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SEDIMENTATION OF 
NONCOLLOIDAL PARTICLES 
AT LOW REYNOLDS NUMBERS 

Robert H. Davis 

Department of Chemical Engineering, University of Colorado, Boulder, 
Colorado 80309 

Andreas Acrivos 

Department of Chemical Engineering, Stanford University, Stanford, 
California 94305 

1. INTRODUCTION 

Sedimentation, wherein particles fall under the action of gravity through a 
fluid in which they are suspended, is commonly used in the chemical and 
petroleum industries as a way of separating particles from fluid, as well as a 
way of separating particles with different settling speeds from each other. 
Examples of such separations include dewatering of coal slurries, clarifi­
cation of waste water, and processing of drilling and mining fluids 
containing rock and mineral particles of various sizes. The separation of 
different particles by sedimentation is also the basis of some laboratory 
techniques for determining the distribution of particle sizes in a particulate 
dispersion. 

Owing to the significance of the subject, there have been numerous 
experimental and theoretical investigations of the sedimentation of par­
ticles in a fluid. One of the earliest of these is Stokes' analysis of the 
translation of a single rigid sphere through an unbounded quiescent 
Newtonian fluid at zero Reynolds number, which led to his well-known law 

u(O) = 2a2(Ps- p )g (1 1) 
9p ' . 
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92 DAVIS & ACRIVOS 

where u<0
> is the settling velocity of the sphere, a is its radius, Psis its density, 

p is the fluid density, f.1 is the fluid viscosity, and g is the gravitational 
constant. Since then, research has focused on extending Stokes' law by 
considering nonspherical rigid particles, drops and bubbles, non­
Newtonian fluids, nonzero Reynolds numbers, the presence of a wall near 
the particle, and interactions between particles. 

In this paper, we do not attempt to present a complete review of the 
general subject of sedimentation, but rather we discuss recent developments 
in three areas : 

1. The sedimentation of monodisperse suspensions. Here we focus on the 
theoretical and experimental determination of the average settling 
velocity of identical spherical particles in a suspension that is not 
infinitely dilute. 

2. The sedimentation ofpolydisperse suspensions. For suspensions contain­
ing more than one particle species (i.e. different sizes and densities), we 
discuss recent studies that deal with the prediction of the local average 
settling velocity of a spherical particle in the midst of unlike spheres, and 
also with the macroscopic description of the sedimentation process as 
particles with different fall speeds separate from one another. 

3. Enhanced sedimentation in inclined channels. The curious observation 
that the clarification rate of a suspension is increased merely by inclining 
a settling vessel from the vertical has recently been analyzed using the 
appropriate equations of continuum mechanics. We summarize the 
findings for the flow profiles and sedimentation rates as well as the 
results of a linear stability analysis used to predict the formation and 
growth of waves in inclined settling channels; these waves lead to a 
decrease in the efficiency of such processes. 

Before proceeding with our review, we wish to call attention to several 
other articles that have appeared in this series in recent years that focus on 
properties of particulate suspensions other than sedimentation. Batchelor 
(1974) reviewed the effective transport properties of two-phase materials 
with random structure and included a description of the sedimentation of a 
dilute dispersion of equal spheres. Herczynski & Pienkowska (1980) 
discussed the statistical theory of a suspension and, in particular, its 
rheological properties. Leal (1980) considered general particle motions in a 
viscous fluid in the presence of small inertia effects or small non-Newtonian 
effects, or when the particles (or bubbles) are slightly nonspherical. The 
Brownian motion of small colloidal particles suspended in liquids was 
reviewed by Russel (1981). In general, Brownian motion is only significant 
for particles that are so small that sedimentation due to gravity is negligibly 
slow, but circumstances exist where both effects are important. Finally, 
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SEDIMENTATION 93 

Schowalter (1984) discussed the stability and coagulation of particulate 
dispersions subjected to shear flows. Included in his review is a discussion of 
the interparticle forces, such as attractive van der Waals forces and 
repulsive electric double-layer forces, that characterize colloidal 
dispersions. 

2. SEDIMENTATION OF MONODISPERSE 
SUSPENSIONS 

We consider a suspension composed of rigid spherical particles of equal size 
and density sedimenting in a Newtonian fluid at very small particle 
Reynolds numbers. For typical hydrosol dispersions, the Reynolds number 
pu<0>aj 11 is small compared with unity when the spheres are less than 0.1 mm 
in diameter. Furthermore, let us suppose that the suspension is stable, i.e. 
that any Brownian motion and attractive van der Waals forces are too 
weak to cause the suspension to coagulate [see Spielman (1970) and 
Valoulis & List (1984) for detailed criteria for the onset of coagulation of 
suspended particles]. Then, an initially well-mixed suspension will separate 
into three regions when subjected to batch sedimentation in a vessel with 
vertical sidewalls. A layer of clarified fluid will form at the top of the settling 
vessel, whose depth increases with time as the particles settle. Below this 
layer lies the suspension region, sometimes referred to as the clarification 
zone. Since the spheres are identical, the interface between the clear fluid 
and the suspension will remain fairly sharp, though it may spread 
somewhat owing to particle diffusion. If the suspension is infinitely dilute, 
the particles settle with their Stokes velocity given by (1.1). On the other 
hand, for particle volume fractions as small as 1%, the average settling 
velocity of the spheres is noticeably lower than that given by Stokes' law. 
This phenomenon can be represented by a hindered settling function f(c) 
such that the average fall velocity of a sphere in the suspension is given by 
v = u<0 >j(c). It is generally assumed that f(c) depends only on the solids 
volume fraction c and that it is a monotonically decreasing function with 
f(O) = 1. However, for colloidal dispersions, this correction to Stokes' law 
will also depend on the nature of any interparticle forces present. Strong 
double-layer repulsive forces will tend to keep the particles well separated, 
and hence will decrease the average fall speed-whereas strong attractive 
van der Waals forces will lead to an excess of spheres that are close partners 
to another sphere, and hence will increase the average settling velocity of 
the suspension. It is conceivable that if the attractive forces are sufficiently 
strong, f(c) may exceed unity; however, it is expected that in this case the 
suspension would be unstable, and that the increased settling rate would 
then be accompanied by the formation of doublets, triplets, etc. 
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94 DAVIS & ACRIVOS 

The third region within the settling vessel is a sediment layer that forms 
on the bottom of the vessel. Often it is assumed that C5 , the solids 
concentration in this layer, is a constant and is equal to the maximum 
random packing density of the spheres, which is about 0.6. In reality, the 
solids gradually compact in this zone as the liquid in the interstices between 
the spheres is slowly squeezed out. Thus, the sediment layer at the bottom of 
the vessel is sometimes called the compression zone or thickening zone. 
Mathematical models of the gravity thickening process have been reviewed 
by Dixon (1979). In general, the settling or compaction rate of the particles 
depends not only on the local solids concentration in the sediment but also 
on the concentration gradient, the depth of the sediment layer, and the 
interparticle forces between the closely packed spheres. 

