ms.

Figure 2 shows a solution proposed by Lauridsen?) using two complemen-
tary comb filters. The left and right output signals in fig. 2 have little correla-
tion since both phase and amplitude characteristics of the left and right

amplitude
amplitude
L f

Fig. 2. Pseudo-stereo circuit (see ref. 2).

2—’, -23; — frequency

] 2
- < — frequency

impulse responses are different. However, because the amplitude-frequency
responses are not flat, these filters may introduce colouration.

A solution given by Schroeder 2), where the filters in the left and right chan-
nels are both allpass filters but have different phase characteristics, is shown in
fig. 3. Because of the different phase characteristics an envelope delay differ-
ence between left and right channel is introduced which is frequency-depen-
dent. As explained by Schroeder, this results in localization of some frequency

envelope delay
difference

2 2
2t 7
1
T

— frequency

Fig. 3. Pseudo-stereo circuit (see ref. 3).
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components at the position of the left loudspeaker and other components at
the right loudspeaker. However, if the time delay 7 is chosen too large, allpass
filters may also introduce audible colouration. If we consider a short-time
Fourier transform (integration over a finite time interval) of the impulse res-
ponse, such a filter is not allpass at all, and, as we have seen before, the inte-
gration time of our hearing is only a few milliseconds.

3.2. Stereo base expanding

Stereo sound reproduction in a stereo set-up may create virtual sources at
every position between the loudspeakers, i.e. the stereo base. If the loud-
speakers are closely spaced, the small stereo base can be widened by applying
delayed crosstalk in antiphase between the two channels, as has been ex-
plained recently *).

Suppose we apply a signal only at the right input (fig. 4). If no crosstalk is
applied, a listener in the plane of symmetry localizes the source at the right

virtual s 4‘—[(] \
. \
\

real
loudspeakers

.l ot

7
rd
virtual (s —>[[] /

Fig. 4. Stereo base expanding circuit.

loudspeaker position. If undelayed crosstalk in antiphase (v = 0) is applied, a
virtual source will shift to the right. This is caused by the increased interaural
phase and group delays *). Thus, the right loudspeaker in fig. 4 is replaced by a
virtual one shifted to the right and the left loudspeaker by a virtual one shifted
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to the left, i.e. the stereo base has been widened. Adding a small delay of
about 0.1 ms in the crosstalk circuit will make the effect more pronounced.
This is brought about by interaural level differences which, for a listener in the
plane of symmetry, reinforce the effect of the interaural time delay differences.
A disadvantage of this crosstalk in fig. 4 is that, in the low frequency range,
the input signals R; and L; (when they are completely correlated) will be at-
tenuated, whereas when uncorrelated the signals will be amplified. In the case
of correlated signals (L, = R;) the output signals are:

|Lo|? = |Ro|? = |Li|? x (I — )?

for

wre L
z,

When L; and R; are uncorrelated and | L;| %2 = | R;|%:
|Lo|* = | Ro|* = | Ls|* X (1 + 7).

In the case of normal stereo signals, the left and right signals are highly cor-
related in the low-frequency range and uncorrelated at high frequencies. The
attenuation of the low frequencies relative to the high frequencies is therefore:

a-o?
a+a?)°

For a = 0.7 this is about 12 dB. This can be corrected by using a bass-boost
filter before the crosstalk processing.

3.3. A spaciousness-enhancing circuit

In a real room, e.g. a concert hall, the impression of spaciousness is caused
by the early reflections via the side-walls that arrive within ¢ < 100 ms 5). Be-
cause of these reflections signals with little correlation reach the ears of a
listener. To enhance the impression of spaciousness in an artificial way, there-
fore, delayed signals should be added to the original signals that are uncor-
related. The signals should be delayed because we do not want to influence the
localization of the sounds. Here too, then, as in the pseudo-stereo circuit, we
must realize two impulse responses that are uncorrelated, but in this case the
" impulse responses should be longer (about 50 ms). A circuit with which this is
possible shown in fig. 5a. In order to produce many reflections, a recursive
filter is used. Each channel consists of a delay line with a feedback loop. The
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Fig. 5a. Spaciousness-enhancing circuit.

output of that structure is added to the original input signal. So the impulse
responses from the input to the outputs consist of an impulse at £ = 0, which
represents the direct sound, and a large number of reflections. By choosing
different delays and feedback factors in the left and right channels, the cor-
relation of the impulse response of the left channel with the impulse response
of the right channel is made small. By changing the amplitude of the uncor-
related signals to be added to the original signals (variable 8), the impression
of spaciousness can be adjusted. The comb filter effect in the circuit may pro-
duce colouration. This effect can be reduced by making the feedback factor a
frequency dependent (fig. 50). As a consequence the length of the impulse
responses for frequencies higher than about 1500 Hz is reduced. However this

—_—Q

— frequency

Fig. 5b. Frequency dependency of feedback factor a.
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does not affect the impression of spaciousness because this impression, ac-
cording to Barron, is mainly determined by the low frequencies 5).

Because the localization of the sources depends only on the first arriving
sound, i.e. the first 5 ms of the impulse responses, it is unaffected by the circuit
when 7,,> 5 ms. If the input signal is to be reproduced by two loudspeakers
that are closely spaced, the decorrelated signals can also be reproduced via an
expanded stereo circuit.

3.4. Volume control combined with loudness-correction

Loudness is the subjective quantity by which we measure the perceived
sound pressure level. The way loudness increases with sound pressure level
strongly depends on frequency for frequencies below about 400 HzS%). As
follows from the equal loudness contours (fig. 6), the reproduction of music

[N / A
5 NG — 120 phon N /
2 120 \ 74
3 NG T~ 100 \///‘J
< N o
E N \\ \-/
3 AN N 60 P\
] N — N~_V ~
T 40 \\\ \\ L0 - /0 NS
SN ~—
\\\‘ S~ 120 / f
MAF\\ ™ ﬁ\// ,’q\~l'
curve it S ’
0 | B e—t
2 5 702 2 5 703 2 5 704 2

——» frequency (Hz)

Fig. 6. Equal-loudness contours (see ref. 6).

at a level below the original level will lead to a decrease in loudness of the low
frequencies relative to the high frequencies i.e. a change in timbre. To com-
pensate for this effect a simple first-order filter can be implemented which en-
hances the low frequencies more the lower the setting of the volume control
(fig. 7). Here the output level of 0 dB corresponds to the level in the studio
mixing room. We assume that the timbre at this level is optimal without any
correction.
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Fig. 7. Volume control combined with loudness-correction.

4. Conclusions

We have discussed some applications of a digital signal processor in a T.V.
set. One of the advantages of our digital processor, because of its flexibility, is
the ease with which one can experiment with different algorithms and compare
their qualities. If a single digital processor is to do all the processing for tone
and balance control as well as for pseudo-stereo, stereo base expanding, spa-
ciousness and volume control with combined loudness correction, then its
speed should be about 100 instructions/sample period. The wordlength of the
data depends on the desired S/N ratio, the wordlength of the coefficients on
the desired accuracy of the filters. With the VLSI technology of today it is pos-
sible to integrate such a processor on one single chip. Such a chip will con-
stitute a powerfull building block which performs all kinds of processing, not
only for applications in a television set but also for other sound reproducing
systems.
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PABLO A VERSATILE VLSI TECHNOLOGY

by H. G. R. MAAS and J. A. APPELS
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Abstract

A method to make very narrow grooves in a substrate is described. The
main feature on which the process is based is the lateral oxidation of a poly-
silicon layer, which is later on removed. The lateral oxide rim thus obtained
in an early stage of the process eventually determines the width of the
groove in the underlying material. The acronym PABLO (Perfect Align-
ment By Lateral Oxidation) has been chosen for this technology. Although
the paper describes only the implementation of the PABLO process to-
wards a self-aligned bipolar device structure, the technique is really ver-
satile and flexible and can be used in almost any device where grooves are
needed, such as non-overlapping submicron gap polysilicon gate structures
in CCD applications.

PACS numbers: 85.40 C

1. Introduction

Progress in optical and electron beam lithography for VLSI purposes, with
the aim of achieving smaller dimensions and higher densities per chip, is
steadily being made. Nevertheless sophisticated self-aligning processes which
make it possible to realize very small contacts or gates as well as submicron
spacings between them, will remain very important in the coming years. Tech-
niques such as wet chemical undercutting of silicon nitride or polysilicon layers
are less suitable. It is true that an improvement can be obtained by a combina-
tion of boron implanted zones in polysilicon and KOH etching'). However,
the process is then confined to wet chemical (under)etching while the locally
heavily boron-doped polysilicon layer seriously reduces the number of appli-
cations.

It will be shown in this paper that the PABLO technique (Perfect Alignment
By Lateral Oxidation) overcomes these hurdles and therefore is ideally suit-
able to obtain minimum dimensions (grooves) between polysilicon contacts or
gates.

The main step in PABLO is the lateral oxidation of a polysilicon layer. The
width of the oxide grown on the sidewall of the polysilicon eventually deter-
mines the width of the groove to be made in the underlying layer. Since oxida-
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tion is a well controllable process, the groove can be dimensioned very repro-
ducibly. Moreover, the groove width is independent of doping-type, impurity
concentration or thickness of the polysilicon layer. With regard to circuit per-
formance the process has the possibility for silicidation of the contacts and
interconnection lines, also in a self-registered way. The method can elegantly
be applied in a number of devices such as bipolar and MOS transistors with an
extended drain. A very interesting application is a non-overlapping polysilicon
gate structure with submicron gaps in densely packed CCDs. Still another
application is to use the technique to make fairly deep and narrow isolation
trenches in order to reduce the inactive circuit area.

2. Description of the technology

The basic PABLO principle is the lateral oxidation of a polysilicon layer
with the aim to form a well-defined oxide stud, which eventually determines
the width of the groove to be made in the underlying substrate. A lot of
variations are possible in this process. The most important probably are the
ones, where the ultimate structure ends up with regions at one side of the
groove covered with silicon oxide, while the adjacent areas are covered with
silicon nitride. In that case the nitride covered silicon can be opened selectively
and this being self-aligned will lead to a higher packing density. Only one of
these PABLO variations, called PABLO I, will be described here and will be
explained on the basis of a bipolar transistor process. The process steps are
described below and are depicted in fig. 1. Photographs of some process steps
are shown in figs 2-4.

2.1. PABLOI

Like in conventional bipolar IC-technology, the process starts with making
the buried layers, growth of the epitaxial layer and the definition of the isola-
tion regions. Next the following steps are carried out:
fig. 1a. Deposition of four layers: Polysilicon layer P, Silicon nitride layer
N, Polysilicon layer P3, Silicon nitride layer Nj. Layer N, must be
thicker than N;. Next N is etched at the regions where at the end of
the process P, is unwanted, whereupon the now exposed parts of P
are converted into silicon oxide.
fig. 15. N2 and P; are etched away, except for the future emitter regions.
fig. 1c. At the edges of these emitter regions, the P; layer which is sandwiched
between N; and N is laterally oxidized.
fig. 1d. The exposed parts of N; and also the top of layer Ny are etched away.
Part of layer N must be maintained to protect P; during further pro-
cess steps.
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fig.
fig.

fig.

fig.

fig.

fig. 1k.

le.

1f.

1g.

1h.

1.

The lateral oxide formed in step ¢ and the oxidized P, above the
finally unwanted P, regions are etched away. ’

The exposed parts of P, are superficially oxidized. At the same time a
new narrow lateral oxide is formed at the edge of Pa.

The exposed parts of N; are etched away, thus giving access to Pi.
The external base is implanted through the oxide on Pi, Py still left
on N; serves as a mask on the emitter regions.

The exposed parts of P are etched away throughout the thickness of
the layer. This defines the outer dimensions of P as well as the small
grooves in it. Also the remaining P is removed from Ni.

The submicron groove of step # is oxidized and simultaneously the ex-
ternal base of step g is activated.

N, is removed by deliberate overetching so that the emitter windows
are opened and the narrow lateral oxide produced in step f falls off.

Next the active base is implanted and diffused, now followed by an emitter
implantation and diffusion. Thereafter the process can be completed in the
usual manner. '

Na Ny X Py

Fig. 1. Fabrication steps of PABLO L. P, and P are polysilicon, N1 and N are silicon nitride.
O is silicon oxide.
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Fig. 3. SEM-photograph showing a bare groove.
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Fig. 4. SEM-photograph showing a cross-sectional view of a transistor with a submicron oxide
separation between the emitter- and base polysilicon contacts.

Fig. 5. SEM-photograph showing a top view of polysilicon electrodes in a CCD structure se-
parated by a submicron groove (G). N = nitride covered poly electrode, O = oxide covered poly
electrode. Magnification 5000 x .
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3. Summary and conclusions

. A reliable and reproducible method for the fabrication of submicron
grooves in substrates has been demonstrated. Basically the method consists of
the lateral oxidation of a polysilicon layer. The width of the oxide stud grown
at the sidewall of the polysilicon determines the width of the groove to be
made in the substrate. In this paper PABLO was explained on the basis of a
bipolar transistor process. However, the technique has a much wider field of
applications. In general it can be used for making closely spaced (submicron)
self-aligned electrodes, which e.g. can profitably be applied in the fabrication
of very densely packed CCDs (fig. 5). Also MOS transistors with extended
drains or submicron gates can be made with this technique. Still another ap-
plication is the fabrication of deep isolation grooves or capacitors.

REFERENCE
) Tetsushi Sakai et al., ISSCC Dig. Tech. Papers, 216 (1981).
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Preface

PREFACE

Balthasar van der Pol, nestor of radio scientists, and I once had a somewhat
facetious discussion of the use of mathematics. Van der Pol emphasized both
the beauty and the power of analytical methods — which he himself handled
with great virtuosity — whereas I stressed their limitations. “The capacity of a
sphere”’, I said, “I can write down at once, that of an ellipsoid I can calculate
with some difficulty, but calculating the capacity of a cube leads to unwieldy
series. Yet the electrons manage to distribute themselves over the surface in a
nanosecond or so. Calculating the impedance of a network with four meshes -
is already hard work; for a network with one hundred meshes it is almost im-
possible. The currents, however, find their way without difficulty. Mathe-
matics is more often than not unable to deal with quite simple problems”.

Now this situation has been radically changed by the computer. To solve
100 equations with 100 unknowns has become almost literally childs play.
Differential equations are easily solved and non-linear problems, formerly un-
manageable, can be dealt with. And this is only one aspect of the rapid evolu-
tion of information technology brought about by solid state electronics, the
further development of which owes in turn much to computers.

The older methods of analysis have not become obsolete, on the contrary,
in many cases their value has been enhanced by the computer, but there has
also arisen a number of new disciplines for which “informatics” is a fairly
satisfactory name and which is associated with such keywords as ““digitaliza-
tion” and “computer languages”. This trend became evident in the fifties and
has by now even been recognized in government circles.

When in 1963 Belevitch entered the Philips orbit and undertook to create at
Brussels a research group dealing specifically with such subjects this was a
most valuable addition to our research potential.

Belevitch combines specialized mathematical competence with a very broad
range of interests, including general linguistics. This made him not only an ,
excellent researcher and leader of research, but also a welcome participant in
almost any kind of discussion. Incidentally, it also made him an excellent
chairman of the jury of the Philips contest for young scientists and inventors,
an activity near to my heart.

The papers in the present volume, dedicated to him on the occasion of his
retirement, relate to many — although not to all — aspects of Belevitch’s
work and I am convinced that he will enjoy reading and criticizing them.
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Let me finish by expressing the hope and expectation that in this case
“retirement” will not mark the end, but rather the beginning of a new phase
of his scientific activities.

H. B. G. Casimir
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AN INTRODUCTION TO MULTILINEAR ALGEBRA
AND SOME APPLICATIONS

by A. BLOKHUIS* and J. J. SEIDEL**)

*) Center of Mathematics and Computer Science, 1009 AB Amsterdam
**) Department of Mathematics, University of Technology, 5600 MB Eindhoven, The Netherlands

Abstract

The present paper intends to give a quick and easy introduction to tensors,
in particular to the exterior and the symmetric algebra of a vector space
and the relations between them. The entries of the k—th exterior, and the
k-th symmetric power of a matrix are expressed as determinants, and per-
manents, respectively. The generating polynomials of these powers are
related by their traces. As applications we mention MacDonald’s proof of
MacMahon’s master theorem, Bebiano’s permanent expansion') and the
permanent version of the solution of Fredholm’s integral equation, ob-
served by Kershaw?) and by de Bruijn?).

Math. Rev.: 15A69

1. Symmetric functions*)

The elementary symmetric polynomial of degree k in d variables, x1, . . ., Xa,
is defined by

ex(x):= X XX,
1</ 1<...<jysd

or, equivalently, by its generating function
d
Et;x):= X e()t*=T1 A + x:0).
k>0 i=1

The k-th complete symmetric polynomial is defined by

- P Xjy oo o X5
he(x) : T < ipsd e

with generating function
H S ot =TT —
t;x):= Xtk = —.
%) k>0 ) i=11 — xit

Theorem 1.1 E(—-t;x)H(t;x) = 1.

Remark
{ei1,...,es} forms a basis for the graded ring Sa of symmetric polynomials
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in d variables. Let j denote the all-one vector of size d, then
e) = (4) and m()= (k-1
2. Tensors®-7)

We start with a quick definition. Let V be a (real) vector space of dimension
d, with (positive definite) inner product (, ) and orthonormal basis e, . . ., ea.
We define tensor products by their components with respect to this basis:

x®y by the d? components x;y;,
x®y @z by the d® components x;y;z.

The tensor product V'@ V is the linear space spanned by all tensor products
xQ@y; x,yeV. The inner product (x®y,uQv):= (x, u)(¥,v) provides
V' ® V with the orthonormal basis {e; ® e;| 1 < i,/ < d}.

Similarly tensor products of £ vectors, x1 & ... & xx are defined by their d*
components (x1); (xz2);. . . (xx)m, With respect to the orthonormal basis

fe@e®...Qem| 1Ki<i<g...<m<Ld)
of Ti(V):= ®*V, with inner product

Q.. 0x, Q. ®yk)— (xx,y.)

Clearly, dim FiV = d*. The tensor algebra TV is the direct sum

TV:=ToVOTV®...= 22TV,
k>0
where Ty V= R, T1 V= V. Its Poincaré polynomial (as a graded algebra) is
1
P ; Kk _
Pr(t):= kéo(dlm TeV) ¢t T—dr-

Remark

We refer to the literature for details about the following coordinatefree de-
finition. The tensor product of the vector spaces U and Vis the pair of a vector
space U@ V and a bilinear map « : UxV— U® V such that for all bilinear f
there is a unique linear g such that the followmg diagram commutes

UxV U®V

f\

3. The exterior algebra AV 5:%)
Az V is the linear subspace of T2V spanned by the skew 2-tensors:

XAY:i=ixQ@y-y®x); x,yeV.
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Clearly, xAx=0,xAy=—-yaxand dimA; V= <g>

The inner product inherited from 7>V becomes
x,u) (x,v
(A 2,u D) = HG1) 0,0) = (o) ) = et ({520 C50)),

An orthonormal basis for A: ¥V is provided by U/_(e,/\ e)| 1Ki<j<d}.
Likewise, for 0 < k << d we define

1 -
XIA . AXg= o 2 (—D%1Q... x5k,
¢ o6k

where (—1)? is 1 (— 1) if the permutation o is even (odd), and yx is the sym-
metric group on £ letters, and

AeVi= (1A .. AXe|xi€V)r,

with inner product
1
(xlA. AXgy V1N, /\yk) det((xl:yl))

Note that dimAxV = <z) = ex(/); an orthonormal basis for AV is pro-
vided by

WVklean...nel<ii<...<ir<d].
The exterior algebra AV is the (finite) direct sum
AV =AVRMNMVD...RALVR ALY,
where Ao V=A4V=R and A, V=A,4, V=V, Its Poincaré polynomial is
pAt)y = (1 + 0 =E,)).
Remark

X1, ..., X are linearly dependent iff x; A ... AXe = 0.

4. The symmetric algebra 2V 5°5)

23 Vis the linear space spanned by the symmetric 2-tensors,

xvy: =ixQy+yR@x); x yeV.

Clearly, x v y=yvxand d1m22 (d ; )

(x v y,uvv) = {(x,u) (,v) + (x,v) (y,u)) = }per (8‘, Zg 8,‘3)
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Likewise, for 0 << k£ < « we define
ZeVi= (V... VX xieV),,
where

1
X1V...VXr= T Y xa1 Q... Q X0k

+ o€k

Then ZxV has basis fe;, v...ve,| 1 <ih <...<ik<d}, and
dim >,V = (d+ I/E -1 ) = he(j).
The inner product derives from
1
a1V VX Y1V V) = oo per (6, 3)))-
The symmetric algebra 2V = »® (Z«V) has Poincaré polynomial
k>0

p=(t) = (1 - ™ =H(t,J).

Remark N

The basis for 2%V may be normalized using the factors (%)2, where

k'=ki!...ks! and |k| =ki+ ... +ka=k, e,v...ve,=ei'v.. . vei.

5. Relating A to X ™8)

We shall consider power series whose coefficients are vector spaces, with
addition defined as direct sum, and multiplication as tensor product.

A V)= T (AW)th; Z(4V) = X (S V)tk.
k>0 k>0

Theorem 5.1
AGVEW) = AGV) QAGW), Z(LVOW) =2(6V) 2 W).

Proof }

By considering bases we prove A(VQ W) = Z@A,-(V) & A;(W), and the
analogous formula for Zx(V @ W). i+j=k
These imply the relations of the theorem. O

Theorem 5.2
A=) Q2 V) = 1.

Proof -
First observe that for dim ¥V = 1 we have
A Vy=1+4+1tV; ZGV)=1+tV+e2V+...=(0 — V)L
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For an arbitrary V' (which is the direct sum of one-dimensional subspaces), the
theorem follows by application of theorem 5.1. O

6. Relating A and X to S *8)

The semigroup (V, +) can be extended to the ring (Z, +, .) by a well-known
construction. Similarly, the isomorphism classes [V] of vector spaces V, over a
fixed field form a semigroup with respect to direct sums, which can be extended
to the Grothendieck ring K, with operations direct sum and tensor product. The
map [V]— dim V identifies the rings X and Z. For V of dimension d we have

in=(§) o (405,

More interesting is the isomorphism of the Grothendieck ring X and the
ring S of symmetric functions (in infinitely many variables). Here we have the
following correspondences: (V of dimension d, x = (x1, .. .,X4,0,0,...))

AV —e(x); A V) —E(t x),
2V — h(x); Z(6;V)—H(t; x).

This shows the connection between theorems 5.2 and 1.1.

Remark

The ring S of the symmetric functions is the underlying ring for the repre-
sentations of the symmetric group & in the following sense: Let 7: & — Aut(V,)
denote an irreducible representation of &% on the ¥module V,. Let R(&)
denote the ring of all Such &#modules. The fundamental theorem [5] says that
there is an isomorﬁhism (of A-rings)

@ZR(:?)::S.

We indicate how to obtain the symmetric function @(V;): Let X be any vector
space, consider ¥, ® X®* and its %-invariant subspace 7(X). For instance,
if # =1 then n(X) = Zx(X), if # = +/— then n(X) = A(X). Any linear
T:X— X induces Te(T): Tr X— T, X (see sec. 9) and #(T): n(X)— n(X).
Now the function spec (T") — trace n(T") is the desired symmetric function in S
which is attached to 7.

7. Duality ©)

The dual V* of the vector space V consists of the linear functionals on V.
The action of V* on ¥V may conveniently be described by a pairing [V, V*]:
[v, w¥] : = w*(v). If we identify (T V)* with Tx(V*) we may write
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k k
M1IQ... Que, wr® ... w}] = I_I;Il[v;, wi] = I:_[;I]W,-*('Ui).

Likewise we have (AxV)* = Ax(V*) and (Z¢V)* = Zp(V*) with the induced
pairings

[ViAa.. . Ave, WEA...AWE] = det (w}(v:)),

1
k!
[viv...vog, wiv...vw] = %per(w}“(vi)).

Remark

ZV* is isomorphic with the ring of polynomial functions on V, with
ordinary multiplication. In a certain sense A V* corresponds to the set of
square-free polynomials in d variables, cf. sec. 9.

8. Metrics®)

.Let ¥ have basis e, ..., eqs and let e}, . . ., e} be the dual basis for V'*, i.e.,
[e,-, e;"] = 5,-,-.

In V a non-degenerate inner product is defined by a non-singular map
G:V—V* and (v,w):= [v,Gw], v, weV. For the orthogonal geometry
O(r, s) the standard matrix for G, with respect to the bases e; and e} is

_(I, O _( 0 I,
G‘(o —Is>’ and G = (—1,,. 0 )
for the symplectic geometry. The map G: V— V* induces T:G: T V— T V*:
x1®...Qxk—Gx1Q ...Gxk, which in T; ¥V leads to the inner product

(t,u) :=[¢t, Ty Gul; t,ue TV,
or

k k
Q. X1 Q.. yK) = ,I=I1 [x:, Gyi] = '_I;Il(x:,yf) .

Likewise the maps Ax G A V— A, V* and 2k G: 2V — 2 V'* are defined and

: 1
XIA .. AXEVIA . AYR) = —k—'-det((x;,yj)),

1
GV VX y1Ve ..V YR = oo per (6, 7))-

9. Exterior and symmetric powers of a matrix %%%10)
Let A: V—V denote a linear map of V. The k-th tensor power T:A is de-

fined by Txd: x1 Q... Qxxr—>AX1Q ... QAxy. Likewise the maps A4
and 2+ A are defined.
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Notation:

For k and /, with | k| = |I| = k the matrix A(k, ) is the kX k matrix which is
obtained from (the dxd matrix) A by repeating &; times the i-th row, and /;
times the j-th column, fori,j=1,...,d. )

Lemma 9.1
In (A x)* the coefficient of x! equals 717 per A(k, ).
Proof

d d
Ux)=T11 ( Y aij x,-) M Arrange the terms a;;x;in a kX d matrix. Change
i=1 \j=1

this into a kxk matrix with columns corresponding to /. Suppress x’, then we
are left with A(k, /) and the result follows. O

In the final remark of sec. 7 we mentioned that A,V corresponds in a cer-
tain sense to the square-free polynomials, the sense being that

Xiy Xiy o o o Xip = (— l)"xil o oo Xig

for o € %, i.e., the polynomials are skew. In this sense one has the following
skew version of lemma 9.1:

Lemma 9.1’

In (A x)* the coefficient of x! equals det A(k, /). Note that det A(k,/) #+ 0
implies /! = 1. By use of the orthonormal bases for AV and 2V introduced
in secs 3 and 4, we can now calculate the entries of the power matrices. O

Theorem 9.2
AlA)x,1 = det Ak, 1);  Zi(A)e,r = per A(k, 1)

VETyIr

From the definition we infer:

Theorem 9.3

Let A have eigenvalues a4, ...,@qs. The eigenvalues of Ax(A) are the (i)

squarefree, those of 2%(A) the <d + /f -1 ) homogeneous monomials of de-
greekinay,..., Q4. O
The following expansion of the determinant is well-known:

Qi; qij

d
det(J+tA) =1+tX ai+t*X
i=1 aji Qjj

i<j

+ ...+ t9det (4).

Its counterpart for permanents is used less frequently:
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Theorem 9.4

d
det (I +tA) = kZot" - trace Ax(A) = Zk ¢kl det Ak, k);

det™*(I — tA) = ¥ t*-trace Zy(4) = X ¢l*l Mﬂ.
>0 k k!

=

Proof

The equalities on the right hand sides follow from theorem 9.2. As for the
left hand sides, theorem 9.3 implies that trace 2«(A4) is the k-th complete sym-
metric polynomial in the eigenvalues ¢ of 4, i.e., we have

trace Zi(A) = hu(e), similarly trace Ax(A) = ex(a).

Hence the sums of the traces are the generating functions E(¢; @) and H(¢; a)
of sec. 1. The theorem now follows from theorem 1.1. 0

Corollary 9.5
det (/ + t A) = trace A(¢; A) = trace™ 2(¢; A),

for the generating functions

A(t; A) = T t*4k(A) and 2(t; A) = 3 t* Zu(A).
k>0 k>0 O

10. Applications

I. G. Macdonald told us the following proof of MacMahon’s master
theorem.

Theorem 10.1
The coefficient of x* in the symmetric product (4 x)* equals the coefficient
of x* in 1/det(J — A A(x)), where 4 (x) = diag(x, .. .,Xa).

Proof
By 9.1 and 9.2 the coefficient of x* in (4 x)* equals the (k, k) entry of Zi(A4)
where k= | k| . Hence it is the coefficient of x* in trace (4 A(x)). However,
kZotrace)Jk(A A(x)) = 1/det(I — A A(x)), according to theorem 9.4. O
>

Theorem 10.21)

k k 1,1
o, ApF Z XY per Ak, ).

k! k'l
[kl ==k
Proof .
Write x =x; €1 + ... + xseq, and take the inner products of the symmetric
1 1 ' .
tensors va ...vXxand k—'Ayv ...VAYy, using
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1 x* . A .
—k—'xv...vx= Fellv...ved". O
' |k|=k

Corrolary 10.3 (N. G. de Bruijn)
For any rectangular matrix A = (a;;) we have

1 N Z per A(k, D
T & e = T
k| =ll=k
Proof
Make A into a square matrix by supplying zeros, and apply theorem 10.2.

ad
11. Fredholm’s integral equation ')

From the theory of integral equations it follows that

1
u(x) = f(x) + A K(x, ) u(t) dt
; .

has the solution 1

_ . D, y; )

u) =f) + [ SpEE ) d,
provided D(A) # 0. To explain the notation, we divide the interval [0, 1] into
d equal parts by 0 < % <...< d7_1-< 1. Let f be the d-vector with compo-

nents f; =f(z;->, and let M be the dXd matrix with entries M;; = %K(—l— !-).

Then the integral equation is approximated by the following set of matrix
equations of increasing size d =1,2,3,...

-AMu=f

These equations may be solved using Cramer’s rule. Fredholm’s determinant
D(A) is defined by

K(t1, t1) K(t1, t2)
1-4 /K(t t)dt+ // K(ta, t1) K(t2, t2)

It is the limit, for d— «, of

2
4Q): = 1—12M:+;—'

13
dtldt2—3—,fff+... .

M Mi;

+ ...+ (—D%A%det M.
M;: Mj; =1

iJ

Fredholm’s first minor D(x, y; /f) is defined by
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1

AK(x,y) — /12/ K(x, y)K(x, 1) it
0

K(t,y) K1)

o [ [ K&y K ) Kk 1)
—27// K(s,y) K(s,s) K(s, )| dsdt +.
00 K(t,y) K(t,5) K(¢, 1)
It is the limit for d— «, of
My M,
2 xy Vixi
A6, 3 2) = A Miy — Z |MM
/13 Mxnyiij
2T My My M | +-..
"7 | My My M, v

By replacing determinants by permanents we get expressions which we denote
by P(—=A), II(—A), —P(x,y; —A), —II(x,y; —A), respectively. Now in ref. 2
it is proved that

D@) P() =1, D(x,y;1)PA) = P(x,y; 1) D). *)

As a consequence the solution of Fredholm’s equation may also be written in

terms of permanents: :

ut) = 1) + | PEXA
0

)
AL

Now the first equality in (+) is implied by
AQ) = det(l — A M) = (IT(A)*.

One can verify that A(x, y; A)IT(A) = II(x, y; A) 4(1) also holds, but we lack
an elegant proof of this fact.
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SOME ELECTROSTATIC PROBLEMS FOR A SPINDLE
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Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

Abstract

The classical treatment of the Laplace equation by separation of variables
in bispherical coordinates is used to obtain analytical expressions and
numerical results for the solution of various electrostatic problems for a
perfectly conducting spindle: charged spindle in free space, spindle in a
uniform axial or transverse electric field. Special attention is paid to the
limit case of a spindle passing into a tight torus, that is a torus without
central hole. It is shown that in this limit case the solutions of the potential
problems for a spindle tend continuously to the corresponding solutions
for a tight torus, as obtained by Belevitch and Boersma. In addition, ap-
proximations to the capacity and to the induced dipole moments are
derived for the case of a spindle that is almost a tight torus.

Math. Rev.: 78A30, 33A45, 33A40

1. Introduction

In a recent paper ') Belevitch and Boersma treated some electrostatic prob-
lems for a perfectly conducting torus: charged torus in free space, torus in a
uniform axial or transverse electric field. The solutions of these potential
problems were derived by separation of variables applied to the Laplace equa-
tion in toroidal coordinates. For the limit case of a tight torus, that is a torus
without central hole, the solutions of the mentioned problems were obtained
by use of Kelvin’s inversion. Next it was shown that the solutions of the poten-
tial problems for the tight torus coincide with the limits of the solutions for
the general torus when the radius of the central hole tends to zero.

In this paper we consider the same electrostatic problems for a perfectly
conducting spindle. The spindle is a surface of revolution that is generated by
rotating a circular arc around its supporting chord. Both the spindle and the
torus can be described by two parameters a, b, where a is the radius of the cir-
cular cross-section with a plane through the revolution axis, and & is the signed
distance of the cross-section center to the revolution axis of the spindle or
torus. The parameters a, b are restricted by —a < b < a for the spindle, and
by b > a for the torus. The tight torus is described by equal radii @ = b, and is
therefore limit case of both the torus and the spindle.
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The spindle is a coordinate surface for the orthogonal system of bispherical
coordinates. In these coordinates the Laplace equation is known to be R—sep-
arable?). As detailed in sec. 2 of this paper, the separated solution modes in-
volve conical functions, which are a special type of associated Legendre func-
tions. The electrostatic problems for a spindle can now be solved by the usual
separation of variables approach and the solutions are represented by integrals
of conical functions. The potential problem of a charged spindle in free space
is treated in sec. 3, while secs 4 and 5 deal with the spindle in a uniform axial
or transverse electrostatic field. Analytical expressions are presented for the
potential, the surface éharge density on the spindle, the electrostatic capacity,
and the induced dipole moments. Part of our results is known; for example,
the capacity of the spindle has been determined by Szegé ?), and the results for
the dipole moments go back at least to Schiffer and Szegd 4).

For the tight torus, considered as the limit case. 56— a of the spindle, the
transformation to bispherical coordinates breaks down and the solutions of
the potential problems become nugatory. This difficulty is overcome by a
suitable rescaling of the bispherical coordinates whereupon, in the limit for
b— a, these coordinates tend to tangent-sphere coordinates corresponding to
Kelvin’s inversion. The limiting process for the tight torus is discussed in
detail in sec. 6. Our main purpose is to show that, in the limit for &— a,
the solutions of the potential problems for the spindle tend to the correspond-
ing solutions for the tight torus, as determined by Belevitch and Boersma!) by
use of Kelvin’s inversion. Consequently the electrostatic problems for a
spindle and for a torus match continuously in the common limit case of a tight
torus. .

In sec. 7 numerical results are presented for the capacity and the induced
dipole moments of the spindle, as functions of the aspect ratio v = b/a.
Analytical approximations to the capacity and to the dipole moments are
derived in sec. 8 for the case of a spindle that is almost a tight torus; this case
corresponds.to v <1 or b <a. These approximations are based on two-term
Taylor expansions at v = 1. It is found that the results of sec. 8 are identical to
the approximations!) for the case of an almost tight torus, corresponding to
v 21 or b Za. Thus we conclude that the capacity and dipole moments con-
sidered as functions of v = b/a, are continuously differentiable at v = 1.

In this paper extensive use is made of various formulas for Legendre and
Bessel functions. For convenience these are collected in an appendix, where
some new formulas are established as well; a reference such as (A1) is to the
corresponding equation of the appendix. The mathematical notations for all
special functions are in accordance with our main references %7). Ration-
alized electromagnetic units are used throughout.
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2. The Laplace equation in bispherical coordinates

Let 0, 8, z denote the usual cylindrical coordinates as shown in fig. 1, where
0 is the angle of rotation in the counterclockwise direction around 0z. Then we
define bispherical coordinates 8, ¢, 8 (right-handed in this order) by retaining
@ and introducing the conformal representation
oa—if
2

z + ip ccoth (—o<o< oo, 0gpLR), 2.1)

where c is a constant. From (2.1) one deduces

csin csinha
€= Cosha —cosf’ 7~ cosha — cosp ’ 2.2)

and, through elimination of a,
z% + 0% — 2pccotB = c?.
Hence, the equation § = £, defines the spindle
z22 + (0 - b} =a* 2.3)
of fig. 1 with

C
Sil’lﬂl ’

b=ccotf, c?2=a?- bl %? cos B1. 2.9
The coordinate surface f = 8 is apple-shaped if 0 <f; <®/2 or 0 < b < a,
and spindle-shaped if /2 < 81 <7 or —a < b < 0; see fig. 1. In both cases the
surface of revolution is called a spindle. The surface § = n/2 is the sphere of
radius ¢ = ¢ around the origin. In the limit case b = a the spindle passes into a
tight torus without central hole.

z

al

- ;
N

Fig. 1. Cross-section of the spindle 8 = f; with 0 <f; < m/2 (left) and n/2 < 1 <= (right). -
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The transformation (2.1) sets up a one-to-one correspondence between the
half-plane o > 0 of the (z + ip)-plane and the strip —~© <@ < 0,0 K.
Inside the spindle of eq. (2.3) one has £ << f < &, whereas outside the spindle
one has 0 < # < B:. Both coordinates « and f tend to zero at large distance,
i.e. for large

3
cosha + cos,b’) . @.5)

r=(*+2) c(cosha—cos/i’

The squared line-element is

(do)? + (dB)*
2

2 2 _
(do)* + (dz2)* = 2

s - 2.9

_ cosha — cosf . @
c
In cylindrical coordinates and for a dependence on 8 by a factor cos (i 8) or
sin(m 6), the Laplace equation reduces to
v 19V 9% m?

902 +Z¥+ 322 —EZ—V=O. 2.8)

Transformation into bispherical coordinates yields the equation

i( sinf ﬂ) +i< sin 8 ﬂ)_ m2V ~0
da \cosho — cosf da 3B \cosha — cosf a8 sinf(coshe — cosf) ’
which is known to be R-separable. Then, through the substitution 2)

V=U(cosha — cosB)t, (2.9)
one gets the simply separable equation

U U au <1 m?

207+ agr T otB g5 - Z*W)U” (2.10)

Since the variable ¢ ranges from —o to +, the solution of (2.10) can be
represented by the Fourier integral

Ule,B) = Of u(t, B) S8 (o 1) dt. (2.11)

Substitution into (2.10) yields the ordinary differential equation

d?u du 1 2 m?
a5 + cotf dﬂ_(4 + 2+ sinzﬂ)u_o’
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which, by the substitution £ = cos 8, becomes

2
(1—é)d€2— 32‘—(7}+t%‘+~1’f£2)u=0. @12
The latter equation is recognized as the Legendre differential equation with
parameters v = —i*it, u=+tm, where the double signs do not yield dis-
tinct solutions. The solutions of (2.12) are thus the associated Legendre func-
tions P D4 and o7 Dvie of argument ¢ = cos 8. These special Legendre func-
tions also go by the name of conical functions. Since only potentials vanishing
at large distance r (i.e. for small @ and ) are needed, they will be systematic-
ally presented as integrals in ¢ of modes of the form

(cosh & — cos )t PZy,;, (cos B) glons (@) ?:lons (m ), (2.13)

where the initial factor originates from (2.9).

3. The charged spindie in free space

We consider the spindle at constant potential ¥, and isolated in free space.
The potential Vis represented by an integral of modes (2.13) with m = 0 (since
V is independent of 6) and even in a. By imposing the boundary condition
V=V, at f = B1 (on the spindle) and by use of (A2), the solution is found
to be

©

V = 2% Vo(cosha —~ cosﬂ)%/ Poyvie (= cospi)
0

cosh (7t £) P-}+is(cos B1)

XP_y i (cOS B) cos(a £) dt. (3.1)
At large distance r, given by (2.5), the potential ¥ tends to zero as
__9
T dmer’ 3.2)

where Q is the total charge and ¢ is the dielectric constant of free space. Thus
the value of Q obtains from the limit of r¥ as r— o, or equivalently, as
o, —0. In the product rV the factor (cosha — cos ) cancels whereupon the
required limit is found by simply setting & = 0, 8 = 0; notice also that for
B =0 one has®) P_y,:.(1) = 1. From the resulting value of Q we deduce the
capacity

C= Q. 4n?ea Co, (3.3)
Vo
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where the normalized capacity is

o«

2. P_j+ii(—cosfB1) dt
Co=z S‘“ﬁ‘/ P_yvir(cosBr) cosh(me) 3.9
0

The results (3.1) and (3.3) agree with those of Szegd ?), who points out that
(3.1) goes back to C. Neumann in 1881. The result (3.1) is also mentioned by
Lebedev et al.®).

The charge density on the spindle is

L
onl p=p 'gaﬁ B=p5"

where g is given by (2.7) and the change of sign is due to the fact that 8 de-
creases in the outward normal direction. The derivative in (3.5) is computed
by using

g = 3.9

v _ ax

B B’
where X = (cosha — cosf)*. In the right-hand side of (3.6) the derivative of
XV is determined from (3.1), while d.X/3f is replaced by the derivative of

(A2); furthermore, V="V, at f = 1. Then by use of the Wronskian identity
(A7) with m = 0, one obtains

d
X W(XV) -V (3.6)

«©

_ 28gV, (cosha — cos By)} / cos(a t)
9= Tre sin 81 P_1.i:(cos By) dz. 3.7)

0

The surface area element of the spindle is (¢/g) der d@ and the total charge is

o n (-]
Q=//%dad0=2n/%da. 3.8)

—00 ~7

Insert the values (2.2) and (2.7) for ¢ and g, and use (3.7) for o, then the inte-
grand o o/g contains the factor (cosha — cosf1)™% which is replaced by the
Fourier integral (A2). As a result one obtains an integral of a product of two
Fourier transforms, which is evaluated by Parseval’s theorem 10y The final
result for Q checks with (3.3).

4. The spindle in a uniform axial electric field

A uniform electric field E, is applied along 0z corresponding to the poten-
tial
—FEycsinh o :
Vo= —-Egz=——"7""—"—"— 4.1
0z cosha — cos 8 (.1
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by (2.2). The spindle is understood to be at zero potential,i.e. V= 0 at ﬂ = f.
The solution of the potential problem is

V = 2% c Eo(cosh o — cos B) / [_ﬁ%wig%gr P_14it(cos B)

tsin(at) dr,

osh (n t) (4.2)

— P (—cos ﬁ)]

which is justified as follows. The contribution of the term P-y.:(— cos B) is
precisely the applied potential (4.1) by (A4). The remainder of (4.2) is an inte-
gral of modes (2.13) with m = 0 (since Vis independent of #) and odd in & as
the potential (4.1). Finally, (4.2) vanishes for § = 1.

The solution (4.2) consists of the applied potential ¥, augmented by a re-
action potential. At large distance the reaction potential must reduce to the
one of a vertical dipole of moment M at the origin, hence we must have

Mz
4m e rd

V-V, = , 4.3)

where r is given by (2.5). Thus the moment M can be determined by identi-
fying (4.3) with the value resulting from (4.2) for small and #. By a com-
putation similar to the one following (3.2) one obtains

M= 87132 &€ a3 Eo Mo, (4-4)

where the normalized moment is

P_.l_,' - 2
Mo = %sma/}l/ prac(—cosfy) _£2d (.5)
0

P_y4ic(cos f1) cosh(n?)

The results (4.2) and (4.4) are identical to those of Schiffer and Szegd 4). The
result (4.2) is also mentioned by Lebedev et al.®).

The induced charge density on the spindle is given by (3.5), in which aviops
is computed as in (3.6) and simplified by use of the Wronskian identity (A7)
with m = 0. Thus we find .

o<

238 Ey (cosha — cos f1) / tsin (@) @.6)
T sin 1 P_34i¢(cos f1) )
The densities o (0, z) and a(@, —z) = —o(@, z) at opposite points on the same (

vertical form a moment 20 z. By integrating this over the upper half of the ‘
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spindle one obtains the total moment

o«

M=27t/ "29 da. @.7)

-0

From (2.2), (2.7) and (4.6) it is found that the integrand 0 20/g contains the
factor sinh a(cosh @ — cos$,)~% which is replaced by the Fourier integral (A4).
Then (4.7) reduces to an integral of a product of two Fourier transforms,
which is evaluated by Parseval’s theorem. The result for M checks with 4.4).

S. The'spindle in 2 uniform transverse electric field

In the plane perpendicular to 0z of fig. 1, we introduce rectangular coor-
dinates x, y related to the polar coordinates g, 8 by x = o cos¥, y=osinf. A
uniform electric field E, is applied along Ox corresponding to the potential

—Eycsinf

Vo= —Box=—Eogcosd = o s E

cos @ 6.

by (2.2). Again the spindle is at zero potential, i.e. ¥ = 0 at B = B1. The solu-
tion of the potential problem, vanishing for g = 8,, is

Pl (- cosm)

V = 2% cEycos f(cosha — cos )} / [
[}

Ply i (cos B2) Pl (cosp)
! cos{at)
P-§+n(—COSﬂ)] mdt (5.2

Here the contribution of the term P1%+i,(—cos,8) is precisely the applied
potential (5.1) by (A3). The remainder of (5.2) is an integral of modes (2.13),
even in & and with m = 1 as implied by the factor cos @ in (5.1).

At large distance the reaction potential ¥ — ¥, must be equivalent to the one
of a dipole of moment N in the x~direction at the origin; hence we must have

Nx  Ngcos8

V-V.= drerd = dmerd

, (.3)

where r is given by (2.5). The moment N is determined by identifying (5.3)
with the value resulting from (5.2) for small ¢ and f. Here we need the ap-
proximation #)

Plém(cos B) = (2 + Psin (%) 5.4
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valid for small 8. The further computation is similar to that following (3.2)
and we find

N =2n%¢a®Ey No, (5.5)

where the normalized moment is

(-] 1 '
8. / Pl (=cosfy) 141
No = o-sin ‘Blo Pl (cosB1) cosh(m¢) ds. (5.6)

The results (5.2) and (5.5) are identical to those of Schiffer and Szegé*).

The induced charge density on the spindle is given by (3.5), in which dV/0
is computed as in (3.6) and simplified by use of the Wronskian identity (A7)
with m = 1. Thus we find

2%e Eo (cosh @ — cos 1)t / (¢ + 3) cos (af)
= 22850 s 8 - de. (5.7
¢ T sin 1 y P41 (cos ) G-
The densities o(x,y,z) and o(—x,»,z) = —o(x,y,z) at opposite points on

the same line parallel to Ox form a moment 20 x. By integrating this over the
appropriate half of the spindle one obtains the total moment

(-]

© /2
2
N=2/ / "—;fﬁdade=n/9;ida, (5.8)

-0 —T/2 -

in which o1 = o/cos@. From (2.2), (2.7) and (5.7) it is found that the inte-
grand 010%/g contains the factor (cosha — cosf )% which is replaced by the
Fourier integral (A3). Then (5.8) reduces to an integral of a product of two
Fourier transforms, which is evaluated by Parseval’s theorem. The final result
for N checks with (5.5).

