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On an Infinite Series of [4n, 2 n ] Binary Codes 
LkON ti. H. E. DRIESSEN, MEMBER,  IEEE 

Abstract-This correspondence deals with an infinite series of binary, 
reversible [4n, 2n, 41, n 1 2, unequal error protection codes, which are 
majority logic de&able. The weight emtmerators and automorphism groups 
are determined completely. For n .even the codes are ,self dual. By pasting 
together copies of a [4n, 2n, 41 code, binary codes with parameters 
[8n,2n,8] for n L 2, [8n,2n,l2] for n 24, and [12n,2n,16] and 
[16n, 2n, 241 for n > 3 are obtained. 

I. INTRODUCTION 

The decoder with the best error correction performance for an 
[n, k, d] binary code to be used on a binary symmetric channel, 
is a complete nearest neighbor decoder [l, p. 111. That is, any 
received word is mapped into a codeword that is nearest in 
Hamming distance. In many applications not all message bits are 
equally important and errors in more important bits are more 
serious than errors in less important bits. The question arises to 
what extent error patterns of weight greater than 1 (d - 1)/2] 
can be decoded such that the most important message bits are 
correctly retrieved. This is the same as asking for an [n, k, d] 
binary unequal error protection (UEP) code which is optimal [2], 
[31. 

In an experimental digital recorder we have implemented an 
optimal [12,6,4] binary UEP code [4], which guarantees the two 
most important message bits to be protected against two bit 
errors in the corresponding codeword. This code is a member of 
an infinite class of [4n, 2 n, 41 binary UEP codes which will be 
defined and studied in the next section. The [12,6,4] UEP code is 
used as an example throughout the correspondence. 

Manuscript received August 13, 1982; revised March 29, 1983. 
The author is with Philips Research Laboratories, P.O. Box 80.000, 5600 JA 

Eindhoven, The Netherlands. 

In Section III constructions of [4nr, 2 n] binary codes are given 
for r = 1,2, 3, and 4. These constructions are based on a detailed 
knowledge of the weight structure of the codes from Section II. 
Several codes constructed in this correspondence are optimal in 
the sense that they have the largest minimum distance known for 
a binary code with the same length and dimension [5]. 

The notation we use and basic concepts will be explained 
where necessary. For additional information on coding theory or 
group theory the reader is referred to [l] and [6], respectively. 

II. AN INFINITE SERIES OF [4n, 2 n, 41 BINARY CODES 

In this section we define and study an infinite class of 
[4n, 2n, 41, n 2 2, binary codes. As these codes may be consid- 
ered to be generalizations of the code F16 of [7], they are denoted 
by 4;. 

Definition: Let Z, be the n by n identity matrix and let J, be the 
n-by-n all-one matrix. The code I;k, is defined by the generator 
matrix 

Gdn:= 

Let gci) be the ith row of G4,, and let the codewords b(l), 
1 I i I 2n, be defined by 

b(l) = g(l) md b(2) = g(“+‘), 

p-u = g(‘) + g(r), 21iIn, 
p) = g(n+l) + g(“+‘) 21iIn. 

The code generated by { b(‘): 3 I i I 2 n } is called Ban. 
Let V, be ‘the n-dimensional vector space over GF(2); On 

denotes the all-zero word in V, and 1, denotes the all-one word 
in y?. For A c V, and x E V, we denote by x + A the coset of A 
obtained by (componentwise modulo 2) addition of x to each 
element of A. 

The cosets B4;, b(l) + B4,,, bc2) + B4,,, and b(l) + bc2) + Bdn are 
denoted by Bdw B” B”’ and B” respectively. Clearly Fb,, = 
BdT U Biz U B>j u”%iA!%e shall 4n”dw derive the weight enumer- 
ators of these cosets of B4,,. 

The (Hamming) weight of x E V, is denoted by wt (x) and the 
(Hamming) weight enumerator of A c V, is denoted by W(A ; 
z), where z is an indeterminate. 

Lemma: A codeword c E F4,, can be expressed as c = 
(x3 Y>G4,,,, where x E Z$ and y E V,. For 0 I i, j I 1 it holds 
that c E BiJ, if and only if wt(x) = imod and wt( y) =jmod2. 