Discontinuities in the solids volume fraction c occur at the interfaces that 
separate the suspension from the clear fluid at the top and from the 
sediment layer at the bottom of the vessel. If the suspension is sufficiently 
concentrated, gradients or discontinuities in the solids volume fraction may 
also appear within the interior of the suspension. The well-known 
kinematic-wave theory describing this phenomenon was first given by 
Kynch (1952), and it is not repeated here. A cohesive account of the theory 
and detailed criteria for the presence of internal concentration gradients 
can be found in the book by Wallis (1969). Recent developments include the 
application of one-dimensional kinematic-wave theory to settling vessels 
with nonconstant cross-section (Baron & Wajc 1979, Schneider 1982) and 
also the modification of Kynch's theory of sedimentation in order to 
account for the layer of compacting sediment that forms at the vessel 
bottom (Fitch 1983). 

Application of kinematic-wave theory to sedimentation, as well as the 
design of both batch and continuous settling vessels, requires knowledge of 
the hindered settling function f(c). Thus, considerable effort has been 
expended in the past to determine this function either experimentally or 
theoretically. 

Empirical Formulae for the Hindered Settling Function 
The results of many sedimentation and fluidization experiments reported in 
the literature have been summarized by Barnea & Mizrahi (1973) and 
Garside & Al-Dibouni (1977). The former authors proposed that the 
semiempirical formula 

(1- c)2 

f(c) = (1 + c1i 3) exp (5c/3(1- c)) 
(2.1) 

provides the best fit to existing experimental data for very small particle 
Reynolds numbers. On the other hand, the most commonly used empirical 
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SEDIMENTATION 95 

Figure 1 The hindered settling function f(c); --the empirical correlation given by 
Equation (2.2); --- the empirical correlation given by Equation (2.1); -- Batchelor's 
(1972) theory for dilute suspensions;---- the exact theoretical results of Sangani & Acrivos 
(1982) for simple cubic arrays. 

correlation is that attributed to Richardson & Zaki (1954), 

f(c) = (1-c)", (2.2) 

where, according to Garside & Al-Dibouni (1977), a value of n = 5.1 most 
accurately represents their data for small Reynolds number. These two 
functions are plotted in Figure 1 for comparison, and it is evident that their 
behavior is quite different, especially for small c. In the dilute limit, 
Equation (2.1) has the form 

f(c) ~ 1-c113, (2.3) 

whereas Equation (2.2), with n = 5.1, becomes, 

f(c) ~ 1-5.1c. (2.4) 

The experimental data reported by Garside & Al-Dibouni (1977) generally 
fall between the predictions of (2.1) and (2.2). 

Theoretical Formulae for the Hindered Settling Velocity 
We now direct our attention to the theoretical models that have been 
proposed for computing the settling function f(c). Among the earlier and 
more widely used are the so-called "cell models" or "self-consistent" 
schemes, which involve solving the creeping-flow equations within a fluid 
cell (typically assumed spherical) encasing a representative particle. The 
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96 DAVIS & ACRIVOS 

ratio of the particle volume to cell volume is set equal to the volume fraction 
of the particles in the suspension. One then obtains the formula f(c) = 

1- f3c 113
, but since the numerical value of the coefficient f3 depends on an 

ad hoc choice of the cell shape and boundary conditions on the surface of 
this cell, the reliability of such models is open to question. 

From a fundamental point of view, it is therefore preferable to compute 
f(c) via an exact analysis of the multi particle flow problem. Unfortunately, 
owing to the complexity of the mathematical system, the analysis has been 
restricted so far to dilute systems and is therefore of limited usefulness, 
although it has shed light on the reasons behind the discrepancy between 
(2.3) and (2.4). To begin with, when c ~ 0, it is natural to suppose that for the 
purpose of computing their influence on a representative or test particle, it 
suffices to replace all the other particles in the suspension by point 
singularities such as point forces, point dipoles, etc. The analysis is 
complicated, however, by the fact that in a system containing an infinite 
number of particles, the resulting sums or integrals are often divergent. This 
difficulty can be avoided in a number of ways; at present, the most popular 
is the renormalization technique first introduced by Batchelor (1972) in his 
analysis of the sedimentation of a statistically homogeneous, dilute 
suspension of monodisperse spheres. This technique has been elaborated 
on by Jeffrey (1974) and O'Brien (1979), and its salient features have also 
been summarized by Batchelor (1974). This method has been modified 
recently by Feuillebois (1984) in order to investigate the sedimentation of 
monodisperse spheres in a dilute suspension that is homogeneous in any 
horizontal plane but in which a vertical concentration profile is prescribed. 
Another approach is that of Hinch (1977), who constructs a hierarchy of 
equations describing the behavior of a two-phase macroscopically homoge­
neous material and shows how bulk parameters such as the sedimentation 
velocity can be computed in a systematic way. Another method is to use 
Fourier integrals and generalized functions (Saffman 1973). At any rate, it is 
generally accepted that the earlier difficulties involving nonabsolutely 
convergent sums or integrals can be overcome, and that, in principle at 
least, it should be possible to compute the settling function f(c) from first 
principles. 

Even in dilute systems, however, the departure of f(c) from unity depends 
on the configuration of the particles. Saffman (1973), who appears to have 
been the first to discuss this point in detail, considers three distinct pos­
sibilities: (I) regular periodic arrays of particles, (II) random fixed arrays, 
and (III) random free arrays. In a regular array, the force and the velocity 
are the same for each particle and, as first shown by Hasimoto (1959) 
and in more detail by Sangani & Acrivos (1982), f(c) ~ 1- f3c 113 + O(c), 
where f3 is a constant whose value depends on the assumed lattice con-

- ------- -- -- ~~~ 
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SEDIMENTATION 97 

figuration, e.g. f3 = 1.76 for a simple cubic lattice. On the other hand, for 
case II, first studied by Brinkman ( 194 7), the corresponding expression for f 
is, according to Hinch (1977), 

3 1/2 135 
f(c) ~ 1- fie -

64 
c In c-12.0c+ .... 

