
-111111111111111111111111111 1!111,111!1,111i111111111111111111111111111111
United States Patent [19]

Row et al.

[11] Patent Number: 5,163,131
[45] Date of Patent: Nov. 10, 1992

[54] PARALLEL I/O NETWORK FILE SERVER
ARCHITECTURE

[75] Inventors: Edward J. Row, Mountain View;
Laurence B. Boucher, Saratoga;
William M. Pitts, Los Altos; Stephen
E. Blightman, San Jose, all of Calif.

[73] Assignee: Auspex Systems, Inc., Santa Clara,
Calif.

[21] Appl. No.: 404,959

[22] Filed: Sep. 8, 1989

[51] Int. CL5 GO6F 15/16; GOOF 13/00
[52] U.S. Cl. 395/200; 364/DIG. I;

364/242.4; 364/228.3; 364/284; 364/284.4;
364/243.4; 364/230

[58] Field of Search ... 364/200 MS File, 900 MS File;
395/200, 650

[56] References Cited

U.S. PATENT DOCUMENTS

4,527,232 7/1985 Bechtolsheim 364/200
4,550,368 10/1985 Bechtolsheim 364/200
4,710,868 12/1987 Cocke et al. 364/200
4,719.569 1/1988 Ludemann et al. 364/200

110b
11

110c.,
122a- 110d

122c
122e

122g ---.
122b

122d
122f

122h

NETWORK

CONTROLLER

4,803,621 2/1989 Kelly 364/200
4,819,159 4/1989 Shipley et al. 364/200
4,887,204 12/1989 Johnson et at. 364/200
4,897,781 1/1990 Chang et al. 364/200

Primary Examiner—Kevin A. Kriess
Attorney, Agent, or Firm—Fliesler, Dubb, Meyer &
Lovejoy

[57] ABSTRACT

A file server architecture is disclosed, comprising as
separate processors, a network controller unit, a file
controller unit and a storage processor unit. These units
incorporate their own processors, and operate in paral-
lel with a local Unix host processor. All networks are
connected to the network controller unit, which per-
forms all protocol processing up through the NFS
layer. The virtual file system is implemented in the file
control unit, and the storage processor provides high-
speed multiplexed access to an array of mass storage
devices. The file controller unit control file information
caching through its own local cache buffer, and con-
trols disk data caching through a large system memory
which is accessible on a bus by any of the processors.

116a
116b

116c
116d

67 Claims, 12 Drawing Sheets

SYSTEM

MEMORY

100

LOCAL

HOST

120

112b

112a

FILE

CONTROLLER

STORAGE

PROCESSOR
0

114b

114a

Apple Inc.
Ex. 1012 - Page 1

ETHERNET #1

12 - I

HOST
CPU

CARD
10

4•11•1•1 111•MITIMIE116

MMU

ETHERNET #2

11

128 MB
MEMORY

16

TAPE
CONTROLLER

30

i 32

0 0
FIG.-1

24

892 MB
\ ,..DISK

 ► 32-BIT VME BUS

•
SCSI
HOST
ADAPTER

26

(PRIOR ART)

(28
 ►SCSI BUS

w
a
w

a
 °

S
'f

l
40

1
•A

oN

Z
1

Jo
 i

W

IN

Apple Inc.
Ex. 1012 - Page 2

110b
110c

122a----1110d
122c ----

122e -----
1229 -----,

122b-- -
122d -----

122f f'\
122h -------

110a

NETWORK

CONTROLLER

 I

116a
116b

116c
116d SYSTEM

MEMORY

wiry? Ty
a

FILE

CONTROLLER

112b ----7 17

112a

FIG.-2

w
A a

7

STORAGE

LOCAL

HOST

 iz --- 114b

1 z --114a

PROCESSOR

100

120120

s

lU
a
lE

cl

*
S

'a

26
61

 ,
0
i

•A
om

ri

 J
o

z
p
al

ls

Apple Inc.
Ex. 1012 - Page 3

ETHERNET A
212-\ 0

122a ----- 230
16 BI-DIRE
/

BUF

ETHERNET B
O

 210 r 214

CPU
MEM

32 x32

216

/32

220 \ 222 ---•\

BUF 218 —1 7 — 212

EPROM PROM

RS232
226 sr — 110a

234 242
LAN
DMA

CTLR

- 1 -17

LAN LAN
CTLR MEM

71E7 16 111 ":