The lemma immediately follows from the observation that 

c = (~9 Y)G,, 

=i x,g(i) + L yjg(n+~) 

i=l j=l 

i=2 i=l 

+ 2 yj(g(n+j) + g(n+l)) + 

j=2 
pi"+"j$lYj~ 

Theorem 1: The weight enumerators of the cosets of B4* in Fd,, 
are 

WB4:; z) 

W(B,‘,o; z) = W(Bj;; z) = 2”-’ y’ ( 2i 1 J2)1+2+41, 

WB,‘:; z) 
= 22n-2z2n 

0018-9448/84/0300-0392$01.00 01984 IEEE 
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Proof: From the Lemma we deduce that 

c E B4y if and only if wt (x) and wt ( y) are even, in which 
case c = (x, x, y, y) and wt(c) = 2(wt(x) + wt( y)), 
c E Biz if and only if wt (x) is odd and wt ( y) is even, in 
which case c = (x,x, y, y + 1,) and wt(c) = n + 2wt(x), 
c E Bji if and only if wt (x) is even and wt ( y) is odd, in 
whichcasec=(x+ ln,x,y,y)andwt(c)= n+ 2wt(y), 
c E BlA if and only if wt (x) and wt ( y) are odd, in which case 
c = (x + l,, x, y, y + 1,) and wt(c) = 2n. 

The expressions for the weight enumerators are now easily found. 
Q.E.D. 

From Theorem 1 we know that Fan, n 2 2, has minimum 
distance 4. There is a generalization of the concept of minimum 
distance, called separation vector, the value of which strongly 
depends on the encoding procedure [2], [3]. Let h(l), h(‘); .,hck) 
be k basis codewords according to which the encoding takes 
place. That is, if tn E V,, the corresponding codeword is c(m) = 
m,h(‘) + m,ld2) + . . . + m,hck). The separation vector s = 
(Sl, S2,‘. . ,s,) is defined bysi:= min{wt(c(m)): m E.V~, m, = 
l} for 1 I i 5 k. A separation vector s guarantees the correct 
retrieval of message bit mi if the number of errors in the code 
word c(m) is at most [(sI - 1)/2], [2], [3]. If not all s, are equal 
to the minimum distance, the code is said to have the unequal 
error protection property. For n 2 3, the code F4, has the UEP 
property. We state this in Theorem 2. 

Theorem 2: The code F4,,, n 2 2, has the following properties: 
a) Fdn is reversible. 
b) F4, is equivalent to its dual code. 
c) Fan is self dual if and only if n is even. 
d) F4, is equivalent to a double circulant code. 
e) If the message word m  E V,, is encoded as c(m) = mlbC1) 

+ m2bC2) + . . . + m2nb(2n), then F4,, n 2 3, has the UEP 
property with separation vector s, si = s2 = n + 2, and 
si = 4 for 3 I i 5 2n. 

f) F4, is majority logic decodable. 

Proof: 
a) The reversibility follows immediately from the generator 

matrix G+ 
b) The matrix obtained from G4,, by interchanging the columns 

i and n + i for 1 _< i 5 n and 2n + 1 I i 4 3n is a parity check 
matrix for F4,. 

c) Ed, is self dual if and only if G4,,GTn = Ozn, thus if and only 
if n is even. 

d) The matrix formed by taking the columns of G,, in the 
order n + i, i,2n + i,3n + i for i = 1,2;..,n, is the generator 
matrix of a quasi-cyclic code with shift 2. 

e) If m E V,,, then c(m) E B4;lm*. 

The separation vector is s = (si, s2;. .,szn): 

Sl = min {wt(c): c E Bi’f, U Biz} = n + 2, 

s2 = min{wt(c):cEB~~UB~~}=n+2, and 

si = wt(b(‘)) = 4 = min {wt(c): c E Fan} for 3 I i 5 2n. 

For n 2 3 this proves the UEP property of Ed,. 

f) For m E V,, we define x(m) and y(m) as 

x(m):= i 
i 

m2i-1, m3, m5,...,m2n-1 
i=l i 

and 

y(m):= i m2,, m4, m6,..‘,m2n . 
( i=l i 

Then we have 

c(m) = (x(m), u(m>)G, 

= (x(m) + m21n, x(m), y(m), v(m) + mll,,). 

Let 2 be the received word. We have to find a number of 
checks on each message bit m, such that with majority logic 
decoding the error protection as specified by e) is achieved. For 
j = 1,2,3,4 we definepi:= C:=l?(j-l)n+i. Consider m, first. 