6. The tight torus as a limit of the spindle for b—a

Consider the spindle of fig. 1 with radii @, b, where b < a. When b tends to a
by increasing values the spindle passes into a tight torus without central hole.
In the limit one has & = a, hence ¢ = 0in (2.4), and the conformal representa-
tion (2.1) breaks down. To overcome this difficulty we change the bispherical
coordinates @ and £ into ce/a and c¢f/a, respectively, before letting ¢ tend to -
zero. Then the rescaled transformation (2.1) tends to

z+ig= (6.1)

2a
a—if’

Philips Journai of Research Vol. 39 Nos 4/5 1984 129

IPR2018-1557
HTC EX1023, Page 139




J. Boersma and R. Nijborg

which is Kelvin’s inversion. From (6.1) one deduces

2af 2aq

Q= az +ﬂ2: z= az +'B2 ) (62)
and, through elimination of «,
a\? a\?
22+( ———) =(——>. 6.3
e- 3 7 (6.3)

Hence the limiting tight torus is described by the equation £ = 1. The coor-
dinates f3, @, 6, defined by (6.1), are called tangent-sphere coordinates !*). The
range of @, fis — <o <, #>0. Inside the torus one has 1 < B < ,
with f = « at ¢ = 0, z = 0. Outside the torus one has 0 <8 <1, and both &
and f tend to zero at large distance r = (02 + z2)i.

The electrostatic problems of a charged tight torus in free space, and of a
tight torus in a uniform axial or transverse electric field, have been solved by
Belevitch and Boersma '?) using separation of variables in tangent-sphere co-
ordinates. The solutions obtained involve integrals of modified Bessel func-
tions. It is the aim of this section to verify that the solutions for the tight torus
(b= a) also obtain as limits of the solutions of the corresponding potential
problems for the spindle (b < @), when &—a. To that end we start from the
results for the spindle as derived in secs 3 to 5. In these results we change a, 8
into ca/a, cf/a, then the latter @, 8 tend to tangent-sphere coordinates as ¢
tends to zero. To be consistent, one must also change 3, into ¢f81/a; then the
first eq. (2.4) reduces to

Br _ aresin <. (6.4)
a a
When ¢—0, this yields £, = 1 as the equation of the tight torus in tangent-
sphere coordinates in agreement with the observation below (6.3). Obviously,
¢f1/a may be further changed into c¢/a = A, for short. Thus we arrive at the
following tentative conclusion: In order to obtain the tight torus as the limit of
the spi‘ndle, one must make the substitutions

Bi—h, a—>ah, B—fh, (6.5)

in the results for the spindle established in bispherical coordinates, and then
let # tend to zero by positive values; this limit transition should yield the
results for the tight torus in tangent-sphere coordinates.

As an example of the limiting process we consider the potential of the
charged spindle in free space, given by (3.1). By making the substitutions (6.5)
and by changing the integration variable ¢ into #/A, the potential becomes
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o

[cosh (@ h) — cos (B h))} / P_yiyn(—cos h)
h cosh (nt/h) P_y.iyn (cOS h)

V=2V,

X P_14izn (cOs B h) cos(e t) dt. (6.6)

Clearly, the factor in front of the integral tends to Vo(a? + 5%)? as A—0. Let
the integrand (6.6) be shortly denoted by F(¢, #), then one has, by means of
(A13) and (A19),

2 Ko(t)

HmE@R) = =700

——=1y(B t) cos(x t) 6.7)

Furthermore, by use of (A27) and (A29) we establish the estimate

68 h )l Ko(?)
sinfBh/) Iy(t)

|F(t, )| < ( Io(ﬁ 1) = G, (6.8)

where it is pointed out that f G(f)dt is convergent. Then by Lebesgue’s
0

dominated convergence theorem %) the limit transition (2— 0) and the inte- '
gration may be interchanged in (6.6), and we find

2 [ Ko()
hn}) V= - (@ + ﬂz)f/ o)
0

Iy(B 1) cos(x t) dt. 6.9)

h—

The latter expression is recognized as the potential'*) of the charged tight
torus in free space, expressed in the tangent-sphere coordinates ¢, §. In the
same manner it can be shown that all results for the spindle, as derived in secs
3 to 5, tend to the corresponding results?) for the tight torus, when 4 tends
to zero. For all results the limit values as #— 0 are determined by means of
(A13-17) and (A19-20), and the dominated convergence can be established by
use of the estimates (A27-30) and (A34). The latter estimate is needed to
demonstrate dominated convergence in the cases of the potential (5.2) and of
the dipole moment (5.6). Indeed, consider for example the reaction potential

[cosh (& #) — cos (B h)]%

V—Va=2%ancose 7

=]

/ APnlmcosh) __ h d 6.10
X[ e @ 1) P%m/h (Cos k) L +itin (cos B A1) cos (o t) dt, (6.10)
0

obtained from (5.2) with the substitutions (6.5) and with ¢ changed into ¢/A.
Let the integrand (6.10) be shortly denoted by F(¢, ), then by use of (A28)
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and (A34) we establish the estimate _

|t ml < sinﬂ(Z ) (sir]:h)% I}E[(;t;) [% + 6 (e + 3 (;12— - &tﬂ)] :

6.11)
Introducing the short notation G(¢) for the right-hand side of (6.11), we ob-

serve that f G(¢)dt is convergent if 8 < 1, hence, Lebesgue’s dominated con-
0

vergence theorem applies. Thus we find, by means of (A15) and (A20),

-]

4an 2 2 _2;_ Kl(t)
- cos B(a* + %) h)
. 0

}}_r)nO(V— Vo) = LBt tcos(et)ds, (6.12)

which is identical to the reaction potential 1°) of the tight torus in a uniform
transverse electric field, expressed in the tangent-sphere coordinates e, .

Summarizing, we have shown that, in the limit for » — a, the solutions of
the potential problems for the spindle tend to the corresponding solutions for
the tight torus. The latter solutions also coincide with the limits of the solu-
tions of the potential problems for the general torus!) when the radius of the
central hole tends to zero. Thus we conclude that the electrostatic problems
for the spindle (b < a) and for the torus (b > a) match continuously in the
common limit case of the tight torus (b = a).

7. Numerical results

In this section we present numerical results for the capacity of the spindle
and for the dipole moments induced by a uniform axial or transverse electric
field. The normalized quantities Co, Mo, Ny, are given by (3.4), 4.5), (5.6),
represented by integrals of ratios of Legendre functions. The spindle is des-
cribed by the equation f = f, in bispherical coordinates, where 8, varies from
B1 == for the needle-shaped spindle to 8, = 0 for the tight torus. Instead of
B1, it is more convenient to take as independent variable in the tabulations the
aspect ratio v = b/a of the spindle; by the last eq. (2.4) this ratio is related to f,
by

v =

b = cos 5, 7.1
a
and v now varies from — 1 (needle) to 1 (tight torus).

The quantities Co, Mo, Ny, are tabulated as functions of v in table I for

v-= —0.95(0.05)0.95(0.01)1. For v < 1, the numerical results are based on the
representations by integrals of Legendre functions, which have been evaluated
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TABLE 1

v Co(v) Mo(v) No(v) v Co(v) Mo(v) No(v)

—0.95 0.036037 | 0.000795 | 0.000280 || 0.15 | 0.355388 [ 0.203564 |0.922637
—0.90| 0.058016 1 0.002650 | 0.001627 || 0.20 | 0.367576 [ 0.219320 | 1.033255
—0.85]0.077186 | 0.005406 | 0.004580 (] 0.25 [0.379686 [ 0.235529 [1.151919
—0.80 0.094839 | 0.008996 | 0.009580 (]| 0.30 [0.391724 | 0.252179 | 1.278871
—0.75]0.111497] 0.013378 | 0.017016 || 0.35 | 0.403692 | 0.269257 [ 1.414352
—0.70| 0.127432 | 0.018521 | 0.027251 || 0.40 | 0.415595 [0.286749 | 1.558599
—0.6510.142811 | 0.024398 | 0.040626 || 0.45 | 0.427435 (0.304644 | 1.711850
—0.60| 0.157744 | 0.030986 | 0.057467 {| 0.50 | 0.439217 (0.322928 | 1.874340
—0.55{0.172308 | 0.038265 | 0.078088 || 0.55 | 0.450942 | 0.341588 |2.046302
—0.50| 0.186560 | 0.046217 | 0.102793 || 0.60 | 0.462613 [0.360611 |2.227969
—0.45|0.200544 | 0.054822  0.131877 || 0.65 | 0.474233 | 0.379985 | 2.419572
—0.40 0.214293 | 0.064066 | 0.165629 || 0.70 | 0.485803 | 0.399696 (2.621342
—0.35] 0.227835] 0.073932| 0.204332 || 0.75 | 0.497327 | 0.419733 [2.833506
—0.301 0.241192 | 0.084404 | 0.248263 || 0.80 | 0.508805 | 0.440082 [ 3.056294
—0.25]0.254382| 0.095468 | 0.297694 || 0.85 | 0.520240 0.460731 [ 3.289931
—0.20 0.267422] 0.107108 | 0.352893 || 0.90 | 0.531632 | 0.481667 | 3.534644
—0.15] 0.280324 ] 0.119311 | 0.414126 || 0.95 | 0.542985 | 0.502877 | 3.790656
—0.10 0.293099 | 0.132062 0.481653 || 0.96 | 0.545251 | 0.507151 | 3.843234
'—0.05] 0.305759| 0.145348 | 0.555733 [| 0.97 [0.547515 {0.511435 | 3.896275

0.00{0.3183101 0.159155 | 0.636620 || 0.98 | 0.549778 | 0.515729 | 3.949781

0.05| 0.330761 0.173469 | 0.724567 || 0.99 | 0.552039 [ 0.520034 [ 4.003752

0.10(0.343118 [ 0.188276| 0.819823 | 1.00 | 0.554299 | 0.52349 |4.058192

by numerical integration. For v = 0, corresponding to 51 = n/2, the Legendre
functions drop out and the resulting integrals can be evaluated analytically,
yielding

1 1 2
Co(0) = ot My(0) = o No(0) = gl

(7.2)
It is recalled that for 8; = m/2 the spindle reduces to a sphere. From (7.2) we
then deduce

M N s
C=4nea, EO—E0—41rsa, ) 7.3)
in accordance with the known results for the capacity and the dipole moment
of a sphere of radius a. For v = 1, the quoted numerical results are those for
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the tight torus, based on the analytical expressions ¢)

o

4 dt
Coll) = 5 0/ T = 0554299, (7.4)
Mo(l) = 8 / Iz()dt—0524349 (7.5)
No(l) = 16 / 11’(2) — 4.058192. (7.6)

0

The finer tabulation step used in the range 0.95 <v < 0.99 clearly shows
that the computed values tend continuously to the limit values for the tight
torus. Moreover, from a graphical representation it appears that the approach
to the limit values for v =1 is close to linear versus v». This point is further
elucidated in sec. 8 where analytical expressions for the limit slopes are
derived.

8. The spindle that is almost a tight torus

Consider a spindle with radii @, b, such that b < a or equivalently v = b/a <1,
i.e. the spindle is almost a tight torus. In sec. 7 it was noted that the quanti-
ties Co, Mo, No, considered as functions of the parameter v approach almost
linearly their limit values for v = 1. Therefore it is expected that for » <1 all
quantities can be accurately represented by two-term Taylor expansions at
v = 1. Thus, for example, the capacity Co given by (3.4), is represented by

Co(v) = Co(1) + Co(1) (v — 1), (8.1)

where Co(1) is the limit value (7.4) for the tight torus and Cg(1) is the limit
slope. Similar two-term expansions hold for the dipole moments My (v) and
No(v). In this section we shall derive analytical expressions for the limit slopes
Co(1), Mo(1), No(1). Our analysis resembles that of Belevitch and Boersma )
who derived similar analytical approximations to the capacity and to the
dipole moments of an almost tight torus, that is a torus with radii a, b, such
that b=aorv=>1.

We first state the results which are all expressed in terms of infinite integrals
mvolvmg Bessel functions. Some of these integrals already occur in (7 4)~(7.6);
additional integrals are !®)
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i
Qo= — — dt = 1.409252, 8.2
0 2 Il (t) ( )
1 dt '
o, = = 0.0411277. 8.3
1 / Io (t) tz ( )
The results are

Co(l) = %Co(l) + 2, = 0.225893, (8.9

My(1) = Mo(1) — é Co(1) = 0.431966, (8.5)

No(1) = No(1) + £20 = 5.467444, (8.6)

It has been checked that the numerical results for the limit slopes agree very
well with the values obtained by numerical differentiation in table I.

The derivation of the above results for the limit slopes is explained in some
detail for the example of My, which for v <1, is given by the integral (4.5).
Introduce the small parameter

h = 2sin (ﬁ‘) @)

and replace the integration variable ¢ by #/A in (4.5), then one has

Mo(v) = —<

sin 81 >3/ P_ysityn (—cosfy) t2dr 8.8)

2 sin(f.1/2) P_%.“';/h (cos B1) cosh(mt/h) *

The factor in front of the integral is replaced by the two-term approximation

(%)3 = (1 - h72>%s 1 - 3%2 (8.9)

Likewise, the ratio of Legendre functions in the integrand (8.8) is replaced by
the two-term asymptotic expansion (A19) with J, & changed into h, t. As a
result we find for My, to order A2,

0

_ 8 T 2 Kot _ﬁ/ 32Ko(f) | 121
M°(”)=n20/ o " %0 +31§(t)]d" (8.10)
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From (8.7) and (7.1) we have
h? =2(1 — cosf1) = 2(1 — v), 8.11)

hence, the two-term expansion (8.10) is of the form (8.1). Its first term yields,
by use of (A35), the known value (7.5) for Mo(1). The second term of (8.10)
yields

2 [ 3K =17, 2 /.,, 42 ~ 1
M(1) = / 0t 3 ] dt =5 / “Fw dt  (8.12)

by means of (A35). The latter result is identical to (8.5) by (7.4) and (7.5). This
derivation of (8.5) is admittedly highly heuristic and could only be made
rigorous by working along the lines of sec. 6, i.e. by extending the inequali-
ties (A27) and (A29) to the next order. Such an effort is however out of pro-
portion with the interest of the result, which is sufficiently substantiated by the
numerical values of table I. Thus we continue with the same heuristic ap-
proach for the other results.

The dipole moment Ny is given by the integral (5.6). Proceeding as before,
we insert (8.9) and the two-term asymptotic expansion (A20). As a result we
obtain the approximation, to order A%,

_ 16_ 2K . 2K 3L2K()  2K\(0) t2+3
No(v) = Lo T R 0/ [0~ 70 me )
’ 8.13)
The first term yields, by use of (A35), the known value (7.6) for No(1). The
second integral in (8.13) can be simplified by means of (A35) and (A36), thus
leading to the result (8.6) for Np(1).
Consider next the capacity Co, given by the integral (3.4). Replace again ¢
" by t/h, and insert the two-term asymptotic expansion (A19) for the ratio of
Legendre functions. Then one finds for Co, to order A2,

wKo(t) 4 I:Ko(t) 1 1

4
“W=m) T " @) Lo T 3me T wno

] dr.  (8.14)

The first term yields, by use of (A35), the known value (7.4) for Co(1). The
second integral in (8.14) is.divergent because the final term of the integrand
has a singularity —¢72/3 at t = 0. The same difficulty was encountered in the
approximate calculation of the capacity of an almost tight torus 7). There it
was shown that the divergent integral may be replaced by its finite part, ob-
tained by subtrécting the singularity of the integrand at ¢ = 0. It is expected
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that the same device applies to the second integral in (8.14). Thus by adding
the term £72/3 to the integrand and by using (A35) we find

-]

iy L[4 g L
Ch() = 53 O/ [Ig(t) + o 1 Ié(t))] d. . (8.15)

The latter result is identical to (8.4) by (7.4) and (8.3).

Finally, we compare our results for the spindle (where b < a) with those of
Belevitch and Boersma ) for the almost tight torus (where b 2 a). Notice the
difference in notation: For the almost tight torus the capacity Co and the
dipole moments My, Np, have been normalized by the radius b, instead of a;
furthermore, Co, Mo, Ny are considered as functions of the ratio u = a/b,
which is the inverse of our ratio v. Therefore, to enable a proper comparison,
we introduce the renormalized capacity and dipole moments of the spindle,
indicated by an upper tilde and defined by

Go(u) = u Co (%) Mo(u) = u® Mo (%) Now) = u® No (—3) (8.16)

Then the limit slopes at u = 1 are readily found to be

Ci(1) = Co(1) — Co(1) = 2 Co(1) — 24 = 0.328405, (8.17)
Mi(1) = 3Mo(1) — Mp(1) = 2Mo(1) + § Co(1) = 1.141080,  (8.18)
N§(1) = 3No(1) — No(1) = 2No(1) — R0 = 6.707132. (8.19)

Rather surprisingly, the present results are in exact agreement with the limit
slopes 1?) calculated for the almost tight torus. Thus we conclude that the
properly normalized capacity and dipole moments, considered as functions of
u or v, are continuously differentiable at u=v = 1.

APPENDIX. FORMULAS FOR LEGENDRE FUNCTIONS AND BESSEL FUNCTIONS

We start from the integral representation 2%)
m 2% . m cos(at
PMvii(=c05) = = [m +}) cosh (x ) (sin ) / (@f
0

(cosha — cos B)™*t

de,

valid for non-negative integral m and 0 <f < =. The integral may be con-
sidered as a Fourier transform and the inverse transform is

1 b [ P
(sin 8)™ (cosh o — cos ,B)‘f"“f =T ((:17!_)'_ ) / %cos; (nc;))s A cos (o ¢) dt.
o (Al
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For m =0 and m = 1, (Al) becomes

©

(cosh @ — cos B)-+ = 2} / Paudl—cosh) o onan (A
0

cosh (m ¢)

o«

Pl (—cosp)

cosh (% 1) cos(x)di. (A3)

sin B (cosha — cos )% = 28 /
) 0
Notice that (A3) also results from (A2) by differentiation with respect to 3.
The derivative of (A2) with respect to « is '

«©

Potie(—
sinh & (cosh @ — cos 8)# = 2% / Poysie(=cos f)
0

cosh (% 7) tsin(a ) dr. (A4)

The Wronskian?!) of the Legendre functions PZ,:(cosf) and Q74 ,i(cosp)
is, after simplification by the duplication formula for the I'-function,

Posi (€08 ) G Q%hurs(€088) = 074114 (c05.) g Pl (c05 )

=1 I'G+m+ir)
CsinB IF'G-m+it)’ (A5)

Alternatively, in view of the relation 22)

PZ}si(—cosf)=(—1y"isinh(n £) P} ,,(cos B) + % (=D™cosh(r 1) Q7 . (cos ),
(A6)

one may also use Pf’%“.,(cos/?) and P_”; +is(—cospB) as a pair of independent
solutions of the Legendre differential equation. The corresponding Wronskian is

PL}0€05 ) 5 Plhois (=08 ) = Pljuss (=08 ) o Pljurs (co5 )

2 (=pmn rG+m+if
= __sin,B cosh (w ©) r—(;—m . (A7)

For small positive B, large | v| and integral m, the asymptotic expansions of
the Legendre functions of argument cosf are?3)

P;m (cosﬂ) = (V + %)_m [Jm(X) -+ _ii (%(‘qu-s(X) - Jm+2(X)

+ o I + B Tn)] (A9
' ' 2 M ‘ :
0" 0sf) = = 5 + D [Yu) + - (F Yonss®) — a2

+ 2 Yon®) + 2 7009)] a9
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to the second order in &, where

6 = 2sin (%) Xx=@v + 1)sin (%) (A10)

Jm and Y, are Bessel functions, and the variable x is understood to remain
finite. Changing v into — 3 + i ¢, we replace x by

x=i& &=2tsin (g—) (A11)

Then, Jm(i&) and Y, (i&) can be expréssed in terms of modified Bessel func-
tions I, and K, of argument &, viz.

Im(i&) = i"In(§), Ym(if) = — %(—i)’" Kn(@) + ™1 In(@).  (A12)

Furthermore we set m = 0 or — 1 in (A8) and (A9), retaining only the real part
of the expansion (A9). Then all modified Bessel functions can be expressed in
terms of functions of orders 0 and 1 by means of their recurrence formulas 2*)
and the relations I_p, = In, K-m = K. As a result the expansions (A8-9) reduce
to

Pyuosh) = 5® + o[- 7) 5© + 28], (A13)
Re Qi (cos ) = Ko@) — 2 [(: - ) KO - 2©), (A1
Pheosp) = i{n@+ 37 [11(5) FerDpe)l @
Re Qlgurr(eos) = —1{Ku@) + 5 [k - (£ + ) Ka@)] | (416

Since PT%“-,(cos B) is real-valued, it follows from (A6) that

PTLH',(_ S ﬂ)
Re Q1,0 (c0s ) = (- - 1ot (A17)
Using the Wronskian identity %)
1,©) Kna(©) + L@ Knl) = 5 (A18)

¢

and working to order 62, we then deduce the following expansions for quo-
tients of Legendre functions:

P_iiir(—cosf) _2[K(® 8%y, 1 1
cosh (n ) Pgrir (cos ) — 7 ‘e 5 (- %) 13(5)}’ (419
Py, (—cosf) 2 [Ku(&) &2 3y 1
cosh (r £) Py, (cos B) E{ LeE E(l * 5_2) @) } (A20)
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By expressing ?¢) Py in terms of P;™, for integral m > 0, and by using the
Mehler-Dirichlet integral representation 2”) of P;™(cos ), one obtains
rG+m+if
LG—m+it)I(m+1)(sinBy"

" 1 (€08 B) = (= 1) (—)
X f cosh (¢s) (cos s — cos f)™"t ds. (A21)
0

Notice that the factor in front of the integral is positive. Next, replace £ by
n — f and s by m — 5 in (A21), and divide by cosh(x #). Then by use of
cosh t(n — )
cosh (7 7) <2exp(—ts), (s<mw, t=0)
one has the inequality '
_ P2y, (—cos f) - i)'" (g)% ArG+m+in
cosh(m¢)y I'(G—m+it)(m + 1) (sin )™

0<
i3
X [ exp(—ts) (cos B — coss)y"# ds. (A22)
B

The integrals (A21) and (A22) are now compared with integral representations
of I, and K, given by 28)

IuB1) = =2

T TD ( : ﬁ) / cosh (£5) (B2 — s+ ds,  (A23)

KnlB) = =2 (57 )f exp(—15)(s* — B tds.  (A24)
Ir'(m+1})
In the comparison we need the inequalities

sin S8 coss — cosfB
B B* —s*

8 cosf — coss sin i
32 <2 Sf—ﬁz < ﬁﬁ’ (ﬂ<S<TI:, 0<ﬁ<?> (A26)

<2 <1, O<s<ph (A25)

which readily follow from coss being a decreasing convex function of s? for
0 < s<w. The restriction 0 < < /2 applies only to the left inequality in
(A26), whereby the equality sign holds if # = n/2 and s ==. Then by using
(A25) in the comparison of (A21) with (A23) for m =0 or m=1, one
establishes

B
sin 8

180 < Poyun(eos ) < (F22) g o, (Aa27).

B )a L(B?) _ Pl (cosp) 8 LB -
(sinﬁ t < 24 ¥ < sin B t (A28)
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Similarly, from (A22), (A24) and (A26) we deduce
P-%-H‘t (—cosfB)

= cosh(n®)
Pli(=cosB) 4, B \i
e S e . A Y S 2 41
cosh ( ©) S (sinﬂ) @+

<6 KB, O0<B<T, >0 (A29)
BB 0. a0

Consider next the relation 2%)

dﬁ [smﬂP_%,,,,( cosB)] = — (2 + Hsinf P-y4is (—cos f). (A31)

Since, for small 8, one has3?)

cosh (m £) I'(u)

nGnpy 0 470 (A32)

Pﬁ%Hr(_COSﬁ) =

one obtains, by integrating (A31) and using (A32) with y =1,

P_%m( cos S) 2 Pl (—cosp)
2 1 —- 2
(t* + )/ sins ————— cosh (1) ds = ﬂ sin TeoshiD @D . (A33)

In the latter integrand we use the estimate (A29) and we set sins < s, where-
upon the resulting integral is evaluated by
p

sKi(st) 1 BEBY
/SK"(St)dS—_'t—o__[f_ y .
0
Thus we obtain the inequality

Pi%.“-,(—COSﬂ)

2 .
0< T sin cosh(m¢)

<@+ (5 - 2B 0<p<Ziz0. A

Finally, we present the Bessel-function integrals3!)

/’”—IK“) t——/ P74 > 20> 0) (A35)
0

L(® X
K 2 ) / 1 4
— 2 )dr= (— - —)dt. . A36
/ (h(t) £ o (439)
0 0
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Abstract

Three-weight projective codes C are considered for which the restriction to
C of the Hamming association scheme H(g) is an association scheme with
three classes. Sufficient conditions are established and restrictions on the
three weights of C are obtained.

It is shown in the binary case that the three-weight subcodes of the short-
ened second-order Reed-Muller codes provide a large class of examples.
Previously known examples were the duals of perfect 3-error-correcting or
uniformly packed 2-error-correcting codes.

Math. Rev.: 94B25, 05B30

1. Introduction

Codes C with few distances having the property that the restriction to C
of the Hamming association scheme is itself an association scheme were
studied by Delsarte '), who for linear codes obtained a necessary and sufficient
condition: if C is a code with s weights, then the restriction to C of the
Hamming scheme is an association scheme with s classes if and only if, among
the cosets of its dual code C*t, exactly s+ 1 distinct weight distributions
occur. Previously known examples were obtained from the observation made
by Delsarte?) that if the minimum distance d of C! satisfies d > 25 — 1, then
the weight distribution of any coset of C! is uniquely determined by its
minimum weight. It was shown by Goethals and van Tilborg?) that this

| situation occurs if and only if C* is a uniformly packed quasi perfect code.

In this paper, we investigate further the implications of Delsarte’s condition
in the case of three-weight codes. We obtain, in particular, a new sufficient
condition which applies also when d < 5. Along the way we also obtain re-
strictions on the weights of C by a method similar to the one used by Calder-
bank and Goethals?®) for the case when d > 2s — 1. We also find a large class
of examples satisfying our new condition in the binary case.

The paper is organized as follows. In sec. 2, we examine the conditions for a
three-weight projective code to yield a 3—class association scheme and obtain
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in theorem 2.2 a new sufficient condition. In sec. 3, we obtain a large class of
examples by showing that all three-weight cyclic subcodes of the shortened
second-order Reed-Muller codes satisfy our new condition. Finally, in sec. 4,
we analyze in more detail the parameters of the association schemes thus ob-
tained.

Our study of three-weight cyclic codes was motivated by the fact that these
codes provide periodic sequences with good crosscorrelation properties, as it
was shown by Sarwate and Pursley*).

2. Three-weight projective codes and association schemes

Let C be a three-weight projective code of length » and dimension & over
the finite field GF(q). Thus we assume: ’
(i) only three distinct nonzero distances occur among codewords of C;
(ii) the dual code C+ has minimum distance at least equal to 3.
The distribution matrix of C* has as its set of rows the weight distributions of
all of the cosets of CL. Delsarte?) (cf. theorem 6.10, p. 91) proved that the
distance relations in an s-weight linear code C define an association scheme A4
with s classes on C if and only if the distribution matrix of the dual code C+
contains s + 1 distinct rows. In this case the set of cosets of CL can be par-
titioned into s + 1 disjoint subsets, each characterized by a given weight dis-
tribution, which we denote by So = {C1}, S, Ss, ..., Ss. The s + 1 relations
Ro, Ry, ..., R, defined by

(Ct+x, CL+y)eRiiff CL + (x+p)e S,

then yield an s-class association scheme B which is dual to A (cf. Delsarte n,
Goethals®), and Calderbank and Goethals 2)).

It is our purpose to study the classes of three-weight projective codes which
yield a pair of dual association schemes as above. From the abovementioned
result of Delsarte, it is sufficient to examine which of these codes have the
property that among the cosets of their duals only four distinct weight dis-
tributions occur. ’

Since only three weights occur in C, the covering radius of C* is at most
equal to 3 (cf. Delsarte ®)). Thus the minimum weight of any coset of C+ can
only be one of the following values: 0, 1, 2 or 3. If we assume that all four
values, and only four distinct weight distributions, occur among the cosets of
C*, we have to conclude that the weight distribution of any coset is uniquely
determined by its minimum weight. Although it is in principle possible to
think of other possibilities, we shall restrict our attention to this case.

We know already from a result of Delsarte ®) (cf. MacWilliams and Sloane ?),
theorem 20, p. 169) that the weight distribution A(x), 4:1(x), ..., A, (x) of
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any coset C1 + x is uniquely determined by the first three values Aq(x), A1(x)
and Aa(x), where A;(x) denotes the number of codewords of C* at distance i
from x. To be more precise we restate here Delsarte’s result in the form of a
lemma adapted to our case.

Lemma 2.1 (Delsarte)
Let the Krawtchouk expansion *) of the polynomial

F(z) = |C|ﬂ (1 . —) )

i=1
be given by
3
F(z) = ) aiKi(2),
i=0

where w,, wa, ws are the three weights occurring in C. Moreover, for k =1, 2,
.., n — 3, let the Krawtchouk expansion of z* F(z) be given by

k+3

Z¥F(z) = ), BiKi(2).

i=0

Then, for any coset C* + x, the coefficients A;(x) of its weight enumerator are
related by

3
;)CGAE(X) =1, 2
k43
> BiAi(x) = 0. 3

i=0

The relations (2) and (3), clearly show how all coefficients of the weight

enumerator can be obtained from the first three. Let us now examine what the

possibilities are for A¢(x), A1(x) and Ax(x). We first observe that:

(i) for C' itself, we have Ay = 1, A; = A5 = 0, since the minimum distance is
at least 3.

(ii) for any coset of minimum weight equal to 3, we have Ag=A4; =4, = 0.
Note that, in this case, we must have, from (2), a3 4; = 1.

In both cases the weight distribution is uniquely determined. For each of the

remaining cosets Ct + x, let us assume that there exist integers A;, A2 such

that the number of codewords from C+* at distance 2 from x is given by A,

respectively Az, if the minimum weight of C+ + x is 1, respectively 2. This

*) For a definition of the Krawtchouk expansion, we refer, for example, to MacWilliams and
Sloane”), p. 168.
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means that for the weight distribution of C+ + x, we have
either
Ag(x) =0, Ai(x) =1, Axx) =211,
or
Ao(x) = Ai(x) = 0, A2x) = Aa,

and the conditions are fulfilled to have a pair of dual association schemes.
We now restate the above result in the form of a theorem, which also pro-
vides restrictions on the weights occurring in C.

Theorem 2.2
Let C be a three-weight projective code with weights w1, wa, ws, and let its
dual C* have covering radius equal to 3. If there exist integers 11, A2 such that
for any vector x, the number of codewords from C+ at distance 2 from x is
given by
Ay, if d(x, CL) =1,
Ag, if d(x, C*) =2,

and is zero otherwise, the restriction of the Hamming scheme to C is an as-
sociation scheme with 3 classes and

g e
2/121_[ Wi = w))

i>j

is an integer dividing | C|3.

Proof

From the assumptions, it follows that the weight distribution of any coset
of C1 depends only on its minimum weight. For the first three coefficients we
have one of the following four possibilities, depending on the minimum
weight:
if the minimum weight is 0: Ao =1, A1 =A42 = 0;
if the minimum weightis 1: Ao =0, A, =1, Az = A1
if the minimum weight is 2: Ao=A; = 0, A3 = A2;
if the minimum weight is 3: A =A1=A42:=0.
The other coefficients A; are obtained by the relations (2), (3) of lemma 2.1.
Hence, by theorem 6.10 of Delsarte '), the distance relations define an associa-
tion scheme A on C. As indicated at the beginning of this section, we have also
a 3—class association scheme B on the set X of cosets of C*, and A and B are
dual schemes. Let S; be the set of cosets of weight i, for i = 1, 2, 3, and let D;
the adjacency matrix of the relation R; on X, with R; defined as above, i.e.

Cr+x,CLt+y)eR iff CL + x+y)eS:.
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The eigenvalues of D are n(g — 1) with multiplicity 1 and n(g — 1) —gw:
with multiplicity B;, where B; is the number of codewords of C with weight w;,

fori=1, 2, 3.
Thus
2 . SwywewslJ
‘ [] 2~ g =0 - gwan = L5722, @

i=1
where J denotes the all-one matrix of size |C| = ¢g*, and (D1 —n(g — 1)I)J = 0.
From our assumptions, it follows that

D} =n(g— D) I+(g~2)Di+ 21 D1+ A2 D).

Hence the eigenvalues of D; and of Ds=J—I—D; —D» can be obtained
from those of D,. Defining the polynomials F(z) and Pi(z) for i =1,2,3, as
follows:

F(z) = |C| ﬁ (1 -2 >= _|§_|__ﬁ (Ki(z) — Ki(wi)),
i=1 i=1

Wi q® w1 wa ws
Py2)=Ki(z) = n(g — 1) — qz,
Py(z) = 2172 (K1(2) — 241 K1(2) — (g — 2) Ka(2) — n(g — 1)),
Py(z) = F(z) — (1 + Pi(z) + Pa(2)),

we can give the eigenmatrix of the coset scheme the form:

(1 Pi(0) Px0) Ps(0) ]
P= 1 P1(W1) Pz(Wl) Ps(W1) _
1 Pl(Wz) Pz(Wz) Ps(Wz)
L 1 Pi(ws) Pa(ws) Ps(ws) |
(1 Ki(0) K¥0) K0 ]
_| 1 Ko Kiow Kiow |, (5)
1 Ki(ws) Ki(wz) Ki(ws) |7’
L1 Ki(ws) Ki(ws) Ki(ws)

where T is an upper triangular matrix with diagonal entries
IC]

Too=Tu =1, Tpz = =——.
g’ W1 w2 wg

1
37’ T3
From (5) we easily compute the determinant of P

q3
detP==—| | m-w)lC]|.

212
i>Jj P
If Q is the dual eigenmatrix then PQ=|C|I and the divisibility result is ob-
tained by taking determinants. O
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A special case of theorem 2.2 is when C* is a 2—error—correcting code. In
this case 1, = 0, A2 = 1, and Calderbank and Goethals?) proved as a corollary
that there exists an integer ¢ such that either
() ws—w2=wz—wi=p' (with g =p™),

i) p=3, ws—we =23 and wy — w, ='3', or
(iii) p =3, ws— w2 =3, and wp — w;, = 2.3, .

Note that the minimum distance d of C* is at most equal to 7, cf. Delsarte ©).
If d =7, then C* is a perfect 3~error—correcting code, as MacWilliams )
proved that an e-error—correcting linear code is perfect if and only if there are
exactly e weights in the dual code. The only example of a perfect 3—error—cor-
recting code is provided by the [23, 12, 7] binary Golay code whose dual has
weights 8, 12 and 16. If d = 5 or 6, then C* is a uniformly packed 2—error—cor-
recting code. Uniformly packed codes are a generalization of perfect codes and
were introduced by Semakov, Zinovjev and Zaitzev®). Goethals and van Til-
borg?) proved that an e~error-correcting linear code is uniformly packed if
and only if there are exactly e + 1 weights in the dual code. For example, the
[21, 12, 5] and [22, 12, 6] binary codes obtained by puncturing the [23, 12, 7]
Golay code are uniformly packed. Another family of examples is provided by
the 2—error-correcting binary BCH codes of length n = 22"+ — 1 (m > 2) and
dimension 2"*' — 4m — 3, for which Kasami !°) proved that the non-zero code-
words in the dual code have weight 227 — 27 22m or 22m 4 2 Fyrther exam-
ples and/or possibilities are mentioned by the authors in a previous paper ®). We
note that in all of the above cases, we have 1; = 0, and 1, = 1. In the next sec-
tion we shall describe some families of examples for which A; # 0 and 1; > 1.

3. Subcodes of the second-order Reed-Muller codes

In this section we shall show that all three-weight cyclic subcodes of
RM(2,m)*, the shortened second-order binary Reed-Muller code, satisfy the
conditions of theorem 2.2, Kasami!®) first obtained the weight distributions
of these codes. Goethals'') described a method for analyzing these codes,
based on the theory of alternating bilinear forms. From these résults it follows
that the only three-weight cyclic codes which are subcodes of RM(2,m)* are
those described in the following lemma. For more details the reader may
consult MacWilliams and Sloane?), chap. 15.

Lemma 3.1

- Let C be the cyclic code of length n =2" -1 (m 4) and parity-check
polynomial A(x) = mi(x) my(x), where s = 2/ + 1, for some i < m/2. Then Cis
a three-weight code if and only if either s is relatlvely prime to n or m is even
and s = 2"/% + 1,
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The weight distribution of these codes can be described as follows.

When # and s are relatively prime, we have (m,2i) = (m,i) = d, say. Then,
with r defined by r = ;(m — d), the weight distribution of C is as given in the
table below (table I).

TABLE 1

w = weight | B,, = number of codewords

2m-1 _ 2m-1-r (2'" — 1) (2r + 1) 2r-l
2m-1 (2'" — 1) (2'" - 22r + 1)
2m=1 4 pm-1-r (2m _ 1) (2’ — l) 2r-1

For the special case m = 2¢, n = 2% — 1, s = 2! + 1, the weight distribution
is as given in the table below (table II).

TABLE 11
w = weight l B,, = number of codewords
221—1 _ 21-—1 (21 _ 1) (221—1 + 21—1)
221—1 (22t —_ 1)
221-1 + 21-1 (2t — 1) (221-1 — 2:-1)

Delsarte and Goethals!2) showed the relation between the latter codes and
multiplicative groups consisting of 2* Hadamard matrices of order 2%. Sarwate
and Pursley4) called the periodic sequences derived from the codewords of
these codes “Kasami sequences”. Many of the sequences derived from the
codes described above have interesting crosscorrelation properties.

Lemma 3.2

Let C! be the dual of the cyclic code described in lemma 3.1 and let C’ be
the code of length » + 1 obtained from C+ by adding an overall parity-check.
Then C' is left invariant by the doubly transitive group of affine permutations

xX—ax+b
in the field GF(2™).
Proof
The codewords of C' can be described by the subsets X of GF(2") satisfying
Yx=0, Yx™ =0, |X|=0mod2, 6)
xeX xeX

where we have written 7 for 2/. Under the affine transformation x—ax+ b
the set X is transformed into the set Y ={ax + b|xe X}.
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Clearly we have | Y| = | X]|, and
Yy=a) x+b|X|,

yeY xeX
Zy’“=a’+12x’“+a’be’+ab’Zx+b’“|X|.
yeY xeX xeX xeX
Since moreover Y. x* = (), x)7, it follows that Y satisfies the conditions (6)
whenever X does. O

Corollary 3.3

The dual C1 of the codes described in lemma 3.1 have the property that, for
any ¢ > 2 and for any pair of coordinate places, the number of codewords of
weight 2¢ — 1 or 2¢ having a “1” in both places is a constant A(¢) independent
of the pair of coordinate places.

Proof

This follows from the fact that the extended code C’ is left invariant by a
doubly transitive group of permutations. Hence, for any ¢ > 2, the codewords
of weight 2¢ in C’ form a 2-design 2—(2™, 2t, A(?)). O

Corollary 3.4
The codes C described in lemma 3.1 satisfy the conditions of theorem 2.2.

Proof

The dual code C* is generated by mi(x) ms(x), hence has minimum weight
at least equal to 3. From corollary 3.3 it follows that the number of codewords
at distance 2 from any vector x is

Ay =1(2), if d(x, Ct) =1,
Az =1% AQ2), if d(x,Ct) = 2,

with A (2) defined as in corollary 3.3. O

4. Association schemes defined by three-weight subcodes of RM(2, m)*

In this section, we shall study in more detail the association schemes defined
by the codes of sec. 3.

4.1. The special case m = 2{,s = 2" + 1

In this case the code C, with weigh@ distribution as given in table II, Has
dimension 3¢. Its dual C* has minimum weight equal to 3 and the number of
codewords of weight 3 is given by
@ -1 -1

3 .

As =
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The constant A(2) is then given by

3A3
@ - 1)

and A; = 1(2), Az = 1 + A(2), cf. corollary 3.3.
The Krawtchouk expansion of the polynomial F(z), cf (1), is easily com-
puted from the weights in table II. It is given by

Q) = =211,

F(z) = —— [Ko(2) + () +

o (Ka(@) + Ka(2) | -

1
¥ -1n/3

From these data, one can obtain the eigenmatrix (5) of the coset scheme,
which is given by

I D Dq Dy

1 @*-1) @@-1DE*-1) @-1
p_| 1 @=-D -2 -1 -1

1 -1 —@ -1 2 -1

1 —-@+1) @2+ -1

We observe that D; and Ds are the adjacency matrices of strongly regular
graphs, since apart from their valencies, they have only two distinct eigen-
values. Moreover one of these eigenvalues is actually equal to the valency for
Ds. This means that the graph defined by the cosets of weight 3 is a disjoint
union of cliques of size 2’. In fact it is easily verified that the association
scheme is imprimitive in the sense defined by Cameron, Goethals and Seidel !2).
The clique property means that any two cosets of weight 3 are mutually at
distance 3. Hence adjoining this set of cosets to the code C< gives a code with
minimum distance 3 which is 2 times as large. It is not difficult to verify that
the latter is the Hamming code.

The dual scheme which is defined by the distance relations in C is also im-
primitive. It is easily verified, for example, that the graph defined by the dis-
tance wp = 2%~ is a disjoint union of cliques of size 2%. The 22 codewords
in any clique are in a one-to-one correspondence with the rows of one of
Hadamard matrices described by Delsarte and Goethals !2).

4.2. The general cases =2+ 1, (2°+ 1,2" - 1) =1

In this case the code C, with weight distribution as given in table 1, has di-
mension 2m. The number of codewords of weight 3 in its dual is given by

(2m — 1) (2m—1—2r — 1)

A3= 3 ’

where r=3(m —d), d = (m,2i) = (m, i).

-
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We observe that Az = 0 if d = 1, which occurs if and only if m is odd and i is
relatively prime to /. This is the case when i = 1, i.e. s = 3. We then have the
2—-error—correcting BCH codes of length 2" — 1, m odd, which are known to
be uniformly packed, cf. Goethals and van Tilborg?). The above result shows
that uniformly packed codes with the same parameters can be obtained for
all 7 that are relatively prime to m. For these codes, we have indeed As = 0,
hence A(2) = 0, A; = 0, A; = 1. In the remaining cases, 1(2) is given by

3As
(2m _ 1)

—_ 2m-1—2r — 1.

A2 =

The Krawtchouk expansion of F(z), cf. (1), is given by

1

F(2) = Sm—omoar

[(3-27 — 22" — 2) (Ko(2) + Ki(2)) + 6(K2(2) + Ks(2))]

and the eigenmatrix of the coset scheme, by

I D1 Dz D3
1 @"-1) @™ -1)Q¥-1) @ -—1nE"+1-2%)
po|! -1 @-1)E"-2-1) —-@"+1-2¥)
Tl =1 - —-1) 2 -1
1 =™ +1) @+D)E"™-2"+1) —@Q"+1-2%)

Here also we observe that the graph defined by the cosets of weight 3 is
strongly regular. A similar property holds for the graph defined by the dis-
tance wg in the distance scheme.
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Abstract

A method of code generation using a high level intermediate code, the

- H-code, is described. First the H-code is characterized and general prin-
ciples of storage allocation are explained, while the notion of static access
is defined. Then a simple scheme of H-code generation is sketched and a
few examples of application to high level language constructions are given.
It is then shown how machine code can be obtained from H-code in a
modular way, solving the problems of register allocation, transformation
of static accesses into instruction operand addresses, and decomposition of
the source functions into instruction op-codes. Finally, the machine depen-
dencies of the code generator are summarized and some conclusions based
on practical results are drawn.

Math. Rev.: 68B99

1. Introduction

During the past years two important compiler projects have been developed
at PRLB:

— an ALGOL 68?) compiler for the X8-ELECTROLOGICA (1968-1973)
which has been a pure research project ),

— a code generator for CHILL®*) and the ZILOG Z8000 computer
(1982-1983), which has been made in collaboration with the development
(PLS group, then with MBLE-PTI, now with APT) 5):

The method used for generating code for ALGOL 68 appeared to be very
reliable, while it did not require sophisticated tools. It has been considered
appropriate and thus also used for the second project.

The present paper attempts to explain the main lines of that method which
is sensibly different from the classical strategies as those explained in the litera-
ture, e.g. ®): instead of introducing the machine dependencies after a relatively
low level decomposition of the source language functions (into triples or qua-

Philips Journal of Research Vol. 39 Nos4/5 1984 153

IPR2018-1557

o HTC EX1023, Page 163



P. Branquart

druples), the method keeps the source function level unchanged as long as
possible while machine independent storage allocation conventions are intro-
duced at an early stage. This leads to the definition of a high-level intermediate
code, the H-code.

In addition to being portable, the H-code provides for a highly modular de-
composition of the problem of code generation (hence its reliability), and it
allows a good quality for the machine code ultimately generated. Finally,
thanks to its high level, it makes it easy to take profit of hardware features
implementing possibly intricate source functions.

2. Generalities

A compiler is a program transforming source programs written in a high-
level language into target programs which are generally written in a particular
machine code. The transformation is made in two main steps: the analysis and
the code generation. In the present scheme, code generation is in turn made in
two steps: first the H-code is produced and then the machine code. Notice that
the separation in steps is purely conceptual it does not necessarily involve
several sequential passes.

In this section we try to situate the intermediate forms of the programs
during the compilation (result of the analysis and H-code) with respect to
source language and machine code characteristics.

(1) Source languages allow to express actions on data to be taken in some
order. Thus source language definitions are based on three things:

— the source data,

— the source actions and

— the order of execution of the actions.

From a semantic point of view, source data are sets in the mathematical
sense, source actions are functions applying to the sets. The order is deter-
mined either by the composition rules of the functions or by a more ex-
plicit control structure.

(2) Machine languages also express actions on data to be executed in a given
order. Machine data and functions are generally much more elementary
than source data and source functions. Roughly,

— data correspond to machine memory units (words or bytes), and

— functions to machine instructions.

However, we have no composition rule as such: these are replaced by
storage allocation conventions and sequential execution.