The most relevant case for sedimentation is, however, that of random free 
arrays, but here the probability density function P(r), which denotes the 
probability of finding a sphere with its center at r given that there is a sphere 
with its center at the origin, is not known a priori and can vary from system 
to system, depending on the conditions of the experiment. As a con­
sequence, the functional dependence of the hindered settling function on c 
can assume different forms, since f(c) is determined in part by P(r). A simple 
explanation of this dependence of the settling velocity on the structure of 
the suspension is as follows. The first correction to the Stokes settling 
velocity from the presence of a second sphere is of order ut0lajd, where dis 
the distance between the two sphere centers. In a random dispersion, for 
which P(r) is a constant for lrl > 2a and vanishes for 0::::;; lrl ::::;; 2a, there is 
an O(c) number of spheres, on the average, within a distanced = O(a). Since 
these near neighbors exert the greatest influence, we expect the correction to 
Stokes' law to be of the form f(c) ~ 1-O(c), and in fact Batchelor's (1972) 
exact analysis yields f(c) ~ 1-6.55c+O(c2

). If, on the other hand, the 
nearest neighbors are at a distance approximately equal to the average 
separation, i.e. d = O(ac- 113), and there are an 0(1) number of such 
neighbors, then we should expect that f(c) ~ 1- O(c1i 3

). Thus, which of the 
two empirical formulas (2.3) and (2.4) is predicted by theory depends on the 
assumptions made regarding the statistical structure of the suspension. 

The question that needs to be resolved now is whether a sedimenting 
suspension would be expected to have a random or an ordered microscale 
structure. Certainly, if Brownian motion is strong, the suspension will 
remain random. Indeed, in the experiments reported by Cheng & 
Schachman (1955), Kops-Werkhoven & Fijnaut (1981), Buscall et al. (1982), 
and Tackie et al. (1983) using micron- and submicron-sized uniform 
colloidal spheres, the sedimentation results at low concentrations were of 
the form f(c) ~ 1- yc + O(c2

). The observed values of y were generally in 
the range 4 to 6, and the linear form of the hindered settling function was 
accurate provided that c was less than about 0.08. Batchelor & Wen (1982) 
discuss these experiments more fully and conclude that the difference 
between the observed values of y and Batchelor's (1972) predicted value of 
y = 6.55 could be a consequence of van der Waals attractive forces causing 
an excess number of close pairs whose common speed offall exceeds the fall 
speed of an isolated sphere. On the other hand, for the suspensions 
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98 DAVIS & ACRIVOS 

containing larger particles listed by Barnea & Mizrahi (1973), the 
correction of Stokes' settling law was more closely represented by (2.3), 
which, from our discussion of the theory, indicates that the particles were 
not randomly distributed. Although Batchelor (1972) has shown that 
pairwise interactions alone will not give rise to the prediction of order in the 
suspension, this may not be the case when interactions between many 
particles are involved. 

Lynch & Herbolzheimer (1983) recently reported the first results of a 
numerical simulation designed to test this possibility. Although their results 
suggested that near-pairs of particles are less likely to persist in a 
sedimenting suspension, such a conclusion is only tentative at this stage. 
These authors also noted on theoretical grounds, however, that if 
multiparticle hydrodynamic interactions do cause the particles to become 
well spaced, then when the suspension is sheared the microscale arrange­
ment should be altered so as to cause the sedimentation velocity to increase. 
This prediction was verified in their Couette device experiments in that, at 
asymptotically high shear rates, the settling function was found to decrease 
as 1-4c, whereas when the shear was turned off, it returned to the form 
l-c113

. These results tend to further support the notion that there exists in 
sedimenting suspensions a microscale "structure" whose origin is at present 
unknown. 

3. SEDIMENTATION OF POL YDISPERSE 
SUSPENSIONS 

The majority oftheoretical and experimental investigations of the sedimen­
tation process have focused on monodisperse suspensions, whereas in most 
cases of practical importance, the suspensions contain particles having a 
range of settling velocities due to variations in their size, shape, and density. 
Again, we restrict our discussion to rigid spheres that have very small 
particle Reynolds numbers. We also assume that the suspension does not 
coagulate. First, let us note, however, that in contrast to monodisperse 
suspensions, the particles in a polydisperse suspension move relative to one 
another as a result of gravity. If this relative motion brings two particles 
sufficiently close to one another, then they will form a permanent doublet as 
a result of the attractive van der Waals force acting between them. The 
conditions governing the stability of a sedimenting polydisperse suspension 
and the rate of coagulation of an unstable suspension have been presented 
in the recent works of Melik & Fogler (1984), Davis (1984), and Wen & 
Batchelor (1984). 

Preliminary investigations of stable, i.e. noncoagulating, suspensions 
containing a small number of distinct species indicate that the particle 
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SEDIMENTATION 99 

concentration does not remain uniform. Instead, as the settling develops, 
the faster-falling particles move away from the others, thereby creating 
different regions in the interior of the suspension. The lower region, i.e. that 
just above the sediment layer, contains all the particle species at their initial 
concentrations, whereas the region immediately above it is devoid of the 
fastest-settling species. Each successive region contains one fewer species 
than the region below, with the upper region of the suspension containing 
only particles of the slowest-settling species (see Figure 2). In most cases, 
these distinct regions are separated by a near-discontinuity, or "shock," in 
the species concentration distribution; these shocks can be quite steep, but 
diffusion of the particles ultimately limits the steepening so that there is a 
sharp but continuous transition across each shock separating two regions 
of uniform concentration. For continuous distributions of particle sizes and 
densities, no distinct shocks develop, but rather the species concentrations 
vary continuously as a function of height in the settling vessel. 

In describing the above behavior, we have assumed that the spatial 
distribution of particles in any horizontal plane is uniform, and this is 
indeed true for dilute suspensions. However, in the settling of bidisperse 
suspensions at high enough solids concentrations, the remarkable observa­
tion has been made that vertical streams develop in the suspension. 
Whitmore (1955) was the first to describe this phenomenon after perform-

-Clarified fluid 
Shock 3 __.~-,,,........., ---,--....,..-,--! .. 

• •• t 

-Region 3 . · ... 
Shock 2 ...... t--~'--.-· -·-·--=-· -·...--i· ... · .... . . . . . ... . 

: • •• • • • •. --Region 2 . . . . . . . . . . . 
Shock 1 · • • • • • • • ~ ........... . 

. .... ~·;:~: -~.: -·~ •........... . . . . • ...... .. . . . . · .. ~. . 
:; •.• ·• · .• .· •• · -- Reg1on 
··• ·. :·. ! .... ·.•· 
~ •• • •• •• • ••• 0 -~ 

~ :~;~ :---~ ~: ~ .. -~ 
-- Sediment layer 

Figure 2 The regions that develop during the sedimentation of a mixture of three distinct 
species of particles. Region 1 contains all three species of particles, region 2 is devoid of the 
fastest-settling species, and region 3 contains only the slowest-settling species. 
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100 DAVIS & ACRIVOS 

ing experiments with a suspension containing a mixture of heavy particles 
and neutrally buoyant particles. He reported that, within a few moments 
after the well-mixed suspension was allowed to stand, a lateral segregation 
of the particles set in that evolved into vertical fingers of a few millimeters in 
width. These fingers were composed of fluid and only the particle species 
that was present in lower concentration embedded within a continuum 
composed of fluid and only the other particle species. The fingers 
containing the neutrally buoyant particles were convected upward, 
whereas the streams containing the heavy particles descended toward the 
bottom of the vessel at a rate appreciably greater than that prevailing in the 
absence of the neutrally buoyant particles. 

