Suiz #2 Solution

One ft^3 is equal to 7.48 gallons

1. (3) List three main components of the hoisting system.

b. Traveling block Did accept some other components!

2. You are drilling a vertical well at a depth of 12,000 ft. The pore pressure at this depth is equal to 0.65 psi/ft. If you are to drill the well with an overbalance of 400 psi at 12,000 ft.

a. (3) What mud weight will you have to use?

Po = 0,65 x 12,000 = 7800 psi Pm = 7800 +400 = 8200 pse Omud = 8200 = 13.14 ppg

3. A drill bit which costs \$20,000 drilled from 7,000 ft to 8,500 ft with and an average rate of penetration (ROP) of 10 ft/hr. The connection time is 5 min per 30 ft connection, the tripping time is 1hr/1000ft and the rig rate is 80,000 \$/day.

 $t_{crip} = (7,000 + 8,500) ft \frac{1.hv}{1000 ft} = 15.5 hvs$ $t_{rot} = \frac{(8,500 - 7,000) ft}{10 ft/hv} = 150 hvs$ Cris = \$80,000 = 3,333 \$/45 $C = \frac{(4,17+15,5+150)(3,333)+20,000}{(8500-7,000)} = 390.4$

PETE 4313 Handout #4

Drilling Bits - Drag Bits

Quiz#3 – Thursday, February 16 (From Quiz#1 and #2 – similar - understand the concepts!)

Homework #4 - Due February 21 Problem #1.24, WOB problem at the end of this handout

Read: ADE, Ch.5 (bits)

Contents

- > The Ideal Bit
- Drag Bits
 - Fishtail Type
 - Natural Diamond
 - Polycrystalline Diamond Compact (PDC)
- Relative Costs of Bits

Rotary Drill Bits

The purpose of Chapter 5 (ADE) is to introduce the student to the:

- >different types of drill bits
- >selection and
- operation of rotary drilling bits.
 - > Read: ADE, Ch.5 (bits)

Bit Types Available

- Drag bits (fixed cutter blades)
 - Fishtail bit
 - Natural diamond bits
 - PDC Bits (Polycrystalline Diamond Compact)
- Rolling cutter bits (rock bits with cones)
 - Mill tooth bits
 - Tungsten carbide bits

Page 5 of 70

Drill Bit Classification

https://www.youtube.com/watch?v=4gbI0wDUj0U (3 Min)

General Tricone and PDC

Commonly Used Bit Sizes For Running Casing

Casing Size	Coupling Size	Common Bit
(OD in.)	(OD in.)	Sizes Used (in.)
4 1/2 5 5 1/2	5.0 5.563	$\begin{matrix} 6, 6 & \frac{1}{8}, 6 & \frac{1}{4} \\ 6 & \frac{1}{2}, 6 & \frac{3}{4} \\ 7, \frac{7}{8}, 9, \frac{3}{8} \end{matrix}$
5 1/2 6 6 5/8	6.050 6.625 7.390	7 ^{7/8} , 8 ^{3/8} 7 ^{7/8} , 8 ^{3/8} , 8 ^{1/2} 8 ^{1/2} , 8 ^{5/8} , 8 ^{3/4}
7 7 5/8	7.656 8.500	8 5/8, 8 3/4, 9 1/2 9 7/8, 10 5/8, 11
8 5/8 9 5/8 10 3/4	9.625 10.625 11.750	$11, 12^{1/4} 12^{1/4}, 14^{3/4} 15$
10 3/4 13 3/8 16	14.375 17	17 1/2 20
20	21	24, 26

The Ideal Bit *

- 1. High drilling rate
- 2. Long life
- 3. Drill full-gauge, straight hole
- 4. Moderate cost
 - * (Low cost per ft drilled)

The Ideal Bit

"The Ideal Bit" will depend on the type of formation to be drilled

- Hardness (soft, medium, hard)
- Abrasiveness
- Cuttings stickiness (bit balling?)
- Other considerations ... e.g. cost

Bit Failure Mechanisms

Shear Failure

- PDC cutters are used to shear the rock with continuous scraping motion
- Shear/goughing failure will also occur when using aggressive roller cone bits due to cone offsets

PDC BIT CONTINUOUS SHEARING

Compressive Failure

- Rollercones are mainly designed to crush the rock
- Compressive failure might occur when using a dull PDC

ROLLER CONE BIT CYCLIC COMPRESSION

Drag Bits

Drag bits drill by physically "plowing" or "machining" cuttings from the bottom of the hole.