To generate machine code we must thus, on the one hand, define a storage
allocation scheme, on the other hand, decompose the source data and
functions into target ones. We deal with:
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— data decomposition, by defining a mapping between data and memory
units, thus defining the rules of memory representation of the data
structures,

— with function decomposition, by defining a mapping between the
source functions and sequences of instruction op-codes.

Instruction op-codes are finally provided with operand addresses on the

basis of the storage allocation scheme.

(3) The analysis of the programs gives them a form more manageable for the
code generation than the program text; it performs no deep transforma-
tion and has two purposes: '

— to factor out the source composition rules,

— to detect static (i.e. independent from execution) program errors.

The analysis deals not only with the lexical (i.e. atomic) and context-free

(i.e. tree-like) structure of the programs, but also it makes explicit the

visibility of the declarations and performs the static mode (type) checking.

The result of analysis can be recorded by so called ‘decorated trees’ as

specified by attributed context-free grammars 7); actually the trees are then

represented by linked lists, the elements of which are the sets of properties

(e.g. the mode) of the corresponding tree nodes.

Such a representation is very powerful and allows very elaborate optimiza-

tions. It is clear however that there is a price to pay for this generality:

decorated trees consume memory space, and non-sequential tree traversal
algorithms for attribute management are time consuming.

We have used a less general solution:

— the tree is stored in a linear prefix form (PRETREE),

— the declaration structure is implemented by means of a symbol table
(SYMBTAB) with an entry per declaration: each tree terminal node
corresponding to an application of a declared notation (identifier or
operator) is connected to the symbol table entry of its declaration,

— each tree node is connected to a mode (i.e. linked to an entry in a mode
table MODETAB): a terminal node corresponding to an object is con-
nected to the mode of the object, and a non-terminal node correspond-
ing to a function is connected to the mode of the result of the function.
In addition, we assume that mode analysis leaves explicit tracks of the
detection of implicit mode transformations under form of explicit
unary operators.

(4) The H-code only makes two assumptions on the target machine:

— the memory of the machine consists of a number of addressable units,

— there is a mechanism of dynamic addressing.

Thus the highly machine dependent particularities are ignored i.e.:
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— the op-codes,

— the register structure,

— the addressing modes. .

The H-code does not decompose source functions and data, but the com-

position rules are replaced by storage allocation conventions and sequen-

tial execution. In addition the following optimizations are performed:

— the data manipulations and the dynamic memory management instruc-
tions are minimized,

— the dynamic checks are replaced by static ones wherever possible.

3. Storage allocation and access mechanisms
3.1. Language features

A storage allocation scheme depends on the properties of the source
language and moreover it is not always easy to isolate the relevant charac-
teristics from the language definitions. Both ALGOL 68 (A68 for short) and
CHILL definitions explicitly make the difference between static and dynamic
semantics, which simplifies the task of specifying the storage allocation
rules.

We sketch very briefly the main characteristics of the two languages as far as
the storage allocation is concerned; later, we shall make some choices when
having to be more concrete to illustrate the code generation scheme. Except
when explicitly stated otherwise, the described features are available in both
languages.

(1) There are values which are set elements, they exist as such; to each set cor-
responds a specific mode characteristic of the set properties. All values can
be manipulated as entities, e.g. they can be passed as parameter or ob-
tained as result of functions.

Values may be simple or composed in which case they consist of other
values. The main classical simple values are the integers, and the real and
Boolean values, in addition CHILL defines the enumerated set values and
the static ranges. The main classical composed values are the arrays and
the records. Both A68 and CHILL admit dynamic arrays but CHILL
limits their use which allows a more static storage allocation (more pre-

+ cisely in CHILL dynamic arrays can only be allocated by allocators, not

by declared variables, and they cannot be elements of other composed
values). We shall ignore the A68 flexible arrays in this paper.

In CHILL the memory representation of the composed data structures can
be influenced by program information (e.g. using the ‘pack’ specification).
A68 defines union modes, the use of which is completely secure, CHILL

156 Philips Journal of Research Vol.3%9 Nosd4/5 1984

IPR2018-1557
~HTC EX1023, Page.166



A method of code generation for algorithmic languages

defines variant records, the use of which is more flexible but also less
secure. '

(2) There are locations which are objects with a life-time in the sense that to
exist they have to be explicitly created (allocated), and that they may dis-
appear after some time either automatically or because explicitly dealloc-
ated. A location has a mode; the mode of the values that can be assigned
to it. A68 considers locations as special values called references, and thus a
location inherits all the general properties of values, in particular it can be
a component of a composed value (practically, an implementation will use
a pointer to the location in the representation of the composed value). In
CHILL, the locations are a special class of objects, to be a component of a
value, a location must first be explicitly described by a reference value. The
difference between the two philosophies amounts to distinguish explicitly
(CHILL) or not (A68) between the locations and their address at the
language level.

(3) There are procedures, possibly recursive, that can have parameters (values
or locations) and that can provide a result (value or location); the proce-
dures themselves can be manipulated dynamically e.g. assigned to loca-
tions, passed as parameters and obtained as result. Both languages con-
sider procedures (text plus environment) as values. '

(4) There is a block structure, influencing not only the visibility structure of the
programs but also the life-time of some locations: the temporary locations.

(5) There are synonym object declarations associating notations (identifiers)
to objects possibly specified dynamicaily. CHILL, allows only static
synonym declarations for values but dynamic ones for locations.

(6) There are allocators, creating locations dynamically each time they are
executed. Both languages allow stack and heap allocators. Locations .
created by stack allocators are deallocated automatically at block exit.
Locations created by heap allocators can be explicitly deallocated in
CHILL, but in A68, an automatic garbage collection can be implemented.

(7) There are variable declarations which have two effects: the creation of a
location, and the association of an identifier to that location. A variable
declaration is executed once per activation of the block where it is directly
included. It combines the effects of two more primitive concepts: the allo-
cator and the synonym object declaration. (Remark that the parameter
passing mechanisms, value and location, can also be expressed in terms of
these primitives.) Both languages allow variable declarations but CHILL
disallows variables giving rise to locations with dynamic size, thus loca-
tions involving dynamic arrays, and variables creating locations on the
heap. » : ‘

» |
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(8) There are expressions producing a result of the same static mode each time
they are executed. CHILL never gives rise to partial results without a static
limitation in size.

(9) There are control structures consisting of goto, conditional, case and loop
statements. A68 being an expression language, each construction (clause)
is liable to yield a value. In CHILL, control structures have no result.

Both languages have thus features involving dynamic memory allocation,
namely:

— data structures with dynamic size, like dynamic arrays,

— recursive procedures, and

— allocators appearing outside stack variable declaration.

However, CHILL is more restrictive, the essential restrictions bemg that
dynamic arrays can only be created by allocators.

3.2. Memory representation of values

The scheme we adopt here is mostly inspired from A68: the use of dynamic
arrays is not restricted, but all values are considered to be stored in addressable
memory units (no packing information is taken into account).

Values are represented by bit patterns meant to be contained into locations.
The bit patterns of simple values have a static size, the same for all values of a
given mode. Dynamic arrays involve values with dynamic size.

The composition of values implies a representation where the components
can be accessed; for this purpose values with a dynamic size are split into two
parts, a static and a dynamic part. The static part occupies contiguous memory
units and has a size and a structure known at compile-time; it allows to access
to the components of the value. Notice that, since CHILL has no values of
dynamic size as components of other values, the splitting is not needed.

For a particular language, the memory representation rules of the values
depend on the target computer, and so does the H-code which is based on
these rules. However in practice, the machine dependency can be character-
ized by a few static parameters, namely the static sizes of the simple value
modes (i.e. the number of memory units necessary to store simple values of
such modes). These parameters are the only machine dependencies of the
H-code.

3.3. Memory organization

Notational convention: in what follows, memory zones present at run-time
are given a notation with the postfix %; this allows to make more explicit A
the differences between compile-time and run-time devices and avoids con-
fusions.
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.In both languages, the execution of a program requires three memory zones,

STATIC %, STACK % and HEAP %.

(1) STATIC % is a memory zone with size and structure completely controlled
at compile-time. It contains in particular the constant table CONSTAB %
(containing the constant values referred to by the generated code) and the
Jocations with a static size and a permanent life-time (i.e. whose life-time
is the complete duration of the program). Memory for STATIC % is al-
located once and for all at the beginning of the program execution, and
never recovered before the end of that execution.

(2) STACK % contains locations that can be reserved and recovered in a last-
in first-out manner, i.e. the language and compiler temporary locations
which are bound to the nested procedure and block structure of the pro-
grams: mainly, the locations implementing the procedure parameters and
the temporary variables. Partial results of calculations are also allocated
on STACK %. In the sequel, the part of the stack devoted to partial results
will be called working stack (WOST %). In general STACK % has a
dynamic size.

STACK % is organized in memory frames, one per procedure entered but
not yet left. As for composed values, a frame is split up into a static and a
dynamic part. In this way, in a frame, data can always be characterized by
a static displacement ‘p’.

At a given moment of the program execution, only some frames are ac-
cessible: there is one accessible frame for the last activation of each proce-
dure surrounding the part of the program currently executed. The frames
possibly have a dynamic address, they must in general be accessed via a
dynamic addressing mechanism. At each run-time moment, the informa-
tion needed to access the locations in the accessible procedure frames is a
vector containing these frame addresses, thus with one element per nesting
level. This vector is called DISPLAY %, it has a static size which corres-
ponds to the maximum nesting level of the procedures in the program;
it can thus be in STATIC %. If the DISPLAY % is continuously kept
up-to-date dynamically, we can statically characterize data stored on
STACK % by pairs consisting of a nesting level n and a frame offset p,
say [n.p]. The main difference between CHILL and ALGOL 68 is that in
CHILL, if we disallow stack allocators (what most implementations do),
the organization of each procedure frame is entirely static, dynamic size
objects only appear on the HEAP %.

(3) HEAP % contains the locations not satisfying the above criteria e.g.
locations created by allocators and the life-time of which is not bound
to the nested program structure. The HEAP % is of such a dynamic
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nature that to access it, an additional indirection level has to be used.
Any accessible location on the HEAP % is reached by a chain of poin-
ters (initially a_single one) whose first element is necessarily on the
STACK %, and can thus be accessed there via a pair [n.p] as explained
above.

3.4. Accesses

At H-code level we ignore the particularities of the addressing modes and
of the register structure of the computer. We replace them by the notion of
access. An access is an abstraction specifying static informations that will be
transformed later into instruction operand addresses, but which is machine
independent. The main access classes required by the three memory zones de-
fined in the previous section are as follows:

(1) STATIC % consists of a number of tables of static size, the relative
position of which should not be defined now. An access into STATIC %
is thus specified by the name of the table and an offset d into it: e.g.
{stat, CONSTAB %,d} will be a CONSTAB % access. In general, stat
accesses are very efficient and should be used wherever possible instead
of more dynamic ones. Another example is an access to a DISPLAY %
element that can be written: {stat, DISPLAY %,n}, where n is a procedure
nesting level.

(2) A location or a value stored in the static part of a STACK % frame at an
. address characterized by [n.p], will be given an access {dirst,[n.p]}, dirst
meaning direct stack access. To deal with more dynamic accesses, as
HEAP % accesses or those obtained as results of computations (indexings
for example), we are led to store dynamic addresses of objects in the static
parts of the frames. An object the address of which is obtained by adding
a static offset d to the address stored at the access {dirst,[n.p]} will be
characterized by the indirect access {indst,[n.p],d}. It will become clear
later why the static displacement d is part of the static access and is not
directly added to the dynamic address.

(3) Accesses to the HEAP % must always be indirect, as eXplained in sec. 3.3.

By analogy, accesses to the code are defined. These are supposed to repre-
sent entry points in the programs each being characterized by a sequential
numbering L. A code access will be written {/ab,L}.

Finally, it is useful to be able to characterize static values by special accesses
specifying the value itself, e.g. by its relative address d in a compile-time table
CONSTAB. Such an access will be written {const,d}.

We thus have the following access classes:
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{stat, TAB % ,offset},
{dirst,[n.pl},
{indst,[n.pl,d},
{lab,L}, and
{const,d}.

As it is now, the access system is oversimplified, in particular the problems
involved by the packing of data structures (non-addressability) as they appear
in CHILL are ignored. It is however sufficient to illustrate the H-code genera-
tion (for more details see refs 2 and 5).

4. A simple scheme of H-code generation
4.1. Principle

Terminology: in what follows we distinguish the notions of franslation and
of code generation proper: translation includes code generation, and in addi-
tion involves the management of static information such as compile-time table
updatings. In some cases, translation involves no code generation at all
(several examples are given in sec. 4.3).

At H-code level, source functions and data are not decomposed (there is
thus roughly one H-code instruction per source function), but source com-
position rules are replaced by storage allocation conventions. More precisely,
when a source function deals with an object, the corresponding H-code in-
struction will have as parameters the ‘static properties’ characterizing that
object: a MODE and an ACCESS, written [MODE,ACCESS].

— The mode tells whether the object is a value or a location, and specifies the
statically known structure of the value itself, or of the values that are to be
put in the locations respectively. Thus the mode is characteristic of the mem-
ory structure of the object, according to the memory representation rules.
A location mode will be written {/oc,BM}, and a value mode {va/,BM},
where BM is called ‘base mode’ and corresponds to the more classmal_
notion of mode as used in the previous sections.

— The access tells how to find the value, given the memory allocation scheme
as explained above.

We generate H-code from the result of the analysis, using a very simple
algorithm scanning the prefix form of the tree (PRETREE) sequentially from
left to right, and from the symbol table SYMBTAB and the mode table
MODETAB, to which the nodes of the tree are connected. This algorithm, due
to its sequentiality, does not implement all possible expression optimizations;
this must be considered a separate issue without interference with the principle
of the H-code.
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We explain the algorithm for conventional functions, those having objects
as parameters and possibly delivering an object as result. We shall show in the
examples how the same mechanism is easily applicable to other language con-
structions like declarations and control structures.

The algorithm of translation uses two stacks the bottom stack (BOST) and
the top stack (TOPST) to save and recover information:

— TOPST contains the functions which, at each moment of the translation
are only partially translated (i.e. all the parameters of which have not yet
been dealt with). TOPST makes it possible to recover the function between
the translation of two of its parameters and after the translation of all of
them. In fact TOPST transmits information from top to bottom in the
tree, it implements a particular case of inherited attributes calculated in an
ad-hoc way when the tree is scanned from left to right. In the sequel, we
shall assume that the attribute ‘function result mode’, as resulting from
mode analysis, is put on TOPST with each function.

— BOST contains the static properties [MODE-ACCESS] of the already
translated parameters of the still partially translated functions. In fact,
BOST transmits information from bottom to top during the left to right
scanning of the tree. It implements a particular case of synthesized attri-
butes.

The algorithm works as follows:

— PRETREE is scanned sequentially,

— when a function is met, it is put on TOPST with the mode of its result (i.e.
a pointer to MODETAB), and prefix translation is possibly performed,

— when an elementary parameter is met (i.e. a parameter which is not another
function, thus necessarily a constant or an identifier), its static properties
are pushed on BOST. The static properties of a constant are deduced from
the constant itself, and those of an identifier (denoting a declared object)
are found in SYMBTAB, supposing that the declaration has already been
treated. Then, if the parameter is not the last one of the current function
(as represented at the top of TOPST), infix translation is generated if
needed, otherwise postfix translation is generated. For most of functions,
postfix translation is in fact the H-code generation proper. It is based on
— the static properties of the function parameters at the top of BOST,
— the storage allocation scheme.

Note that the mechanism allows generalizations:

(1) more inherited attributes can be put on TOPST,

(2) TOPST can be scanned from top to bottom to get additional information
allowing to generate better code. For example, this process allows to know
that the result of the current function will be assigned, in which case the
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result can be directly constructed in the destination and not on WOST %.
This mechanism is called the prevision mechanism.

When a function has been translated, it is popped from TOPST and the
static properties of its parameters are replaced by those of its result on BOST;
the access to the latter result is determined on the basis of the code that has
been generated, itself based on the storage allocation scheme. v

Finally, the result of the translated function becoming the next parameter
of the function at the top of TOPST after the former has been popped the
mechanism goes on recursively.

In what follows, the frame of the algorithm will be assumed and no longer
made explicit:

— the current function will be the one at the top of TOPST where the mode
of its result can also be found,

— the static properties of its parameters will be those appearing at the top of
BOST, and when the static properties of the result of a function are speci-
fied, they will be supposed to replace those of the parameters at the top
of BOST.

In addition, we suppose that mode constraints are satisfied, and we adopt a
scheme where as in CHILL an explicit splitting is made between values and
locations, and where the partial results always have a static size.

4.2. Application to declarations

Let us take the case of a synonym value declaration associating a value,
possibly dynamic, with an identifier. This construction is executed once
per activation of the directly surrounding block. The relation identifier-
value remains valid up to the moment the current activation of the block is
left. We may consider that this function has two parameters specifying res-
pectively
— the identifier which is defined and which, after the visibility analysis, is

connected to a SYMBTAB entry,

— the value to be associated with the identifier; at source level this object is
specified by an expression.

To translate the declaration, we translate the expression first, we get its
mode and the access to its value at the top of BOST. Then, we must ensure
that the value can be reaccessed from the identifier up to the moment the cur-
rent block is left. The strategy is as follows:

— if according to its static access, the value is a CONSTAB value (access of
the form {const,d}) no code has to be generated and the static properties of
the constant are put at the SYMBTAB entry corresponding to the identi-
fier. We thus recover the efficiency of constant definitions,
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—. otherwise, code has to be generated to save the value on the STACK %,
where it is given an access of the form {dirst, — } which is put in SYMBTAB
as above. (In the notations, a hyphen replaces information irrelevant in
the current context.)

In this way, at each use of the identifier, the static properties of the associated
value can be found in SYMBTAB, an assumption which we have made above.

For the sake of simplicity, we have ignored the fact that a declaration can be
preceded, in the program text, by uses of the declared notation (for details on
the subject see ref. 5).

If the declaration is a synonym location declaration, it is the address of the
location which is put on STACK % and the location is characterized by an
indirect access {indst,—}.

If the declaration is a variable declaration, a location is reserved on
STACK % and is characterized by an access {dirst,[n.pl}.

4.3. Applications to conventional functions
4.3.1. Binary operator

Let OP be any binary operator, [Mi,A1] be the static properties of its first
operand and [M;,A:] those of its second operand. In general, the result does
not preexist in memory and code has to be generated to perform the calcula-
tion and to store the result on the WOST % (registers are ignored). There are
however particular cases worth to be treated in a more ad hoc way. The stra-
tegy of translation is determined from the static properties of the operands;
follow some examples among many other possibilities:

— if the accesses of both operands show that they are CONSTAB values,
constant folding is possible, the static result is stored in CONSTAB at an
offset d and the result is given an access A. of the form {const,d}. No code
is generated,

— suppose OP is the integer adding operator: if one of the operands is the
constant 0, the result is characterized by the static properties of the other
operand, no code is generated,

— if the result has to be calculated dynamically, we know its static size on the
basis of its mode M. Space for it is systematically allocated on WOST %,
at an access A; of the form {dirst, — }. The H-code to be generated is thus:

OP([M] ,Al] ,[MZ’AZ] ’[MhAl’])'
4.3.2. Assignation

Assignation is an operation by which a value (the source)‘is stored in a loca-
tion (the destination). In the program, both source and destination are speci-
fied by expressions. The assignation is supposed to have no resulting value. Let
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[Mq,Aq] and [M;,As] be the static properties of the destination and source
respectively.

In principle, we just have to generate an H-code instruction of the form
“:=([Ma,Ad],[M;s,As])’, thus delaying any decomposition up to the level of
machine code generation. However, we can also take the dynamic checks ex-
plicitly into account and replace them by static ones when possible. For ex-
ample, in case of an assignment to a range location, it is possible, on the basis
of the modes M; and My, to detect the cases where the set of values defined by
M is necessarily included in the one defined by My; in this case no dynamic
check is needed and we generate a special H-code instruction :=’(—), charac-
teristic of this fact. :

4.3.3. Selection

The selection is an operation by which a component (field) of a record
(value or location) is provided as result. At source level, a selection is specified
by an expression delivering the record and a field selector having the form of
an identifier. The memory representation of a record is such that in its static
part each field has a static offset, say d.

Let [M;s,Aq] be the static properties of the structure, and let M¢ be the mode
of the field. We define the strategy of H-code generation according to the dif-
ferent access classes of A,

— if A, is of the form {const,X} meaning that the record is in the compile-
time table CONSTAB, we just characterize the result by [Ms, A¢], where A¢
is {const,X + d}, assuming here that the displacement d in CONSTAB is
the same as in the target'computer. No code is generated;

— if A, is of the form {dirst,[n.pl}, the result is similarly characterized by

= {dirst,[n.p+dl};

— 1f As is of the form {indst,[n.p],X}, remember that X is a static dlsplace-
ment with respect to the dynamic object address stored at {dirst,[n.p]}. In
this case the access to the field is {indst,[n.p],X + d}, and no code has to be
generated.

If we deal with variant records, and if we select into the variant part, a check
of the tag field is generally required: the value of the tag field in the record has
to belong to the set ‘S’ of tag values associated to the variant alternative to
which the selector belongs. Such a dynamic check requires the generation of
an H-code instruction with as parameters the set S and the static properties of
the tag field [M,,A.]. The latter can be calculated statically in the same manner
as [Ms,A¢] above. Thus for tag checking, an H-code instruction of the form

TAGCHECK(S,[M,A.])
has to be generated.
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4.3.4. Indexing

Indexing is an operation by which an array element (value or location) cor-
responding to a generally dynamic index, is obtained as result. For the sake of
simplicity, we make no special case for static indexes, and we only consider
one dimensional arrays. Indexing is a typical dynamic action and we have to -
generate code. In the source program, the array and the index are specified by
expressions. The dynamic actions are the following ones:

— execution of the two expressions,

— bound checking, and

— calculation of the address of the resulting array element, i.e. the indexing
proper.

(1) Bound checking: if we suppose that the array bounds are static and avail-
able in the mode of the array, bound checking is quite similar to range
checks in assignation. The same optimization can be done by inspecting
the range of the index expression mode with respect to the range of the
array index, otherwise code has to be generated.

(2) Indexing proper: to calculate the address of the array element we need the
static properties [Ma,Ag] of the array itself and those [M;,Aj] of the index:
Aq characterizes the array address C %), M, the static memory size S of an
array element and [M;,A;] the value I % of the index. The element address
EA % is thus C % -1 %*S, assuming that the array lower bound is 0. The
obvious solution to represent the result of the indexing is to store that
address EA % on the WOST % at [nl.pl], and to characterize the result
by the access A = {indst,[nl.p1],0}. Thus, if M, is the mode of the array
element, we generate the following H-code instruction:

INDEX([Ma,Aal, [Mi,Ail,[M;,A]),

supposed to involve bound checking, and a similar instruction specially
flagged if no bound checking is needed.

This strategy can be refined: when the array element is a simple value
that takes less or the same space as its address, it is generally more efficient to
store that element directly on the working stack at an access A; of the form
{dirst,[ni.pi]}. Appropriate H-code instructions must be generated if this
strategy is adopted.

4.3.5. Contents taking

Contents taking is an operation (most of the time implicit in the programs),
consisting in passing from a location to its associated value or, in terms of im-
plementation, from a location to-its contents. Contents taking applies thus to
an object with a mode of the form {/oc,Y} and with some access A.
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To translate the contents taking we just give to the result the mode {val,Y}
and the same access A. These properties characterize the contents of the ori-
ginal location, no code has to be generated.

4.3.6. Allocators

An allocator is a function which given a mode M creates a location of that
mode, with some life-time, and provides as its result a reference value to the
created location. We shall treat the case where the location is allocated on the
HEAP % and has a static size.

The parameters to be provided to the H-code instruction corresponding to
the function are:

— the mode M of the reserved location from which the static size of the loca-
tion can be deduced, and

— the access A, of the form {dirst, — } of the working space where to store the
reference value.

Thus, we generate an instruction of the form:

ALLOC(M,A,).

4.3.7. Dereferencing

Dereferencing is an operation by which a location is obtained from a refer-
ence value. The parameters of this function are the static properties [M;,A] of
the reference. We shall chose our strategy of H-code generation according to
the access class of A, assumed here to be either dirst or indst.

— If A, is {dirst,[n.p]}, the location can be characterized by [M1,A,], where
A = {indst,[n.p],0}. No code has to be generated.

— If however A is {indst,[n.p]l,d}, we have no way, with the set of accesses
specified so far, to operate on the access only. We have to generate code by
which the reference value (i.e. the address of the location) is stored on
WOST % e.g. at [nl.pl], and we characterize the location by the access
A = [indst,[nl.pl],0}. We generate:

DEREF([M,,A[],[M,A],
where M is the mode of the location deduced from M;.

4.4. Application to control structures
4.4.1. Label definition and GOTO

For simplicity, we suppose that GOTO statements are restricted in such a
way that they can be executed without precaution about dynamic storage
allocation (among other things, we suppose that it is not possible to jump to a
label outside of a procedure). For circumventing the problems of forward
jumps, we suppose that a previous phase has associated an access A of the
form {/ab,L} to each label definition in SYMBTAB.
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Under the above assumptions, we can consider the GOTO as a function
with one parameter A = {/ab,L}. This function has no result. For a GOTO we
thus generate: GOTO(A), or simply GOTO(L).

4.4.2. Conditional statement
Let us consider a source statement of the form:
IF {b) THEN {s1) ELSE {s2) FI,
where {b) is a Boolean expression and, {s1) and {s2) two statements. To sim-

plify we do not treat the case of conditional expressions. The machine code to
be generated is of the form:

code for ¢(b)
if (b} is false goto L1
code for {s1)
goto L2
L1: code for {s2)
L2:..
We can consider four functions:
— IF, without any action, that could be ignored, but which is kept explicit
for the sake of readability.
— THEN, which given the Boolean value of {(b) characterized by [Mp,As]
and L1, causes a jump to L1 if the value of (b) is false,
— ELSE, which causes a jump to L2 and defines L1, and
— FI, which defines L2.

At H-code level we generate:

IF

H-code for {b)
THEN ([Ms,As],L1)
H-code for {s1)
ELSE(L1,L2)
H-code for {s2)
FI(L2).

5. Machine code generation

There are three main problems for generating machine code from H-code:
— register allocation,
— access transformation into instruction addresses, and
— source function decomposition into op-codes.

From now on, we have to be machine dependent, but we shall see that we can
modularize the problem and isolate the peculiarities of the target computer.
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5.1. O-code and pseudo-addresses

Actually, we do not generate machine code as such, but a slightly different
form called O-code that is adapted to obtain easily either assembly code or
loadable code or executable bit patterns. Each O-code instruction corresponds
to one machine instruction; as the latter, it has an op-code and operand ad-
dress specifications. The op-code of an O-code instruction represents the same
op-code as in the machine instruction, but the operand address specifications
differ from those in the machine instructions essentially because they are kept
relocatable; they are called ‘pseudo-addresses’.

A pseudo-address (ps for short) has a category corresponding to an ad-
dressing mode in the computer, and a specification allowing to construct the
corresponding instruction operand address in an unambiguous way.

Let us assume we have a computer with 4 addressing modes:

— register, where the operand is in a specific register R,

— absolute, where the operand is at a specific address A,

— immediate, where the operand is a specific value V,

— indexed, where the operand is at an address obtained by adding a specific
static displacement d to the contents of a specific index register Ry.

The ps corresponding to each addressing mode are as follows:

— to the register mode corresponds a ps of the form {reg,R}, where R is the
register specification,

— to the absolute mode corresponds a ps of the form {abs,SYMB,d}, where
SYMB is the symbolic representation of a memory address and d an offset
from that address (Note that we can easily pass from that ps to assembler
conventions: assuming the assembler directive ‘SYMB = —’, the address
corresponding to the above ps is written ‘SYMB + d’.),

— to the immediate addressing mode corresponds a ps {im,V}, where V is the
integer representation of the operand value,

— to the indexed mode corresponds a ps of the form {idx,SYMB,d,R«},
where SYMB and d have the same interpretation as above, and where R,
specifies the index register.

5.2. Register management
5.2.1. Register allocation
Classically, register allocation is based on the following strategies:

— the program is separated in basic blocks, i.e. into parts that are executed
sequentially and that have no entry points except the one at the beginning
of the block, '

— within a basic block track is kept statically in a register table REGTAB,
of the dynamic register contents according to the instructions which are
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generated; this contents is used to avoid loading a register with informa-
tion already contained in a register,

"— at each basic block entry, the register table is reset, taking into account the
contents of this table at all the program points possibly leading to this
basic block,

— the order in which an expression tree is scanned to generate code, is some-
times guided by Sethi-Ullman numbers attached to the nodes; this allows
to minimize the number of temporaries and thus the number of register
savings and restorings.

These strategies are well known®), we briefly describe their adaptation to
the H-code interface:

— first of all, the order of translation of the functions is settled at H-code
level, it will not be changed here. Thus if we want to take profit of Sethi-
Ullman numbers, this must be done at H-code generation level. This ob-
viously requires that we abandon the idea of pure sequential translation,
but it does by no means interfere with the principles of the H-code,

— the second adaptation is due to the fact that working space on WOST %
has been allocated to all partial results, ignoring the register structure. We
shall simply leave that working space unused in the generated code when we
can deal with registers only for those partial results. This means waste of
space but in small quantity (Notice that it is possible to recover that space
by renumbering the STACK % accesses if the memory is very scarce.),

— finally, we must explain the means used to keep a static track of register
contents:

(1) If in an H-code instruction, such as OP([M,A1],[Mz2,Az],[M:,A;]), a pa}tial
result has been given space on WOST %, A, is a direct access to this space.
If during machine code generation, it appears that the value characterized
by A is in a register R, no instruction is generated to store that value at A,
but A is associated with R in REGTAB. Later, when A; characterizes an
operand in another H-code instruction, REGTAB is first consulted and if
there is still a register associated with A, the value has not to be loaded.

(2) This system can easily be extended to the comparison register (or equi-
valent hardware flags).

(3) If a partial result is characterized by an indirect access A;, and if we have
generated instructions to load the dynamic address of the operand in an
index register Ry, we associate that access to Ry in REGTAB. This allows
to avoid reloading an(other) index register with that address.

(4) If an instruction is generated to load the n-th DISPLAY % element into
a register Rq, the access {staf,DISPLAY % n} is associated with Rq in
REGTAB.'
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Many extensions are possible, e.g. variables can be implemented in registers;
but we shall limit ourselves here to the above cases.

5.2.2. Tools for register management

To have a systematic register management we have to define a number of
tools; the most important are sketched below. These tools are intended to hide
the machine dependencies of the register allocation and to increase the por-
tability. We need tools for:

— choosing a register on the basis of required properties and of the contents
of REGTAB,

— recording in REGTAB the access A; to the result of an operation when
such a result is known to be in a register,

— erasing the contents of a register table element when the recorded informa-
tion is no longer valid. For example, at the end of a procedure call with
nesting level n, all accesses with pairs of the form [n. —] as recorded in the
register table become invalid,

— updating the register table at a program entry point.

In addition, given register allocation is hidden within the above tools, we
need means to lock and unlock the use of registers during code generation.
An example of application of this is an H-code instruction which has two
operands; if the first one is accessible through a register, we must be sure that
the transformation of the access (see next section) for the second operand will
not destroy the register allowing to access the first one: the registers involved
in the first operand are temporarily locked. They can be unlocked as soon as
that operand is no longer used. At a given moment a number of registers can
be locked, it is the designer responsibility to ensure that there is always a suffi-
cient number of registers available. Note that at the interface between two
H-code instructions all registers are unlocked (except possibly those globally
locked for special purposes such as Rd0 as explained in the next section). Ob-
viously tools for locking and unlocking registers have to be defined.

The different tools can be implemented as procedure or macro calls pro-
vided with appropriate parameters; combined with the data structures
defining REGTAB, such a set of tools can be considered as abstract data struc-
ture.

5.3. Access transformation

The problem is the following: given an access, define the correspond-
ing pseudo-address. The transformation will be made by a procedure
(ACCTRANS) which given one of the accesses
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{stat,TAB %,d},
{dirst,[n.pl},
{indst,[n.p],d},
{lab,L}, or
{const,d},

will deliver one of the following ps:
{reg,R},
{im,V},
{abs,SYMB,d}, or
{idx,SYMB,d,R}.

(1) An access of the form {sftat,TAB %,d} may simply be transformed into

{abs,TAB %,d]}.

(2) An access of the form {dirst,[n.p]} may be transformed as follows:

— if there is in REGTAB a register R associated to that access, the ps
{reg,R} is delivered, otherwise,

— if n = 0: we can access the procedure frame using absolute addressing,
and we get the ps {abs,STACK %,p} where STACK % is the symbolic
representation of the address of the beginning of the STACK %, sup-
posed to be static, ’

— if n corresponds to the procedure currently translated, we reserve an
index register, say Rd0, to contain the address of the current procedure
memory frame. To access that frame, we can systematically use the
ps{idx,ZERO,p,Rd0}, where ZERO is the symbolic representation of
the address zero,

— otherwise, we must choose an index register, say Ry, according to
the register allocation strategy: if there is a register associated with
{stat, DISPLAY %,n} in REGTAB, it is taken and has not to be loaded;
if not, Rx has to be chosen and a load instruction has to be generated:

LOAD {abs,DISPLAY %,n},{reg,Ry}.

Then the ps{idx,ZERO,p,Rx} can be delivered. Obviously, Rx must be
locked as long as required in the context of its use.
The above scheme ensures a good efficiency for computers without
hardware facility for display addressing; if such a facility exists, the
access transformation becomes straightforward. This shows that keep-
ing the H-code at a sufficient high level allows one to take easily profit
of rather sophisticated hardware features.
(3) If the access is of the form {indst,[n.p],d}, we need an index register,
say Ry, which would contain the indirect address stored at the access
{dirst,[n.p]}. If according to REGTAB such a register already exists it is

172 Philips Journal of Research _ Yol. 39 Nusgs 1984

IPR2018-1557
HTC EX1023, Page 182




A method of code generation for algorithmic languages

taken; otherwise we have to load one. For this purpose, we apply the
access transformation to {dirst,[n.p]} as explained under (2), and get a ps
of the form {idx,ZERO,p,R,} corresponding to the access to the dynamic
address itself. We then generate

LOAD {idx,ZERO,p,R,},{reg,Rx}
and we deliver the ps
{idx,ZERO,d,R4}.

Remark that in most computers, the presence in an indexed addressing
mode of a static offset which possibly is not zero does not affect the effi-
ciency; it is to take profit of this property that we have kept such an offset
in the indirect accesses. _

(4) If the access is of the form {/ab,L}, it indicates an entry point in the pro-
gram, and it is to be used in instructions like jumps, subroutine calls or pos-
sibly load address instructions. We could deliver the ps{abs,CODE %,a},
where CODE % specifies the address of the beginning of the code and ‘a’
the offset in the code corresponding to L. However it is not advisable to
deal with the offsets as such now, and we prefer an intermediate form of ps
similar to the original access, say {/ab,L}. This access will be easily trans-
formed into an instruction address, e.g. if we generate assembly code of
the form:

L. —

JP LI

where L1 is a symbolic address corresponding to L.

(5) The access {const,V} is transformed into the ps {im,V} when the mode of
V shows that it can be used in an immediate addressing mode, otherwise, a
ps {abs,CONSTAB %,d} is yielded, while the necessary directives are pro-
duced to store the constant Vin CONSTAB % at the relative address d, at
load time.

This simple mechanism supposes that the computer has an orthogonal
addressing system, i.e. that most instructions admist most of logically possible
addressing modes. Under this condition, the result of an access transforma-
tion can always be used as such. If this condition is not fulfilled, we have to
parameterize the access transformation in order to forbid some addressing
modes according to the context in which the resulting ps will be used. As an
example, we could have to forbid the immediate addressing mode in some
contexts, in which case it would have to be systematically replaced by a ps of
the form {abs, CONSTAB %, —}.
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5.4. Function decomposition

Although function decomposition might seem to be an ad-hoc task highly
dependent on the target computer, the H-code allows a high level of modul-
arity: each H-code instruction can be seen as a separate module, with pre and
post conditions completely specified independently from the context. The only
interaction between H-code instructions is due to the storage allocation as
settled at H-code generation and to the register allocation settled here through
the tools defined above.

Moreover, it will be shown that additional tools allow one to take very
easily profit of machine peculiarities. This set of tools can even be seen as
forming the instructions of a low level code (I-code) which, as compared to
the O-code would be more easily adaptable to a class of hardwares by a
mechanism of parameterization.

The information we have to generate O-code for an H-code instruction is
the following:

— the source function and its semantics as defined at source level,

— the static properties [MODE,ACCESS)] of its parameters and result,
— the register allocation and access transformation mechanisms, and
— the definition of the op-codes of the computer.

We shall now give two small examples of I-code tools, and thereafter briefly
explain the main lines of translation of H-code instructions into O-code. In a
last section we shall summarize the problems posed by the retargeting of a
code generator based on the principles explained here, and we shall factor out
its machine dependencies.

5.4.1. Examples of I-code tools

(1) Suppose we have a computer with a general integer addition instruction
(ADD) having two operands, by which the first operand specified by any
kind of addressirig mode is added to a second operand necessarily contained
in a register. In addition, assume the computer has a more efficient instruc-
tion increase (INCR), allowing to perform an increment (1st operand) to
the contents of a location (2d operand) specified by any addressing mode,
but under the condition that the increment is a static (immediate) value in
the range (0..63). We define a tool of the form INCREMENT(psi,psd),
performing the following actions, where GEN causes the generation of the
O-code instruction specified as its parameter, and where psi is the ps of the
increment and psd, the ps of the location to be incremented:

— in case psi = {im,V} and V is in the range (0..63);

GEN(INCR,psi,psd),
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— in case psd = {reg,R}:

GEN(ADD,psi,psd),

— 1in case psi = {reg,R} and psd does not correspond to a register:
GEN(ADD, psd,psi),
GEN(STO,psi,psd),

— otherwise getting a free register R from the register allocation mech-

anism:

GEN(LOAD,psi,{reg,R}),
GEN(ADD,psd,{reg,R}),
GEN(STO,{reg,R},psd).

Obviously, we shall use this tool each time we have to generate code for
performing an increment (under the condition that if the increment is in a
register, it may be destroyed). Only the tool definition is machine de-
pendent, its implementation on a given machine may take profit of the
machine peculiarities, or even be, in a first step, implemented in a straight-
forward way and improved thereafter.

(2) Suppose we have a computer with classical integer multiplication and arith-
metic shift instructions. As it is generally the case, the multiplication by a
power of 2 can advantageously be replaced by a shift whenever possible. We
proceed as above defining a tool MULTIPLY(ps1,ps2), that will choose the
best instruction according to psl and ps2.

5.4.2. H-code instruction translation

In general, similar things are done for translating all H-code instructions:

— accesses involved in the parameters are transformed into ps, while the
necessary register lockings are performed (ACCTRANS),

— then the decomposition proper takes place, and

— finally, registers are unlocked.

Remarks: s

(1) When we have a hardware instruction equivalent to the H-one, there is no
decomposition, and code generation is straightforward. We can see here an-
other example of the advantage of having kept the H-code at a high level: if
we retarget the code generator for a computer with instructions modeling
elaborated source functions, we can take profit of them without difficulty. -
The classical example is an instruction performing an indexing including
bound checking. It would be much more difficult to use that instruction if
the H-code had decomposed the indexing operation into more elementary
ones. :

’ Philips Journa) of Research Vol. 39 Nosd4/5 1984 175
IPR2018-1557
HTC EX1023, Page 185




P. Branquart

(2) If there exis‘ts a hardware instruction combining several source functions,
taking profit of it requires the combination of several H-code instructions.
In such a case, it is probably better to make the combination at H-code
generation level making use of the prevision mechanism (sec. 4.1). As an
example, instead of generating two H-code instructions for ‘x:=x + a’,
we could generate a single one which would exactly correspond to a hard-
ware increment instruction.

(3) For two cases, we have to deal with genuine decomposition:

— The first case corresponds to a source function applying to objects of
any mode: we generally have to split the decomposition into several sub-
cases on the basis of that mode. E.g., for the assignation, there are
trivial cases where hardware move instructions can be directly used, but
there are cases where this is not sufficient and where a dynamic traversal
of the data to be assigned and of the destination is needed. The classical
case is the one where the data consist of a nesting of records and
dynamic arrays for which bound checking at any level of nesting is
needed. It is to be noted that the frame of the algorithm of data structure
traversal is not machine dependent and that it can be kept nearly un-
modified when the compiler is retargeted. (For further details see ref. 2.)

— The second case is bound to the administration of the procedure memory
frames, the structure of the latter being the basis on which the H-code
has defined the accesses to the objects. If there is no special hardware
facility for such an administration there must be a genuine decomposi-
tion. Otherwise, either the conventions adopted at H-code level can be
mapped on the hardware facilities and no decomposition is needed, or
we have the choice between two strategies: (a) we ignore the hardware
facilities and we decompose as in the first case or, (b) we adapt the proce-
dure frame administration to the hardware facilities, which implies some
modifications of the static storage allocation tools at the H-code level.

6. Summary of the machine dependencies

The machine dependencies of the code generation mechanism described
above are localized in the following parts:
— H-code: the algorithm associating memory sizes with the data modes, but
_ this amounts in general to the redefinition of a few constants,
— register allocation: some tools may need adaptations when the register
structure changes significantly,
— access transformation: must be adapted to the available addressing
modes. As explained in sec. 5.3, the availability of elaborated addressing
modes to similate display addressing can easily be used,
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__ I-code tools: must be redefined, but as stated above this can be done in
several steps, the first ones not necessarily taking all peculiarities of the
new hardware into account, )

— function decomposition: may be kept unchanged, if it only uses I-code
tools for generating O-code. Moreover, as explained in sec. 5.4.2, it is easy
to take profit of new hardware instructions modeling the source functions.

To deal with new hardware instruction implementing several source func-
tions at the same time, it is advisable to define new H-code instructions.

Similarly, for being able to use new hardware conventions dealing with the

administration of the procedure memory frames, some modifications at

H-code level are required. These last two modifications of the H-code are not

compulsory, they can be ignored in a first step and introduced later to improve

the efficiency.

6. Conclusion

The method described in this paper is essentially based on a logical division
of the problems leading to a highly modular design. It resultsina final product
which is easily maintainable, and which seems to be a good compromise be-
tween the efficiency of the produced code and the portability of the code
generator.

The ALGOL 68 compiler has proved to be very reliable and its efficiency
can be advantageously compared with the one of an existing ALGOL 60 com-
piler for the X8.

The CHILL code generator, due to an early unavailability of the hardware,
has not been much used. It has however served as a basis for other CHILL
code generators, where it has proved to be easily adaptable to changes both in
source language and operating system environment, and easily portable even
to computers sensibly different from the Z8000.
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Abstract

The theory of regular splittings for singular M—matrices is used to derive
the necessary and sufficient conditions for the convergence of iterative
decomposition and aggregation techniques in the computation of the
Perron-Frobenius eigenvector of a stochastic matrix. These conditions
appear to be somewhat less restrictive than those which must be satisfied by
the block Jacobi or the block Gauss-Seidel method. A method is also given
to compute lower and upper bounds for the subvector corresponding to a
block when that block only is accessible or is of interest. Results previously
obtained by the authors prove that these bounds are the best ones which
can be determined in this case.

CCCS 41.10, 41.40, 11.40, 11.40¢c

1. Introduction

The problem which is addressed here is that of evaluating the stationary
probability distribution vector v of a finite homogeneous Markov chain with
transition probability matrix Q. This vector v is the left positive eigenvector of
Q which, by the Perron-Frobenius theory, is unique if the stochastic matrix Q
is irreducible, that is if the chain is ergodic.

In many applications where this stationary distribution plays a significant
role, and in particular in models of computer system behaviour, the number
of states in the Markov chain can be quite large. It is typical for examplein the
study of queueing models for the performance or the reliability analysis of
computer systems, of data communication networks, or of telephone ex-
change systems, to find models with 10.000 states or more *).

Fortunately, such large matrices often present features which can be ad-
vantageously exploited for the computation of their eigensystem. First, they

*) The large state space of these models is basically due to the fact that the number of states of a
queueing network grows combinatorially as fast as (L Z 1_\_,1_ 1 with the number L of queues

and the number N of customers in the network. See ref. 1 for an example of a two node com-
puter network model with 4 X 104 states which grows to 10° states for three nodes only.
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are in general very sparse, typically a dozen or so of non-null elements per
row?!). This sparsity makes the use of iterative methods computationally at-
tractive compared to direct methods.

Besides, the states of the Markov chain can be usually rearranged and as-
sembled into aggregates in such a way that the matrix of transition probabili-
ties has a block structure with certain regularities which reflect the structural
properties of the system being modeled. In queueing network model matrices,
for example, many diagonal blocks are, except for the main diagonal elements,
identical to each other. In the case of systems which consist of weakly coupled
subsystems, the matrix will also enjoy the property of near-complete decom-
posability?-®). The elements of the off-diagonal blocks are then small com-
pared to those of the diagonal blocks.

During the last decade, different techniques®-®) which combine block de-
composition and iteration have been proposed to take advantage of such
properties in the evaluation of the stationary eigenvector v. These techniques
are closely related to methods of aggregation as they were first proposed by
Simon and Ando?) to analyze input-output econometric models. The basic
principle is to calculate for each aggregate, represented by a diagonal block,
an approximation of the corresponding subvector of v. These approximated
subvectors are then used to aggregate the states belonging to a same block into
one single state and to obtain an estimation of the matrix of transition proba-
bilities between these aggregated states. The stationary probability vector of
this aggregated transition matrix yields, with the approximated subvectors, an
approximation of the whole stationary vector v. Since the stationary vector of
the aggregated transition matrix provides new scalings for the subvectors, the
process may be iterated until a sufficient accuracy has been reached.

In this paper we start by showing that these decomposition techniques are
essentially particular implementations of the block Gauss-Seidel or Jacobi
iterative methods. We then show that the regular splitting theorem for the
singular consistent case of M-matrices®), provides a unique framework to
derive the necessary and sufficient conditions for the convergence of these
techniques. This derivation is neater and more general than previous develop-
ments 1%11). Of particular interest is the fact that the conditions obtained are
somewhat less restrictive for these decomposition techniques than for the
Jacobi or for the Gauss-Seidel methods. )

In the second part, we give a simple method to compute lower and upper
bounds for the subvector corresponding to a submatrix when that submatrix
only is accessible or is of interest. These bounds are especially useful in the
case of very large matrices. They are derived from results which have been
recently obtained in refs 12 and 13, and which have a direct probabilistic inter-
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pretation in terms of state visit rates. This interpretation is useful for the deter-
mination of low and upper bounds for the steady-state probabilities when a
subset of the states of a Markovian model is studied in isolation. An example
is given. The bounds have also potential useful applications for the analysis of
queueing network models by decomposition and aggregation.