More recently, Whitmore's discovery of lateral segregation and sub­
sequent convection in bidisperse suspensions has been explored in more 
detail by R. H. Weiland and coworkers. Upon adding positively buoyant 
particles to an otherwise uniformly settling suspension, Weiland & 
McPherson (1979) also observed a rapid lateral segregation of the two 
species of particles into vertically directed streams. This phenomenon is 
depicted in Figure 3. The suspending fluid is aqueous glycerol with density 
1.12 gem- 3 and viscosity 4.95 cP, the heavy particles are polyvinylchloride 
spheres having a density of 1.41 gem- 3 and a mean diameter of 137 ,urn, and 
the buoyant particles are hollow ceramic spheres with a density of 0.595 g 
em- 3 and a mean diameter also of 137 ,urn. The heavy particles were dyed 
and appear as the light areas in the photograph, whereas fluid containing 
only buoyant particles is represented by the dark areas. Although the 
observed fingering structure develops most rapidly in systems containing 
buoyant and heavy particles, Weiland et al. (1984) report that fingering can 
also result when all the particles are more dense than the fluid but are of two 
distinct species, distinguishable by either density or size. 

The phenomenon described above is of course fascinating from the point 
of view of fluid mechanics, but in fact (contrary to some of the statements 
that have been made in the literature) it is of relatively minor importance as 
a means of increasing the overall settling rate or, equivalently, of decreasing 
the total time required to settle the suspension. This is because, as a result of 
the vigorous agitation and convection brought about by the presence of the 
vertical streamers, a suspension containing two types of particles (say, 
heavy particles and neutrally buoyant ones) will quickly stratify into two 
layers: a bottom layer containing only the heavy particles but at a 
concentration c)'j that is greater than the original concentration cH, and a 
top layer with all the lighter particles. The heavy particles then continue to 
settle as in vertical sedimentation, and although the volume occupied by 
this more concentrated suspension is smaller than that of the initial 
suspension, the fact that f(cJ'i) < f(cH) implies that the heavy particles wiii 
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SEDIMENTATION 101 

settle slower than would have been the case before. Thus, the total settling 
time may not be greatly reduced, and under some conditions it may even 
increase. In fact, in a recent paper that presents both a model of the vertical 
streams and also quantitative results of two-species sedimentation experi­
ments, Fessas & Weiland (1984) have reported that the settling rate of glass 
spheres in carbon tetrachloride can be accelerated up to sixfold upon the 
addition of PVC particles; however, the total settling time, which includes 
both the accelerated convection of the vertical streamers and the sub­
sequent hindered settling of the concentrated heavy particles, has been 
observed to be reduced by no more than a factor of two (Weiland & 
McPherson 1979). Often the observed enhancement is considerably less 
than this. Finally, we note that if the total solids concentration is too low 

Figure 3 Vertical finger formation during sedimentation of a mixture of buoyant and heavy 
particles. The photograph was taken 60 seconds after mixing was completed, and the heavy 
particles are dyed. (From Weiland et al. 1984.) 
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(less than about 10% by volume), lateral segregation and fingering are not 
observed, and both solids components settle at reduced rates. Moreover, 
the cause of the lateral segregation of two species has heretofore not been 
addressed in the literature. This appears to be a question of hydrodynamic 
stability involving multiparticle interactions, certainly a fascinating area for 
future research. 

We now return to our original description of the polydisperse sedimen­
tation process and restrict our attention to suspensions where the spatial 
distribution of particles in any horizontal plane remains uniform. When a 
dispersion is extremely dilute, each individual particle falls with its Stokes 
velocity given by (1.1 ). Stokes' law provides a quantitative description of the 
sedimentation process for such dilute suspensions and forms the basis for 
the design of many particle-size analyzers. However, as stated earlier, even 
when the total volume fraction of particles exceeds only about 0.01, the 
behavior differs significantly from the prediction of Stokes' law as a 
consequence of interactions between particles of the various species. In 
particular, when a polydisperse suspension is not extremely dilute, the 
volume fraction of any one particle species differs in the various regions in 
the suspension. For a discrete distribution of N distinct particle species, 
Smith (1966) has derived from the requirement of particle flux continuity 
that 

i = k+1, ... ,N, (3.1) 

where the superscript (k) refers to the conditions in region k (the regions are 
numbered sequentially starting at the bottom of the vessel-see Figure 2), 
and the subscripts refer to the particle species, which are numbered such 
that the fastest-settling species in region k is denoted as species k, i.e. c~k> = 0 
for i < k. A particle of species i has radius ai> density P;, volume fraction ci> 
and a Stokes settling velocity u~0>. Its average fall speed v; depends on the 
local concentrations of all of the particles present, and we express this as 

(3.2) 

where c is the vector of the volume fractions of all of the particle species. In 
general,/; will differ for each particle species, and it will depend also on the 
effects of Brownian motion and interparticle forces, as discussed below. 

In view of the fact that the average settling velocities are related to the 
volume fraction of all species present, Equation (3.1) represents a system of 
coupled, nonlinear algebraic equations for the unknowns elk+ 1> that can be 
solved numerically using standard iterative techniques. Knowledge of the 
elk+ 1> values, together with (3.2), suffices to give a complete description of 
the separation process. For continuous distributions of particles, Davis et 
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al. (1982) and Greenspan & Ungarish (1982) have shown that the difference 
equations given by (3.1) are replaced by differential equations. However, 
these differential equations can be solved by finite-difference techniques 
that yield a set of coupled equations similar to (3.1) with N large. 

In order to carry out the calculation described above, it is of course 
necessary to know the hindered settling function /;(c) for polydisperse 
suspensions. Smith (1965, 1966, 1967) has presented a theoretical cell model 
for the sedimentation ofmultisized particles that is an extension of the fluid 
cell model originally proposed by Happel (1958) for the settling of equisized 
particles. Smith's theory successfully predicts the trends of measured 
settling velocities with changing solids concentration, but it underestimates 
the velocities, just as does the cell theory for the settling of a single species. 
Lockett & Al-Habbooby (1973, 1974) carried out sedimentation and 
counter-current solid-liquid vertical-flow experiments with binary particle 
mixtures. They proposed that the monodisperse Richardson & Zaki (1954) 
correlation [Equation (2.2)] could be applied to particles of each of the two 
sizes in a binary suspension simply by using the total local solids volume 
fraction c = L:ci without any reference to the individual particle species. 
Mirza & Richardson (1979) extended the Lockett & Al-Habbooby model 
to the sedimentation of multisized particle systems. The models of both of 
these sets of authors were found to predict sedimentation velocities that 
were larger than those found experimentally. In order to obtain a better 
representation of their experimental data, Mirza & Richardson (1979) 
applied an additional empirical correction factor of (1-c)0

·
4 to the 

predicted sedimentation velocities. In a similar study, Selim et a!. (1983) 
treated equidensity particles and used the total local volume fraction of 
solids in the Richardson & Zaki correlation for the slip velocity of the 
particles relative to the fluid; in addition, they proposed that the Stokes 
settling velocity of a particle of species i be modified by replacing the fluid 
density pin (1.1) with the average density of a suspension consisting of fluid 
and of particles of sizes smaller than that of species i. Clearly, this approach 
represents only an ad hoc model for the effects of particle interactions 
between different species; nonetheless, using concentrated suspensions with 
0.12 ::;::; c ::;::; 0.45, Selim et al. (1983) found very good agreement between 
their model and experiments. 