Drag Bits

Cutter may be made from:

- Steel
- Tungsten carbide
- Natural diamonds
- Polycrystalline diamonds (PDC)

Drag bits have no moving parts, so it is less likely that junk will be left in the hole!

Fishtail type drag bit

Most Common Drag Bits

Natural Diamond Bits

PDC Bits

Drag Bits

Fixed-Cutter Bit Types

Natural Diamond Bits

Ulterra Ex. 1015 Page 16 of 70

Top view of diamond bit

Diamond Bit - Compressive and Shear Cutting Mechanism

 Shear/Compressive Failure

Diamond Bit
CONTINUOUS
CRUSHING & ABRASION

Natural diamond

- Natural Diamonds
 - Size
 - Shape
 - Quality

Today we use most industrial "man made" diamonds

Natural Diamonds

The size and spacing of diamonds on a bit determine its use.

NOTE: One carat = 200 mg — precious stones

Natural Diamonds

- ➤ 1-3 carats widely spaced diamonds are used for drilling **soft** formations such as soft sand and shale
- ➤ 1/4 1 carat diamonds are used for drilling sand, shale and limestone formations of varying (intermediate) hardness.
- ➤ 1/8 1/4 carat diamonds, closely spaced, are used in hard and abrasive formations.

Natural Diamond bit

junk slot cuttings radial flow

high Δp across face!!

Soft Formation Diamond bit

- Larger diamonds
- Fewer diamonds
- Pointed nose

SOFT-FORMATION DIAMOND BIT

Hard Formation Diamond bit

- Smaller diamonds
- More diamonds
- Flatter nose

Diamond Bit Matrix Body

Impregnated Diamond Bits

Impregnated bits are a PDC bit type in which diamond cutting elements are fully imbedded within a PDC bit body

matrix

Impregnated Diamond Blades

When to Consider Using a Natural Diamond Bit?

- 1. Penetration rate of rock bit < 10 ft/hr.
- 2. Hole diameter < 6 inches.
- 3. When it is important to keep the bit and pipe in the hole.
- 4. When bad weather precludes making trips.
- 5. When starting a side-tracked hole.
- 6. When coring.
- * 7. When a lower cost/ft would result

Natural Diamond Bits Have Pump-Off

- Natural Diamond bit have a large pressure drop under the bit.
- Fluid flows from the center "crowfoot" to the outside of the bit "gage".
- Because Natural Diamond bits have a small gap between the rock and the bit body.
- Bit acts like a piston

Natural Diamond Bit Have Pump-Off

- The pressure drop under the bit generates a force opposite the WOB
- Actual WOB is equal to

$$F_{pumpoff} = (P_{on-bottom} - P_{off-bottom}) * A_{pump-off}$$

- Therefore you need to know the pump off area of a bit
- Obtained from pump-off tests

Pump-Off Test Procedure

Slowly lower bit to bottom while rotating and circulating

A_{po}=dWOB/deltaPP

WOBactual=WOBapplied-Apo*deltaPP

Pump-Off Modeling

(example Flowrate=869 gpm, Mud Weight = 16 ppg)

```
Pump - Off Area
A_{ro} = \frac{deltaWOB(lbs)}{deltaPP(psi)} \Rightarrow
A_{ro} = \frac{5000}{(1600 - 1100)} = 10 \text{ in}^2
```

WOBactual=WOBapplied-Apo*deltaPP

If flowrate is to be changed you need to know apparent nozzle area

```
Apparent Nozzle Area (using the nozzle equation in field units) A_{App} = sqrt(\frac{(Flowrate(GPM))*(Flowrate(GPM))*Density(ppg)}{12031*deltaPP(psi)}) A_{App} = sqrt(\frac{(869)*(869)*(16)}{(12031*500)}) = 2.0 in^2
```

Now you can change the flowrate in the nozzle equation and calculate the new deltaPP without having to run another pump off test!