It is remarkable that, by opposition to previous work »1%!1), none of our
developments requires that the matrix Q has the property of near-complete
decomposability. In particular, the convergence conditions turn out to be in-
dependent of the degree of coupling between the blocks. However, a small
coupling improves the rate of convergence of the iterative decomposition tech-
niques as well as the accuracy of the subvector bounds.

2. State aggregation

Let us consider a Markov process, the states of which have been partitioned
into two sets, denoted S; and S,, which we will subsequently call aggregates.

Let also the matrix
_ [Qll]nxn [le]nxm]
Q - I:[QZl]mxn [QZZ]mxm (1)

be the associated matrix of transition probabilities, decomposed according to
the same partition.

The matrix Qu is the transition matrix for the states of aggregate S, and
matrix Qz for the states of aggregate S,. We will consider two aggregates only
for simplicity reasons. Our results can be easily generalized for an arbitrary
number of aggregates.

There are several reasons why a decomposition like (1) can be useful. For
example, the interesting states from the user’s point of view can be restricted
to those of one aggregate only. Or the entire matrix can be so large that one
aggregate at a time only can be manipulated. Another reason may be that the
matrix is nearly completely decomposable %14} into several aggregates. In this
latter case, the elements of the off-diagonal blocks (Q,2, Q2) are small com-
pared to those of the diagonal blocks (Q), Qx), and it is interesting, both
from a modelling and from a numerical point of view, to analyze separately
the short-term transient of the system determined by the dominant diagonal
blocks, and the long-term transient which results from the weak couplings
between these blocks. _

One of the most important characteristic of a Markov process is its equili-
brium probability vector, denoted v, which satisfies

v=vQ. | 2
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If Q is irreducible, this eigenvector v is positive and unique up to a normaliza-
tion constant. It is generally normalized so that its components sum up to

unity
vi=1. ?3)

Each component will then give the steady-state probability of being in the cor-

responding state. ,
This eigenvector v can be partitioned in the same way as matrix Q

v 2 (1 viaz2v)), 4

where the positive scalars &, and a; give the steady-state probability of being
in each of the aggregates and the positive normalized subvectors v, and v, give
the relative equilibrium probabilities within a same aggregate. Thus, these
variables satisfy

vieRi,vil1=1,

VzER;;,V21= 1, (5)

o, R, 0+ 0= 1.

Two different objectives can now be addressed. Either we are interested in
the whole vector v and, for some of the reasons already mentioned, an analysis
by block would be advantageous. Or we are interested in one particular vector
only, say v, and the corresponding submatrix only is available.

3. Block iterative methods

With the first objective in mind, let us decompose eq. (2)
(@iviaavy) = (1v122v2) Q, 6
which can be rewritten as

{alvl =av2Qu(I— Qu)7,

av2 = ;v QI — Qn)7,

@)

or, by substituting @, in the first equation, we obtain for v, the classical
Gauss-Aitken-Bodewig formula %)

vi=n[Qn + Q- Q)™ Qul, 3

where I denotes the identity matrix.
Let us now recall the convergence conditions of the most classical iterative
algorithms. System (7) immediately suggests the following iteration scheme

{ ainwl) v5m+l) = agm) v;m) QZl (I _ Qll)_l, (9)
agm-&-l) v§m+1) — a(lm) ng) QIZ (I _ sz)-l’
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which can be recognized as the block Jacobi algorithm, or

{ (m+1) v(m+1) a(m) gm) QZI(I _ Q“)-l,

(10
a;m-’-l) §m+l) _ a§m+l) ngu) QI — Qx),

which is the block Gauss-Seidel algorithm. System (10) differs from (9) by the
fact that the iterated approximations (a"*" v{™*')) are introduced as soon as
they are available, here, in the computation of &{™*" v{"*!), Both algorithms
can be described in a matrix form. Let us decompose the matrix (I — Q) as

I-Q2L+D+U,

where matrix D is block diagonal and, matrices I and U are strictly lower and
strictly upper block triangular respectively. Systems (9) and (10) can now be
rewritten as .
(m+1) v(m)( L — U)D-l A (m) J, (91)
v = ™ (_L) (D + Uy i v H, (10")

Iterative schemes of this type have been generalized by Plemmons and Neu-
mann®) who introduced the concept of regular splitting. A splitting of the
matrix (I — Q) is regular if it satisfies the relations

I-Q=M-N, M'>0, N>0. (11)

To every regular splitting of (I — Q) corresponds a non-negative iteration

matrix
A=NM!

and an iterative scheme
pim) =yl A (12)

Equations (9') and (10') give the splittings which correspond to the block
Jacobi and block Gauss-Seidel algorithms. Since Q is irreducible, D and
D + U are non-singular M-matrices and the splittings are regular. If M is
chosen equal to the unity matrix, A reduces to Q and the iterative scheme (12)
is equivalent to the power method ).

The conditions for the convergence of an iterative scheme (12) are the fol-
lowing (see ref. 9, or ref. 17 p. 197): -

() e(A) <
(c) if Q(A) = 1thenindex I - A) < 1
(e ifo(A) = landif Aeog(A) with |[A| =1, then A = 1,

where (A) and ¢(A) denote the spectrum and the spectral radius of the itera-
tion matrix A. Condition ¢, requires that the spectral radius of the iteration

182 Philips Journal of Research Vol.39 Naos 4/5 1984

IPR2018-1557
HTC EX1023, Page 192




Block decomposition and iteration in stochastic matrices

matrix A is not greater than one. Otherwise, if the spectral radius is 1, con-
ditions ¢, and ¢ require that the unit eigenvalue be simple and that no other
eigenvalue of module one exist. These latter conditions are satisfied if the
iteration matrix A is irreducible (¢;) and acyclic (¢3).

Neumann and Plemmons?), (see also ref. 17), proved that the iteration
matrix derived from any regular splitting of the matrix (I — Q) satisfies con-
ditions ¢; and c; if the matrix Q is stochastic and irreducible. However, the
acyclicity of Q is not sufficient to guarantee the acyclicity of the iteration
matrix which is required by the last condition c;. As a simple example, the
stochastic, irreducible and acyclic matrix

Qu 0 0 ... Qn
QQ2 0 ... 0
0 ... 0
e=| ! Bl
0 0 0 ... Qu
leads, for the block Jacobi and for the block Gauss-Seidel splittings, to an
iteration matrix which is cyclic, so that the iterations (9') or (10') would not
converge in this case. In general, the partition into cyclic classes of A will not
be the same as the partition into blocks of Q.

But the iteration matrix, when it is cyclic, is cogredient, by the Perron-
Frobenius theorem, to the matrix

0 A, 0 ... 0

0 0 Ax ... 0

0 0 o ... A(h—l)h
Ay 0 0 0

In theorem 1 of the appendix, we prove that the # eigenvectors of a cyclic
matrix which are associated with the eigenvalues of unit module have all the
form
W EAE,. . AE), r=0,..,h—-1, (13)
where the scalar 1 is complex and where the set of the subvectors &, i=1,..., A
corresponding to the cyclic classes of A is unique up to a multiplicative con-
stant. The subvectors v;, i =1, ..., N, which correspond to the diagonal
blocks Qi and to the aggregates S; will consequently converge in the iteration
scheme '
‘ pomel) g m) A

even when A is cyclic, if and only if all states of a same aggregate S; of Q
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belong to a same cyclic class of the corresponding iteration matrix A. In
theorem II of the appendix, we prove that this property will be verified if the
aggregates are not completely decomposable, i.e. if the submatrices Q;; are
not block diagonal.

With this simple construction rule for the blocks Q, and regardless of
whether the iteration matrix is cyclic or not, the iteration scheme (12) can
therefore be used to obtain the subvectors v;. When A is cyclic, however, once
the subvectors v; have converged, a separate calculation is needed to obtain
the exact scalings.

The algorithms due to Koury et al.®), Takahashi®) and Vantilborgh?), per-
form this separate calculation of the scaling factors at each iteration, the itera-
tive matrix being cyclic or not. These algorithms use the schemes (9) or (10) to
obtain the iterated subvectors v; and, after each iteration, they perform a re-
scaling of the factors ¢; as follows. The post-multiplication of system (7) by 1,
a column vector of all ones, yields, after some simplifications

{ ar=a;(viQul) + a2(v2Qa 1),

14
a:=a1(v; Q1) + a2(v2Qx21). 14

The introduction into this system of equations of the iterated approximations
v{"*1 yields the iterated factors a{*" univocally since the matrix Q is irre-
ducible and acyclic.

This separate computation of the scaling factors presents two types of
advantages. First, it has been shown numerically®!!) that it could speed up
the convergence of the block Jacobi or the block Gauss-Seidel method when
the matrix Q is nearly completely decomposable. But the reasons and the
exact conditions for this improvement to take place are hot yet clearly under-
stood 1),

Secondly, and this results clearly from the arguments hereabove, this
separate computation becomes necessary for the convergence of“the block
Jacobi or Gauss-Seidel methods, when the iteration matrix (J or H) is cyclic.
This property leads to the conjecture that such a separate computation per-
formed regularly after a few block Jacobi or Gauss-Seidel iterations will help
also when the matrix, although not cyclic, has nevertheless a similar structure
which causes the iteration scheme (12) to converge predominantly dn sub-
vectors. '

The parallel algorithm due to Mitra ') can be seen as an asynchronous im-
plementation of the power method. In this algorithm, the i parallel processor
computes independently the. iterated approximation v{"*" for block i, by
using for each block j (j # /), the most recent iterated approximation v}") cur-
rently available. As we have seen, the power method corresponds to a splitting
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where M = X, and A = N = Q. The irreducibility and the acyclicity of Q are
therefore necessary and sufficiént to guarantee the convergence of the entire
vector v, in this case.

Note that all the above arguments remain valid whether the matrix Q is
nearly completely decomposable or not. They are remarkably independent
of &, the degree of coupling between the aggregates. Contrary to previous
work 71011} these arguments show that necessary and sufficient conditions for
the convergence do not require ¢ being small, a small degree of coupling ¢ in-
creasing simply the convergence rates if the matrix Q is nearly completely de-
composable.

4. Polyhedron of Perron-Frobenius eigenvectors

Suppose now that the irreducible block Q,; only is known or accessible, and
that, on the basis of this information only, we are interested in an approxi-
mation to v,. Any iterative algorithm based on the recurrence (9) or (10) is
helpless in this case since it requires the knowledge of the matrices Qi2, Q2 and
QZZ-

But, if we start again from system (7), the following development, made
here for v, leads to an interesting approximation of this vector
Let us define the diagonal normalization matrix £ by

diagZ)y £ 0T - Q™'Y 15)
and rewrite v, as

[#4
v = a—2V2 QuIE1(I-QuY
1

or as
vw=812, (16)
with
" = 2%y,Quz, (17
(24
and
Z=X"110- Q) (18)

As (I — Q) is an M-matrix, it results that £ >0 and thus that 8> 0. It
results also from (7) and from the definition of X that
' arvil
1=——=1.

B1= = (19)
Egs (16) to (19) simply prove that the vector v, can be expressed as a convex
combination of the normalized rows of the matrix (I — Qu;)™!, or, in other
words, that the vector v, belongs to the polyhedron, the vertices of which are
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given by the normalized rows of the matrix (I — Qu;)~'. A more general and
stronger result is established in refs 12 and 13, where it is proven that this
polyhedron is the smallest convex set which is guaranteed to contain the vec-
tor v,. Consequently, the polyhedron vertices are the best bounds one can
obtain when matrix Q, only is available:

min Z;; < (v)); < max Z; . (20

This result gives a particular meaning to the iterative algorithms discussed in
the previous section: the iteration schemes (9) and (10) aim at finding the most
accurate convex combination of the normalized rows of (I — Q,;)~".

It has also an interesting probabilistic interpretation. Consider the ab-
sorbing Markov chain associated with matrix Qy,

[Q!l]nxn [QlZI]nxl . A
[ [O]Ixn [l]lxl :I’ (21)

and for any pair (i, /) of states of S, let M;; denote the average number of
times that the transient process defined by Qy, started in state i, is in state
J» (,j€8)), before being absorbed. By definition, these quantities satisfy the
following recurrence equations (see e.g. ref. 18)

Mi; = Lj + Y [Qulix Myj, 22)
ke Sy

which can be rewritten in matrix form as

M=1+Q:M=(1- Q). (23)
Let us now call
A Mu A Mi.i
mij= 3y = (24)
M, ¢
IceZSx

the rate of visit to state j when the process defined by Q; is started in state ;.
The sum ¢; is the average total number of transitions before absorption when
Q; is started in state i.

As a result of eqs (18) and (23), we have the following equalities

m,'j=Z,'j i,j= 1,...,n (25)
And, eq. (17) can now be rewritten as:
n
IBeR:, f1 =1, such that: vi = ) Bim;, (26)
where: - ' , = -
m; Y (mu, Mgy o\ .y min)': (27)
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is the vector of visit rates to the different states of S;, when the process is
started in state i.

This result has several interesting consequences. Assume that in the de-
composition (1), the matrix Q2 has only one non-null column, say the i*
one. Then, the only state by which subset S, can be entered from outside is
state i. In this case, the vector m; is precisely equal to the vector v,. More
generally: if matrix Q2 has two non-zero columns, say columns i and j, then
the solution v; will be a convex combination of m; and my; and if all the
columns of matrix Qs are non-null then v, will be a convex combination of all
the mi,i =1,...,n. An algebraic proof of this result can be easily obtained
from eq. (17). )

We have also proven in ref. 13 that the visit rate to a state j is maximum
when the process is started from that state j. Eq. (20) can therefore be re-
written as

min (my;) < (v1); < max (mi;) = my; . (28)

Note that the state i from which the relative visit rate to a state j is minimum
cannot receive a more precise general characterization; in each case, it will
depend on the relative values of the visit numbers M;; and on the absorption
times #;.

The inequalities (20) and (28) are new results. These bounds are useful to
approximate the steady-state probabilities for a subset of the states of a
Markov chain when that subset alone is of interest or when that part only of
the Markov transition process is accessible.

This is specially true when that embedded subset of the states corresponds
to a particular submodel such as a random walk or a queue. The matrix Z and
the visit rates corresponding to such subsets can often be efficiently computed.
They may even sometimes receive an analytical form. As an example to illus-
trate this last point, consider the Markovian matrix

0p 0O ...0O0 O
qg 0 p 0 ... 00O
0 g 0 p 0 0O
: : Q2
0 0 0.0 0 p O
0 00O q 0 p
0 000 0 g O
Qu sz
where p + ¢ = 1, and where
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Q12 1 = :
0
p
The (n — 1) x (n — 1) submatrix Qu, when considered in isolation, behaves as

a random walk with two absorbing states, 1 and n — 1. In this case, we have
(see e.g. ref. 18, p. 151) fori,j=1,...,n—1

1 (= Dx@ =1,  ifj<i
P-a@" -1 { ' = DX =), iz,

where r = (p/q) # 1. For p=g =4, (i.e. r = 1), this expression simplifies to

_2 (Jjn=0) if j<i
M”‘nx{’i(n—j) it j> i,

Mij =

while
n-1

=) My=i(n-i.
Jj=1
Consequently, the bounds
min (miy) < (v); < myj,
become

2 . (n—j 2
—;xmim(n_l. , I-)S(Vl)jgga

or

n(nz——l) x min(n —Jj,j) < (v); < %,
which, according to the theory developed in refs 12 and 13, are the tightest
bounds one can obtain when Q, is only known.

In a similar way, we have recently obtained bounds for a subset of states
which corresponds to a single server queue. Such bounds are useful for the
analysis by decomposition and aggregatlon of large Markovian models of

_queueing networks.
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6. Appendix

Let Q be a stochastic, irreducible and acyclic matrix, and let A be its cor-
responding block Jacobi or block Gauss-Seidel iteration matrix. We are in-
terested in the behaviour of the iteration process

£ = £ A, %)

when the matrix A, which is also non-negative, irreducible and has a unit
spectral radius, is cyclic of index A.

Theorem 1
The A left eigenvectors of A which are associated with the A eigenvalues of
module one all have the form :

e E. .  AE), r=0,...,h—1, (A.Z)

where the scalar A is complex and the set of subvectors &, . . ., &x is unique up
to a multiplicative constant.

Proof

By the Perron-Frobenius theorem, if the non-negative, irreducible matrix A
is cyclic of index 4, then
— the & eigenvalues of module one are: A", r = 0,1, ..., h — 1 with

.21

A=¢e'Tw s (A.3)

— and, there exists a permutation matrix P such that

0 A, 0 ... O
0 0 A ... 0
PAPT=| . © . . : R (A.4)
0 0 0o ... A(h-—-l)h
Ap 0 0 0

where the zero blocks along the diagonal are square.

Without loss of generality, we may assume that the states of Q have been
reordered so that P = L. Let us now consider the left eigenvector of A, as-
sociated to the unit eigenvalue (» = 0). If we apply to this eigenvector the same
partitioning as that of the cyclic classes, we can write

E2¢&...ty=©&E...ENA (A.5)

This last equation can be rewritten as
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i-1

&i= & Ay - - Agonyi = & | Asiss (A.6)
k=i '

where the index k* is defined by
k* & (kmodh) + 1.

We can prove now, by verification, that the vector

BD = B0 BTYEREAE. . ATE), r=1,.. wh—1, A
is the léft eigenvector of A corresponding to the r** eigenvalue A

| B A = AT, (A.8)
Developing the matrix A in this last equation gives
" Aipe = AT RS,

If we solve this system of equations, we obtain

i-1
B[] Axir = A B,

k=i

or, using eqs (A.3) and (A.7)
i-1
ArET] Avkr = A7 8,
k=i

which proves, with (A.6), the desired result. O

Therefore, when the iteration matrix A is cyclic, the iteration scheme (A.l)
will ultimately produce vectors £ which are linear combinations of the
h eigenvectors (A.2) only. If the state partition of A into cyclic classes is
known, one can then extract, from the iterated vectors, normalized subvectors
which are parallel to the &;.

And if all states of an aggregate S, of Q belong to a single cyclic class of A,
say the /" one, then the vector v, will also be parallel to the corresponding sub-
vector of &;.

The following theorem gives a sufficient condition for this last property to
hold. This condition is proven for the block Jacobi and the block Gauss-Seidel
iteration matrices.

Let 84,8z, ...,S~, be a partition of the set of states of the Markov chain
such that the matrix of transition probabilities Q;r of any aggregate S, cannot,
by a reordering of the states, have a block diagonal form. Such an aggregate is
said connected because any pair of states (i, i) of that aggregate is connected
by an undirect path, i.e.
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Qinib > O’
.o or
Vi, ip€Sr: Qi1 >0,
or
: Q.,i, >0 or Qii,> 0, and
o, ity e v vy in€S::¢ Qipiy,, >0 or Qi > 0, and
Q"n"b >0 or Qi,,i,, > 0.
Theorem 2

When the block Jacobi or the block Gauss-Seidel iteration matrix A is
cyclic, the states of a same aggregate of Q will belong to a same cyclic class of
A, if this aggregate is connected.

Proof
Because of the definition of a connected aggregate, it is sufficient to prove
that any two directly connected states of a same connected aggregate,

Yoo, ia€Sr: Qigi, > 0, (B.1)
belong to the same cyclic class. The proof is given for the block Jacobi itera-
tion matrix; its accommodation to the block Gauss-Seidel iteration matrix is

explained hereinafter.
Let us remember the triangular block decomposition of the matrix (I — Q),

I-Q2AL+D+1,
and the associated block Jacobi iteration matrix,
A=(-L-UD.

The following lemma is a direct consequence of the fact that D-! can be ex-
pressed as an infinite sum of matrix powers of the diagonal blocks:

Lemma 1
VrVijeS:Dj>0

iff (B.2)
Iinz=0,[Qx"1:i>0.
This lemma simply states that the (i, /) element of inverse matrix D, i,jeS,,

is non-null, if state j is reachable from state i, without leaving the aggregate
S,. Because of our assumption (B.1), we have thus

-1
{ D, >0, B.3)
-1
D,'o iﬂ > O-
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If the state i can be reached from a state /; which does not belong to the ag-
gregate,

3i¢8S,: Qi i, > 0, (B.4)

then, we have

al (B.5)
Aii, = (=L - U)y;, D, >0

iglg

{ A= (-L - U);;,D7} >0

which proves that the states /o and i, belong to the same cyclic class.
Otherwise, if such a state cannot be found,

Vir¢S,: Qi =0, " (B.6)

the irreducibility of the matrix Q guarantees that the state i must be reachable
from a state /;, which belongs to the aggregate

3i €8, i # i Qiyiy > 0. (B.7)

One can assume, without loss of generality, that there exists such an index i
which is different from i,. Indeed, if the only index /; which satisfies eq. (B.7)
is equal to i, then, the states i and i, form a loop which, because of the ir-
reducibility of Q, should be accessible from another third state i;. We may
therefore assume that the labels i and i, have been chosen so that the loop can
be accessed through /. We have thus

3L €S,, it # o, i1 # la: Qi >0, (B.8)
which, by lemma 1, ensures that
D;’ >0,
D;;, >0, (B.9)
DL > 0.

fig

The reasoning developed for state iyin eq. (B.3), can now be'applied again to
state /; in eq. (B.9) and iterated. At the k" iteration, the current state ir_, of
the aggregate S, is either, reachable from outside the aggregate

3 ik S, Qi > 0, (B.10)

which, by the lemma, ensures that we have

]

Aikik:l = (=L~ U)"k"k-l D;!

[0y P
Aiiy, =2 (-L- U)i,i,, D,Tkl_“.o >0 (B.11)

Al'kia = (—L - U)l'kik-l DTI >0 ’

ix_1iq

>0
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which guarantee that the states
ik—l: evy iO’ iay (B°12)

belong to the same cyclic class. Otherwise, the current state ix—; can be shown
to be reachable from a state ix which belongs to the aggregate S, and, which
does not belong to the sequence (B.12). Indeed, if the only state from which
the state ix—; is accessible, is a state of the sequence (B.12), then we have a loop
of states, which again must be accessible from outside. The irredflcibility of
the matrix Q, which ensures that the aggregate is reachable from outside, and
the finite size of the aggregate guarantee that an index k satisfying (B.10) will
be found.
A similar proof can be established for the Gauss-Seidel iteration matrix

A= -LD + U).

An equivalent lemma states that the (i, /) element of inverse matrix (D + U)~!
is non-null,

VieS,, VjeS;, r<s:(D+ U)j} >0

if one can construct a directed path from state / to state j, which goes only
through states belonging to aggregates of non-decreasing labels. The proof of
the theorem is also based on the construction of a sequence of states which, no
more belong to the same aggregate, but to aggregates of non-increasing labels.
The sequence terminates at the k™ iteration if the current state ix-; which
belongs to aggregate S; can be accessed from a state i which belong to an
aggregate with a larger label

3t>s, JikeSe: Qi > 0.

This ensures that
—-L;

ixigo1

> 0.

which again, yields

Aikik- ( L)'k'k— (D + U)'k 1k 1 >0

Aikio ( L)lk‘k-l (D + U)lk ) >0
Aii, 2 (=D @ + V), > 0.

Again, the existence of such an index is guaranteed by the irreducibility of Q
and its finite size. O
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Abstract

The codes obtained as the shortened binary image of linear codes over
GF(2™) are studied in detail. Their dimension is computed and it is shown
that they may be used as unequal error protection codes.

Math. Rev.: 94A05

1. Introduction

The study of Reed-Solomon (RS) codes is a major part of algebraic coding
theory ). From a theoretical point of view these codes have many interesting
algebraic properties and from a practical point of view, they have optimum
burst error cggrection capabilities. Moreover, binary BCH codes which are
powerful binary codes can be defined as being subfield subcodes of RS codes.
In this paper we also define binary codes by means of codes over larger alpha-
bets:'Ourigoal will be to analyse the structure and the error correcting capabi-
lities of a class of binary linear codes that are obtained when one shortens 2)
the binary image of some cyclic codes over GF(2™) }%). The content of the
paper is as follows. The codes are introduced in sec. 2 and their dimension
over GF(2) is computed in sec. 3. Some of their error correcting capabilities
are described in sec. 4 where it is noted that they are well adapted for unequal
error protection (U.E.P.) 3*). Some examples are discussed in sec. 5.

2. Definition of the shortened binary image codes

Let N be an odd positive integer and let m be the smallest positive integer |
such that N is a divisor of 2™ — 1, The Galois field GF(2™) is thus the smallest
extension field of GF(2) that contains all N** roots of unity. Let § be a
primitive N** root of 1 and let U be any subset of S={0,1,...,N—1}. ToU
we associate the polynomial

gX) = EU(X—ﬂ“)- 0))

It is a divisor of X*¥ — 1 and it generates a linear cyclic block code of length N
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and dimension K= N — card U over GF(2"). This code will be denoted by
C(m). Any codeword of C(m) can be represented by a polynomial

N-1 .
v X)= ¥ v, X'
i=0

over GF(2™) or by the corresponding N-tuple v = (Vg, ..., Vi,...,Vn-1). We
shall now express any v; € GF(2") as a binary m~-tuple. Let « be an element
of GF(2™) that is not in any proper subfield of GF(2™). Any v; e GF(2™)
has a unique expression

"1-1 3 . -
vi= Y vio v € GF(2),

Jj=0

which leads to the representation of the word v of C(m) by an m XN matrix
over GF(2):

0 0 0
'Uo .. vi . .. UN—l
— J J J
v=| v UM e VA 2)
m=1 m-1 m-1
0 .« .. Ui P 'l)N_l

Defining the polynomial v-f(X ), 0<j<m-1) over—GF(Z) as being
) N-1 | N
v X,
i=0
we can also represent v by

m-=1

v(X) = ¥ v/(X) ol
Jj=0

From C(m) we define C(¢) (1 << m) as follows

CHAPX)eCm):v/(X)=0 for j>t¢]. '
Any polynomial v(X) e C(¢) can thus be written as - L
-1 ' o
X)) = X v(X)o'. ) ?3)
Jj=0

It can also be described by a matrix v (as in (2)) but containing only ¢ rows.
This matrix v is called the binary image !) of ¥(X) (with respect to ). We may
thus consider a code C(¢) as being a binary code of length N ¢. This will be our
point of view but however we shall often represent a binary N¢-tuple by an
expression like (3). .
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Since any polynomial of C(m) is a multiple of g(X), (1), any v(X) as given
in (3) will be in C(#) if and only if it satisfies
v(f*) = 0, all ue U. 4)
The code C(¢) will be called a shortened binary image (SBI or #-SBI) of the
code C(m). For t < m — 1, C(¢) is a linear code over GF(2) but not over any
larger field.

3. The dimension of the SBI codes

In this section we determine the dimension of the codes C(¢) defined in sec. 2
when considered as being vector spaces over GF(2). The elements ¢ and f§ of
GF(2™) will have the same meaning as in sec. 2.

Let us associate to any # in S={0,1,...,N — 1} its cyclotomic coset
S(u) = {u2"mod N: all integers re[0,m — 1]}, and in any such S(u) let us
choose a distinguished element called the coset representative of S(u). The
set of all these coset representatives will be denoted by S*. The polynomial
XY — 1 is then factorized as

N—1=TII hu«(X), deghu(X) = cardS(u),

ueS*

where 4,(X) is the minimal polynomial of 8* over GF(2). To any subset U of §
we associate the subset U* of S* defined by

U* ={ueS*:Sw) n U is not empty}.

The set U* thus contains the representatives of cosets some elements of which
are in U. We use it to define the polynomial

g*X) = II hu(X),

ueUs

which is the smallest degree polynomial over GF(2) that is a multiple of g(X).
Thus g*(X) generates the binary subfield subcode of C(m).

Let us now denote by A4 the algebra of polynomials in X over GF(2) taken
modulo XV — 1. The set of polynomials in A that are multiples of g*(X) is an
ideal denoted by I*. Similarly any polynomial (X~ — 1)/h.(X) generates also
an ideal (denoted by I(u)) in A. These last ideals are minimal and in each of
them we may choose an idempotent polynomial e.(X) as generator. The
algebra A can be represented as the direct sum

A=I*+ Y Iu),

ue U+
to which corresponds the (unique) expression ')
VI(X) = d(X) g*(X) + T bl(X)eX) )
ueU*

of an arbitrary polynomial v/(X) of A. In this expression e.(8°) is 1 for se S(u)
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and 0 for s¢ S(u), while the formal degree of the coefficient b/(X) is equal
to the cardinality of S(#) minus one (card S(x) — 1). From (5) and the con-
dition (4) we may conclude that the polynomial v(X) of (3) is in C(?) if and
only if for any u in U* we have

-1

_20 i)l =0, all seSu)n U. ©6)

j=
To compute the dimension of C(¢) is to compute how many degrees of free-
dom (in bits) we have in the choice of the polynomials a/(X) and b{,'(X ) oc-
curring in the representation (5) of the polynomials v/(X), 0</j<<t - 1),
and constrained by the eq. (6). Let us first consider the polynomials a’/(X).
They are not constrained by (6) and may thus be freely chosen. Their formal
degree is m(I*) — 1 with m(I*) = N — degg*(X). Since there are ¢ such
a’(X), they introduce ¢ m(I*) degrees of freedom (in bits) in the code word

v(X). Let us now consider the polynomials b}(X). Since any se S(u) can be -

written as 2/, the system (6) becomes
-1 )
Y bi(B* Y al =0, all ueU*, all seSw)n U. (7)
=0

We denote card S(#) by m(u). These numbers m(u) are divisors of m:
m)|m 1<m@w)m

and 8" is in GF(2™()) which is a proper subfield of GF(2™) when m(u) is a pro-
per divisor of m. We solve now (7) for a fixed ue U*. For each se S(u) n U, (7)
specifies one equation to be satisfied by the polynomials b7(X), 0 </ <t — 1).
By squaring this equation rm(u) — f(s) times for r = 1, ..., m/m(u), we get
m/m(u) new equations, and by doing this for all s in S(x) N U we get

=1
T bl " Y — 0, 1< r<mim@), all seSw) N U. (8)
Jj=0 .

Denoting card [S(#) n U] by A(u), we see that the ¢ elements bj(8%),
0 <j <t —1), of GF(2™™) have to satisfy m A(u)/m(u) equations. We write
these equations in matrix form as

bu Hu = 0, (9)

where b, denotes the row vector [6%(8Y), ..., b, (8*)] and H, is arxmi(u)/m(u)
Vandermonde-like matrix. In other words, its (i,/) entry has the form (7;)**
where the elements 7; run through the set of the mA(u)/m(u) different elements
27 1)
smallest dimension. If ml(u)/m(u) = t the only solution of (9) is b, = 0. If
mAu)/m(u) < t, the t — mA(u)/m(u) last components of b, may be chosen
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arbitrarily in GF(2™) and the m A(u)/m(u) first ones are then obtainable
from (9) since the mA(u)/m(u) first rows of H, form a square nonsingular
matrix. Moreover the elements of b, to be computed from the freely chosen
ones are also in GF(2™). Indeed, when m(u) is a proper divisor of m and the
system (9) contains the equation ¥ b.(8%*)y’ =0, then it also contains the
mim(u) — 1 equations X bi(8*)p/2™* =0, r=1,...,m/m(u) — 1. Such a
system is said to be self-conjugate with respect to the subfield GF(2™)) of
GF(2™). As it is well known by the theory of BCH codes, this self-conjugation
of the parity-check equations guarantees that the solutions have all their com-
ponents in GF(2™t) 1), :

Up to now we have only considered the value of the polynomials bl(X) for
X = B*. However since the formal degree of bi(X) is equal to m(u) — 1, this
polynomial is completely determined as soon as its value is known for a value of
X that is a proper element of GF(2")). Since #* is such a proper element, the
polynomials b(X) are completely determined as soon as bl(B*)is known. As a
consequence, for any ue U* there are m(u) [t — mA(@u)/mu)] = tm(u) — mA(u)
degrees of freedom (in bits) in the choice of polynomials bi(X). We are now in
a position to compute the dimension of the code C(¢) viewed as a vector space
over GF(2). We state this result as a theorem.

Theorem 3.1.
The dimension K2(¢) of the binary linear code C(¥) is given by: _
Ky(f)=tIN- ¥ m@u)] + Zl,l [t m(u) — mA@)]* (10)

ueU»
with m(u) = card S(u), A(u) = card S(u) N U, where a*=a for a>0 and
a* =0 for a <0.

Proof ,
In the right member of (10), the first term represents the dimension afforded

by the polynomials a/(X) an_d the other terms represent the dimension
afforded by the polynomials b.(X). O
As an example we choose m =4, N=15,¢t=3and U = {0, 1,2,3,4,5, 6, 9}.
From these data we obtain

U* =1{0,1,3,5},

m(0) = 1, m(5) = 2, m(1) = mQ3) = 4,

A(0) = A5 =1, A(1) = A(3) = 3.
To compute K»(3) we evaluate

N—- XY m(u) =4,

ue U+
[tm(u)—ml(u)]*‘: , u=0,1,3,
[tm(5) — mA(5)]* = 2.
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The SBI code corresponding to these parameters has length equal to 45 and
dimension equal to (3 X4) + 2 = 14. Further properties of this code are given
in sec. 5.

From the discussion above it is natural to associate a matrix B(v) to any

-1
polynomial v(X) = X v/(X)a’ where the v/(X) are polynomials over GF(2)
Jj=0

that are expressed as in (5). This matrix B(v) has M =1 + card U* rows and ¢
columns. Its first M — 1 rows are indexed by the elements # of U* and the last
one is indexed by U, the complementary set of U in S. Its columns are indexed
by the integers from O up to ¢ — 1. Writing b/ for b(8*) we construct B(v) as
follows. For ueU*, B(v) contains in position (u,j) the element b of
GF(2™), In position (U, j), B(v) contains the polynomials a/(X) of formal
degree N — degg*(X) — 1.

(o2, ...0 ...b0t .
B()=|b), ...bl ...b" (11)
- - -
bY,, .-l ... b
[ @°(X) ... dd(X) ... a"{(X)].

When v(X) is in C(¢), the row b, = (b2, ..., b, ...,bI™"), (e U*), of B(v)
has to satisfy (9). This row vector b, is thus a vector of a linear code E(u) of
length ¢ over GF(2™) specified by the parity check matrix H,. We shall de-
note by K(«) the dimension of E(u) over GF(2"), When K (u) > 1 holds,
the minimum distance of £ (u) will be denoted by D(u). The last row of B(v) is
always unrestricted. The corresponding code E(U) when viewed as a code of
length ¢ over the set of polynomials of formal degree m(/*) — 1 thus satisfies
D) =1.

These notations are used in the next section where the U.E.P. properties of
C(¢) are considered.

4. Application to unequal error protection

Let G be an arbitrary kX n generator matrix for an (n, k) linear code C over
GF(q). Let a = (ai, . . ., ax) be an information k—tuple and let v = (01, ...,00)
be the corresponding encoded n—tuple: v =a G. For any integer / in [1, k] we
define d(i) to be the minimum Hamming weight of all codewords v of C that
are obtained from the encoding of an information k-tuple a with a; # 0. It
turns out that at the decoding a; can be correctly estimated from a noisy ver-
sion w of v as long as the Hamming weight of v — w is < (d(f) — 1)/2. This
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d (i) is called the minimum distance relative to the information symbol a;. The
point is that the £ minimum distances d(i) are not necessarily equal. The levels
of protection of the information symbols @; may thus be different. This
phenomenon is called unequal error protection (U.E.P.)3*).

In this section we show that the codes C(¢) described above can be used for
U.E.P. when a specified encoding rule is applied. This rule is as follows. For
all ue U* we choose one vector b, in the code E(u) described at the end of
sec. 3. This corresponds to, let us say, the preencoding of m(«) K (u) binary
information digits. As explained in sec. 3, each 7—tuple b, specifies the ¢ poly-
nomials b.(X) that have to be used in (5), together with an arbitrary r~tuple
a = (@%X);...,a" (X)) of polynomlals @/(X) of formal degree m(/*) — 1,
to construct a word v(X) = af v/(X) of C(#). From the t~tuples b, and a

20
we construct a matrix as B(v), (11). Of course some of the codes E (i) may be
of dimension zero, (K(u) = 0). The corresponding rows of B(v) are then iden-
tically zero and the ‘choice’ of the corresponding b, (= 0) does not preencode
any information. We shall order the rows of B(v) in such a way that these
identically zero rows are the first ones of the matrix B(v).

Suppose now that for a given code C(f), the s*® row of these matrices B(v)
is the first one that is not identically zero. It follows that the minimum weight :
of any nonzero component v/(X) of v(X) is equal to the minimum distance of
the binary cyclic code of length N generated by g:(X) = II A.(X). This mini-

J<s

mum distance will be denoted by 4(u;). On the other hand, a word v(X) to
which is associated a matrix B(v) with nonzero entries in its s*® row will con-
tain at least D(u;) nonzero components v/(X) (see sec. 3). Consequently the
minimum bit weight of this v(X) will be at least equal to d(us) = D(us) A (us).
This d(u;) is the minimum distance of C(¢) relative to the K (us) m(us) in-
formation bits that are preencoded into the row of B(v) indexed by u;.
This means that if v(X) = E o’/ v/(X) e C(¢) is transmitted and recelved as
J_

X)) = Z o/ vj(X) with at most #(us) =|(d(us) — 1)/2] bit errors, then the
informatlon contained in the row u; of B(v) will be correctly decoded. Having
estimated the polynomlals b,,J(X ) we can reset vF(X) as follows

-1 .
v5(X) —>vi“(X) = v5(X) — j>=30 a! by (X) e, (X).

-1 )
This v¥(X) is a noisy version of v1(X) = v(X) — X &’ b; (X) ew(X) which is
Jj=0

a word of a subcode of C(¢), namely the subcode of all words the B matrix
(11) of which has zeros not only in its (s — 1) first rows but also in the s** one.
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We can now estimate the (s + 1)™ row of B(v) just as we have estimated the s**
one. The minimum distance d(u;+1) relative to the K (u,.1) m(u;+1) information
bits preencoded in the (s + 1)** row of B is obtained as above

d(Uss1) = D(Us41) A(Us41),

where D(u;541) is the minimum distance of E(us41) and 4 (us1) is the minimum
distance of the binary cyclic code of length N generated by

&s11(X) =j <]-_;[th(X)-

As a consequence the correct decoding of the row b,,,, of B is possible any
time by, was correctly estimated and v§(X) contains at most

Husr) = [(d(usr) — 1)/2]
bit errors. We can continue on this way to estimate the successive rows of B(v)
up to the last one. This last one will be correctly estimated provided the pre-
ceding rows were correctly estimated and the received word v¥(X) contains
at most (D(I*) — 1)/2 bit errors where D(/*) is the minimum distance of
the binary cyclic code generated by g*(X). Let us now consider the transmis-
=1
sion of a codeword v(X) = Z(]vf(X ) ot/ that is received as v(X) + e(X) where
-1 J=
e(X) = 26 e/(X) o’ denotes the error polynomial. On the basis of the discus-
j=
sion above we may first state the following property.
Property 4.1.

Suppose that at the decoding of v(X) + e(X) the s first rows of B(v) (for
some s in [1, M — 1]) were correctly determined. Then the (s + 1)* row of B(v)
will also be correctly determined if e(X) contain less than D(us1) 4 (4541)/2
nonzero binary digits.

However this property does not give the complete error correcting capabili-
ties of the SBI codes. Therefore it may be useful to consider SBI codes as
being generalized concatenated codes in the sense of Zinov’ev. We refer the
reader to the original paper 5) or to ) for a definition of Zinov’ev codes. We
also leave to the reader to make explicit how our codes can be seen as gener-
alized concatenated codes. In his paper, Zinov’ev presents a very general de-
coding algorithm to achieve the performances promised by property 4.1.
Moreover it can also (and at the same time) correct the errors described in the
two following statements. -
Property 4.2.

Let us assume that for some se[1, M — 1] the s first rows of B(v) were cor-
rectly determined and that less than 4 (us+1)/2 components ¢;(X) of e(X) are
nonzero. In this case the (s + 1)* row of B(v) w1ll be correctly estlmated by the .
decodmg algorithm of Zinov’ev.
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Property 4.3.
Let us represent the error sequence e(X) as ): eX! w1th e; in GF(2™). Let

us assume that the s first rows b,,; of B(v) were correctly determined and that
the number of nonzero e; in e(X) is less than D(us.1) /2. In this case the (s + 1)*
row of B(v) will be correctly obtained by the algorithm of Zinov’ev.

5. Examples

Let us now present two examples.
— First let o be a pr1m1t1ve element of GF2Y):a* =a + 1. For
=10,1,2,3,4,5,6,9}

g(X) = H X—-a%)
we define C(3) to be the set of polynomlals
v(X) = vJ(X) o, v(X) e GFQ2) [X1/(X™ — 1),

J._
that are multiples of g(X). The matrix B associated to a nonzero v(X) can

be given the form:

and

by by by
by by b}
B=|by b} bl
by by bi
a® a' a?

with, for all j,
1€ GF(2),
bl e GF(Q2) [X1/(X* + X + 1) = GF(2%),
b} e GFQ2) [X]/(X* + X® + X2 + X + 1) = GF(2%),
bl e GFQ2) [X1/(X? + X + 1) = GF(2%),

The elements o’ of the last row of B are polynomials of formal degree 3
over GF(2). The entries of a matrix B associated to a codeword v(X) of
C(3) have to satisfy

Zba’—O

Jj=0

2 -

Y bial¥ =0, r=0,2,3
Jj=0

2 .

T bia¥=0, r=0,1,3
Jj=0

2
Y blai¥=0, r=0,1.
Jj=0 "
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The solution of this system is given by
i=bl=bl=0 all j

bl=b, by=bi=ab b C GF(2?. (12)
The first nonzero row of B is the fourth one corresponding to # = 5; and the
minimum weight of a nonzero element in this row is 3 : D(5) = 3. The mini-
mum weight 4(5) of a nonzero v/(X) is the minimum weight of the (15,6)
binary cyclic code generated by (X — )(X* +X + DX*+X°* + X + 1),
and thus 4(5) = 6 holds. As a consequence d(5) = D(5) 4(5) is equal to 18.
On the other hand, D(7) = 1 and 4(7) = 8 hold, so that d(7) is equal to 8.
We have thus constructed a binary code of length 45 and dimension 14.
Two information bits are encoded by the choice of the element b of GF(2%)
in (12) and they are protected with minimum distance 18. The 12 last in-
formation bits are encoded by the choice of the 3 polynomials &/(X),
(0 < j < 2), and they are protected with minimum distance 8. We note that
the best known (45,14) code for equal error protection has minimum dis-
tance 147).
For the second example, let & be primitive in GF(2%):a® = ¢ + 1 and let us
consider the cyclic (7,2) RS code over GF(2%), generated by

5
g(X) = 1}1 (X —a’).

We choose t = m = 3. The matrix B associated to a nonzero v(X) can be
given the form
by by b
B=|by b; b
bo by bq ],
with
bl e GF(2) [X]1/(X® + X + 1) = GF(2%),
bl e GF(2) [X]/(X® + X? + 1) = GF(2%),
b} e GF(2).
The entries of B have to satisfy
2
Tbhja*=0, r=0,1,2

Jj=0

z
> bl =0, r=0,1

Jj=0

The solutions of this system are

bi=0, allj;
by=b, by=ab, bi=a*b, forany be GFQ2®);
b} arbitrary.
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As a consequence we get

D(3) =3, 4(3)=3;
D) =1, 4(0) = 7.

The three first information bits are encoded by the choice of the element b
of GF(23) that specifies the elements b} of B. These 3 bits are protected by
a minimum distance d(3) = 3 X 3 = 9. The three last information bits are
the three bits b{; (0 < j < 2); these are protected by a minimum distance
d(0) = 1x 7 = 7. We obtain on this way a binary code of length 21 and
dimension 6, that has the same performances as a (21,6) binary cyclic code
recently considered by Van Gils*).

6. Acknowledgment

The authors acknowledge the useful comments of the referees. These com-
ments have lead to several improvements of the paper.

REFERENCES

) F.J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes, North-
Holland Publishing Company, Amsterdam 1977. :

2y E. Berlekamp, Algebraic coding theory, McGraw-Hill, New York 1968.

3 1. M. Boyarinov and G. L. Katsman, IEEE Trans. on Information Theory, 1T-27, 168
(1981).

%) W. J. van Gils, IEEE Trans. on Information Theory, IT-29, 866 (1983).

5 V. A. Zinon’ev, Problems of Information Transmission, 17, 254 (1981).

. v \f
g Tedden B
ed. Phith 3 DL ,
N\L‘Fca R UNDIG LAE
PHILPS -7y 1
‘ PG, - 6°0
sl I "‘E"
5600 % b IUATRLA 1A W
o) < .
NETLHWS D
t
Philips Journal of Research Vol. 39 Nosd/5 1984 205

IPR2018-1557
HTC EX1023, Page 215




Philips J. Res. 39, 206-225, 1984 R 1092

ALGORITHMIC ASPECTS OF
DIGITAL SYSTEM DESIGN
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Abstract

The complexity of very large scale integrated circuits has deeply modified
the design techniques; the new methods have two essential characteristics:
they are both computerized and hierarchical in nature. As a consequence,
it becomes necessary to develop new algorithmic and algebraic tools to
achieve acceptable tradeoffs between conflicting optimization criteria. This
will be illustrated by the design of data paths and it will be shown how
graph theory and complexity theory can help the designer to achieve his
objectives. The paper first presents a structural interpretation algorithm for
high level language programs, i.e. a formal method for translating such a
program into a hardware structure. It also covers the selection of an ap-
propriate set of computation resources and the detection and modification
of the intrinsic parallelism.

Math. Rev.: 94C10, 94C15

1. Introduction

A simple way of modelling a digital system is to say that it performs a com-
putation. The word computation is taken here with its general mathematical
meaning '). The validity of this model is easily perceived in the case of special
purpose circuits, such as digital filters or pocket calculators; it also holds true
in the case of general purpose systems: for example, a microprocessor exe-
cutes the interpretation algorithm of its instruction set.

The design of a digital system will accordingly start with a description of the
computation to be performed; the complexity of modern digital systems, the
wish to achieve correctness proofs makes it a must to start from a Sformal
specification. In general, the designer will thus initially select a suitable algo-
rithm and express it in some high level language.

In the context of Very Large Scale Integrated circuits, the design process
identifies with a compilation as it has to translate the initial high level specifi-
cation into a target language, which is the description of the integrated circuit
layout. That compilation is generally known as silicon compilation 2). Silicon
compilation has two important characteristics, both due to the complexity of
the target systems measured say by the number of cénstituent transistors:
typical target systems may involve up to one million transistors; it has to be
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both computer aided and hierarchical in nature, i.e. it should proceed in a top
down manner along a number of levels of progressively refined descriptions.

