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Pursuant to 28 U.S.C. § 1746, I, Andre L. Davison, hereby declare and state as 

follows: 

1. I am a Research Technology Manager in the Library and Research 

Services department of Blank Rome LLP. I hold a Master of Science in Library 

and Information Science from the University of North Texas.  

2. One of the duties I perform in my position is locating and procuring 

physical copies of books, articles, and similar resources in libraries and other 

repositories.  
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3. I was asked to locate a physical copy of the article “Sedimentation of 

Noncolloidal Particles at Low Reynolds Numbers,” by Robert H. Davis and 

Andreas Acrivas, published in the Annual Review of Fluid Mechanics, Vol. 17, 

1985 (hereafter, the “Davis article”). Therefore, I performed a search for the Davis 

article using the website of OCLC’s WorldCat (www.worldcat.org). WorldCat is a 

well-known resource for locating libraries holding specific materials in their 

collections. The WorldCat website indicated that the Davis article could be found, 

among other libraries, at Rice University’s Fondren Library in Houston, Texas. 

Therefore, I contacted Fondren Library and asked for a copy of the Davis article. 

4. Exhibit 1005 to Enercorp Sand Solutions, Inc.’s Petition for Inter 

Partes Review of U.S. Patent No. 8,945,256 is a true and correct copy of the Davis 

article, as received from Ms. Elise McCutchen, a Senior Library Associate at 

Fondren Library. 

5. I was also asked to determine if the Davis article had been publically 

cited by others since its publication. The Davis article’s publisher, Annual Reviews 

Inc., maintains a website where copies of its publications may be purchased 

(www.annualreviews.org). The Annual Reviews website also uses the “Web of 

Science” citation network, which one may use to determine what works have cited 

a particular work. According to this functionality on the Annual Reviews website, 

the Davis article has been cited 250 times as of September 6, 2018. A true and 
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correct copy of the list of those citations, printed out from the Annual Review 

website, is attached hereto as Exhibit A. 

6. The first citation by someone who was not one of the authors of the 

Davis article is “Magnetocentrifugal separation of particulates: Theory and 

principles of operation,” by Yoram Zimmels, published in the Journal of Applied 

Physics in 1986 (the “Zimmels article”). To verify that this article indeed cited to 

the Davis article, I reviewed a copy of that article purchased from the Journal of 

Applied Physics. A true and correct copy of Zimmels article that I reviewed is 

attached hereto as Exhibit B.  

7. The Zimmels article cites the Davis article at footnote 30. Footnote 30 

states: “30R.E. Davis, Ann. Rev. Fluid Mech. 17, 91 (1985).” This appears to 

correctly reference the author, publication and volume number, first page, and 

publication date of the Davis Article. 

 

I declare under penalty of perjury under the laws of the United States of America 

that the foregoing is true and correct.   

 

Executed on the 14th day of September 2018 in Houston, Texas. 
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Magnetocentrifuga' separation of particurates: Theory and principles 
of operation 

Yoram Zimmels 
Department of Ciuil Engineering, Technion /IT, Hai/a, Israel 

(Received 3 January 1986; accepted for publication 29 April 1986) 

The theory and principles of operation of the new magnetocentrifugal separation are 
formulated. Magnetic and centrifugal g numbers for monodisperse and polydisperse 
particulates are defined. It is shown that the magnitude of electromagnetic and centrifugal 
forces can be matched in the fuU scale of centrifugal fields available to date. 
Magnetocentrifugal separation can be applied to separation of particulates down to colloidal 
and molecular sizes, and using a stationary fluid, it is independent of particle size, being 
controHed by density and magnetization of particles and fluid. Magnetic field configurations, 
different cases related to magnetization and density distributions of particulates, and specific 
modes of operations are discussed. Finally, diffusion controlled systems and potential 
applications of the new technology are considered. 

I. INTRODUCTION 

Centrifugal separation is used in many industrial and 
laboratory operations that involve processing of particles in 
a fluid. 1-4 This technique provides enhanced sedimentation 
velocities of particles relative to a fluid in which they are 
dispersed on one hand, and to enhanced flow of fluid 
through a bed formed from such particles 1-4 on the other 
hand. Enhanced sedimentation and flow velocities are par­
ticularly desirable in systems that involve dispersions of fine 
particles in a fluid. Fine particles are slow in moving through 
fluids and, once deposited on a supporting surface, are ex­
pected to form high resistance beds to the flow of fluids 
through them. 1-3 Here high driving body forces which are 
called for can be established by high acceleration fields. A 
wide spectrum of such fields is availabl.e today, i.e., from the 
earth gravitational acceleration (g) up to hundreds of thou­
sands of g's. 4.5 

For example, standard commercial centrifuges provide 
accelerations equivalent to thousands and ten thousands of 
g's,3-5 and standard commercial ultracentrifuges extend this 
range up to 350000 g's.s For a given temperature and pres­
sure, the required levels of acceleration field depend on the 
size of the dispersed particles, density difference between 
dispersed and continuous phases, concentration and distri­
bution properties of the dispersed phase, and on viscosity of 
the fluid. Particle size is the most important parameter when 
considering sedimentation velocities and resistance of fixed 
beds to flow. Thus, for particles that are in the 1-1000-,um 
range, accelerations of one to thousands of g's are generally 
sufficient. 

For smaner particles such as colloids, viruses, macro­
mol.ecules, and molecules, in the I-Ioo-nm range accelera­
tions of hundreds of thousands of g's are required to affect 
sedimentation in a reasonable (hours and days) period of 
time. Centrifugal separation is used for solid-Iiquid, liquid­
liquid, and solid-solid separation. I

-
5 Applications of this 

technique can be found in the chemical. and mineral process­
ing industries,3-6 and in biological, pharmaceutical, and 
medically related processing testing and analysis proce­
dures. To date centrifugal forces are the only body forces 

which can be generated at levels high enough to be effective 
in separation of ultrafine (colloid and molecular size) parti­
cles. However, centrifugal separation is expensive, and the 
cost per unit weight of the particles treated increases as their 
size decreases. Furthermore, single bowl centrifuges, or 
those that have a setting of tubes mounted within the bowl, 
are seldom designed (the density gradient method used in 
biochemistry being an exception) to yield simultaneously 
multifraction concentrates. Here costly multipath (possibly 
incorporating closed loops) processes may be required in 
order to produce the desirable concentrates. To date no ade­
quate force field which can match, and hence also counter­
act, high centrifugal forces is commercially available. This 
means that whatever separation is carried out using high 
centrifugal fields, the outcome depends only on the response 
of the system being separated to this field. This sets limita­
tions to separation efficiencies and maneuverability of the 
system. Availability of a matching force field is expected to 
extend significantly the scope of application of the present 
centrifugal separation technology. 

Electromagnetic fields are currently used to separate 
particles from a fluid stream, by positive attraction towards 
deposition sites which are part of highly permeable matri­
ces. 7-10 These matrices are energized by high external fields, 
and in tum generate high gradients in their vicinity. 

