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a b s t r a c t

Current low oil price conditions have renewed the emphasis on drilling optimization, in order to save
time drilling oil and gas wells and reduce operational costs. Rate of penetration (ROP) modeling is a key
tool in optimizing drilling parameters, namely bit weight and rotary speed, for faster drilling processes.
With a novel, all automated data visualization and ROP modeling tool developed in Excel VBA, ROP
Plotter, this work investigates model performance and the impact of rock strength on model coefficients
of two different PDC bit ROP models: Hareland and Rampersad (1994) and Motahhari et al. (2010). These
two PDC bit models are compared against a base case, general ROP relation developed by Bingham (1964)
in three different sandstone formations in the vertical section of a Bakken shale horizontal well. For the
first time, an attempt has been made to isolate the effect of varying rock strength on ROP model co
efficients by investigating lithologies with otherwise similar drilling parameters. Additionally, a
comprehensive discussion on the importance of selecting appropriate model coefficients bounds is
conducted. Rock strength, accounted for in Hareland's and Motahhari's models but not in Bingham's,
results in higher values of constant multiplier model coefficients for the former models, in addition to an
increased RPM term exponent for Motahhari's model. Hareland and Rampersad's model is shown to
perform best out of the three models with this particular dataset. The effectiveness and applicability of
traditional ROP modeling is brought to question, as such models rely on a set of empirical coefficients
that incorporate the effect of many drilling factors not accounted for in the model's formulation and are
unique to a particular lithology.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

PDC (Polycrystalline Diamond Compact) bits are the dominant
bit type utilized in drilling oil and gas wells today. Bit performance
is typicallymeasured by the rate of penetration (ROP), an indication
of how fast the well is drilled in terms of length of hole drilled per
unit time. Drilling optimization has been at the forefront of energy
companies’ agendas for decades now, and it gains further impor
tance during the current low oil price environment (Hareland and
Rampersad, 1994). The first step in optimizing drilling parameters
to produce the best possible ROP is the development of an accurate
model relating measurements obtained at the surface to drilling
rate.

Several ROPmodels, including models developed specifically for

a certain bit type, have been published in the literature. These ROP
models typically contain a number of empirical coefficients that are
lithology dependent and may impair comprehension of the rela
tionship between drilling parameters and rate of penetration. The
purpose of this study is to analyze model performance and how
model coefficients respond to field data with varying drilling pa
rameters, in particular rock strength, for two PDC bit models
(Hareland and Rampersad, 1994; Motahhari et al., 2010). Model
coefficients and performance are also compared against a base case
ROP model (Bingham, 1964), a simplistic relation that served as the
first ROP model widely applied throughout industry and still
currently in use. Drilling field data in three sandstone formations
with varying rock strengths is investigated, and model coefficients
for these three models are computed and compared against one
another. It is postulated that coefficients for Hareland's and
Motahhari's models in each rock formation will span a wider range
than Bingham's model coefficients, as varying rock strength is not
accounted for explicitly in the latter formulation. Model
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performance is also evaluated, leading to the choice of the best ROP
model for the Bakken shale region in North Dakota.

The ROP models included in this work consist of inflexible
equations that relate a few drilling parameters to drilling rate and
contain a set of empirical coefficients which combine the influence
of hard to model drilling mechanisms, such as hydraulics, cutter
rock interaction, bit design, bottom hole assembly characteristics,
mud type, and hole cleaning. Although these traditional ROP
models generally do not performwell when compared against field
data, they provide an important stepping stone to newer modeling
techniques. Modern, more powerful, statistics based models with
increased flexibility can improve the accuracy of ROP modeling.
Gandelman (2012) has reported significant enhancement in ROP
modeling by employing artificial neural networks instead of
traditional ROP models in oil wells in the pre salt basins offshore
Brazil. Artificial neural networks are also successfully utilized for
ROP prediction in the works of Bilgesu et al. (1997), Moran et al.
(2010) and Esmaeili et al. (2012). However, such improvement in
ROP modeling comes at the expense of model interpretability.
Therefore, traditional ROP models are still relevant and provide an
effective method to analyze how a specific drilling parameter af
fects rate of penetration.

ROPPlotter, a field data visualization and ROPmodeling software
developed in Microsoft Excel VBA (Soares, 2015), is employed in
calculating model coefficients and comparing model performance.