The algorithmic aspect of this design process is at once perceived. At each
level of the hierarchy, the designer will receive the formal specification of a
behaviour, a set of primitives characteristic of the hierarchical level and a set
of acceptable design rules selected to insure the design correctness. For ex-
ample, at the familiar logical level, the specified behaviour could be a syn-
chronous counter, the primitives could be NAND gates and the design rules
would describe the acceptable ways of interconnecting gates.

If we scan the literature devoted to silicon compilation%45¢), we shall
observe that the first tools developed for coping with the complexity of large
chips mainly addressed layout problems (design rule checking, routing, place-
ment), simulation and timing problems (electrical, logical, mixed level simula-
tion). So far, very little has been done at the functional level, in spite of its
fundamental importance: the choice of the algorithm to be executed to per-
form any suitable function has indeed a crucial importance on the perfor-
mances of the computation. We face here classical software problems such as
correctness proof and program transformation but in the renewed perspective
of hardware implementation. ‘

This is roughly the frame of the present discussion: in sec. 2, we shortly
describe the general model of algorithmic state machine and show how it is
possible to map an algorithm, described in some high level language on a cor-
responding hardware structure; this is the structural interpretation algorithm.
We next focus on the design of processing units and present various tools
allowing one to select appropriate computation resources: the optimization
problems are numerous here and we attempt to show how algebraic methods
can be used to solve these problems; sec. 3 studies the problem of choosing a
minimum cost set of resources preserving the intrinsic parallelism of the given
algorithm; this is the resource selection algorithm. Finally, sec. 4 tackles the
sequentialization problem and shows how it is possible to minimize the num-
ber of resources for performing a computation within a given target time.

These are only sample problems selected to show how mathematical tech-
niques can help one to model various situations encountered in digital design.
There is however no doubt that important results can be reached in this new
emerging field.

2. Algorithmic state machines

2.1. The design objectives

The starting point of a digital design is an algorithm expressed for example
as a program in some high level language. This will be the data we have to
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translate or compile into a hardware device. Basically, such a program consists

of five type of entities:

1. variable names such as X, y, ..., representing scalars of predefined types
(integers, characters, ...) or such as v, w,..., representing vectors;

2. function names i.e. transformations on the value space of the variables;
function names will not only include the standard operators +, —, -, / but
other operators such as SHIFT, ROTATE, COMPARE, when they appear

. as “natural” in the expression of the algorithm;

3. assignments such as x:= f(v) or u:= g(v,w); the introduction of vector

" assignments will take for us the particular meaning of simultaneous or
parallel assignment;

4. predicates such as (a > b) or (x> 0): predicates are most often binary
valued functions of the variables to be used for test purposes;

5. constructssuch as if ... then ... else, while ... do, repeat . .. until, case. ..
of, for.

The choice of the algorithm is in general a critical one as it may deeply in-
fluence the performance (cost and computation time) of the resulting circuit.

At the other end of the design process, we find the basic digital components.
For sake of¢simplicity, we shall restrict ourselves to two types of components,
combinational logic circuits and synchronous registers. A combinational logic
circuit is viewed as a black box with » data inputs, p control inputs and /m data
outputs. For each value of its control inputs, the circuit realizes a mapping
from its inputs to its outputs.

A combinational logic circuit CC is characterized by its cost y(CC) and its
delay 6(CC); the cost is to be taken in the wide sense, i.e. it may be a chip
area, a power consumption, etc. For example, if we take as cost unit the bit of
equivalent ROM, we immediately obtain:

YCC) < m - 2",

The delay is the maximum time an input modification requires to propagate its
effects to all the outputs; this propagation is viewed as asynchronous as there
is at this level no clock signal to control the propagation.

- The second type of component we require is the synchronous register. We
adopt here a very simple register model: the register has » input and 7 output
data bits. It has two control lines: the CK or clock line and the LD or load
line: the register is loaded with the input data at, say, the clock signal risetime
if the load signal is high. For the simplicity of this introductory presentation,
we shall assume that the registers and flip-flops can be read and loaded with a
new value during a single clock period; from the technological point of view,
this amounts to assume that the flip-flops are of the master-slave type or,
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equivalently, that the system has been provided with a two phase clock
scheme.

Our problem can now be stated as follows: given an algorithm represented
as a program in some high level language, how do we “map” that algorithm
onto a hardware structure that implements that algorithm, i.e. that, from any
set of data, generates the right results while following the sequencing indica-
tions given by the program.

As such, the objective may look rather vague; in the early days of digital
system design, it looked more like an art than like a science or a technique
and, to some extent, this is still the case today. Still, we immediately feel that
to improve over the present state of the art, and, in particular, if we wish to
apply to the problem some of the computing power available today, we have
to formalize the relationship between the given program and the target imple-
mentation. This translation from a given program to a target hardware archi-
tecture bears a close analogy with the general problem of compilation and it is
thus natural to use in this context the term “silicon compiler”: the problem is
indeed the translation of a high level language to another language, expressing
the same behaviour in physical terms of floorplan, layout, masks, ...

We shall however aim at a more limited objective and we shall tall it struc-
tural interpretation: it is structural, because we shall limit ourselves to the
translation of the high level language up to the structural (or functional) level,
without going down to the geometrical or physical level; it is an interpretation
in the sense that it will follow step by step the original program, without
attempting any global optimization. '

2.2. Algorithmic state machines

The structural interpretation, i.e. the link between the initial program and the
basic circuit elements described above will be established thanks to the model of
algorithmic state machine -%%1%); the system appears as decomposed in two
interconnected parts the control unit and the processing unit or data path.

The two units cooperate by exchanging various signals: the control unit
provides the processing unit with command signals, to inform the latter of the
next operation to be carried out. Typically, command lines correspond to con-
trol variables of programmable computation resources or to register control
lines. On the other hand, the processing unit provides the control unit with
binary signals called condition variables. These condition variables provide the
control unit with the relevant information about the past history of the com-
putation to allow decisions about the next step of the computation.

It should be clear at this point that, in the model of algorithmic state
machine, both the processing and the control units are viewed as finifte state
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machines 1'1'%). A finite state machine is implemented as a synchronous se-
quential circuit, i.e. as the loop interconnection of a combinational circuit CC
and of a register R. The contents of the register, available at its output, is the
present state. From the present state and from the applied input signal the
combinational circuit CC computes the output signal and the next state, to be
stored in the register R at the next clock pulse.

We shall show in the forthcoming section how it is possible to achieve a
structural interpretation of the initial program, i.e. a formal mapping from
that initial program onto a corresponding hardware structure; in the present
section, we limit ourselves to some general guidelines:

1. the processing unit will take care of the variable names, of the functions
and of the assignments; rather intuitively, the variable names will be as-
signed registers and the function names will be assigned combinational
logic circuits; observe that, by function names, we not only mean the func-
tions appearing in the right hand members of the assignments but also the
functions required to evaluate the truth value of the conditions appearing
in the program; finally, the assignments will become functional register
transfers of the type:

R:= F(R); (1)

the latter equation means that the contents of the set of registers R is to be
loaded with a function F of the contents of these registers.
2. the control unit will take care of the program itself i.e. of the constructs

while ... do, if ... then ... else,

etc., of their sequencing and of the condition variables, i.e. of the binary
variables providing the truth value of the conditions to be evaluated.

2.3. The processing unit

The processing unit basically consists of three types of entities:

1. combinational switching circuits, viewed as computation primitives and
performing two types of functions, viz. evaluation of the results required
‘by the right hand side of the assighments and evaluation of the truth value
of the predicates appearing in the algorithm;

2. registers and flip-flops allowing the appropriate storage of data, of inter-
mediate and final results and of condition variables;

3. controlled connection networks allowing one to connect, at each step of the
computation process, the appropriate data to the computation resources
and to store in appropriate registers the results of the computations carried
out by the resources. '
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With this model in mind, it is not difficult to imagine the main steps of the
design of the processing unit; to reach this goal, we should bear in mind the
fact that the processing unit is to be implemented as a synchronous sequential
machine, i.e. that all the operations pertaining to a specific computation step
have to be carried out during a single clock period.

The structural interpretation algorithm

— STEP I1: for each step of the algorithm, prepare a list of the required behav-
fours or function names;

— STEP 2: define a set of (possibly programmable) computatlon resources
sufficient to realize, at each step, the required behaviours, taking into ac-
count the intrinsic possibilities of parallelism;

— STEP 3: resource allocation: for each step of the computation, allocate an
appropriate resource to each of the required behaviours; '

— STEP 4: for each step of the algorithm, prepare a list of the variables to be
stored at the end of that step; determine accordingly the number and the
size of the required registers;

— STEP 5: memory allocation: for each step of the computation, allocate an
appropriate register to all the variables to be stored at the end of that step.

1t should be clear that the above five steps completely determine the pro-
cessing unit, including the connection network and its position at each step.

The memory allocation appears as a critical step in the above method as it

critically influences the complexity of the connection network.

2.4. The control unit

We now turn to the second constituent part of the algorithmic state mach-
ine, viz. its control unit. Our primary goal is to implement the control unit as a
finite state machine. The first thing to do, once that decision has been taken, is
to ask oneself what are the natural constructs associated with a finite state
machine. It is actually easy to translate in software terms the concepts of tran-

‘sition and of output functions. For a control automaton having as input sig-
nals the minterms mi(x) in the condition variables x, and originating com-
mands g; to the processing unit, the transition and output functions can be
described by a set of case statements.

To illustrate such a case statement, we first introduce some notations. Con-
sider a finite automaton A with the present state g and receiving as input literal
the minterm mi(x); then, its next state g* and its output signal, the command
o, will be denoted ¢* = gM; and ¢ = gN;, respectively.

A typical case statement describing the behaviour of a finite automaton is
then
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{label g) case x of
mo(x) oo = gNy goto (label gM,)
mi(x) o1 =g goto (label gM,)

man1(X) 27y = gNpry  goto (label gMyn_1)
end.

Clearly, in the above case statement, the internal state g of the corresponding
automaton is associated with the statement label; once that correspondence
has been grasped, the analogy becomes straightforward.

The next step of the process would be to match the control structures of the
given program onto case statements of the above type. As an example, con-
sider the two basic structures of structured or gotoless programming
(i) the statement

ifxthenoelse T
is translated as
{g) case x of
0 T goto{g+ 1)
1 o goto{(g+ 1)
end
(i1) similarly, the statement
while x do o
is translated as
{(g) case x of"
0 A goto{g+ 1)

1 o goto {g)
end

where A denotes the absence of operation, commonly known as a no-
operation or NOOP statement. .

These two examples, together with the universality of structured programs,
immediately show the universality of our model, i.e. show that the control
structures of an arbitrary program may always be modelled by a finite state
machine. The central point in that mapping is the correspondence between the
used labels and the internal states of the finite state machine.

A canonical program P is first defined as a sequence of instructions

NoNy...Nrp,

containing an initial instruction Ny and a final instruction Nr. If we assume
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that there are exactly n condition variables, a typical instruction N; will be of
the form .

N; mo(x) Jo Ni,o
my(x) g1 Ni,l

m;(x) gi N
man_1(X) O27y M,z"—l,

where m;(x) stands for the j-th minterm in the condition variables X, g; stands
for a functional register transfer of the processing unit (it will correspond
to appropriate values of the control lines) and Ni, Ni,; stand for instruction
labels. The interpretation of the instruction is the following one: during the
execution of instruction Ny, if x=j, i.e. if m(x) =1 and k+j = me(x) =0
then, execute the command og; and goto the instruction wearing the label N;,;.
With that interpretation, the above instruction immediately appears as an-
other notation of a case statement and accordingly defines the transition and
output functions of the corresponding automaton. We are immediately in
position of designing the control unit as a synchronous sequential circuit. The
input alphabet of that automaton is the set {m;(x)} of minterms in the condi-
tion variables x; the output alphabet is formed by the binary coded commands
g; and the set of internal states is given by the set of instruction labels {Ni].
The above general instruction then corresponds to an internal state of the sys-
tem and defines, for each input signal, a next state and an output signal.

2.5. Conclusion .

In the preceding sections, we laid the principles of a structural interpreta-
tion of programs written in a high level language thanks to the model of algo-
rithmic state machines. The main steps of the design may be summarized as
follows:

— choice of the algorithm; possible algorithm transformation; detection of
the intrinsic parallelism;

— design of the processing unit, itself decomposed into five steps: determi-
nation of the functions required at each step; selection of an appropriate
set of resources; resource allocation; selection of an appropriate set of
memory elements; memory allocation;

— design of the control unit; transcription of the program in the canonical
form; if required, state minimization; encoding of the commands and of
the internal states; optimization of the combinational part of the control
unit. '
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As a matter of fact, these are only the main lines of a possible strategy and
this discussion should be completed by a study of the techniques available to
describe various implementations of a given program and to provide help in
the selection of acceptable tradeoffs. Some of these techniques are discussed
in the following sections.

3. Data path\design
3.1. Introduction

The design of processing units has been paid little attention in the litera-
ture '%14): in general, the hardware architecture of the processing unit or data
path is considered as given and the algorithm to be implemented is first trans-
formed so as to become executable on the given data path. If, in spite of its
lack of flexibility, that position is acceptable in'the case of general purpose
processors, it does not help much the designer in case of custom design (or
special purpose) devices. We shall now investigate various techniques that can
be put at work to formalize the data path design.

As starting point of the design process, we shall assume available
— a list of computation steps to be performed. Thus, if the program is ex-

pressed in a PASCAL-like form, the steps roughly correspond to assign-
ment statements,
— a list of data items available before the initial step of the computation,
— for each step of the computation, a list of the required functions or behav-
iours. We shall assume that these functions are members of the set

g' = {fosfl’ ""\fc—l}!

— for each step of the computation, a list of data items required for the fol-
lowing steps of the computation.

Our general objective is to describe design tools that will generate a data
path able to support the intrinsic parallelism of the given algorithm: this has
a double aspect: on the one hand, it should be possible to realize simultane-
ously, at each step of the algorithm all the functions required at that step. On
the other hand, it should be possible to perform simultaneously all the func-
tional transfers required at that step. Thus the preservation of the intrinsic
parallelism imposes requirements both on the number and type of available
resources and on the connecting capabilities of the processing unit. In the
following subsection, we study the first of these two requirements.

3.2. Resource requirements

According to our definitions, the functions requlred for the algorlthm exe-
cutlon are members of the set
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g'—_ {foafla . "f;'—l} .
Let us call wi(f) the number of functions of type f; required at time ¢ and define
w; = max, {wi(¢)}. 2

Thus, if we had at our disposal w; resources realizing the behaviour fi, we
would have enough of these resources at any step to satisfy the needs expressed
by the algorithm. However, a behaviour of type f; can not only be realized by
a resource having this single behaviour but also on programmable resources
having, among others, that particular behaviour. We shall accordingly assume
that the candidate resources are in the set

%= {Rs|S§ Zc—_- {0, 1,...,(,"'.- 1}},

where Ry is a programmable resource having the behaviours f;Vie S. Thus, a
resource Ry, is a programmable resource having the behaviours fo and f3, etc.
A resource Rs will be characterized by is cost ys. As usual, we shall assume
that all the resources R have identical delays, chosen as unit of time.

Then, for any S C Z. and such that | S| > 1, we define

ws(®) = > wi(?), (3)
ieS
and
ws = max, {ws(f)}. 4)
Observe that one has
Ws < Z Wi, (5)
ie§

as the needs in functions f; are in general not simultaneously maximal. Finally,
we denote by xs the number of resources of type Rs used in the design.

The unknowns of our problem are the quantities xs, S C Z.. A solution will
be said optimal if it minimizes the total cost:

2. XsVs. (6)
A '

This optimization problem is rather complex and we shall only propose an
heuristic solution. We first describe a necessary and sufficient set of condi-
tions %) to be satisfied by any acceptable set of values xs. We first assume
¢ = 2. This situation will serve as initial point to the following proof by in-
duction.

Theorem 1.

A necessary and sufficient condition to be satisfied by the integers xo, X1 and
Xo,1 to allow a parallehsm preservmg implementation of an algorithm usmg
two types of functlons is to satlsfy the system of inequations: ' '

Philips Journal of Research Vol. 39 Nosd/5 1984 215

IPR2018-1557
HTC EX1023, Page 225




M. Davio

© Xo + Xo,1 = Wo;
X1 + Xo,1 = Wi; @)
Xo + X1 + Xo,1 = Wo,1 .

Proof

The condition is obviously necessary; indeed, the only way to realize the

required behaviours f is to use resources of types Ry or Ry,1, etc.

To prove the sufficiency, we distinguish two cases:

(a) xoz wo. In this case, at time ¢, we select wo(£) << wo < X0 of the resources
Ry to realize the required functions fo. According to the second eq. (7), the
X1+ Xo,1 remaining resources are sufficient to realize the required behav-
iours fi. » '

(b) xq¢ < wo. Let us consider a time ¢ such that X0 < wo(f). We use the xo re-
sources Ry to realize as many behaviours fo and use (wo(f) — xo) resources
Ro,1 to realize the still required behaviours f,. We are thus left with
(0,1 — wo(f) + xo) resources of type Ro, and the first eq. (7) shows that
this number is actually positive. Now, there are (x1+ Xo,1 — wo(?) + Xxo)
resources available to realize the requires functions fi. This number is
sufficient, as the third eq. (7) yields

Xo + X1 + Xo,1 = Wo,1 == W, 1(8) = Wo(t) + wi(®) = wo(?).
]
It is now easy to extend theorem 1 to the general situation involving c dis-
tinct functions fi. This is the purpose of the following theorem.

Theorem 2.

A necessary and sufficient condition to be satisfied by the integers xs to allow
a parallelism preserving implementation of an algorithm using c types of func-
tions is to satisfy the system of inequations:

xr> ws; VS C Z.. 8)
T:TNnS+¢

Proof

The condition is clearly necessary. Indeed, the resources appearing in the left
hand member are the only ones able to realize the behaviours required by the
right hand member. The proof of the sufficiency is achieved by induction on
the number ¢ of types of functions and theorem 1 is the initial step of that
recurrence. We assume that the proposition holds true for ¢ types of functions
and show that it also holds true for ¢ + 1 types of functions. We furthermore
assume that we dispose of xs resources of type Rs, c¢ S and of xs,. resources
of type Rs,c and we have thus to show that, if the numbers x5 and xs, satisfy
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the hypothesis, then, there exists a strategy allowing one to realize the required
functions at each step of the algorithm.

The strategy can be outlined as follows: the behaviours fo, f1, - . ., fe-1 Wil
be realized in the following way:

— xp resources Ro and yo, resources Ro,c;

— X1 resources R, and y;,c resources Ry,c;

— Xo,1 resources Ro,1 and yo,1,c resources Ro,1,c;

— etC. ...

— YT C Z., xrresources Rrand yr,. resources Rr,c.

We shall next try to reduce as far as possible the quantities yr,c and show
that there remain enough resources to realize the required behaviours f.. To
satisfy the recurrence hypothesis, the numbers x7 and yr,c should verify the
inequations

VSCZ, ) (XT+¥y1c) = ws. ©)
: T:TnS+¢

We next try to reduce the quantities yr,c, without violating the conditions
(9) and attempting to minimize the sum
Z VT
TCZ,

We now show that, if that sum is minimal, there exists some set S such that the
two following conditions hold '

Y (xr+yT1e) = Ws; (10)
T:TnS+¢
Y yre=0. (11)
T:TnS+¢

Clearly, if none of the egs (9) is an equality, one of the y7,c can be reduced
in such a way that one at least of these equations becomes an equality. Assume
that the inequation with index S has become an equality. Now, if the obtained
solution is minimal, then

TNS=¢=yf.=0.

Indeed, if this is not the case, either it is possible to reduce y7. by one unit in
all the inequations of index S+ S, or one at least of these inequations reduces
to an equality. Assume that that equality corresponds to the index S. It is then
simple to show that the inequation (9) corresponding to the index S U S also
reduces to an equality. Keeping increasing the set S in a similar way, we finally
reach the situation described by eqs (10, 11). Combining these equations, we
obtain ' :

Philips Journal of Research  Vol. 39 Nos4/5 1984 217

IPR2018-1557
HTC EX1023, Page 227




M. Davio

Y xr+ Y, Yre=Ws. 12)
T:TnS+¢ TCZ.:

Now, the number of resources available to realize the behaviours f. is given by
Z (xT,C - yT,C),
TC Z.
and according to eq. (12), this number is equal to

> XTe+ ), XT— Ws. (13)
TC Z. T:TnS+¢

Now, the eq. (8) with index S,c yields

Z xr + Z XT,c 2 Ws,cs

T:TNnS+¢ TC Z. v

at time £, the right hand member of this expression is equal to ws(?) + w.(¢)

and this shows that the number of available resources, as given by eq. (13) is
sufficient to realize the required behaviours.

Let us now go back to the main problem, i.e. to determine the number of

resources Xs so as to minimize the cost function (6) while satisfying conditions
(8). The obvious starting point is to choose:

xi=wy; xs=0, VS:|S|>1. (14)

This solution indeed uses exactly as many non-programmable or elementary
resources as required if no programmable resources are available.

The algorithm will then run along a series of steps during each of which one
shall replace elementary resources by programmable resources. More pre-
cisely, one shall replace J sets consisting of a single copy of the resources R;,
ie U by é programmable resources Ry. The quantity d will be selected so as to
keep satisfying the conditions (8).

Note that, for each of the above J substitutions, the cost return is given by

AU= Y yi—yu. ‘ (15)
ieU

Now, to compute the maximal value of §, we observe that the modification
of x;, ie U and of xy modifies all the inequations (8) such that U N S+ ¢.
Such an inequation contains in its left hand member | U n S| of the variables
Xi, 1€ U as well as the variable xy itself. If we denote by &5 the excess of theleft
hand member on the right hand member

&s = Z Xs — Ws,
T:TNS+¢

we imrhediately see that & should satisfy the inequality
es=o([(Sn )| - 1),
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so that we finally obtain

. Es
o =minvnsse {| s~ 5= |- =

The above discussion justifies the following algorithm.

The resource selection algorithm

— STEP L. x;:=wi; | S| >1=x5:=0.

— STEP 2. For each subset U € Z. not yet considered in previous executions
of step 2, compute the maximum value of d by (16) and the corresponding
return dAy. If the maximum possible return is less than or equal to zero,
then end, else, select the subset U corresponding to the maximum return
and carry out the  substitutions {R;|ie U} — Ry . Repeat step 2.

4. Sequentialization
4.1. Computation schemes

In many applications, it is not required to preserve the intrinsic parallelism
of a given algorithm as there is no stringent requirement on the speed of the
process. In that case, it becomes interesting to reduce as far as possible the
cost of the implementation and a typical technique for reaching this goal is
that of sequentialization: this is the process by which one realizes in sequence
a number of independent tasks that could otherwise have been executed simul-
taneously. We shall study the sequentialization process and the related op-
timization problems on a special type of algorithms called computation
schemes.

As any algorithm, a computation scheme is expressed in terms of variable
names, of computation primitives and of admissible constructs. The computa-
tion primitives are m-tuples of binary functions

£:1{0,1}"— {0, 1}™. (17)

assumed to be available as combinational switching circuits and displayed as
black boxes.

Among the computation primitives, we shall always assume the presence of
projection functions. The i—th projection pr;(x) of the vector

X = [xn—I, ceey X1, xo]’

is simply the i-th component x; of x. The projection function in fact allows us
to isolate specific connections within bundles of connections. In software
terms, the projection function correspond to less frequently encountered bit
extraction.
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We can now give the formal definition of a computation scheme. Consider
the set of computation primitives

Il = {TL,|ie T and II;: {0, 13" — {0, 1}™}. (18)

Thus IT; is a black box having »; binary inputs and m; binary outputs. A com-
putation scheme is a set of equalities giving the value of a particular variable
V:i. Thus

C={V0’ Vls--', VR}: (19)

where, for every k, one of the following situation holds:
— Vi is a constant; :

— Vi is an input variable;

— Vi is a projection function, i.e., for example,

Vi(x) = pr;(Ve(x)); (20)
— Vi is obtained by function composition:
Ve(x) = ILi(V,s Vieys « + - Vi) 1)
such that:
Vi=1,2,...,n:ki<k. (22)

Condition (22) guarantees the loopfree nature of the algorithm.

1t is important to note, in the definition of a computation scheme, that the
order of the definitions of the ¥;’s is irrelevant as the order of the partial com-
putations is fixed by the indexes or by the names of these variables. It should
also be clear that the replacement of argument variables by their expressions
actually correspond to function composition. Function composition actually
appears as the single admissible construct of computation schemes.

Many algorithms of practical interest are computation schemes. This is in
particular the case of fixed length iterations. As a matter of fact, any algo-

"rithm may be replaced by some equivalent computation scheme and, when-
ever possible, the designer should start his design process by considering
implementations of computation schemes.

A computation scheme has an obvious structural interpretation as a loop-
free interconnection of combinational circuits computing the algorithm primi-
tives. It obviously suffices to interconnect these operators as indicated in the
computation scheme description.

Let us conclude this introductory' section by presenting a rough classifica-
tion of computation schemes based on the type of computation primitives
they put at work. Let us first observe that the computation primitives may be
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proper or improper: by improper computation primitive, we mean primitives
having a zero delay or a negligible delay, such as the projection function, the
left and right shifts, etc. Improper computation primitives thus appear as fixed
connection patterns requiring no logic elements. At the opposite, proper com-
putation primitives carry out an actual computation such as addition or ampli-
tude comparison. _

A computation scheme is a unit execution time scheme iff all its proper com-
putation primitives have identical delays: this particular delay will be chosen
as unit of time. Similarly, a computation scheme is homogeneous iff all its
proper computation resources are identical. An homogeneous computation
scheme is thus also a unit execution time scheme. The serial addition provides
us with an example of homogeneous computation scheme. As a matter of
fact, all the finite iterations are of this type.

In what follows, we discuss the possibilities of implementing computation
schemes as synchronous sequential circuits. To reach this design goal, we
essentially have to discover a technique for decomposing the computation into
a number of consecutive steps. Once this has been done, we find ourselves in a
position similar to the one discussed about algorithmic state machines: we can
indeed evaluate the behaviour and memory requirements, decide on the set of
required resources and carry out the resource and memory allocations. This
will yield the processing unit. The control unit is particularly simple in the case
of a computation scheme: indeed, as the number of computation steps is fixed,
the control unit reduces to a fixed sequence generator and can for example be
designed as the combination of a counter and of a decoder.

The interest of computation schemes lies in the fact that it is possible here to
develop formal techniques of parallelism detection, of parallelism increase
and of sequentialization. These techniques will be studied in the following
sections.

4.2. The connection graph

Consider a computation scheme

C={Vl’ VZ,.--, VN}- (23)

To that computation scheme, we associate a labelled graph (V, E, W) as

follows:

— the vertices of the graph are in one to one correspondence with the
variables V;; the constants and the input variables will account for a single
vertex called data or begin vertex; similarly, the outputs will also be ac-
counted for by a single node called resu/t or end vertex.
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— the graph contains an edge from V; to V;iff the result of the computation
of V;is used as such in the computation of V}, i.e. iff, in the combinational
implementation, there is a physical connection from an output of operator
Vi to an input of operator V;. Formally

Vi, V)eE<e V;=TIL(..,V;,...)
or
Vi= Pr(V3).

— To every edge, we associate an integer label denoting the number of bits
carried by the corresponding connection.

The obtained graph is called connection graph.

Two binary relations are associated with the connection graph: the prece-
dence relation and the immediate precedence relation. Intuitively, the prece-
dence relation is defined as follows: V; precedes V;if the results obtained in the
computation of ¥; are used, directly or not, during the computation V;, i.e. if
there is a connection from V;to ¥;in the corresponding combinational imple-
mentation. In algebraic terms, the precedence relation is the transitive closure
of the connection relation. If V; precedes V;, we write V; < V;. We say further-
more that V; is an immediate predecessor of V;if V; < V; and there exists no
vertex Vi such that V; <V, < V;. The immediate precedence relation, which is
the smallest relation having the precedence relation as transitive closure is use-
ful when discussing the resource requirements.

The precedence graph has two important parameters: the cost is the number
of nodes corresponding to proper computation primitives; the computation
time is the length of the longest path from the data node to the result node.
The cost and the computation time of the precedence graph are global param-
eters of the graph that can be viewed as measures of the cost and the computa-
tion time of the corresponding combinational implementation, at least for
homogeneous computation schemes. .

4.3. Acceptable labellings

We consider a computation scheme:
C={Vi,Va,...,Vn}

together with its connection graph (V, E, W) and its precedence graph {V, <.
An acceptable labelling of the precedence graph is a mapping

¢:V—>N (24)

of the set V of vertices into the set N of natural numbers such that
Vi<Vi=o(V) < o). (25)
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There are two ideas associated with the choice of an acceptable labelling:

— the label of a particular node will represent the execution step during which
one plans to execute the task corresponding to that particular node;

— once the labelling has been chosen, it becomes easy to determine the
number of behaviours of any relevant type required at any step of the
algorithm. In particular, it becomes elementary to compute the param-
eters ws used in the previous section. For homogeneous computation
schemes, there is a single of these parameters, we, called computation
width and representing the maximum number of vertices carrying the same
label.

4.4, Optimization problems

Consider again the immediate precedence graph of a computation scheme.
The length L of this graph is the number of edges on the longest path relating
the BEGIN vertex to the END vertex. If » is the number of vertices in the
graph and if the BEGIN vertex is always labelled with 0, the target time (i.e¢.
the label carried by the END vertex) can range between L, its minimum value
and 7 + 1 (including the END vertex). There is obviously no interest in con-
sidering target times larger than n + 1.

That observation suffices to show that there are numerous acceptable
labellings, each with associated values of Ws. In the present section, we shall
discuss the following problem, related to homogeneous computation schemes:
given a target time T, find an acceptable labelling ¢ minimizing the computa-
tion width w.. Intuitively, this means that we shall try to realize the computa-
tion within the given target time and using a minimum number of resources.
Clearly enough, this problem is very restricted in scope but the discussion of
its solutions will throw some light on the type of questions raised by these
optimization problems.

Our optimization problem is closely related to a classical optimization prob-
lem known as the scheduling problem'%1%). For unit execution time systems,
the scheduling problem can be stated as follows: given a number of resources,
obtain an acceptable labelling minimizing the execution time.

The scheduling problem is known to be a NP-complete problem, except
when the given number of resources is two or when the immediate precedence
graph is a tree. In this section, we show that our optimization problem and the
scheduling problem are polynomially equivalent, i.e. that their computational
complexities at most differ by a polynomial factor.

Assume first given a procedure opischedule that, given a precendence graph
and an appropriate number of resources will provide an acceptable labelling
resulting in a minimal length execution. Then, the program
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program optlabels;

begin
number of resources := 0;
repeat
number of resources := number of resources + 1;
optschedule

until minimal length (= target time
end.

will provide a minimal width acceptable labelling. As the number of resources
will remain smaller than 7, we obtain, between the execution times T(optlabels)
and T(optschedule), the relationship

T (optiabels) = O(nT (optschedule)). (26)
Similarly, assume given a procedure optlabels that, given a precedence

graph and an appropriate farget time will provide an acceptable labelling
resulting in a minimal width implementation. Then, the program

program optschedule;

begin
comp time := 0y
repeat
comp time := comp time + I;
optlabels
until minimal width (= target width
end.

will result in an optimal schedule. As the target time will never exceed n, we
obtain:

T (optschedule) = O(nT (optlabels)). 27

The eqs (26) and (27) show that the computational complexities of the two op-
timization problem differ at most by a factor n2.

In practice, our optimization problem is solved by the above program
optlabels together with one of the available scheduling algorithms. It should
be pointed out that, as the scheduling problem is NP-complete, most of these
algorithms ultimately rest upon some form of (possibly restricted) enumera-
tion.

5. Conclusions

This paper first discussed the concept of structural interpretation of a high
level language program and proposed an algorithm for this purpose. On the one
hand, such an attempt is a must if we wish to translate automatically programs
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into hardware structures. As a byproduct, optimization problems can be seen in
the now familiar frame of formal program transformations. On the other hand,
there certainly exist other choices of the initial language and of the structural
interpretation rules: there is no doubt that this discussion is far from being com-
pleted. We feel however that the general rules proposed here are sufficiently well
supported by practical experience to assert their actual value.

The paper next focused on two optimization problems: the choice of a mini-
mum cost set of resources able to support a given degree of parallelism and the
minimization of the number of computation resources within a given target
time. These two sample problems showed the role played by formal program
transformations, graph theory and complexity theory in digital design. Many
other examples could be given to support that assertion.

Clearly, the incentive problem of creating appropriate design tools at the al-
gorithmic or functional level is still in its infancy. We can conjecture that ade-
quate methods will result both of a better “physical” or “intuitive” understand-
ing of the decomposition problems at the system or at the algorithmic level but
also of an in depth knowledge and application of adequate algebraic techniques.
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PSEUDO-LOSSLESS FUNCTIONS TO THE
BISTRITZ STABILITY TEST
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Abstract

This paper contains an investigation of the Bistritz stability test, a new
powerful method to count the zeros of a polynomial in the unit disk, with
the help of the index theory of pseudo-lossless rational functions. It is
shown how an appropriate iterative procedure to compute the index of an
arbitrary pseudo-lossless function provides a framework in which the
Bistritz test can be derived in a direct way, extended to the case of complex
polynomials, and generalized so as to cope with the exceptional situations
where the standard version fails to be applicable.

Math. Rev.: 12D10, 30C15

1. Introduction

The problem of counting the zeros of a polynomial x(z) in a given region of
the z—plane is standard in mathematics. It arises naturally in numerous appli-
cations, due to its obvious significance in stability analysis of physical systems
which can be described by rational transfer functions. The two regions of
most interest in that respect are the right half-plane (Rez > 0) for continuous-
time systems and the unit disk (|z| <1) for discrete-time systems. The
classical algorithms known respectively as the Routh-Hurwitz test and the
Schur-Cohn test provide simple and efficient methods to treat these two cases.
The reader is especially referred to Gantmacher!), Marden?) and Barnett ®)
for a comprehensive discussion of these tests and their various implementa-
tions, as well as for the mathematical environment of the general question of
locating the zeros of a polynomial.

Due'to its long history and to the many results available in the context of the
Routh-Hurwitz and Schur-Cohn tests, this subject was considered up to quite
recently as somewhat exhausted from a theoretical viewpoint. However, two
significant new results in the ﬁqld have been obtained in the last two years.

The first result is concerned with a new test, due to Bistritz, for counting the
zeros of a polynomial x(z) in the unit disk*5). The following comment ex-
plains an important specific property of the Bistritz test. Both the Routh-
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Hurwitz test and the Schur-Cohn test are based upon well-defined polynomial
recurrence relations. In the first case, the polynomials involved have some
amount of structure so that half of their coefficients have actually to be com-
puted, while, in the second case, they have no special structure. This dissym-
metry between both situations led Bistritz to a new approach to the unit disk
problem. The resulting algorithm*?®) involves polynomials with the same
amount of structure as in the Routh-Hurwitz test; its complexity is about one
half of the complexity of the Schur-Cohn test.

The second result is of a very different nature. It consists in a new general
approach to the problem of locating the zeros of a polynomial, based on the
index theory of pseudo-lossless rational functions®). These functions con-
stitute a subclass of the class of pseudo-positive functions introduced by Oono
in classical network theory™®). They can be defined with respect to various
regions of the complex plane. In particular, a rational function F(z) is said to
be pseudo-lossless in the unit disk if its real part vanishes almost everywhere
on the boundary |z| =1, i.e., if one has F(z) + F(1/Z) = 0. The index of a
pseudo-lossless function F(z) is of direct relevance to the problem considered,
since it is precisely defined as the number of zeros in the unit disk of the sum
of the numerator and denominator polynomials of F(z). It turns out that the
index enjoys a remarkable additivity property with respect to pseudo-lossless
decompositions. The interest of approaching the general question of locating
the zeros of a polynomial via the method of pseudo-lossless functions is three-
fold. First, this approach is quite flexible and allows one, for example, to
derive the Routh-Hurwitz, Schur-Cohn and Bistritz tests within the same
mathematical framework (in the right half-plane formulation as well as in the
unit disk formulation). Secondly, the cases of real and complex polynomials
can be treated without essential distinction. Thirdly, the method provides the
material required to cope with the singular cases of the stability tests. (Inform-
ally speaking, these are the cases for which the standard versions fail to apply.
Each test has its own singular cases.)

This paper contains an approach to the Bistritz stability test based on the
index theory for rational functions that are pseudo-lossless in the unit disk. It
turns out that, by such a method, the Bistritz test can be derived in a simple
manner, extended to the case of complex polynomials, and generalized so as
to accommodate the singular cases.

Section 2 contains some basic definitions and properties of the class of
pseudo-lossless rational functions; which are required in the sequel. In par-
ticular, it is reminded how a pseudo-lossless component can be associated to
any pole in the closed unit disk |z| <1 of a pseudo-lossless function F(z).
Moreover, this component can be extracted from F(z) to produce a residual
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pseudo-lossless function whose index equals the difference between the indices
of F(z) and the component considered. Finally, a pseudo-lossless rational
function is shown to be the ratio of the reciprocal part over the antireciprocal
part of a complex polynomial. The number of zeros of this polynomial in the
unit disk appears to be equal to the index of the function thus defined, pro-
vided the numerator and the denominator are coprime.

Section 3 describes a novel iterative decomposition procedure for pseudo-
lossless rational functions. In its most general form, an iteration loop consists
of four successive steps involving complete and partial extractions of pseudo-
lossless components relative to two given points zo and z; of the complex
plane, which belong respectively to the unit disk (]zo| <1) and to the unit
circle ([z1| = 1). The pseudo-lossless function obtained at the end of an itera-
tion loop is proved to have a degree which is reduced by two units at least, and
an index which is not increased and simply related to the index of the initial
function. The algorithm stops when the degree of the pseudo-lossless function
considered has been driven to zero; the index of the function is then obtained
by concatenating the index relations corresponding to all iteration loops.

In sec. 4, this algorithm is applied to count the zeros in the unit disk |z| <1
of a complex polynomial x(z), or, equivalently, to compute the index of the
pseudo-lossless function defined as the ratio of the reciprocal part over the
antireciprocal part of x(z). It turns out that in most cases (which are the
regular cases) two steps only among the four steps implied in an iteration loop
are not trivial. Moreover, if the points zg and z, are selected as zo = 0 and
z1 = 1, these two steps exhibit exactly the same algebraic form. As a result, a
three-term polynomial recurrence relation is brought out, which produces a
sequence of reciprocal polynomials of decreasing degree. As a remarkable
fact, the index of the pseudo-lossless function considered can be deduced in a
simple way from the values assumed by these polynomials at the point z = 1.
This yields the formulation of the Bistritz stability test in the regular cases.

In sec. 5, those exceptional situations where the iterative procedure of sec. 3
does not reduce to the three-term recurrence relation of sec. 4 are investigated.
By relying on the general algorithm to determine the index of an arbitrary
pseudo-lossless rational function, one shows that polynomial relations of a
more complex form can be substituted for those of the regular case. As a
result, a completely general stability test is obtained, which can accommodate
any complex polynomial and which spontaneously simplifies into the standard
version in the regular case.

Let us finally mention that, at least in the regular case, the Bistritz test can
be implemented in a simple tabular form®) similar to that of the Routh-Hur-
witz test.
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2. Pseudo-lossless rational functions

According to the terminology introduced by Oono ?), a rational function
F(z) with complex coefficients is said to be pseudo-positive if it satisfies the
inequality

Re F(¢'?) > 0, 0<0<2m, (1)

except when €'f is a pole of F(z). A pseudo-lossless rational function is a
pseudo-positive function for which the constraint (1) is satisfied with equality.
Equivalently, a defining property of a pseudo-lossless rational function is the
identity

F(z) + ﬁ(%) - 0. @)

Of course, a pseudo-lossless function is in general not analytic in the unit
disk |z| < 1. The class of pseudo-positive functions is partitioned by means of
the value of an integer parameter, called the index, which can be interpreted as
a certain measure of analyticity in the unit disk. By definition®®), the index
k(F) of a pseudo-positive rational function F(z) equals the number of poles in
|z| <1 of the Cayley transform S(z) of F(z), given by

1 — F(z)

S =TT Fe

(3)
The pseudo-positive and pseudo-lossless functions of index zero can be veri-
fied to be the positive and lossless functions in the usual sense of circuit
theory®).

The index theory of pseudo-lossless rational functions is of direct interest in
the problem of counting the zeros of a polynomial in the unit disk |z| <1.
Indeed, let x(z) be a complex polynomial of degree 7 and let #(z) = z"x(1/z)
be its reciprocal. The rational function

_ x(2) + %(2)
F&) =23 = 2

is pseudo-lossless by construction. Moreover, its index k(F) appears to be
precisely defined as the number N(x) counting the zeros of the polynomial
x(z) in |z| <1, under the assumption that x(z) and £(z) are coprime.
(Throughout this paper, the zeros of a polynomial are counted with their mul-
tiplicities.)

The index enjoys some remarkable properties of invariance and additive de-
composition. A subset of these properties, required for our approach to the
Bistritz test, is summarized in the following three theorems.
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Theorem 1

Let F(z) be a pseudo-lossless rational function. The functlons F(z)™? and
F(z) + i X, with X a real constant, are pseudo-lossless of the same degree and
index as F(z).

Theorem 2 '

Let Fi(z) and Fs(z) be pseudo-lossless rational functions without com-
mon poles. Then their sum F(z) = Fi(z) + Fa(z) is pseudo-lossless of degree
deg F = deg F, + deg F: and of index k(F) = k(F1) + k(Fa).

Theorem 3

Let z1, 22, . . ., 25 be the distinct poles of a pseudo-lossless rational function
F(z) in the closed unit disk |z| <1, with multiplicities u1, 42, . . ., #s. Then
F(z) can be decomposed as a sum of s pseudo-lossless rational functions in the
form F(z) = F\(z) + Fa(z) + ... + Fi(z) + i X, with X areal constant, where
the pseudo-lossless components Fj(z) are given by

#

Fj(z)=z [ (%Ji)—g(%)] for |z <1, @)

u=1
Hj

1 [ Zi+ Z \u .

Fi(z) = g P i 1(ZjTZ) : for |z;| =1, (4")
u=1

for appropriate complex constants g. and real constants 4,. Moreover, the
index contributions of these pseudo-lossless components add up to give
k(F) = k(F1) + k(Fs) + ... + k(F5) with

k(Fj) =y, for |z]| < 1,
k(F;) = —, for |z;| = 1 and y; even,
k(F)) = %ﬂhl sor |27l = 1 and g odd. )

The reader is referred to a paper by the authors ®) and the references therein
for a proof of the theorems above and for a general discussion of the index of
pseudo-positive rational functions.

3. Theoretlcal basns of the Bistritz test

The index of a pseudo-lossless rational functlon can be computed in dif-
ferent ways. The Bistritz test relies on a new iterative procedure to determine
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the index, consisting of extractions of appropriate pseudo-lossless components
relative to a given point z; on the unit circle (|z:| = 1) and a given point zo in
the unit disk (|zo| < 1). By contrast with other methods®), the extractions in-
volved are not all complete. In spite of this fact, it turns out that the resulting
iterative procedure reduces the degree and does not increase the index. In prin-
ciple, each iteration loop includes four successive steps; but, in most cases,
two of them only are not trivial. . :

Without loss of generality, let us assume the pseudo-lossless rational func-
tion F(z) to have a pole at the point z = z; of the unit circle. The basic idea is
to perform extractions of pseudo-lossless components alternatively in z; and
zo as follows. (Recall that z; and zo are given points, with |z1] =1 and
|zo| < 1.) First, a partial extraction is performed on F(z) at z = z, while using
the available degree of freedom so as to create a zero of the remaining func-
tion at z = zo (step 2 below). Next, the pseudo-lossless component at z = 2 i$
extracted from the inverse of this remainder (step 4). The only purpose of the
auxiliary steps 1 and 3 is to get around some special cases. A full iteration loop
can in fact be described as follows.
Step 1

In case F(z) has a pole at z = zo, the corresponding pseudo -lossless com-
ponent Fo(z) is first extracted from F(z) to yield

F(z) = Fo(2) + Gi(z),  k(F) = k(Fo) + k(G1), (6)

with Fo(z) of the form (4') for z;= zo. If 2o is not a pole of F(z), one simply
sets Fo(z) = 0, i.e., F(z) = Gi(2). In any case one has the inequalities

K(G) <k(F),  degGi<degF. M

Step 2

By hypothesis, F(z) has a pole at the point z; of the unit circle. Hence G1(z)
has a pole at z;. Should we extract the pseudo-lossless component Fi(z) of
G1(z) at this point, we would obtain

Gi(z) = Fi(2) + H(z),  k(Gy) = k(F1) + k(H), ®)

with Fy(z) of the form (4") for z;=z,. Let us however not make this extrac-
tion and substitute for it the partial extraction implied by the decomposition

i) = 9@ + Gu,  with g = FEEIEL ()
where a is the unique complex number yleldmg Gl(zo) = q)l(zo) The functlon
#1(z), although being pseudo-lossless, is in general not equal to F1(z). Note in

particular that the index k(G:) generally differs from k(¢1) + k(G2) since
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@1(z) and G3(z)™! have normally a common pole in z, so that theorem 2 can-
not be applied. Eliminating G1(z) between (8) and (9), one derives the identity
G2(2)! = Fi(z) — ¢1(2) + H(z), whence k(Gz) = k(F1 — ¢1) + k(H), in view
of theorems 1 and 2, since the pseudo-lossless functions Fi(z) — ¢(z) and
H(z) have no common poles (by construction). Substituting in the last index
relation the value of k(H) deduced from (8) one finally obtains the result

k(G2) = k(G1) + k(F1 — ¢1) — k(F). (10

Due to theorem 3, the modulus of the difference k(F: — ¢1) — k(F1) cannot
exceed unity. Hence one has the inequalities

k(G2) < k(Gy) + 1,  deg G2 < deg Gu. (11)

Step 3

In the case Fi(z) = (Rea)(z, + z)/(z1 — z), the pseudo-lossless function
G2(z) does not vanish for z = z, and may even have a pole (possibly multiple)
at this point. In such an exceptional situation, the pseudo-lossless component
F1(z) at z; is extracted from Ga(z), together with a suitable imaginary con-
stant / X}, to yield

Guz) = Fi(2) + i X1+ Gs(z),  k(G2) = k(F¥) + k(Gs), (12

with F{(z) of the form (4"”) for z;=z,. The constant term /X, is chosen so
that the pseudo-lossless function Gs(z) has a zero at the point z;, i.e.,

iXy = lim [Ga(2) — F{(2)]. (13)

In any other situation we simply set Gs(z) = G(z). The following inequalities
are clearly satisfied in all cases

k(Gs) < k(Gy), deg Gs < deg Go. (14)

Step 4

By construction, the pseudo-lossless function Gz(z) has a pole at the point
Zo. Hence so has the function Gs(z). Let us denote by Fg(z) the pseudo-loss-
less component of Gs(z) at zo. Since the value Fg(z;) is imaginary, theorems 1
and 2 yield the decomposition

Gs(z) = Fi(2) — Fi(z)) + F(2)7',  k(Gs) = k(F§) + k(F), (15)
with F§(z) of the form (4’) for z; = zo. Due to theorem 3, the following in-
equalities are then obvious

K(T) < k(Gs) — 1, deg ¥ < deg G; — 1. (16)

It turns out that the pseudo-lossless rational function & (z) obtained at the
end of step 4 has a pole at the point z = z,. The imaginary constant Fg(z,) has
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indeed been introduced in the construction (15) of &(z) so as to produce
F(z1)™! = Gs(z1) = 0. Therefore, the whole procedure above can be iterated
by substituting &(z) for F(z) in step 1. The resulting algorithm reduces the
degree and does not increase the index, for each iteration loop, as it is shown
by concatenating the relations (7), (11), (14) and (16); indeed, these imply

K(H) < k(F), deg F < degF — 2. amn

Thus, for a given function F(z) of degree n, the algorithm stops when the
degree has been driven to zero after a maximum of #/2 or (n + 1)/2 iteration
loops, depending on whether # is even or odd. Note that the last loop is not
necessarily complete. In any case, the value of the index k(F) is obtained at
the end of the algorithm by adding together the index identities (6), (10), (12),
(15) relative to each step. As for the index ingredients k(Fo), k(F1), kK(F1 — ¢1),
k(FT) and k(Fg), they are computed by repeated use of theorem 3.
Although the method just described actually yields the index of any pseudo-
lossless rational function, its implementation into an efficient numerical
algorithm is certainly not obvious at this point. Its sophistication stems from
three different origins. First, provisions have been made in the general proce-
dure to cope with exceptional situations, such as the function F(z) having a
pole at zq (step 1) or the function Ga(z) not vanishing at z, (step 3). Secondly,
the actual computation of the extracted pseudo-lossless components can be
rather cumbersome (especially for multiple poles). Thirdly, the points z¢ and
z; can be arbitrarily selected (with |ze| <1 and |z;| = 1) and could even be
modified after each iteration loop.
In the next section it will be shown that the choice zo = 0 and z; = 1 leads to
a remarkably simple algorithm provided each iteration loop is regular, in the
sense that the following four conditions are satisfied:
(i) Fo(z) = 0. Then F(z) has no pole at z = 0 and step 1 is skipped.
(ii) degF; = 1. Then F(z) has a simple pole at z = 1 (step 2).
(iii) Fi(z) # (Rea)(1 + z)/(1 — z). Then Ga(z) has a zero at z = 1 and step 3
is skipped.
(iv) deg F§ = 1. Then Gs(z) has a simple pole at z = 0 (step 4).