The combined high-intensity, high-gradient field facili­
tates generation of relatively strong electromagnetic forces. 
Application of these forces to magnetizable particles, which 
resuJ.ts in deflection of their trajectories from the fluid 
stream, may subsequently lead to separation. El.ectromag­
netic fields can also be used to counteract acceleration fields, 
e.g., gravity, by stresses induced in fluids which are suffi­
cientl.y permeable to magnetic or electric fiel.ds. A related 
technique is known by the name of magneto hydrostatic sep­
aration. II

,12 Here pressure gradients are generated in a mag­
netizable liquid, by a nonhomogeneous magnetic field. 

The pressure gradients generate levitation (expulsion) 
forces (directed away from the field) on immersed particles, 
the magnetization of which is lower compared to the fluid. 
As is the case in high-gradient magnetic separation 
(HGMS), high-gradient magnetohydrostatic systems lJ can 
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provide forces which can be made equivalent to high g 
forces. High-gradient electric separation 13-14 (HGES) is 
less widespread as compared to HGMS, but in principle it 
has similar potential applications. The incorporation of elec­
tromagnetic forces, which are comparable to centrifugal 
ones in a wide range of acceleration levels, is promising as a 
new means for extending the present capabilities of both cen­
trifugal and magnetic separation techniques. 

A new separation technology which combines magnetic 
and centrifugal fields is named here magnetocentrifugal sep­
aration (MCS), and the one involving electric and centrifu­
gal fields is similarly named e1ectrocentrifugal separation 
(ECS). The purpose of this paper is to establish the theory, 
principles, feasibility, and potential applications of the new 
MCS and ECS techniques and to investigate their expected 
capabilities. 

II. THEORY 

A. General approach 

The "theory" is divided into two parts. Part I deals with 
nondiffusing particulates, while diffusion-controlled sys­
tems are considered in Part n. In Part I we develop first the 
equation of motion for monodisperse particles in a fluid 
flow, centrifugal, and electromagnetic fields. This equation 
of motion provides the basis for analysis ofmagnetocentrifu­
gal separation. Magnetic, electric, and acceleration g 
numbers are defined with a view to characterize the three 
fields as to the number of g's they can provide. These g 
numbers facilitate the use of a common basis for comparison 
of the expected role of each field. A clear distinction is drawn 
between g numbers, which are defined for monodisperse, 
and polydisperse, particle mixtures. The range of centrifugal 
fields in which magnetic and acceleration g numbers can be 
matched, and the magnetic fields that can be used to this end, 
are also considered. Upon completion of this introductory 
section, specific magnetocentrifugal separation systems of 
nondiffusing particles are defined, and their characteristic 
features are analyzed. An extension of the theory for magne­
tocentrifugal separation of diffusing mixtures of particles is 
given at the closure of this section. This completes the theo­
retical basis for the full range of particle sizes which are 
known to have been treated by centrifuges. 

1. Part I: Nondiffuslng particulate systems 

a. Equation of motion of mono disperse particles suspend­
ed in a fluid in centrifugal and electromagnetic force fields. 
Assumptions: 

( 1) Particles are spherical and monodisperse. 
(2) The dispersion is uniform (locally or throughout) 

with respect to particle concentration and distribution of 
particle properties (such as size, density, susceptibility, etc. ) 

(3) The fluid is incompressible. 
(4) Flow is Newtonian. 
(5) No significant interaction other than hydrodynam­

ic exists between particles 
(6) The fluid is contained within rigid walls at constant 

volume. 
(7) Relaxation times associated with hydrodynamic 
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FIG. 1. Details of the separation system. 

Dispersion 

( a ) 

drag forces are orders of magnitude smaller than the ones 
associated with the centrifugal and electromagnetic fields. 
Hence, given the particle instantaneous velocity, relative to 
the fluid, use of a fully developed drag force (for this particu­
lar velocity) introduces only a small error which can be ne­
glected. 

(8) Diffusion effects can be neglected. 
Figure 1 shows a diagram of the system under consider­

ation. The external (un primed) frame of reference is used to 
describe the motion of the container and the internal 
(primed) one for the motion of the suspension, its fluid and 
particles, relative to the container. The figure shows schema­
tically (a) the container, (b) a section of the dispersion, (c) 
flow diagram relative to the container frame of reference in 
the vicinity of a particle, and (d) force diagram, in the con­
tainer frame of reference, for one particle. (Note the two 
frames of reference are assumed two-dimensional for the 
sake of simplicity.) 

The equation of motion of a particle moving in a fluid 
and centrifugal and electromagnetic fields at constant vol­
ume is given J5

•
J6 by Eq. (1): 

mpdUp mrJUf --'--!;...=FA +FM +FE +FD +--, (1) 
dt dt 

where FA ,F M ,FE' and F D are acceleration, magnetic, electri­
cal, and drag forces, respectively. The last term on the right 
accounts for the average reaction force due to displaced fluid 
being accelerated by the moving particle. 15 U and m are ve­
locity and mass, and subscripts p andf denote particles and 
fluid, respectively. 

FA = FG + Fa , (2) 

where the forcesFG (gravitation) and Fa (nongravitational 
two-dimensional acceleration) are given by 

FG = (pp -P4»Vpg=p(l-¢)Vpg, P=Pp -Pf' (3) 
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au 
a=-, 

dt 
(4) 

de dr 
W=-, v=-. 

dt dt 

rp is volume fraction occupied by particl.es in the disper­
sion. As a sUbscript it denotes a property pertaining to the 
whole dispersion at rp. Vp is volume of a particle, P density, 
and rand e polar coordinates (see Fig. 1). er and ell are unit 
vectors in the radial and azimuthal directions, respectively. t 
is time, v vectorial velocity, and wand v angular and radial 
velocities, respectively. 

FM = ( [(Mp -M¢»' V]HdVp Jvp 

= (l-rp) { (M' V)HdVp ' Jvp 

M¢> =rpMp + (l-rp)Mf , 

M = Mp - Mf(see Ref. 16). 

(5) 

Mp ,M!, and M¢> are magnetizations of particles, fluid, and of 
the dispersion, respectively. H is magnetic field intensity. 

(6) 

where Fq and Fp are coulombic and electric polarization 
forces, 

Fq = (l-rp) { EqudVp + (l-rp) ( EqsdSp , (7) 
Jvp Jsp 

and it is assumed that the fluid charge can be neglected. 
E, q u' and q s are electric field intensity, and volume and 

surface charge densities, respectively. Sp is surface area of a 
particle. 

where U f is the velocity of the suspension relative to the fixed 
frame of reference of its container and a? Idt = Up + uf ' see 
Fig. 1. 

