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9 
INFORMATION THEORY AND 
COMMUNICATION SYSTEMS 

The past several chapters have dealt with electrical communication primarily in 
terms of signals, both desired and undesired. We have devised signal models, examined 
the effects of networks on signals, and analyzed modulation as a means of signal 
transmission. Although many rewards and much insight have been gained by this 
approach, signal theory alone is not sufficient for a complete understanding of our 
subject matter, particularly when it comes to the design of new and improved systems. 
What is needed is a more encompassing view of the communication process, a broader 
perspective leading to basic principles for system design and comparison - in short, 
a general theory of communication. 

Prior to the 1940s a few steps were taken toward such a theory in the telegraphy 
investigations of Nyquist and Hartley. But then, shortly after World War II, Claude 
Shannon (1948) and Norbert Wiener (1949) set forth new concepts that had and 
continue to have major impact. Taken together, the ideas of Wiener and Shannon 
established the foundation of modem (statistical) communication theory. Both men 
were concerned with extracting information from a background of noise, and both 
applied statistical concepts to the problem. t There were, however, differences in 
emphasis. 

t Both men arc also famous for other accomplishments. Wiener founded the subject 
known as cybemctfos, and Shannon first pointed out the relationship of Boolean 
algebra to switching~ircuit design - in his master's thesis! 
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Wiener treated the case where the information-bearing signals are beyond the 
designer's control, in whole or part, all the processing being at the receiving end. 
The problem then can be stated in this fashion : Given the set of possible signals, not 
of our choosing, plus the inevitable noise, how do we make the best estimate of the 
present and future values of the signal being received? Optimum solutions to this and 
similar problems are sought in the discipline known as detection theory. 

Shannon's work is more nearly akin to what we think of as communication, 
where signal processing can take place at both transmitter and receiver. Shannon 
posed this problem: given the set of possible messages a source may produce, not of 
our choosing, how shall the messages be represented so as best to convey the infor­
mation over a given system v.ith its inherent physical limitations? To handle this pro­
blem in quite general terms it is necessary to concentrate more on the information 
per se than on the signals, and Shannon's approach was soon rechristened information 
theory. 

Information theory is a mathematical subject dealing with three basic concepts: 
the measure of information, the capacity of a communication channel to transfer 
information, and coding as a means of utilizing channels at full capacity. These 
concepts are tied together in what can be called the fundamental theorem of infor­
mation theory, as follows. 

Given an information source and a communication channel, there exists a 
coding technique such that the information can be transmitted over the channel 
at any rate less than the channel capacity and with arbitrarily small fre<i uency of 
errors despite the presence of noise. 

The surprising, almost astonishing aspect of this theorem is error-free transmission 
on a noisy channel, a condition achieved through the use of coding. In essence, 
coding is used to match the source and channel for maximum reliable information 
transfer, roughly analogous to impedance matching for maximum power transfer. 

But the study of coding is, by and large, tangentia l to our inmediate aims. 
Thus, with some reluctance, we limit this chapter primarily to the concepts of infor­
mation measure and channel capacity, with emphasis on the latter. By so doing we 
shall eventually arrive at answers to these significant questions: 

J Precisely how do the fundamental physical limitations (i.e., bandwidth 
and noise) restrict information transmission? 

2 Is there such a thing as an ideal communication system, and, if so, what are 
its characteristics? 

3 How well do existing communication systems measure up to the ideal, and 
how can their performance be improved? 

Answers to these questions are certainly germane to electrical communication. 

IPR2018-1557 
HTC EX1055, Page 3



342 INFORMATION THEORY AND COMMUNICATION SYSTEMS 

They will be explored in some detail at the close of the chapter. But we must begin 
with information theory. 

9.1 INFORMATION MEASURE: ENTROPY 
The crux of information theory is the measure of information. Here we are using in­
formation as a technical term, not to be confused with its more conventional interpre­
tations. In particular, the information of information theory has little to do with 
knowledge or meaning, concepts which defy precise definition, to say nothing of 
quantitative measurement. In the context of communication, information is simply 
that which is produced by the source for transfer to the user. This implies that 
before transmission, the information was not available at the destination; otherwise I 
the transfer would be zero. Pursuing this line of reasoning, consider the following 
somewhat contrived situation. 

A man is planning a trip to Chicago. To determine what clothes he should 
pack, he telephones the Chicago weather bureau and receives one of the following 
forecasts: 

The sun will rise. 
It will rain. 
There will be a tornado. 

Clearly, the amount of information gained from these messages is quite different. 
The first contains virtually no information, since we are reasonably sure in advance 
that the sun will rise ; there is no uncertainty about this, and the call has been wasted. 
But the forecast of rain does provide information not previously available to the 
traveler, for rain is not an everydl!Y occurrence. The third forecast contains even more 
information, tornadoes being relatively rare and unexpected events. 

Note that the messages have been listed in order of decreasing likelihood and 
increasing information. The less likely the message, the more information it conveys 
to the user. We are thus inclined to say that information measure is related to un­
certainty, the uncertainty of the user as to what the message will be. Moreover, the 
amount of information depends only on the message uncertainty, rather than its 
actual content or possible interpretations. Had the Chicago weather forecast been 
"The sun will rain tornadoes," it would convey information, being quite unlikely, but 
not much meaning. 

Alternately, going to the transmitting end of a communication system, informa­
tion measure is an indication of the freedom of choice exercised by the source in selec­
ting a message. If the source can freely choose from many different messages, the 
user is highly uncertain as to which message will be selected. But if there is no choice 
at all, only one possible message, there is no uncertainty and hence no information. 
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Whether one prefers the uncertainty viewpoint or the freedom-of-choice interpre­
tation, it is evident that the measure of information involves probabilities. Messages 
of high probability, indicating little uncertainty on the part of the user or little choice 
on the part of the source, convey a small amount of information, and vice versa. 
This notion is formalized by defining self-information in terms of probability. 

Self-Information 

Consider a so urce that produces various messages. Let one of the messages be 
designated A, and let PA be the probability that A is selected for transmission. Consis­
tent with our discussion above, we write the self-information associated with A as 

JA =[(PA) 

where the function f( ) is to be determined. As a step toward finding f( ), intuitive 
reasoning suggests that the following requirements be imposed: 

f(P,.) ~ 0 

lim f(P,.) =0 
P..t -+ I 

f(P,.) > [(Pa) 

where O :,;PA :;5; I 

for PA < P8 

The student should have little trouble interpreting these requirements. 

(I) 

(2) 

(3) 

Many functions satisfy Eqs. (I) to (3). The final and deciding factor comes from 
considering the transmission of independent messages. When message A is delivered, 
the user receives J A units of information. If a second message B is also delivered, 
the total information received should be the sum of the self-informations, J _. + J 8 . 

This summation rule is readily appreciated if we think of A and B as coming from 
different sources. But suppose both messages come from the same source ; we can 
then speak of the compound message C = AB. If A and Bare statistically independent, 
Pc = PAP 8 and Jc = f(P A P 8). But the received information is still J~ = J A + J 8 = 
.f(P A) + f(P 8) and therefore 

f(P,.P8 )=f(P,.)+f(P8 ) (4) 

which is our final requirement for f( ). 
There is one and only one functiont satisfying the conditions (I) to (4), namely, 

the logarithmic function f( ) = -log. ( ), where b is the logarithmic base. Thus 
self-information is defined as 

"'- I JA - - log• PA = log.- (5) 
PA 

t See Ash (1965, chap. 1) for proof. 
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344 INFORMATION THEORY AND COMMUNICATION SYsnMS 

where b is unspecified for the moment. The minus sign in - logb PA is perhaps 
disturbing at first glance. But, since probabilities are bounded by O ~ PA ~ I, the 
negative of the logarithm is positive, as desired. The alternate form logb (I/PA) helps 
avoid confusion on this score, and will be used throughout. 

Specifying the logarithmic base b is equivalent to selecting the unit of informa­
tion. While common or natural logarithms (b = JO or b= e) seem obvious candidates, 
the standard convention of information theory is to take b = 2. The corresponding 
unit of information is termed the bi1, a contraction for binary digit suggested by 
J. W. Tukey. Thus 

J A = log2 ...!.. bits 
PA 

The reasoning behind this rather strange convention goes like this. Information is a 
measure of choice exercised by the source; the simplest possible choice is that between 
two equiprobable messages, i.e., an unbiased binary choice. The information unit is 
therefore normalized to this lowest-order situation, and I bit of information is the 
amount required or conveyed by the choice between two equally likely possibilities, 
i.e., if PA = P8 = M, then J A = .!8 = log2 2 = I bit. 

Binary digits enter the picture simply because any two things can be represented 
by the two binary digits O and 1. Note, however, that one binary digit may convey 
more or less than I bit of information, depending on the probabilities. To prevent 
misinterpretation, binary digits as message elements are called binils in this chapter. 

Since tables of base 2 logarithms are relatively uncommon, the following 
conversion relationship is needed: 

log2 v = log2 IO log10 v"" 3.32 log10 v (6) 

Thus, if PA = Yto, f,. = 3.32 log10 10 = 3.32 bits. In the remainder of this chapter, 
all logarithms will be base 2 unless otherwise indicated. 

Example 9.1 The Information in a Picture 

It has often been said that one picture is worth a thousand words. With a little stretch­
ing, information measure supports this old saying. 

For analysis we decompose the picture into a number of discrete dots, or ele­
ments, each element having a brightness level ranging in steps from black to white. 
The standard television image, for instance, has about 500 x 600 = 3 x 105 elements 
and eight easily distinguishable levels. Hence, there are 8 x 8 x .. . = 83 

• 
10

' possible 
pictures, each with probability P = s- <Jx 10'> if selected at random. Therefore 

J = Jog 83 ' 1°' = 3 x 105 log 8::::, 106 bits 
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Alternately, assuming the levels to be equally likely, the information per element is 
log 8 = 3 bits, for a total of 3 x I 05 x 3 ::::, I 06 bits, as before. 

But what about the thousand words? Suppose, for the sake of a rgument, tlaat a 
vocabulary consists of 100,000 equally likely words. The probability of any one 
word is then P = 10 - 5, so the information contained in 1,000 words is 

.! = 1,000 log 105 = 103 x 3.32 log, 0 105
::::, 2 x 104 bits 

or substantially less than the information in one picture. 
The validity of the above assumptions is of course open to question ; the point 

of this example is the method, not the results. //// 

Entropy and Information Rate 

Self-information is defined in terms of the individual messages or symbols a source 
may produce. It is not, however, a useful description of the source re lative to communi­
cation. A communication system is not designed around a particular message but 
rather all possible messages, i.e., what the source could produce as distinguished 
from what it does produce on a given occasion. Thus, although the instantaneous 
information flow from a source may he erratic, one must describe the source in terms 
of the average information produced. This average information is called the source 

entropy. 
For a discrete source whose symbols are sta1istical/y independent, the entropy 

expression is easily formulated. Let m be the number of different symbols, i.e., an 
alphabet of size m. When the jth symbol is transmitted, it conveys J 1 = log (1/P,) 
bits of information. In a long message of N » 1 symbols, the jth symbol occurs 
about NP

1 
times, and the total information in the message is approximately 

m 

NP1.F, + NP2.F2 + ... + NP.,.F~ = L NP; .F, 
} • 1 

bits 

which, when divided by N, yields the average information per symbol. We therefore 

define the entropy of a discrete source as 

., ., I 
Jff~ L P;J, = L P, log p. 

J• I J•I J 

bits/symbol (7) 

It should be observed that Eq. (7) is an ensemble average. If the source is nonstation­
ary, the symbol probabilities may change with time and the entropy is not very mean­
ingful. We shall henceforth assume that infor mation sources are ergodic, so tha t ti me 

and ensemble averages are identical. 
The name entropy and its symbol Jff are borrowed from a similar equatiort in 

statistical mechanics. Because of the mathematical similarity, various attempts have 
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346 INFORMATION lREORY AND COMMUNICATION SYSTEMS 

been made to relate communication entropy with thermodynamic entropy. t However, 
the attempted relationships seem to cause more confusion than illumination, and it is 
perhaps wiser to treat the two entropies as different things with the same name. 
For this reason the alternate designation comentropy has been suggested for communi­
cation entropy. 

But what is the meaning of communication entropy as written in Eq. (7)? 
Simply this: although one cannot say which symbol the source will produce next, 
on the average we expect to get .1'f bits of information per symbol or N.1'f bits in a 
message of N symbols, if N is large. 

For a fixed alphabet size (fixed m) the entropy of a d iscrete source depends on the 
symbol probabilities but is bounded by 

0 ::. .1'f s; log m (8) 

These extreme limits are readily interpreted and warrant further discussion. The 
lower limit, Jf' = 0, implies that the source delivers no information (on the average), 
and hence there is no uncertainty about the message. We would expect this to corres­
pond to a source that continually produces the same symbol; i.e., all symbol probab­
ilities are zero, save for one symbol having P = I. It is easily shown that Jf' = 0 in 
this case. At the other extreme, the maximum entropy must correspond to maximum 
uncertainty or maximum freedom of choice. This implies that all symbols are equally 
likely ; there is no bias, no preferred symbol. A little further thought reveals that the 
symbol probabilities must be the same; i.e., .1'f = Jf' max = log m when a ll P1 = l /m, 
which has particular significance for our later wor k. 

The variation of .1'f between the limits of Eq. (8) is best illustrated by considering 
a binary source (m = 2). The symbol probabilities are then related and can be written 
as P and 1 - P. Thus 

I I 
.1'f = P log - + ( I - P) log -- (9) 

P 1 - P 

which is plotted versus P in Fig. 9.1. Note the rather broad maximum centered at 
P = 0.5, the equally likely case, where .1'f = log 2 = I bit. 

Bringing the time element into the picture, suppose two sources have equal 
entropies but one is "faster" than the other, producing more symbols per unit time. 
In a given period, more information must be transferred from the faster source than 
from the slower, which obviously places greater demands on the communication 
system. Thus, for our purposes, the description of a source is not its entropy alone 
but its entropy rate, or information rate, in bits per second. The entropy rate of a 
discrete source is. simply defined as 

t Sec Brillouin (1956). 
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1.0 

:E 
i, 0.5 

FIGURE 9.1 
Entropy of a binary source versus the O 
probability of one symbol. 

where i is the average symbol duration, namely, 

o.s 
p 

fJl 8 .1'f bits/s 
i 

.. 
i= I P; TJ 

j • l 

so 1/i equa ls the average number of symbols per unit time. 

1.0 

(10) 

(11) 

EXERCISE 9. 1 Calculate the entropy rate of a telegraph source having Pd0 , = %, 
Tdo• = 0.2 s, Pdash = ~ , Tdash = 0.4 s. Ans.: Bl = 3.44 bits/s. 

Example 9.2 Entropy and PCM 

As an example of entropy applied to our earlier studies, consider a PCM system whose 
input is the continuous signal x(I) bandlimited in W = 50 Hz. Suppose x(t) is sampled 
at the Nyquist rate J. = 2 W, a nd let there be four quantum levels such that the quan­
tized values have probabilities :¥2, X , Ys, and Ys. Identifying each possible quantized 
value as a "symbol," the output of the quantizer then looks like a discrete source 

with m = 4 and 

Yi' = V2 log 2 + X log 4 + ~ log 8 + ~ log 8 

= 1.75 bits/symbol 

Since the symbol rate is 1/'f = J. = JOO, 

fJt = 100 x 1.75 = 175 bits/s 

Thus, it should be possible to represent this same information by equiprobable 
binary digits (biaits) generated at a rate of 175 binits/s. 

IPR2018-1557 
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348 INFORMATION THEORY AND COMMUNICATION SYSTEMS 

To check this idea, suppose that the system is in fact binary PCM with the 
quantized samples transmitted as coded binary pulses. Labeling the quantum levels 
by the code numbers 0, I , 2, and 3, let us assume the following coding: 

Code number Probability Binary code 

0 ~ 00 
I l4 01 
2 l-11 10 
3 ~ 11 

Since there are two binary digits for each sample, the PCM signal has 200 pulses per 
second. Now we argued that 175 binary digits per second should be sufficient ; yet 
200 per second is requfred with this code. 

The anomaly is quickly resolved by noting that the binary digits are not equally 
likely; in fact, P0 = 1Yi6 and P 1 = Yi6, as the reader can verify. Clearly, the suggested 
code is not optimum. On the other hand, it is simple and reasonably efficient. 

Pressing onward, the binit rate and probabilities given a bove suggest that the 
information rate at the encoder output is 

q/ = 200(1Yi6 log 1;{1 + Yi6 log 1%) 

= 2()() X 0.897 = 179 bits/S 

Again something is wrong, for the information rate into the encoder is only l 75 bits/s. 
Surely direct encoding does not add information! 

To explain the discrepancy we must recall that the entropy equation (7) is based 
on statistica lly independent symbols. And, while it may be true that successive 
quantized samples are independent, the successive binary pulses are not, because we 
have encoded in groups of two. For the case of dependent symbols, we must modify 
the measure of information and introduce conditional entropy. /Ill 

Conditional Entropy and Redundancy 

Discrete sources are often constrained by certain rules which limit the choice in selec­
ting successive symbols. The resulting intersymbol influence reduces uncertainty and 
thereby reduces the amount of information produced. We account for this effect by 
using conditional probabilties and conditional entropy. 

Written text, being governed by rules of spelling and grammar, is a good 
example of intersymbol influence. On a relative-frequency basis, the probability of 
U in printed English is Pu = 0.02; but if the previous letter is Q, the conditional 
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probability of U given Q is P(U IQ) ~ I, whereas in contrast P(U I W) < 0.001. 
The influence may well extend over several symbols, phrases, or even complete 
sentences, as illustrated by the fact that in most textbooks, including this one, 
P(THATjIT CAN BE SHOWN)~ I. 

The expression for conditional entropy therefore is formulated by considering 
the entire past history of the source - more precisely, a ll possible past histories. 
Thus, if j represents the next symbol (or group of symbols) and i represents the pre­
ceding sequence, the information conveyed by j given i is log (1/P(j j i)]. Ave raging 
over all j's and i's gives the conditional entropy 

I 
Jlf0 = ~ ~ P1P(jli) log P(jli) (12) 

In general .Jf
0 

:s; Jf' ; the equality applies only when the symbols are independent and 

P(j ji) = P1 . 

A source producing dependent symbols is said to be redundant, meaning that 
symbols are generated which are not absolutely essential to convey the information. 
(ls it really necessary to explicitly write the U following every Q in English?) The 
redundancy of English text is estimated to be roughly 50 percent. This implies that 
in the long run, half the symbols are unnecessary: yu sbld babl t read tbs evntbo 
sevrl ltrs r msng. The reader may wish to ponder the observation that without 
redundancy, abbreviation would be impossible, and any two-dimensional array of 
letters would form a valid crossword puzzle. 

For very long passages of printed English, the conditional entropy may be as 
low as 0.5 to 1.0 bits/symbol because of contextual inferences. Thus, with suitable 
coding, printed English theoretically could be transmitted in binary form with an 
average of one binary digit per symbol. Contrast this with existing teletype systems 
that use five binary digits per character. 

From the viewpoint of efficient communication, redundancy in a message is 
undesirable; the same information could be sent with fewer nonredundant (indepen­
dent) symbols. Thus, coding to reduce intersymbol influence is a method of improving 
efficiency. On the other band, redundancy is a definite aid in resolving ambiguities 
if the message is received with errors, a not uncommon phenomenon in telegraphy, 
for example. Indeed, coding for error protection is based on the insertion of redundant 
symbols. 