2. Materials and methods

2.1. ROPPlotter

For the three sandstone formations analyzed in this work,
ROPPlotter computes model coefficients that best fit drilling field
data. ROPPlotter capabilities include: importing field data with
diverse formatting, data filtering by standard deviation or absolute
value, data visualization with selectable axis bounds, automated
lithology highlighting and ROP modeling. The software facilitates
ROP model implementation by guiding the user in providing the
necessary parameters for model calculations and utilizing Excel
Solver in a loop to fit model coefficients for different lithologies.
ROPPlotter also produces tables for comparison between ROP
models coefficients and performance with ease.

Drilling data quality and reliability pose major challenges for the
oil and gas industry. In order to conduct amoremeaningful analysis
of ROP models, a data filtering process is initiated to remove data
outliers when field data are loaded into ROPPlotter:

The data filtering process is facilitated through the form pre
sented in Fig. 1. Drilling parameter statistics are displayed for the
entire original dataset (top left corner), for a selected rock forma
tion (top right corner) and for the modified dataset after data
outliers have been excluded (bottom right corner). Data outliers
can be detected either by specific threshold values of drilling

Fig. 1. Data filtering form in ROPPlotter.
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parameters or by a designated number of standard deviations away
from the mean. The flagged points are displayed in a table in the
bottom left corner, where the user can choosewhich data points are
indeed outliers to be removed. Once data outliers have been
excluded from the dataset, the main controlling form of ROPPlotter
is displayed to facilitate the implementation of several capabilities:

The form above is accompanied by a ROP vs. depth plot fully
governed by user interaction with the command buttons in Fig. 2.
Examples of plots generated by ROPPlotter can be seen in Figs. 6e8
and Figs. 9e11 later in this manuscript. On the top right hand
corner, plot bounds can be adjusted by either scrolling with the
provided arrows or typing numbers in the boxes for each axis. The
left side of the form offers many distinct tools to enhance data
visualization. ROP modeling capabilities are positioned on right
side, including comparison of model coefficients and performance
with tables generated spontaneously. Currently, six different ROP
models are included in ROPPlotter's library: Bingham (1964),
Bourgoyne and Young (1974), Winters et al. (1987), Hareland and
Rampersad (1994), Hareland et al. (2010), and Motahhari et al.

(2010). The ROP models developed by Bourgoyne and Young
(1974), Winters et al. (1987), and Hareland et al. (2010) were not
included in this study since they are not PDC bit specific models
(Bingham's model was included as a base case). By selecting an ROP
model and clicking the “Add Model to Plot” in Fig. 2, the user is
guided by model specific forms to provide additional input pa
rameters necessary for the model computations:

Fig. 3 displays the form specific to Hareland and Rampersad
(1994) drag bit model. There are many bit design and geometry
factors required for this model's calculation, which are shown on
the left side of Fig. 3. Note that all model specific forms allow for
user specified model coefficient bounds and initial guesses, a
fundamental necessity for proper ROP model computations as later
discussed in Section 3.2.

2.2. Bakken Shale case study

The depth based dataset utilized in this investigation spans
twenty different rock formations in a 4871 ft (1485m) long (4257 ft

Fig. 2. Main controlling form of ROPPlotter.
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[1298m] true vertical depth [TVD] to 9128 ft [2782m] TVD) vertical
section of a Bakken shale horizontal well in North Dakota. Despite
the fact that time based data were not available, depth based data
are preferred for ROP modeling analysis. It provides a straightfor
ward method to correlate the intervals drilled with formation tops
provided by geologists, facilitating the fitting of a distinct set of
model coefficients for each lithology. A simplified stratigraphic
column for this segment is shown in Fig. 4:

This entire interval was drilled by Marathon with the same
Smith 616 PDC bit. Three rock formations with comparable average
ROP, weight on bit (WOB) and rotary speed (rotations per minute,
RPM) were selected for evaluation of the three ROP models. Even
though all three lithologies chosen for this analysis were sand
stones, rock type was not part of the selection criteria. In fact, these
three sandstone formations have varying rock strength and the
methodology applied in this study could be extended to any other
lithologies, as long as they present similar drilling parameters (ROP,
WOB, and RPM). The Broom Creek sandstone is a fine to medium
grained sandstone of late Pennsylvanian and early Permian age.
Interbedded layers of shale and dolomite are present in this rock.
Average porosity is 14% and the maximum value reaches 20%
(Sorensen et al., 2009). The Tyler formation is of early Pennsylva
nian age and has been widely studied by the petroleum industry
due its prolific oil production since 1954. It is divided into two sub
systems, with interbedded shales in the lower system and

interbedded limestones in the Upper Tyler. Porosity ranges from
10% to 20% and permeability is greater than 100 md (Nesheim and
Nordeng, 2014). Both the Broom Creek and Tyler Sandstones belong
to theMinnelusa group. The Ratcliffe sandstone is a thin sub unit of
the Madison group and of Mississippian age. It contains inter
bedded limestones and anhydrites (Bluemle et al., 1986).