The characteristic features of magnetocentrifugal and 
electrocentrifugal separation involve control of balance 
between centrifugal and electromagnetic forces, or alterna­
tively between corresponding g numbers which are defined 
below. 
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Fp = i [(Pp -P¢» ·V]EdVp 
Vp 

= (l-rp) { (P·V)EdVp Jv . 
p 

(8) 

Pp,Pf , and P¢> are electric polarization of particle, fluid, and 
dispersion, respectively. For the creeping (Stokes) flow re­
gime: 15 

FD = - 3rrd f1.~ U¢>' f1.~ = f1.¢> (1 + rp1/3) , (9) 

and for the intermediate and turbulent regimes: 15 

FD = - (1rIS) [0.63 (U¢>d Pf) 1/2 + 4.80 f1.~2 J 2 

xd(1 + rp1/3) U¢> , 

f1.", = f1.f exp{Hrpl(l - rp) n , 
u'" = Up + Uf' 

( 10) 

(11 ) 

(12) 

f1.f and d are fluid viscosity and particle diameter, re­
spectively. Up and Uf are average velocities of particles and 
fluid (which is displaced by particl.e motion), relative to the 
dispersion, respectively. U¢> is velocity of particles relative to 
the fluid they have displaced: 

m
f 

dUf = _ amm (P! )dUp 
• 

dt p Pp dt 
(13) 

where am is a factor accounting for the effect of the system 
geometry on the value of the virtual mass. 17-22 

For a sphere in an infinite inviscid fluid am = 1/2.17-22 

By continuity we have23 

(14) 

and 

Uf = U¢>rp. (15) 

Combining Eqs. (1-9), (13) and (14) yields 

(16) 

r 
b. Definition of magnetic electric and acceleration g 

numbers. 
Monodisperse particles: 

Let the magnetic force be defined in terms of an equiva­
lent acceleration a;" as per Eq. (17): 

ppVpa;"=(I-rp)( (M'V)HdVp ' (17) Jvp 
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wherea;" is the "magnetic acceleration." Rearranging yields 

am = (l/pp)(1-tP)1 (M'V)HI, 

(M' V)H = (lIVp) r (M' V)HdVp , (18) Jvp 

where am = la;" I. The magnetic "g number" mg is defined 
by 

mg =am/g= [lI(ppg)](1-tP)1 (M·V)HI· (19) 

The "electric polarization" g number eg is defined in the 
same way: 

(20) 

No~e that here g is the modulus (i.e., number) of gravity 
acceleration. 
Magnetic versus centrifugal g numbers: 

The radial centrifugal g number Cgr is defined by 

ppVpar =p(1-tP)Vp,,/r, ar =p(l-tP)uir/pp , (21) 

where ar is the equivalent centrifugal acceleration, 

(22) 

Taking the radial component of mg and dividing Eqs. (19) 

and (22) yields the dimensionless ratio R g of the magnetic to 
centrifugal g numbers: 

Rg = mg/Cgr = [ (M' V)H ]J(pah) . (23) 

Here subindex r denotes projection on the radial direction. 
Note that Rg is also the ratio of the respective magnetic and 
centrifugal forces. 

It is of interest to identify under which conditions Rg 
may be equal or greater than one, in particular, in cases 
where Cgr is large, say 103_105

. In the following equation it 
will be assumed that ( 1 ) Mis colinear with H, and (2) parti­
cles are small compared to the field gradient, i.e., taking the 
field as constant throughout the particle volume does not 
introduce a significant error. In this case we have 

Rg = (MVH)J( pw2r) . (24) 

Let 

P = 2.0 glcm3
, w2r = 3.0X 108 em/s2

, Rg = 1.0, 

and assume tnat Hand M are radial, hence 

MVH = 6.0X 108 g cm- 2 S-2. 

If 411'M = 600 G, then V H = 411'106 Oe/cm must be satis­
fied. This magnetization and higher ones can be obtained by 
ferromagnetic particles and ferrofluids. The required field 
gradient can be generated, for example, by a set of ferromag­
netic wires lO-,um-thick which are placed in a 20 ooo-Oe (or 
higher) uniform field. 

Thus it is seen that by using high gradient magnetic 
fields, the magneticg number can be made comparable to the 
centrifugal g number in the full range of centrifugal fields 
currently used commercially. As shown below, the magnetic 
g number and Rg for particles moving in a dispersion com­
prising polydisperse particle mixture are different than those 
defined by Eqs. (19) and (23), respectively. 
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Polydisperse particles: 

Let the poly disperse mixture comprise n distinct frac­
tions. It is assumed that the mixture is uniformly dispersed 
in a continuous fluid, and the basic assumptions, excluding 
No.1, listed at the beginning of Sec. II apply here as well. For 
this case the magneticg number mgj [Eq. (30)] of the parti­
cles pertaining to the jth fraction (of a mixture comprising n 
fractions) is defined using the same procedure described for 
monodisperse particles, as follows. Here the jth magnetic 
acceleration amj is defined by Eq. (25): 

where the average magnetization of the dispersionM", is giv­
en byl6 

n 

M", = L tPi Mpi + (1 - tP )Mf ' (26) 
i~ I 

n 

tP = L tPi' i = 1.2, ... J, ... ,n , (27) 
i~ I 

n 

M pj- M", = Mpj - L tPi MPi - (1- tP)MJ . (28) 
;=1 

Combining Eqs. (27) and (28) and rearranging gives 

n 

M pj - M", = Mj(1- tP) + L tPi~i , (29) 
;=] 

where 

Combining Eqs. (25) and (29) and dividing by Pp Vpg yields 
the magnetic g number: 

mgj = [1I( ppg)] 1[( Mj (1 - tP) + itl tPiM'ji)' V]H \ ' 

(30) 

where ~ and M'ji denote volume average in the same sense 
as in Eq. (19). 

Equation (30) shows that for particles which are part of 
a polydisperse mixture the magnetic g number depends on 
the distributions of tP, as well as of Mji (i.e., of Mi ). If Mj; 
includes positive as well as negative values, mgj may have 
positive and negative values as well. The radial centrifugal g 
number of a particle which is part of a poly disperse mixture 
can be obtained in a similar way. Here the particle centrifu­
gal acceleration a r is defined by 

(31) 

which finally gives the radial centrifugal g number Cgrj (and 
also Rgj ), for particles pertaining to thejth fraction 

where 
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Pj = Ppj -PI' pji = Pj -Pi' 

m· 
R.=~ 

g) C
grj 

= ( (MJ (1 - rp) + it! rpiMJi) • V )H / 

[ ~j (1 - rp) + it! rplP}i )m2r] . (33) 

Equations (23) and (33) show that in cases where 
P ( = P p - PI) is small, or the mixture properties impose a 
small density difference between the particle and dispersion, 
Rg or Rgj may be further increased. In such cases the mag­
netic force may become dominant even at "high g" fields. In 
this context centrifugation of biological dispersions, where 
density differences are extremely sman, may be included. 

The magneticforce [Eq. (5», equation of motion [Eq. 
( 16) ], and magnetic g numbers are all dependent on the 
magnetic field intensity as well as on its configuration. Here 
a nonhomogeneous magnetic field must be used for genera­
tion of magnetic forces which can be applied to magnetizable 
particles. Such fields can be designed using a nonhomogen­
eous field directly or, as often done, by combination of an 
external field and ferromagnetic bodies (e.g., arrays of wires 
or balls) which intensify and distort it in their vicinity. Prop­
erties of selected magnetic field configurations, which may 
be useful in design of magnetocentrifugal separation sys­
tems, are described in Appendix A. We proceed now to look 
at some implications of the equation of motion in magneto­
centrifugal systems. 