In an application of steady-state continuous sedimentation of poly­
disperse suspensions in an inclined settling channel (see the following 
section), Davis et al. (1982) measured the total solids concentration as a 
function of height in the channel for a feed suspension containing a known 
"bell-shaped" particle-size distribution. These authors compared their data 
with theoretical predictions based on the assumption of Lockett & AI-
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Habbooby (1973, 1974) that the hindered settling effect is adequately 
represented by empirical correlations for monodisperse suspensions. For 
total solids volume fractions in the feed of 2 and 5%, the experimental data 
lay in-between the theoretical predictions using (2.1) and (2.2) for the 
hindered settling function. 

In each of the theoretical models discussed above, the results for 
monodisperse suspensions were used to predict the effects of particle­
particle interactions in polydisperse systems, or else an ad hoc modification 
of the monodisperse results was introduced. However, for general systems 
containing large variations in particle sizes or densities, we would not 
expect that polydisperse settling phenomena could be accurately described 
by this type of approach. On the other hand, for suspensions that are 
sufficiently dilute that pairwise particle interactions are dominant, the 
hindered settling effect can be calculated exactly. Such a calculation has 
been presented recently by Batchelor (1982). Following his earlier investi­
gation of monodisperse suspensions, Batchelor showed that the mean 
velocity of a particle of species i in a stable dispersion of N distinct species is 

v; = u!0
l {1 + I Siici}• 

j= 1 
i = 1,2, .. . ,N, (3.3) 

correct to order c. The dimensionless sedimentation coefficient Sii is a func­
tion of(a) the size ratio A= a/a;, (b) the reduced density ratio y =(pi-p)/ 
(p;- p), (c) the Peclet number of the relative motion of an i particle and aj 
particle, and (d) a dimensionless measure of the interparticle force potential. 
The Peclet number, whose inverse measures the effect of Brownian diffusion 
compared with the effect of relative motion due to gravity, is typically of 
order unity for micron-sized spheres in water, and it increases in proportion 
to (a;+ a ) 4 for a given A. 

The computation of the sedimentation coefficient Sii for a pair of unlike 
spheres is much more complicated than for equal spheres, because the pair­
distribution function -defined as the probability of finding the center of a 
particle of species j in unit volume at a position r relative to the center of a 
particle of species i- is nonuniform and must be determined as part of the 
solution. This distribution function is governed (a) by a particle-pair 
conservation equation that in a dilute dispersion depends on the relative 
motion of two particles through the suspending fluid due both to gravity 
and to any interactive force that may act between the two particles; and (b) 
by Brownian diffusion of the two particles. For details of the calculation of 
the pair-distribution function and the sedimentation coefficients, the reader 
is referred to Batchelor (1982) and to a sequel paper by Batchelor & Wen 
(1982), in which numerical results for these quantities have been compiled. 
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4. ENHANCED SEDIMENTATION IN INCLINED 
CHANNELS 

The sedimentation process is often very slow, especially when the particles 
are small, and hence there exists a need for constructing simple devices that 
could accomplish this solid-liquid separation more rapidly. One such class 
of devices, known commercially as "supersettlers" or "lamella settlers," 
consists of settling vessels having inclined walls and in which the retention 
times can be reduced by an order of magnitude or more below those in 
corresponding vertical settlers. These settlers may be composed either of a 
narrow tube or channel inclined from the vertical or of a large tank 
containing several closely spaced tilted plates. 

The phenomenon of enhanced sedimentation in inclined channels has a 
long history, and one of the first references to appear in the literature is 
attributed to the physician Boycott (1920), who observed that "when ... 
blood is put to stand in narrow tubes, the corpuscles sediment a good deal 
faster if the tube is inclined than when it is vertical." Subsequently, many 
investigators have studied the phenomenon for a variety of suspensions and 
have reported that a severalfold increase in the sedimentation rate could 
indeed be achieved; an excellent summary of the early papers on the subject 
is given by Hill (1974). 

The enhancement in the sedimentation rate can be viewed as resulting 
from the fact that whereas particles can only settle onto the bottom in a 
channel with vertical walls, such particles can also settle onto the upward­
facing wall in a tilted channel, as shown in Figure 4. These particles then 

A 

Figure 4 The different regions of the flow 
field during sedimentation in an inclined 
channel: (A) region of particle-free fluid 
above the suspension, (B) interface between 
the particle-free fluid and the suspension, 
(C) suspension, (D) thin particle-free fluid 
layer ·beneath the downward-facing sur­
face, (E) concentrated sediment. 

·rnr'd -4 .• 
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form a thin sediment layer that rapidly slides down toward the bottom of 
the vessel under the action of gravity. Thus, one can interpret the increase in 
the settling rate as due to an increase in the surface area available for 
settling. Of course, since the suspension is incompressible, coincident with 
the removal of particles from the suspension, there must also occur an 
accompanying production of clarified fluid. This takes place at the top of 
the suspension and along the downward-facing wall, where a thin clear­
fluid layer is formed (cf. Figure 4). This particle-free layer is buoyant 
compared with the bulk suspension, and the fluid within it flows rapidly to 
the top of the vessel. Also, this layer reaches a steady-state thickness in a 
relatively short time, because the fluid that is being entrained into the layer 
exerts a drag force on the particles at the interface that counterbalances the 
normal component of the gravitational force on these particles. 