If n is even, then it is easy to find n + 2 orthogonal checks [3] 
on ml, namely pi, p2, and ?2n+r + E3n+i for 1 I i < n. If n is 
odd we again have the n orthogonal checks c2,,+ i + ?3n+i for 
1 I i I n but the other checks, although orthogonal to the previ- 
ous ones, will not be mutually orthogonal. Note that p2, 2, + 
^ 
c,+l + ~1, and 22 + G+2 + p1 are three checks on m, which 
only involve the bits ?,; . ., 2,“. If these checks are mutually 
equal, which happens to be so if there are no errors among L 
Cl,‘. ‘,%I, then p2 is considered as a double check on ml. If the 
three checks are not mutually equal, which happens to be so if 
exactly one error occurs among ?,, . . . , ?,, , then p2 and p2 + 1 
are considered as checks on ml (or no check is considered). 

It is easily seen that a majority vote on the n + 2 checks on ml, 
found as explained above, guarantees m, to be correctly retrieved 
if at most 1 (n + 1)/2] errors occur in 2. In a similar way n + 2 
checks on m2 are found. 

Once we have m, and m 2, four orthogonal checks on m 2i _ 1 for 
2 5 i 5 n are ?i + m2, ?n+i, p1 + & + m, + (m2 if n is even), 
mdP2 + cn+i + m,. In a similar way four orthogonal checks on 
m2i for 2 I i I n are found. Q.E.D. 

Example: Let n = 3. The code F12 is generated by 
f)“’ = p = (LO, &LO, o,o, 090, 1, 1,1) 
@ ’ = &4) = (l,l,l,o,o,o,l,o,o,l,o,o) 

b(3) = g(l) + g(2) = (1, LO, 1, l,O, o,o, o,o, 0,O) \ 

b(4) = g(4) + g(5) = (0, o,o,o, o,o, l,l, O,l, 1,O) 

b(5) = g(l) + g(3) = (LO, 1, l,O, LO, o,o, O,O,O) 
generate B,, 

b(6) = g(4) + $6) = (O,O,O, o,o, O,l, O,l, l,O, 1) j 

The weight enumerators of the cosets of B,, in F12 are 

W4”; z) =l + 6z4 + 9zs, 

W( B;;; z) = W(B;;; z) = 12z5 + 4z9, 

WB::; z) = 16~~. 
F12 is equivalent to the double circulant code with the cir- 

culants (100000) and (110101). 
F12 is a [12,6,4] code with separation vector (5,5,4,4,4 4). This 

is optimal [3], [4]. The check sets on m,, m2;. .,m6 are 
^ ^ 

4 = Cl + ClO, 

ml = E, + i?,,, 

m, = 2, f ?,,, 

m2 = C, + ?,, 
m2 = C, + C,, 
m2 = ?, + Z,, 

elsep, + 1. 

m2 = t, + 2, + t, = p3, 

m2 = p3 if 2, + 2s + 2, = E,, + ?,, + t, = c -10 ^ + cl2 + Es 
elsep, + 1. 

m3=2,+m2, m4 = t,, 
m3 = Z,, m4 = C,, + m,, 
m3 = ?, + 2, -I- m,, m4 = ?, •t 2, + m2, 
m3 = 2, i- ?, + m,. m4 = L?,, •t ?,, •t m2, 

m5 = i?, + m2, m6 = t,, 
m5 = Z,, m6 = Z,, + m,, 
m5 = t, + e2 + ml, m6 = ?, + ?, •t m2, 

^ I m5 = c4 •t c5 + m,. e m6 = cl0 + i?,, + m2. 

IPR2018-1557 
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The code F, is an [8,4,4] code with weight enumerator W(F8; 
Z) = 1 + 1424 + z8 and hence F8 is the nearly perfect and self 
dual [8,4,4] extended Hamming code or, equivalently, the first- 
order Reed-Muller code of length 8 [l, p. 281. Consequently the 
automorphism group of 10, is the general affine group GA(3) [l, 
p. 3761 of order 1344. The automorphism group of F4,, n 2 3, is 
given by Theorem 3. 

If ?r is a permutation of { 1,2,. . , n }, then r~ induces a mapping 
of V, onto V, as follows: the word x E V, is mapped onto 
g(x) = (x,-l(l), x,-1(2),‘. .,x,-y,)). 

The automorphism group of A c V, is denoted by Aut (A). 