Optimum transmission therefore entails coding to reduce the inefficient re­
dunda ncy of the message, plus coding to add " efficient" redundancy for error control. 
Much has been done in the area of error-detecting and error-correcting codes, but 
coding to reduce message redundancy is far more difficult, and relatively little bas 
been accomplished in this direction. (In retrospect, the bandwidth-reduction feature 
of differential PCM relies on the redundancy of the input signal.) 
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350 INFORMATION THEORY AND COMMUNICATION SYSTEMS 

Continuous Information Sources 

Having discussed discrete sources at some length, the next logical step would be 
the definition of entropy for continuous sources, sources whose messages are 
continuously varying functions of time. Such a definition is possible but will not be 
presented here. For one reason, the mathematics gets rather complicated and tends 
to obscure physical interpretation; for another, the entropy of a continuous source 
turns out to be a relative measure instead of an absolute measure of informa tion. 

Fortunately, the goals of this chapter can be achieved by sticking to the discrete 
formulation, and most of our conclusions will apply to continuous sources with minor 
modification. But more important, we shall find that because of the fundamental 
physical limitations, communication is inherently a discrete process regardless of the 
source. This striking conclusion is one of Shannon's principal contributions lo the 
theory of communication, but it was noted by Hartley as far back as 1928. 

9.2 CHANNEL CAPACITY AND DISCRETE CHANNELS 
We have seen that il is often convenient to treat the terminal equipment of a communi­
cation system as being perfect (noise-free, distortionless, etc.) and think of all undesired 
effects as taking place in the channel. The communicat ion channel is therefore an 
abstraction, a model representing the vehicle of transmission plus all phenomena that 
tend to restrict transmission. The fact that there are fundamental physical limitations 
to information transfer by electrical means leads to the notion of channel capacily. 

Just as entropy rate measures the amount of information produced by a source 
in a given time, capacity is a measure of the amount of information a channel can 
transfer per unit time. Channel capacity is symbolized by ((!, and its units are bits per 
second. Restating the fundamental theorem in terms of 9t and re, we have: 

Given a channel of capacity <(l and a source having entropy rate Bl, then if 

Bf :s; ({/, there exists a coding technique such that the output of the source can 
be transmitted over the channel with an arbitrarily small frequency of errors, 
despite the presence of noise. If 9l > <(J, it is not possible to transmit without 
errors. 

Although we shall attempt to make the theorem plausible, complete proof 
involves a great deal of coding theory and is omitted here. Instead we shall concen­
trate on aspects more pertinent to electrical communication. 

Channel Capacity 

The fundamental theorem implicitly defines channel capacity as the maximum rate 
at which the channel supplies reliable information to the destination. With this 
interpretation in mind we can formulate a general expression for capacity by means 
of the following argument. 

9.2 CHANNEL CAPACITY AND DISCRETE CKANNELS 35 ( 

Consider all the different messages of length Ta source might produce. lf the 
channel is noisy, it will be difficult to decide at the receiver which particular message 
was intended and the goal of info rmation transfer is partially defeated. But suppose 
we restrict the messages to only those that are "very different" from each other, 
such that the received message can be correctly identified with sufficiently small 
probability of error. Let M (T) be the number of these very different messages of 
length T. 

Now, insofar as the destination or user is concerned. the source-plus-channel 
combination may be regarded as a new source generating messages at the receiving 
end. With the above message restriction, this equivalent source is discrete and has an 
alphabet of size M(T). Correspondingly, the maximum entropy produced by the 
equivalent source is log M(T), and the maximum entropy rate at the destination is 
( I /T) log M(T). Hence, letting T-+ oo to ensure generality, 

. I 
<(J = hm - log M(T) 

T-a, T 
bits/s (I) 

an alternate definition for channel capacity. The following discussion of discrete 
channels shows that Eq. (I) is an intuitively meaningful definition. 

Discrete Noiseless C hannels 

A d iscrete channel is one that transmits information by successively assuming various 
disjoint electrical states- voltage levels, instantaneous frequency, etc. Let µ be the 
number of possible states and r the signaling rate in states per unit time. If the signal­
to-noise ratio is sufficiently large, the error probability at the receiver can be extremely 
small, so small that to all intents and purposes the channel is deemed to be noiseless. 
U nder this assumption, any sequence of symbols will be correctly identified and the 
capacity calculation is straightforward. 

A received message of length T will consist of rT symbols, each symbol being 
one of the µ possible s tates. The number of different messages is thus M(T) = Jl'r 

and hence 

<'{/= Jim .!_logµ'r = Jim rTlogµ 
r- ., T r- oo T 

= r logµ bits/s (2) 

The capacity of a noiseless discrete channel is therefore proportional to the signaling 
rate a nd the logarithm of the number of states. For a binary channel (JL = 2) the 
capacity is numerically equa l to the signaling rate, that is, <c = r. 

According to Eq. (2), one can double channel capacity by doubling the signaling 
speed (which is certainly reasonable) or by squaring the number of states (somewhat 
more subtle to appreciate). In regard to the latter, suppose two identical but indepen-
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352 INFORMATION TI<EORY AND COMMUNICATION SYSTEMS 

dent channels are operated in parallel so their combined capacity is clearly 2(r logµ) = 
2r logµ = r log µ 2• At the output we can say that we are receiving 2r symbols per 
second, each symbol being drawn from an alphabet of sizeµ; or the output can be 
viewed as r compound symbols per second, each being drawn from an alphabet of size 
µ X µ = µl. 

The fo llowing example illustrates a coding technique that achieves !ft = <(I on a 
no iseless discrete channel. 

Example 9.3 

Consider the PCM source in Example 9.2. In theory a noiseless binary channel will 
suffice to convey the information if r ~ 175 binits/s. To minimize !ft we cannot use 
the previous code because it requires two binary digits per source symbol and r = 200. 
A more efficient code is as follows. 

Code number Probability Binary code 

0 l-2 0 
I J.i 10 
2 J,g 110 
3 J,g 111 

With tnis code, a message containing N » I source symbols requires the trans­
mission of N/2 + 2(N/4) + 3(N/8) + 3(N/8) = 1.15N channel symbols, that is, 1.75 
binary digits per source symbol. The required signaling rate is then r = 1.75/i = 175, 
and we have achieved transmission at fft = '11; the encoding has produced a perfect 
match between source and channel. 

Although this example is admittedly a special case, there are two general hints 
about efficient encoding to be gained from it. First, the code is such that the channel 
symbols O and 1 are equally likely a nd statistically independent. (The skeptical reader 
should verify this.) Second, the source symbol with the nighest probability is assigned 
the shortest word code, and so forth down the line to the least probable symbol, 
which gets the longest code. Systematic procedures for devising such codes are 
described in the literature. t 

Somewhat parenthetically we might note that assigning shorter code words to 
the more probable symbols is just common sense. Over a century ago, long before 
Shannon, Samuel Morse constructed his telegraph code using this very principle, 

t E.g., Galla&er (1968, chap. 3) or Thomas (1969, chap. 8). 

Source 
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Equivalent noiseless channel r-----------------------------------, 
I I 

I rl Error M I ! J ~ compensator Error I I 
correction I 

I 
I 
I 
I 

I 

I I 
L------------------------------------ J 

, logp 

FJGURE!>.2 

representing the letter E by a single dot, etc. Lacking the necessary data, Morse 
estimated letter frequencies by counting the distribution of type in a printer's font 

1me 
itc 

Discrete Channels with Noise 

When channel noise cannot be ignored, the capacity is less than r logµ because of 
the errors. We calculate the capacity reduction by thinking of a fictitious error 

compensator, Fig. 9.2, which examines the channel input and output and tells us what 
corrections should be made. Let the channel be operating at its maximum of 'd bits/ s, 
a nd let the information rate supplied by the compensator be Bt •• bits/s. Then, since 
the noisy channel plus compensator is equ ivalent to the same channel without noise, 
the net information rate over the noisy channel is r logµ minus the information rate 

from the compensator, that is, 

((1 = r log µ - Be.. (3) 

If rA •• < r logµ, the fundamental theorem asserts that it is possible to get a nonzero 

rate of virtually errorless information at the channel output. 

EXERCISE 9.2 The so-called binary symmetric channel (BSC) is one in which both 
states have the same error probability, say p. Show that Be. , = r{p log (1 /p) + 
(I - p) log [1/(1 - p)l} and hence 

'6= r[J +plogp+(t -p) log(l -p)] (4 ) 

Note that <(I = 0 if p = ),1. Why? (Hint: The error compensator produces two possible 

messages, "Error " and "No error.") 
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Coding for the Binary Symmetric Channel * 
As part of his proof of the fundamental theorem, Shannon demonstrated the possi­
bility of nearly crrorless transmission at !ft :s; 'I on a BSC. His demonstration, 
outlined below, involves select ing code words at random, and it met with criticism at 
first. Since then, the method has been acknowledged as one of great insight. 

Let the channel haver = I for convenience and let q = I - p , so, from Eq. (4), 

~= l +p logp+q logq (5) 

Let the source have m equiprobable messages each of which is represented by a code 
word having N binary digits. This requires that i = N and hence 

ti 

A 
,ce .1f = .1f,.... 

!Jt = logm 
N 

(6) 

Owing to noise, the received code words will have errors and, from our study 
of the binomial distribution, the expected number of errors per word is ii = Np. But 
this does not necessarily mean that the decoded message will be wrong for, if m « 2N. 
we can select them code words so that they are "very different " from each other a nd 
correctly recognized despite errors. By way of illustration, suppose m = 2 a nd N = 3 ; 
there are 23 = 8 possible three-digit binary code words but we only need m = 2 of 

them. If the selected words are 000 and 111, a single error is easily corrected auto­
matically using majority rule, e.g., decode 001 as 000 and 101 as Ill. Generalizing, 
if o ne selects the code words in such a way that they differ from each other by at least 
ii + I digits, then the probability of decoding errors becomes negligibly small providing 

N»m. 
Shannon, however, said that the code words could be randomly selected when 

N » I and p < Yz- (If p > Yz, we simply interchange the l s and Os a t the receiver!) 
Under these conditions he showed that the probability ofa decoding error ist 

p - m - pN - •N JpN (7) 
• - 2N p q 2nq 

which approximates the probability that any two or more words differ by Np digits 
or less. Then, multiplying Eq. (5) by - N yields r 11" = rNp- 'Nq-qN (a very clever 

manipulation) so 

P."" m2- 11
" J;_; (8) 

t Sec Thomas (1969, chap. 8). 

Therefore, imposing the condition 

and letting N--+ co, we have 

Finally, inserting Eq. (9) in Eq. (6), 
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2N'I 
m :S: N• a> Yz 

I J....!!....= O p :S: lim N.- 'h 2nq 
' N-ao 

(9) 

( 10) 

Be :S: lim .!_ [N~ - (~) log N] = 'C (1 1) 
11-.,N N 

which proves error-free transmission at Bl :s; 'I, at least in the limit as N-> co. 
More practically speaking, it seems reasonable to infer that one can come 

arbitrarily close to this situation with carefully chosen code words a nd large but finite 
N. The techniques of practical error-control coding are examined in Chap. 10. For 

now. we turn our attention to the case of continuous channels. 

9.3 CONTINUOUS CHANNELS 

A continuous channel is one in which messages are represented as waveforms, i.e., 
continuous functions of t ime, a nd the relevant parameters are bandwidth Band sign al­
to-noise ratio S/N. For simplicity, we will deal only with a baseband channel whose 

frequency response has been equalized to be flat over Ill :S: B. Although the channel 
is continuous and has noise, it is informative to develop a n intuitive rela tionship to 

r and µ, the parameters of a discrete noiseless channel. 
Relative to the signaling rate r, it has already been shown in Sect. 4.5 that 

r =,;; 2B where the equality entails using sine pulses. As to the equivalent number of 
channel "states" (i.e., voltage levels, etc.), there is no inherent limitation on µ in 
absence of noise; voltage levels having arbitrarily small spacing still could be distin­
guished at the output. The value ofµ on a noisy channel is estimated in terms of the 

signal-to-noise ratio in the following manner. 
Let the average signal power and noise power at the channel output be Sand N, 

respectively, so the total received power is S + N, and the rms output voltage is 

j s + N. Because of noise corruption one can never exactly identify the intended 
signal voltage. But it can be identified wich reasonably low probability of error if the 
voltage levels are separated by an amount equal to or exceeding therms noise voltage 

a. Thus, at the receiving end we have voltage levels spaced by a = j N and an rms 
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voltage range of J S + N. The maximum number of channel states is therefore 
approximately 

µ= J S+ N = (1 + i )112 
.JN N 

For example, a binary channel would require (I + S/N)1
'
2 = 2, or S/N = 3; with 

gaussian noise, the corresponding error probability is about 0.05. 
Combining these values for r and µ yields 

( 
5)112 

'if = rlog µ = 2B log I + N 

Hence, 

'8= B1og(t +f) bits/s (I) 

This famous equation is called the Hartley-Shannon law. (Hartley did the preliminary 
spadework and Shannon derived it with rigor.) It is written in terms of parameters 
that apply equally well to discrete or continuous channels, suggesting that the capacity 
of a continuous channel is Blog (I + S/N). In fact, Shannon's derivation was based 
on the continuous case and will be discussed shortly. 

The Hartley-Shannon law, coupled with the fundamental theorem, has two 
important implications for communication engineers. First, it tells us the absolute 
best that can be done in the way of reliable information transmission, given the 
channel parameters. Second, for a specified infonnation rate, it says we can reduce 
signal power providing we increase the bandwidth an appropriate amount, and vice 
versa. 

The exchange of bandwidth for power or signal-to-noise ratio is not new to us, 
for we have noted the effect in wideband noise reduction systems such as FM and PCM. 
But the Hartley-Shannon law specifies the optimum possible exchange and furthe r 
implies that bandwidth compression is possible. To illustrate, suppose it is desired to 
transmit digital data at a rate of 30,000 bits/s. According to the theory, we could use 
a channel having B = 30 kHz and S/N = 1, since 

<c = 30 x 103 log (I + I)= 3 x 104 bits/s 

A lternately, the bandwidth can be reduced to B = 3 kHz if the power is increased by a 
factor of 1,000, that is, S/N = 103 = 30 dB. (Note the handy approximation 103 ~ 210

.) 

Incidentally, the latter parameters are typical of standard voice telephone circuits ; 
but when used for digital signals, the data rate on such channels is normally 4,800 
bits/ s or less, indicating considerable room for improvement. 
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Some of the above matters are further pursued in Sect. 9.4 after we examine the 
continuous channel more closely. Since practically all communication systems are 
capable of handling continuous signals and all systems have noise, the noisy continuous 
channel merits detailed investigation. As a preliminary, we will describe the charac­
teristics of an ideal communication system with a continuous channel. 

EXERCISE 9.3 If (S/N) » I, show that minimum time required to transmit K 

binary digits is 

(Hint: See Eq. (6), Sect. 9.1.) 

Ideal Communication Systems 

3K 
Tm;n ~ B(S/ N)dB 

(2) 

A communication system capable of transmitting without errors at a rate of Blog 
(I + S/N) bits/s, where B and S/N are the channel parameters, is called an ideal 
system. While no practical system is or can be ideal, it is possible Lo visualize systems 
whose performance approaches that of the ideal. As an aid to the design o f such 
systems, let us examine the characteristics of a nearly ideal system. 

To begin with, the number of different signals (or messages or symbols) of length 
Tis M = ( I + S/N)8r, and the maximum information rate is i1t = (1/T) log M. The 
channel signals are chosen such that they can be identified at the receiver with very 
small probability of error. Shannon has shown that if the signals themselves are 
randomly selected sample functions of gaussian white noise and if 2BT» 1, then 

this condition is closely approximated. 
The information produced by a source is conveyed over the system in the 

following fashion. The source output is observed for T seconds, and the message 
is represented (encoded) as one of the noiselike channel signals which is then trans­
mitted ; thus, the information is encoded in blocks of length T. (This implies that the 
number of possible source messages of length T is not greater than M.) At the 
output, the received signal plus noise is compared with stored copies of the channel 
signals. t The one that best matches the signal plus noise is presumed to be the signal 
actually transmitted, a nd the corresponding message is decoded. A total time delay 
of2Tis therefore required for the encoding and decoding operations. 

Throughout the above description it has been tacitly assumed that T- oo, 

t Appendix A coven implementation of this comparison orocess under the heading 
Detection Theory. 

I 
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for only in this limit are all the conditions satisfied so that fJt = B log (I + S/ N). 
Thus, the characteristics of an ideal system are as follows: 

I The information rate approaches Blog (I + S/N). 
2 The frequency of errors approaches zero. 
3 The statistical properties of the transmitted signal approach those of band­

limited gaussian white noise. 
4 The coding time delay increases indefinitely. 

Additionally, as will be shown, the system has a sharp threshold effect. 
Of course, if the channel bandwidth is large enough, we can still have 2BT » 1 

with reasonable values of T. However, the design of nearly ideal systems is no trivial 
matter, for one must balance off coding delay and signal selection against reliability. 
Accurate signal identification argues for large T. But as T is increased, M must 
increase exponentially to maintain constant information rate. Rice (1950) has shown 
that to achieve fJt = 0.96'6' with S/N = JO and an error probability of 10- s, the number 
of channel signals required is M = 210,000 ! 

Clearly, efficient block coding with its extravagant number of channel signals 
is just as impractical as the infinite coding delay of an ideal system. Alternate schemes 
using sequential coding are nearly as efficient and require relatively simple equipment. 

Signal-Space Description of Communication * 
Not so long ago imaginary numbers were playthings of pure mathematics, deemed 
to have no practical value. But physicists and electrical engineers have since assigned 

a useful interpretation to Ft, and it is now almost unthinkable to discuss signal 
analysis, electromagnetic waves, or system theory without the aid of this tool. Simil­
arly, the once esoteric geometry of multidimensional spaces (hyperspace) was given 
new meaning by Shannon (1949) for the study of communication on continuous 
channels, reducing an otherwise intractable problem to more familiar terms. This 
section outlines his derivation of the Hartley-Shannon law using concepts of signal 
space. 

Consider a continuous baseband channel of bandwidth B so that, of necessity, 
all signals at the receiving end are bandlimited in B. Borrowing a page from sampling 
theory - namely Eq. (15), Sect. 8. I -any of the information signals can be written as 

x(t) = I x. sine (2Bt - k) (3) 
• 

where 

x• ~ x(kT,) 
I 

T, =2B 
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We assume that these signals are drawn from an ergodic ensemble with an average­
power constraint so 

S = x 2 = x.2 (4) 

as follows from Eq. (12), Sect. (4.5). 
Now temporarily suppose that x(t) is essentially zero outside a " long" time inter­

val of duration T; then it is completely described by D = T/T. = 2BT sample values, 
x1, x2 , •.• , x 0 • (True, a bandlimited signal cannot be simultaneously timelimited, 
and we will eventually Jet T-+ oo to compensate for this.) The fact that D numbers 
uniquely specify x(t) leads to the notion of signal space, a D-dimensional space in 
which x(I) is represented by a vector (or D-tuple) 

X = (Xi, X2, ••• , Xo) D=2BT (5) 

The vector starts at the origin and terminates at a point whose coordinates are x,, 
Xi , ... ,Xo, 

D-dimensional space is like ordinary space save that it has D mutually perpen­
dicular axes. And though we cannot construct more than three such axes in our 
three-dimensional world, t we can deal logically and mathematically with spaces of 
higher dimensionality. In particular, signal space is euclidean, i.e., the square of the 
distance from the origin to any point is the sum of the squares of the coordinates. 
The magnitude or norm squared of a signal vector is therefore 

D 

[lxll 2 = x.2 + x/ + · · · + x/ = L x.2 (6) 
l • l 

If T » I /2B, which quantifies our meaning of a "Jong" time interval, then D » I and 

Therefore, combining Eqs. (4), (6), and (7) 

ID -- L X1i2~X1c2 
D1- 1 

(7) 

llxll = JDS= j 2BTS (8) 

so the length of all signal vectors is proportional to the square root of the average 
signal power. 