254, 256

122b f250

to /
16 CBI-DIRE

BUF

32

LAN
CTLR

LAN
MEM

16 ,6 16

290- CMD
FIFO

32

32

262
LAN
DMA

CTLR

a-17

212 —/

2841 ,

 ,BI-DIRE
BUF

270 16 TO 32

240 BIT

232

FIFO ur

16 TO 32 32 L. _ _
BIT • / ND_

274

/32

MFP -----224

252

REG

32

260

A

16 TO 32
BIT

FIFO

32
r/e.
4--

282

32

B

; A

FIFO A

J

/16

__IL_
VME/
FIFO
DMA

CTLR

r - 272

BI-DI
278

280

2 VME
BUS

FIG.-3 (NETWORK CONTROLLER)

1u
aT

ec
i .

S
. f

l
ri

 J
o

£
p

a
q

s

Apple Inc.
Ex. 1012 - Page 4

y--- 310 r 314

CPU
MEM

32 732

/ 32

"..----312

/-. 394
32

Mg/
BI-DIRT

BUF

r 316

 BI-DI%
BUF

320 \ 392 -..,\

PROM

FC
MEM

32

390

312.---/

CMD
FIFO

32
id /

32 BI-DI%
BUF

384 --\

318—I

396

r__ 382

REG

.737

FIG.-4

32
/

PARALLEL
PORT

RS232

t---- 326 .-- 112a

MFP , 324

(FILE CONTROLLER)

lu
al

u
d
 '

S
 ' f
l

Z
66

1
'O

f
'A

C
O

N

Z
I

Jo
 V

 l
am

iS

Apple Inc.
Ex. 1012 - Page 5

510 JA: I

/ 32 5182

V.47.4
BUF

114a
5221 ta

512"-- --- 514-)

42• 1 CPU
MEM

534

120

32

32
/

32

COMMAND
FIFO

32
BUF

113 2

VME
BUS

k 532

\530 592
REG FIG.-5

516 -\

/16

CHANNEL
ENABLES

584-\
DUAL

so PORT
RAM

L560
7 — 580

582

520 1

16 BIT
rye--e. SLICE

ENGINE

CHANNEL
T

562

VME/FIFO DMA CTLR
590

HIGH SPEED
RAG

/32
/32

32

526 r- 546

BUF BUF

5 556 54

564--\

572
574-\

BI-DIR

LOCAL
DATA

BUFFER

6 36 simd/s•

550

570

BI-DIR

'ZEROES F-576

6

.74-g

6

544j
36

544h

544g

SCSI ADAPTER
SCSI ADAPTER

• SCSI ADAPTER
542h

CSI 9

SCSI ADAPTER
SCSI ADAPTER

540
SCSI8

SCSI7

540g
SCSIS

544f 542f 540f
4742

FIFO ADAPTER SCSI SCSI4

544e-'AB 542e-• 48 540e

FIFO 174"
SCSI SCSI 3 ADAPTER ----\--

544d-V8 542d-/ a 540d 1

0-/-10- 36 FIFO II4ADAPTER SCSI SCSI2

AS 542c-/ A8 ;4-0 -544c-'
8 SCSI CSI1 ADAPTER FIFO

544b 542b
6 8 SCSI ADAPTER

540b
SCSI 0

544a 542a 540a

lu
al

u
d
 °

S 6
f1

Zi

 J
o

S
Pa

qS

Apple Inc.
Ex. 1012 - Page 6

/

VME
BUS <
120

/32
fd BUF

116a --...\

 7 -- 612

TIMING

CONTROL

r
614 620 -.) lu

a
le

d
 °

S
'I

l

64
MUX

MEMORY
0
-:4

/32

LeS

ECC
ARRAY ,-,

so

N

.. .-622

-610

FIG.-6

(SYSTEM MEMORY)