MagnetocentriJugal systems comprising magnetizable mono­
disperse particles moving in a fluid stream: 

Consider the case where E = P = O. Equation (16) re­
duces to Eq. (34): 

d'? +A dP +0=0 (34) 
dt 2 dt ' 

A = 181T,u~/[(1-rp)(pp +am Pf)d 2] , 

B = - (1- rp) [ (M' V)H +p(a +g) +Il! 

(pp + am PmPI) , 

1= 18,u~,uI/[(I-rp)df. 

where 

n = r' or 0' and 8 = In - r'//18' - r'l. 
N n Uo has the dimension of velocity comprising magnetic and 
acceleration components. If magnetic forces prevail, it is re­
lated to the magnetic velocity defined by Watson. 24 Ifaccel­
eration force prevails, it may be related to an "acceleration 
velocity," which can be defined similar to the magnetic ve­
locity. If both centrifugal (i.e., acceleration) and magnetic 
forces are significant, N n Uo yields the magnetocentrifugal 
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If the motion is two-dimensional, the derivatives in Eq. (34) 
are given by 

ar' (dr')' ( dO ') , -= - e, +r' -- e(), r'= 171, 
dt dt dt 

(35) 

d'? = [d
2
r' _ r,(!!!!.:...)2]e' 

dt 2 dt 2 dt ' 

[ 
d20' (dr')(dO')], + r--+2- -- e(), 
dt 2 dt dt 

(36) 

where e; and ee are radial and azimuthal unit vectors, which 
are defined in the container frame of reference, see Fig. I. 

Denoting the radial and azimuthal components of B by 
Bn B() and introducing the dimensionless variables 
ra = r'/b and r = (ue/b)t, Eq. (34) takes the following 
equivalent form: 

d 2r ( dO ' )2 (dr ) __ a -r __ +A' _a +B' =0 
d~ a dr dr" 

(37) 

d 20 ' (dra)( dO' ) , ( dO ' ) , 
ra d~ + 2 dr dr + A ra dr + B () = 0 , 

(38) 

A'=!!..A , 
Uo 

where b is a characteristic length such as the radius of a 
magnetized wire!6 and Uo is a reference velocity of the parti­
cle outside the magnetic field. If M IIH, and the variation of H 
within the particle is negligible, we have 

B; = - (1-rp)bM,(~~){l + [pea, +g,) +/,.] / 

[Mr(~~)]} / [u~ (pp + amP/)] , (39) 

Be = - (l-rp)bM()(r' ;:){l + [p(a() +g() +/()]/ 
[M() (r' ;:)]}/[u~(Pp +amPI)] ' 

/,. =f.e;, /() =f.ee . 

Subscripts r and 0 (which, for the sake of simplicity, are not 
primed) denote here radial and azimuthal components in 
the container frame of reference. 

Let the following dimensionless numbers characterize 
the magnetocentrifugal. separation system: 

(40) 

f 
velocity. Note that replacingMby PandHby Ein Eq. (40) 
yields the electric polarization counterpart of the magnetic 
velocity. In this case the polarization electrocentrifugal ve­
locity is obtained from N n Uo. 

Different cases of MCS can be obtained by variation of 
fluid density and magnetization relative to those of the parti­
cles. Figure 2 summarizes relations between directions of 
magnetic and centrifugal forces in relation to M and P and 
the directions of magnetic field gradient, acceleration field, 
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-
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FIG. 2. Directions of magnetic and centrifugal forces in relation to the sign 
of M and p, and the directions of magnetic field gradient and acceleration 
field. 

and motion of particles. Choosing an appropriate combina­
tion from Fig. 2 and setting the relative intensities of the 
magnetic and acceleration forces is expected to yield an ef­
fective magnetocentrifugal separation system. We proceed 
to study special cases of magnetocentrifugal separation 
where the fluid velocity vanishes U f = O. 

d. MagnetocentriJugal separation o/magnetizable mono­
disperse particles in a stationary .fluid 0/ lower magnetization 
and lower density. 

Magnetocentrifugal separation of magnetizable parti­
cles (Xp > Xf) for which M> 0 and p > 0, is an extension of 
the high-gradient magnetic separation (HGMS) technique. 
Here, in addition to the magnetic and fluid drag forces, the 
centrifugal force is available for control of the system. If the 
fluid is stationary, then the driving forces are proportional to 
the volume or mass of the particles. Rearranging Eqs. (37) 
and (38) followed by their division yields 

1 (dra) B; + d 2raldil- ra (dO 'Idr) 2 

rQ dO = B ~ + ra d 20'/dil + 2(draldr)(dO'Id-r) . 
(41) 

If uf = 0, then [see Eq. (34)] /,. =/0 = 0, and B ;,B ~ and 
hence dro/d(J', which determines the shape of the particle 
trajectories, are independent of particle size d. Recall that 
the particles were assumed small enough so that variation of 
the field and its gradient across them can be neglected. 

Figure 3 depicts schematically a basic difference, re­
garding expected trajectories, between a magnetocentrifuga! 
(uf = 0) and a conventional single wire HGMS (uf#O) 
systems. The figure shows that in the HGMS system the 
larger (d2 ) and smaller (d I ) particles foHow different trajec­
tories. d2 is captured while d l does not deviate sufficiently 
from the fluid streamlines and hence is carried downstream. 
Both particles are expected to follow the same trajectory, in 
the magnetocentrifugal system, if their upstream starting 
points are identical. In this case if d2 is expected to be cap­
tured so is d I' and if no capture is expected, both particles 
will flow downstream. It is seen that magnetocentrifugal 
separation is expected to render the system more selective 
with respect to susceptibilities and densities of particles. 
HGMS systems are versatile for a wide range of particle sizes 
and susceptibilities but are less known as an efficient separa-
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t' 
,.0 
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U, =0 

w=O w1r,.0 
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d, «d l l d, «d z 
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FIG. 3. Schematic trajectories of two particles, of different sizes and the 
same susceptibility, in RGMS: u,>O, (J/r=O, and MeS: u,=O, w2r>O, 
systems. 

tor that functions as a concentrator. 
Magnetocentrifugal separation can be applied to ferro­

magnetic, paramagnetic, or diamagnetic particles, and for 
each category of particles a different field design (i.e., matri­
ces) must be implemented. Figure 4 shows three alternative 
systems of separation using arrays of ferromagnetic wires. In 
the first system, particles which are not captured must cross 
the array plane; in the second and third systems they flow 
parallel to it, and those that are captured deviate from the 
fluid stream towards the wires where they are finally depos­
ited. Intermediate design involves an array set at an angle 
0< a < 90° towards {j)2r, and also at an angle (different from 
11"/2) to H. A similar arrangement, using a matrix of random 
wires or packed beds of ferromagnetic particles, may be ef­
fective. Figure 5 shows schematically a cell packed with a 
bed of ferromagnetic matrix (which, for example, can be 
steel balls or wire mesh) supported by a screen and nonmag­
netic material, e.g., particles such as glass beads. Part of the 
magnetic particles may be captured if the right balance 
between the magnetic and acceleration force is maintained. 
The nonmagnetic particles will penetrate the top bed of fer­
romagnetic particles and be collected at the bottom. 

y 
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@@l@@ -",', • - x 
H 
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FIG. 4. Three alternative MCS systems using arrays of ferromagnetic wires. 
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FIG. 5. MCS separation cell packed with ferromagnetic matrix on top of a 
nonmagnetic support. 

e. MagnetocentriJugal separation a/particles moving in a 
stationary fluid 0/ intermediate and higher magnetization, 
but lower density. 