If the tip of x is swept through all possible positions, the surface generated 
thereby is a hypersphere of radius !!xii and all possible signal vectors terminate at the 
surface of this hypersphere. The "volume" enclosed by such a sphere ist 

..,,-D = Ko llxll 0 (9) 

t Abbott (l 950) is an amusing discourse on the mysteries of three•dimensional space 
as viewed by a native of Aatland, a two-dimensional space. 

l Sommerville (1929). 
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~rl f ~N) 
(a) (b) 

Radius 
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FIGURE9.3 
Signal-space representations. (a) Signal 
and noise vectors; (b) uncertainty 
sphere due to noise. 

where the constant K0 does not particularly concern us here. A curious consequence 
of Eq. (9) is that most of the volume of a hypersphere of high dimensionality (D » I) 
is concentrated at the surface. To illustrate, the relative volume between llx/1/2 and 
llx/1 is I - 2- 0

, so if D = 3 (a conventional sphere), 87.5 percent of the volume is in 
the outer "half"; if D = 100, the relative volume of the outer portion is approximately 
I - 10- 30

. This volume-concentration effect proves to be useful in our development, 
for the dimensionality of typical signal spaces is indeed large. For example, a 3-minute 
telephone call with B = 4 kHz has D ~ 106. 

Our vector description of the channel signals also applies to the noise providing 
it is gaussian white noise from an ergodic source, bandlimited in B. With this con­
dition, sample values spaced by I /2B are uncorrelated and statistically independent. 
The noise energy in time Tis then very nearly NT, N being the average noise power. 

Hence. the noise is represented in signal space by a vector of length }DN, and all 
possible noise signals are contained within a sphere of that radius. Because the noise 
is random, it might seem that the noise sphere should be "fuzzy"; i.e., a particular 
sample function of length T may have an energy quite different from NT. But if the 
dimensionality is high, volume concentration indicates that the noise sphere is quite 
sharply defined, like a Ping-Pong ball rather than a cloud of gas. 

Consider now the state of affairs at the channel output, where we have the 
desired signal contaminated by noise. Under the usual assumption that signal and 
noise are independent, their average powers add, and the received signal plus noise 

vector has lengtli J D(S + N). Figure 9.3a shows the geometric interpretation of the 
transmitted signal, added noise, and signa l plus noise. The transmitted signal is seen 

to lie within a sphere of radius .jDN at the tip of the signal-plus-noise vector (Fig. 
9.36), and this noise sphere indicates the uncertainty of the receiver as to which signal 
was intended. 

If the possible transmitted signals are known in advance at the receiver, and if 
the sphere of uncertainty contains the tip of one and only one of the possible signal 
vectors, then the intended signal can be exactly determined despite the noise. Thus, 

suppose we put into the hypersphere of radius J D(S + N) a large number of non-
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FIGURE 9.4 
Signal vectors for virtually errorless 
transmission. 

overlapping noise spheres of radius J DN and then send only those signals correspond­
ing to the center points of the noise spheres, Fig. 9.4. When transmitted signals 
are selected in this fashion, it is possible to convey information over a noisy continu ous 
channel with vanishingly small error probability. 

How many little noise spheres can be packed into the big signal-plus-noise 
sphere without overlapping? The calculation is important, for it tells us M = M(T), 
the number of" very different" signals (messages) of length T that can be correctly 
identified at the channel output, from which we then can find the channel capacity. 
Clearly, M does not exceed the volume of the big sphere divided by the volume of one 
of the little spheres, i.e., using Eq. (9), 

M KD[J D(S+N)]D ( S)D/2 
$ trw = I + -

KD[\I DNJ0 N 
(10) 

Note that M is finite for all but truly noiseless channels. Moreover, because a real 
channel has noise and M is finite , communication over a continuous channel is in­
herently a discrete process. Setting D = 2BT and inserting Minto Eq. {I), Sect. 9.2, 
gives 

1 ( S)BT ( S) 'I? $ Jim - log I + - = B log I + -
T ~«> T N N 

(11) 

which is an upper bound on the capacity of a continuous channel. 
To show that information can actually be transmitted at 9t $B log (I + S/N) 

with negligible errors, Shannon proposed selecting the M waveforms at random. 
If a particular waveform or signal is sent and results in the received signal-plus-noise 
vector diagramed in Fig. 9.5, there will be no confusion and no " decoding" error 
providing all other M - l signal vectors fall outside the lens-shaped volume indicated. 
Hence, since the signals are randomly chosen, the error probability P, equals (M - I) 
times the ratio of the lens-shaped volume to the volume of the signal sphere. 
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FIGURE9.5 

The volume of a D-dimensional lens is hard to calculate, but it is clearly less 
than the volume of a sphere with radius h where, from simple geometry, h = 
J DSN/(S + N). Therefore 

P <(M-I) _D_=(M- 1) --K !JD ( N )D/2 
e - KDllxllD S + N (12) 

so P. can be made as small as desired if 

( s)•r 
M-1 ::s; l + N P. (13) 

similar to Eq. (9), Sect. 9.2. Finally, taking the logarithm of Eq. (13), we have 

1 ( S) I l - log (M - I) ::s; B log I + - - - log -
T N T P, 

Hence, M may be chosen such that 9t = (1/T) log M approaches arbitrarily close to 
~= Blog (I+ S /N) in the limit as T-> oo, Furthermore, since Eq. (12) assumes 
randomly selected signals, there must be some specific sets of M signals that yield an 
even lower error probability. 

Threshold Effect and Wideband Modulation * 
It is important to observe that attaining information transmission at a rate of Blog 

(1 + S/N) bits/s requires D = 2BT » l and M(T) = (l + S/N)8 r; in other words, the 
noise spheres must be packed as closely as possible without overlapping. Now suppose 
the signal-to-noise ratio drops slightly below the design value. The noise spheres 
will then overlap and the receiver will make frequent decoding errors. Hence there 
is a sharp threshold effect in that a small increase of noise power ( or a decrease of 
signal power) produces a large increase in the probability of error. As a result of 
these errors the information is lost. 

9.4 SYSTEM COMPARISO,_,S 363 

Rather surprisingly, this same explanation holds for the threshold effect in analog 
message transmission using wideband modulation, e.g., FM and PCM. The signal­
space description of modulation is a one-to-one mapping of the space of message vectors 
into the space of modulated signal vectors; if the modulation is wideband (Br» W), 
the mapping is between spaces of different dimensionality. But a well-known theorem 
of topology says that any one-to-one mapping between spaces of different dimension­
ality must be discontinuous in that a continuous path in one space maps into a broken 
path in the other. Hence, adjacent vectors in the modulated signal space do not 
necessarily represent adjacent vectors in the message space, and a slight overlapping 
of the noise spheres may cause the receiver to "demodulate" a message totally unlike 
the one that was sent. Accordingly, we conclude that mutilation and threshold effect 
are inevitable in all types of wideband modulation. 

9.4 SYSTEM COMPARISONS 

The Hartley-Shannon law applies to a restricted class of channels, namely, continuous 
channels having an average power constraint and additive gaussian white noise. 
But this description fits many practical communication systems to a reasonable degree. 
so the hypothetical ideal system that delivers information at a rate <(J = B log (I + S/ N) 
is the generally accepted standard for system comparisons. In this section 1ve re­
examine various existing systems in the light of information theory and see how they 
measure up against the ideal. 

One aspect of particular interest is wideband noise reduction. Hence, as a 
preliminary, we investigate the exchange of bandwidth for signal-to-noise ratio (or 
transmitted power) implied by the Hartley-Shannon law, for this is the optimum 
bandwidth-power exchange. 

Optimum Bandwidth-Power Exchange 

Suppose it is desired to transmit a signal, bandlimited in W, such that the output 
signal-to-noise ratio at the destination is (S/ N)D. No matter how the transmission 
is accomplished, the information rate at the output can be no greater that /Jtmax = 
W log [I + (S/ N)DJ. Further suppose that an ideal system is available for this purpose 
and that the channel (transmission) bandwidth is Br , the noise power density is 'I, 

and the average signal power at the receiver is SR. In other words, the channel 
capacity is ((J = Br log [I + (S/N)Rl, where (S/N)R = SR/'IBr. These factors are 
summarized in Fig. 9.6. 

If information is neither destroyed not accumulated in the receiver, the output 
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Input 

Br, (SIN)R = SR I f/Br 

e =Br log ( I +(S/N) . J 

FIGURE9.6 

!deal 
receiver 

Output 

W, (SIN)D 

91 .;; W log ( I + (S/N)o J 

rate must equal the information rate on the channel. Assuming the system is operating 
at capacity and the output rate is maximum, then ~max = <??, so 

BT log (1 + (~)J = W log [1 + (~)J 
Solving for (~) 

0 

yields 

(1 t = [1 + (f )JBr /W - J (I) 

which shows that the optimum exchange of bandwidth for power is exponential. 
To emphasize this relation, note that (S/N)0 ~ (S/N). Br/ Wif the signal-to-noise ratios 
are large. The exponential trade-off is realized by an ideal system operating to its 
fullest capacity. 

However, with fixed channel noise density, as distinguished from fixed noise 
power, Eq. (l} does not tell the exact story. For as channel bandwidth is increased, 
the noise power NR = 17BT is likewise increased, and (SIN). decreases. A more 
equitable basis for comparison is obtained by rewriting Eq. (I) in terms of the normal­
ized parameters 

used in previous chapters. 

s. 
y = ­,,w and fJ = BT 

w 

The signal to-noise ratio at the receiver input is then(S/ N)R = (S./1'/W)(W/Br) = 
y/ffd, and Eq. (I) becomes 

(:t = (i + ir -I 

~(ir }' 
j» I 

(2) 

Thus, while the exchange is not ·strictly exponential it is very nearly so for large 
signal-to-noise ratios. This means that doubling the transmission bandwidth of an 
ideal system squares (approximately) the output signal-to-noise ratio. Alternately, 
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since y is proportional to S1 , the transmitted power can be reduced to about the 
square root of its original value without reducing (S/N)0 if bandwidth is increased by 
a factor of 2. As demonstrated shortly, this exchange is considerably better than that 
of most existing systems. 

Equation (2) also shows what is involved in bandwidth compression - trans­
mitting a signal of bandwidth W over a channel of bandwidth B1 < W, so that PA < I . 
Inserting typical values, one finds that such compression is exceedingly costly in 
terms of transmitted power. To illustrate, suppose we want (S/N)0 = 104 and suppose 
that 1/ W = 10- 6

• Transmission at baseband (!B = I) requires s. = 1/ W(S/ N)0 = 
IO mW. But to compress bandwidth by a factorof Yz we needy= !B[I + (S/ N)0 )

11111 
-

174 ~ Yz(I04
}

2 = 5 x 107
, or s. = 50 W, which is 5,000 times the baseband power. 

Similarly, for !B = Yio, the power requirement is a colossal 1033 W! 
As a general conclusion we can say that even the optimum bandwidth-power 

exchange is practical in one direction only, the direction of increasing bandwidth and 
decreasing power. 

Analog Signal Transmission 

It is a difficult matter to assess the information rate of analog signals: voice and music 
waveforms, television video, etc. Furthermore, communication systems desig11ed for 
such signals have as their goal reasonably faithful reproduction of the signals them­
selves, with a minimum of noise and distortion. This goal is not quite the same thing 
as reliable information transfer in the sense of information theory; i.e. , the communi­
cation engineer may be more concerned with transmission bandwidth, threshold 
power requirements, and signal-to-noise ratios than be is with channel capacity and its 
utilization. 

Nonetheless, information theory does have something to say in regard to analog 
signal transmission. Specifically, it tells us the best signal-to-noise ratio that can be 
obtained with given channel parameters; it tells us the minimum power required to 
achieve a specified signal-to-noise ratio, as a function of bandwidth; and it indicates 
the optimum possible exchange of bandwidth for power. Therefore, let us compare 
the performance of existing systems with that of an ideal system as described by 
Eq. (2). 

Table 9.1 summarizes many of our earlier results. It is assumed that the signal­
to-noise ratios are large, all systems are above threshold, and the message is normalized 

so that? = Yz. The values for the pulsed systems assume f. = 2 W, etc., and would not 
be achieved in practice. Clearly, none of the practical systems exhibit the output 
improvement that can be had in an ideal system by increasing either y (power) or 
!!I (bandwidth). PCM does have an exponential bandwidth dependence, but, once 
above threshold, increasing transmitted power yields no further improvement of 
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Table 9.1 COMPARISON OF ANALOG 
MESSAGE TRANS.MISSION 
SYSTEMS 

System (S/N)o 

AM y/ 3 
SSB y 
PDM !ly/4 
PPM !l'y/16 
WBFM 3!1'y/8 
DMt 3tJl3/,r' 
PCM 3µ.'£1/2 
Ideal (y/91)"' 

t Assuming / 0 - W. 

(S/N)D; its value is determined by the quantization. It also might be noticed that 
SSB is just as good as an ideal system having PA = 1. Of course the SSB bandwidth 
ratio is fixed at !B = I , so there is no possibility of wideband noise reduction. 

Since, in general, the output signal-to-noise ratio depends on both 1' and !!I, 
it is difficult to give a complete graphical display of the relations in Table 9.1. As an 
alternate we can plot (S/N)D as a function of 1' for typical bandwidth ratios (Fig. 9. 7) 
or plot the value of 1' required for a specified (S/N)D as a function of rB (Fig. 9.8). 

Figure 9.7 repeats some of the curves from Chaps. 7 and 8, with the addition of 
a curve for an ideal system having rB = 6. Also shown are the threshold points of the 
practical systems- which is precisely the reason for the figure. It can be seen that 
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practical wideband noise-reduction systems, e.g., FM, PPM, and PCM, fall short of 
ideal performance primarily because of threshold limitations. For example, Fl\f and 
PCM with !Jd = 6 have threshold points offset horizontally by about 8 dB from an 
ideal system with the same bandwidth ratio. The PPM threshold is much closer but 
occurs at too low a value of (S/ N)D to be useful for analog signals. 

As to the exchange of bandwidth for power, Fig. 9.8 shows the minimum value 
of 1' needed for (S/ N)0 = 50 dB as a function of bandwidth ratio. For this relatively 
high output S/N we see that PCM does considerably better than FM or PPM but 
requires 6 to 8 dB more power than an ideal system. (Just how the PCM curve was 
obtained is discussed under the next beading.) We might also point out the sharp 
increase in y for the ideal system when !!I< I, echoing our earlier observation about 

bandwidth compression. 
In summary; at high signal-to-noise ratios FM and PCM give the best wideband 

performance, PCM being somewhat better. From the power-bandwidth viewpoint, 
all practical wideband systems are an order of magnitude below the ideal. At low 
signal-to-noise ratios, only SSB and DSB are useful, having no threshold effect. 

The Channel Capacity of PCM 

Of the various systems we have discussed, PCM is the most amenable to direct analysis 
in terms of information theory. This is because the transmitted signal is discrete, 
even though it represents an analog signal, and the information rate can be readily 
calculated. Therefore, let us find the channel capacity of PCM and make a direct 
comparison with the Hartley-Shannon law. 
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FIGURE9.9 
Channel capacily per uni t bandwidth for 
PCM (with P,:::: JO-•) compared to an 
ideal system. 

Consider a baseband PCM system having transmission bandwidth B, µ equally 
spaced coded pulse amplitudes, and channel signal-to-noise ratio (S/ N)R. Since the 
entropy of the digital signal is JI{' $ logµ and the signaling rate is r $ 2B, the infor­
mation rate on the channel is Bl $ 2B log µ. Hence, 

'd = Bl max = 2B log µ = B log µ 2 

providing decoding errors can be ignored. But we previously determined that de­
coding errors are ignorable if the system is above threshold, which requires that 

2 I (S) µ 51 +- -
5 N R 

(3) 

Therefore, just above threshold, 

<(I = Blog [ I + Hf) J (4) 

so, if (S/ N)R » 5, <(/ :::: Blog [(S/ Nh/5] or 

'd :::: 'ci';d,a l - B log2 5 (5) 

Based on Eq. (4), Fig. 9.9 plots <i/B versus (S/N)R. The corresponding curve for 
an ideal system is also given by way of comparison. Viewed in this light, PCM is 
seen to require about 7 dB more power than an ideal system. H owever, it is well to 
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bear in mind that an ideal system would have vanishingly small error probability, 
whereas the PCM curve is for P, :::: 10-•. The reason why PCM compares as favorably 
as it does to an ideal system stems from the earlier conclusion that because of cllannel 
noise, electrical communication is inherently a discrete process. PCM design recog­
nizes and accepts this fact ; the transmitted PCM signal, being discrete, is better 

suited to the noisy channel than uncoded continuous signals. 

Communication Efficiency * 
Finally, let us examine minimum power requirements in terms of information rate. 
This viewpoint is particularly relevant to long-range systems not having a bandwidth 
constraint - e.g., space communication systems- and leads to the so-called communi­

cation efficiency. As before, our reference is the ideal system with 

((I = Br log (1 + ~) 
11Br 

SR ( S )0BTIS1t 
=-log I +-R 

17 17BT 
(6) 

which has been rewritten to show that if SR and 17 are fixed, <(/ is maximized by taking 
Br-+ oo. Therefore, using the fact that lim._0 (I + v)'1• = e, the maximum information 

rate on an ideal system is 

. SR SR 
Bl max = hm (ff = - log2 e = 1.44 -

Br-"' 17 17 
(7a) 

or, for a specified information rate /Jf, 

SRmtn =0.6931/gf (7b) 

both of which require a coding technique such that the transm1ss1on bandwidth 

approaches infinity. And at the same time (S/N)R = SR/1/Br goes to zero! 
Now consider any system having an information rate Bl and received power SR. 

Its communication efficiency may be defined as 8 = dt/Blmu = SRm,.f SR or, u sing 

Eq. (7), 

rl ~ 0.693 11
91 

SR 
(8) 

so if 8 = 0.2, for instance, the system requires five times as much power as an ideal 
system operating with Br -+ oo. To underscore the meaning of 8, let 1/ = k!T N 
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where k is the Boltzmann constant and !r II the system noise temperature; if ft' is the 
transmission loss, then the transmitted power required is 

Clearly, minimizing Sr entails maximizing I. 

fi'!f" N f1i 
Sr = ft' SR = 0.693k -

8
-

::::: 10- 23 !t'!r 11fli 

" 
(9) 

Relative to the design of efficient practical systems, we infer from Eq. (7) that rt 
is maximized if Br is made as large as possible and (S/N)a as small as possible. We 
can get large B,. with wideband modulation techniques, but the inevitable threshold 

effect prohibits very small values of (S/N)R and thereby precludes operation at highest 
efficiency. This point is further demonstrated by again examining PCM. 