Rock strength, quantified in this dataset as unconfined
compressive strength (UCS), generally increases with depth, as
expected due to rock compaction. Data filtering capabilities in
ROPPlotter are employed in removing data point outliers to
improve data reliability, yielding the following dataset:

In Table 1, average values of ROP, WOB, and RPM are similar
across the three sandstone formations. Hence, variations in ROP
model coefficients due to changing UCS can be analyzed. RPM is the
drilling parameter with lowest standard deviations throughout the
lithologies, while UCS has the highest standard deviation (more
than 50% of the average value in the Tyler Sandstone).

The second set of properties necessary for ROP model calcula
tions are bit properties, assumed to be constant in this study. This
vertical section was drilled with a Smith PDC bit, model 616 (6
blades,16mm cutters). Based on vendor information (SHARC, 2015)
and common industry practice (Rajabov et al., 2012), the following
bit properties were determined for this investigation:

Bit diameter and type (Smith 616 PDC bit) were provided in the

Fig. 3. Hareland and Rampersad (1994) drag bit model form in ROPPlotter.

Fig. 4. Generalized stratigraphic column for the Williston Basin, North Dakota, based
on Theloy (2014). Formations included in this study are marked with arrows.

Table 1
Bakken Shale dataset filtered by removing data points with ROP or WOB values two
standard deviations above or below the average.

Formation Broom Creek
Sandstone

Tyler
Sandstone

Ratcliffe
Sandstone

Original Data Points 405 874 134
Filtered Data Points 389 854 131
Depth (ft) 6897 to 7090 7091 to 7514 8006 to 8073
ROP Min. (ft/hr) 15.10 13.89 32.68
ROP Max. (ft/hr) 103.28 108.07 88.33
ROP Std. Dev. (ft/hr) 22.01 22.54 14.07
ROP Avg. (ft/hr) 57.58 56.63 59.96
WOB Min. (klb) 4.64 3.84 9.73
WOB Max. (klb) 41.11 60.90 36.36
WOB Std. Dev. (klb) 5.18 4.77 8.55
WOB Avg. (klb) 22.89 24.73 23.22
RPM Min. (rev/min) 6.80 39.58 39.68
RPM Max. (rev/min) 43.17 41.22 42.00
RPM Std. Dev. (rev/min) 3.67 0.40 0.50
RPM Avg. (rev/min) 39.47 40.24 40.68
UCS Min. (psi) 2229 2020 8540
UCS Max. (psi) 23,268 23,462 14,576
UCS Std. Dev. (psi) 3398 5696 1451
UCS Avg. (psi) 8118 9656 11,131
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BHA report by the operator. The bit manufacturer website (SHARC,
2015) indicates the number of cutters and cutter diameter on the
bit description. Bit wear is a difficult, if not impossible, parameter to
measure in real time as the formations are being drilled. However,
from Table 1, it is clear that the three sandstone formations selected
for analysis are located towards the end of the bit run (4257 ft
[1298 m] TVD to 9128 ft [2782 m] TVD). Hence, the bit wear value
in Table 2 conveys a conservative estimate that the bit is at 50%
operating capacity, producing 50% of the total ROP that an unworn
bit would generate in the same circumstances. Although the PDC
cutters’ siderake and backrake angle are not provided by the bit
manufacturer, they can be inferred from common industry practice.
According to Rajabov et al. (2012), a cutter backrake angle of 10�

minimizes the mechanical specific energy (MSE) necessary to drill
through different lithologies. Additionally, a siderake angle of 30�

represents the breaking point after which increasing siderake angle
drastically increases MSE (Rajabov et al., 2012). A diagram of a
single PDC bit cutter displaying backrake and siderake angles is
presented below (See Fig. 5):

3. Theory

3.1. ROP models e governing equations

In this section, governing equations for the three ROP models
are analyzed, revealing what drilling parameters each model takes
into account. Variable nomenclature and units for some models
have been modified from the original publications for consistency
in comparison between the ROP models employed in this study.