This case bridges magnetocentrifugal separation 
(MeS) which is related to high-gradient magnetic separa­
tion (HGMS) and MCS which relates to the magnetohy­
drostatic separation (MRS). In HGMS the dominant sepa­
ration variable is M while in MHS it is p. Six different cases, 
which relate magnetic properties of the particle population 
to the field gradient, can be defined as follows: 

In the first two cases M> ° for the whole particle popu­
lation, in the third and fourth cases the particle population 
splits as regards magnetization and M> ° and M < ° coe~ist, 
and in the fifth and sixth cases M < 0 for the whole particle 
population. 

( 1) M; > 0, V H > ° for all particle fractions i. 
(2) M; > 0, V H < ° for all particle fractions i. 
(3) M; <0, for i<io and M;>O for i>;/' VH>O, i, 

and il denote the ith particle fraction and division between 
two parts of the particle population, respectively. 

o 

o 

Positive Capture 
Mi> 0 Probability 

IZZ:I M =0 Fraction 
f } E xpeeted to 

~ MpO be Captured. 
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Mi .0 Probability 

Vanishing Capture 
Probability in v H > 0 

I:Z2ZI M =0 Fraction E xpeeted 
f } to be Captured 

~ Mf >0 

M =0 
f 

M, 

FIG. 6. (a) Effect of raising fluid magnetization on capture probability of 
M, > 0 particles (schematic). (b) Effect of raising fluid magnetization on 
capture probability of a particle distribution characterized by M, > 0 and 
M, < 0 fractions. 
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(4) M j <O/or i<il,andM;>Ofort;>il, VH<O. 
(5) M; < 0, V H > 0, for aU particle fractions i. 
( 6) M; < 0, V H < 0, for all particle fractions i. 
Figure 6(a) depicts schematically the effect of raising 

the fluid magnetization, i.e., decreasing M" on capture of 
particles for which M; > 0. The figure shows that the whole 
population can be captured if the right combinations of mag­
netic and centrifugal forces exist. Raising Mf from Mf = ° to 
Mf > 0 decreases the fraction which is ~xpected t~ be ca~­
tured. This may have an effect ofimprovmg grade, l.e., pun­
ty, of the separated particIes. In the second case no particle 
capture due to the magnetic field is expected. Figure 6(b) 
illustrates schematically the third case. Here part of the dis­
tribution characterized by M j < 0 has a vanishing probabil­
ity of being captured by the V H > ° magnetic field. As the 
fluid magnetization is raised, the distribution shifts in the 
- M; direction, leaving a smaller fraction which can be ex­

pected to be captured. In the fourth case only part of the 
Mi < ° can be expected to be captured. The fifth case in­
volves the phenomenon of levitation. 

Figure 7 shows two types of M; distributions. If the first 
distribution denoted I applies, then both Mi andpi control 
the MCS separation. If, however, the second one denoted II 
(for which Mp~, M;->- - Mf ) prevails, then P alone be­
comes the controlling separation variable. This case pro­
vides a new separation technology for fine particles. This 
technology is named magnetocentrifugal density separation 
(MCDS). Here particles are not separated by being cap­
tured, but rather by crossing (or not crossing) an apparent 
density barrier existing within the fluid. Figure 8 depicts 
schematically a possible MCDS separation cell. Particles 
which cross the density barrier (generated by the wire ar­
ray) will settle to the cell bottom and hence separate from 
the "lighter" ones, which wilJ be collected in the region 
marked A in Fig. 8. The setup shown in Fig. 5, which was 
considered before, can also be used to separate M; < 0, P > 0 
particles according to their density by attraction into demag­
netization zones (generated near each ferromagnetic matrix 
element). 

2. Part II: Dif/usion-contiolled magnetocentrifugal 
separation 

Diffusion-controUed magnetocentrifugal. separation in­
volves a combined effect of concentration gradients and drift 
velocity imposed on the diffusing particles, by centrifugal 

M. 
I 

FIG. 7. Narrow and wide distribution of the difference (M,) between parti· 
cle and fluid magnetizations. P(M,) is probability density function. 
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and magnetic forces. Related systems can be described by a 
magnetocentrifugal diffusion and sedimentation equation, 
which is developed here for polydisperse diffusing mixtures. 

Consider a mixture comprising N components, the fluid 
(denoted by i = 1) being included. The diffusion equation 
for the ith component of this mixture can be derived from 
continuity as follows: 

ac· -' + VJ· =0, J. =J'D +JiF , (42) at ' " 
N 

JiD = - L D;k VCk' i = 2,3, ... ,N, 
k=2 

J;F = U;c;, 

(43) 

(44) 

where c, is molar concentration given in moles of the dis­
persed or dissolved species per unit volume; JiD.JiF , and J; 
are molar flux densities, due to diffusion, drift velocity, and 
their sum, respectively. D;k is diffusion coefficient of the ith 
component with the respect to the k th component of the 
mixture, and U; is the drift velocity relative to the dispersion. 
Combining Eqs. (42 )-( 44) gives 

(45) 

Different separation methods have been or can be developed, 
by application of different external forces on the diffusion 
system. 