ri
 J

O
 9

 p
a
q

s

Apple Inc.
Ex. 1012 - Page 7

U.S. Patent Nov. 10, 1992 Sheet 7 of 12 5,163,131

MASTER /-- 701

BROADCAST ADDRESS AND
ADDRESS MODIFIER,

DRIVE LWORD* LOW
AND IACK* HIGH

SLAVE

DRIVE AS* LOW

705
703--\

RECEIVE ADDRESS,
ADDRESS MODIFIER,
LWORD* LOW AND

IACK* HIGH

7 -- 711

DRIVE WRITE LOW 1
 718

WAIT UNTIL DTACK* AND
BERR* ARE HIGH

 /- 719

PLACE DATA ON DOO—D31

RECEIVE AS* LOW

RECEIVE WRITE LOW

715 —N.

WAIT UNTIL DSO* GOES
HIGH TO LOW

V
DRIVE DSO

/— 721
LOW 1

 p— 723
DRIVE DSO HIGH

V
PLACE NEXT DATA ON

D00—D31

727 725 •-•••\

LATCH DATA FROM D00—D311

TO FIG.-7B

FIG.-7A
(TO FIG.-7B)

Apple Inc.
Ex. 1012 - Page 8

U.S. Patent Nov. 10, 1992 Sheet 8 of 12 5,163,131

MASTER

(FROM FIG-7A) x729

WAIT UNTIL DTACK*
HIGH TO LOW TRANSITION

731 --\

SLAVE

(FROM FIG-7A)

DRIVE DTACK DTACK* LOW

733 —\
DRIVE DTACK* HIGH

DRIVE DSO
"-- 739

LOW I
/-- 741

DRIVE D 0* HIGH I

735---\
WRITE DATA INTO

SELECTED DEVICE AND
INCREMENT DEVICE ADDRESS

737—,
WAIT FOR DSO*

HIGH TO LOW TRANSITION

PLACE NEXT DATA ON
D00—D31

1
745 743- -

LATCH DATA FROM LINES
D00 —D31

r 747

WAIT UNTIL DTACK*
HIGH TO LOW TRANSITION

749 -\
DRIVE DTACK* LOW

751 --.
DRIVE DTACK HIGH

(TO FIG.-7C

753--\
WRITE DATA INTO

SELECTED DEVICE AND
INCREMENT DEVICE ADDRESS

FIG.-7B

C TO FIG.-7C)

Apple Inc.
Ex. 1012 - Page 9

U.S. Patent Nov. 10, 1992 Sheet 9 of 12 5,163,131

(FROM FIG.-7B) (FROM FIG.-7B)

COMPLETE NUMBER
OF CYCLES REQUIRED

TO TRANSFER ALL DATA

V
RELEASE ADDRESS LINES,
ADDRESS MODIFIER LINES,

DATA LINES, LWORD*,
DSO*, AND IACK*

w

--%755

(-757

WAIT FOR DTACK*
HIGH TO LOW TRANSITION

759---A
V

) DRIVE DTACK* LOW

761—\ t
DRIVE DTACK* HIGH

r
DRIVE AS* HIGH

w

f -763

I

RELEASE AS*

765

FIG.-7C

Apple Inc.
Ex. 1012 - Page 10

U.S. Patent Nov. 10, 1992 Sheet 10 of 12 5,163,131

MASTER 7 -801

BROADCAST ADDRESS,
ADDRESS MODIFIER AND
DRIVE LWORD* LOW

SLAVE

(-- 805

DRIVE AS* LOW I

803--\

RECEIVE ADDRESS,
ADDRESS MODIFIER AND

LWORD* LOW

DRIVE WRITE

r 811

HIGH I
/-- 818

WAIT UNTIL DTACK* AND
BERR* ARE HIGH

r -- 821
DRIVE DSO LOW

lk r .- 823
DRIVE DSO HIGH

V
j RECEIVE AS* LOW

RECEIVE WRITE HIGH

r--- 824

WAIT UNTIL DTACK*
HIGH TO LOW TRANSITION

 V
TO FIG.-8B)