Assuming the PCM information rate to be !1t = 'd, with 'II given by Eq. (4), the 

efficiency is 

I = 0.693 !!_ Br log[t + ~ (~ }] 
SR 5 NR 

0.693 [ I ( S ) ] 
= (S/N)R log 1 + 5 N R 

However, from Eq. (3), the threshold condition is (S/Nh ~ 5(µ2 
- !), so we cannot 

take (S/ N)R arbitrarily small. The best we can do isµ= 2 (binary PCM), which gives 
the largest transmission bandwidth, the smallest channel s ignal-to-noise ratio, and the 
highest efficiency. Several times in the past we have suspected that binary PCM is 
superior to PCM with µ> 2; that suspicion is now confirmed from the power view­

point. Forµ= 2, (S/N)R ~ 15, and 
0 .693 

I= --is log 4 .= 0.0924 

Therefore, the efficiency is in the neighborhood of 9 percent. Such a low efficiency may 
seem discouraging at fi rst. Putting the matter in proper perspective, it is better to say 
that binary PCM requires a bout 10 dB more power than an ideal system with infinite 

bandwidth. 
Turning to analog modulation, we are faced with the problem of estimating the 

information rate !1t of an analog signal.t A crude but simple expedient is to take the 
upper bound !1t ::; W log [ I + (S/N)0 ], where (S/N)0 and Ware the signal parameters 
after demodulation. This gives an upper bound on the efficiency, namely, 

o.693 [ ( s ) ] /f::;-Y- log I + N
O 

(10) 

t Sanders (1960) gives a more complete discussion. 
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For suppressed-carrier linear modulation (SSB and DSB) we have (S/N)0 = y, and 
such systems are normally operated with signal-to-noise ratios of 30 to 40 dB. The 

corresponding efficiency is substantially less than I percent, not unexpected since the 
transmission bandwidth is relatively small. On the other hand. wideband analog 

modulation should prove to be better, and in fact it is. 
For FM (without deemphasis) it can be shown that there is an optimum devfation 

ratio , 6
0
.,::::: 2, giving G < 0.1 ; with 6 < 2 the loss of wideband noise reduction 

decreases efficiency, while for 6 > 2 the higher threshold level counterbalances the 
S /N improvement a nd again decreases efficiency. Clearly, the threshold-extension 
techniques mentioned in Sect. 7.5 would be of benefit here since they lower the value 
of Y,b. In theory, FM with frequency-compressive feedback in the receiver (FMFB) 
is capable of achieving 50 percent maximum efficiency; in practice, efficiencies of 25 to 
30 percent a re possible. PPM appears to have efficiencies comparable to FMFB 

thanks to its low threshold level. 

Example 9.4 

To illustrate the implications of Eq. (9), suppose it is desired to t ransmit a still picture 

from Mars to earth with Sr = IO W, ft' = 200 dB, and !r 11 = 50°K. If the system has 
100 percent efficiency (& = I). the maximum info rmation rate is 

!1i = I 023 4 
Sr = 200 bits/s 

!&'!!"11 

Assuming that the photograph is quantized into 200 x 200 = 4 x 104 elements, each 
element having one of 64 possible brightness levels, the total information lo be 
transferred is .F = 24 x 104 bits (see Example 9. 1 ). Therefore, the total transmission 

time T must be 
J 24 X 104 

, 
T =Bf = --ioo = 1,200 s = 20 mm 

The Mariner IV mission. using a less efficient but practical system, required 8 hours 

to transmit each picture. //// 

9.5 PROBLEMS 

9.1 (Sect. 9. 1) State in words and interpret the requirements on /( ) in Eqs. (J) to (3). 
9.2 (Sect. 9.1) A card is selected at random from a deck of 52. You are told it is a heart. 

How much information (in bits) have you received ? How much more information 
is needed to completely specify the card? Ans.: 2 bits, 3. 7 bits. 

9.3 (Sect. 9.1) Calculate the amount of information needed to open a lock whose combin­
ation consists of three numbers, each ranging from 00 to 99. 
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9.4 (Sect. 9.1) A source produces six symbols with probabilities !--1,, !-4, Ji, J,f 6 , l,i2 , ana 
~.. Find the entropy .;,t'. 

9.5 (Sect. 9.1) A source has an alphabet of size m. One symbol has probability • while 
the other symbols are equally likely. Fiod Jlt in terms of m and ,. 

9.6* (Sect. 9.1) Show that J.;. , P, log, (1 /mP,) = Jfe - log 2 m and use this, t ogether 
with the fact that In v ::;; v - I, to prove that Jlt ,,;; log, m. 

9.7* (Sect. 9.1) Suppose you are given nine pennies, eight of which are good. The remaining 
coin is counterfeit and weighs more or less than a good one. Given an uncalibrated 
balancing scale, how many weighings are necessary in theory to locate the bad coin 
and determine whether it is light or heavy ?(Hint :The scale has three possible positions, 
balanced and unbalanced on one side or the other. The average information per weigh­
ing, i.e., the entropy, is maximized if each of these positions is equally likely. Although 
it is not required, you may wish to devise the actual weighing procedure.) 

9 .8 (Sect. 9.1) A certain data source has eight symbols that are produced in blocks of 
three at a rate of 1,000 blocks per second. The first symbol in each block is always 
the same (presumably for synchronization); the remaining two places are filled by any 
of the eight symbols with equal probability. What is the entropy rate Bt? Ans. : 6,000 
bits/ s. 

9.9 (Sect. 9.1) A certain data source has 16 possible and equiprobahle sym bols, each 
I millisecond (ms) long. The symbols are sent in blocks of 15, separated by a 5-ms 
synchronization pulse. Calculate fJl. 

9.10 (Sect. 9.1) A binary data source has Po = %, P, = % , and intersym bol influence 
extending over groups of two successive symbols such that P(I IO) =% and P(O I I) = 
Yi 6 • Calculate the conditional entropy J/e, and compare with Ye. 

9.11 (Sect. 9. I) Ana logous to Eq. (7) the entropy of a cominuous signal x(r) can be defined as 

9.12 
9.13 

9.14 

;rt'(x) = - r~ p(x) logp(x) dx 

where p(x) is the probability density function. Show that this is a relative rather than 
absolute measure of information by considering .;,t'(x) and J/e(y) when y(t) = Kx(t) 
and x(t ) is uniformly distributed over [- I , I). 
(Sect. 9.2) Verify that P(l) = P(O) = J.i in Example 9.3. 
(Sect. 9 .2) A noiseless discrete channel is to convey information at a rate of 900 bits/ s. 
Determine the minimum number of channel states required if r = 200 or 1,000. Ans: 
23, 2. 

(Sect. 9.2) A d iscrete source produces the symbols A and B with P, = % and P s = J1 
at a rate of I 00 symbols/s. In an attempt to match the source to a noiseless binary 
channel, the symbols are grouped in blocks of two and encoded as follows: 

G rouped symbol 

AA 
AB 
BA 
BB 

Binary code 

1 
01 
001 
000 
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By calculating the source entropy rate and the channel symbol rate, show tha t this 
code is not optimum but is reasonably efficient. 

9.15*(Sect. 9.2) Consider a binary channel with noise that affects the channel symbols 
in blocks of three such that a block is received without errors or there is exactly one 
error in the first, second, or third digit. These four possibilities are eciuiprobable. 
(a) Show that CG = r/3. 

(b) Devise a code that yields error-free transmission at ,it = ((J. 

9.16 (Sect. 9.2) The per-digit error and no-error probabilities for a nonsymmetric binary 

channel are indicated schemat ically in Fig. P9.1, i.e., P(O received IO sent) = ex, etc. 
Show that 

(
] - rx + fJ 2 l + rx - fJ 2 ) 

fJf«=r --2- - log I - cx+/J+--2-- log I + cx-/J 

Oza o ~ 

, ,., 
I -p 

I I 

FTGURE P9.J. 

9.17 (Sect. 9.2) The channel in Prob. 9.16 is said to be useless if ex= /J. Justify this mathe­
matically and intuitively. 

9.18 (Sect. 9.3) A noiseless discrete channel has r = JO' . Investigate the possibility of 
replacing it with a continuous channel having B = 8 kHz and S /N = 31. 

9.19 (Sect. 9.3) Find the minimum time required to transmit 600 decimal digits on the 
continuous channel in Prob. 9.18. Ans.: 0.05 s. 

9.20 (Sect. 9.3) A certain communication system uses RF pulses with four possible amplitude 
levels. If an information rate of 10• bits/s is desired, what is the minimum practical 
value for the carrier frequency f,? (Hint : Recall the fractional bandwidth constraints.) 

9.21 (Sect. 9.3) Estimate M(T) for a typical telephone channel with B = 3 kHz, S/N = 30 
dB, and T = 3 min. 

9.22*(Sect. 9.3) Consider the set of channel signals x,(t) = sine (2Bt - i), i = 0, ± I , ± 2, .... 
Discuss the signal-space interpretation and determine the upper limit on I i i for a 
space of D dimensions. 

9.23*(Sect. 9.3) A continuous channel has S/ N = 63 and B = I kHz. Obtain numerical 
bounds on Mand T such thatiJt = 5,000 with P,::;; 10- 3 ::::: 2 - ••. 

9.24 (Sect. 9.4) An engineer claims to have designed a communication system giving 
(S/N)o = 106 when (S /N)R = 3 and BT = JO W. Do you believe him ? Explain. 

9.25 (Sect. 9.4) An ideal system has tJ4 = 4 and (S/N)o = 40 dB. What is the new value of 
(S/ N)o if BT is tripled while all other parameters are fixed? Ans.: 72 dB. 

9 .26 (Sect. 9.4) Repeat Prob. 9.25 with BT changed to W/2 instead of being tripled. 
9.27 (Sect. 9.4) A communication system has BT = 5 kHz, ~ = 30 dB, and .,, = Io -' 

W/Hz. Find the theoretical minimum value for s. to yield (S/N)0 = 50 dB when 
W = I kHz. 
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9.28*<.Sect. 9.4) Consider the efficiency of an ideal system with finite Br. 
(a) Show that t! - 0.693(fJt/Br)/(2•1•r - I). 
(b) Sketch 8 versus Br/fJt and discuss the implications of this curve. 

9.29*<.Sect. 9.4) Using Eq. ( JO) and Carson's rule, obtain an upper bound on t! in terms 
of /1 for an FM system (without deemphasis) operating just above threshold. 

9.JO*(Sect. 9.4) Suppose it is desired to have live voice transmission from Mars to earth 
via binary PCM with f. = 8 kRz and Q = 64. Estimate the power requirement at the 
Mars transmitter by inserting typical values into Eq. (9). 

10 
DIGITAL DATA SYSTEMS 

Until about 1950, analog signal transmission was the primary stock-in-trade of the 
communications industry, save, of course, for teletype and telegraph. But that was 
before the advent of automation and the computer revolution. Today, enormous 
quantities of digital data are being genera ted in government, commerce, and science. 
Furthermore. the need to eliminate manual handling and human error has led to the 
concept of integrated data processing systems. These developments, coupled with a 
growing trend toward decentralization, have made the transmission and distribution 
of digital signals a major task of electrical communication . 

While according to information theory, highly efficient and virtually errorless 
data transmission is possible, the vast majority of applications simply do not warrant 
the cost a nd complexity demanded by a near-ideal communication system. T his is 
not to say that information theory has no place in the study of data transmission but 

. rather that it may be better to do the job now, in less than optimum fash ion. than wait 
until technological breakthroughs permit a more sophisticated solution. Consequently 
the design of a practical data system is usually quite pragmatic, based on two elemen­
tary considerations: the gross source rate in digits per second, as distinguished from the 
entropy rate in bits per second; and the desired transmission reliability, i.e., the 
tolerated error rate. Before going on, it is perhaps helpful to get a feeling for typical 
values of these parameters. 
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~ € speed. the ncern in computerized banking systems (especially 
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.I) nsfEM DESIGN 

~: d_ata system are laid out in Fig. 10. l. A data 

1 digits (or symbols) delivers r digits/s to a pulse 

.t(c) "" L atPs(I - ~) 
k 

Ps(.O) = 1 (I) 

~~ 
lhe terms bit and binary digit interchangeably in this 

10.1 BASEBAND SYSTEM DESIGN 377 

where ps(t) is the normalized pulse shape and the a, represent the source digits. After 

passage through a transmitting filter Hr<f) and the channel Hc<f) the signal is 
corrupted by additive noise, so the signal plus noise at the output of the receiving 
filter HR(f) is 

y(t) = f A1+-14 - ~) + n(t) (2) 

where 1. is the total time delay and KR the amplification, i.e., 

A1 = KRak p(O) = 1 

The A/D converter operates on y(t) by sampling it at the optimum times 

m 
t,. =-; + ,. 

giving 

y(t,.) =Am + L A.p -- +n(I .. ) (m-k) 
kl/Cm r 

(3) 

of which the first term represents the mth digit while the other two terms are inter­
symbol interference (ISI) and noise, respectively. Finally, the digital message (plus 
errors) is regenerated by comparing y(tm) with a set of threshold levels. 

Equation (3) brings out two aspects of baseband system design for reliable data 
transmission, namely, minimizing the noise and eliminating or minimizing ISi. 

Additionally, if there is a bandwidth constraint, it may be desired to maximize the 
signaling rater for a given channel bandwidth B or minimize the bandwidth required 
for a given rate. All these aspects are considered here. Unless otherwise stated , 
the noise is presumed to be zero-mean gaussian with spectral density G(f) = 11/2 . 
The source is always taken to be ergodic with equiprobable digits. 

Ideal Baseband System 

In Sect. 4.5 we assumed the channel was distortionless with bandwidth B, i.e., He(!) = 
KR e-;wr, when time delay is included. Accordingly, we took the bandlimited pulse 

shape p5(t) = sine rt with r = B/2 and let HR(f) be an ideal LPF. Therefore, the 
signaling rate is maximum 

and there is no intersymbol interference since 

p(t) = sine rt p(m ;k) = {~ 

r =2B 

m =k 
m ;=k 

(4) 

(5) 
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We also assumed a polar signal with level spacing 2A, i.e., 

A•= {0, ±2A, ±4A, .. . , ±(µ- l)A 
±A, ±3A, ... , ±(µ - l)A 

so the received signal power is 

µ odd 
µ even 

SR = A2 = (µ2 - !)Al 
3 

(6) 

(7) 

It was then shown that, with zero-mean gaussian noise, the optimum threshold 
levels are midway between the values of A• and 

where u is the rms value of n so 

Thus 

P. = 2(1 - ~) Q(;) 

u2 = -;;i = N = rtB = YJ!.. 
2 

(
A)' 3 SR 3 S 6 
u - µ 2 - I rtB - µ2 - I N - µ 2 - I p 

where 

(8) 

(9) 

p ~ SR (JO) 
rtr 

This system will be called the ideal baseband system, a nd its performance serves as a 
benchmark for system comparisons - especially in terms of the normalized param­
eter p. 

Rectangular-Pulse System- Integrate-and-Dump Filtering 

Thanks to its very special pulse shape, the ideal system achieves maximum signaling 
rate on a band limited channel. But if there is no bandwidth constraint, we might just 
as well use nonoverlapping rectangular pulses 

Ps(/) = nm I 
T ;$ ­

r 
(11) 

which are much simpler to generate. Recalling our study of the random binary wave, 
Example 3. 7, Sect. 3.5, it follows that the available bandwidth must be B » 1/-r ~ r 
to prevent pulse smearing and ISI. However, this does not mean that the receiving 
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FIGURE 10.2 
Matched filtering. (a) Impulse response; 
(b) received pulse; (c) matched filter 
output. 

·b 
0 '• 

(a) 

·=:C:f= 
0 ! 

(b) 

,,~ 
0 

to -t ~ 
(c) 

filter should be wide open, for that would lead to excessive output noise and high 

error rates. Clearly, the pivotal element of such a system is H R(f), which must be 

designed to minimize simultaneously the noise and the ISi due to smearing at the 

fi lter output. 
As far as noise is concerned, we know that a matched jilter has the desirable 

effect of maximizing the peak of an output pulse compared to the rms noise. Hence, 
drawing upon Eq. (12b), Sect. 4.4, suppose the impulse response of the receiving 

filter is 

hR(t) = n(1°; 1) = n(1 ~ 1o) (I 2) 

as sketched in Fig. 10.2a for 10 = -r/2. To analyze the performance we will assume a 
binary signal and ignore any transmission distortion or delay, so the kth pulse at the 
receiver input is of the form ±all[(t - k /r)/-r]. Fig. 10.2b. Convolving with hR(t) 

yields a triangular pulse of height ± a-rand width 2-r, Fig. 10.2c. i.e .. 

A•p(r -~) =±AA('- t\- kfr) A =a, (13) 

Clearly, the optimum sampling times are now Im = (mfr)+ 10 (to which any time 
delay t

4 
must be added), and there is no intersymbol interfere11ce s ince p(t - k /r ) = 0 

for j 1 - k/rl ~ 1/r if T :$ 1/r. 
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il· ~:::11 
r~ ~ 
~ a • I 

Timing 

(b) (a) 

au.RE io.3 
fl rate-and.dump filteri ng. (a) Waveforms; (b) circuit. 
1nt•8 

Assuming sampling at the optimum times, the error probability is P. = Q(A/u) 

~ r the binary case under discussion. But from Eq. (12a), Sect. 4.4, (A/u)2 = 2ERl'I 
0
here ER is the energy in the received pulse. With rectangular polar binary pulses, 

W 2 - s· I 
£ 

_ (±a) -r - RJr, and ~-
(
~)

2 
= 2ER = 2SR = 2p 

(] max t/ t]r 
(14) 

·dentical to Eq. (9) with µ = 2. Similar analysis for the µ-ary case shows that Eq. (9) 
1 
till holds, and we conclude that the error rate of a rectangular pulse system is just as 

s ood as an ideal system providing the receiving filter is designed according to Eq. (12). 
g Unfortunately, that proviso turns out to be a stumbling block, for one cannot 
synthesize a perfectly rectangular impulse response, and all approximations have 
decaying tails that cause ISL But there is usually more tha n one way to skin a cat, 
and referring to Fig. 10.2c shows that the trailing part of the triangular pulse after 

1 "'10 + k/r is unnecessary. Therefore, suppose we simply integrate each incoming 
pulse and then reset or "dump " the integrator immediately after the sampling time. 
This illfegrate-and-dump filtering takes care of the intersymbol-interference problem, 
as illustrated in Fig. 10.3a, and achieves the same maximum value of A/u. Figure 
J0.3b is a circuit realization; if RC» 1/r, the output rises linearly over the input pulse 
duration until momentary closure of the switch discharges the capacitor and resets 
the output to zero. Needless to say, the sampling and dumping must be carefully 
,ynchronized. Even so, the integrate-and-dump fi lter represents virtually the only 
Clle Where matched filtering is closely approximated in practice. 

tRc 
Iha 1~E 10.J Consider a rectangular-pulse system with -r = l/2r and a receiving 
lh 1 18 a simple RC LPF without a discharging switch. Assuming RC is sufficiently 

Qt ISI is negligible, show that 

- = __ R_ = 4RCr(2p) (A) 2 
2S 

u ('lf4RC) 
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Evaluate 4RCr such that the output pulses decay to 0.001 of their maximum value by 
the next sample time. Ans.: 0.58. 