4. The Bistritz test in the regular case

Let x(z) be any complex polynomial of degree n. As explained in sec. 2, the
index k(F) of the pseudo-lossless rational function

x(z) + %(2)

F&) = 30— %0

equals precisely the number N(x) counting the zéros of x(2) in the unit disk
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|z| <1, under the assumption that x(z) and £(z) are coprime. Let us further
assume x(z) to be normalized in such a way that the value x(1) is real.
Introducing the reciprocal polynomials

x(@) = X2

11—z

n(z) = x(2) + X(2),  Yn-1(2) = (18)

of degree n and n — 1, let us use the notation f,(2) = ¥.(2)/ (1 = 2) yn-1(2) in-
stead of F(z) to emphasize the degree of the pseudo-lossless function under
consideration. With the simple choice

zo=0 and 2z, =1, 19)

let us then apply the iterative procedure of the preceding section to determine
the value k(f.) = N(x) under the additional assumption that all iteration
loops are regular. It turns out that, in such a situation, the successive steps
involved in each loop take the following form.

Step 1

As the regularity condition (i) implies ¥,-1(0) # 0, this step reduces trivially
to Gi(z) = fu(2).
Step 2

By the regularity condition (ii), the pole of Gi(z) at z =1 is simple, which
means y,-1{1) # 0. Hence the expressions (8) and (9) of G,(z) have the form

1(1+Z) ¢Z+az

Ja(2) = + H(z), fu@)=—F—"+ G:2)", (20

where h1 = yn(1)/ 2y.-1(1) is nonzero due to the coprimeness assumption. The
parameter ¢ is determined by @ = yn(0)/ ¥»-1(0) in order to forceapoleatz = 0
for Ga(2). In view of (20), the pseudo-lossless function G2(z) can be written as
(1 — 2)yn1(2)

G0 = -5 0

, @1

where y,-2(z) denotes the reciprocal polynomial defined via
zYn-2(2) = (@ + & 2)Yu-1(2) — yu(2). (22)
From (10) it follows that the index of Ga(2) is determined by
2k(G2) = 2k(fx) + sgn k1 + sgn(Rea — hi).

Finally, in view of the relation 2(Re@ — A1) = yp-2(1)/ yn-1(1), the index k(G3)
can be expressed as

BAOE Ynr(1)
k(Gs) = k W) + 3 i —_ 23
( 2) (f) Sgn (1) + 2 sgn yn—z(l) ( )
234 Philips Journal of Rescarch  Vol.39 Nos 4/5 1984

IPR2018-1557
HTC EX1023, Page 244



Application of the index theory of pseudo-lossless functions

Step 3 .
By regularity condition (iii), the function Gz(z) has a zero at z = 1, which
means Yn-2(1) # 0 (so that (23) makes sense). This step trivially reduces to
Gs(Z) = Gz(Z).
Step 4

The pseudo-lossless function Gz(z) = Gs(z) has a simple pole at z = 0, by
regularity condition (iv). Thus y,-2(0) does not vanish. The pseudo-lossless
‘component Fg(z) has the form (4') with z; = 0 and y; = 1, i.e.,

* . -1 — . _ yn—l(o)
Fo(z) = —gi1z7' + g1z, with g1 = —yn—Z(O) . (24)

In view of (15) and (24), the pseudo-lossiess function &(z) is determined via
Goz) = —(g1+ Z12)(1 — )z + F(2)™. (25)

Defining the reciprocal polynomial y,-s(z) from the relation
2 yn-3(2) = (&1 + 812) Yn-2(2) — Ynr(2), (26)
and setting f.-2(z) = %(z), one is led at the end of the loop fo the pseudo-loss-

less function of degree n — 2 given by

Yn-2(2)
- = 27
Jn-2(2) 0= 2) yue® 27
in view of (25) and (26). Moreover, the index of f,-2(z) is found via (23) and
(24) to have the form

K(foet) = k() = 1+ 3 (sen 2800 4 sqn 22000). g

From the key observation that the relations (22) and (26) determining the

polynomials y.-2(z) and y.-s(z) have the same algebraic structure it follows

that the iterative procedure to compute £(f.), whence N(x), reduces to a sur-

prisingly simple form. Let us indeed define the sequence of reciprocal poly-
nomials y.(z), with degy:= ¢, by the descending recurrence formula

zZyi2(2) = (r + 0: 2) Ye-1(2) — yi(2), 29

fort=n,n—1,...,1, with the initialization (18) and the convention y_,(z) = 0,
i.e., 0 = (a1 + @1z) yo(z) — y1(z). Of course, the numbers ¢, are given by

_ y:(0)

= 30 (30
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Introduce then the stability parameters w1, wa, . . ., w, by defining

_ y:«(1) R
D= Gl

One is then led to_the following simple test to count the zeros of the poly-
nomial x(z) infhe unit disk |z] <1.

Theorem 4 [Bistritz test )]

Let x(z) be a complex polynomial of degree n, with x(1) real, written in
the form x(z) = [¥a(2) + (1 — 2)¥.-1(2)}/2 with y.(2) = x(z) + £(z) and
(1 = 2)yn-1(2) = x(2) — 2(z). If the n + 1 reciprocal polynomials y(z), y»-1(2),
..., Yo(z) generated by the recurrence relation (29) all exist and do not vanish
at the point z'= 1, then the number N(x) counting the zeros of x(z) in |z| <1
is equal to the number of negative elements in the associated sequence of
stability parameters (wn, Wp-1, - - ., W1), given by (31).

Proof

It follows from (29) that the greatest common divisor of y,(z) and y,-.(z)
must be a factor of y,(z) for all # > 0. Hence, as yo(z) = yo(1) # 0, the poly-
nomials y.(z) and y.-1(z) are coprime. Due to the assumption y,(1) # 0, this
implies that x(z) and #(z) are coprime. As a result, one has k(f,) = N(x) by
definition of the index.

On the other hand, the assumptions ¥,(0) + 0 and y,(1) # 0 for all ¢ are
easily verified to be equivalent to the regularity conditions (i)-(iv) for all itera-
tion loops. An iterative use of the index formula (28) then yields the desired
expression for £(f:), namely

k(fa) =1 (n - :1 sgn w,). _ 32)

This is immediate when n is even, and makes use of the obvious result
2k(f1) = 1 — sgnwi, with fi(z) = »1()/(1 — 2)ye(z), when n is odd. O
- It turns out that the Bistritz test enjoys a definite advantage, in terms of
computational complexity, with respect to the classical Schur-Cohn test for
obtaining the same number N(x). As all polynomials y,(z) produced by the
recurrence relation (29) are spontaneously reciprocal, only half of their coeffi-
cients have actually to be computed. Thus the Bistritz test requires, roughly
speaking, half the number of arithmetic multiplications involved in the Schur-
Cohn test.

Let us further observe from (29), (30) and (31) that the stability parameters
satisfy the recurrene relation

w: + w7 = 2Rea,, (33)
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for t = 2,3, ...,n, with the initialization w; = 2Rea; (i.e., wo = «). There-
fore, they can alternatively be computed in terms of the parameters a; instead
of the values y((1). In the same line, it is also interesting to note the following
algebraic property. From (29) one deduces that the numbers y.(1) satisfy the
system of linear equations

2Ree; ~—) ' o(l) 0
_ -1 :
I 2Reas 1 »h (34
-1 ' 0
-1 2Reas n-1(0]  Lya(1)

Let A denote the tridiagonal matrix of the system (34) and let 41,43, ...,4,
be the nested principal minors of A (from the upper corner). These minors are
known to obey the recurrence relation

At = (2Rea,)A;_1 - A(—Z, (35)

with the initialization 4_, = 0,4 = 1. A comparison of (33) and (35) shows
that the stability parameter w, can be expressed as the ratios

W= —, 1<t n. (36)

In view of Sylvester’s law of inertia, theorem 4 can therefore be recast as fol-
lows in terms of the tridiagonal matrix A of the system (34). The number N(x)
counting the zeros of x(z) in the unit disk equals the number of negative eigen-
values of A4.

A standard problem in system theory is to check whether a given polynomial
x(z) is stable, in the sense that it is devoid of zeros in the unit disk |z| <1.
Since any nonregular loop in the iterative computation of the index k(F) ofa
pseudo-lossless rational function F(z) produces a strictly positive contribution
to this index, theorem 4 directly yields the following criterion. A polynomial
x(z) of degree n, assumed to be coprime with £(z), is stable if and only if its
stability parameters @i, w2, ..., w, are well defined and are all positive. In

(1)
Ye-a(1) ’
rion can be given the following simplified form.

view of (33) and the obvious identity w,w,-2 = it is seen that this crite-

Corollary 5 [Bistritz stability criterion *°)]

A complex polynomial x(z) of degree n, coprime with £(z) and taking a real
value at the point z = 1, is stable if and only if the polynomials y.(z) produced
by the recurrence relation (29) fulfil both conditions
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Rea, > 0, for t=nn-1,...,1,

, | -
Yn-2(1) Pn-zjon(1) > 0, forj=o,1,...,["2 ]

S. The general Bistritz test, including the singular cases

The simple version of the Bistritz test given by theorem 4 fails to apply
whenever the general method involves a singular loop, i.e., an iteration loop
violating the regularity conditions (i)-(iv). Such a case is characterized by

= ¥:(0) = 0 or y,(1) = O for a certain value of ¢, which may cause an interruption

in the sequence of polynomials y«(z). To deal with such singularities, one has
to rely on the general form of the iterative procedure to determine the index of
an arbitrary pseudo-lossless rational function, as established in sec. 3.

Note first that the case y,(0) = 0, whence a, = 0, is not singular, and that
the possibility y.(1) = 0 has to be ruled out due to the assumption of copri-
meness between x(z) and £(z). In view of the definition of regularity at the end
of sec. 3, an iteration loop is singular when at least one of its four successive
steps is singular in the sense that it satisfies

l1+z *
=2 or degFg > 1.

Fo(z) + 0, deg F1 > 1, Fi(z) = (Re a)

It turns out that these cases are respectively equivalent to Yn-1(0) = 0,
Yn-1(1) = 0, yn-2(1) = 0 and y»-»(0) = 0. In any of them, appropriate substi-
tutes for the recurrence formula (29) will be produced by working out the suc-
cessive steps of the general loop in a polynomial form.

With F(z) = fu(z) = ya(2)/(1 = 2) yu-1(2), let us consider the general situa-
tion where y,-1(0) may vanish. Thus we write y,_;(z) = z¥ Pn-2u-1(z), with
u >0, where yn-2.-1(2) is a reciprocal polynomial, of degree n — 2u — 1, not
vanishing at z = 0. In view of theorem 3, the pseudo-lossless component Fo(2)
extracted in step 1 has the form Fo(z) = z™*m2.(z), with 72.(2) an antireci-
procal polynomial of degree 2u, i.e., m2.(2) = —7#24(2). Note that the coeffi-
cients of 72.(z) are obtained from the data by solving the equation

Yn(2) = (1 — 2) 72u(2) Yn-zu-1(z) mod z*.

Setting p = n — 2u and introducing the reciprocal polynomial Yp(z) defined by
the relation ‘

2" yp(2) = yu(2) = (1 — 2) W2u(2) Yp-1(2), (37

one is led at the end of step 1 to the results

G0 = @) = G=2D——, K =utk(p). (8
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As one has y,-1(0) # 0, by construction, step 2 is based on the same relation
as in (22). Thus the reciprocal polynomial y,-»(2) is defined via

z Yp-2(2) = (0p + ¥p 2) Yp-1(2) — ¥p(2), (39
with o, =yp(0)/yp-1(0). The function G2(z) and the index difference £(G1) — £(G2)

are then determined from y,.1 and y,_2 as follows. One has

(A = 2) yp(2) ' ' |

Goz) = ———=——"7—, k = k(G3) + a, 40

2(2) e (o) = K(G2) + a (40)

where a = k(F1) — k(F1 — ¢1). It turns out that a can only take the values — 1,

0 or 1. Three different situations can actually be met.
1°) If deg F, > 1, one has yp-1(1) = 0, yp-2(1) #+ 0 and a = 0 (trivially).

2°) If degF; = 1 and Fi(z) % M—(IZ“—), one has yp-1(1) # 0, yp-z(1) 0,
whence 2a = —(sgnw, + sgn wp-1) as explained in sec. 4.
3°) If Fi(z) = w, one has y,-i(1) # 0,yp-2(1) =0, whence

+ 2a =1 — sgnwpin view of theorem 3 and the identity w, = 2 Rea,, result-
ing from (39).
In the third situation, step 3 of the iteration loop is not trivial. The poly-
nomial y,-2(z) has a zero at z = 1 and hence has the form ‘

Yo-2(2) = (I = 12)" Yp-v-2(2)

with v > 1 and y,-,-2(1) # 0. The constant i* has been inserted in the factor
* (1 — z)* of yp-2(2z) so that the polynomial y,-,-2(z) be reciprocal. In view of
(40) and y,-1(1) # 0, the pseudo-lossless component Fi(z) + i X extracted
from Ga(z) can be written as Fy(z) + X1 = gy-1(2)/i*(1 — z)*™!, where 4-1(2)
is the reciprocal polynomial of degree v — 1 uniquely determined from the
equation y,-1(2) + z04-1(2) Yp-v-2(z) = Omod (1 — z)*. Setting then g=p —v
and defining the reciprocal polynomial y,-1(z) of degree g — 1 via the relation

(1 — 12)° g-1(2) = 2 04-1(2) Y4-2(2) + Yp-1(2), 41)
one obtains after completion of step 3 the expressions

(1 — 2) y4-1(2)

G2 =~ 55,50

, k(G2) = k(Gs) + b, 42)
with b k(F ¥). In view of (4"), (5) and the equality gy-1(1) = — y,,_l(l)/yq_z(l)
resulting from (41), the value of b is found to be
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b=lw-1 . . if v is odd,

b=1 (v — 1 —sgn %), if v is even. (43)

By construction, Gs(z) has a pole at z = 0, of multiplicity larger than one in
case ¥4-2(0) = 0. In the general situation let us write y;-2(z) = z¥ y4-2w-2(2),
with w > 0, where y,-2w-2(2) is a reciprocal polynomial, of degree g — 2w — 2,
not vanishing at z = 0. In view of (42) and theorem 3, the pseudo-lossless
component Fo(z) — E&"(l) extracted from Gs(z) in step 4 takes the form
F§(2) — Fe(1) = — (1 — 2) t2wa(2)/z¥*!, where T2w41(2) is the unique reci-
procal polynomial of degree 2w + 1 solution of the equation

Yg-1(2) = Taw+1(2) Yg-2w-2(z) mod z¥*!,

With r = g — 2w, define the reciprocal polynomial y,-a(z), of degree r — 3, via
the relation
2" y,-3(2) = Tow1(2) Yr-2(2) — Yg-1(2). (44)

The final outcome of the iteration loop is then found to be

_ _ Yr-2(2) _
F(z) = fr-2(z) = 0= 2920 ° k(Gs) = k(fr-2) + w + l.v 45)
To sum up, the singular loops of the Bistritz test are characterized by the
occurrence of one or several of the situations

Yn-1(0) = 0, ¥u-1(1) = 0, yu-2(1) = 0, and y,—2(0) = 0.

In such cases, one has to subsitute for the pair of polynomials y,-2(2), y.-s(2)
resulting from the standard relation (29) the pair of polynomials y,-2(z), yr-s(z)
obtained with the help of the general relations (37), (39), (41) and (44). The
index of the updated pseudo-lossless function fr-2(z) = yr-2(2)/(1 — z) yr-3(z)
is then related to the index of f.(z) through the concatenation of the index
identities (38), (40), (42) and (45), which are used instead of the standard
version (28).

The general polynomial relations above are easily seen to simplify into the
standard from (29) both in the regular case and in the singular case

yn-l(o) 75 0: yn—l(l) = 0’ yn-z(l) :# 0: yn—Z(O) + 0.
Note indeed that in the latter situation one has w, = ©, w,-1 = 0 but

yn(1)
yn—Z(l)
due to (29), which yields £(fu-2) = k(f») — 1, in agreement with (28); as
established from (38), (40) and (45) with u = w = @ = 0. Let us further observe

WnWp-1 = <0
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from the identity » = r 4+ 2u + v + 2w that in all other singular cases one has
both inequalities k(fr-2) << k(f») and deg f;-2 < degf, — 2. On the other hand,
let us emphasize that the four steps of a given loop cannot be all singular. In
particular, the cases ¥,-1(1) = 0 and y.-2(1) = 0 are mutually exclusive. Fin-
ally, let us note that repeated singular loops are quite possible.
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Abstract

This paper describes the complete characterization of potentials and of
stream functions, associated to general two-dimensional vector fields, as
encountered in the Helmholtz decomposition problem. We especially focus
attention on multiply connected domains. All the characterizations are
formulated in a variational form and are thus well suited to finite element
approximations.

Math. Rev.: 35A15, 35120, 35J67, 35Q99

1. Introduction

Recently, the authors obtained results on the stream function characteriza-
tion of divergence free vector fields'). This includes a new variational charac-
terization and an explicit determination of the constants attained by the
stream function on the connected components of the boundary. These results
are summarized in the sec. 2. The ideas that led to these results can easily be
applied to characterize potentials which represent irrotational vector fields, in
the most general cases. This is considered in sec. 3. Main contribution of this
paper concerns the decomposition of arbitrary vector fields on &22, which have
least squares components, and are defined on multiply connected domains.
Such Helmholtz decomposition of a vector field as a sum of a divergence free
vector field and an irrotational vector field, is indeed known since long (see
ref. 2). However the applicability of such decompositions as well as precise
characterizations in a wide variety of cases, and in particular on multiply con-
nected domains, have been given little attention. In particular we fill this gap
and analyse such Helmholtz decompositions of vector fields defined on mul-
tiply connected domains. We especially focus attention on the variational
formulations and on the complete characterization of all possible realizations
(sec. 4). Méreoyer we try to better understand the underlying mechanism of
decomposition, ‘by discovering the origins of its multiplicity (sec. 5).
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Throughout the paper we consider a domain £ which is supposed to be an
open bounded subset of 2%, having a Lipschitz-continuous boundary. This
domain is also supposed to be multiply connected. The boundary has thus
several connected components [; fori = 0, ..., n, I'; being the outer boundary.
Most of further notations are standard (see refs 3 and 4).

2. Stream function representation of divergence free vector fields

We consider here the characterization problem of divergence free vector
flelds in L2(2)? (also called solenoidal vector fields). Further, some particulari-
zations are obtained for more regular vector fields. In practical cases, most of
these fields are related to problems of hydraulics and rheology °:%).

For every vector field v in the space

W={wel*Q)? divw=0, {y»w,1),=0,i=0,...,n}, )
there exists a unique stream function class € H*(Q)/Z, such that
v=curly = @2, —01V), Wwe,
and this correspondence
SweW—ye H(Q)/R. 2

is a Hilbert-space isomorphism?®). The main characterization for such as-
sociated stream function class is given in the following theorem.

Theorem 1
For every v e W, the stream function class i = Swv is unique solution of the
variational problem: v € H(Q)/

(grady, gradX)yo = (v, curl X),, VXeH'(Q).

Proof

We first prove that the variational equation characterizes a unique solution.
Obviously the form (grad.,grad.),, belongs to L(H (R2)/R, H(Q)R; R)
and is H*(22)/R-elliptic, since |. |, o in H(2)/2 is a norm equivalent to ||. ||, o-
On the other hand, the form-(v, curl.), , € L(H(Q)/R, &), since

| (v, curl X)o 0| < 2|| 2|0l X ] 10

Then by the Lax-Milgram theorem we obtain the existence and unicity of the
solution. To show that the variational equation is equivalent to state that
w=_Sv in W, we proceed as follows. For any solution €y of the equa-
tion, we have (curly, curlX), o = (v, curlX), o, for VX € HY(R2)/2R. Obviously

Philips Journal of Research Vol. 39 Nos 4/5 1984

243
IPR2018-1557
HTC EX1023, Page 253




C. Dierieck and F. Crowet

v — curly e W1l in L2(2)2. On the other hand v and curl ¥ are in W, and con-
sequently we obtain the desired result. , 0

In some particular cases, this characterization can be proved, to be equiv-
alent with a single boundary value problem. This mainly concerns vector fields
in Wn H(curl; 2) and W n Ho(div; 2). .

For vector fields in W n H(curl; 2), we can formulate a more appropriate
characterization. It is important to point out, that only for such vector fields
curlve L*(2). The characterization of the stream function class can thus
equivalently be stated as a Neumann problem. The compatibility condition
being always satisfied by a Green formula. We obtain:

Corollary 2 ‘
For every ve W n H(curl; 2), the following statements are equivalent

(1) weHY Q)R and ¥ =Sv.
(@ weH\Q)%:
(grad y, grad X), o = (curl v, X)g o — Y0, v0X)r VX HY Q).
(B) weHYQ)/R: —Ay =curlv in L,
ow= —yv onl.

For vector fields in W N Ho(div; 2) = {we L*(Q)?;divw = 0,y, w = 0},
there exists a unique stream function that vanishes on the outer boundary. In-
deed stream functions related to vector fields in W N Hy(div; £2) are constant
on every connected component of the boundary. It turns out to be useful to
introduce the following H*' geometrical basis functions, which only depend on
geometrical data, and are defined for every i = 1,...,n as:

pie H(Q): —Ap; =0 in Q, 3)
pi=0d; onl;; j=0,...,n

We deduce then the following result, where we obtain an explicit characteriza-
tion of the constants ¢;, which the stream function attains on the connected
components of the boundary. This is a new result and replaces known indirect
methods as described in ref. 7.

Corollary 3
For every ve W n Hy(div; Q) there exists a unique stream function, which
vanishes on the outer boundary, and is in

& =Hy(R) ®spanfgi; i=1,...,n}. 4
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The following statements are equivalent: -
1) u/ eSvn d.

@ w=vo+ Z ci¢i Wwhere;

(1) y/oeHo(Q) -—Al//o =curlv in @,
(i) ¢i;i=1,...,n aredefined by (3),
(iii) (c1,...,Cn) € &

_Z ci(grad g;, grad g)oo = (v, curl@)op j=1,...,n

Proof

For every ve W n Hy(div; ) we can construct ¥ = o + Z cig; according
i=1

to (2.i-iii). Indeed for such problem there exists a unique solution, and in par-

ticular for (iii) since the linear operator is positive definite. By construction we

have thus that ¥ = wo + ), c:i¢; satisfies (v — curly, curlX)o, =0 for all
i=1

X € @, which is equivalent to state that v = curly in W N Ho(div; ). The con-

verse is deduced from theorem 1 and eq. (4). O

It is interesting to remark that span {@;; i=1, ..., n} is the orthogonal
complement of Hy(R2) in @, endowed with the norm || grad. ||,o. We obtain
thus a representation formula for elements in @ which relies on its orthogonal
direct sum decomposition. This result is an immediate consequence of the
variational characterization of the ¢;, defined in eq. (3):

(grad g, gradX)oo = 0 VX € Hy(Q). (5

In the light of the two preceding corollaries 2 and 3, we can now obtain a
better insight into the mechanism that governs the stream function character-
ization. It becomes then clear, why the general characterization of theorem 1
is not directly linked up with a single operator equation. Indeed, for some
arbitrary vector fields » € W, the function curlv, is not in general contained in
L?*(Q). Consequently the stream function cannot be defined by a single Neu-
mann problem. Nevertheless and in order to associate an operator formula-
tion to the characterization of theorem 1, we can first determine an element
wo€ W N Hy(div; Q) such that curl we = curlv in H~1(Q). At this stage, what
is important to remark, is that by this construction [v — wo] e W N H(curl; 2).
Consequently we can then apply the characterization of corollary 2 to the
vector [v — wo] and obtain:

Corollary 4
. For every ve W we have o + w1€ Sv, where the stream functions are uni-
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quely characterized, up to a constant as follows 8):

¢)) woe Hy(Q); — Ay = curlv in Q,

2) Vi eH'QIR: —Ay1=0 in 2,
wi= —p: (v —curlyy) on I.

The latter result is equivalent to an orthogonal direct sum decomposition of W,
Indeed denoting

Wo = {eurly; y e Hy()}, ' (6)
Wi ={veW; curlv = 0 in 2}, @)

we have that .
W=W,® W, ®

where W, is the orthogonal complement of W, in W, as subspace of L% ()2

3. Characterization of potentials for irrotational vector fields

In this section, we turn now to the characterization of the potentials related
to irrotational vector fields, as are encountered e.g. in the so called potential
flows®) and also in electric field calculations. It is easy to show that all charac-
terizations for potentials of irrotational vector fields are immediately obtained
from the results on the stream function characterizations, reported in the pre-
ceding paragraph.

From the preceding paragraph we deduce, by considering a linear isometry
le O*(L*(2)?) defined as: /v = (—wv2,v;) for ve L(Q)? that for every vector
field v in the space:

X={wel Q% curlw=0,{y:w, 1),=0,i=0,...,n}, ()]
there exists a unique class ¢ € H(2)/% such that v = grad g, for ¢ € 9. More-
over this correspondence, defined as:

P:veX—¢peHY Q)R (10
is a Hilbert space isomorphism. We deduce from theorem 1, the following

characterization:

Theorem 5
For every v € X, there exists a unique class of potentials ¢ = Pv, character-
ized by the variational problem: ¢ € HY(Q)/%:

(grad ¢, gradX)o o = (v, gradX)o, VXeHY(Q).

In some particular situations, this characterization can here also be trans-
formed as is done in the preceding section.
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For vector fields in X n H(div; Q) = {we X;divwe L?(2)}, we deduce from
corollary 2 an appropriate characterization. We remark that only irrotational
" vector fields in X n H(div; ) can be represented by potentials that are solutions
of a Neumann problem, the compatibility condition being trivially satisfied.

Corollary 6
For every v € X N H(div; ), the following statements are equivalent:

(1) ¢eH' Q)R and v =gradg, peg.
Q2 ¢eH(QIR:
(grad o, grad X)o o = (—div v, X)oo + (W0, 70 X)r VX HY(Q).
B) ¢eHYQ)R: —Ap = —divy in Q,
v = Pyv onlrl.

For vector fields in X n Ho(curl; 2) = {we L%(2)*; curlw = 0,y w = 0},
there exists a unique potential which vanishes on the outer boundary. Indeed
potentials related to vector fields in X N Ho(curl; £2) are constant on every
connected component of the boundary, and are elements of @, defined in
eq. (4). From corollary 3, we immediately deduce:

Corollary 7
For every v € X n Hy(curl; Q) there exists a unique potential

ped =HyRQ) @ spanfp;i=1,...,n}.
The following statements are equivalent:
1) pePvnd.

#) ¢ = @o+ ), dipi, where

i=1
@) po€ H)(R2): —Ago = —divv in®Q,
(ii) ¢i;i=1,...,n are defined by (3),
(iii) di, ..., d,)ER":

Y. di(grad ¢;, grad 9))o o = (v, grad ))oo, j =1,.. ., 1.
i=1

Note that the constants {d;; i = 1, ..., n} exist and are uniquely defined, since
the matrix of the linear system (2-ii) is positive definite.

By extension of the previous results, we readily deduce the following equiv-
alent characterization of theorem 5, for the class of potentials related to
general vector fields in X. :

Corollary 8
For every v e X, we have (po + ¢1) € Pv, where the potentials are uniquely
characterized, up to a constant as follows:
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0 9o € Ho(Q): —Apo = —divo in 2,
) 01€e H(Q)R: —Apr=0 in Q,
dvp1 = p(v — grad o) onr.

. Here again it is important to stress an orthogonal direct sum decomposition
of X, which is implicitly contained in the preceding corollary 8. Indeed if we
define:

Xo = {grad ¢; ¢ € Hy(Q)}, (11)
X, ={veX;divo =0 inQ}, (12)

we readily obtain that
X =Xo® X, (13)

since X is the orthogonal complement of X, in X, as subspace of L2(Q)2.

4. Representation of vector fields from L2(R2)2

We are now ready to turn to our main topic, namely the Helmholtz decom-
position problem for general vector fields in L*(Q)2. For some given v € L%(2)?
we have to find all ge X and ce W such that v =g + ¢. We immediately de-
duce that such equality, implies f[v — g]e Wand [v — ¢] e X. Let us first recall
the well-known fact that any element in L%(2)? can be split up into two parts:
one in X and the other in W. We have: L}(Q2)2 ={g + ¢; ge X, ce W}. Taking
into account eqgs (8) and (13) we deduce from the preceding theorem a first de-
composition of L*(2)%, which however, is not orthogonal:

LZ(.Q)2 =Xo+ X1+ Wo+ Wi.

Indeed we only have that: Xo L (W, @ W1), and Wy L (Xo @ X3). In the
sequel we are now particularly interested in obtaining all possible decomposi-
tions of vector fields in L%(£2)2. What is important to remark first, is that for
a general v in L2(2)? neither y, v nor y.v are defined. Moreover for a general
ge X and ce W neither y,g nor y.c exist in H-2(I"), only y.g and y, € are
well defined in H~#(I"). Therefore it is not possible, in general, to prescribe
neither y,g nor y:c, in order to do the decomposition. However the trace .
yv[v —g] (resp. y<[v —c]) will be well defined in H-3(I") since we require
[v — gle H(div; Q) (resp. [v — c] € H(curl; 2)). A first type of decomposition
can then be obtained by constructing [v — g] or ¢ with a prescribed trace
Pvlv —gl =y.c=h, h being any element of H~#(I") such that (A, 1), =0,
i=0,1,...,n. Secondly, another type of realization of the decomposition
relies on the following considerations: [v —¢] or g has a prescribed trace;
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ye[v —c] = y:g=p, where p is any element of H -i(I") which satisfies
(o, Hr=0,i=0,1,

In the sequel we turn to the detailed construction of the separate compo-
nents of some given vector field in L?(£2)2.

4.1. General decompositions

We consider first the decomposition of an arbitrary vector field » in L*()?,
where the solenoidal component has a prescribed trace p..

Theorem 9
For every ve LA(2)2, and for every #e H~#(I") which satisfies

<h,l>r’=0, i=0,...,n

there exists a unique decomposition of v as g + ¢ where ceW, y,c=h and
geX. The characterization of ¢ and ¥ such that: v = gradg + curly in L3()?,
is as follows:

(1) peHYQ)/R: .

(gradg, grad’®), o = (v, gradX)go — {1, ¥0X)rs - VXeHY(Q), (14)
(2) weH'(Q)IR:

(grady, gradX)oo = (v, curlX)gq + (yegradg, yoXdr, VXEH Q). (15)

Proof

We first determine some irrotational vector field g € X such that [v —gleW,
withp,[v—gl = h,in H -3(I"). We can always construct such g€ X uniquely, as
g = grad(po + ¢1), by using corollary 8, where: go e Hy(Q)and ¢, e HY(Q)/R.
The characterization of ¢ = @o + @1 can equivalently be replaced by (14),
owing to theorem 5. The stream function class associated to [v — g] follows
then immediately from theorem 1, such that: curly = v — grad(po + ¢1) in
W, where i is characterized by eq. (15), taking into account that Xo and W are
orthogonal. O

We consider now a second type of decomposition of an arbitrary vector field
v e L%(Q)?, where the irrotational component has a prescribed trace y-.

Theorem 10
For every v € L?(22)%, and for every pe H -+ (I") which satisfies

<p’1>l",=o, i=0,...,n,

there exists a unique decomposition of v as é+ cwhere ceW, geXand y.g=p.
The characterization of ¢ and ¥ such that: v = grad ¢ + curly in L*(Q)?, is
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as follows:
(1) weHYQ)/R:
(grady, gradX)o o = (v, curlX)oo + {p, Y0 X)ps Vxe H'(Q), (16)

2) ¢peHY(DIR:
(grado, gradX)o, = (v, gradX)g o — (pveurly, yoX),, VXeHY Q). (17)

Proof

This decomposition amounts to the construction of some irrotational field
ce W such that [v — c] € X, and p:[v — ¢] = p, in H~3(I"). The construction of
such element ce W can be realized using corollary 4. There exists a uniquely
defined woe Ho(2) and 1€ H'(£2)/ 2R such that ¢ = curl(wo + w1). The stream
function ¥ = wo + w1 can equivalently be characterized, owing to theorem 1
by eq. (16). The potential class, associated to [v — ¢] follows then immediately
from theorem 5. We have: gradg = v — curl(wo + ¥1) in X, where ¢ is char-
acterized by eq. (17), taking into account that W, and X are orthogonal. O

4.2. Decompositions of vector fields of H(div; Q) and H(curl; Q)

If ve H(div; Q) (resp. ve H(curl; Q)) then the trace y,v (resp. yv) is de-
~ fined in H#(I"), and the potential class ¢ (resp. the stream function class W)
obtained in the two preceding decompositions, can be equivalently charac-
terized by a Neumann problem. In this case, the two previous decompositions
(theorems 9 and 10) can be done in a special way. If v e H(div; Q), the exis-
tence of the trace y, v in H-%(I") allows to define pv . Clearly, y, ¢ can also be
determined by prescribing the trace of g in H#(I"): y, g = k. Thus, for any k,
arbitrarily chosen in H~#(I) such that (y,v —k,1),=0,i=0,1,...,n, it is
possible to realize the decomposition of theorem 9 with 4 chosen as y,v — k.
The following theorem states this resuit.

Theorem 11
For every v e H(div; ), and for every ke H~3(I") which satisfies

ks =, 1), i=0,1,...,n,

there exists a unique decomposition of » as g + ¢ where ce W, geX and
¥»&=k. The characterization of ¢ and y such that: v = grade + curly in
L2(£2)?, is as follows:
¢)) pe HY(Q)/R:

(grad ¢, grad X)o o= (—divo, X)go + {k, Yo X)p, VX € HY().
¥)) e HY(Q)/ZR: defined by eq. (15).

Similarly if v € H(curl; ), then p; v exists in H~#(I") and we can consider Yr 8.
The knowledge of the trace y: ¢ in H~-#(I") can determine y. g. Thus for any q,
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arbitrarily chosen in H- (") such that {y.v — g, 1), =0,i=0,1,...,n,itis
possible to perform the decomposition of theorem 10 with p chosen as y-v — ¢
We deduce the following result.

Theorem 12
For every v € H(curl; 2), and for every ge H -1(I") which satisfies

(g, Dpy=(prv, 1), i=0,...,n

there exists a unique decomposition of v as g + ¢ where geX, ce Wand y:c=gq.
The characterization of ¢ and ¥ such that: v = grade + curly in L*(Q)?, is as
follows:

€)) weHY(Q)R: .
(grad v, grad X), o = (curl v, X)oq = (g, Yo XDr, VX € H ().
) ¢ e HY(Q)/R: defined by eq. (17).

It becomes now clear, that the only arbitrariness in the decomposition of an
element ve L2(Q)? asv = g + ¢, ge X, ce W, is the choice of the traces y, c and
y.g. Consequently, the theorems 9-12 prov1de all possible ways in realizing
the decomposition of ».

5. Interpretation of the multiplicity of decompositions in LYQ)?

In the preceding sections, we gained insight into the variety of decomposi-
tions which are available for general vector fields in L2(Q)%. To better under-
stand the underlying mechanism of decomposition, we introduce a subspace
of L2(£2)? and review some of the basic results in decomposition.

We consider:

R={ve L*(Q)?% divv =0, curlv = 0}, (18)

which in general, includes the space X n W. In particular for a simply
connected domain, we have that R =X n W. The space R is a subspace of
H(div; Q) and of H(curl; £2). Consequently for every v € R, the traces y,v and
y.v always exist in H-3(I"). From theorem 9 we deduce that for every veR,
and for every he H-4(I") which satisfies {(h, 1), =0 for i =0,...,n, there
exists a unique decomposition of v as grad g, + curly, where p, curly, = A.
Similarly from theorem 10 we deduce that for every »e R, and for every
peHi(I") which satisfies {p, 1), =0 for i =0, ..., n, there exists a unique
decomposition of v as grad ¢, + curly, where y:grad g, = p. Consequently
we can also note the following equivalent characterization for R defined in
eq. (18):

= {g+c;ge X1, ceWh}. (19)

Moreover, it is important to stress, that whenever the domain £ is simply con-
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nected, then R =X, n W;. For a given vector field v € L2(2)? we can now,
interpret the decomposition. We first determine two vectors one in X, and the
other in Wy. This amounts to the construction of go = grad ¢, in Xo, where
poe Ho(R2): —Apo = —divw in 2, and also of ¢o = curly, in W, where
woe Hy(Q): —Awo = curlv in Q. These two vectors go and ¢, are uniquely
determined for a given v. Main fact, which is to be stressed now, is that the
vector [v — go — co] is in R, and is obviously uniquely defined. Moreover it is
easy to verify that Xo, Wy and R are two by two orthogonal. We obtain thus
the following canonical decomposition of v in L2(Q)2: v= go + co + r, with
8o € Xo, co€ Wy, reR. The following theorem is a new and basic result.

Theorem 13
The space L2(22)% admits an orthogonal direct sum decomposition:

L*(2)? = Xo @ Wo D R,

where Xy, Wy, R are two by two orthogonal subspaces, defined resp. by eqs
(11), (6), (18) or (19). If Q is simply connected, then moreover

R=XinWi=XnW.

As results from the secs 2 and 3, there exists a unique class of potentials re-
presenting go and also a unique stream function class representing co. On the
contrary, the vector r uniguely defined in R, has no unique representation as
gradg + curly. Indeed as was stressed in the preceding, we can represent
reR in several ways. As is shown before, for every he H-i(I') satisfying
(h,1)r,=0,i=0,1,...,nwecanrepresent r as: r = grad @, + curly,, where
yveurlyy, = h. Consequently, for every A, there exists a unique representation
for v e L2(R2)? as: v = grad (po + @) + curl (o + ws), where

yveurl (wo + i) = h.

Similarly, for every pe H-3(I") which satisfies P, 1Dp,=0,i=0,1,...,n, we
can also represent r uniquely as: r = grad ¢, + curly,, y-gradg, =p. Thus,
for every p, there exists a unique representation for v as

v = grad (9o + ¢p) + curl (Wo + W),

where y.grad (9o + ¢,) = p, as was pointed out above.

6. Conclusion

Throughout the paper, we aimed to obtain precise and complete charac-
terizations for the potentials and the stream functions that represent two-
dimensional vector fields of LZ(£2)? in most practical situations. About the
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stream function representation of divergence free vector fields, elements of eq.
(1), the main characterization is formulated in theorem 1. Some variants are
obtained in general (corollary 4) and in two particular cases: for vector fields in
W N H(curl; Q) and W n Ho(div; ), resp. in corollary 2 and 3. The charac-
terization of the potentials associated to irrotational vector fields, elements of
(9) is obtained in theorem 5, and consists of the basic result, governing such
correspondence. In two particular cases, equivalent formulations are obtained,
i.e. for vector fields in X N H(div; ) (corollary 6) and X N Ho(curl; ) (cor-
rollary 7). :

These results and considerations enabled us to solve completely the Helm-
holtz decomposition problem. Indeed in sec. 4, we considered two basic types
of realizations, for a decomposition of arbitrary vector fields in L? (£2)2. They
are considered in the theorems 9 and 10. For any vector field v € L2(2)? it is
thus possible to realize the decomposition of » as grad¢ + curly, where one
of the following conditions is realized: p, curly = h or y-grad ¢ = p, with %
and p being any function in H-i#(I") which satisfies (b, 1), =0,i=0,...,n,
and {p, 1), =0,i=0,...,n. In two particular cases, we could realize these
two fundamental decompositions in a special way. This concerns vector fields
in H(div; 2) (theorem 11) or in H(curl; ) (theorem 12). A final result is given
in theorem 13, where we obtained a canonical decomposition of L?()*. This
result governs the multiplicity of decompositions, and moreover allows an
interpretation of the mechanism of decomposition (sec. 5).
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FORMATION, THERMAL STABILITY AND PHYSICAL
PROPERTIES OF AMORPHOUS 3d-BASED ALLOYS

by K. H. J. BUSCHOW
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

t

Abstract

A few technological applications of amorphous alloys are briefly discussed,
stressing some unique properties of amorphous alloys. A comparative
study is made of the glass forming tendency and the thermal stability in
several Ni-base amorphous alloys. New experimental data for crystalliza-
tion temperatures are given for amorphous alloys'in which Ni is combined
with Nb, Gd and Th. The occurrence of compositional short range ordering
and its effect on the crystallization temperature, activation energy for crys-
tallization, heat of formation and magnetic properties is discussed. New
experimental data of the magnetic properties of amorphous Zr;_.Fe,,
La,_.Ni; and W,_,Co, alloys are given. The interpretation of the magnetic
properties of these alloys and of alloys reported in the literature, is made in
the light of experimental results obtained by means of various techniques
used to study the electronic properties of amorphous alloys.

PACS numbers: 81.50-e, 75.50kj, 71.20. +c.

1. Intro-duction

Many amorphous alloys have superior properties compared to their crys-
talline counterparts which make them suitable for various technological appli-
cations. These comprise applications as superconducting materials, starting
materials for permanent magnets, materials for high frequency transformer
cores or recording heads. Thin films of amorphous alloys are applied in various
types of high density recording but also in corrosion resistant coatings. By way
of introduction a few examples of such applications will be briefly discussed.

The application of amorphous alloys in high frequency devices and trans-
former cores requires low hysteresis losses. Here one may benefit from the
absence of grain boundaries in amorphous alloys which usually can act as
pinning centres for Bloch walls. The metastable nature of amorphous alloys
offers a further advantage that can be used to improve their performance. It is
well known by now that subtle atomic rearrangements can take place in amor-
phous alloys. These so-called structural relaxations lead to slightly enhanced
. stabilities and the associated activation energies are low compared to the cor-
responding activation energies for the amorphous to crystalline transforma-
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tion. Structural rearrangements can be initiated by annealing below the crys-
tallization temperature Tx. The distribution of directions associated with the
atomic rearrangements is isotropic in character. But the presence of domain
walls and a preferred magnetization direction within the domains induces an
anisotropy in the atomic rearrangements which leads to domain wall fixing.
Much improved results can be obtained by annealing in a magnetic field which
reduces the hysteresis energy losses. Qblique field annealing can be shown to
be useful, in particular, since it increases the number of 180° domain walls
and hence reduces the losses due to eddy currents *).

Thin amorphous films based on rare earths (R) and either Co or Fe (T) are
applied in high density magneto-optical recording?). The suitability of these
materials stems from a high positive uniaxial anisotropy which fixes the mag-
netization in a direction perpendicular to the film plane. This anisotropy, in
combination with the strong ferromagnetic coupling between the 7" moments
and the weaker antiferromagnetic coupling between the R and 7 moments, is
the reason that alloys of an appropriate R/3d ratio exhibit the favourable
feature of being magnetically hard at room temperature but magnetically soft
at slightly higher temperatures. This feature is used for thermomagnetic
Writing by means of a laser beam which locally reverses the magnetization
direction (see fig. 1). The presence of the positive uniaxial anisotropy is known
to depend on the preparatory conditions. In Fe~based materials prepared by
co-evaporation of the constituent metals it originates from column shaped

pulsed
laser beam

- low contrast {«@, )
- reversible

NN

- high contrast (R)

- irreversible
c Vitrification
substrate

-medium contrast (R)
-reversible

Fig. 1. Schematic representation of different types of high density recording devices based on
amorphous alloys (¢x stands for Kerr effect read-out, R for reflectance difference read-out).
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microstructure. In Co-based materials made by carefully controlled sputter-
ing it is thought to arise from a directional anisotropy in the arrangement of
pairs of Co atoms?). A more detailed discussion of the origin of the uniaxial
anisotropy in rare earth 3d-transition metal films is given in ref. 4. High
density recording can be achieved also with other types of amorphous alloys
where one uses the difference in optical reflectance or transmittance between
the amorphous and crystalline state (see fig. 1).