Theorem 3: Let the permutations 7, hi, and p,, 1 I i I n, of 
{1,2;. ., 4n) be given by 

7 = (1,4n)(2,4n - 1)(3,4n - 2) ... (2n,2n + l), 

A, = (i, n + i), 

pi = (2n + i,3n + i). 

Let T,, L,, &,, R,, and R,, be the groups generated by r, {xi: 
1 < i I n}, { hihi: 1 I i < j I n}, {pi: 1 5 i 4,n}, and { p,p,: 
1 I i < j I n }, respectively. Let S,’ be the symmetric group on n 
points acting on {1,2;..,n} and {n + 1, n + 2;..,n + n} 
simultaneously. Let Sl be the symmetric group on n points acting 
on (2n + 1,2n + 2;.., 2n + n} and (3n + 1,3n + 2;..,3n + 
n} simultaneously. The automorphism groups of B4n and F4,,, 
n 2 3, respectively, are 

Aut (B,,) = T, x L, x R, X S; X S; 

Aut (F4,) = T, X z, x &, X S, X S,r. 

Both groups are l-transitive groups acting on 4n points and have 
order 22”+‘(n!)2 and 22”-‘(n!)2, respectively. 

Proof: A permutation of the coordinate set acting on words 
is weight-preserving. From theorem 1 it follows that for n 2 3 
any codeword of F4, having weight 4 is in B4,,. Since B4n is 
generated by codewords of weight 4, we have that for n 2 3 
Aut ( F4n) is a subgroup of Aut ( B4n). 

From the lemma we know that 
B4n= {(x,x,y,y):x~ V,,wt(x)iseven; 

y E &,wt(y)iseven}. 
Due to the special form of the elements of B4n we define the pairs 
of coordinates {i, n + i}, 1 5 i I n, to be left pairs and the 
pairs (2n + i,3n + i}, 1 I i I n, to be right pairs. 

A word is equivalently represented by the set of its nonzero 
coordinates. So c E B4n if and only if c is the union of an even 
number of left pairs and an even number of right pairs. For 
n 2 3, an automorphism of B4n must send pairs into pairs. 
Moreover, if an automorphism of B4n sends a left pair into a left 
pair, then all left pairs are sent into left pairs and all right pairs 
into right pairs; if an automorphism sends a left pair into a right 
pair, then all left pairs are sent into right pairs and vice versa. 
From Theorem 2 a) we know that T is an automorphism of F4n; T 
has order 2 and sends left pairs into right pairs and vice versa. 
Any automorphism of B4n leaving the coordinates 2 n + 1,2 n + 
2;. . ,4n fixed is the product of a permutation leaving every left 
pair fixed and a permutation of the left pairs and hence is an 
element of L,, X SL. Any element of L, X S,’ is an automorphism 
of B4n. Similarly any element of R, x SL is an automorphism of 
B 47l’ 

We have proved that Aut (B4,,) = T, x L, x R, x S! x S,l. 
As we saw above, Aut (F4,) is a subgroup of Aut ( B4,,). An 
automorphism of B4n is an automorphism of F4:4n if and only if b(l) 
and bc2) are sent into codewords of F4,. For 7~ E S,’ we have 
a(bc2)) = bc2) and a(b’“) = g (no)). Hence S! c Aut ( F4,,). Anal- 
ogously SL C Aut (F4n). For r E R, we have v(bc2’) = bc2), but 
.(b’“) = (10 . . . 0,lO ... O,y,y+ l,,)forsomeyE I$,which 
according to the lemma is a codeword of F4,, if and only if wt ( y) 
is even. So x(b”)) E F4, if and only if r E R,,. Analogously for 
VI E L, we have +rr E Aut ( F4”) if and only if r E z,. 

We have proved that Aut (F4,) = T, X &, X 3, X S/, X SL. 
Q.E.D. 

Example: Let n = 3. 

T, = 

L, = 

((1>,(1,12>(2,11)(3,10)(4,9)(5,8)(6,7)). 

((1>,(1,4),(2,5>,(3,6),(1,4)(2,5),(1,4)(3,6), 

(2,5)(3,6>,(1,4>(2,5>(3,6)}. 

((1>,(1,4>(2,5),(1,4>(3,6),(2,5)(3,6)}. 

{(1>,(7,lO>,(8,ll>,(9,12),(7,10)(8,11), 

(7,10)(9,12), (8,11)(9,12), (7,10)(8,11)(9,12)}. 