Nyquist Pulse Shaping 

Between the extremes of sine pulses (B = r /2) and rectangular pulses (B » r), there is a 
compromise made possible using Nyquist-shaped pulses-pulses bandlimited in 
B ~ r/2 having periodic :zero crossings to eliminate ISL We will consider only the 
case of r/2 :s; B :s; , , which has the greatest practical interest and for which Nyquist's 
vestigial-symmetry theorem can be presented as follows :t Let 

with 

Then 

P(f) = [P, (f)] • [ G)rr(f)] {15a) 

Pp(f) = 0 
r 

Ill >P:s; 2 (15b) r Pp(f) df = pp(O) = 1 
-oo 

p(t) = F - i [P(f)] = Pp(t) sine rt (16a) 

p(~) = {~ 
k = O 
kt, 0 

(16b) 

and P(f) is bandlimited in B = (r/2) + P $ r, so 

r=2B-P 

Proof of these assertions should be self-evident. 
Infinitely many functions satisfy the above conditions, and they include the ideal 

case p(t) = sine rt - i.e. , if Pp(f) = o(f), then Pp(t) = I , p = 0, and r = 2B. One class 
of functions has the sinusoidal roll-off or raised cosine frequency characteristic plotted 
in Fig. 10.4a. Analytically, 

Pp(!) = __'.'._ cos nf rr(l..) 
4P 2p 2p 

r 
0</3$2 (17a) 

t Sec Lucky. Salz, and Weldon (1968, chap. 4) for the general statement and proof of 
the Nyquist criterion, as well as the specialized pulse shaping known as duobinary 
or partial responst that accepts controlled amounts of ISi in exchange for faster 
signaling. 
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AGURE J0.4 
Nyquist pulse shaping. (a) Spectra; (b) lime functions. 

so 

r 

P(f) = -cos - Ill - - + P { 1 2 7!( r ) 
r 4P 2 

0 

p(I) 
P= O 

(b) 

1/1 <!_- P 
2 

!_ - P < 1/1 < !.. + P 
2 2 

r 
1/1 > 2 +P 

' 
, 

(17b) 

and the required pulse-shaping filters are relatively easy to synthesize approximately. 
The corresponding time functions are 

cos 211Pt . 
p(t) = 

1 
_ (4P1

) 2 smc rt (l 8a) 

sine 2rt 

I - (2rt)2 

r 
P=2 (18b) 

shown in Fig. 10.4b for p = r/4 and r/2 along with sine rt. Note that the leading and 
trailing oscillations of v(t) decay more rapidly than those of sine rt; this means that 
synchronization will be less critical than a sine-pulse system since modest timing errors 
do not cause large amounts of intersymbol interference.t 

Further inspection reveals two other convenient properties of p(t) when P = r/2: 
the half-amplitude pulse width exactly equals the pulse-to-pulse spacing 1/r, and there 
are additional zero crossings at t = ±3/2r, ±5/2r, . . .. Consequently, a polar digital 
signal constructed from such pulses will have zero crossings precisely halfway between 

t On lhe 01her hand, I:,~. A, p((m - k)/rl may actually be unbou11dtd if p(r) ­
sinc (r + •)t where , is a small error in the signaling rate. 
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ol\ .1 /j i\1 / i \l I 
AGURE 10.5 
Baseband waveform for 10110100 using 
Nyquist pulses with fJ= r / 2. -I 

the pulse centers whenever there is a change of polarity. Figure 10.5 illustrates this 
for the binary message 10110100. These zero crossings can then be used to generate 
a timing signal for synchronization purposes, bypassing the need for separately 
transmitted timing information. Nyquist proved that p(t) per Eq. (18b) is the only 
bandlimited pulse shape possessing all these convenient features. But the penalty is a 
50 percent reduction of signaling speed, since r = B rather than 2B. 

Optimum Terminal Filters * 
Now consider the overall design of a baseband system using Nyquist-shaped pulses; 
i.e., the output pulse shape p(t) has the form of Eq. (I 6). With reference to F ig. 10.6, 
the input signal x(t) = Lk akps(t - k/r) is filtered by Hr(!) yielding the average trans­
mitted power Sr; at the receiving end the signal plus noise is passed through HR(!) 
giving theoutput y(I) = Lt Akp(t - t4 - k/r) + 11(1). If p5(t), Sr , Hc;{f), G(f),andp(t) 

are specified, we need to find Hr(/) and HR(!) such that -;?/Sr is minimized so (A /u)2 

is maximized and P, is minimized. The matched-filter strategy does not apply here 
because we have specified the output pulse shape. Instead, our analysis will follow 
the lines of Sect. 4.3, where we derived optimum terminal filters for analog trans­
mission. 

Since p(t) and p5(1) are given, one design constraint is 

P5(f)HrU)Hc;{f)HR(f) = KRe- 1'"'•P(f) (19) 

where PU) = F [p(t)], etc. The second constraint involves the transmitted power ST 
which we compute by finding the average power in one sample function and then take 
the ensemble average, this roundabout technique being necessary because the pulses 

C(/) 

FIGURE 10.6 

IPR2018-1557 
HTC EX1055, Page 24



384 DIGITAL DATA SYSTEMS 

are not necessarily orthogonal. Proceeding with the calculation, the signal at the 
output of H.,{f) is L• a.p-rf.t - k/r) where p-r{t) = F - 1 [Hr(/)P5(j)], so 

{ 
r M f r [ M ( k)]2 } Sr=E lim -J L OtPr 1-- dt 

,.,_ ,. 2M - M f r • • -M r 

, M M JMt, ( k) ( m) = Jim - L L E[a. a,.] Pr I - - Pr t - - dt 
M -a, 2M k • - M m • - M -Mfr r r 

If the source digits are statistically independent 

{
al 

E[a.am] = 0 

and 

m = k 
m#k 

Sr= r~ r p/(t) dt = ra2 r I H-r{f )PsUW df 
-GO -co 

where, since A• = KR a•, 
--, A2 (µ2 - l)A2 
a = -K R-2 = -"--3-K_R,,....2 -

(20a) 

(20b) 

which follows from Eq. (7) even though SR may not equal A 2
• As for the output noise 

power, 

N = u2 =-;;z = r IHR(f) l 2G(f)df 
- ,o 

(21) 

Combining Eqs. ( 19), (20), and (21), we eliminate Hr(/) to get 

(A) 2 
3Sr [ 00 

2 .. I P(/)12 ]- 1 

; = (µ2-1), f_,,,IHR(/)1 G(f)dff_ .. ,Hc<.J)HR(f)l2df 

and the product of integrals has a form like that of Eq. (11), Sect. 4.3. Using Schwarz's 
inequality in the same fashion , the product is minimized when 

K IP(f)I 
IHR(f)l.p,2 = IHc(f)IG' ' 2(f) 

2 - K/IP(f)IGlf2(j) 
IH-r{f) I •• , - KIP

5
(!}121Hc(f)I 

(22a) 

(22b) 

where K is an arbitrary constant. These may be compared with the optimum terminal 
filters for analog transmission, Eq. (13), Sect. 4.3. As before. the filters' phase shifts 
are arbitrary providing that Eq. (19) is satisfied. 

With the optimum filters 

- =-- df (A) 2 
3Sr [f"' IP(/) IG

112
(/) ] -

2 

U mu (µ2 - l)r -oo IHd./) 1 
(23) 
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FIGURE 10.7 0 f 

For the case of white noise and a distortionless channel, substituting G(/) = r,/2 a nd 

IHd.f)I =KR yields 

(;[. 6K/Sr [r IP(/)1 df ]-
2 

(µ2 - I)r,r - «> (24) 

But K/Sr = SR when the channel is distortionless, and Nyquist-shaped pulses per 

Eq. (17) have J~ .. IP(f)ldf= 1, so 

(;[. 6SR 6 
(µ2 - l)r,r = µ 2 - 1 p 

Thus system performance is again identical to an ideal baseband system. 

Example 10.1 

To illustrate these results, take the case of white noise and a distortionless channel 
with p5 (1) = n(t/ t), T = 1/r, and p(I) given by Eq. (!Sb). Then 

P/J) =~sine (0 P(f) = ~cos2 (rr.f\ n(L) 
r 2--;.J 2r 

Inserting these in Eq. (22) and dropping the porportionality constants gives 

IHR(f)I = cos (;)n(f,) IH-r{f) I = cos(irf/2r) (I) 
sinc'' 2(f/r) n 2r (25) 

as plotted in Fig. 10.7. Notetheslighthigh-frequencyrisein IHr(f)I ;ifT « 1/r, this 
rise is negligible and I HrU) I r:.: I Hi/) I so one design serves for both fi lters, a 
production advantage when many such systems are to be implemented. //// 

Equalization 

Regardless of which particular pulse shape is chosen for the baseband digital signal, 
some amount of residual lSI inevitably occurs owing to imperfect filter desig n, 
incomplete knowledge of the channel characteristics, etc. Hence, an adjustable 
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p(I) 

FIGURE 10.8 
Transversal equalizer. 

Total delay ~ f 

P,q(I) 

equalizing filter is often inserted between the receiving filter and the A/ D converter, 
particularly on switched systems where the specific channel characteristics are not 
known in advance. Such "mop-up " equalizers usually take the form of a tapped­
delay-line or transversal filter discussed before in conjunction with linear distortion, 
Sect. 4.2. H owever, the design strategy for mop-up equalization is somewhat different, 
and deserves consideration here. 

Figure 10.8 shows a transversal equalizer with 2M + 1 taps and total delay 
2M/r. If p(t) is the input pulse shape, then the equalized output is 

M ( m +M) p •• (t) = I c,. p t - --
mn- M r 

(26) 

Assuming p(t) has its peak at t = 0 and ISi on both sides, the sampling times at the 

output should be taken as 

so 

k+M 
t.=-­

r 

M (k -m) 
P •• (I.) = L c,.p --

m- - M r 

Equation (27) has the mathematical form known as discrete convolution. 
Ideally, we would like to have 

P.q(lt) = {~ 
k = 0 
k,t, O 

(27) 

thereby completely eliminating ISi. But this condition cannot be realized because we 
have only 2M + I variables at our disposal, namely, the tap gains c.. . Moreover, the 
optimum setting for the tap gains is not immediately obvious. One a pproach is to set 

the cm such that 

P •• (I.) = {~ 
k=O 
k =±l,±2, ... ,±M 

(28) 
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p(t) P,q(I) 

O.D2 

- 0.01 0 

FIGlfRE 10.9 

which together with Eq. (27) yields 2M + I simultaneous linear equations that can be 
solved for the c..,' s. Equation (28) describes a zero-forcing equalizer since p •• (t.) has 
M zero values on each side. This strategy is optimum in the sense that it minimizes the 
peak intersymbol interference, and it bas the added advantage of simplicity. Other 
s trategies are known to be optimum in a different sense. 

When the values of p[(k - m)/r) a re not known in advance, the tap gai11s must 
be set using an iterative process and an error criterion ; i.e., starting from a11 initial 
setting, a test pulse is transmitted, the error is measured, the taps are reset, and the 
operation is repeated one or more times. The obvious cumbersomeness of this 
procedure has prompted considerable interest in automatic or adaptive eq1ializers 
that adjust themselves using error measures derived from the actual data signal. t 
Adaptive equalization has special value when the channel characteristics change with 

time. 
Mop-up equalization (fixed or adaptive) does have one hidden catch in that the 

equalizer somewhat increases the noise power at the input to the A/ D converter. But 
that effect generally is more than compensated for by the ISJ reduction. 

Example 10.2 

A three-tap (M = I) zero-forcing equalizer is to be designed fo r the distorted pulse 
p(t) of Fig. 10.9a. The tap gains are readily calculated by expressing Eqs. (27) and 
(28) in the matrix form 

[ 

1.0 
- 0.2 

0. 1 

0.1 
1.0 

-0.2 

0.0] [c_,] [OJ 0.1 c0 = I 
1.0 c, 0 

t Lucky, Salz., and Weldon (1968, chap. 6) discusses cqualizcr~adjustment algorithms 
and implementation of adaptive equalization. 
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Therefore, 

C-1 = -0.096 Co =0.96 C1 =0.2 

and the corresponding sample values of p,
0
(1) are plotted in Fig. 10.9b with an 

interpolated curve. As expected, there is one zero on each side of the peak. However, 
zero forcing has produced some small ISi at points further out where the unequalized 
pulse was zero. //// 

Binary versus µ-ary Signaling 

Up till now we have taken the values of r and µ as dictated by the source. But one 
need not stick with that limitation as long as the transmission information rate 
accommodates the source data. A smattering of information theory helps put this in 
quantitative form. Specifically, if the source parameters are rs and µ8 , then the source 
information rate is 

!!ts = rs log2 µs bits/s 

while, ignoring errors, the system has capacity 

<'(J = r log2 µ bits/s 

Hence, the designer may select any convenient values of r and µ providing <(l :2: !!ts. 
If power is at a premium and bandwidth is not, one should use the smallest 

value of µ-i.e., binary signaling. Since rJ = r when µ = 2, and since B :2: r/2, the 
required bandwidth is 

B :2: Vt!!ts (29) 

The extent to which the available bandwidth exceeds !Jt5/2 indicates how much flexi­
bility the designer has in selecting the pulse shape. Assuming gaussian white noise 
and optimum filters for the chosen pulse shape, the signal power requirement is 
computed from the desired error probability P, via 

. Q( [ff,:) $. P, (30) 

which follows from Eqs. (8) to ( JO) withµ= 2 and r = !Jt5 • 

On the other hand, bandwidth is minimized if µ is taken as the largest possible 
value since r = at8 /log2 µ. Accordingly, one must find the largest value ofµ such that 

2(1 - .!.)Q(J6 
~og, µ ~) $. P, (31) 

µ µ - I t/!fts 
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Then 
!!ts 

B :2: 2 log, µm .. 
(32) 

where achieving the lower bound entails sine pulses. 
In any case, appropriate code translation must be provided at transmitter and 

receiver wheneverµ ,t. µ5 • This coding merely serves to create a better match between 
source and channel, a nd shou.ld not be confused with error-control coding or coding 

that decreases redundancy in the source messages. 

EXERCISE 10.2 A certain computer produces octal d igits (µ8 = 8) at a rate of 
10,000 per second. If the available transmission bandwidth is 20kHzand I'/ = 5 x 10- s 
W/ Hz, select appropriate system parameters such that P, $. 10-

4
• Ans.: µ = 2 and 

r = 30,000; pulse shape per Eq. (18a) with p $. 2B - r = 10 kHz; SR :2: (3.7}
2
r,9t5/2 ~ 

IO mW. 

Other Design Considerations 

There are numerous other factors that, quite properly, might be deemed important 
considerations in the design of practical baseband systems. One of these is impulse 
noise, the sporadic pulses caused by electrical storms and switching equipment which 
can be a particularly vexatious problem for data tra nsmission via telephone circuits. 
Other factors include synchronization methods, DC removal and restoration for 

AC-coupled systems, and various line coding techniques. 
Each, however, is a special topic in its own right and must be omitted here in 

deference to subjects of more general interest. The interested student will find ample 
material in the professional literature, to which the selected supplementary reading 

list is a guide and a starting point. 

10.2 DIGITAL MODULATION: ASK, FSK, AND PSK 

Just as there a re a multitude of modulation techniques for analog signals, so is it tba t 
digital information can be impressed upon a carrier wave in many ways. This section 
covers the basic types and some of their variations, drawing upon the results of the 
previous section coupled with the modulation theory from Chaps. 5 to 7. Primary 
emphasis will be given to system performance in the presence of noise, i.e., error 
probabilities as a function of p. For the most part, we shall confine our attention to 
binary signals ; the extension to µ-ary signals is not conceptually difficult but involves 

more arduous mathematics. 

I 
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(a) 

(b) 

(c) 

(d) 
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FIGURE 10.10 
Digital modulation waveforms for the binary message 10110100. '•) ASK ; 
(b) FSK; (c) PSK; (d) DSB with baseband pulse shaping. 

Given a digital message, the simplest modulation technique is amplitude-shift 
keying or ASK, wherein the carrier amplitude is switched between two or more 
values, usually on and off for binary signals. The resultant modulated wave then 
consists of RF pulses or marks, representing binary l , and spaces, representing binary 0, 
Fig. IO.!Oa. Similarly, one could key the frequency or phase, Figs. 10.!0b and c, 
giving f requency-shift keying (FSK) or phase-shift keying (PSK). These modulation 
types correspond to AM, FM, and PM, respectively, with a rectangluar-pulse modu­
lating signal. Clearly, the price of this simplicity is excessive transmission bandwidth, 
i.e. , Br » r. ASK also has wasted power in the carrier, just like analog AM. 

Transmission bandwidth can be reduced if the pulses are shaped (bandlimited) 
prior to modulation. For instance, Fig. 10.!0d is the DSB-modulated version of the 
baseband signal in Fig. I0.5 and has Br = 2B = 2r. The minimum possible bandwidth 
is Br~ r/2, corresponding to sine pulses at baseband and VSB modulation. Other 
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G(/) =1 

FIGURE IO.II 
,.-,~"···~ "'' 

types of modulation include FM, PM, and VSB + C with baseband shaping.t SSB is 
not feasible for the reasons covered in Sect. 5.4. 

Despite the number of modulation options, performance analysis depends 
primarily on the type of demodulation or detection -of which there are just two 
major classes: coherent (synchronous) detection and noncoherent (envelope) detection. 
Noncoherent detection is the simpler to implement and, generally speaking, is used in 
conjunction with ASK and FSK. Such systems usually incorporate matched (inte­
grate-and-dump) fi lters since the modulated signal consists of rectangular pulses. 
Coherent detection is used for PSK, DSB, and VSB, with matched or otherwise 
optimum or near-optimum terminal filters. 

We will analyze the more important noncoherent and coherent digital modu­
lation systems. First, however, it is helpful to examine the statistical properties of a 
sinusoid corrupted by bandpass noise, that situation being common to all cases. 

Envelope and Phase of a Sinusoid plus Bandpass Noise 

Consider a digital modulation system with carrier frequency fc . At the receiver, the 
signal is contaminated by white noise and then passed through a bandpass filter HR(!) 
centered at fc , Fig. 10.11. The output bandpass noise is, from Sect. 7.3, 

n(t) = n1(t) cos (w, I + 8) - n.(t) sin (wet + 8) (la) 

= R0 (t) COS [we t + (} + <f>.(t)] (lb) 

where an arbitrary constant phase 8 has been included. We recall that the in-phase 
and quadrature components n,(t) and n.(t) are independent zero-mean gaussian 
variates with 

n,2 = n.2 = ~ = N=~r IHR(f)l 2 d/ 2 _ ., 
(2) 

t Croisier and Pierrct (J 970) have devised a promising alternative they call digital echo 
modulatiou. 
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whereas the envelope R. = J n ,2 + n/ has the Rayleigh PDF 

p (R) = R. e-R.,/2N 
R. • N 

R -JnN .- -2 

R.~O 

R.2 = 2N 

while the phase t/1. = arctan (n1/n9) is uniformly distributed over I t/1. I S n. 

(3) 

In the absence of noise, let the modulated signal at the output of HR(f) be of the 
form 

K11, Xe(t) = At cos (we I+ qiJ 
k 

/ =-

' 
where At and/or <Pt represent the kth message digit. Taking O = qi• in Eq . (I), the 
signal plus noise is 

where 

y(t) = [At+ n,(t)] cos (wet+ t/!J - n.(t) sin (wet + t/1.) 

= R(t) cos [wet + qi• + qi(t)] 

R2 = (Ak + n1)
2 + n/ "• qi = arctan A. + n

1 

(4a) 

(4b) 

(5) 

Equation (5) relates the envelope and phase of a sinusoid plus bandpass noise to the 
signal and noise components, and we are specifically interested in the PDFs of R and qi. 

Before plunging into the details, let us speculate on the nature of P11.(R) and 
p.(qi) under extreme conditions. When A• = 0, R and qi reduce to R. and qi., the 
envelope and phase of the noise alone, which have Rayleigh and uniform PDFs, 

respectively. At the other extreme, if A• » jN, R ~A•+ n1 and qi~ n4/A• so both 
will be approximately gaussian. Since A/ is proportional to the signal power SR , 
this case corresponds to S 11.I N » I . 