Although this so-called Boycott effect of enhanced sedimentation has 
been known for many years, it has only recently been analyzed using first 
principles. Hill et al. (1977) were the first to study the phenomenon 
theoretically using the appropriate equations of continuum mechanics. 
These authors used a numerical solution to obtain the flow profiles and 
sedimentation rates in various upward-pointing cones. Subsequently, 
Probstein et al. (1981), Rubinstein (1980), and Leung & Probstein (1983) 
performed an analytical analysis of continuous steady-state settling in 
relatively long and narrow inclined channels and treated the problem as a 
two-dimensional viscous channel flow. Their analysis includes three 
stratified layers: a clarified layer, a suspension layer, anp a sediment layer. 
Equations were developed for the velocity profiles and fluxes in each of 
these layers, as well as for the location of the interfaces separating them. 
Concurrently, Acrivos & Herbolzheimer (1979) and Herbolzheimer & 
Acrivos (1981) presented analytical derivations of the laminar-flow profiles 
in two-dimensional inclined channels for both batch and continuous 
settling. The former paper applies to low-aspect-ratio vessels in which the 
clarified-fluid layer that forms beneath the downward-facing wall of the 
channel is much smaller than the spacing between the walls (see Figure 4), 
whereas the latter paper considers very tall and narrow vessels in which the 
clarified-fluid layer occupies an appreciable portion of the channel. 

A result common to each of the analyses discussed above is the 
verification of the expression for the clarification rate given via an 
elementary kinematic model by Ponder (1925) and independently by 
Nakamura & Kuroda (1937)-the so-called PNK theory. This theory 
states that the rate of production of clarified fluid is equal to the vertical 
settling velocity of the particles multiplied by the horizontal projection of 
the channel area available for settling. For the parallel-plate geometry of 
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Figure 4, the expression is 

S*(t) = v0b (cos 9+ ~sin 9). (4.1) 

where S*(t) is the volumetric rate of production of clarified fluid per unit 
depth in the third dimension of the vessel (hereafter referred to as the 
settling rate), v0 is the vertical settling velocity [i.e. (1.1) multiplied by the 
hindered settling function f(c) discussed earlier], 9 is the angle inclination 
of the plates from the vertical, b is the spacing between the plates, and L is 
the length of the vessel. It is evident from (4.1) that the augmentation in the 
rate of settling should be O(L/b), which, in principle, could be made 
arbitrarily large by decreasing the spacing between the inclined walls. 

The enhancement in the settling rate predicted by (4.1) holds true only so 
long as the flow in the channel remains laminar. Under some conditions, 
however, waves have been observed to form at the interface between the 
suspension and the layer of particle-free fluid underneath the downward­
facing wall (Pearce 1962, Probstein & Hicks 1978, Leung 1983, 
Herbolzheimer 1983, Davis et al. 1983). These waves grow as they travel up 
the vessel and often break before reaching the top of the suspension. 
Evidently, the occurrence of such an instability limits the efficiency of the 
inclined settling process, because when the waves break, fluid that has 
already been clarified is remixed with the suspension. A photograph 
depicting this phenomenon is shown in Figure 5. The particles are glass 
spheres having a density of 2.44 gem- 3 and an average diameter of 130 ,urn. 
The suspending fluid is a synthetic Newtonian lubricant having a density of 
1.05 gem- 3 and a viscosity of 10 cP. 

Recently, classical linear stability theory has been applied to the inclined 
settling process by Herbolzheimer (1983), Davis et al. (1983), and Leung 
(1983) in order to elucidate the conditions under which the flow becomes 
unstable and to determine the growth rate of the waves. In what follows, we 
present the findings of these stability analyses, preceded by a brief 
discussion of the laminar-flow profiles. 

Theory and Experiments for Laminar Flow 
We consider here the suspension to be composed of a Newtonian fluid and 
identical solid spheres of vanishingly small particle Reynolds number. The 
sedimentation of polydisperse suspensions in inclined channels has been 
treated by Davis et al. (1982), to which the reader is referred for details. A 
key feature of our analysis is to treat the suspension as an effective fluid 
whose properties depend on the solids volume fraction. The particles are 
assumed to move with the bulk average velocity plus a slip velocity in the 
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direction of gravity equal to the vertical settling velocity of the suspension. 
The latter is determined either from a vertical sedimentation experiment or 
from an empirical correlation. Aside from the vessel geometry and solids 
volume fraction, a complete description of the settling process is governed 
by two dimensionless parameters: R, a sedimentation Reynolds number; 
and A, the ratio of a sedimentation Grashof number to R, where 
R = pHv0/J1and A= H 2g(p5 -p)c0 /v0 f.1, with H being the vertical height of 
the suspension and c0 the volume fraction of solids (which remains uniform 
everywhere within the interior of the suspension). Since in most cases of 
interest, A is 0(106}--0(108

) while R is only 0(1}--0(10), an asymptotic 
analysis for determining the details of the motion was developed by Acrivos 
& Herbolzheimer (1979) and Herbolzheimer & Acrivos (1981) by taking 
A » 1 with RA- 113 « 1. In this limit, the flow along the channel in the thin 
clarified-fluid layer to leading order is parallel and fully developed. In 
particular, if a coordinate system is defined with x directed along the 
downward-facing wall of the channel and y perpendicular to it, then 

Figure 5 Wave formation and breakage during sedimentation in an inclined channel. 
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provided that the aspect ratio of the channel is not too large, the velocity in 
the x direction is given by 

u = A 1 i 3(jlb -lJi2
) cos 8, ( 4.2) 

where the velocity u has been rendered dimensionless by v0 , J =A 113<5, 
y = A 1 i 3y, andy is the distance from the wall made dimensionless by H. 
Also, after a short initial time period, the thickness of the clear-fluid layer 
reaches a steady-state thickness, which for the parallel-plate geometry is 

b(x) = A - 113(3x tan 8)113 , (4.3) 

where both <5 and x have been made dimensionless by H. An experimental 
determination of the clarified-fluid layer thickness provides a sensitive test 
of the theory, and in a series of experiments reported by Acrivos & 
Herbolzheimer (1979), measurements of <5(x) and of the sedimentation rate 
were in excellent agreement with the predictions. Since the thickness of the 
clear-fluid layer scales as A - 113, it will remain thin relative to the channel 
width so long as bjH »A - 113 . Also, in view of the fact that the clarified­
fluid layer has a very large velocity at its interface with the adjacent 
suspension, it drives a boundary-layer flow in the suspension region. The 
details of the boundary-layer analysis that describes this flow are given in 
Acrivos & Herbolzheimer (1979). 

When the aspect ratio ofthe channel, H/b, is of order A1 i 3 or greater, the 
clear-fluid layer occupies an appreciable fraction of the channel. Under 
these conditions, the flow along the channel to leading order is parallel and 
fully developed in both the clear-fluid layer and the adjacent suspension 
layer. In particular, the velocity in the up-channel direction is given by 
(Rubinstein 1980, Herbolzheimer & Acrivos 1981) 

{
6Q - - - - } u = A1i 3 b ji(l- ji)-ji[(<5+ 1/2)ji-c5] (1-<5)2b2 cos 8 , (4.4a) 

in the pure-fluid layer (i.e. for 0 ~ y ~ J), and by 

u. = A 113 
{

6i ji(l- ji)-(1- ji)[(3/2-J)y-1/2]J2P cos 8 }, (4.4b) 

in the suspension layer (i.e. for J ~ y ~ 1). The variables have been made 
dimensionless using H 0 and v0 as the characteristic length and velocity, 
respectively. The variable Q is the net flow rate of material across any plane 
of constant x, b = A 113b/H0 is an 0(1) quantity by definition, y is the 
fractional distance across the channel (i.e. y = A 113 yjb), andy = J(x, t) is the 
equation for the interface separating the pure fluid and the suspension. For 
simplicity, the presence of the sediment layer on the upward-facing wall has 
been neglected, and the viscosity of the suspension has been set equal to that 
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of the pure fluid. These approximations are accurate in the dilute limit, and 
removing them is relatively straightforward (Herbolzheimer 1980, Leung & 
Probstein 1983). 