A good example is the versatile uhracentrifugal anallysis 
currently used today for separation of a di1fusing system. 
This method has become standard practice in biochemis­
try.2S.26 In ultracentrifugal analysis separation occurs due to 
differential sedimentation velocities (of the diffusing sys­
tem) which are generated in high acceleration fields. Re­
cently it was shown by Takayasu et al. 27 and others28 that 
high-gradient magnetic separation (HGMS) can be applied 
successfully for separation of submicron particles dispersed 
in a motionless fluid. This method was effective in treating a 
wide range of particle susceptibilities, e.g., diamagnetic, 
paramagnetic, and ferromagnetic. Combining the ultracen­
trifugal and HGMS techniques for diffusion systems is the 
essence of the new diffusion-controlled magnetocentrifugal 
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separation method. In the following we consider general 
aspects of diffusion sedimentation systems, and proceed 
towards the development of the magnetocentrifugal diffu­
sion and sedimentation equation [Eq. (60) ]. Drift velocities 
are usually related to particle mobilities (u; ), or in ultracen­
trifugal analysis to the so-called sedimentation coefficient 
(S; ). In the latter case we find25

,26 

(46) 

Combining Eqs. (45) and (46) yields the differential! 
equation governing the behavior of a multicomponent diffu­
sion-sedimentation system. This equation takes the follow­
ing form in the radial (r) direction:2s

•
26 

ac; 1 a [( N aCk 2 ) ] -=-- L D;k --w rS;c; r . at r ar k = 2 ar . 
(47) 

Equation (47) reduces to Eq. (48) for a two-component 
system, where D and S (subscripts dropped for simplicity) 
are independent of c (which is often not the case) and there­
fore of r: 

ac = D ( a 2C + ~ ac) _ Sw2 (r ac + 2c) . ( 48) 
at ail r ar ar 

In ideal two-component monodisperse particle dispersions, 
which, for example, are well approximated by dilute solu­
tions, D can be estimated using the Nernst-Einstein relation 

D=ukT, (49) 

where u satisfies the Stokes hydrodynamic drag law 

u = 1I(31TJ.lrJ). (50) 

k,T J.1p and d are Boltzmann's constant, absolute tempera­
ture, fluid viscosity, and particle diameter, respectively. If, 
however, the effect of concentration cannot be neglected, a 
concentration dependent correction factor!(c) must be ap­
plied: 

u =!(c)/(31TJ.lrJ) . (51) 

Many forms of!(c) can be derived from literature con­
cerned with sedimentation. 29-32 For example, Fujita33 used 
Eq. (52) to calculate diffusion sedimentation profiles: 

!(c) = l-Kc, K=const. (52) 

We shall use here (see Appendix :S) an advanced form of 
!(c) following the results of Barnea and Mizrahi,29 which 
were obtained for sedimentation of monodisperse particles 
in the creeping flow regime: 

tP =cV, (54) 

where tP is total volume fraction occupied by the dispersed 
particles (or solute) and V is partial molar volume. In cases 
where polydisperse, i.e., muiticomponent, systems are in­
volved, each fraction (component) i has a different concen­
tration dependent correction factor J: (c), see Appendix B. 
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h(c) = (S;(1-ifJ) + ktl CkVkSk;) / 

[s{ Up; + ;~2 c; Vi U~i)O + Ci
l3 

Vi
13

) 

xexP({HcY;I(1-C;V;)p)} , 
S; = Sp. - Sf' Ski = Spk - Spi , 

(55) 

where S isp or M in the case of centrifugal or magnetic fields, 
respectively. 

In cases involving polydisperse, i.e., muiticomponent, 
systems different concentration correction factors apply to 
each fraction i of the mixture and to each type of driving 
force. Thus, if there are N fractions and m types of driving 
force (F m = 1,2, ... ,m'), then mN correction factors 
should bem;'pplied. Letlmi (c) denote this array. If only two 
types of driving forces exist, namely centrifugal and magnet­
ic, then 

[Sm{ Up; + ;~2 C; ViU~;)(1 + C;I/3V;1/3) 

xexp{H cY;I(1 - cY;) J}] , (56) 

Sm; = SPi - Sf' Skm; = 5pk - 5p; . 

HereSm ispform = 1, andM form = 2, which stand for the 
cases of centrifugal and magnetic forces, giving Iii (c) and 
12i (c), respectively. The drift velocity of the ith fraction (or 
disolved component) becomes 

m' 

Up; = I Fmo;u mci , 
m=l 

(57) 

(58) 

Combining Eqs. (45), (57), and (58) yields a general­
ized diffusion and sedimentation equation: 

i = 2,3, ... ,N, m = 1,2, ... ,m' . (59) 

Applying Eq. (59) to the case of magnetocentrifugal 
separation (MCS) yields the MCS diffusion and sedimenta­
tion equation. 

In a two-component MCS system, and dropping the 
SUbscript i = 2, Eq. (60) reduces to Eq. (61): 

ac ( (Vppah + Vp (M' V)H) (1 - cV) 2c ) - = V· (DVc) - V· . 
at 31TJ.Lrl( 1 + cl/3VI/3)exp{j[cV I( 1 - cV) J} 

(61) 

Note that in this case, for monodisperse single solute parti­
cles suspended in a fluid solvent, the concentration correc­
tion factors for the centrifugal and magnetic forces are iden­
tical. Presentation of solutions to the magnetocentrifugal 
diffusion and sedimentation equation is outside the scope of 
this work. We shall, however, discuss the significance of the 
theoretical results. Eqs. (60) and (61) indicate that diffu­
sion-controlled magnetocentrifugal systems facilitate a sig­
nificant extension of the separation capabilities of the con­
ventional ultracentrifugal method. ][n view of the fact that 
different magnetic field configurations can be designed, the 
magnetic term in Eqs. (60) and (61) facilitates formation of 
the concentration gradient in different directions, which are 
otherwise limited to the radial direction only. This opens 
new opportunities, which are not available today by other 
techniques, for separation of diffusing particulates accord­
ing to their magnetization and density levels. Consider a case 
in which high magnetic and centrifugal forces are compara­
ble in magnitude. Here the magnetic force can counteract 
the centrifugal and diffusion drift of magnetizable particles, 
thus separating them from the drifting (less magnetizable) 
ones. In other cases the magnetic force can be used to vary 
the drift velocities of diffusing particles by deflecting, to dif­
ferent degrees, their trajectories. In this way separation ac­
cording to particle magnetization, density, and diffusion co­
efficient can be achieved. 
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I 
B. Potential applications of magnetocentrifugal 
separation (MCS) 

In a general sense MCS has promising potential: for ap­
plication in cases spanning from magnetic to density separa­
tion of particulates. A vanishing effect of particle size ob­
tained by use of stationary fluids, or else the elimination of 
the effect of their flow, facilitates better selectivity in MCS 
systems. In such systems magnetic susceptibility and density 
become the prevailing separation variables. Thus, MCS can 
be applied to suspensions involving fine and ultrafine (col­
loidal) particles which are characterized by magnetic and 
density distributions. The distribution may be natural or ar­
tificially prepared. Magnetic tagging of particles can be used 
to change their magnetic properties, and attachment or im­
pregnation of materials with different densities will change 
their density distribution. 

Such techniques in conjuction with MCS may find ap­
plications in biochemistry chemical and biomedical. engi­
neering, i.e., in processing and separation of cells, bacteria, 
and viruses. MCS can be used to separate colloidal matter 
extracted by or mixed with ferrofluids. Here the 5-15-nm 
ferromagnetic (and surfactant coated) particles will be cap­
tured in the magnetic fiend while the nonmagnetic ones will 
be driven away by the centrifugal force. 