{(I), (7,10)(8, ll), (7,10)(9,12), (8,11)(9,12)}. 

((1),(1,2>(4,5),(1,3>(4,6),(2,3)(5,6), 

(1,2,3>(4,5,6>,(1,3,2)(4,6,5)}. 

((I), (7, @(lo, 111, (7,9)(10,12), (8,9)(11,12), 

(7,8,9)(10,11,12), (7,9,8)(10,12,11>> . 

L3 = 

R, = 

R, = 

s; = 

s; = 

]Aut(B,,)] = 4608 and ]Aut(Fi,)] = 1152. 

III. COMBINING CODES 

In this section we use the structure of the codes F4,,, defined 
and studied in Section II, to obtain linear codes with other 
parameters. Some of these codes are good in the sense that they 
have the largest minimum distance known [5]. 

Concatenating or “pasting” two words x and y of length n and 
m, respectively, to form a new word 1x1 y], gives a word of length 
n + m: 

lxlyl= (X1,X2,...,X,,Y1,Y2,...,Ym).. 

Let x(l), xc’),. . .,xck) and y(l), yc2);. .,yck’ be k basis code- 
words for an [n,, k, d,] and an [n,, k, d2] code, respectively. A 
pasting of these codes may be the [nl + n2, k, d] code with 
~,(l)l~(l)l . . .,lxWly’k’l 
d,. ’ 

as k basis codewords, where d 2 d, + 

Theorem 4: Let the code Gs,,, n 2 2, of length 8n be generated 
by 

Ib(‘)I + 14,J, i = 1,2, 
Ib(’ I2 3 5 i 5 2n. 

The code G,, is an [8n, 2n, 81 code and for n 2 3 it has the UEP 
property with separation vectors, si = s2 = 4n and s, = 8, 3 < i 
5 2n. 

The weight enumerator of G,, is 

W(G,,; z) = ‘g’ ‘$ ( li)( ;j)z2(4i+4J) + 3 . 22n-2z4n. 

Proof: Obviously G,, has dimension 2 n. Let Ix] y ] be any 
codeword of G,,. If x E B4T, then y = x and, according to 
Theoreml,wt(y)=wt(x)=4rforsomer,O<r<2[n/2].If 
x E B,‘,:, then y = x and wt(x) = 2n. If x E Bit U  BiE, then 
y = x + 14rz and wt ( y) = 4n - wt (x). The separation vector 
and the weight enumerator are now easily found. Q.E.D. 

Theorem 5: Let the code HBn, n 2 2, of length 8n be generated 
by 

lb”’ lb(‘) I7 i = 1,2, 
lb”’ lb”’ + b(‘+l) I 9 3 I i I2ri - 1, 
lb@n)lb(2”) + b(3) + b(4)1, 

ThecodeHs,isan[8n,2n,d]codewhered=2(n+2)ifn=2, 
3 and d = 12 otherwise. For n 2 5, HBn has the UEP property 
with separation vector s, si = s2 = 2(n + 2) and s, = 12 for 
3 5 i 5 2n. 

IPR2018-1557 
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Proof: Obviously Hsn has dimension 2 n. Let Ix] y I be any 
codeword of Hsn. If x E Bii U  Bit, then alsoy E B:A U Biz and 
so, according to Theorem 1, wt (Ix] y]] = 2(n + 2) + 4r for some 
r, O<r<2[(n-1)/21. If XEB~~, then alsoy~B~~ and 
hence wt (x) = wt ( y) = 2n. If x E B4y, then also y E B4T. 
Clearly wt (x) = 0 if and only if wt ( y) = 0. If wt (x) = 4, then 
either x = b(” for some i, 3 I i I 2n or x = b(‘) + b(i+2r) for 
some r and i, 0 < r < n and 3 I i 5 2n - 2r. In both cases 
wt ( y) 2 8. From this we deduce that if wt ( y) = 4, then wt (x) 
2 8. The separation vector is now easily derived. Q.E.D. 

Example: Let n = 3. The code G24 is a [24,6,8] code with 
weight enumerator 1 + 6z8 + 48~‘~ + 9~‘~. The separation vec- 
tor of G,, is (12,12,8,8,8,8). 

The code H24 is a [24,6, lo] code. The weight enumerator, 
determined by inspection, is 

W(ZZ,,; z) = 1 + 182” + 28~‘~ + 12~‘~ + 3~‘~ + 22”. 