Pump-Off Modeling Usage

- ► If you are given the A_{app} and the A_{po} you can calculate the actual WOB if you know the mud weight and flowrate!
- First you calculate the deltaPP from the nozzle equation.
- The you multiply with the deltaPP with the Apo.
- Then you subtract the pump off force from the WOB_{applied}.

WOBactual=WOBapplied-Apo*deltaPP

PDC bits

Courtesy Smith Bits

PDC Bits Applications

- PDC bits are used primarily in deep and/or expensive wells
- Soft-medium hard formations
- Advances in metallurgy, hydraulics and cutter geometry
 - Have increased cost of individual bits
 - Have allowed PDC bits to drill longer and more effectively
 - Allowed bits to withstand harder formations
- PDC bits advantageous for high rotational speed drilling and in deviated hole section drillings
- Most effective: weak, brittle formations (sands, silty claystone, siliceous shales)
- Least effective: cemented abrasive sandstone, granites

PDC Cutters

https://www.youtube.com/watch?v=pojak1sKF3s (1 Min)

Polished Cutters - Staysharp

PDC IADC code

PDC IADC code

	IADC classification : PDC bits								
A		В		C		_ D			
Bit body		Formation type		Cutting structure		Bit profile.			
"M"	Matrix	1	Very soft	2	PDC, 19mm	1	Short fishtail		
"S"	Steel			3	PDC, 13mm	2	Short profile		
"D"	Diamond			4	PDC, 8mm	3	Medium profile		
		2	Soft	2	PDC, 19mm	4	Long profile		
Example				3	PDC, 13mm				
M M	fatrix			4	PDC, 8mm				
4 M	1 edium	3	Soft to medium	2	PDC, 19mm				
3 P	DC 13mm			3	PDC, 13mm				
4 L	ong profile			4	PDC, 8mm				
		4	Medium	2	PDC, 19mm				
				3	PDC, 13mm				
				4	PDC, 8mm				
		5	no code						
		6	Medium hard	1	Natural diamond				
				2	TSP				
				3	Combination				
		7	Hard	1	Natural diamond				
				2	TSP				
				3	Combination				
		8	Extremely hard	1	Natural diamond				
		1		4	Impregnated diamond				

PDC IADC Code "Profile"

SHORT

PDC Manufacturing

PDC pressure cell.

Carbon graphite and cobalt are stacked and pressed to 2 million psi and heated to 2700° F.

Diamond grit
Tungsten carbide substrate

Source: Bellin et al., 2010 World oil, October 2010 issue

PDC Steel Body (Milled)

Source: www.NOV.com

PDC Matrix Body

PDC Matrix Body

Bi-Center Bit

Courtesy Smith Bits

Core Bit

PDC + natural diamond

Relative Costs of Bits

- Diamond bits typically cost several times as much as tricone bits with tungsten carbide inserts (same bit diam.)
- A TCl bit may cost several times as much as a milled tooth bit.

PDC Bits

- Increase penetration rates in oil and gas wells
- Reduce drilling time and costs
- Cost 5-15 times more than roller cone bits
- > 1.5 times faster than those 2 years earlier
- Work better in oil based muds; however, some areas are regulated

PDC Bits

- Parameters for effective use include
 - weight on bit
 - mud properties
 - bit hydraulics
 - flow rate
 - rotational speed

PDC Bit Design

Ulterra Ex. 1015 Page 48 of 70

PDC Bits Design Evaluation (for illustration purposes)

8.75" PDC Bit

features

Engineered from the ground up, Synergy Series PDC drill bits incorporate the latest advances in downhole physics, including:

Compact, single steel body

Engineered and manufactured via computerized design and CNC milling ensures precision and consistency

Physics-Balanced cutting model

Unique converging spiral design and nonsymmetrical model provides maximum cut, steerability, and durability