Before presenting ROP models specific to PDC bits, Bingham's
(1964) base case ROP model, an empirical relation applicable to all
bit types, is introduced:

ROP a RPM
�
WOB
DB

�b

(1)

where ROP is the rate of penetration (ft/hr), WOB is the weight on
bit (klb), RPM is the rotary speed (revolutions/sec), Db is the bit
diameter (in), and a and b are the dimensionless constants for each
rock formation. The two fitting parameters in this model (a and b)
represent a measure of the drillability of each lithology (Bingham,
1964). Establishing minimum and maximum coefficient bounds is
essential for proper computation of these twomodel coefficients to
fit the model to field data, as discussed in the next section.

Hareland and Rampersad (1994) proposed a general drag bit
model based on cutter rock interaction:

ROP
14:14 Nc RPM Av

DB
(2)

where Nc is the number of cutters and Av is the area of rock com
pressed ahead of a cutter (in2). Av can be modified for different drag
bit types, and for PDC bits it is formulated as:

Av cosa sin q

2
4�dc

2

�2

cos�1

 
1

4WOB
cos qpNc d2c sc

!

 
2WOB

cos qpNcsc

4WOB2

ðcos qpNc dc scÞ2

!0:5�
WOB

cos qpNc sc

�35 (3)

where a is the cutter side rake angle, q is the cutter back rake angle,
dc is the cutter diameter (in), and sc is the uniaxial (or unconfined)
compressive rock strength (psi). The compressed rock area in Eq.
(3) can also be adapted to account for bit wear, but model appli
cation becomes quite difficult, involving additional fitting param
eters. Therefore, for simplicity, the bit wear will be represented by a
constant multiplying the right hand side of Eq. (2), illustrating the
operating capacity of the bit (Wf,max 1). Hareland's model co
efficients are introduced in a single term:

COR
a�

RPMb WOBc
� (4)

where a, b, and c are cutter geometry correction factors. These three
model coefficients are lumped into COR e a lithology coefficient
that multiplies the right hand side of Eq. (2). It is important to note
that b and c, exponents on the RPM and WOB terms, respectively,
are in the denominator of Eq. (4). Looking at Eq. (2) and Eq. (3), ROP
has a linear relationship with RPM and a quadratic relation with
WOB. Hence, coefficient b reduces the linear influence of RPM on
ROP and coefficient c reduces the quadratic influence of WOB on
ROP. The final form of Hareland's PDC bit model becomes:

ROP Wf
a�

RPMb WOBc
� 14:14 Nc RPM

DB
cos a sin q

2
4�dc

2

�2

cos�1

 
1

4WOB
cos qp Nc d2c sc

!

 
2WOB

cos qpNcsc

4 WOB2

ðcos qp Nc dc scÞ2

!0:5�
WOB

cos qp Nc sc

�35
(5)

Table 2
Constant bit properties for Bakken Shale Case Study.

Bit property Value Units

Bit Diameter, Db 8.75 in
Number of Cutters, Nc 50
Cutter Diameter, dc 0.63 in
Cutter Siderake Angle, a 30 deg
Cutter Backrake Angle, q 10 deg
Bit Wear, Wf 0.50

Fig. 5. Representation of a single PDC cutter with siderake angle a and backrake angle
q.
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Motahhari et al. (2010) developed a PDC bit specific ROP model,
incorporating a wear function and rock strength:

ROP Wf

�
G RPMg WOBf

DB S

�
(6)

where S is the confined rock strength (psi), G is a model coefficient
related to bit rock interactions and bit geometry, and a and g are
ROPmodel exponents. Note that the confined compressive strength
(CCS) in Motahhari's PDC bit ROP model (S in Eq. (6)) is the rock
strength measured at in situ confining stress conditions, and not
the same as the unconfined compressive strength (UCS) in Hare
land's drag bit model (sc in Eq. (5)). In the Bakken Shale dataset,
only UCS measurements were reported (Table 1). Even though CCS
can be expressed in terms of UCS or vice versa by assuming aMohr
Coulomb (linear) or Griffith Theory (parabolic) failure envelope, the
same UCS values will be utilized in both Hareland's andMotahhari's
models in order to compare coefficients consistently. The wear
function in Eq. (6), Wf, is difficult to implement and introduces
additional fitting parameters. Similar to the procedure for Hare
land's model,Wf is simplified as a constant with maximum value of
1.

Table 3 compares drilling parameters and bit properties
accounted for in each of the three ROP models described above:

Table 3 is divided into two categories of parameters: variable
and constant properties. Variable properties represent drilling pa
rameters continuously measured during drilling, which can change
at every data point (see Table 1). On the other hand, while pa
rameters in the “Constant (Bit) Properties” section can obviously
change throughout the drilling of an entire well (especially bit
wear), they are assumed to be constant for a specific lithology (see
Table 2).