For intermediate cases we follow the procedure that led to Eq. (11), Sect. 7.3, 

replacing n 1 by A1 + n1 • This yields the joint PDF 

p(_R,qi) = 2:N e-c11.2 -2A. Rcos•+ A•'>t2N (6) 

with R ~ 0 and It/I I s n by definition. Unlike the case of bandpass noise alone, the 
product term R cos q, in Eq. (6) means that R and qi are not statistically independent. 
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Separation of P11.(R) and p.(t/1) therefore requires integration, i.e., 

P11.(R) = (JJ<.R,qi) dqi 

= ~ e - (R'+A•l)/2N .!.. r eCA>R/N)«>S• dqJ 
N 2n -• 

R -(Rl+ A•')f2Nj (A·R) =Ne o N R ~O (7) 

where 1
0 

is the modified Bessel function of the first kind and zero order. Equation (7) 
is called the Rice distribution; its formidable appearance is perhaps discouraging, and 
indeed this is not a trivial function. Fortunately, most systems will satisfy the large­

signal condition A•» jN for which !0(A1R/N),;::: J N/2nA1R e"•RIN_ Hence, if 

SR.IN» I , 

PR(R),;::: J R e-<R-A•>'J2N 
2nA•N 

R ~O (8) 

which is essentially gaussian with R = A1 and u/ = N. That conclusion sterns from 
the fact that R/2nA• N ~ l /2nN in the vicinity of R =A. where PR(R) has the bulk of 

its area. 
Turning to the phase, p.(</>) can be found exactly by integrating Eq. (6) over 

R = 0 to co; the integration is somewhat lengthy and the result is analytically 
cumbersome- see Prob. 10.14. Consistent with SR.IN » 1, it simplifies to 

~ p.(qi) ~ COS q,e-<A•••••)
1

/2N 
N 

7t 

1</>I s2 (9) 

which, for small values of <f,, approximates a gaussian with ip = 0 and t/1 2 = N/A/. 
Equation (9) is invalid for I t/1 I > n/2 (why?), but the probability of that event is 
vanishingly small under the assumed condition. 

Noncoherent ASK 

Putting the above results to work, we start with noncoherent binary ASK. We assume 
the received waveform looks like Fig. 10.!0a with T = 1/r and lc » r . If ER is the 
energy in each received marking puise (representing 1), then the average signal power 
is SR = V2rER since marks and spaces are equally likely. 

The detection system consists of a bandpass filter (or integrate-and-dump 
filter) matched to the RF marking pulses, i.e., 

l,R(t) = cos w,t II[r(t - t0 ) ) (10) 
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G(/)=1 

ASK hR(I) 

FIGURE 10.12 
Noncohercnt detection of ASK. 

Env 
det A/D 

followed by an envelope detecto r and A/D converter, Fig. 10.12. When a marking 
pulse is received, the filtered output is a triangular RF pulse with peak value 

A = JER = ~ (J I) 
2, '1? 

Thus, at the optimum sampling t imes, the envelope has A. = A or O (the no-pulse or 
space output). The fil tered noise power is 

N = -
2
'1 r ,HRU)'' df= ~ r h,;(t)dt = !!.. 12) _.., 2 _.., 4r 

so 

(
A

2
) 2ER 4SR - =-=-=4p ( 13) 

N mu I'/ rJT 
where p = SR/rJr as before. 

Calculating the error probability involves two PDFs: when a O or space is sent, 
the resultant envelope has a Rayleigh PDF, p(RI A•= 0) = pR.(R.); when a 1 or mark 
is sent, p(R I A• = A) has a Rice PDF. Figure JO. 13 shows the two density functions, 

FIGURE 10.13 

PR 

A 
Optimum threshold 

PDFs for noncoherent detection of ASK. 
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assuming p » l so Eq. (8) can be used for p(R I A• = A). Clearly, the decision threshold 
level of the A/D converter should be set between O and A, but the best value is not 
necessarily A/2. In point of fact, there is no "best" threshold in the sense of equalizing 
P, , and P,

0 
and simultaneously minimizing P •. Minimum P, is achieved by taking the 

threshold where the two curves intersect (explain this assertion!), which turns out to be 

approximately (A/2) J 1 + (2/p). 
Usually, the threshold is set at A/2 which is nearly optimum if p » I. Then 

while 

P, . = J'° PR.(R.) dR . = e-" ' f&N = e-p/ 2 
A /2 

A/2 ( A ) 
P, , = t PR(R) dR ~ Q 

2 
JN = Q(jp) 

(14a) 

where the approximation is the a rea from - co to A/2 of a gaussian with Ii = A and 

u/ = N. Introducing the asymptotic expression for Q(.jp), Eq. (JO), Sect. 3.5, gives 

P. , :::;, J l e-•12 (14b) 
21tp 

thereby bringing out the fact that P., « P,0 when p » I. Finally, 

P, = P0 P,0 + P1P,, 

~ ~ ( 1 +-
1
-) e-•12 {15) 

2 J 2np 

To compare this result with baseband transmission under the same conditions, 

we have from Eq. (8), Sect. JO. I , with p » I, 

r,:;: I -
p•no = Q(y .<.p)~~ c e• (16) 

""v rcp 

Therefore, 

p l!ASIC ~ J-.;pe+pfl P eee 

so if p = 10, the ASK error probability is about 800 times that of a well-desjgned 
baseband system-and almost all of the errors change Os to l s. Clearly, ASK does 
not compare very favorably. Moreover, as in most of our previous studies, Eq . (15) 
represents virtually the best that can be achieved by this system. Imperfect fi lter 
design, poor synchronization, etc., all work in the direction of increasing P, . In 
particular, bandpass matched filters are difficult to build, so practical systems u,ually 

I 
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FSK 

FIGURE 10.14 
Noncoherent detection of binary FSK. 

have an integrate-and-dump baseband filter after the envelope detector, further de­
grading the performance. But then one should not expect too much from a system 
having relatively unsophisticated components. 

EXERCISE 10.3 Carry out the calculation of Eq. (12) '!Ind show that Eq. (I I) is 
correct by substituting the value of N into A 2 /N = 2ER/'1, which always holds for a 
matched filter. 

Noncoherent FSK 
It may seem unusual that envelope detection works for FSK as well as ASK. However, 
careful examination of the binary FSK signal in Fig. 10.IOb reveals that it basically 
consists of two interleaved ASK signals of difl'ereng carrier frequencies, say ft and / 0 . 

Accordingly, noncoherent detection can be accomplished using a pair of matched 
filters and envelope detectors arranged per Fig. 10. 14, one branch responding to the 
pulses atft, the other to fo. To prevent cross talk at the sampling times, it is necessary 
that 

Iii -fol = Mr 

where M is an integer, usually taken to be unity to minimize bandwidth. (Unfortun­
ately, this condition results in a signal that has discrete-frequency sinusoidal com­
ponents, which may have an adverse effect in certain applications.) 

In absence of noise and cross talk, Yi = A and y~ = 0 when the received frequency 
is J., and vice versa for / 0 . Since the envelope difference y 1 - Yo is the input to the 
A/ D converter, the threshold level should be set at zero, regardless of the value of A. 

Thus, P,, = P(y1 - y 0 < 0) and, from symmetry, P,0 = P,, = P,, so 

P, = P(y0 > y 1) (17) 

where, based on our study of ASK, y0 has a Rayleigh PDF while y 1 is Rician. But 
because the FSK wave lacks the "spaces" of ASK, S11 = rER and 

(A2) = 2£11. = 2S11. = 2p (18) 
N mu 'I 'I' 

at the output of either filter, depending on the input frequency. 
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PSK 
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p. dB 

FIGURE 10.15 

10 15 

Error probabilities for binary digital modulation systems. 

To compute the probability Eq. (17) we first note that p,0(y0) = PR.(y0 ) so, for 
a given value of y1 , 

P(Yo > Y, I Y , ) = f "'PR.(Yo) dyo = e-,,'!7N ,, 
Then, accounting for all possible values of y , , 

P. = r P(Yo > Y, IY,)PR(Y ,) dy , 
0 

I"° - 711/2N y, - ( 11 1+ .A1)/2NJ (A y, ) d = e -e o - Y, 
o N N 

in which p1,(y1) = pR(y1) per Eq. (7) with A. = A. Rather amazingly, this integral 
can be evaluated in closed fo rm with no approximations. For that purpose, we let 

A = J 2 y 1 and a = A/J2, giving 

P, = ~ e · A'/4N Ia"'~ e-<•'+•'l/2N/o(i") d). 

and comparison with Eq. (7) shows that the integrand now has exactly the same form 
as a Rician PDF; consequently, the area (integral) equals unity. Finally, since 
A2/4N = p/2, we have the simple result that 

P, = 72e·,12 (19) 

I 
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G(/)=1 

PSK BPF 
I.PF 

HR(/) 
y(I) 

FIGURE 10.16 
Synchronous detection of binary PSK. 

Thus, as seen from the curves of P, versus p plotted in Fig. 10.15, noncoherent FSK 
gives no better error rates than ASK except at relatively small values of p . 

What then are the advantages of FSK, if any? Upon further reflection, three 
advantages over ASK are evident : 

1 FSK has the constant-amplitude property whose merits were covered in 
conjunction with analog exponential modulation. 

2 The per-digit error probabilities P,, and P,
0 

are equal. 
3 The optimum threshold level is independent of A and p, and need not be 

readjusted if the signal strength varies with time, a not uncommon phenom­
enon in radio transmission. 

It is precisely for this last reason that FSK is preferred to ASK in applications where 
fading is expected and synchronous detection is not feasible. 

One final point remains to be discussed here, namely, why binary FSK does 
not give the wideband noise reduction usually associated with FM. For the system 
here described the reason is very simple: it is basically AM rather than FM. If one 
uses true FM, including detection by a limiter-discriminator, t it turns out that the 
transmission bandwidth required to control intersymbol interference is so large that 
the noise-reduction effect is essentially canceled by the increased predetection noise. 
However, for multilevel signals (µ > 2) some advantage in the form of a bandwidth­
power exchange is possible ; after all, ifµ-, oo, digital and analog signals are equiv­
alent. 

Coherent PSK 
Coherent or synchronous detection relies on precise knowledge of the phase of the 
received carrier wave as well as its frequency, and thus involves more sophisticated 
hardware. In return, it offers improved performance. 
· Consider, for instance, the binary PSK signal of Fig. 10.IOc-or, for that matter, 
the DSB signal of Fig. 10. lOd, since both signals can be said to have A. = ±A or 
</>, = 0 or n. An appropriate synchronous detector is shown in Fig. 10.16, where the 

t Sec Bennett and Davey (196S, chap. 9). 
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FIGURE 10.17 
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Phasors and thresholds of PSK with 
µ, = 4. 

/ 
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local oscillator is synchronized and HR([) is a lowpass filter ; the bandpass filter before 
the mixer serves only to prevent overload from excessive noise. From our study of 
synchronous detection for analog signals, it immediately follows that the filtered 
output is of the form 

y(r) = ±A+ n,(r) (20a) 

and, with optimum filtering, 

( A
2

) = 2SR = 2p 
n/ max qr 

(20b) 

Therefore, since 11,(1) is gaussian, 

P, = Q(J) = Q(j 2p) (21) 

the same as optimum baseband transmission and, from Fig. I 0.15, 3 to 4 dB better 
than noncoherent modulation. 

Because of its performance quality, combined with the constant-amplitude 
property, multilevel (µ > 2) PSK has considerable practical value. Note, especially, 
that increasing µ increases the equivalent bit rate without the need for larger trans­
mission bandwidth. It thus behooves us to spend some time on µ-ary PSK where 

K, x.(r) = A cos (w. t + <J,,) 
2n 4n 2(µ - l)n 

tj,,=0,-.-•. ... ---
µ µ µ 

(22) 

Conceptually, such a signal is detected by phase discrimination with decision angles 
n/µ, 3n/µ, . . . centered between the expected carrier-phase values. Figure 10.17 shows 
a phasor diagram for quaternary PSK (µ = 4) and the corresponding angular thresh­
olds. 

The received signal plus noise, after bandpass filtering, has the form of Eq. (4b), 
so errors occur whenever the noise-induced phase perturbation <f>(t) crosses the thresh­
old. Therefore. by symmetry, the per-digit error probabilites are equal and 

( 7t) J"'" P, = P lt/>I > - = I - p~(tj,)d</> 
JL -r.Jµ. 

(23a) 
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FIGURE 10.18 
Phase-comparison detection of differ­
entially coherent binary PSK. 

Assuming o ptimum bandpass filtering, A2/N = 2p so if p » I, 

I
JC/p. 2 fffp sin•/ ,,. 

p.(<f,) d<f, = -- e - J.'t2 d). 
-•!• Jf;c 0 

(23b) 

where we have used Eq. (9) and let ,l = .j2p sin <f,. Consistent with the large-signal 
condition one fina lly obtains 

P, ~ l e- p sin:Z K/µ 

J np sin n/µ 
(24) 

which holds for µ .::: 4 and p » I. 

Differentially Coherent PSK 

A clever technique known as phase-comparison or differentially cohere/11 PSK (DPSK) 
has been devised to get around the synchronization problems of coherent detection. 
The strategy is diagraroed in Fig. 10.18 for binary DPSK; somewhat as with homo­
dyne detection, the local osciJlator is replaced by the signal itself delayed in time by 
exactly 1/r, the bit spacing, If adjacent digits are of like phase, their product results 
in a positive output (or binary I) ; conversely, opposite phases result in a negative 
output (binary 0). Thus, it is the shift or no shift between transmitted phase values 
that represents the message information, so appropriate coding, called differential 

encoding, is required al the transmitter. 
Differential encoding starts with a n arbitrary first d igit and thereafter indicates 

the message digits by successive transition or no transition. A transition stands for 
message 0, and no t ransition for message I. The coding process is illustrated below. 

Input message 1 O 1 1 0 1 0 0 
Encoded message 1 1 O O O 1 1 O I 
Transmitted phase O O " " " 0 0 " 0 
Phase-comparison output + - + + - + - -
Output message I O 1 1 0 I O O 
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Differential encoding is most often used for PSK systems but is not restricted to such 
applications. In general, it is advantageous for systems having no sense of absolute 

polarity. 
As to the noise performance of DPSK it might appear that differential detection 

requires twice as much power as coherent detection because the phase reference is 
itself contaminated by noise. However, the perturbations actually tend to cancel 
in the comparison process, so the degradation is not so great. We will carry out the 
analysis for the case where the two adjacent phases a re the same, say <P• = ,f,._1 = 0, 
so an error occurs if the output is negative. Writing the received (and filtered} signal 
plus noise as [A + n;(t)J cos OJ, t - n.(t} sin OJ, t , the output of the delay unit will be 
[A + n.(t')] cos OJ, t' - n.(t'} sin OJ, t' where t ' = t - 1/r . Thus, providing that J; is a n 
integer multiple of r (which can be guaranteed by heterodyning if necessary), the 

A/ D input is proportional to 

y(t} = [A + n;(t)l[A + n1(t'}] + n.(t)n.(t'} (25) 

and P. = P(y < 0). 
Equation (25), involving products of gaussian variates, is called a quadratic 

form. It can be simplified through a diagonalization process by defining four new 

variates: 

Thee, letting 

a
1 
= A + n ,(t) + n1(t') 

2 

P, = n,(t} - n;(t' ) 
2 

a= la,+ ja4 J 

one can show that y(t) = a 2 
- p2 and therefore 

a• = n.(t) + n.(t') 
2 

p • = n9(1) - n4(t') 
2 

P = IP, + iP,I 

(26a) 

(26b) 

P. = P(y < 0) = P(a2 < {J2
) = P(P > ix) (27) 

the last step following since a and P a re nonnegative. Now we have an expression 
identical to that of noncoherent FSK with a and fJ replacing y 1 a nd Yo. Moreover, 
as the reader can check from the definitions, a is Rician and fJ is Rayleigh. The only 
difference here is that the mean-square noise terms are reduced by a factor o f 2, 

e.g., assuming n,(t) and n.(t') are independent, a/ = (n/ + n/)/4 = N/2. Therefore, 

P. = Y2e-• (28) 

as obtained from Eq. (19) with p replaced by p/2 reflecting the noise reduction. 
Referring to the curves of Fig. 10.1 5 we see that DPSK has a 2- to 3-dB power 

advantage over noncoherenl detection and a penalty of less than I dB compared lo 
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coherent PSK at P, ~ 10- 4
• And remember that DPSK does not require separate 

synchronization. Additionally, with slight modification of the transmitted wave, 
a timing signal is easily derived for the A/D converter. The only significant dis­
advantage is that because of the fixed delay time 1/r in the detector, the system is 
locked in on a specific signaling speed, thereby precluding variable speed (asynchron­
ous) transmission. A minor annoyance is the fact that errors tend to occur in groups 
of two {why?). 

For µ-ary DPSK, the error probability has the same form as Eq. (24), save that 
p must be increased by a factor of 

sin2 (11/µ) 

2 sin2 (11/2µ) 
(29) 

to achieve the same P, as coherent detection. With µ = 4 the penalty is about 2 dB 
and increases asymptotically toward 3 dB as µ -+ oo. Thus, only for large µ does 
differential detection fully suffer from the noisy phase reference. 

Example 10.3 

High-speed data transmission over voice telephone channels has been a subject of 
intense practical concern for many years. One of the earliest and most successful 
designs, used in the Bell System model 201, 205, and 207 data sets, is described here. 
Incorporating quaternary DPSK modulation, it achieves synchronous transmission 
at rates up to 2,400 bits/s on telephone lines that have been conditioned (equalized) 
for digital signals. 

Figure 10.19a diagrarnst the transmitter. Incoming binary digits are grouped 
into blocks of two, called dibits, so µ = µ/ = 4 and , = r5/2 = 1,200. The dibits 
differentially phase modulate the carrier and the DPSK wave is then envelope­
modulated to yield 

x.(1) = ~ p(1 - ~ ) cos (2nfc t + q,t) 

where 

(nrt) p(t) = cos2 T I1(2rt) 

This equivalent baseband pulse shape is not bandlimited but, by applying duality to 
Eqs. (17) and (18), one can show that P(f) has negligible content for 1/1 > r. Hence, 
Br r;;:: 2r = 2,400 Hz centered on the carrier frequency fc = 1,800 Hz. The carrier 

t Bak.er (1962) details the hardware realizations or transmitter and receiver functions, 
some of which arc particularly ingenious. 

Binary data 
µ, • 2 

r, • 2,400 

Data 
conv 

Oock ,;g,,al __---J 
2,400 Hz 
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Dibits 
µ • 4 
•• , ,nn I Diff 
.:__:_::::...J phase 

mod 

(a) 

(b) 

AGURE 10.19 

Env 
mod 

600Hz 

BPF 

Dara 
conv 

Timing 

Quaternary PSK system. (a) Transmilter; (b) receiver. 

and envelope modulation frequencies are both derived from the incoming 2,400-Hz 
clock frequency. 