Gauge control & backream support

Enhanced gauge protection with optional backream capability and protection

8.75" PDC Bit

features

Engineered from the ground up, drill bits incorporate the latest advances in downhole physics, including:

Surface-Velocity contoured profile

Velocity and directional control of fluid across flutes and

cutters maximizes cooling and enhances cleaning

Torque normalization

Blade and cutter torque compensation characteristics mitigate imbalanced loading and enhance stability

Integrated standard hex breaker

A tough, standard hex breaker incorporated directly into the shank allows convenient orientation

8.75" PDC Bit technical specifications.

cutting structure

gauge 222 mm (8.750 in)

blade count 5

total cutters 45

cutter size 13 mm

face cutters 30

gauge cutters 10

back-up cutters 5

backream cutters optional

hydraulics

nozzles 7 x interchangeable

nozzle sizes 7 x NB0832 - 2032 (8/32" - 20/32")

8.75" PDC Bit technical

specifications.

design profile

junk slot area gauge length gauge protection make-up length overall length bit connection fishing neck 111 cm² (17.25 in²) 78.7 mm (3.10 in) Carbide & Diamond 206.6 mm (8.14 in) 303.5 mm (11.95 in) 4.500" API Regular 152.4 mm (6.000 in)

PDC Bits -Typical Spec Sheet

222.25MM M76 IADC M123 ER 20008

-Drilling Application

The M76 is a matrix body bit designed with stability enhancing features. Applications ranging from soft to medium formations. Good for transitional and directional drilling.

-Design Specifications

Total Cutters 32
Cutter Size 16mm (5/8")
Face Cutters (27) 16mm
Gauge Cutters (5) 16mm

Cone Cutters

Nozzles 5 Standard Series 60N

Bit Connection 4-1/2" API Reg.

 Junk Slot Area
 20.5

 Face Volume
 61

 Vold Volume Ratio
 75.8

Gauge

Length 50.8MM Protection Options Available

Make-Up

Length 10.28 Overall 14.47

Fishing Neck

Diameter 6 Length 4.32

-General Operating Parameters

Flow Rate 325 to 800 Hydraulic Horsepower 1 to 8

Rotary Speed Suitable for Rotary & PDM Weight-on-Bit 4000 to 30000 (lbs)

> 1818 to 13835 (deN) 2 to 14 (Tonnes)

–Features

- Incremental Back Rake
- Spiral Blades and Gage
- Unsymmetrical Blade Layout

PDC Bits

Economics

- Cost per foot drilled measures Bit performance economics
- Bit Cost varies from 2%-5% of total cost, but bit affects up to 60 % of total drilling cost
- Advantage comes when
 - the No. of trips is reduced, and when
 - the penetration rate increases

PDC Bit Market Share

Grading of Worn PDC Bits

IADC DULL GRADING SYSTEM CHART									
Cutting Structure				В	G	Remarks			
Inner Rows	Outer Rows	Dull Charact- eristics	Location	Bearing Seals	Gauge 1/ ₁₆ "	Other Charact- eristics	Reason Pulled		
2	9			X					

$$\frac{(4+3+2+1+0)}{5} = 2$$

$$\frac{(5+6+7)}{3}=6$$

The cutting structure is graded from 0 to 8 depending on the proportion of cutting structure lost (0 = Intact, 8 = 100% worn).

DEGREES OF CUTTER WEAR

Grading of Worn PDC Bits

IADC DULL GRADING SYSTEM CHART									
Cutting Structure				В	G	Remarks			
Inner Rows	Outer Rows	Dull Charact- eristics	Location	Bearing Seals	Gauge 1/ ₁₆ "	Other Charact- eristics	Reason Pulled		
		¥		X		RO.			