Looking at Table 3, it is clear thatWOB, RPM and bit diameter are
the most important factors in modeling ROP according to the
selected models, as they are present in all three models' formula
tions. Both Hareland's and Motahhari's models include a rock
strength term (assumed to be the same in this study) and a bit wear
term. Additionally, Hareland's model introduces many bit geometry
factors not accounted for in the other twomodels. None of the three
models consider the influence of drilling fluid flow rate on ROP, as
other models published in literature do (Bourgoyne and Young,
1974; Winters et al., 1987). The model coefficients, or fitting pa
rameters, for all three models are discussed in the next section.

3.2. ROP models e coefficient bounds

Model coefficients in the three ROP models presented in the

previous section can be classified into three distinct categories: a
constant that multiplies the entire ROP formulation, a weight on
bit term exponent, and a RPM term exponent. According to the
ory, ROP should vary linearly with RPM and WOB up until an in
flection point. Increasing rotary speed or bit weight after such point
will actually result in a reduction of drilling rate, due to inadequate
hole cleaning, excessive pipe vibrations or pipe buckling
(Gandelman, 2012). In this study, model coefficient lower bounds
will force at least a square root relation between RPM/WOB and
ROP, deemed appropriate as discussed at the end of this section.
Table 4 illustrates coefficient categorization and provides model
coefficient bounds for calculation of all fitting parameters in this
investigation:

Model coefficients, or fitting parameters, are computed by
minimizing the average error between the ROP model fit and ROP
field data for a specific rock formation. Soares (2015) has reported
on the importance of selecting appropriate coefficient bounds in
order to achieve good model fits to field data. Looking at the co
efficient bounds table above, the constant multiplier category of
coefficients displays a wide range between lower and upper
bounds. The upper bound is set to the same order of magnitude as
UCS values seen on the field, allowing Hareland's and Motahhari's
models to balance the division by rock strength (not formulated in
Bingham's model).

Setting lower bounds for WOB and RPM exponents at 0.5 en
sures that the ROP models account for these drilling parameters.
Due to high variance in the WOB field data in this study (Table 1),
ROP models will drive the WOB term exponent coefficients to zero
during model fitting if no lower bound is specified, in an effort to
reduce overall error. Conversely, model error is increased if the
WOB exponent lower bound is increased. Appendix A contains
model results for WOB exponent lower bounds equal to 0 (Table 7)
and 1 (Table 8), exemplifying this point. It is worth observing that
the upper bound for the WOB and RPM term exponents in Hare
land's model is lower than for the other two ROP models, as b and c
appear in the denominator of Eq. (5). As observed with results
shown in Appendix A (Table 7), Hareland's model will drive the
WOB term exponent to a value of zero if allowed to, even if that
results in higher model error by maintaining the quadratic rela
tionship between WOB and ROP. Similar results are observed with
respect to rotary speed if the RPM exponent lower bound is set to
zero, showing that the variance in field data induces the Hareland
model to remove any influence of those drilling parameters on ROP
controlled by model coefficients, although the ensuing error is
higher. Hence, setting lower bounds of 0.5 for Hareland's RPM and
WOB term exponents yields lower model errors, even though it
limits the RPM ROP relation to at most a square root correlation.

4. Results

The ROPPlotter software is utilized to calculate model

Table 3
Comparison between parameters in each ROP model formulation.

Model Bingham
(1964)

Hareland and
Rampersad
(1994)

Motahhari et al.
(2010)

Variable Properties
Weight-on-Bit, WOB ✓ ✓ ✓

Rotary Speed, RPM ✓ ✓ ✓

Unconfined Rock Strength, sc ✓

Confined Rock Strength, S ✓

Constant (Bit) Properties
Bit Diameter, Db ✓ ✓ ✓

Number of Cutters, Nc ✓

Cutter Diameter, dc ✓

Cutter Siderake Angle, a ✓

Cutter Backrake Angle, q ✓

Bit Wear, Wf ✓ ✓

Table 4
Model coefficients and their computation bounds in this study.