It will be clear that in order to provide a broad experimental basis for these
applications and in order to have a good understanding of the physical pro-
cesses involved, some fundamental research regarding the stability of amor-
phous alloys and their electronic and magnetic properties is desirable. In the
first place one has to keep in mind that the metastable character of amorphous
alloys, apart from the advantages mentioned above, has also a great disadvan-
tage since it makes amorphous alloys go over to the stable crystalline state as a .
function of temperature and time. A large part of this report will therefore be
devoted to thermal stability. A simple model described earlier will be discussed
and applied to the many experimental data now available for Ni alloys. This
will be followed by a discussion of the occurrence of Compositional Short
Range Order (CSRO). Although the occurrence of CSRO strongly affects the
stability of the amorphous alloy (making it less metastable) its influence on the
thermal stability is only of moderate importance. Finally, it will be shown
that the occurrence of CSRO is also of influence when dealing with magnetic
properties.

2. Model description

In several previous publications %) a simple model has been developed in
which the crystallization temperature T, was descrlbed in terms of a semi-
empirical relationship of the form

T. = 7.5AH,, 0y

where Ty is given in K and AHj in kJ per mol of the amorphous alloy 4 Bs.
. The quantity AHj is the hole formation enthalpy and pertains to a hole of the
same size as the smaller type of atom in the amorphous alloy A;-.Bs. For a
given alloy the hole enthalpy can easily be derived by means of the expression

AH, = ZAHD, (1 - ‘)( ) AH, @)

using the values of the monovacancy energies (AH 4, AH?Y,) and the values of
the molar volumes (Va, V) listed for almost all metals by Miedema %). The
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effective concentrations X4 and Xz are obtained from the actual concentrations
by weighing these latter with the corresponding cross-sectional areas of the 4
and B atoms. Using the fact that the cross-sectional areas are proportional to
vi (V is the atomic volume) one has

Fp=X=xVe [(1 —)Vad +xVef]; %a=1- % 3)

Examples in which the experimental T values are compared with model cal-
culations are given in the bottom part of fig. 2. The results shown in the top
part of the figure stress the fact that the thermal stability of amorphous alloys
is not correlated with the heat of compound formation in the corresponding
binary system. Experimental results obtained for a relatively large number of
different binary Ni-based systems are compared with model calculations in
fig. 3.

o

AHs{ k J/mol)
N
o

-40
150

Nb {1000
=100 | e . eooﬁ
£ Ti x
= 4 600 x
x
o v 4 400
5 50 “

Sn 4 200

A1-xNix
0 ' 1 t 3 : I ' 1 I 0

0 02 04 06, 08 10

Fig. 2. Bottom part: Comparison of the concentration dependence of the crystallization tempera-
tures (7,) in various amorphous A4,_.Ni; alloys. The data for A = Ti and Nb were obtained with a
heating rate s = 50 K/min on melt spun ribbons. The data for A = Sn were obtained on vapour-
deposited alloys with a heating rate s = 2 K/min, kindly provided by Chr. Janot. The full curves

represent model calculations made on the basis of eqs (1-3) given in the main text. The scales on

the left and right vertical axes correspond to the relation T, = 7.5 A Hj where Tk is given in K and
AHj is given in kJ per mol alloy A,-,Ni,. Top part: Concentration dependence of the heat of for-
mation in various 4,-,Ni, alloys 4 = Sn, Nb and Ti derived from the data published by Niessen
et al. '?),
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1000} Av-x Nix
K |
800} o
X
600y o Nb
s Ti
B o Zr
0 ‘o Hf
400} < U
+ Th
i s Gd
a Pr
200 o La
* Sn
0 ! f ! f 1 1 It 1 ' ' : | A
0 20 40 60 80 100 120 140
AH (kJ/mol)
Fig. 3. Comparison of experimental T, values with calculated hole enthalpies AH), in various
A1-xNi; alloys. The data were taken from the following sources: A = Nb (this investigation, see
table I) A = Ti (ref. 13), A = Zr (ref. 14), A = Hf (ref. 15), A = Th,Gd (present investigation, see
table I}, A = La,Pr (ref. 5). The data for 4 = Sn were kindly provided by Chr. Janot.
TABLE 1
Crystallization temperatures, determined at a heating rate of 50 K/min,

for several Ni-based amorphous alloys considered in fig. 3.

composition T, (K) composition Ty (K)
Gd,;-xNi, Th;-xNix

x = 0.28 547 x = 0.25 645
-0.29 545 0.30 662
0.30 549 0.40 653
0.32 559 0.55 607
0.34 572 0.70 642

0.36 585 Nb; - Ni, ' -
0.40 551 x = 0.42 " 943
0.52 565 0.52 933
0.56 568 0.60 925
0.58 557 : 0.61 943
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In general, the agreement between model predictions and experiment is
quite satisfactory. Yet there are two unsatisfactory aspects associated with the
model description.

() The above description of the thermal stability of amorphous alloys is
based on a kinetic approach which assumes proportionality between the
temperature of incipient crystallization (7%) and the activation energy AE
for viscous flow ":#). The latter activation energy was taken to be propor-
tional to the hole formation enthalpy (AE « AH}). Calorimetric measure-
ments make it possible to obtain experimental values for AE so that one
can compare the experimental 7, values directly with the corresponding
experimental activation energies. When this is done one is faced with the
rather peculiar situation that the experimental T values are not propor-
tional to the experimental activation energies AE. Remarkably enough,

. they are proportional to the calculated values AHj.

(ii) One might ask the question why the predictions of the model are not
affected by the occurrence of CSRO. When the heat of alloying (AHy) or
heat of compounding (A Hy) is strongly negative one expects the occurrence
of CSRO. In such cases the average number of dissimilar neighbours is
larger than that expected on the basis of a random distribution of atoms.
Moreover, the degree to which CSRO occurs will be the larger, the more
negative the corresponding value of AH:®). For instance, one expects
CSRO in Ti,-«Ni, to be substantially higher than in Sn;,Ni, (see top part
of fig. 3), although the T values in both systems behave in satisfactory
agreement with the predictions of the model.

3. Heat of formation and CSRO

Experimental evidence for the presence of compositional short range order-
ing in different types of amorphous alloys was obtained on several occa-
sions »1%). In this report we will discuss some results of calorimetric measure-
ments. The evidence for CSRO is an indirect one but the discussion of the
calorimetric results offers the advantage that a connection can be made with
the relative stability of crystalline and amorphous alloys.

The values of the formation enthalpy AH; for a number of Zr-Ni com-
pounds have been plotted as a function of composition (filled circles) in fig. 4.
These values were obtained by Henaff et al.'!) by means of solution calori-
metry. The open squares in fig. 4 represent the formation enthalpies of amor-
phous Zr;_.Ni, alloys of various concentrations. These values were derived
from the heat of crystallization AH,, and from the heat of formation of the
two-phase mixtures (AHy) in which the amorphous alloys had crystallized.
Since in a given binary system the heat of formation in the two-phase region
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Fig. 4. Heat of formation (A Hy) of several Zr—Ni compound obtained by solution calorimetry
(filled circles, ref. 11). The lines connecting the data points represent the enthalpies of the cor-
responding two-phase mixtures (A Hy). The open squares and stars represent values for the heat of
formation obtained for various amorphous alloys (see text). -

varies linearly between the AH; values of the two adjacent compounds one
may obtain these AH; values relatively easily by interpolation (see fig. 4). For
three amorphous alloys Henaff et al. determined the A H; values of the amor-
phous alloys also by direct calorimetric measurements. These values are pre-
sented by stars in fig. 4. There is satisfactory agreement between the two sets
of AH; values for the amorphous alloys.

The dependence of AHr on concentration for binary alloys A;-.By can be
represented by means of the expression '%)

AH: = 2F(X) [(1 — x)Vat +xVa] C, (4

where C is a constant for a given choice of 4 and B components. The func-
tion F(x) is equal to Fe(x) = Xaxs[l + 8(XaXg)?] in the case of compound
formation. For regular solid solutions and amorphous alloys it reduces to
Fa(x) = X4 xg. For the crystalline compounds, eq. (4) in combination with
Fc(x) gives a smooth line passing through the data points in fig. 4 (filled
circles). For the sake of clarity this line was not included in the figure since it
does not differ much from the lines connecting the data points. For the amor-
phous alloys eq. (4) in combination with Fa(x) gives the broken curve in fig. 4
after this curve has been shifted in the positive direction by 5 kJ/mol. This
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shift may be somewhat arbitrary.' It takes account of the fact that the concen-
tration dependence of AH; for the amorphous alloys should be given with
respect to amorphous Zr and Ni rather than with respect to the crystalline
metals Zr and Ni. This enthalpy difference was estimated to be of the order of
5 kJ/mol 11). Inspection of the results in fig. 4 makes it clear that the enthalpy -
values found for the amorphous alloys tend to be close to the values expected
for crystalline materials. This is the case in particular for alloys of a concen-
tration near x = 0.6, where the difference from the shifted solid solution curve
(broken line) is quite distinct and indicates the occurrence of appreciable short
range ordering. This can also be seen by direct comparison of the experimental
values of the ratios AHz(cryst) — AHy(amorph)/A H(cryst) = AH /AH;. 1t
follows that the enthalpies of the amorphous state are about 30% lower than
those of the crystalline state near x = 0.2. But they are only less than 10%
lower near x = 0.6.

4. Glass forming ability, thermal stability and their relation to binary phase
diagrams

Three different Ni-based binary systems are compared in fig. 5. The experi-
mental data for the crystallization temperatures are given at the top. Experi-
mental values of the activation energies, derived from rate-dependent meas-
urements, are given in the middle. More details regarding these experimental
data were presented elsewhere 13-1%). General features of the phase diagrams
(in arbitrary units) are shown at the bottom ). Note that in order to assess
possible relationships between T, AE and features of the phase diagram fully
we have used complete scales rather than truncated scales to represent the con-
centration dependences of 7y and AE.

It has been generally accepted that regions of so-called easy glass formation
are situated around the concentrations corresponding to deep eutectics, where
the depression of the melting point from the ideal solid solutions liquidus is
relatively high (see, for instance, ref. 17). The three A;_.Ni, systems con-
sidered in fig. 5 seem to be no exception in this respect. By contrast, the results
given at the top of fig. 5 show that the crystallization temperatures (7;) are
rather insensitive to the details of the phase diagram. The temperatures 7%
generally tend to increase with Ni content, which is in accordance with the
predictions of the model (broken line). In all three systems one finds #no en-
hancement of 7% in the region of the deepest eutectic temperatures. This means
that one cannot speak of a correlation between the thermal stability (as meas-
ured by 7%) and the glass-forming ability. This result can also be expressed by
saying that alloys lending themselves to easy vitrification do not have better
thermal stabilities than alloys that are less prone to vitrification.
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Fig. 5. Comparison of the crystallization temperature T (top), activation energies AE (middle)
and phase relationships (bottom) in three A;-.Ni, systems. For more details see refs 13-15.
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The quantities 7, and AE both reflect the thermal stability of amorphous
alloys. It is noteworthy that the trends shown by the concentration depen-
dences of AE are mimicked only to a very small extent by the concentration
dependences of the corresponding 7T values. The latter values give rise to only
moderate excursions (about 10%) from the model predictions while the activa-
tion energies sometimes vary by more than 100%. It has already been men-
tioned above that according to the kinetic approach T, and AE are propor-
tional to each other 7-8). This is a consequence of the diffusion constant being
proportional to the reciprocal of the viscosity (7 = no,exp AE/S.T). Viscous
flow and subsequent crystallization become possible when a critical value
(7 = 1013 P) is reached, leading to the relation

: AE
Tx >

(%
<

In deriving this expression it is usually assumed that the configurational en-
tropy Sc is a temperature-independent constant since crystallization takes
place in temperature ranges well below melting temperatures. In previous
analyses ~5) the possibility of the occurrence of compositional short-range
ordering was not taken into consideration. The large negative values of the
enthalpy of alloying for all three systems favours the occurrence of CSRO,
and some of the experimental evidence for it has been discussed in the pre-
vious section. When CSRO does occur S. may no longer be regarded as tem-
perature-independent. In the same manner as found in atomic order-disorder
transformations in crystalline alloys, one would expect the configurational
entropy to give rise to reversible temperature variations in particular in alloys
with CSRO. Irreversible changes in amorphous alloys were studied by Chen 7),
who showed that the associated temperature variation of S leads to apparent
values of the activation energy (AE) that are larger than the actual values
(AE,) by a factor [1 + (d(In S.)/(d(In T))]. The same applies to reversible
changes of Sc. This means that even in the absence of irreversible changes, an
enhancement of the AE values may be expected in alloys with CSRO. There is
ample experimental evidence for the occurrence of reversible as well as irrever-
sible changes in a number of different amorphous alloys *8-19). It can be con-
cluded from the results discussed above that the linear relationship between T
and the experimental values of AE may break down in alloy systems exhibiting
CSRO.

From the concentration dependence of AE shown for the three systems in
fig. 5 one may infer that the degree of CSRO is comparatively high in the
middle concentration regions. When amorphous alloys are no longer consi-
dered as having atomic arrangements of basically random distributions, alloys
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of a different degree of CSRO will also have different values for Sc. From
eq. (5) it then follows that in the middle concentration ranges mentioned
above one would expect S. to be comparatively low. As a result, the corres-
ponding T values would be comparatively high. The effect of a lower S, value
may be counteracted, however, by a low activation energy AE,. Here one has
to consider that CSRO leads to a larger number of dissimilar neighbour atoms
than would have been present in a completely random alloy and that the
motion of Ni atoms in a surrounding rich in Ti, Zr or Hf is easier than in a
Ni-rich surrounding. The effect of CSRO is therefore to lower AE,. Owing to
the mutually compensating influence of both effects one may expect that the
occurrence of CSRO will not much affect the predictions of the hole model. If
one disregards possible differences in the crystallization temperature associated
with differences in the crystallization models of the various alloys, and ascribes
the variations around the calculated concentration dependences (broken lines)
exclusively to CSRO, one finds that these variations are of the order of 10% in
the cases of Zr—-Ni and Hf-Ni and only 5% in the case of Ti-Ni. These
relatively small variations are to be compared with variations of more than
100% in the case of AE (see the middle parts of fig. 5). Of course, one has to
keep in mind that the extreme sensitivity of AE towards CSRO is the result of
the fact that AE does not probe S. itself but rather its logarithmic temperature
derivative.

5. Electronic properties

Information regarding the electronic properties of amorphous alloys can be
obtained by means of the same techniques currently used for crystalline mate-
rials. These techniques comprise photoemission and Mdéssbauer spectroscopy,
NMR, ESR and measurements of the magnetic susceptibility and the low-tem-
perature specific heat. The random nature of the atomic arrangements in
amorphous alloys leads to a certain degree line of broadening which is parti-
cularly pronounced in NMR experiments and the data analysis requires special
care in cases where local density of states are probed by means of Knight shift
measurements. In ESR experiments on Gd-doped amorphous alloys the line-
widths (AH) range from about 150 G in amorphous Pd;_, Si, alloys to more
than 1000 G in amorphous Zr-based alloys 2°-2!). However, in all these cases,
experiments are sufficiently accurate to separate the residual linewidths (A H,)
from the Korringa rates (d(AH)/dT). Based on the latter data values of the
density of d-band states were obtained. Results obtained for various Zr-based
amorphous alloys have been listed in table II 20), There is satisfactory agree-
ment of these data with those obtained by means of specific heat measure-
ments made on several of similar Zr-based amorphous alloys 22-23). All these
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TABLE II

Experimental values of the Korringa rate (in GK™) in various amorphous
alloys and the corresponding value of the d-electron density of states
(in eV-! per atom per spin).

Zr1-xTx d(AH)/dT Nu(E¥)
Zro.12Cuo.28 36.2 0.90
ZI'o,soCllo,g;o 25.5 0.73
Zr0.44CUo.56 27.0 ° - 0.76
ZI'o_ssCl.lo,sz 22.8 0.70
Zroe7Nioss - 39.1 0.94
Zro.g7Pdo.as 30.1 0.82
Zro.18Pto.22 37.2 0.92
Zr0.61C00.33 30.0 0.82

- Zro.74Rho.26 35.4 0.90

experimental data have in common that they show that the d—electron density
of states in amorphous Zr-rich alloys is larger than in crystalline Zr metal
itself. It is interesting to compare these results with bandstructure calculations
and results obtained by means of photoemission spectroscopy 24). Upon alloy-
ing the d-bands of Zr and the late transition metal 7 do not coalesce into a
common band. Both d-bands tend to become narrower and the repulsion be-
tween the d—bands leads to a shift to higher and lower energies for the d—states
of Zr and 7, respectively. Furthermore it follows from the bandstructure cal-
culations that the partial d—density of states of Zr has a minimum slightly
above Er and increases below Er. Owing to the d—band repulsion one would
expect therefore that as a consequence of the Zr d-band shift towards higher
energies the Fermi level would move into a region of a higher d-density of
states. This is exactly what the data in table 2 and the specific heat data sug-
gest, since they indicate an increase in Nd(Es) in the amorphous alloys relative
to pure Zr metal. .

Useful information regarding the bonding in amorphous alloys can often be
obtained from results of Md&ssbauer spectroscopy. The Mdssbauer isomer
shift is a direct measure of the electronic charge density at the nuclear site of a
given Mdssbauer isotope and its changes observed upon alloying can provide
valuable information regarding the concomitant changes in electronic proper-
ties. A systematic analysis of the Isomer Shift (IS) was first given by Miedema
and van der Woude and applied to Au-alloys and compounds ?%). Recently
their model was also applied to amorphous Fe-alloys 25). If §(IS)max is the IS
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(relative to a-Fe) in a dilute system where each Fe atom is surrounded by 4
atoms only, the formula used in the data analysis can be represented by:

A
S(IS)mex = 0.75 Ag* — 1.65 — . ©6)
nws

Values for the electronegativity differences Ag™* = ¢4 — ¢#. and the electron
density difference A nws = nias — n'ss can be obtained by means of the data
tabulated for all metals by Niessen et al.'?).

In practice the strainfree dilute limit d(IS)max is reached when X—-0, i.e. it
can be determined by means of measurements on various metals A4 containing
Fe impurities. In dilute crystalline alloys these Fe impurities occupy crystallo-
graphic position of the 4 atoms in the host lattice which entails a size mis-
match. This size mismatch can introduce a considerable error in the determi-
nation of 5(IS)max. In this respect amorphous alloys represent suitable mate-
rials since there is virtually no difference between 4 and Fe sites. Although
amorphous alloys with very low Fe concentrations cannot be prepared, the
values of d(IS)max can easily be obtained via measurements on less dilute alloys
by extrapolation to X— 0 where X is an effective concentration (see eq. (3))
which measures the fractional area of contact of Fe atoms with other Fe atom
neighbours. In the extrapolations mentioned use is made of the linear depend-
ence of the IS on the effective concentration of the A component in A;-.Fe,

(IS max = (1 = X) 6(IS) max. M

The advantages of this type of analysis can be summarized as follows:

(i It applies to a large variety of different amorphous alloys. This is illus-
trated by means of fig. 6 where the experimental values 2) of d(IS)max and
values tabulated for ¢* and nws have been used to plot 5(IS)mex/A@* ver-
sus Anws [nwsA@*]~1. The slope and the intercept on the vertical axis cor-
respond to the coefficients of the two terms on the right hand side of eq. (6).

(ii) Experimental values of IS can be broken down in two contributions com-
prising the interatomic charge transfer term C.T = 0.75 A¢* and the intra-
atomic d—s electron conversion term E.C = 1.65 Anws/n's. Using simple
scaling laws these contributions can easily be translated into electron num-
bers?%).

As an example, let us consider the situation in amorphous Zr;-.Fe.. It can
be inferred from the results shown in fig. 7 that the critical concentration for
the occurrence of a moment on the Fe atoms in Zr;_,Fe, is just below x = 0.4.
This corresponds to X = 0.3. It can be derived from egs (6) and (7) that at this
concentration the charge transfer from Zr to Fe equals 0.5 electrons, the s—d
conversion being even smaller (less than 0.2 electrons per Fe atom). It follows
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Fig. 6. Analysis of the experimental values of the strain-free dilute limit of the 5Fe isomer shift in
various amorphous alloys in terms of eq. (6) (see text). Data were taken from ref. 26.

from these results that the reduction in Fe moment from 2.2 up in Fe metal to
zero in Zro.sFep.q is not the result of a filling up of the 3d band due to charge
transfer from Zr to Fe.
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Fig. 7. Temperature dependence of several amorphous Zr;_.Fe, alloys made by melt spinning.
The measurements were made in an applied field of 240 kA/m, using an adaption of the Faraday
method.
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1t is interesting to compare the results of the 57Fe isomer shift analysis with
those obtained from photoemission experiments 24). This comparison can be
made by means of the data listed in table III for the compound Zrs Fe. Like in
amorphous alloys the fractional areas of contact of an Fe atom with Zr and Fe
neighbours differ from the actual atomic fractions x in Zr;-yFe,. In inter-

TABLE III

Comparison of the experimental values determined from XPS core level
shifts and %"Fe Mossbauer spectroscopy for the changes of the number of
s,p-electrons (Ansp) and d-electrons (Ang) when Fe is compounded
with Zr in ZrsFe.

Method Ansp(el./Fe) Ana(el./Fe)

XPS +0.4 +0.5
5TFe(IS) +0.4 +0.3

metallics like ZrzFe, which have a strong heat of formation, there is a ten-
dency of the Fe atoms to have exclusively Fe nearest neighbours. It can be
shown that owing to this feature and owing to the relatively large size of the Zr
atoms one has a situation in ZrsFe which corresponds virtually to the dilute
limit (x = 0). From the analysis of the Mgssbauer data in terms of egs (6) and
(7) one derives an increase in s,p-electrons due to charge transfer equal to
C.T = 0.7 electrons per Fe, and a decrease in s,p—electrons due to s—d con-
version equal to E.C = 0.3 electrons per Fe. This means that the effective in-
crease in s,p—electrons is equal to Ansp = 0.4 el./Fe, while Ang = 0.3. These
numbers are in good agreement with those derived from an analysis of the
XPS core level data. The results shown in table III make one point quite clear.
There is only a charge transfer of a few tenths of an electron from Zr to Fe
even in the case of high Zr concentrations. Although the experimental results
of XPS and IS pertain to Fe—based alloys, there is evidence that the situation
is much the same in other alloys of 3d—metals with more electropositive metals
such as the rare earths and actinides+27-2%).

6. Magnetic properties

The large atomic disorder and the concomitant absence of lattice periodicity
in amorphous solids cause these latter materials to have magnetic properties
which are different from those found in their crystalline counterparts. Results
for several amorphous La;_,Ni, alloys are shown in fig. 8. It is seen that the
transition from the paramagnetic to the ferromagnetic state is rather sluggish.
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Fig. 8. Temperature dependence of the magnetization (measured at A = 240 kA/m) of three
amorphous La,_;Ni; alloys made by co-evaporation of La and Ni.

The flattening of the temperature dependence of the magnetization in random
systems was discussed extensively elsewhere %9),

The formation of amorphous alloys in which 3d-metals are combined with
more electropositive metals leads generally to a reduction in the 3d—atom
moment. Examples of experimental results shown for Ni, Co and Fe alloys are
discussed in refs 4, 26 and 29-32. Whereas the Ni— and Co-based amorphous
alloys have a concentration dependence of the 3d-moment that extrapolates
to the moment of the pure crystalline 3d—-metals (x— 1) one often finds a dif-
ferent situation in amorphous Fe-based alloys. This is also the case in amor-
phous Hf,_,Fe, where the extrapolation would lead to a value significantly
below the value 2.2 ug/Fe found in ¢—Fe 31). Most likely this result is explained
in terms of a distribution of exchange interactions between the 3d—moments 33),
In the case of Fe~based alloys one may expect a substantial portion of nega-
tive exchange interactions to be present which causes deviations from colinear
ferromagnetic ordering and entails a relatively too small net saturation mag-
netization when determined from bulk magnetization measurements. In com-
paring the moment reduction in amorphous Fe-based alloys it is therefore de-
sirable not to rely too heavily on the results of bulk magnetic measurements
but to use the results derived from 57Fe hyperfine field measurements instead.
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It has already been mentioned briefly in sec. 5 that a description of the
moment reduction in various amorphous 3d-based alloys is often given in
terms of a charge transfer model. Upon alloying, electrons are transferred
from the less electronegative A component to the 3d—component where they
fill up the 3d-band and thus lower the 3d-moment. It is misleading that the
charge transfer model, when applied to a certain class of alloys, is able to
account reasonably well for the experimental data. The model is, however,
less satisfactory when applied to alloys differing widely in components and
composition. One of the reasons for this is probably the presence of still an-
other effect which overrules the effect of charge transfer on the magnetic pro-
perties, which will be discussed below. Another reason is that the amount of
the charge transferred from the nonmagnetic component A to the transition
metal Tin A;_, T, is actually rather small, i.e. it is of the order of a few tenths
of an electron (see sec. 5). In descriptions based on charge transfer the elec-
tron numbers needed are much higher. For instance Heiman and Kazama had
to assume a charge transfer equal to 2.21 electrons per Zr atom in Zr;_,Coy in
order to give an adequate description of the corresponding concentration de-
pendence of the 3d-moment?!). In view of the experimental evidence pre-
sented at the end of sec. S one may conclude therefore that charge transfer ,
does occur to some degree but that its magnitude is too small to explain the
moment reduction. For this reason we will focus our attention on another
mechanism that may be employed for describing moment variations in
3d-metal systems. -

Based on the ideas that the degree of atomic short range order is not the
same in all amorphous alloys a model has been proposed for describing the
differences in magnetic properties of various amorphous 3d-based al-
loys 2631): In order to take account of the size differences that may arise be-
tween A and T in A;-, Ty, only alloys of similar effective concentration ¥ were
compared. For a fixed 3d—element these alloys are expected to have the same
average 7 moment when CSRO is absent. Depending on the nature and the
degree of CSRO substantially different values for the average T moment will
arise. Qualitatively, the nature and the degree of CSRO was estimated by the
sign and magnitude of the heat of alloying or heat of compounding (AH) %).
Negative values of AH in amorphous alloys A1, T will lead to average atomic
arrangements in which the number of dissimilar nearest neighbours is larger
than would be the case in a statistical atomic distribution. In these cases the
average 7 moment is relatively low. The reverse arguments apply if AH is
positive. By using the sigh and magnitude of A H as a measure of, respectively,
the nature and degree of CSRO it has been possible to analyse successfully the
magnetic properties of various ferromagnetic amorphous alloys in which a
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Fig. 9. @) Average effective hyperfine field | A Heg| (full circles, left scale) and average Fe moment
(full squares, right scale) in amorphous A-Fe alloys with effective Fe concentration X = 0.5 versus
heat of formation. b) Average Ni moment in various amorphous Ni alloys (¥ = 0.80) versus heat
of alloying. Data were reproduced from refs 26 and 31.
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3d-metal is combined with a nonmagnetic partner element. Results for Fe and
Ni alloys are shown in fig. 9, where we used the data of Niessen et al. 12y for
obtaining AH. All the alloys in the same figure have the same effective concen-
tration (i.e. the 3d—atoms would have a similar fractional area of contact with
other 3d-neighbours in all these alloys if CSRO were absent). The degree of
CSRO, in which the 3d-atoms are surrounded by more than an average
number of A neighbours, is expected to increase in going from Mg to Zr. Asa
consequence the average 3d—moment of the alloys decreases.

In this model the effect of CSRO on the magnetic properties is overemphas-
ized and no account has been taken of the fact that there may be differences in
the moment reducing power between the various 4 components in alloys of
the same effective concentrations ¥. In fact, the descriptions based on CSRO
and the Friedel model discussed elsewhere®!) may be regarded as being sup-
plementary to each other. The alloys with 7 = Nb, V and Mo in fig. 9a repre-
sent examples where the moment reducing power is expected to be particularly
high. This is probably the reason why they fall outside the broad band con-
taining the other alloys.

7. Concluding remarks

In this report the effect of CSRO on various physical properties of amor-
phous 3d-based alloys has been discussed. Calorimetric measurements have
shown that the absolute value of the formation enthalpy of amorphous alloys
may be smaller than that of the crystalline state by about 30% when CSRO is
small or absent. In the presence of CSRO this enthalpy difference can become
much smaller (less than 10%).

The transformation temperature of the amorphous-to-crystalline transition
defining the resistance against crystallization of amorphous alloys is not much
affected by CSRO. By contrast, the (apparent) activation energies for crystalli-
zation obtained from rate-dependent measurements may change appreciably
when CSRO is present. It was also found that amorphous alloys of a
composition corresponding to the lowest eutectic composition in a binary
system, where the depression of the melting point from the ideal solution
liquidus and the glass-forming ability are highest, are not necessarily charac-
terized by a high thermal stability.

The effect of CSRO in 3d-based alloys is to change the fractional number of
nearest 3d-atom neighbours. When the degree of CSRO is taken to increase
with increasing heat of alloying one finds a correlation between the average
3d-moment and the correspondent heat of alloying.
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CONTRIBUTION TO THE SYSTEM Mg-Au-Hg

by J. L. C. DAAMS and J. H. N. VAN VUCHT
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Abstract

Reported are supercells for the so-called NasAs—type compounds MgsHg
and MgsAu, the unit cell dimensions of a rhombohedral compound of sup-
posedly the composition MgsHg:, isomorphous to NasHgz, the atomic
structures of Mg,Hg, isostructural to Co2Si, and MgzAu which is a super-
structure of the Co2Si cell. Also reported are some crystallographic dimen-
sion data on ternary alloys of Mg, Hg and Au of 50 at.% Mg and more.

PACS numbers: 61.55. Hg.

1. Introduction

In the course of a search for metallic materials suitable for mercury-vapour
dispensers we obtained data that may contribute to the knowledge of the ter-
nary system Mg-Au-Hg and its binary boundary systems Mg-Hg and Au-Mg.
Only the magnesium-rich part of the system was studied.

2. Experimental

Samples of the alloys were made by weighing calculated amounts of the con-
stituent elements in thick-walled molybdenum crucibles. These were covered
with a molybdenum lid in an atmosphere of about 0.1 atm of pure argon and
then closed by welding in an argon-arc furnace. Subsequently, the crucibles
were encapsulated in silica envelopes for the heat treatments.

We used gold of Drijfhout (50 ppm Ag, 10 ppm Fe, 7 ppm Cu, 6 ppm Pt,
0.7 ppm Mg), magnesium of New Metals (70 ppm Fe, 40 ppm Si, 20 ppm Al,
3 ppm B) and double-distilled mercury.
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After ample time of reacting at a temperature of mostly 800 °C for a start,
and a subsequent annealing procedure, first the encapsulated samples were
cooled down in water and then the molybdenum crucibles were opened in a
glove box filled with pure argon. This proved to be necessary since most of the
alloys reacted with air rather quickly. The contents were then pulverized and
the powder was used to fill diffraction-sample holders specially designed to
permit transport in air and diffraction in vacuum. After removing the holders
from the glove box and evacuating them to get rid of the argon gas their X-ray
diffractogram was made by using CuK-« radiation on a Philips diffractometer
system equipped with a graphite monochromator. Chemical analyses showed
no trace of molybdenum in the reacted samples. Indexing, refining of lattice
constants, filling of unit cells and calculations of reliability factors and inter-
atomic distances were done by using the appropriate self-written algol com-
puting programs running on an IBM VM370.

3. Results

A review of our results is given in the tables la, 18, lc and fig. 1.

VRS AT
40/ vv"v %f/}{/»”?“ s 95"
WW

MgAu 50

Au

Fig. 1 . Schematic phase diagram for the Mg-fich part of the system Mg~Au-Hg (7 ~ 400 °C).
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TABLE Il
Mg—Ad samples
composition treatment phases lattice remarks
Mg Au time temp. dimensions
°C (Angstrom)
h.c.p. a = 3.2084(2)
80 20 4d 60 | Me ¢ = 3.2056)
CugP-type substructure
P -3cl a = 8.072(1) | NagAs-type
MgsAu c=2384882) (P 6s/mmc
a = 4.660(1) A
c = 8.488(2) A
CusP-type substructure
P-3cl a = 8.072(1) NazAs-type
MgsAu ¢ = 8.488(2) | P6s/mmec
714286 | 3d 750 as above
substructure
Pnma a = 18.315(6) | CozSi-type
MgeAu b=135482) | Pnm a
c= 8.251(4) | a = 6.1052) A
b= 4.516(1) A
c = 82512 A
substructure
Pnma a = 18.345(6) | CozSi-type
66.7 33.3 3h 400 Mg.Au b=13.566(2) | Pnma
c= 8258(5) | @ =6.1152) A
b=4.521A
c = 8.258Q2) A
CsCl-type
61 39 31d 750 MgAu a = 3.268(1)
substructure
Pnma a = 18.345(6) | Co2Si-type
MgaAu b=13.563(2) | Pnma
¢ = 8.258(3) | as above
50 50 3d 750 CsCl-type
MgAu a = 3.270(1)
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TABLE 1b

Mg-Hg samples

composition | treatment phases lattice remarks
Mg Hg time temp. dimensions
°C (Angstrom)
h.c.p. a = 3.208(1)
80 20 | sd 600 |Me ¢=5.202)
17d 220 a= 8.35(1) |substructure
R32 ¢ = 25.84(1) NazAs-type
rhombohedral or P6smmc
Mg;Hg a= 9.87 with
o =50.0degr. |a=4.821(1)A
c=8.6142) A
. a = 8.351(2) |substructure
R32 ¢ = 25.845(2) |NasAs-type
75 25 5d 600 {rhombohedral or P 6s/mmc
17d 220 |MgsHg a= 9.872 with
o = 50.04degr. |a = 4.823(1) A
c=8.618(1)A
R32 a= 8.335(4)
rhombohedral | ¢ = 25.746(9) | NaszAs-type
MgsHg a= 9.839 substructure
o = 50.12degr. | as above
R(-)3c¢ a = 8.254(1) |substructure
71.4 28.6 | 21d 500 |[NasHge~type |c = 47.660(1) [P 63/mmc
Mg;Heg, ' or a= 4.7651) A
a = 16.586 c = 15.881(1) A
o = 28.81 degr.
Pnma a = 6.214(3)
CozSi-type b = 4.620(6) |see below
MgoHg c = 8.794(5)
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TABLE 1/ (continued)

composition treatmerit phases lattice remarks
Mg Hg time temp. dimensions
°C (Angstrom)
: . Pnma a = 6.220(1) | see structure
66.7 33.3 4h 600 | CozSi-type b= 4.618(1) | determination
Mg:Hg ¢ = 8.800(2) | below
Pnma a = 6.224(1)
CozSi-type b = 4.619(1) | as above
Mg:Hg c = 8.794(1)
64.3 35.7 2d 600
P63mcm = 8.219(1) :
MnsSis—type | ¢ = 5.911(1) | (about 25%)
MgsHgs N
Pnma a = 6.222(3) | see above
CosSi-type b = 4.629(4) | concentration
Mg:Hg ¢ = 8.805(3) | (about 15%)
P 635/m cm a = 8.220(1)
62.5 37.5 1d 600 | MnsSisg—type |c = 5.913(1)
Mgnga
remaining peaks of unindexable phase
P 63/m ¢ m a = 8.216(1)
MnsSis-type | ¢ = 5.912(1)
MgsHgs
60 40 1d 600
CsCl-type a = 3.4468(1) | (about 30%)
MgHg
50 50 1d 600 | CsCl-type a = 3.4480(1)
' MgHg
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TABLE Ic
Mg-Au-Hg samples
composition treatment phases lattice remarks
Mg Au Hg time temp. dimensions
°C (Angstrém)
50 33.3 16.7 | 22d 800 |CsCl-type |a=3.3161(1)
P6s/mcm |a=8.078(2)
MngSis-type | ¢ = 5.857(2)
s0 167 333 | 22d soo | MeeHes
probably a second Mn;Sis-type phase but
deformed (or a third phase).
i CsCl-type | a = 3.345(3)
P6s/mcm not (about 5%)
62.5 25 12.5 21d 600 | MnsSis-type | measured
Pnma a = 6.074(2)
CosSi-type | b =4.497(1) | (about 50%)
¢ = 8.560(2)
P6s/mcm |a=8.127(2)
62.5 12.5 25 | 4d oo |MmsSismtype |c=5.8802)
Pnma a = 6.081(2)
CosSi-type | b =4.521(2) | (about 10%)
c = 8.681(4)
Pnma a = 6.081(1)
66.7 16.7 16.7 | 1d 800 |CosSi-type |b=4.528(1)
quenched . ¢ = 8.654(3)
(about 70%)
P6s/mmc |a=4.713(1) |rhombohedral
NasAs-type | c = 8.503(2) | superstructure
71.4 143 143 | 21d eop |Substructure as in MgsHeg
‘ Pnma a=6.137Q2)
Co,Si b=4.573(1)
’ c=8.732(1)
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TABLE Ic (continued)

composition treatment phases lattice remarks
Mg Au Hg | time temp. dimensions
°C. (Angstrom)

P6simmec |a=4.690(1) rhombohedral
75 16.7 8.3 1d 800 |NagAs-type |c=8.489(1) superstructure
quenched [substructure asin MgsHg

P6simmec |a=4.728(1) [(about50%)
NasAs~type |c=8.511(2) with super-

substructure structure as in
MgaAu
a = 8.224(2)
R(-)3c ¢ =47.58(1)
75 8.3 16.7| 4h 600 |NasHg:-type or (about 25%)
a=16.56
a = 28.76 degr.

P6smmc {a=4.808(2) (about 25%)
NagAs-type |c = 8.592(2) rhombohedral
substructure superstructure
asin MgsHg

3.1. The system Mg-MgAu

In the range 0-25 at.% Au the compound MgsAu, as found in agreement
with ref. 1, is in equilibrium with the h.c.p. magnesium lattice. In literature of
before 1965 MgsAu was reported to have a so-called NagAs—type P 63/m m ¢ *)
unit cell?), but Mansmann ®) showed convincingly that its structure is iso-
morphous with that of CusP which has a three times larger hexagonal cell.
Mansmann stated that the latter compound does not have the structure as
given by Pearson in his Handbook %), but one in which a copper atom is situated
at 0,0,1/4 instead of 0,0,0, the so-called anti-LaFs structure ). In 1972 the
structure of CusP was redetermined by Olofsson*) using a single crystal. Our
observation of a superstructure of the ‘NagAs’ cell with @ = 8.072(1) A and
¢ = 8.488(2) A?) is in full agreement with Mansmann’s work. Although our
powder diagram was not free from preferred orientation, R-factor calcula-
tions (for 36 reflexions) on all three structure models, i.e. Pearson’s CusP type

*) Space-group notations according to international conventions, see ref. 10.
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(R = 22%), Olofsson’s model for CusP (R = 20%) and the Mansmann anti-
LaF; type (R = 18.8%) were in favour of the latter. See the description in sec. 4.

Between 25 and 33.3 at.% Au MgsAu is in equilibrium with a compound
MgoAu, with what at first seemed to be an orthorhombic Pnma unit cell
of structure type Co:Si. However, the diffraction pattern of this compound
was always accompanied by a number of additional weak peaks which even-
tually could be indexed as superstructure peaks, indicating that the real unit
cell is three times that of a ‘CosSi-type MgzAu’ in two dimensions (with
a=18.34(1) A, b =13.56(1) A and c = 8.26(1) A. This appeared in agree-
ment with work of van Look and Schubert 5).

At 33.3 at.% Au the sample was practically single-phase Mgz Au, containing
only a small amount of CsCl-type MgAu, so we used its diffractogram for
a provisional structure determination. For the substructure of MgzAu (the
CosSi-type approximation) the refinement procedure consisted of first a
refinement on intensities of the parameters of the heavy atoms followed by a
refinement on minimum total overlap, keeping the gold atoms fixed and
taking for the radii values given for 12 coordination. Starting from this Co2Si—
type subcell we constructed a supercell in space group Pnma (nr. 62) and
again refined alternatingly the gold parameters on intensities and subsequently
the magnesium positions on minimum overlap. This time we used 15 position
parameters for the gold atoms and 30 position parameters for the magnesium
atoms. The diagram measured was cleaned beforehand of peaks belonging to
. the CsCl-type MgAu compound. The superstructure peaks calculated in these
regions were also excluded. However, the possibility remains that the com-
position is no longer (MgzAu)s but that one or more atoms are missing. In that
case we should expect to observe some extra peaks of the neighbouring phases
in our MgzAu diagram. Regretfully these peaks would coincide with some
peaks of the superlattice, and therefore we omitted the latter in the R—factor
calculation. The structure that we arrived at combines as such a reasonable fit
of the calculated intensities and a geometrically acceptable positioning of the
atoms, as is shown in sec. 5 where the final structure proposal is described.
Table V shows the comparison of observed and calculated diagram. The
R~factor is 16.9%, which is indeed not too bad in view of the overall quality
of the diagram and the unavoidable presence of preferred orientation.

At 50 at.% Au the sample was found to be single-phase CsCl-type, in sub-
stantial agreement with ref. 6.

3.2. The system Mg-MgHg

Analogous to the above system the first compound found, starting from
‘Mg, is NagAs-type MgsHg. Here, however, every sample showed a number
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of small additional peaks, and this induced us to describe the real unit cell as a
large rhombohedron. The dimensions of the (hexagonal) cell are clearly related
to a hypothetical ‘CusP-type’ MgsHg, such that the ¢ axis is multiplied by
three. Obviously the MgsHg structure seems a stacking variant of the CusP
structure (see fig. 2). With a cell filling program the trial structure given in
sec. 4 was found most promising. The R-factor was 12.65% for the first 58
calculated peaks including the non-observed reflexions (see table I1I). Refine-
ment did not lead to a substantially better value. The structure shows the same
kind of mixed heavy atom-magnesium layers as are present in the anti-LaFs
structure, which seems to increase the probability that both structures are
right.

Fig. 2a). The structure of MgsHg as proposed by a cell-filling program, being obviously a stacking
variant of the anti-LaFs type.

Philips Journal of Research Vol. 39 No. 6 1984 283

IPR2018-1557
HTC EX1023, Page 294




J. L. C. Daams and J. H. N. van Vucht

m
j

Fig. 2b. Three unit cells of MgsAu with the anti-LaF; type of structure. Note that the heav y atoms
in both types are situated in layers which also contain some magnesium atoms, in contrast to the
CusP type structure as given by Pearson.

The 72 at.% Mg sample contained three phases, probably due to the peri-
tectic melting of the majority phase denoted as MgsHg, by ref. 7. Besides
a small amount of MgsHg and Co.Si-type Mg;Hg we found a rhombo-
hedral (R3¢ or R —3c¢) unit cell with a = 8.254(1) A and ¢ = 47.660(1) A
(@ = 16.586 A, o = 28.81 degr.). The latter pattern could also be described as
having a P 63/m m ¢ substructure with unit-cell dimensions ¢ = 4.765(1) A and
c = 15.881(1) A. Although the type is unknown and even the composition is
not quite certain, we still think to have found a compound that is isostructural
with the so-called ‘NasHg;” with @ = 9.39 and ¢ = 53.1 A (¢ = 18.52 A and
o = 29.38 degr.), reported by Nielsen and Baenzinger ).
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A sample with 33.3 at.% Hg yielded a diffractogram that was indexed single-
phase on the basis of an orthorhombic Pnma unit cell with a = 6.220(1) A,
b =4.618(1) A and ¢ = 8.800(2) A and could be used for a structure deter-
mination.

The structure is of the CosSi—-type and consequently the composition of the
compound is probably MgzHg, in agreement with Hansen'). The refinement
of MgsHg was performed in the same way as described for MgzAu. The struc-
tural data are given in sec. 5. Table VI shows the comparison of the observed
and the calculated diagram. ' ’

In the 35.7 at.% Hg sample the majority phase is hexagonal MnsSis—type
Mg;Hgs. At the composition MgsHgs this should have been the only phase
present, but we also found some Mg;Hg and moreover a few small unex-
plained peaks.

The adjacent two-phase region, represented by a sample of composition
40 at.% Hg, showed the presence of MgsHgs and CsCl-type MgHg, in agree-
ment with Hansen ).

3.3. The cross-section MgAu-MgHg

The single-phase regions of the CsCl-type compounds MgAu and MgHg do
not join. In between a region exists where at least one MnsSis—type lattice is
stable.

3.4. The cross-section MgsAu;—MgsHg;

This section comes from the two-phase (Mg:Au-MgAu) region, ends in the
single-phase MgsHgs region and does not reveal any new ternary phase in be-
tween. The single-phase MgsHgs region does not even extend to the point at
which one third of the mercury atoms is replaced by gold.

3.5. The cross-section Mg.Au-Mg,Hg

Here we studied only the composition halfway, which was purely single-
phase CozSi-type, indicating that at least in this lattice the mercury atoms
may easily be replaced by gold atoms. As no trace of a superstructure was
observed, we must conclude that the region of stability of the superstructure is
probably much smaller than that of the substructure.

3.6. The cross-section MgsAu,-MgsHg,

The halfway composition we studied here was two-phase MgsHg—type +
Co:Si-type. The lattice constants of both phases reveal a solid solution to a
certain extent at both ends of the pseudo binary system.

' 285
IPR2018-1557

Philips Journal of Research Veol. 39 No.6 1984

HTC EX1023, Page 296




J. L. C. Daams and J. H. N. van Vucht

3.7. The cross-section Mg;Au-Mgs;Hg

This section appears to be composed of a single-phase region extending from
pure MgsAu to compounds in which more than one third of gold is replaced
by mercury. At two thirds replacement, however, a three-phase region exists
wheré at 600 °C MgsAu, MgsHg and ‘MgsHgz’ seem to be in equilibrium.

4. Structural information on the compounds Mg;Hg and Mg;Au

MgsHg Mgs;Au
hR72 hP24
R32(155) P —-3c¢c1(165)
hexagonal cell rhombohedral cell (anti-LaF3 tyr:\e)
a= 83512)A a=98712A a = 8.072(1) A
c=258452) A o= 50.04 degr. c = 8.483802) A
V = 1560.9 A3 V= 520.3 A® V = 478.5 A®
Atomic position parameters are
9Hgat(d) 1/3 1/3 0 6 Au at (f) .659 0 1/4
9 Hg at () 2/3 2/3 1/6 12 Mg at (g) .365 .056 .080
6 Mg at (¢) 2/3 1/3 7/36 4Mgat(d) 1/3 2/3 .193
6 Mg at (c) 1/3 2/3 3/36 2Mgat(@a 0 O 1/4

6 Mg at (c) 2/3 1/3 1/36
18 Mg at (f) 2/3 2/3 1/18
18 Mg at (f) 1/3 1/3 1/9

The interatomic distances are listed in table II.