Multicomponent and high-resolution density separa-
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tion can be achieved by control of density and magnetization 
of the fluid. MCS is advantageous for fine and ultrafine parti­
cles made of materials which are heavier than available 
fluids. Furthermore, it is promising in cases characterized by 
variable "near density" particles which exhibit narrow den­
sity differences. Here sensitive adjustment of the fluid's ap­
parent density can be done by variation of the field intensity, 
without having to change its composition. It should be noted 
that if magnetizable dispersions such as ferrofluids are used 
as medium of separation, the particle size of this dispersion 
should be significantly smaller compared to the size of the 
particles being separated. Thus, paramagnetic solutions may 
be required (instead offerrofluids) for separation of molecu­
lar size particulates. 

Finally, MCS may be designed to function as suscepti­
bility or density chromatographic systems. This area is yet to 
be explored as regards its potential uses and design features. 
It is clear nevertheless that in such systems a distribution of 
susceptibility or density may be "fanned out" along the axis 
of separation, thus yielding a continuous chromatographic 
separation. 

C. Summary and conclusions 

(1) Magnetocentrifugal separation (MCS) incorpo­
rates forces which are exerted on particulates by the simula­
taneous action of magnetic and centrifugal force fields. 

(2) The magnitUde of electromagnetic and centrifugal g 
numbers and related forces, available from technologies cur­
rently used today, can be matched throughout the accelera­
tion range of commercial centrifuges and ultracentrifuges. 

(3) Magnetic and acceleration g numbers of particles 
which are part of a magnetization and density distributions 
depend on the latter's properties such as average and stan­
dard deviation. The corresponding g numbers may span 
positive as wen as negative values. 

( 4) Centrifugal fields combined with magnetic field 
gradients, generated by ordinary and superconducting mag­
nets in conjunction with harmonic pole pieces or around 
ferromagnetic elements such as wires, spheres, metal frag­
ments, or generally particulates, are essential parts of MCS 
systems. 

(5) The intensity of the acceleration and magnetic fields 
and the magnetic field gradient of a MCS system should be 
adjusted according to size of the particulates involved. The 
smaller their size, the higher the required intensities and 
field gradients. 

( 6) M CS systems in whkh particle concentration is low 
and the fluid is stationary are pract:ical1y independent of the 
size of particles which are being separated. Such systems are 
dependent on density and ma.gnetiz.ation ofparticJes and flu­
id. 

(7) MCS systems can be applied in the full range of 
magnetizations known to date, i.e., for diamagnetic, para­
magnetic, ferromagnetic, ferrimagnetic, and antiferromag­
netic particles. The combination between values of M; and 
V H determines probability of particle capture. For a given 
acceleration field, higher values of M j and V H increase prob­
ability of capture. 

(8) Magnetocentrifugal density separation (MCDS) 
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can be applied to nonmagnetic particles by using magnetiza­
bles fluids. If the fluid is a dispersion, then the sizes of its 
particles must be significantly smaller than the ones being 
separated. 

(9) Diffusion-controlled MCS systems involve balance 
between diffusion and centrifugal and magnetic drift forces. 
A generalized definition of particle mobilities, which applies 
to concentrated dispersions, is applied for mono and polydis­
perse diffusion-controlled MCS systems. 

(10) A generalized diffusion and sedimentation equa­
tion for polydisperse particles in a system involving several 
types of drift forces has been formulated. Here a generalized 
concentration-dependent correction factor, to the mobility 
of each fraction under each type of drift force, has been in­
corporated. 

( 11) MCS and MCDS have potential application in 
chemical, biochemical, and biomedical engineering, in parti­
cular for ultrafine colloid and "near density" particulate sys­
tems. Successful applications require engineering of separa­
tion cells, ferromagnetic matrix, and the centrifugal and 
magnetic fields. Suggestions for cell design have been pre­
sented. 

APPENDiX A: CHARACTERISTICS OF SOME USEFUL 
NONHOMOGENEOUS MAGNETIC FIELDS 

The nonhomogeneous fields considered here consist of 
the following types: 

( 1) Nonhomogeneous fields which are obtained by 
shaping the field-generating device. In this case we say that 
the primary field is nonhomogeneous. 

(2) Nonhomogeneous fields which are obtained by dis­
tortion of an external (i.e., primary) field, which may be 
uniform or nonuniform. In this case the required degree of 
field distortion is obtained by placing ferromagnetic bodies 
in the external field. 

Figure 9 shows schematically a field generated between 
two-dimensional curved pole pieces, Nand S, of a magnet. 
For this configuration the primary field is nonuniform, and 
its intensity increases as the gap and field gradient diminish. 

Figure 10 shows schematically a two-dimensional array 
of ferromagnetic cylinders (e.g., wires) in a uniform mag­
netic field. In this case the highly permeable cylinders distort 
the uniform field, thus generating localized strong nonuni­
form field. The wire arrangement facilitates increase of field 

Lefth and 

Pole Piece. 

Gop and 

Working Space 

Righthand 

Pole Piece. 

FIG. 9. Magnetized ferromagnetic pole pieces which produce nonuniform 
magnetic field (schematic). 
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FIG. 10. A two-dimensional array of ferromagnetic wires in a uniform mag­
netic field. 

gradient (and hence of the magnetic force) in the vicinity of 
each wire, by decreasing their diameter. Thus, the setup 
shown in Fig. 9 may be used for relatively low-gradient 
fields, while the type represented by Fig. 10 can extend the 
range to very high gradients (for example, 106_107 G/cm). 

A. Primary harmonic fields 

In the absence of electric currents, and assuming that 
the ferromagnetic metal surface can be matched with an 
equipotential surface, then the field in the working space can 
be described by harmonic functions which satisfy Eq. (A 1 ) , 
and boundary conditions ¢>(x,y) = cons. set by the surface 
ofthe pole pieces: 

V2cf> = 0 . (AI) 

Equation (Al) is satisfied by two-dimensional complex 
functions '2 of the type given by Eq. (A2), 

Wn = i An (Z - Zo)n, Z = X + jy, j =..r=T. (A2) 
"=1 

Since Wn is a complex function, we also have 

Wn = U' + jV', U' = Re( W), V' = rm( W) . (A3) 

1. Simple harmonic field 

If Aj = 0 for aUj#n, andzo = Xo + jyo = 0, then U and 
Vare given byl2 

U'= -Anr" sin nO. O=O"-1TI(2n). (A4) 

V'=Anr"cosnO, (A5) 

where rand 0 " are polar coordinates. Equation (A4) can be 
used. to describe magnetic fields generated between pole 
pieces of the type shown in Fig. 9. The magnetic forces gen­
erated by such fields are considered next. 

If particle and fluid magnetizations are colinear with H, 
Eq. (A6) is satisfied: 

(A6) 

In this case the net magnetic force exerted on monodisperse 
particles which are immersed in a fluid is given by Eq. (A 7). 

1m = (l!/2) VpX(1- ¢)VH 2
, X = Xp - XI' (A7) 

Recalling that 

H= -VU' (AS) 
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and combining Eqs. (A4). (A7). and. (AS) yields the x and 
y components of the magnetic force: 

Imx = Vp (Xp - XI) (1 - ¢)(n - l)n 2A ~ rln -3 cos e. 
(A9) 

fmy =1 mx tan e . (AW) 

Equation (A9) shows that if n = 3/2, and provided if> is held 
constantJ mJ[ andlmy are independent of the radial distance. 
In this case the magnetic field is identified as isodynamic. 
and particles moving on the symmetry axis (e = 0) are sub­
jected to a constant magnetic force. 