Model Bingham
(1964)

Hareland and Rampersad
(1994)

Motahhari et al.
(2010)

Constant
multiplier

a a G

Lower Bound 0.001 0.001 0.001
Upper Bound 10,000 10,000 10,000
WOB exponent b c a

Lower Bound 0.5 0.5 0.5
Upper Bound 10 1.5 10
RPM exponent N/A b g

Lower Bound N/A 0.5 0.5
Upper Bound N/A 1 10
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coefficients that best fit the Bakken Shale dataset with bit proper
ties and coefficient bounds previously prescribed. A graphical
representation of model fits to field data is presented in Figs. 6e8:

ROP model performance and coefficients are displayed for each
rock formation in Table 5:

The table above serves as an indicator of how each model
operates in different lithologies with varying rock strength. Recall
from Table 1 that average values for ROP, WOB, and RPM are similar
for all three sandstones. UCS values are highest for Racliffe Sand
stone (deepest formation), followed by Tyler Sandstone and Broom
Creek Sandstone (shallowest formation).

5. Discussion

From Table 5, it is clear that Hareland's model has the best
performance in all three lithologies. Additionally, there is a trend of
decreasing model error with deeper formations for Bingham's
model and Hareland's model. With Motahhari's model, this is not
the case, as it performs best in the shallowest lithology. When
analyzing model performance in Table 5, it is important to look
back at standard deviation values for drilling parameters presented
in Table 1 and summarized here for convenience (See Table 6):

Model error is lowest for Bingham and Hareland models on the

Fig. 6. Broom Creek Sandstone ROP models fit and field data.

Fig. 7. Tyler Sandstone ROP models fit and field data.
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Ratcliffe Sandstone formation, which also has lowest ROP and UCS
standard deviations and a very low RPM standard deviation (even
though it has the highest WOB deviation). Poorer model perfor
mance in the other lithologies is most likely explained by a high
RPM standard deviation in the Broom Creek Sandstone, a high UCS
standard deviation in the Tyler Sandstone, and a higher ROP stan
dard deviation for both formations in comparison to the Ratcliffe
Sandstone.

With respect to model coefficients, Bingham's model provides
an important base case analysis. Not influenced by rock strength

field data, Bingham's a increases slightly with increasing depth.
Constant multipliers for the remaining models were expected to
increase with depth (and increasing UCS), which is not the case
with Hareland's a in the Tyler Sandstone formation and Motahha
ri's G in the Ratcliffe Sandstone formation. Hareland's a is 4 orders
of magnitude greater than Bingham's a and Motahhari's G is 3 or
ders of magnitude greater than Bingham's a (except in Ratcliffe
Sandstone formation), and those multipliers vary at a much higher
rate than Bingham's a. Due to high variance encountered with field
data, it is hard to remove the effect of other parameters and analyze
only the influence of rock strength on model coefficients. However,
in general, Hareland's a and Motahhari's G can be thought of as a
means to balance the increasing rock strength with depth (not
explicitly accounted for in the base case Bingham model).

All three ROP models try to remove influence of WOB on ROP by
reducing the WOB term exponent to the lower bound of 0.5, as
expected due to high WOB standard deviation. Note that in Hare
land's model, the WOB term exponent is in the denominator but is
still driven to the lower bound value. The WOB term exponent of
Motahhari's model has a value of 0.91 in the Tyler Sandstone, the
only instance in Table 5 where a WOB exponent differs from the
lower bound value. This occurrence also represents the highest
error seen for the Motahhari model, as well as very high oscillation
of the model fit (Fig. 7). The Tyler Sandstone formation contains the
largest UCS standard deviation out of the three sandstones, which
may be responsible for such singularity.

RPM term exponents are driven to the lower bound for Hare
land's model, meaning that the model always utilizes the
maximum possible square root relation between RPM and ROP. On
the other hand, Motahhari's model utilizes a changing RPM expo
nent as an additional way to offset rock strength, as g increases
significantly from the Broom Creek Sandstone formation to the
Racliffe Sandstone formation (and is much greater than Hareland's
RPM exponents). Motahhari's RPM term exponent decreases in the
Tyler Sandstone formation, since theWOB exponent is significantly
greater than the lower bound. Motahhari's model poor perfor
mance in the Ratcliffe Sandstone can be explained by a curious
choice to lean more on the RPM exponent than on the constant

Fig. 8. Ratcliffe Sandstone ROP models fit and field data. Note that in all three formations, Bingham's model acts more as a moving average, while the other two models oscillate
more and are able to capture spikes from field data.

Table 5
Model performance and coefficients for the three sandstone formations.