TABLE II
Interatomic distances
MgsHg MgsAu
atoms number  distance (A) | atoms number  distance (A)
Mg-Mg 2 2.8713 Mg-Mg 1 2.9962
1 2.8722 4 3.0353
1 2.8739 2 3.0582
4 2.8743 1 3.0677
12 2.8749 7 3.1013
6 3.1315 4 3.1754
Hg-Mg 2 2.8705 ¢ 3 3.2921
2 2.8713 1 3.2922
2 2.8747 Au-Mg 3 2.7038
2 2.8749 3 2.7513
6 3.1323 1 2.8003
6 3.1327 1 2.8238
1 3.0041
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TABLE III

Observed and calculated diffraction angles @ (in degrees) and intensities 1
(in arbitrary units) of the intermetallic compound MgsHg

observed calculated
e I h k 1 6 I

10.29 46.0 0 0 6 10.30 37.6

0 1 5 10.55 .1
10.60 43.0 1 1 0 . 10.63 36.0
11.81 125.0 1 1 3 11.83 123.2
14.87 25.0 1 1 6 14.89 23.6
15.52 2.0 0 0 9 15.56 .0
16.72 3.5 1 2 2 16.74 .0
17.32 1.0 0 2 7 17.35 .6
17.81 1.0 2 1 4 17.82 3

1 2 5 18.59 .0
. 3 0 0 18.63 71.9
18.61 67.0 2 0 8 18.65 .0
18.97 85.0 1 1 9 19.00 83.2
19.40 4.0 3 0 3 19.38 .0
20.48 1.5 2 1 7 20.52 7
20.95 6.0 0 0 12 20.96 6.4
) 3 0 6 21.48 36.1
21.47 41.0 0 2 10 21.49 .0
22.30 24.0 2 2 3 22.31 24.4

1 0 13 23.69 .0

1 3 4 23.71 .1
23.71 10.0 1 1 12 23.73 6.8

2 2 6 24.20 6.5
24.20 4.0 2 1- 10 24.21 .0
24.61 1.0 3 0 9 24.66 .0
27.13 12.0 2 2 9 27.14 30.3

S. Structural information of the compounds Mg;Hg and Mg:Au

MegHg
oP12 (C23)

CosSi-type
Pnma(62)
a=6.219(1) A
b=4.617(1)A
c = 8.799(2) A
V= 252.6A3

substructure

oP12 (C23)
CoqSi-type
P nm a(62)
a=6.1141) A
b= 4.520() A
c = 8.256(1) A
V= 228.4A3

Philips Journal of Research Vol. 39 No. 6 1984
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superstructure
oP108

Pnma(62)

a = 18.328(6) A
b=13.561(1) A
c= 82530 A
V = 2051.1 A3.
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Atomic position parameters are:

Mg .184 3/4 .945° Mg .189 3/4 .929
Mg .558 3/4 212 Mg .532 3/4 .225
Hg .281 1/4 .123 Au .284 1/4 .101
B(Hg) = 3.12 A? B(Au) = 2.58 A?

R = 15.7% R = 14.9%

(on substructure peaks)

The interatomic distances are listed in table 1V.

For both structures the coordination numbers are 13, 13 and 10 for the Mg,

Mg and the Hg/Au atoms respectively ®).

Au

R= 16.9% over 197 peaks
including all non observed
reflections

.063
372
763
.180
517
.849
.052
.406
731
.170
.505
.842
.081
.381
.789
.105
424

756

1/4
1/4
1/4
1/4
1/4
1/4
.580
571
.588
571
591
.566
3/4
3/4
3/4
.087
.108
.077

.925
.928
921
.251
218
.209
929
.916
.937
.213
.205
.247
121
.093
.102
073
113
112

TABLE 1V
Interatomic distances
Mg.Hg MgzAu*)
atoms number distance (A) atoms number distance (A)
Mg-Mg 2 3.1102 Mg-Mg 2 3.0158
4 3.1247 2 3.0859
2 3.1722 4 3.1037
2 3.2962 4 3.1272
2 3.3798 2 3.2180
4 3.4241 2 3.4349
Hg-Hg 2 3.8220 Au-Au 2 3.8514
Hg-Mg 1 2.8368 Au-Mg 1 2.7146
. 2 2.8449 2 2.7316
1 2.9447 1 2.9028
2 2.9748 2 2.9051
2 3.0537 1 - 2.9119
1 3.1014 2 3.0928
1 3.3707 1 3.2314
*) Substructure. The superstructure has a shortest disténce of 2.582 A for Mg-Au and 2.855 A
for Mg-Mg. .
288 Philips Journal of Rescarch  Vol.39 No. 6 1984

IPR2018-1557
HTC EX1023, Page 299



Contribution to the system Mg-Au—Hg

TABLE V

Observed and calculated diffraction angles 8 (in degrees) and intensities J
. (in arbitrary units) of the intermetallic compound Mg:Au

observed calculated '

8 I h k | 0 I
2 0 1 5.82 7.0
5.84 9.1 1 1 0 5.87 4.1
9.01 11.0 3 1 0 9.02 7.6
10.22 36.6 4 0 1 10.21 27.3
10.74 24.5 0 2 0 10.75 16.9
3 1 2 11.16 5.0
11.20 129.5 0 1 3 11.20 123.9
1 2 1 11.51 7.2
11.53 7.6 4 1 1 11.56 2.4
11.72 7.0 4 0 2 11.70 6.3
2 1 3 12.22 1.5
12.26 9.9 2 2 1 12.26 8.3
13.00 193.0 3 2 0 13.01 201.4
3 1 3 13.39 244.1
13.39 245.0 3 2 1 13.43 2.4
13.84 4.3 4 0 3 13.84 4.1
14.02 4.5 2 0 4 14.02 4.0
’ 6 0 0 14.59 62.0
14.61 73.5 3 2 2 14.61 2.3
1 2 3 14.84 1.0
5 1 2 14.85 9.6
14.84 8.9 4 1 3 14.88 "~ 34
4 2 1 . 14.92 5
15.58 4.6 6 1 0 15.59 34
3 2 3 16.40 1.5
4 0 4 © 16.41 1.3
16.40 1.7 1 3 0 16.44 1.5
16.68 2.3 S 2 1 16.65 2.8
1 2 4 17.28 2.2
4 1 4 17.31 14.2
17.32 11.4 2 3 1 17.32 .8
4 2 3 17.66 3.8
17.70 28.5 6 0 3 17.71 25.0
1 3 2 17.76 4.3
17.89 3.3 3 3 0 17.87 1.4
2 3 2 18.27 6.8
6 2 0 18.27 174
18.26 26.9 7 1 1 18.28 3.3
6 1 3 18.55 99.1
18.55 103.5 6 2 1 18.58 .. 2.2
3 3 2 19.10 2
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TABLE V (continued)

observed _ calculated
I ‘ : 0

19.13
19.18
19.19
19.92
19.93
20.22
20.55
20.55
20.60
20.63
20.66
20.69
20.91
21.25
21.28
21.48
21.51
21.91
22.04
22.06
22.12
22.13
22.49
22.52
22.84
22.86
22.87
22.90
22.91
23.16
23.17
23.20
23.43
23.44
23.45
23.62
23.64
24.11
24.11
24.16
24.40
24.42
24,93
24.93

—
—_ (=
W — O\ [~

19.14 173.0

19.93 67.0
20.24 17.8

~3

wr—NEA)—\]

horbbwaabobrvbroohrumbrbivobboblUrbo~ibhruUibiva o an oo

20.55 33.8

U

20.66 58
20.90 7.

W ~J = N

21.24 14.5
6

21.51
21.91 30.5

[\®]
— O

22.03 2.6

—
p—

22.11 10.0

[\
i

22.51 22.7

2=

22.87 9.6

om.l;!\)

23.19 27.5

p—

~

23.43 4.8
23.64 4.8

W
(o « B

24.10 71.0

24.41 49.5

—
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24.93 22.5
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Contribution to the system Mg~Au—Hg

TABLE VI

Observed and calculated diffraction angles 8 (in degrees) and intensities 1
(in arbitrary units) of the intermetallic compound Mg;Hg

observed calculated

-0 I h k 1 I
8.79 6.0 1 0 1 8.75 5.9
10.92 103.0 0 1 1 10.89 93.2
12.45 133.0 1 0 2 12.42 138.6
13.11 108.0 1 1 1 13.07 110.2
14.42 90.0 2 0 0 14.38 51.5
15.28 8.5 2 0 1 15.27 4.4
15.85 1.0 1 1 2 15.81 1.5
16.95 4.5 1 0 3 16.93 5.2
17.45 28.5 -2 1 0 17.43 25.7
17.75 3.0 2 0 2 17.71 3.1
0 1 3 18.18 60.8
18.21 129.0 2 1 1 18.19 77.9
0 2 0 19.55 42.7
19.60 90.0 1 1 3 19.62 58.1
20.57 26.5 0 0 4 20.55 15.8
21.21 8.5 2 0 3 21.22 8.2
21.58 2.0 1 2 1 21.57 9
21.88 2.0 1 0 4 21.86 .1
22.21 1.5 0 2 2 22.20 .0
22.52 5.5 3 0 1 22.51 1.6
1 2 2 23.44 38.2
23.48 . 63.5 2 1 3 23.50 24.2
24.32 18.0 3 0 2 24.32 17.2
2 2 0 24.63 18.1
24.67 30.5 3 1 1 24.69 11.2
25.22 4.0 2 2 1 25.21 1.6
25.46 13.5 2 0 4 25.47 18.3
1 2 3 26.33 2.6
26.38 17.5 3 1 2 26.40 8.0
26.86 3.5 2 2 2 26.89 1.8
1 0 5 27.13 .0
27.13 3.5 3 0 3 27.14 2.5
~27.48 8.0 2 1 4 27.48 2.4
27.99 3.5 0 1 5 28.01 3.9
0 2 4 29.01 8.5
1 1 5 29.07 9.9
29.04 28.0 3 1 3 29.07 5.4
29.49 5.0 2 2 .3 29.54 5.2
29.75 7.5 4 0 0 29.79 2.6
. 2 0o .5 30.28 2
30.25 11.5 4 0 1 30.30 53
3 2 1 30.56 .8
30.60 7.5 0 3 1 30.64 3.1
30.78 5.0 3 0 4 30.79 2
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SOME CONSTRUCTIONS OF OPTIMAL BINARY
LINEAR UNEQUAL ERROR PROTECTION CODES

by W. J. VAN GILS
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Abstract

This paper describes a number of constructions of binary Linear Unequal
Error Protection (LUEP) codes. The separation vectors of the constructed
codes include those of all optimal binary LUEP codes of length less than or
equal to 15.

" AMS: 94B05, 94B60.

1. Introduction

Consider a binary linear code C of length » and dimension k with generator
matrix G to be used on a binary symmetric channel. In many applications it is
necessary to provide different protection levels for different components m; of
the input message word m. For example in transmitting numerical (binary)
data, errors in the more significant bits are more serious than are errors in the
less significant bits, and therefore more significant bits should have more pro-
tection than less significant bits.

A suitable measure for these protection levels for separate positions in input
message words is the separation vector ).

Definition

For a binary linear [n,k] code C the separation vector s(G) = (s(G)1, S(G)q,
.., S(G)x) with respect to a generator matrix G of C is defined by

5(G); := min {wt(m G)|me {0, 1}*, m; = 1},
where wt(.) denotes the Hamming weight function.

This separation vector s(G) guarantees the correct interpretation of the it
message bit whenever Nearest Neighbour Decoding (ref. 2 p. 11) is applied
and no more than (s(G): — 1)/2 errors have occurred in the transmitted code-
word ?). . ’

A linear code that has a generator matrix G such that the components of the
corresponding separation vector s(G) are not mutually equal is called a Linear

Philips Journa! of Rescarch  Vol. 39 No.6 1984 293

IPR2018-1557

HTC EX1023, Page 304



W. J. van Gils

Unequal Error Protection (LUEP) code?). By permuting the rows of a gen-
nerator matrix G we may obtain a generator matrix @' for the code such that
s(G") is nonincreasing, i.e. (G > s(G"in for i=1,2,...,k — 1. In this
paper we always assume that the rows in generator matrices are so ordered
that the corresponding separation vectors are nonincreasing.

Any LUEP code C has a so-called optimal generator matrix G*. This means
that the separation vector s(G*) is componentwise larger than or equal to
the separation vector s(G) of any generator matrix G of C'), denoted by
5(G*) = 5(G) (x = y means x; > y; for all ). The vector s = s(G*) is called the
separation vector of the linear code C. We use the notation [n,k,s] for C.

For any keIN and seIN* we define n(s) to be the length of the shortest
binary linear code of dimension k with a separation vector of at least s, and
n®(s) to be the length of the shortest binary linear code of dimension & with
separation vector (exactly) s**). An [n(s), k,s] code is called length-optimal 3).
It is called optimal if an [n(s),k,¢] code with > s, t + s does not exist®*4).
In refs 3 and 4 a number of bounds for the functions n(s) and n®(s) are
derived. In ref. 5 methods for constructing LUEP codes from shorther codes
are described.

In refs 3 and 4 an incomplete list of the separation vectors of the optimal
binary LUEP codes of length less than or equal to 15 is given. In this paper we
provide the complete list of the separation vectors of all optimal binary LUEP
codes of length less than or equal to 15, together with examples of generator
matrices having these separation vectors. Furthermore, we give a number of
constructions of infinite series optimal binary LUEP codes.

2. Constructions

Table I provides the separation vectors of all optimal binary LUEP codes of
length less than or equal to 15. In this table, 7 denotes the length of the code, k de-
notes the dimension, and d(n,k) denotes the maximal minimum distance of a
binary code of length # and dimension k. The brackets and commas commonly
appearing in separation vectors have been deleted. Only in the cases where a com-
ponent of a separation vector is larger than 9, it is followed by a point (. ). Exam-
ples of codes having the parameters given in table I are constructed below. The
bounds in ref. 4 can be used to show that certain LUEP codes are optimal. They
are also useful in showing that table I is complete. In cases where these bounds did
not work, methods of exhaustive search were used to show that codes with certain
parameters do not exist. Table I is the same table as table I in ref. 4, extended
by the parameters [14,10,(4333322222)], [15,3,(994)], [15,8,(73333333)],
[15,8,(55554443)], [15,8,(55544444)] and [15,11,(43333222222)]. In (ref. 4 table I)
no references to constructions were given, which has been done in this paper.
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Some constructions of optimal binary linear unequal error protection codes

TABLE 1

The separation vector of all binary optimal LUEP codes of length

less than or equal to 15.

d(n,k)

separation vector

C OOV VO OVPVHXPIDIJAANAN L A|S

LOAUVMAWNVONAMAWNO-IAVRAWNNOAUVAWLNAVMBALNDNULAWLNAWLNDWLWNDN]X

ARDPOAAOMNNWAERUVMVANNNWARARULUANNWEARAANNDARAUVMNDWARANWRANDWEND

A 32

A 42

A 322

A 52

A 422

A 3222

A 62, 54

A 522

A 4222

A 32222

A 72,164

A 622, C 544

A 5222

A 42222, J 33332

A 322222

A 82,174

A 722, C 644, G 554
A 6222, C 5444

A 52222, J 44442, B 43333
A 422222, J 333322

A 3222222
10 A92,184,176
10 A 822, C 744, L 664
10 A 7222, C 6444, G 5544
10 A 62222, C 54444
10 A 522222, J 444422, J 433332
10 A 4222222, J 3333222
10 A 32222222
11 A10.2, 194,786
11 A 922, C 844, K, 764
11 A 8222, C 7444, E 6644
11 A 72222, C 64444, G 55444
11 A 622222, J 544442, B 533333
11 A 5222222, J 4444222, J 4333322
11 A 42222222, J 33332222
11 A 322222222
12 A11.2,7110.4, 196
12 A 10.22, C 944, E 864, K, 774, K, 766
12 A 9222, C 8444, K, 7644
12 A 82222, C 74444, E 66444, M 55554
12 A 722222, C 644444, G 554444
12 A 6222222, J 5444422, J 5333332
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TABLE I (cont.)

n| k| d(nk) | separation vector
127 8 3 A 52222222, J 44442222, J 43333222
121 9 2 A 422222222, J 333322222
12 ] 10 2 A 3222222222
13] 2 8 A12.2,7111.4,7110.6,198
131 3 7 A 11.22, C 10.44, K, 964, E 884, L 866
13| 4 6 A 10.222, C 9444, L 8644, F 7744, K, 7666
13] 5§ 5 A 92222, C 84444, K, 76444, L 66664, H 66555
131 6 4 A 822222, C 744444, D 664444, M 555544
131 7 4 A 7222222, J 6444442, B 6333333, J 5544442, K; 5444444
131 8 4 A 62222222, J 54444222, J 53333322
131 9 3. | A 522222222, J 444422222, J 433332222
13] 10 2 A 4222222222 J 3333222222,
13 (11 2 A 32222222222
14| 2| 9 |A132,112.4,711.6,110.8
141 3 8 A 12.22, C 11.44, L 10.64, K, 984, K, 966
14] 4 7 A 11.222, C 10.444, K, 9644, L 8844, L 8666
141 5 6 A 10.2222, C 94444, L 86444, F 77444, N 76666
14| 6 5 | A 922222, C 844444, E 764444, L 666644, J 665552
141 7 4 A 8222222, C 7444444, J 6644442, O 6544444,
M 5555444
14| 8 4 | A 72222222, J 64444422, J 63333332, J 55444422,
K, 54444444
141 9 4 A 622222222, J 544442222, J 533333222
141 10 3 A 5222222222, J 4444222222, J 4333322222
14 ] 11 2 A 42222222222, J 33332222222
14} 12 2 A 322222222222
151 2 10 Al142,113.4,7112.6,111.8
15( 3 8 A 13.22, C 12.44, K, 11.64, K; 10.84, L 10.66,
K, 994, K, 988 '
151 4 8 A 12222, C 11.444, L 10.644, K, 9844, K, 9666
15| 5 7 A 11.2222, C 10.4444, K, 96444, L 88444, L 86666
151 6 6 A 10.22222, C 944444, L 864444, K, 774444, J 766662,
K, 766644, O 765554
151 7 5 A 9222222, C 8444444, P 7644444, L 6666444, J 6655522
151 8 4 A 82222222, J 74444442, B 73333333, J 66444422,
J 65444442, 1. 64444444, R 55554443, S 55544444
15 9 4 A 722222222, J 644444222, J 633333322, J 554444222,
K, 544444444
151 10 4 A 6222222222, J 5444422222, J 5333332222
15111 3 A 52222222222, J 44442222222, J 43333222222
15|12 2 A 422222222222, J 333322222222
15113 2 A 3222222222222
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Some constructions of optimal binary linear unequal error protection codes

In this paper we frequently use two results of ref. 4. Hence we repeat these
results in the following two theorems.

Theorem 1 (ref. 4, theorem 12)
For any ke IN and nonincreasing s € IN* we have that
nx(s1, ... 86) = Si + n(S1, . . oy Sicty Sivrs - - 5 80)
holds for any ie{l, ..., k}, where
P — |s5/2] for j<i
7 \Usi/2] for j > i,
(where | x| denotes the largest integer smaller than or equal to x, and [x] de-

notes the smallest integer larger than or equal to x).

Theorem 2 (ref. 4, corollary 14)

For any k<IN and any nonincreasing se IN¥, the function n(s) satisfies the
following inequalities, '
a. n(s1, Sz, ..., S = sl + n([s2/2], . . ., [s«/2]),

b. n(s1, S, . . .5 Sk) = Z /2871

i=1

Construction A
For n,kelN, n>= k + 1, the k£ by n matrix

11111...... 111
1

I . Ok—-l,n-k—l (1)
1

is a generator matrix of an optimal binary [n,k,(n — k + 1,2,2, .. .,2)] code
(I denotes the identity matrix of order &, Ox-1,n-x-1 denotes the all-zero & — 1
. by n— k—1 matrix).

Proof
It is easy to check that the parameters of the code are correct. Furthermore
by theorem 2b the length of a k—dimensional binary code with separation vec-
tor(n—k+1,2,2,...,2)is at least n, and with separation vector larger than
(n—k+1,2,2,...,2) is at least n + 1 (by s> ¢ (s larger than ) we mean
>tLsF1D.
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Construction B
For keN, k> 4, the k by 2k — 1 matrix

is a generator matrix of an optimal binary [2k — 1,k,(k — 1,3,3, ..., 3)] code.

Proof

It is easy to verify that the parametérs of the code are correct. By theorem
2b, we have that the length of a k—dimensional binary code with separation
vector (k —1,3,3,...,3) is at least 2k — 1. Application of theorem 2b to a
k—vector s with s;> kand s;> 3 for i = 2, .. ., k shows that n(s) > 2k. Appli-
cation of the theorems 1 and 2 to a k-vector s such that sy =k — 1, s2 >4,
si=3fori=3,...,k—1, and sx = 3 shows that

n*s) =23+ nsi—1,.. ., 80— 1)
=34+ 85— 1+n(@s2 - D/2),...,[(Se-1 — D/2)
=23+k-2+n2,1,1,...,1

>
k-2
=34+ k-24+k—-1=2k.

Furthermoreitis not difficult to check that abinary [2k — 1,k,(k — 1,4, 4, ...,4)]
code does not exist. Finally, by theorem 2b the length of a k—dimensional
binary code with a separation vector of at least (k — 1, 5,4,4,...,4) is at least
2k. These observations show that the code in construction B is optimal.

Construction C
For n,keIN, n = max{2k,k + 4}, the k by n matrix
00....... 0|11 ....... l|ll...1|10

11
Teat Tecr 0 |11 @)

11
is a generator matrix of an optimal binary [n,k,(n — k, 4,4, .. .,4)] code.
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Some constructions of optimal binary linear unequal error protection codes

Proof
Similar to the proof of construction A.

Construction D
For p,geIN, p>=q>2,the p+ g + 2 by 2p + 3g + 3 matrix

q-—1

<~
[ 00............ 0|1110]11....1]00...0] 11..1
00............ 0/1101]00....0} 11...1f 11

0101
0101 I, 0 0
Lpig RS
0101 @

1010
1010 © I, 0

1010

is a generator matrix of an optimal binary

Rr+3g+3,p+tg+2,(p+qg+2,2qg + 2,4,4,...,4)]
code.

Proof
Similar to the proof of construction A.

Construction E
For p,q,reIN, p>3, r>2, g>r—p+2, the p by 2p+q + 2r—4)
matrix

[ 11.....1]00.....0]11...1]00...0| 11..1 ]
00.....0100.....0|11...1{11...1]00..0
1 1
Ip-s I, |1 1
:0 |:0 0 &)
1 1
> > >
L r r g J

is a generator matrix of an optimal binary

Rp+qg+2r—-4,p(p+qg+r—-2,2r,4,4,...,4)]
code. .
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Proof
Similar to the proof of construction A.

Construction F

For p,gelN,p>=3,qg>2,q>=p — 2, the p by p + 3g matrix
' r00.....0 [ 11.....1 | 11...1 | 00...0 | 11....1 1
00.....0 | 11..... 1{00...0111...1 11....1

1 1
Ies L2 |10 [10 0 6)
1 1

| g+llg+llg—(p-2)1

is a generator matrix of an optimal binary
[p+3q,p,2q + 1,2g +.1,4,4,...,4)]
code.

Proof
Similar to the proof of construction A.

Construction G
For pe N, the 2p by 4p matrix

r 00....... 0(1110(11..1] 00..0 T
00....... 0(1101]00..0| 11..1
1010 )
i 0 Iy
Ipe (1010 %

0101
N I A 0

L 0101 i

isa génerator matrix of a binary [4p,2p,(p + 2,p + 2,4,4, ...,4)] code. For
p = 2,3 the codes are optimal, but in general they are not.

In ref. 6 the codes from construction G are treated extensively, the weight
enumerators and automorphism groups are determined completely and a
majority logic decoding method for these codes is given. For p = 3 we obtain a
[12,6,(5,5,4,4,4,4)] optimal LUEP code. By deleting the row and column pairs
(6,4), (5,3) and (4,2) successively we obtain [11,5,(5,5,4,4,4)], [10,4,(5,5,4,4)]
and [9,3,(5,5,4)] optimal LUEP codes respectively.
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Construction H
For peIN, p > 3, the (p + 2) by (4p + 1) matrix

[00...0]11...1]11...1] 00...0| 0
00...0|11...1)00...0[11...1]0
1

L | L | b | L |1 ®
L 4 1]

is a generator matrix of a length-optimal binary

[4p +1,p + 2,2p,2p,5,5, .. ., 5)]
LUEP code.

Proof

It is easy to check that the code has the given parameters. By theorem 2b
the length of a (p + 2)-dimensional binary code with separation vector
@2p,2p,5,5,...,5) is at least 4p + 1.

For p = 3 this construétion gives a [13,5,(6,6,5,5,5)] optimal LUEP code.
Furthermore table I refers to the following trivial constructions.

Construction I
For p,geIN, p > g, the 2 by (p + 2g) matrix

11....... 1(00....0|11....1

00.......0[I1....1|11....1
)

p q q

is a generator matrix of an optimal binary [p + 24¢,2,(p + ¢,2q)] LUEP code.

Construction J _
_ If the matrix G, has separation vector §(G1) such that s(G1)x = 2, then the
matrix

) -
0
Gz =|: G, A (10)
0
L 1 1100000........... 0.
has separation vector s(Gz) = (s(G1),2).
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Construction K;
If the matrix G; has separation vector s(G,) then the matrix

=[G e, -oan

where e; is the vector with a 1 on the i** position and zeros elsewhere, has
separation vector s(G2) = s(G1) + e.

_ The following theorem can be used to determine whether construction K;
gives an optimal code. )

Theorem 3

. If s is such that for all > s, t #s, it holds that n(f) > n(s) and if Gis a

generator matrix of a binary optimal [r 4 n(s),k,(r,2s)] code, then the code

generated by [G|ei|e1]|...|ei] is a binary optimal [r+ ¢ + n(s),k,(r + ¢,25)]
—f—

code for ¢ in IN arbitrary.

Proof .
Let s and G fulfill the conditions mentioned above. By theorem 2a we have
that

a) n(r+ t,2s) > r+t+ n(s).

b) n(r+t+125) =r+t+1+n(s)>r+t+ n(s).

o nr+t2s+u)y=r+t+n(si+urf2],...,[Skcr+ w2y =r+t+ 1 + n(s)
foru>0,u+0.

Combination of a), b) and c) shows that the code generated by [G| e1| e1] . . .| e1]
. . —
is optimal.

Construction L
Adding an overall parity-check bit to a binary [n,k,s = (s1,...,5¢)] code
gives a binary [n + 1,k,s' = 2|(s1 + 1)/2], .. ., 2(sx + 1)/2))] code.

Sporadic constructions referred to in table I are the following.

Construction M
The 7 by 14 matrix

00011111000000 T
00011000111000
- 00010100100101
00001010010011 - (12)
00110001100000

01001010001000

10000000000111 |
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is a generator matrix of an optimal binary [14,7,(5,5,5,5,4,4,4)] LUEP code.
Deleting the first column and the last row from the matrix in (12) gives an op-
timal binary [13,6,(5,5,5,5,4,4)] code. Deleting the first two columns and the
last two rows from the matrix in (12) gives an optimal binary [12,5,(5,5,5,5,4)]
LUEP code.

Construction N

Application of [5,construction 1] with m =1, g =2 and G, a genera-
tor matrix of the [7,4,(3,3,3,3)] Hamming code gives an optimal binary
[14,5,(7,6,6,6,6)] LUEP code.

Construction O
The 6 by 15 matrix

000011111000111 ]|
000000000111111
100011000100100
010010100010010
001010010001001
| 000100001001001 |

(13)

is a generator matrix of an optimal binary [15,6,(7,6,5,5,5,4)] LUEP code.

Construction P
The 7 by 15 matrix

[ 000001111111000 ]
000001110000111

100001001000100

010001001000010 (14)
001000100100001
000100100010001
000010100001001

is a generator matrix of an optimal binary [15,7,(7,6,4,4,4,4,4)] LUEP code.

Construction Q
. By deleting the 8* column from the matrix in (14) we obtain a generator
matrix of an optimal binary [14,7,(6,5,4,4,4,4,4)] code. '

Construction R
The 8 by 15 matrix
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(15)

cocoocoocoo
Q

—

00000100010000 |

where G is the matrix in (12), is a generator matrix of an optimal binary
[15,8,(5,5,5,5,4,4,4,3)] LUEP code.

Construction S
The 8 by 15 matrix

" 100000001100110 7
010000001010101
001000001001111
000100000110100
000010001110000
000001001101000
000000101011000
| 000000010111000 J

(16)

is a generator matrix of an optimal binary [15,8,(5,5,5,4,4,4,4,4)] LUEP code.
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NETWORKS FOR SORTING WITH FUSION

by C. RONSE
Philips Research Laboratory, B-1170 Brussels, Belgium

Abstract

We consider a particular type of sorting where objects having the same
weight go to the same destination. We call it regular fusion-sorting. We
show that if in a sorting network built with sorting cells, we replace these
cells by regular fusion-sorting cells, then the network becomes a regular
fusion-sorting network. We give some applications, as the extraction of
sets from multisets, occurrence counting in lists of objects, multiconnec-
tion networks. .

CCCS: 42.30, 51.20 and 52.10.

1. Introduction and statement of the result

Sorting consists in reordering n objects Xo, . . ., Xy-1 with respective weights
Wo, ..., Wa-1, in such a way that the weights are in increasing order.

Sorting networks, in particular those built with binary cells, are widely used
in computer science and communications 1»2).

The purpose of this paper is to study a generalization of sorting where two
objects having the same weight get the same place. Consider for example five
objects Xo, X1, X2, X3, X4 having respective weights 6, 1, 3, 1, 6. With this
type of sorting, the objects will be recorded as follows, with the ordering from
top to bottom:

{X1, X3}
X2
{Xo, X4}. ey

We call such a type of sorting fusion-sorting. We will study the design of
switching networks which realize the operation of fusion-sorting; we call them
fusion-sorting networks. In particular, we will consider cellular fusion-sorting
networks; we mean by it that these networks are built by interconnecting small
standard fusion-sorting networks called cells.

We should explain what the superposition of several object (e.g., {X1, X3]
and {Xo, X4} in (1)) means in practice. From a general hardware point of view,
if each object is represented with & bits, the superposition of m objects will
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form a km bit vector. Taking into account the fact that one should either re-

serve a value of each k-bit vector to the possible absence of object at a given out-

put, or generate a validation binary signal indicating whether there is effectively
an object at that output, the wiring capacity necessary to accommodate fusion-
sorting would be very large. In this case it would be better to perform a sorting

first, and then a fusion; we describe indeed a network for fusion in sec. 2.

However this general hardware point of view will be used only for the sake
of the exposition and illustration of the possibilities of fusion-sorting. There
are several particular cases where fusion-sorting does not lead to a significant
increase in wiring. We list them briefly here, they will be described with more
details in sec. 3: '

() Suppose that two objects X; and X; have the same weight w; = w; if and
only if they are identical. When they are fused, it is not necessary to store
at the output the superposition of the two objects, but only the single ob-
ject X; = Xj. It is thus only necessary to have some code for the absence of
object (by reserving a special value of the k bit vector representing objects
or by a validation signal).

(b) Although the connecting of several inputs to a single output is not a cur-
rent practice in hardware design; the reverse is quite feasible. In multicon-
nection networks a single input can be connected to any number of out-
puts. We get thus a multiconnection network by turning a fusion-sorting
network backwards. Here fusion corresponds to the connection of an
input to several outputs. It is easily seen that no real wiring expansion is
involved in this operation.

(c) One can find applications towards parallel list processing. Objects corres-
pond to words in lists. The superposition of objects corresponds to lists.
Then the operation of fusion is the concatenation of two or more lists into
a larger one. Implementations would be possible with languages support-
ing some form of parallelism.

Let us now describe in more detail the working of fusion-sorting. As ex-
plained above, we use the hardware point of view, but only for exposition
purposes. :

Let n be the number of objects to sort. A sorting network has n double in-
puts (and outputs), each one being subdivided into one for the object and one
for the weight. Then the sorting network will realize a sorting on both the
objects and the weights. This is shown in fig. 1 for n = 4.

For a fusion-sorting network, things are more complicated. If at least two
objects have the same weight, then the destination of the objects will not be
uniquely determined, since we will require as set of outputs only a subset of
the n available ones.
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X —> —;>W
3 —> —>0
y —> — Yy
2 —> —> 2
z —> L5 X
3 —> —> 3
W — > z
0 —> —> 3

Fig. 1. A sorting 4-cell in action.

However, for technical reasons, the choice of the set of outputs will be de-
termined by the number of repetitions of each distinct weight among the »
objects. _

Let 11s number the inputs and outputs 0, ..., n — 1. Write Xo, ..., Xu-1 for
the objects, and wy, . . ., wy—1 for their corresponding weights. We assume that
these n weights form m distinct values

Voy « « s Vin-1, (2)

where m << n and

Vo <...< VUm-1. - (3)

We define for i=0,...,m — 1:

F;=thesetofall j(j=0,...,n — 1) such that w; = v;; )
Ji = the size of F;; ' 5
gi=0if i=0;
i-1
= :;0 fe otherwise. (6)

For j=0,...,n—1, we must determine the destination of object x;, in
other words the output corresponding to input j. We write it j°. :

One would like to have j° = for je F; (so that only the first m outputs
would be used), but this cannot be achieved with fusion-sorting networks de-
rived from ordinary sorting networks, as we will see in the next section.

We have the smallest difference with an ordinary sorting network if we as-
sume that the fusion-sorting network realizes an ordinary sorting on the
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weights. Thus the weight v; will be found at outputs gi,...,g:+/fi — 1. But
then for je F;, j° will be one of these values. We can choose the lowest one

=g for jeF. @)

With such a choice of d, the fusion-sorting will be called regular. A network

realizing a regular fusion-sorting on the objects and an ordinary sorting on the

weights will be called a regular fusion-sorting network. We illustrate this in
fig. 2 for n = 8.

L 5 Yo:X1.X3
_)0

__)Y1.'—
|

> Y21 X2, X4, X7
15

_)YQ:
+—>15

l—— YL: -
i—>15

> Y51 X0, X5
2

—
l—a 2

_>y7.'X6
—> 6

Fig. 2. A regular fusion-sorting 8-cell in action.

Now the interest in choosing this particular type of sorting resides in the
following result:

Theorem

Let N be a sorting network built by an interconnection of smaller sorting
networks So, . .., S.. If we replace these smaller networks by regular fusion-
sorting neworks Sq, . . ., S¢, then the resulting network N’ is a regular fusion-
sorting network.

As a consequence, the numerous known designs for cellular sorting net-
works (triangular, diamond, etc.) built with binary cells can be used as regular
fusion-sorting networks, provided that the blnary cells are replaced by the 3-
state cells shown in fig. 3.

We will prove our theorem in sec. 2, where we will also examine other forms
of fusion-sorting and other designs of regular fusion-sorting networks. Ap-
plications will be discussed in sec. 3. :
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Xp Xp
Wg — — w
0 0 Wq < Wy
X4 X4
Wy —— — W,
Xo — —— X4
wg — L w
0 1 WO > W1
X1 —— Xg
Wy — —— Wo
X0 XO.X1
W — e WO =W, -
WO = Wy
Xy —— |
Wy — — WO = W1
Fig. 3. A regular fusion-sorting 2-cell with its 3 states.

2. Discussion

Let us first demonstrate our theorem.
Let i*€{0,...,m — 1} and j* € F;. We will show that the destination of Xj-
through N’ is g;+.
Let ¢ > 0 such that v;» — € > v;»— if i* > 0. We will compare the path fol-
lowed by the objects and weights in the following two situations:
(i) with the network N';
(ii) with the network N, where we change the weight wj» = v;» of Xj. to
Wie = vj» — &. v
We can subdivide N and N’ into s successive stages, in each one of them
every object passes through at most one subnetwork. After ¢ stages (0 < £ < s),
the objects and weights have certain positions between 0 and n — 1. We show
the following by induction on ¢.
After ¢ stages, there is an integer p, with 0 << p: << n — 1, such that:
(a) X;- has position p, in both (i) and (ii), with weight w;« in (i) and wyj« in (ii).
(b) For any integer p with 0 << p << n — 1 and p # p:, we have the same weight
at position p in (i) and (ii). i
This is obviously true for # = 0. Let us now show that if it is true for some
t > 0, then it is true for ¢ + 1.
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Consider a subnetwork S; of N lying in stage ¢+ 1, and the corres-
ponding subnetwork S; of N! Let g be its size, and write xo, ..., x,-; and
Yo, - . ., ¥g-1 Tor the levels corresponding to its g successive inputs and outputs
respectively.

By induction hypothesis, foru = 0, . .., g — 1 we have either x, = p, and Xj.
has position x, in both (i) and (ii), with respective weights w;+ and w/» or x, has
the same weight in both (i) and (ii). We can adapt (egs 4, 5 and 6) to the
present situation; we define fori=0,...,m —1:

&; = the set of all x, (u=0,...,g — 1) such that in (i) the weight corres-
ponding to the position x, is v;.

.the size of @;.

s
I

yi =0 if i=0;

i-1
Y @i otherwise.
k=0

In (ii), x.€ @; has weight v;, except for i=i* and x.=p;, where it has
weight v;» — €.

Let us compare the outputs of Sy and S;. In (i), Sa operates an ordinary
sorting on the weights. Thus fori=0,....m—land u=yi, ..., 9 + @i — 1,
Y. has weight v;. If p, is one of xo, . . ., X4-1 (i.e. if Xj» is in one of the inputs
of Sa), the output y,,. will contain the object Xj».

In (ii), y. will have the same weight as in (i), except for u = y;» When p; is one
of Xo, . .., Xg-1. In this case y,,. has weight v;» — ¢ and the object X;. will go to
the output y;,..

Thus in both cases we find the same value for pr.1, and for every position
P F pen1, one has the same weight in both (i) and (ii).

Thus our assertion is true for ¢ + 1.

Therefore our assertion is true for every ¢, and it is in particular true for
t = s. This means that in (i) X+ goes to the output g;» and that fori = 0, ...,
m—1and j=gi,..., g +fi— 1, the output j has weight v;. As j* was ar-
bitrarily chosen, this means that N’ operates a regular fusion-sorting on the
object and an ordinary sorting on the weights.

This achieves the proof of our theorem.

Now let us examine alternative methods for fusion-sorting. In the preceding
section, we said that it would be interesting to have a fusion-sorting network
such that the destination of an object X would be i for j € F;. As we said there,
we cannot do this with a network derived from an ordinary sorting network.

310 Philips Journal of Research Vol.39 No.6 1984

IPR2018-1557
HTC EX1023, Page 321



Networks for sorting with fusion

X — — Y,
=] [

Fig. 4.

We give a counterexample here. Take n = 4 and consider the cellular sorting
network shown in fig. 4. Suppose that we take the weights,

Wo = O,
w1 = 1,
Wa = 0,
and ws = 2. ®)

The destination /¢ of object of x; would then be given by,

0° =0,
1° =1,
2% = 0,
and 30 =2, 9)

It is not hard to see that it is impossible to realize (9) with that network after
replacing the 2-state cells by 3-state fusion-sorting cells. This is also impossible
with 4-state cells (with the 4" state being the 3™ one turned upside down), even
with a centralized (external) control of the cells.

It is thus justified to restrict the design of a cellular fusion-sorting network
from an ordinary one to the regular fusion-sorting network described in the
theorem.

Now it is possible to realize the building of a regular fusion-sorting network
by combining two networks in succession: the first one is an ordinary sorting
network, while the second one will realize a regular fusion, which is an input to
output mapping ¢ such that for j =0,...,n — 1 we have:

JP<J
and (10)
(J9)r=J°.

In fact, given eqs (4), (5) and (6), one defines j* = g; forj=gi, .. ., g+ fi— 1.
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. 0 >
1 5
7 >
3 >
A >
5 >

[ = fusion 2- cell

Fig. 5. A regular fusion network, n = 5.

This second network will be called a regular fusion network. There are
several possible cellular designs for it. Let us give here two examples using
binary cells.

A fusion 2-cell has 2 states, the first and third ones from fig. 3. Now the first
design of a regular fusion network using 2-cells is derived from the ‘branching
network’ described in ref. 3; we show it in fig. 5. The second design is based on
the fact that the fusion of the numbersj + 1,..., j -+ ¢ with j can be realized as

follows: write
$

t=) a2,
r=0

where a,€ {0, 1} for reach r; then this fusion can be realized by fusing j + ¢ with
JHt—oas2°, thenj+ ¢t — o 2° with j + ¢ — a;2° — a,-1 2574, ete. If 2% < n < 284,
then the network can be realized by a succession of 2k + 1 stages numbered
1,...,2k+1:
— In stage 1, a fusion cell is placed between jand j + 2¥ for0<<j<<n — 25,
— Instage2v (v =1,..., k), a fusion cell is placed between j and j + 2%~ for

0<jgn—2andj=0,...,25" — 1 modulo 2%+,
— Instage2v +1(w =1,...,k), a fusion cell is placed between j and j + 2¢~*

for0g<jg<n—2¥%and j =257, ., ., 2x°* _ | modulo 2+,

We illustrate this design in fig. 6 for n = 10. When # is a power of 2,

this network can be given a structure similar to Lawrie’s omega network4)
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0 >
1 >
2
3
4 >
5 >
6 >
7 >
8
9

= fusion 2-cell

Fig. 6. A regular fusion network, n = 10.

if one precedes the stages 1, 2, 4, 6, etc. by a perfect shuffle. We show this in
fig. 7.

The first design has cost and delay (in terms of 2-cells) linear in #, while the
second one has cost and delay linear in 7 -log(n) and log(n) respectively.

The question arises: when is the design of a regular fusion-sorting network
by the modification of cells in an ordinary sorting network (as explained in the
theorem) more appropriate than the juxtaposition of an ordinary sorting
network with a regular fusion network described here? The answer depends
upon the circumstances. If the flow of several objects at the same position in
a cell leads to an increase of wiring capacity or of processing time, then the
combination of a sorting network and a fusion network is preferable, since the
complication is restricted to the end of the design. On the other hand, we will
describe in the next section several applications (multiconnection networks,
extraction of sets from multisets) where this complication does not arise; then
it will be better to use the design based on our theorem.
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0 >
1

2 >
3 ‘ >
L >
5 >
6 >
. .

[ = fusion 2-cell

Fig. 7. A regular fusion network, n = 8.

3. Applications

Fusion-sorting networks can be used for the extraction of a ‘dictionnary’
(i.e., the list of all words in alphabetical order) from a text. This operation is
equivalent to the sorting of a multiset into a set. It can be achieved by oper-
ating a fusion-sorting of the word occurrences, with their respective weights
being in alphabetical order.

It is also possible to count the number of occurrences of every word by
associating to each word an occurrence count (initialized to 1 at the input) and
adding a counter to each fusion-sorting 2-cell. Suppose that for the 2-cell
shown in fig. 3 the occurrence counts of its two input words are co and c;.
Then the occurrence counts of its two outputs will be

¢o and c; in the first state.
¢1 and ¢o in the second state.
¢o + ¢1 and 0 in the third state.

It should be noted that in the above example the fusion operation does not
cause an increase in wiring capacity or processing trme, because when two
words are ‘fused’, the corresponding output does not contain the repetition of
two identical words, but one word.
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Fusion-sorting networks turned backwards can be used as multiconnection
networks (a multiconnection is an input-output connection where every out-
put is connected to one input, but an input can be connected to any number of
outputs). A multiconnection realizes a map from the outputs to the inputs,
while a fusion-sorting realizes a map from the inputs to the outputs. Thus if
we turn a regular fusion-sorting network backwards, then it can realize multi-
connections in the following way: we associate to every output a weight cor-
responding to the input to which it must be connected. Then by performing a
regular fusion-sorting from the outputs to the inputs, we will obtain a multi-
connection which is similar to the desired one, up to a reordering of the in-
puts. This reordering can be achieved by inserting a permutation network on
the side of the inputs. We illustrate this design in fig. 8a.

This type of multiconnection networks, combining a permutation network
followed by a regular fusion-sorting network turned backwards, is to be com-
pared to the basic design proposed in ref. 3, which consists in the combination
of three networks, namely a ‘branching network’ enclosed between two per-
mutation networks. This is shown in fig. 8. A ‘branching network’ is a multi-
connection network realizing only a particular subset of multiconnections; it
corresponds in fact to a regular fusion network turned backwards. It is thus
easy to see that this branching network and the permutation network on the
side of the outputs correspond to our regular fusion-sorting network turned
backwards.

Other applications of fusion-sorting can be imagined. For example in a
parallel list processor, a fusion-sorting network could be used for sorting or

Inputs ' | P.N. [ i | F.S.NB. | : Outputs
(a)

Inputs “| PN. [ :] B.N. |-} P.N. |: Outputs
(b)

Fig. 8. Multiconnection networks: P.N. = permutation network, B.N. = branching network,
F.S.N.B. = fusion-sorting network turned-backwards.
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concatenating lists. Given two lists (list 0) and (list 1), the fusion-sorting 2-cell

of fig. 3 will apply to them the following operatlons

— No change in the first state.

— The inversion between (list 0) and (list1) in the second state.

— The concatenation of the two lists in the third state; (list0) becomes
(list Olist1) and (list1) becomes the empty list ().

This can be done efficiently if these list are coded dynamically. We take n
position records P, . . ., P,-1, containing each two address pointers begin and
end, n object records Zo, . . ., Z,_1, containing each the description of an object
Xi, its weight w; and an address pointer next, and finally an empty record NIL.
For each P;, the pointers begin and end give the address of the records Z;
corresponding to the first and last elements of the corresponding list. For each
Z;, the pointer next gives the address of the record Z; such that Xjis the successor
of X;in its corresponding list. When the list associated to Piis empty or when Z;
corresponds to the last element of a list, the corresponding pointers begin, end
and next are set or NIL. At the start, we set in each P; the pointers begin and end
to Z;, and in each Z; the pointer next to NIL. Then the operation of fusion-
sorting on two lists corresponding to positions P; and P; can be performed by
manipulations of the pointers begin, end and next. At the end of the process, the
lists can be accessed thanks to the chains of begin and next pointers.

4. Conclusion

By our theorem, we know that every cellular design for sorting networks
(triangular, diamond, Batcher’s, Base and Nelson’s, etc.) can be used for the
design of regular fusion-sorting networks.

It is also possible to build regular fusion-sorting networks by combining an
ordinary sorting network with a regular fusion network. We give two dlfferent
designs for a regular fusion network built from binary cells.

There are several applications of regular fusion-sorting which do not lead to
an increase of wiring complexity due to the fusion operation, for example the
design of multiconnection networks or the extraction of a set from a multiset.
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