As Table IO. I indicates, the differential phase shift has an added term of +45° 
so that q,, can never equal q,._1 and there is a phase shift in the modulated wave 
every 1/r seconds. This feature, combined with the envelope modulation, produces 
discrete frequency components atfc ± 600 that are used at the receiver to generate the 
timing signal. 
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Table 10.1 

Dibit </>, - 'P•- • 

oo +4s0 

01 + 135° 
11 - J3s• 
10 - 45° 

sin(</>, - </>,.,) 

+ 
+ 

cos (</>. - </>,- ,) 

+ 

+ 

Phase comparison detection is accomplished as shown in Fig. 10.19b, giving 
the outputs sin (c/>. - <1> •. 1) and cos(</>. - <1> •. 1). Thus, from Table JO.I, there is a 
one-to-one correspondence between the output polarities and the binary digits in each 
dibit. The data converter then interleaves the two regenerated digits to yield a serial 
binary output. Timing is derived by mixing the outputs of the HPF and LPF, both 
of which cut off at 1,200 Hz, and selecting the difference frequency 1,800 - 600 = 
1,200 Hz from the aforementioned sinusoidal components. This procedure is used­
instead of directly filtering the J,200-Hz component - to better compensate for 
delay distortion. 

Tests have shown that the system error probability is less than 10- s when 
S/N = 15 dB. A fully optimized DPSK system with no transmission distortion, ISI , 
etc., would achieve P, = 10- s with about 3 dB less power. //// 

Coherent Linear Modulation 

As the grand finale of our study of digital modulation methods. we will look at the 
whole family of linear modulation (AM, DSB, VSB, etc.) with coherent detection. 
The student who has gotten this far will be pleased to learn that, for a change, one 
of the simplest cases has been saved till last. 

The analog-signal portion of a coherent linear modulation system is diagramed 
in Fig. I 0.20a, the primes denoting bandpass units. Assuming that the receiver 
oscillator is perfectly synchronized and that the baseband terminal filters do not 
respond above fc, frequency-translation analysis shows that, as far as signal trans­
mission is concerned, the entire bandpass section plus modulator and demodulator 
is equivalent to a lowpass filter 

Hm(f) = ~[H1"CR(f - l e)+ WTCR(f + le)] Ill <le (30a) 

where 

H~cR(I) = H rtf)H'c(l)H',i(I) (30b) 

Likewise, the lowpass equivalent noise is gaussian and has spectral density 

G(f) = ~[G'(f - fc) + G'(f + le)] Ill <fc (31a) 

x<tl 

where 
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(b l 

FIGURE 10.20 

y(tl 

Coherent linear modulation. (a) Block diagram of analog portion; (b) equivalent 
baseband system. 

G'(f) = ~ IH;(f) l 2 (3 1b) 

Therefore, for analysis or design purposes, Fig. I 0.20a may be replaced by the equi­
valent baseband system of Fig. 10.20b and, in the classic tradition of mathematics, 
we have thereby reduced the problem to one that has already been solved, i.e., baseband 
data transmission. 

All of the results from Sect. I 0. I apply here with the substitution of Eqs. (30) 
and (31 ). Specifically, if G(f) is flat over the passband of H R(f) and if the carrier 
is suppressed at the transmitter (i.e., DSB or VSB), then 

P, ~ 2(1 - ~)Q[ J/~ 1] 

( 1) Jµ2 ::_ I ( 3p ) :::: 1- - --exp ---
µ 3np µ2 

- l 

(32) 
P » I 

where the lower bound requires optimum terminal filters and is the same as optimum 
baseband transmission. Therefore, the polar baseband curve in Fig. 10.15 also holds 
for binary linear modulation with coherent detection and suppressed carrier. The 
case of unsuppressed carrier hardly deserves mention here since, with coherent detec­
tion, the wasted power in the carrier offers no compensating benefits. 

I 
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Finally, it should be noted from the equivalent baseband system that direct 
baseband equalization is possible with coherent linear modulation and will correct 
linear distortion introduced by the bandpass channel. Such equalization does not 
work as well for incoherent systems because incoherent detection is a nonlinear process 
and hence linear distortion in the bandpass channel produces nonlinear distortion at 
baseband. 

EXERCISE 10.4 Justify either Eq. (30) or (31), whichever you find more interesting. 
(Hints: For Eq. (30), consider a signal bandlimited in B <lc applied to the modulator; 
u se the frequency-translation theorem and follow through the system with a few 
simple sketches of the spectra. For Eq. (3 I), write the bandpass noise at the detector 
input in quadrature-carrier form, multiply it by cos Wet, and use the results from 
Sect. 7.3.) 

10.3 ERROR-CONTROL CODING 

We have seen that error probability in digital transmission is a direct function of p or, 
equivalently, S/N. Jf, for a given system, the signa l power is limited to some maximum 
value and errors are still unacceptably frequent, then some other means of improving 
reliability must be sought. Often, error-control coding provides the best solution. 

In a nutshell, error-control coding is the calculated use of redundancy. Taking 
a hint from information theory, one systematically adds extra digits to the transmitted 
message, digits which themselves convey no information but make it possible for the 
receiver to detect or even correct errors in the informatio n-bearing digits. Theoreti­
cally, near-errorless transmission .is possible; more practically, there is the inevitable 
trade-off between transmission reliability, efficiency, and complexity of terminal 
equipment. Reflecting this factor, a multitude of error-detecting and error-correcting 
codes have been devised to suit various applications. 

This section is an introduction to error-control coding. We will deal only with 
binary codes since relatively little has been accomplished in the realm of practical 
multilevel codes. (Remember the unique feature of binary digits: If one merely 
knows which digits are in error, the correct digits are immediately determined.) 
Furthermore, our treatment will be primarily qualitative because coding theory 
has evolved from the black art of its early days to a highly sophisticated mathematical 
discipline. Hence, we are barely scratching the surface of a fascinating subject; 
the reader whose interest is thereby aroused, and who has the essential aptitude for 
modern algebra, will find additional material in the supplementary reading list. 

10.3 ERROR-CONTROLCODINO 407 

Coding Concepts and Trade-offs 

By way of introduction, consider a repeated code in which each binary message digit 
is repeated three times-roughly analogous to repeating your words when you are 
trying to talk to someone on the other side of a noisy room. The allowed code words 
are then 000 and 111, so any other received work such as 101 clearly indicates the 
presence of errors. To correct single errors, one might use a majority-rule decision 
and the following decoding table: 

Decoded digit 0 

000 111 
Received 001 JIO 
words 010 101 

JOO 011 

This yields a single-error correcting code and decoding errors occur only whe11 there 
are two or three erroneous digits in a word ; e.g., two errors change 000 to 101, etc. 
Therefore, assuming the per-digit error probability is E, we find the decoding error 
probability from the binomial distribution, Eq. (!), Sect. 3.4, as 

P, = P(2 or 3 errors in 3 digits) = Pi2) + P3(3) 

=(;) £2(1-E)+W £' =3£2-2£3 (I) 

Since £ is the error probability without coding, and since £ < yf on any reasonable 
channel, coding has certainly improved the reliability. 

The triple-repetition code also works for double-error detection if we give up 
single-error correction ; i.e., any received code word other than 000 or 111 is treated as 
a detected but uncorrected error. Decoding errors, in the sense of undetected errors, 
occur with probability 

P, = Pi3) = E3 (2) 

which is obviously smaller than Eq. (I). Despite the triviality of this example code, 
it does lead to three important and general conclusions about error-control coding. 

/ Through the addition of extra digits, called check digits, the code words can 
be made "very different" from each other. Analytically, the difference between 
any two binary words is measured in terms of the Hamming distance d, defined 
simply as the number of places in which the words have different digits; thus, it 
takes d errors (in the right places) to change one word into the other. Pursuing 

I 
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this line of thought, a code that detects up to K errors per word or corrects up to 
K errors per word must consist of code words having 

{
K + 1 

dmln = 2K+ J 
error detection 
error correction 

(3) 

an assertion left for the student to ponder. The triple-repetition code clearly 
has d = 3 so, as we have seen, it can detect K = 2 errors or correct K = l error 
per word. For an arbitrary code with 

k = message digits per word 

q = check digits per word 

n = k + q = total digits per word 

there are 2• binary code words (formed with k message digits) out of a possible 
2" = 29 x 2• n-digit words. Accordingly, the check digits should be chosen 
such that the 2• code words satisfy the distance requirement (3). 

2 If the per-digit error probability £ is reasonably small, then the probability 
of M + 1 errors in an n-digit word will be much less than the probability of M 
errors, i.e., P.(M + 1) « P.(M). To underscore this point, and for reference 
purposes, Table I 0.2 lists approximate expressions for P.(M) obtained via 
binomial-series expansion. Therefore, if a code corrects or detects up to K 
errors, t he decoding error probability per word is . 

P,,wo,d = L P.(i) ~ P.(K + I) (4a) 
l • K +l 

the approximation being quite accurate if n£ ~ 0.1. Since the majority of 
decoding errors are due to K + I digit errors of which the fraction k /n are 
erroneous message digits (the rest are check-digit errors), the net error probability 
per message digit or bit is 

Table 10.2 SERIES APPROXIMATIONS FOR 
THE BINOMIAL DISTRIBUTION 

M P,(M)= (~) •"(1- ,)" - " 

0 1 - n< + ~n(n - 1)<2 - j.,(n(n - l)(n - 2)<3 

1 n• - n(n - 1)<2 + ~ n (n - I)(n - 2)<3 

2 J,i'n(n - l)t 2 - ~ n(n - l)(n - 2)•' 
3 j4n (n - l )(n - 2)• 3 

k 
P,,bil~;;<K + l)P,,wo,d (4b) 
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3 The insertion of check digits for error control reduces the effective rate at 
which message digits are transmitted. Quantitatively, we define the rate efficiency 
factor of a code ast 

k k 
.f= - =- (5) 

k+q n 

so if the gross signaling rate is r, the message digit rate is 

rm=8r (6) 

Generally speaking, codes that are both easily instrumented and effective in 
error control require a relatively large percentage of check digits. Thus, p ractical 
error control tends to go hand in hand with bit-rate reduction. 

But there are other less elegant ways of decreasing errors at the expense of 
signaling rate, the signal power being fixed. And to properly evaluate the merits of a 
given code we should at least consider one other option, namely, signaling-rate re­
duction without coding. Reducing r increases p = SRfrir (if the terminal fi lters are 
adjusted accordingly) and thereby decreases the error probability. 

Suppose, for comparison purposes, that a certain code with rate efficiency rt 

has been proposed for use on a binary baseband channel having 

l = Q(.j2p) 
SR 

p=-
rir 

so that P,.bl• is given by Eq. (4b) with the above value of£. On the other hand, one 
could simply reduce the signaling rate by a factor of 8, giving the same message bit 
rate with 

P, ,uncod,d = Q(fj.) {7) 

If Eq. (7) is of the same order of magnitude as P • ,bll , the value of the particular code 
under consideration is questionable. 

Example 10.4 

The triple-repetition code has k = I, q = 2, 11 = 3, and 8 = 3-!i. If it is used for single­
error correction on a baseband channel with p = 1 and r = 1,200, the message bit 

rate is,,.= 120% = 400 and £ = Q(j2p) ~ 10- • so, from Eq. (! ), 

P,,bll ~ 3£2 ~ 3 X 10- s 

t Nol to be confused with communication efficiency defined in Eq. (8), Sect. 9 .4. 
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Equation (4b) does not apply in this case since the decoded message digit is always 
erroneous when there are two or three errors. 

If, however, the signaling rate is reduced to r = 300 and no coding is used, 

P,,vncoded = Q( }¥) = Q(y'42) ';,: 5 X 10- 9 

so simple signaling-rate reduction is superior to this rudimenta ry code. /Ill 

Error Detection by Parity Check 

For many applications, errors can be rendered harmless if they are simply detected 
with no immediate attempt at correction. This is true, for instance, in data telemetry 
when a large number of values are gathered for statistical analysis; erroneous values, 
if detected, are simply omitted from further processing, and the loss is negligible. 
Similarly, given a two-way communication link, the fact that an error has been detected 
can be sent back to the transmitter for appropriate action, i.e., retransmission. 
Such decision feedback is especially advantageous if the system is subject to variable 
transmission conditions. When conditions a re good and errors infrequent, a low­
redundancy code with i ts higher data rate is satisfactory; when conditions are un­
favorable, as indicated by frequent error detection, the transmitter may switch to a 
code of higher redundancy or temporarily cease transmission. But with or without 
feedback, simple error detection suffices only if i is small to begin with and the 
probability of undetected errors is at a suitably low level. 

Most error-detecting codes are based on the notion of parity. T he parity of a 
binary word is said to be even when the word includes an even number of I s, while 
odd parity means an odd number of l s. For error detection by pa rity check, we divide 
the message into groups of k digits and add one check digit to each group such that 
every (k + 1)-digit word has the same parity, say even. Thus, the check digit is 
related to the message digits by 

c = m, EB m2 EB · · · EB mt (Sa) 

where EB stands for modulo-2 addition. Modulo-2 arithmetic, defined on the binary 
digits O and 1, is the same as ordinary arithmetic except that 1 EB 1 = 0 and there is no 
difference between addition and subtraction.t Hence Eq. (8a) is equivalent to 

m1 EB m2 EB··· EB mt EB c = 0 (Sb) 
The efficiency factor is 

k 
8=- (9) 

k+l 
indicating reasonable efficiency if k is large. 

t In hardware terms, Et) is an EXCLUSIVE-OR gate. 
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Of the 2k+1 possible binary words having k + I digits, parity-check coding 
excludes precisely half, the half with odd parity, thereby ensuring that the code has 
Hamming distanced~ 2 as required for single-error detection. Therefore, if tile parity 
of a received word is odd, we know there is an error-or three errors, or, in general, 
an odd number of errors. Error detection can then be implemented by checking the 
parity of each word as it arrives. Of course error correction is not possible, since we 
do not know where the errors are located within the word. Furthermore, an even 
number of errors preserves valid parity and hence goes undetected. 

Neglecting all but the double-error case, P,,wo,d;::: Pu iC2);::: ,!1'(k + l)k£1 and 
hence, from Eq. (4b), 

k 
P ,,bll;,: k + J 2P,,word ;::: k

1
£

2 
(10) 

For example, if k = 9 and i = 10- 3, parity-check coding drops the error probability 
by more than one order of magnitude with a rate reduction of only %o-

The probability of a detected error is a lso of interest, for it indicates the amount 
of data that must be retransmitted or discarded. Since primarily single errors are 
detected, we have per word 

(
k + I) Pd,;::: I £(1 - £)t;::: (k + 1)£ (I la) 

In a message of N » l total message digits, there are N/k words, of which. (N/k) 
(k + 1)£ have detected errors. ff detected errors are discarded, the fractional rtUmber 
of message digits thrown away is 

~ [ k~(k + l)i] = (k + l)i = Pd• (lib) 

lf k = 9 and £ = 10 - 3, Pd, ;::: 0.01 or I percent. 
Two final comments with respect to practical matters are in order here. First, 

it is preferable to use odd-word parity and an odd number of message digits per word; 
this ensures that every word has at least one transition, thereby aiding synchroni:zation 
and preventing apparent loss of signal if the message contains an extended strfog of 
like digits. Second, as a result of impulse noise on switched circuits or short-duration 
fading on radio paths, errors may tend to occur in bursts of several successive d igits; 
since multiple errors wreak havoc on parity checking, the check digits sho11ld be 
interlaced such that the digits checked are widely spaced. An example of interlacing 
is given in Fig. 10.21, where one parity word is indicated by lines connecti11g the 
digits. 

EXERCISE 10.5 Write down all the code words for a parity-check code with k = 3 
and verify that d ~ 2. 
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~ 
mmm c mmm c mmm c mmm c m ··· 

Error-Correcting Block Codes 

FIGURE 10.21 
Interlaced parity checking; m - message 
digit , C = check digit. 

The idea of error-correcting codes is certainly far more appealing and exciting than 
mere error detection, suggesting as it does the one-way error less transmission 
hypothesized by Shannon. And there are numerous applications, notably one-way 
links, for which error correction is a necessity. It also turns out that encodjng at the 
transmitter is not very different for detection or correction ; the receiving decoder is the 
problem in error-correcting systems. Consequently, when transmission equipment is 
constrained, e.g., satellites, it may prove more practical to correct errors at the 
receiver than to provide for retransmission facilities, even though a two-way path is 
avrulable. 

Parity-check coding is readily extended to error correction by observing that 
correction requires the detection of an error and its locatio11 in the word. Thus, if 
two checks are made on the same word but in two different patterns, errors result 
in characteristic symptoms of invalid parity. 

Most error-correcting block codes have n-digit words in which the first k digits 
are message digits and the remaining q = n - k are parity check digits. Such a code 
is called an (n ,k) systematic parity-check code, and the ilh digit of a code word is 

{
m, x, = c,_. i = 1, 2, ... , k 

i =k+ I , . .. , II 
(12) 

For analytic converuence, a typical code word is represented by an n x I matrix 
(or column vector) x. For instance, a (7,4) code word would be 

x = [m1 m 2 m 3 m4 c1 c2 c,Y 

which has been written as the transpose of a I x II matrix to save space. 
Given the message djgits for a particular word, the check digits are chosen such 

that 

Hx = 0 (13) 

where the parity-check matrix H is a rectangular q x n matrix of the form 

k q ____..__ _ __.____ 

[

hll h1 2 h1• 

H = h r1 h22 h,. 

h,1 h,1 "·· 

1 o o ol l 010 . .. f q 

0 0 0 ... 1 

(14) 
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Note that the right-hand portion of H is a q x q urut matrix; hence, combirung 
Eqs. (12) and (14), each row of Eq. (13) is a parity-check equation involving only one 
check djgit, i.e., 

h1 1m 1 EBhi2 m 1 Ef! •• • EBh1.m.ffici = 0 i= 1, 2, ... , q 

The components //11 , h12 , etc., of Hare binary digits, but we have not yet specified 
them since they determfoe the error-correction properties of the code, about which we 
need more information. 

Suppose a word x is transmitted and, owing to errors, results in the received 
word 

Y = X ffi e 

which stands for the digit-by-digit sum 

y ,= x ,EBe, i= l,2, .. . ,11 

with e being the error pattern, i.e., 

As an illustration, if 

e, = {~ Y 1 'F-X; 

y, = x , 

x = [O 1 0 0 W 
and 

y = [O 1 1 0 Of 

then 

e = [O O 1 O 1]7 

indicating errors in the third and fifth digits. 

(15a) 

(15b) 

If we could determine e at the receiver, we could correct all errors; but finding 
e from y requires knowing x, the transmitted word! We can, however, calculate a 
q-digit syndrome 

s =Hy (16a) 

which does provide some useful information. Specifically, from Eqs. (13) and (15), 

s = Hx EB He =He (16b) 

so s = 0 when e = 0, i.e., no errors. Furthermore, if y has just one error, say in the 
jth message digit, 

s = [hi/ h11 . . . h. 117 jS. k (1 7) 
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and this is identical to the j tb column of the parity-check matrix. Therefore, the 
syndrome unambiguously indicates the no-error condition or the position of a single 
error providing all columns oJH are different and nonzero; and we then have a single­
error-correcting code. 

When used in this mode, an (n,k) code has P •,word ~ P.(2) and 

k 2 
P. •;, ~ -2P.(2) ~ k(n - l)E (18) , n 

Multiple errors cause complications, however, since we may miss the actual errors 
and wrongly "correct" another message digit, making matters worse. Consequently, 
unless Eis so small that multiple errors are very rare, a more powerful code is desirable. 

Unfortunately, devising an appropriate syndrome and parity-check matrix for 
multiple-error correction is a far more complicated task - so much so that the first 
double-error-correcting codes were created by inspired trial-and-error work rather 
than designed by a specific method. Slepian (1956) finally put coding theory on a 
solid mathematical foundation when he discovered its relationship to concepts of 
modem algebra. Soon thereafter, using the theory of Galois fields, t Bose, Chaudhuri, 
and Hocquenghem developed a class of multiple-error-correcting codes (now named 
BCH codes) that are efficient and have relatively simple hardware requirements for 
encoding and decoding. Needless to say, such codes are beyond the intended scope of 
this text. 