Formation Broom creek
sandstone

Tyler
sandstone

Ratcliffe
sandstone

Bingham error 40.26% 36.17% 33.05%
Hareland error 25.08% 24.89% 20.20%
Motahhari error 29.32% 37.83% 32.24%
Constant multiplier
Bingham a 0.60 0.61 0.73
Hareland a 3152 2979 4279
Motahhari G 128.0 172.0 5.93
WOB exponent
Bingham b 0.50 0.50 0.50
Hareland c 0.50 0.50 0.50
Motahhari a 0.50 0.91 0.50
RPM exponent
Hareland b 0.51 0.50 0.50
Motahhari g 2.50 2.06 3.42

Table 6
Standard deviations for drilling parameters in the Bakken Shale dataset.

Formation Broom creek
sandstone

Tyler
sandstone

Ratcliffe
sandstone

ROP Std. Dev. (ft/hr) 22.01 22.54 14.07
WOB Std. Dev. (klb) 5.18 4.77 8.55
RPM Std. Dev. (rev/min) 3.67 0.40 0.50
UCS Std. Dev. (psi) 3398 5696 1451
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multiplier to balance increasing rock strength.
It is also important to note that all three models predict an ever

increasing ROP with increasing WOB and RPM. As previously dis
cussed, there is an inflection point after which increasing WOB will
lead to hole cleaning and pipe buckling issues and increasing RPM
will lead to excessive drillstring vibrations, reducing ROP in both
cases (Gandelman, 2012).

6. Conclusions

The ROPPlotter software was an important component of this
study, automating the computation and comparison of model co
efficients and producing easily understandable plots and tables.
ROPPlotter can be implemented in numerous future case studies to
speed up and enhance ROP modeling analysis.

For the Williston Basin dataset presented in this study, Hare
land's model works best and should be used in predicting ROP for
future wells in the region. It is proposed that Hareland performs
better because it selects the smallest possible WOB and RPM term
exponents, emphasizing more on the constant multiplier and
avoiding the high variability in field data.

All three models drive the WOB exponent down to the lower
bound in order to reduce error, as the WOB field data has relatively
high standard deviation. As shown in Appendix A, selection of
proper model coefficient bounds is a key factor in the effectiveness
of ROPmodeling. ROPmodels, if allowed to, will try to eliminate the
influence of WOB on ROP during parameter optimization,
completely neglecting one of the most important drilling parame
ters affecting drilling rate.

By selecting three lithologies with similar average ROP, WOB
and RPM, it is possible to better understand how changing rock
strength affects ROP model coefficients. Hareland and Motahhari
models employ the combined contribution of constant multiplier
and RPM term exponent to offset increasing rock strength when
compared to Bingham's model. Motahhari's model has raw
dependence on the inverse of rock strength, and utilizes both the
constant multiplier G and the RPM exponent g to balance
increasing UCS. Hareland's model rock strength component shows
up in a complicated term (Eq. (3)), and only the multiplier a
changes with increasing rock strength. While Hareland's a value is
greater than Motahhari's G, Motahhari's g (RPM exponent) is al
ways at least quadratic. The combined influences of Motahhari's G
and g on ROP are greater than Hareland's a and b, meaning that
bigger model coefficient values are necessary for the Motahhari
model to overcome the inverse dependence on rock strength.

After decades of traditional ROP modeling done by prescribing
an equation and fitting empirical coefficients to field data for a
singular, localized application, the after the fact nature and oper
ational limitations and deficiencies of such modeling are being
addressed with real time, data driven modeling and optimization
of drilling parameters used to quantify drilling performance and
efficiencies. Since ROP is a highly nonlinear, complicated function
depending on many parameters specific to that localized applica
tion, defining a set equation relating ROP to a few drilling param
eters is not sufficient. Indeed, evaluating past drilling performances
are important in case studies, seeking ways to improve drilling
operations. However such after the fact analyses with traditional
models have no predictive capabilities. More powerful advances
may be made by coupling real time rig floor measurements of
surface and downhole parameters with Wider Windows Statistical
Learning Models (WWSLM), which have demonstrated highly ac
curate and powerful predictive capabilities while simultaneously
preserving and expanding the utility of a posteriori assessments
(Hegde et al., 2015). Even though the intricacies of WWSLM are
beyond the scope of this study, model results with the same dataset

presented in Section 2.2 are displayed in Appendix B for compari
son purposes.
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Acronyms

CCS Confined compressive strength
Marathon Marathon Oil Corporation
MSE Mechanical Specific Energy
PDC Polycrystalline diamond compact
ROP Rate of penetration
RPM Rotations per minute
UCS Unconfined compressive strength
VBA Visual Basic for Applications
WOB Weight on bit
WWSLM Wider Windows Statistical Learning Models