The proofs of the following theorems are omitted since they are 
similar to the proofs of Theorem 4 and Theorem 5. 

Theorem 6: Let the code Z12,,, n 2 2, of length 12n be gen- 
erated by 

lb(‘) lb”’ + l,,lb”’ I? i = 1,2, 
lb(‘) lb”’ lb”’ + b(‘+‘) , 3IiI2n-1, 
lb(2n)lb(*n) lb@) + b(3) + b@)l, 

The code Z12n is a [12n,2n, d] code where d = 12 if n = 2 and 
d = 16 otherwise. For n 2 3, Z12n has the UEP property with 
separation vectors, si = s2 = 5n + 2 ,ands, = 16for3 I i I 2n. 

Theorem 7: Let the code J16n, n 2 2, of length 16n be gen- 
erated by 

lb(‘) lb”’ + 14,Jbci) lb(‘) + l,, I, i = 1,2, 
lb”’ lb(‘) lb(‘) + b(‘+‘) lb(‘) + /,(I+‘) 1, 

31,i<2n-1, 
lb@n)/b@) If+) + b(3) + b@)lb%) + $3) + b(4)/. 

The code J16n is a [16n, 2 n, d ] code where d = 16 if n = 2 and 
d = 24 otherwise. For n 2 4, J16n has the UEP property with 
separation vectors, si = s2 = 8n, and si = 24 for 3 I i I 2n. 

Example: Let n = 3. The code Z36 is a [36,6,16] code with 
separation vector (17,17,16,16,16,16), and the code J48 is a 
[48,6,24] code. The weight enumerators of both codes can be 
determined without writing out all codewords, 

w(z36; z) = 1 + 6~‘~ + 242” + 16~” + 6z2’ + 8z21 + 3z24 

and 

W( J48; z) = 1 + 60~~~ + 3~~~. 

Copies of F4h, may be combined in many other ways, yielding 
codes again with other parameters or codes with the same param- 
eters but with another weight enumerator. As an example of this 
latter statement we give the following theorem. 

Theorem 8: Let the code K12n, n 2 2, of length 12n be gen- 
erated by 

lb(‘) lb’” lb”’ + bc2) I, 
lb@) lb(‘) + b(2) /b(2) I3 
lb(3) lb’%  + b(4) lb@) IT 
lb(‘) lb”’ + b(l+l)lb(‘) + b(‘-1) I, 4IiI2n-1, 
lb(2+(2n) lb@“) + b@-l)l. 

The code K12,, is a [12n,2n, d] code where d = 12 if n = 2 and 
d = 16 otherwise. All weights are divisible by 4. For n 2 4, K12n 
has the UEP property with separation vectors, si = s2 = 4n + 4, 
and s, = 16 for 3 I i I 2n. 

Example: Let n = 3. The code K,, is a [36,6,16] code. The 
weight enumerator is determined b inspection (compare with 
Z3& W(K,,; z) = 1 + 38~‘~ + 142 2x + 11~~~. 

SUMMARY 

In this correspondence an infinite class of [4n, 2n, 41, n 2 2, 
binary codes has been studied in some detail. In particular the 
weight enumerators and automorphism groups have been de- 
termined. The detailed knowledge of the weight structure of these 
codes has led to several other infinite series of binary codes. 
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Further Classifications of Codes Meeting the 
Griesmer Bound 
TOR HELLESETH 

Abstract-For an (n, k, d) binary linear code, the Griesmer bound 
says that n > Cf:/ r’ d/2’], where [ x  1 denotes the smallest integer > x. 
We consider codes meeting the Griesmer bound with equality. These codes 
have parameters 

( s(2k - l)- &l),k,&- i2u1+ , 
r=l i=l i 

where k > u1 > > up > 1. We characterize all such codes whenp = 2 
or u,ml - u, > 2 for 2 < i 6 p. 

I. INTRODUCTION 

We let an (n, k, d) code be a binary linear code of length n, 
dimension k, and minimum distance of at least d. We let n (k, d) 
be the smallest integer n such that an (n, k, d) code exists. Many 
efforts have been made to find codes with parameters 
(n(k, d), k, d). For an extensive list of bounds on n(k, d) the 
reader should consult the tables of Helgert and Stinaff [l]. 

A general lower bound on n(k, d), due to Griesmer [2], says 
k-l 

n(k,d)> c  f , 
i=O I 1 

(1.1) 
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