EXERCISE I 0.6 Verify that a triple-repetition code is a (3, I ) systematic parity-check 
code with 

H = [1 1 OJ 
1 0 1 

In particular, show that Hx = 0 and find s for each single error position. 

Example 10.5 Hamming Codes 

Before Slepian's discovery and even before the matrix formulation of block codes, 
Hamming ( 1950) devised a rather elegant class of block codes. In our present notation, 
and dealing only with single-error correction, Hamming's strategy is as follows. 
If there are q check digits per word, then the syndrome is a ·q-digit word that can be 
made to spell out in binary form the exact position of a single error, if any. With 
q = 3,for instance, s = 000 means "no error" (as before), s = 001 means "error in the 
first digit," and so forth. 

t Rumor has it that a Lhcorctical mathematician specializing in Galois fields abandoned 
the subject upon hearing or the practical application. 
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Since n + I error indications are required (" no error" or one error in any of the 
n code-word digits), and since there are 2• different syndrome words, the numbers of 
check digits and message digits in a Hamming code are related by 

2' =k+ q+I where k + q =n (19) 

Accordingly, the efficiency factor is 

k I 
8 = - = I - - log2 (n + I) (20) 

n n 

so reasonable efficiency is achieved using long code words. 
The parity-check matrix is easily constructed drawing upon the above stipulation 

for sand the fact thats equals the jth column of H when there is a single error in the 
jth digit. Therefore, reading from left to right, the columns ofH are simply the binary 
versions of the numbers I, 2, ... , n, as illustrated below for a (7,4) Hamming code: 

[
o o o 1 1 1 1] 

H = 0 I 1 0 0 J 1 
1010101 

(21a) 

It then follows by comparison with Eq. (14) that this is not a systematic code; since 
the check-digit positions must correspond to the columns of H having just one I , 
the (7,4) code word has the form 

and the check-digit equations are 

x = [c1 c2 m 1 c3 m2 m 3 m4f (21b) 

c1 = m, EB m2 EB m4 

c2 = m, EB m3 EB m4 

c3 = m2 EB m 3 EB m4 

(21c) 

Observe that each message digit is checked by a t least two check digits, which is 
essential for error correction. //// 

EXERCISE 10.7 Taking the system parameters from Example 10.4, find P r ,blt for 
a (7,4) Hamming code, a nd compare with P ,,uncodcd with 8 = '1- Ans.: P,,blt ~ 

2 X 10-1, P ,,uncodcd ~ 4 X 10-1. 

Convolutional Codes 

Convolutional codes, also known as sequential or recurrent codes, differ from block 
codes in that the check digits are continuously interleaved in the coded bit stream 
rather than being grouped into words. The encoding/decoding procedure therefore 
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FIGURE 10.22 
Convolutional encoder using shift register. 

is a continuous process, eliminating the buffering or storage ha rdware required with 
block codes. The theory of convolutional codes is quite involved, but the principle 
can be demonstrated by a simple example. 

F igure 10.22 is a convolutional encoder ; it consists of a five-cell shift register, 

through which the message digits move from left to right, plus a modulo-2 adder and 
a switch. The switch alternately picks up the ith message digit x,< .. l = m 1 and the ith 
check digit 

x,<•> = m,_4 EBm, _2 EB m, 

=x,_ .. 1• 1ex,_/'"1EBx,1"'1 (22) 

The message digits are then shifted over one cell and the process is repeated. Hence, 
the transmitted sequence Xi <"'1x 1 (c)x}m1x/•1 ••• has twice the bit rate of the incoming 
data, and ,! = Yz. Such high redundancy is not a necessity, but most convolutional 
codes do have relatively low rate efficiency factors. 

At the decoder we form the ith syndrome digit from the received sequence 
according to the rule 

Sr = Yr-..'"'1 EB Y,-/'"1 EB y/"'1 EB y,<'1 i ;;'!, 5 

where, owing to errors, y,''"1 = x,<•> EB e,<'">, etc. Thus, from Eq. (22) it follows that 

Sr = e,_4
1'"1 EB e1_ 2

1'"1 EB e,''"1 EB e,«> i ;;:: 5 (23a) 

which checks parity in the sense that s1 = 1 if there is an odd number of errors while 
s 1 = 0 otherwise. For the start-up transient, I ;s; i ;s; 4, 

s1 = e/"'> EBe/•l 
S2 = e2 ( m) EB e2 (c) 

S3 = e, (m) EB e3 (m) EB e3 (c) 

s4 = e/m> EB e..'"'1 EB e4 <•1 
(23b) 

F igure 10.23 displays Eq. (23) in graphical form; e.g., the x s in the first column 
indicate that e1 (ml appears in Si , s3 , and s5 • Studying this figure reveals that if there 
are two or three ls in sis3 s 5 , then most likely e/•> = 1, meaning that y/'"1 is erroneous 
and should be corrected ; similarly, one should correcty.<"'> if there arc more l s than 
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FIGURE 10.23 

Os in s1 s4 s6 , and so on. The student can verify that this algorithm, known as thresh­

old decoding, will correct up to four successive errors (check digits included) providing 
that the following eight digits are error-free. 

Threshold decoding is particularly effective for those channels where isolated 
error bursts due to impulse n oise are the major problem. Another decoding algorithm 
for convolutional codes is the probabilistic or sequential method invented by Wozen­
craft. Because the theory of convolutional codes is not as well developed as that of 
block codes, it is difficult to make an accurate assessment of their relative merits. 

10.4 PROBLEMS 

JO.I (Sect. 10.1) Consider a system havingp(t) - sine r{I + ,)1, 0 <, < 1, so the signaling 
rate r is slig~tly less than the synchronous rate r ( I + <). The data is a sequence of 
2M + I alternating Is and Os, i.e., A, = (- 1)'A, k = 0, ± I, ± 2, ... , ± M. Show that 
the [SI term in Eq. (3) at m=O is [2At/(I + •)] I:. , sine kt "" 2M,A if M• < 1. 

10.2 (Sect. 10.J) A binary system suffers from ISi such that, in absence of noise, the values 
of y(r . ) and their probabilities are as tabulated below when a 1 is sent; the table also 
applies when a O is sent, except that A is replaced by - A. 

y(1.): A - ac 
P[y(1.)]: !1 

A 
~ 

A + ac 

!1 

(a) Assuming gaussian noise, obtain an expression for P, in terms of A, ac, and u. 
(b) Evaluate P, for A/o = 4.0 when ac/A = 0.05 and 0.25. Compare with P, when 

oc = O. 
10.3 (Sect. 10.J) A polar binary signal is sent via two different ideal channels, denoted 

a and b, to the same destination where the signals are combined as indicated in Fig. 
PIO.I. This arrangement is called a diversily system. Channel a has an amplifier with 

II 
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tAc +nc 

FIGURE PIO.I. 

adjustable voltage gain K, and n. and n. are independent gaussian variates with 

n.2 = u,1 , n,.2 = a.2
• 

(a) Find the value of K that maximizes A,/u, and thereby minimizes P,. Ans.: 
Kap1 :s A.a,,2/ A,,a.2

• 

(b) Taking K = K • • ,, A./u, = 3.0, and A Ju.= a.(A,/a,), plot P, for the diversi ty 
system and for channel a alone as a function of a., 0 S: a. S: 2. 

10.4 (Sect. 10.1) Let ±aIT[(t - -r/2)/-r] plus white noise n(t) be the input to an ideal 
integrate-and-dump filter. Show that the output at t = .,. has (A/0)2 = 2E,JTJ, so the 
performance docs equal that of matched filtering. (Hilll: Use 0 2 

- E{[f; n(t) d1]2
} and 

recall that E[n(t,)n(t,)J = - R.(t, - 1,) = (TJ/2) l>(t , - 12).) 
10.5 (Sect. JO. I) Consider a polar binary system in the form of Fig. JO.I with a, =±a, 

HT(f) = I , G(f) - TJ/2, and H .(f) = N(f)H!(f), where Ps(f) = P[ps(.1)], so the 
receiving filter is matched to t he received pulse shape. Because this arrangement docs 
not shape the output pulse p(_t) for ISi considerations, it is used only when ps(t ) is 
timelimited (but not necessarily rectangular) with duration much less than 1/r. 
(a) By considering the transmission of one isolated pulse, show that P(f) is real so 

A = ap(O) = af:~P(f) di, and heoce 

(
~)' = [f:~IPs(f)Hc(f)l 'df] (2ST) 
a r:~IPll)l'df 'I' 

where ST = rET and ET is the transmitted-pulse energy. 
(b) Prove that this is equivalent to Eq. (14). 

10.6 (Sect. JO.I) Use Eqs. (15a) and (16a) to find and sketch P(f) and p(_t) for: 

(a) P1(f) = (l/2/J}IlU72/J), fJ = r/4 
(b) P,(f) - (l//J)AU7/J), fJ = r/2 

/0.7 (Sect. JO.I) Carry out all the details leading 10 Eqs. (17b) and (18a) starting from 

Eq. (17a). 
10.8* (Sect .. 10.1) Consider a polar binary system with r = 2 x to•, ps(t) = IT(2rt), IHc(f) I 

= 10- 2 , G(f) - 10- 10(1 + 3 x 10-•!/1)2 , and p(t) per Eq. (18b) so P(f) = (1/r) 

cos• (1rf/2r) IlU72r). 
(a) Find and sketch the amplitude ratio for the optimum terminal filters. 
(b) Calculate the value of Sr needed so that P, = 10-•. Ans.: Sr = 3.49. 

/0.9* (Sect. IO.I) Repeat Prob. 10.8 for a quaternary {i, = 4) system with r = IOO, 
ps(t) = IT(IOrt), !Hc(f)I = 10->/(l + 32 X 10- •j2)112, G(f) = 10-••, and p(t) = 
sine rt. 
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10.I°*(Sect. 10.1) The terminal fillers for a system have been optimized assuming white 
noise and a dislortionless channel. However, it turns out that the channel docs intro­
duce some linear distortion so an equalizer with H,,(f) = K/Hc(f) is added after 
HR(/), 
(a) Obtain an expression for the resulting (A/u)2 in terms of Hc(f) and P(f) at the 

output of the equalizer. 
(b) Taking P(f) as in Prob. 10.8, by what factor must ST be increased to g_et the same 

error probability as if Hc(f) = K. when Hc(f) = K./[I + j(2flr)J and H ,,(f) 
is used? 

JO.I 1 (Sect. JO.I) Find the tap gains cM for a 3-tap zero-forcing equalizer when p(-1/r) = 
0.4, p(O) = 1.0, p(l/r) = 0.2, and p(k/r) - 0 for I k I > I. Also compute p,,(t,), 

- 4 :S: k S: 4. 
10.12 (Sect. JO.I) Repeat Exercise 10.2 with an available bandwidth of JO kHz, choosing 

parameters to minimize the power requirement. 
10.13 (Sect. 10.2) Consider the bandpass pulse shape p(t) = sine Bt cos 2TT/.t, which has 

bandwidth B. 
(a) Show that p(k/2B) = 0 for k"# 0 if lc = MB/2 with M being an odd integer. 

Sketch p(t) - p(t - l /2B) taking M = 3. 
(b) Discuss t he implications of this for digital modulation, including the advantages 

and disadvantages. 
10.14 (Sect. 10.2) Integrate Eq. (6) over OS: R s:co to get 

P•(,f,) - A, cos ,f, e-<A.t2,;.2.,12N[1 - Q(A, cos"')] + ~ e-Ak2/ 2N 
~ VN 211 

and obtain Eq. (9) by taking A,2/ N > I. (Hint: Start with the change-of-variable 

.\ = (R - A, cos ,f,)/VN and use the fact that Q(- K) = I - Q(K).) 
/0./5 (Sect. 10.2) Consider a trinary ASK system with A, = 0, A, and 2A. Find P. in 

terms of p assuming p> I. (Hint: Justify the approximation P, ~ P,0 /3 and note 
that S, ~ (5r/3)E where Eis the energy in the middle-level pulse.) 

10.16 (Sect. 10.2) Suppose a binary ASK signal is coherently detected, per Fig. 10.16, 
with the threshold at A/2. Find P, and compare with Eqs. {15) and (21). 

10.17 (Sect. 10.2) A binary FSK signal is transmitted over a radio channel having Rayleigh 

fading such that A is a slowly changing Rayleigh-distributed variate with A' = A o 2, 

so p(A)= (2A/A0
2) exp(- A 2/A 0

2), A ~ O. 
(a) Show that the average error probability is E[P.J = 1/[2 + (Ao2/2N)]. 
(b) Discuss the value of a diversity arrangement as in Prob. 10.3 for this application. 

10.18 (Sect. 10.2) Figure PI0.2 is a coherent detection system for quaternary PSK with 
,f,, - O°, 90°, 180°, and 270°. Ignoring noise, construct a table similar lo Table 10. l 
giving the values of v. and v. for each value of ,f,, when the phase shifts are Y'• = 45° 
and Y'• - - 45°. Repeat for if,A = o• and Y'• - - 90°. Discuss these two alternatives, 
giving special consideration to t•1e case where each value of cf,, represents two binary 
digits. 

I 
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' A 

KR x,(t ) +n(I) 

"• 
FIGURE PI0.2. 

J0./9*(Sect. 10.2) Referring to the system in Prob. 10.18 with 'PA = 45° and 'P• = - 45°, write 
the noise n(t) in the form of Eq. (la) with 8 = tp• and obtain vA and va when noise is 

present. Show that P(no error) = P(11, ';;! -A/Y2 and n, ';;!-A/V2) and from this 

derive P. = I - [l - Q(Vp)]2, p = A 2 /2N. 

J0.2°*(Se.ct. l 0.2) Differential encoding is to be used on a baseband polar binary system 
to protect against possible polarity inversions in transmission. Thus, if the kth 
message digit is a 1, then A. = A. _,; if the kth digit is a 0, then A. =-A, _1 • The 
possible values of A. are ± A. Assuming gaussian noise, show that P, = 2[Q(A/a) ­
Q'(A/a)] if the polarity of A, + n. is determined using a zero-threshold A/D and 
then compared with the previously determined polarity of A,_1 + "•-•· (Hint: An 
error occurs if there is one and only one polarity error in each pair.) 

10.2/*(Sect. 10.2) As an alternative to the detection scheme in Prob. 10.20, suppose the 
receiver has the form of Fig. PI0.3. Show that the A/D must have two threshold 

levels - at ± A-and hence P,= 'l,i'Q(A/V2 a). Is this scheme better than the 
other? 

FIGURE PI0.3. 

J0.22*(Sect. 10.2) Digital data with µ. = 8 modulates both the amplitude and phase of a 
carrier, giving KR x.(t) = A, cos (w, t + ,f,.) where At = A and 2A and ,f,. = 0°, 90°, 
1 so•, and 210°. 
(a) Draw a block diagram of the receiver using a coherent local oscillator and 

integrate-and-dump filters. (Hint: See Prob. 10.18.) 
(b) Analyze the performance of this system in the presence of noise. 

10.4 PROBLEMS 421 

10.23 (Sect. 10.3) A certain code with n = 7 and k = 3 is simultaneously sing)e-error­
corrteting and double-error-detecting. Assuming • < I, calculate the following 
probabilities: a word has a corrected error; a word has detected but . uncorrected 
errors; P, . .,.,d; P •. ,11. 

10.24 (Sect. 10.3) An ideal binary baseband system has r = 10,000 and a = 0.2. It is desired 
to send data at a usable rate of 7,000 bits/s with parity-check coding for error detection 
such that P •• :5: 0.08. Find appropriate values for k and A, and calculate P ...... 
Ans.: k = 3, A ';;! 0.41, P •.• 11 ;5;0.0036. 

10.25 (Sect. 10.3) Consider a system combining parity-check error detection and decision 
feedback so that when a word is received with a detected error, the receiver telJs the 
transmitter to repeat that word. If • < I, the probability of more than one xepetition 
is negligible. Including the effects of retransmission, find P •. ... and the ratio of total 
digits transmitted per message digit in terms of k and ,. 

10.26* (Sect. 10.3) An analog method of error detection, known as null-zone detection, 
uses a no-decision zone centered at each threshold level such that if the signal plus 
noise falls in this zone, it is deemed a dete.cted but uncorrected error. 
(a) Obtain express ions for P., and P, per bit for a polar binary baseband system 

with null-zone boundaries at ± «A. 
(b) Compare null-zone detection with error detection by parity-check coding when 

both systems have the same message bit rate. 
10.27 (Sect. 10.3) Figure PI0.4 illustrates the square-array parity-check code wherein 

k = k0
2 message digits are arranged in a square whose rows and columns are checked 

by 2Vk check digits. A transmission error in one message digit causes a row and 
column parity failure with the error at the intersection point, so the code is single-error 
corre.cting and double-error detecting. 

' m, m, m, c, 

l m, ms m• c, 
-i 

m, m, m, c, 
_J 

C4 Cs 

L _L ...L 
C6 

J 
FIGURE PJQ.4. 

(a) Obtain expressions for d and P ..... in terms of ko. 
(b) Discuss what happens when there is one error in a check digit and when there 

are two or more errors. 
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10.28 (Sect. 10.3) Construct an H matrix for a single-error-correcting (6,3) systematic 
parity-check code. Write out the parity-check equations, the allowed code words, 
and the single-error syndromes. What happens when there are double errors? 

10.29 (Sect. 10.3) The Hamming code in Example I0.5 provides error indications for the 
check digits as well as the message digits, even though correcting erroneous check 
digits is unnecessary. However, use Eq. (14) and the conditioos on H to prove that 
any single-error-correcting (n,k} parity-check code must have 2• ~ k + q + l , so 
the check-digit syndromes come automatically, whether or not they are used. 

10.30 (Sect. 10.3) A (7,4) Hamming code is being considered for binary data transmission 
via FSK. Find the numerical condition on p such that the coding yields a lower error 
probability than signaling-rate reduction. 

10.31 (Sect. 10.3) Figure Pl0.5 is the shift register for a Hagelbarger code, one of the first 
convolutional codes. The switch alternately picks up message digits and check digits, 
so 4 = ~- Neglecting the start-up transient, find the parity-check linkages and verify 
that six successive errors can be detected if the 19 previous digits are correct. 

~ Encoded-
message Message 

di&its 

FIGURE PI0.5 

APPENDIX A 

SIGNAL SPACE AND COMMUNICATION 

By describing signals as vectors in a multidimensional space, the fami liar relations and insights 
of geometry can be applied to numerous problems of signal analysis and communication 
system design. Some of the results have been drawn upon in the body of this text, particularly 
Schwarz's inequality and the scalar product concept. Here we derive those results and survey 
additional applications. The presentation is compact and informal, with a minimum of 
special notation. t 

A.I VECTOR SPACE THEORY 

A vector space (or linear space) !? is a set of elements called vectors having the property 
that they may always be combined linearly. Thus, for any vectors v and w in !? and any 
scalars ex a nd fJ there is another vector 

z = cxo+ {Jw (I) 

which is also in!/. In other words, the set of all clements in !? is closed 1111der linear combina­
tion. Similarly, if !J' is a subset of elements of!? and is also closed under linear combination, 
then we say that fJ' is a subspace of!?. 

t See Frederick a nd Carlson (1971, chaps. Sand 12) or Wozcncrafi and Jacobs (1965. 
chaps. 4 and 5) for more delails. 
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