B. Field around arrays of wires 

Consider the field around an infinite two-dimensional 
array of ferromagnetic wires shown in Fig. to. Note that 
one-dimensional arrays are special cases oftwo-dimensional 
ones. They are obtained by increasing infinitely the y and x 
spacing of the wires, in Fig. 10, respectively. The following 
cases are of interest: (a) The wire surfaces are equipoten­
tials. (b) The wires are saturated. For both cases the field 
outside the wires can be approximated using a generalized 
complex function given by Eq. (All): 

W= i i Akl ± /;[Z -Zj(k,/>J -HeZ • 
k= -00 1- -CICI i=1 

(All) 

whereAkJ (which are real). t. and Z;(k.i) are determined 
by boundary conditions./; [Z - Z; (k,l)] are analytic com­
plex functions, and He a uniform external field. i' denotes the 
number off unctions used per wire. and k. i the wire position. 

1. Wire surfaces are equlpotentlslaM 

In this case Akl = - K. where K is a positive constant. 
i' = 2. II = In. and h = -II' Thus. Eq. (All) takes the 
following form: 

'" Q¢ 

W= -K L L {In[Z-ZI(k,/)} 
k=-oo/--oo 

(AU) 

where 

ZI(k./) = kxo + lyo~ + a}k,1 = _ 00 ..... _ 1..0,1 .... ,00 • 

Z2(k,/) = kxo + IYoJ - a (Al3) 

x and Yo are the x and y spacing of the wires, respectively. o .. . 
The parameter a accounts for effects of WlTe mteractio~s, 
hence, given the wire spacing, it is a function of the WlTe 
radius R. For a square grid:34 

a = 1.5U3(R IB)2.975. (A14) 

for a one-dimensional array parallel to the field: 

a = 1.4234(R 10)H192 • 

and for the one set across the field: 

a = 1.0997(R IB)2.8686 , 

(A15) 

(A16) 

where B is half the interwire spacing. Figure (11) shows 
values of HI K vs a pl.otted for square grids, and the parallel 
and across-the-field one-dimensional array. Substituting a 
[Eqs. (A14)-(A1.6)] inEq. (AB) and using the dataofH 1 

Yo ram Zimmels 2172 Page 56 of 58



H/K 

1.0 

0.8 

0.6 

0.2 

1- One d imensionol cross 
field array 

2-Squor grid 

3-0ne dimensional parallel to 
field array. 

00 0.2 0.4 0.6 0.8 1.0 a 

FIG. 11. A plot of H Ik vs a for square grids. 

K from Fig. (1) yields, via Eq. (AI2). a complex potential 
around the array. 

2. Saturated wires 

In this case the array can be simulated by replacing each 
wire with a doublet set in its center parallel to the field. Here 
a-+O and K [Eq. (AI2)] must be set so as to maintain a 
finite field to dipole moment ratio and the boundary condi­
tions. The field intensity modulus IH I may be evaluated us­
ingEqs. (AI2) and (AI7): 

IHI = I ~~ I (AI7) 

IHI =K l.f f I 
k= - 00 1= - 00 Z - ZI(k,l) 

+Hel· (AI8) 

Hence the magnetic force around the arrays can be evaluated 
via Eq. (A7). 

Other types of arrays, with different geometrical ar­
rangements and wire cross sections, may be effective in gen­
erating large forces (i.e .• high-intensity high-gradient fields) 
which are comparable to the full range of acceleration avail­
able from centrifuges today. These include triangular array, 
which facilitates higher packing densities of the wires, and 
two dimensional array of rectangular slabs, which can pro­
vide high-intensity high-gradient fields in the vicinity of 
their edges. The choice of an appropriate array depends, 
however, on the objectives of the MCS system being consid­
erect. 

APPENDIX B 

The hydrodynamic creeping flow drag force exerted on 
monodisperse particles [see Eqs. ( 9 ), (11), and (14)] is 
given by 

FD = - 31Tf.lrJ( I + ¢J1/3) 

xexp{j [¢J/O-¢J)]}Up/O-¢J). (BI) 
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The centrifugal [Eq. (4)] and the magnetic force [Eq. (5)] 
are also related to ¢J: 

(B2) 

where F", and Fo imply the value of the force (centrifugal or 
magnetic) at ¢J>O and at ¢J = 0, respectively. Dividing Eqs. 
(B2) by (B I). dropping the minus sign and setting Fo = I 
yields the generalized particle mobility uc : 

Uc = [l/(31Tf.lrJ) V(¢J) , 

f(¢J) = (1- ¢J)2/((1 + ¢J1/3)exp{j[¢J/{l - ¢J)]}). 

(B3) 

(B4) 

expressing ¢J as a function of C yields f( c) = f [ ¢J (c) ], see 
Eqs. (53) and (54). 

f(¢J), and hencef(c), are defined here so that Uc is the 
correct particle mobility which is obtained per unit force. 
calculated at ¢J = O. For example, if at = uir, then, 

Fo=pVpuir. (B5) 

The expected particle drift velocity at c> 0 would be 

Up = Fou c = [puhd 2/(18f.lI)li(c). (B6) 

Consider now the case of a polydisperse mixture. i.e., a 
multicomponent system. The mixture comprises N fractions 
of monodisperse particles. Here the drift velocity of the ith 
fraction with respect to the dispersion or solution (in case 
the mixture comprises solvent and solutes) is given by 

Upi = U"'i - UI , i = 2,3, ... ,N , 
N 

UJ = L ¢JiU",i , 
i=2 

where 
N 

¢J = L ¢Ji> ¢Ji = Ci V . 
;=2 

(B7) 

(B8) 

(B9) 

i = I denotes the fluid (or solvent), and Vi is molar volume 
of the ith component: 

N N 

L ¢Ji = L ci Vi = I • (BlO) 
;=] ;=] 

hence 

FDi = 31Tf.lrJ{l + ¢J1/3)exp{j [¢J/O - ¢J)]} 

X (UPi + .f ci Vi U"'i) . 
.=2 

(BIl) 

The driving force. whether centrifugal or magnetic, 
must now be calculated taking into account the average den­
sity or magnetization of the mixture. 

F"'i = FOi ~ = ~;, t", = i~2 tPi¢Ji + tl( 1 - ¢J) , 

(812) 

where t denotesp and M for centrifugal and magnetic force, 
respectively. Rearranging Eq. (B 12) gives 

FdJi =FOi (tl(1-¢J) + ktl CkVktki)/ti' 

ti =tpi -tl' tki =tk -ti' 

(B13) 

Equation (55) is obtained by dividing Eq. (BD) by (Btl) 
and setting FOi = 31Tf.lrJ· 
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