In order to complete the description of the laminar-flow field in these 
high-aspect-ratio vessels, it is necessary to determine the thickness of the 
clear-fluid layer b(x, t) from the kinematic condition for the interface. For 
batch settling, one surprising result is that the clear-fluid layer attains a 
steady shape only along the lower portion of the channel given by 

(4.5a) 

while, in contrast, its thickness is independent of position and sweeps across 
the upper portion of the vessel linearly with time above some critical point 

b = A 113 t sin 9j6. (4.5b) 

In other words, when viewed as a function of distance along the channel, the 
thickness of the clear-fluid layer becomes discontinuous. The equation for 
the point of discontinuity separating the two parts of the interface is given 
by Equation (3.7) of Herbolzheimer & Acrivos (1981), who also report 
experimental verification of this interesting behavior. 

Of greater practical interest than batch settling is the continuous 
operation of inclined settlers. Even though (as mentioned earlier) the 
thickness of the clear-fluid layer remains transient in the upper portion of 
the vessel for batch systems, the analyses of Herbolzheimer & Acrivos 
(1981) and Leung & Probstein (1983) predict that high-aspect-ratio settlers 
can be operated continuously provided the feed and widthdrawallocations 
are chosen properly. A thorough discussion of the feed and withdrawal 
conditions that should lead to a steady operation of such settlers is found in 
Section 4 of Herbolzheimer & Acrivos (1981). We focus here on two such 
regimes that are of the most widespread interest. In the first regime (regime 
1), the feed is introduced at the bottom of the vessel while clarified fluid is 
removed from the top, so that a net flow of fluid up the channel is 
maintained. In this case, b(x) is governed by 

-- fj3 - -
(3-2b)b 2 Q+ 3 b3(1-b? cos 9 = x sin 9, (4.6) 

where [from (4.1)] Q = tan 9 +A - 1136 sec 9 ~ tan 9. Numerical solutions 
of(4.6) are possible for all values of 6, and experimental verification of these 
solutions has been reported by Davis eta!. (1983). 

In regime 2 both the feed and withdrawal are located at the top of the 
vessel. Thus Q = 0 everywhere along the channel, and (4.6) has two steady 
solutions, 

(4.7) 
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The existence of these two solutions was first predicted by Probstein et al. 
(1981). In the solution with the negative root, termed the "subcritical 
mode," the thickness of the clear-fluid layer vanishes at the bottom of the 
vessel and then grows with x-as is always observed in batch settling­
whereas in the second solution, termed the "supercritical mode," the 
suspension layer vanishes at the bottom of the vessel and then grows with x. 
Which of these two modes is realized in practice cannot be predicted from 
the fully developed flow theory discussed thus far. However, Rubinstein 
(1980) has presented a two-dimensional model for the entry-flow problem 
that enables one to relate the realization of a particular mode to the feed and 
withdrawal conditions at the top of the channel. The supercritical mode of 
operation was first observed experimentally by Probstein & Hicks (1978), 
and later by Leung & Probstein (1983), who argued that this mode may be 
advantageous in suppressing the effects of any remixing of the particle-free 
fluid and the suspension; such remixing might occur ifthe interface between 
these regions became unstable. However, as can be seen from (4.7), real 
solutions for regime 2 exist only for b > 4(3 sec 9 tan 9)113

; this restriction 
limits the maximum aspect ratio that can be used for the top-feeding modes. 
On the other hand, a vessel with the feed at the bottom can be operated, in 
principle, for arbitrarily large values of the aspect ratio. Hence, if the flow 
remains stable, the highest possible enhancement in the settling rate can be 
achieved using regime 1. The aim of the stability analysis that follows is to 
predict the conditions under which the flow will remain stable. 

Theory and Experiments for Unstable Flow 
It has been noted earlier that in certain cases the interface between the clear­
fluid slit and the suspension becomes wavy. Evidently, the occurrence of 
such an instability limits the efficiency of the inclined settling process, 
especially when the waves break. This phenomenon of wave formation and 
growth is similar to the well-known problem of a falling liquid film on an 
inclined surface, which has also been observed to become unstable. In order 
to investigate the origins of this problem, a linear-stability analysis has been 
performed for the laminar-flow profiles presented in the previous section. 
The details of this analysis can be found in the recent papers by 
Herbolzheimer (1983) and Davis et al. (1983). 

The theoretical development proceeds along the lines of the classical 
works by Yih (1963) and by Benjamin (1957), who studied the instability of 
the falling liquid film. The disturbances to the base-state flow are assumed 
to be two dimensional and infinitesimally small and are expressed as 
superpositions of normal modes of the general form 

\!'(x, y, t) = t/J(y) exp i(a.x- wt), 

<l>(x, y, t) = <p(y) exp i(a.x- wt), 

(4.8a) 

(4.8b) 
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where, since the waves are spatially (rather than temporally) growing, the 
wave number of the disturbance oc is treated as complex, while the frequency 
w is a real constant. Also,'¥ and <I> are the normal-mode disturbance stream 
functions in the clear-fluid layer and in the adjacent suspension layer, 
respectively. A similar expression applies for the displaced position of the 
interface separating these two regions. The analysis is a local (quasi-parallel 
and quasi-steady) one, because the base-state profiles vary parametrically 
with x and t but only slowly compared with the variations in the 
disturbances. 