Appendix A

Following the discussion on model coefficient bounds in Section
3.2, model fit results with different WOB term exponent lower
bounds are presented in Tables 7 and 8:

By comparing the tables above with Table 5 (WOB exponent
lower bound of 0.5), the following observations are made:

� With a WOB exponent lower bound equal to 0 (Table 7), most
WOB exponents were driven to the lower bound. Model errors
are lower for Bingham and Motahhari models (except Tyler
Sandstone), since WOB variance is ignored. The error actually
increased for the Hareland model, as the original quadratic in
fluence of WOB on ROP is maintained with the WOB term in the
denominator. Bingham's constant multiplier increases at all well
depths to make up for the loss of the WOB term. Hareland's
constant multiplier decreased in all three sandstones, since the
quadratic WOB ROP relation is preserved. Hareland's RPM
exponent remained around the lower bound of 0.5. Motahhari's
constant multiplier actually decreased in the first two

Table 7
Model performance and coefficients with a WOB exponent lower bound of zero.

Formation Broom creek
sandstone

Tyler
sandstone

Ratcliffe
sandstone

Bingham error 35.22% 32.49% 20.72%
Hareland error 30.88% 26.66% 31.00%
Motahhari error 28.36% 38.29% 21.83%
Constant multiplier
Bingham a 1.10 1.08 1.35
Hareland a 635 633 863
Motahhari G 2.73 1.99 56.10
WOB exponent
Bingham b 0.00 0.00 0.00
Hareland c 0.01 0.00 0.02
Motahhari a 0.00 0.92 0.00
RPM exponent
Hareland b 0.51 0.50 0.52
Motahhari g 3.97 3.25 3.28
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formations, due to an accentuated increase in the RPM exponent
(2.50e3.97 and 2.06 to 3.25 e compared to Table 5). The con
stant multiplier increased in the last formation with a decrease
in the RPM exponent. The behavior of Motahhari's model co
efficients are erratic and hard to predict.

� With a WOB exponent lower bound equal to 1 (Table 8), model
error increased for all 3 models in all 3 sandstones. All WOB
exponents are driven to the new lower bound of 1. Bingham's
constant multiplier decreased in comparison to the base case
(Table 5), since more weight is placed on the WOB term. Hare
land's constant multiplier increased to the upper bound, as the
WOB ROP quadratic relation is reduced to linear and the

constant needs to make up for the lower WOB term contribu
tion. The RPM exponent stayed at the lower bound. Motahhari's
model behavior is erratic once again, sometimes relying more
on the constant multiplier and at other times relying more on
the RPM term exponent to offset rock strength.

Appendix B

Results from modeling ROP with the WWSLM for this Williston
Basin dataset (Section 2.2) are compared with traditional ROP
modeling performance in Table 9:

Table 9 undoubtedly shows the superiority of statistical learning
algorithms to predict ROP when compared to traditional ROP
modeling. By graphically comparingWWSLM efficacy with the best
performing traditional model (Hareland and Rampersad, 1994), it is
clear that the SLM is able to capture ROP field data trends much
better than Hareland's model:

Table 8
Model performance and coefficients with a WOB exponent lower bound of one.

Formation Broom creek
sandstone

Tyler
sandstone

Ratcliffe
sandstone

Bingham error 44.33% 39.41% 42.52%
Hareland error 35.54% 41.22% 50.30%
Motahhari error 32.46% 38.33% 40.54%
Constant multiplier
Bingham a 0.34 0.33 0.36
Hareland a 10,000 10,000 10,000
Motahhari G 10,000 2.27 2.00
WOB exponent
Bingham b 1.00 1.00 1.00
Hareland c 1.00 1.00 1.00
Motahhari a 1.00 1.00 1.00
RPM exponent
Hareland b 0.50 0.50 0.50
Motahhari g 0.88 3.15 3.24

Table 9
Comparison of model performance between traditional ROP models and WWSLM.

Formation Broom creek
sandstone

Tyler
sandstone

Ratcliffe
sandstone

Bingham error 40.26% 36.17% 33.05%
Hareland error 25.08% 24.89% 20.20%
Motahhari error 29.32% 37.83% 32.24%
SLM error 17.42% 14.32% 9.61%

Fig. 9. Broom Creek Sandstone WWSLM and Hareland models fit and field data.

C. Soares et al. / Journal of Natural Gas Science and Engineering 34 (2016) 1225 12361234

Ulterra Ex. 1056 
Page 10 of 12



Formore information on the specifics ofWWSLM, please refer to
Hegde et al. (2015).
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