BF - Bond Failure BT - Broken Teeth/Cutters BU - Balled Up *CC - Cracked Cone *CD - Cone Dragged

*BC - Broken Cone

- CI Cone Interference CR - Cored
- CT Chipped Teeth/Cutters ER - Erosion
- FC Flat Crested Wear HC - Heat Checking
- JD Junk Damage
- *LC Lost Cone
- LN Lost Nozzle LT - Lost Teeth/Cutters

- NO No Major/Other Dull Characteristics
- NR Not Rerunnable
- OC Off-Center Wear
- PB Pinched Bit
- PN Plugged Nozzle/ Flow Passage
- RG Rounded Gauge
- RO Ring Out
- RR Rerunnable
- SD Shirttail Damage
- SS Self Sharpening Wear
- TR Tracking
- WO Washed Out Bit
- WT Worn Teeth/Cutters

*Show cone number(s) under "Location".

NOTE: If no "Dull Characteristic" is visible. mark this space "No". If no "Other Characteristic" is visible, mark this space "No".

- BHA Change Bottomhole Assembly
- DMF- Downhole Motor Failure
- DSF Drillstring Failure
- DST Drill Stem Test
- DTF Downhole Tool Failure
- LOG Run Logs
- RIG Rig Repair
- CM Condition Mud
- CP Core Point
- DP Drill Plug
- FM Formation Change
- HP Hole Problems
- HR Hours
- PP Pump Pressure
- PR Penetration Rate
- TD Total Depth/CSG Depth
- TQ Torque
- TW Twist Off
- WC Weather Conditions
- WO Washout Drillstring

Grading of Worn PDC Bits

CT - Chipped Cutter Less than 1/3 of cutting element is gone

BT - Broken Cutter More than 1/3 of cutting element is broken to the substrate

Grading of Worn PDC Bits – cont'd

LT - Lost Cutter
Bit is missing one or
more cutters

LN - Lost Nozzle
Bit is missing one or
more nozzles

PDC Bit Cutting Action

PDC Cuttings Development

cutter rock A crack initiation cutter chip rock A crack propogation

What angle is this?

PDC Model

➤ Single cutter vertical force balance

If rock is harder what and W is constant, what happens to area? Depth of cut and ROP?

PDC Bit With 8 Cutters Sample Calculations

ARS=Apparent Rock Strength = 10,000 psi

Back Rake? Side Rake?

PDC Model Sample Calculation

ARS-Apparent Rock Strength

$$\sigma = \frac{W_B}{A_B \cdot (8)} \Rightarrow$$

$$WOB$$

$$W_B = A_B \cdot \sigma \cdot (8) = (0.105 \text{ in}^2) \cdot (10,000 \text{ psi}) \cdot 8$$

$$= 1050 \text{ lbs} \cdot 8 = 8400 \text{ lbs}$$

Torque $T = W_F \cdot d$ $= W_F \cdot \left[(0.25" + 1.25") \cdot (2) + (0.75" + 1.75") \cdot (2) \right]$ $= A_F \cdot \sigma \cdot 8$ $= (0.07) \cdot (10,000) \cdot (8)$ $= 5600 \, lbs \cdot in = 465 \, lbs \cdot ft$

WOB Vertical Direction

ARS=Weight/Area Weight=ARS*Area

Area downward projection

Torque –Later Direction Wf is the force in front

d is the distance center to cutter

Area front projection

TSP Bit

• TSP (Thermally Stable PDC)

Homework #4 - Due February 21 Problem #1.24 and problem below

- Cutter size is 0.75"
- Depth of cut for all cutters is 0.08"
- Bit is "green" and has 5 blades with 32 cutters
- Cutter backrake is 20 degrees and siderake is 0 degrees
- The rock strength is 15,000 psi
- Assuming perfect cleaning, 100% contact area between cutters and rock
- Calculate the static WOB!

Homework: Problem#2

Cutter Diameter and Depth of Cut is Different

In your HW example the cutter diameter and depth of cut is different!

Homework #1.24 Solution

I will remove this in class!

Ulterra Ex. 1015 Page 69 of 70

https://www.youtube.com/watch?v=4dqXHIO3A88 (2 Min)

Hybrid Bit

Typical Video on New Cutter Technology

http://www.youtube.com/watch?v=2iDtgRgVa_w (10 Min)

Sales SPE Baker – Staycool Cutters

END of Handout #4 - Drag Bits –