When (4.8a,b) are substituted into the linearized momentum equations 
for the disturbances, the well-known Orr-Sommerfeld equation results, 
together with the associated boundary conditions of no-slip at the walls and 
matching of velocity and stress at the interface. This system represents an 
eigenvalue problem with oc as the complex eigenvalue. If the solution of this 
problem yields a positive value for oci> the imaginary part of the eigenvalue, 
then the disturbances are damped as they travel up the vessel; whereas, if oc1 

is negative, then these same disturbances grow and the system is unstable. 
The Orr-Sommerfeld equation was first solved asymptotically for small 

frequencies. [This corresponds to long wavelengths, since the wave speed, 
scaled with the average velocity in the clear-fluid layer, remained 0(1).] 
These results were then supplemented with a numerical analysis because 
the most highly amplified waves were found to occur for moderate values of 
the frequency and the Reynolds number. For sedimentation in low-aspect­
ratio vessels, the asymptotic results of the linear theory show that small 
disturbances always grow, i.e. that the presumably laminar flow in the 
narrow slit is always unstable, provided that the local Reynolds number Rx 
is greater than 140J/(57 cos 9), which is generally very small. An equivalent 
result was found by Leung (1983), who performed a long-wavelength 
analysis of the stability of the "supercritical" mode having a very thin 
suspension layer. However, the rate of growth of the disturbances in each 
case depends on R, A, and the geometrical and physical properties of the 
system, so that under many circumstances these disturbances do not grow 
to a visible size over the length of the vessel. Thus, in many of the 
experiments described earlier, the flow appeared to be stable. The local 
exponential amplification factor for the wave growth is -oci> which is seen 
plotted in Figure 6 for the most unstable mode as a function of 9 and for 
various values of the local Reynolds number Rx. Clearly, according to the 
predictions of the theory, the waves have a maximum amplification that 
generally occurs in the range 9 = 5-15°. 

Using the linear-stability analysis as a guide, experiments for which a 
visible observation of the instability was expected were performed by 
Herbolzheimer (1983), both on a batch and a continuous basis, under the 
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Figure 6 The parameter -a1M (3xjA) 1i 3 

for the most unstable mode versus the angle 
of inclination 9 for a low-aspect-ratio vessel 
with c0 = 0.05 and Rx = 1, 2.5, 5, 10, 15. 
(From Herbolzheimer 1983.) 

following set of conditions: 8 s H 0 jb s; 15, 5 s 8 s 50°, 4 s R0 s 25, 
7 x 106 S:: A0 s 2 x 108

, 0.005 S:: c0 S:: 0.15 (where H 0 refers to the initial 
height of the suspension, and R0 and A0 are equivalent to R and A, 
respectively, only with L replacing H in their definitions). The experimental 
data were found to follow the general trends predicted by the linear theory. 
In particular, the distance along the channel at which waves first become 
visible, xi, was measured because the inverse of this distance provides an 
experimental indication of the average growth rate of the waves 
(Herbolzheimer 1983, Davis et al. 1983). A& an example of these measure­
ments, 1/xi is plotted in Figure 7 as a function of 8 for c0 = 0.05 and various 
values of R0 . From the figure, it is evident that the shapes of the curves are 
very similar to the corresponding theoretical predictions for the maximum 
amplification rates shown in Figure 6. 

The linear stability analysis and experiments described above have been 
extended to determine the amplification rates of waves in tall, narrow 
channels with Hjb ~ O(A 113). This case is of particular interest, since in light 
of(4.1 ), such vessels give very high enhancement in the clarification rate. It is 
important to know, therefore, under what conditions, if any, a stable 
operation of these vessels can be achieved. The analysis for these high­
aspect-ratio vessels led to a critical Reynolds number R 0 , below which the 
system can be expected to be stable to infinitesimal disturbances, unlike the 
case oflow-aspect-ratio vessels, which were shown to be unstable for all but 
very small values of the Reynolds number. In general, it was shown by 
Davis et al. (1983) that Rc increased with increasing Hjb and increasing 8. 
Thus, the same geometric factors that lead to the highest enhancement in 
the settling rate also give the most stable operating conditions-a 

-----~·--~- ~·-
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8 

Figure 7 The inverse of the visually determined wave inception distance 1/x, versus the angle 
of inclination 9 for a low-aspect-ratio vessel, with c0 = 0.05, A0 = 8.7 x 107

, and R0 = 5.7, 10, 
and 24. The solid lines are visual best-fit estimates through the data. (From Herbolzheimer 
1983.) 

surprising result that can be very useful in the future design of 
"supersettlers." 

This exciting prediction was tested in the laboratory using a bottom­
feeding continuous vessel with an aspect ratio of approximately 100, and 
the results were in very good agreement with the linear theory. This can be 
seen in Figures 8 and 9, where the amplification rates of the waves are 
plotted for theory and experiment, respectively, as functions of 9 under the 
conditions A0 = 1.3 x 107

, b0 = 2.4, c0 = 0.01, and for various values of 
the Reynolds number. The theoretical amplification rates are computed at 
the location midway up the channel. Compared with the low-aspect-ratio 
case (Figures 6 and 7), there is dramatic stabilization for 9 > 20°. 

5. CONCLUSIONS 

In this review, we have considered recent advances in the understanding of 
the sedimentation of monodisperse suspensions, the sedimentation of 
polydisperse suspensions, and enhanced sedimentation in inclined chan­
nels. Although sedimentation is a classical subject with a long history, it is 
our hope that the reader will be convinced that many opportunities for 
future research still very much exist. From our discussion, which has been 
limited to dispersions of rigid spherical particles having zero particle 
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8 

Figure 8 The scaled maximum amplification factor -A.J 113
1XIM versus the angle of 

inclination 9 for regime 1, with x 0 = 1/2, b0 = 2.365, and R 0 = 10, 20, 40, and 60. (From Davis 
et al. 1983.) 

Reynolds numbers, it is evident that continued research is needed in many 
areas. Certainly, the problem of determining the effects of multiparticle 
interactions during the sedimentation of random, concentrated suspen­
sions is both an important and a challenging one. Moreover, for dilute 
dispersions, the question still remains as to whether or not a settling 
suspension develops a structure having a length scale comparable to the 
mean particle spacing. Also, further experimental and theoretical research 
is needed in order to relate the macroscopic properties of a sedimenting 
polydisperse suspension to the local microphysical interactions between 
the different particles. The augmentation of the sedimentation rate in 
inclined channels holds great promise for the design of high-capacity 
settling vessels; continued work needed in this area includes studying the 
effects of inertia on the laminar-flow profiles in the channel and performing 
a nonlinear analysis in order to investigate the breaking of the waves at the 
liquid-suspension interface and to determine the extent of the subsequent 
remixing of the clarified fluid with the suspension. 

Beyond this, there is considerable scope for further research on the 
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C0 = 0.01 

e 
Figure 9 The inverse ofthe visually determined wave inception distance 1/x, versus the angle 
of inclination 9 for regime 1, with c0 = 0.01, A.0 = 1.3 x 107

, b0 = 2.4, and R 0 = 24, 48, and 68. 
The solid Jines are visual best-fit estimates through the data. (From Davis eta!. 1983.) 

sedimentation of nonspherical particles, of nonrigid particles such as drops 
and bubbles, and of particles having nonzero inertia. Also, as shown by the 
pioneering studies of Greenspan (1983) and Ungarish & Greenspan (1983, 
1984), the effects of rotation and of the associated centrifugal forces on the 
separation of particles from a suspension give rise to a host of fascinating 
flow phenomena that are of interest from both the fundamental and 
practical points of view; these deserve a great deal more attention. 
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