819 .-

PLACE DATA ON LINES
D00-D31

FIG.-8A
TO FIG.-8B

Apple Inc.
Ex. 1012 - Page 11

U.S. Patent Nov. 10, 1992 Sheet 11 of 12 5,163,131

MASTER

(FROM FIG.-8A)
825

SLAVE

(FROM FIG.-8A

DRIVE DTACK 111 LOW

827
I DRIVE DTACK 111 HIGH

r — 831
LATCH DATA FROM LINES

D00—D31

r— 833
WRITE DATA INTO

SELECTED DEVICE AND
INCREMENT DEVICE ADDRESS

839

DRIVE DSO LOW
 841

DRIVE DSO • HIGH

829 --N. •
PLACE NEXT DATA ON

LINES D00—D31

835
WAIT FOR DSO*

HIGH TO LOW TRANSITION

• /— 843

WAIT UNTIL DTACK*
HIGH TO LOW TRANSITION 847 —\

845 •
DRIVE DTACK LOW

I DRIVE DTACK HIGH

r 845

LATCH DATA FROM LINES
D00—D31

TO FIG.-8C

849 V
PLACE NEXT DATA ON

LINES DO0—D31

FIG.-8B

(TO FIG.—SC

Apple Inc.
Ex. 1012 - Page 12

U.S. Patent Nov. 10, 1992 Sheet 12 of 12 5,163,131

(FROM FIG.-8B

I

)

WRITE DATA INTO
SELECTED DEVICE AND

INCREMENT DEVICE ADDRESS

/.--- 851
(FROM FIG.-8B)

CONTINUE DATA TRANSFER
CYCLES UNTIL DATA

HAS BEEN TRANSFERRED

RELEASE ADDRESS LINES,
ADDRESS MODIFIER LINES

DATA LINES, LWORDIlt,
DSO * AND IACH* LINES

,.....^ 852

r 853

WAIT FOR DTACK*
HIGH TO LOW TRANSITION

TRANSFER COMPLETE

855 m
V

DRIVE DTACK LOW

857 --N. v
DRIVE DTACK* HIGH

859
DRIVE AS* HIGH

861

RELEASE AS*

FIG.-8C

Apple Inc.
Ex. 1012 - Page 13

I

PARALLEL I/O NETWORK FILE SERVER
ARCHITECTURE

5,163,131

CROSS-REFERENCE TO RELATED 5
APPLICATIONS

The present application is related to the following
U.S. patent applications, all filed concurrently here-
with:

1. MULTIPLE FACILITY OPERATING SYS-
TEM ARCHITECTURE, invented by David Hitz,
Allan Schwartz, James Lau and Guy Harris;

2. ENHANCED VMEBUS PROTOCOL UTILIZ-
ING PSEUDOSYNCHRONOUS HANDSHAKING
AND BLOCK MODE DATA TRANSFER, invented
by Daryl Starr; and

3. BUS LOCKING FIFO MULTI-PROCESSOR
COMMUNICATIONS SYSTEM UTILIZING
PSEUDOSYNCHRONOUS HANDSHAKING
AND BLOCK MODE DATA TRANSFER invented 20
by Daryl D. Starr, William Pitts and Stephen Blight-
man.

The above applications are all assigned to the as-
signee of the present invention and are all expressly
incorporated herein by reference. 25

BACKGROUND OF THE INVENTION

1. Field of the Invention
The invention relates to computer data networks, and

more particularly, to network file server architectures 3
for computer networks.

2. Description of the Related Art
Over the past ten years, remarkable increases in hard-

ware price/performance ratios have caused a startling
shift in both technical and office computing environ- 3
ments. Distributed workstation-server networks are
displacing the once pervasive dumb terminal attached
to mainframe or minicomputer. To date, however, net-
work I/O limitations have constrained the potential
performance available to workstation users. This situa- 40
tion has developed in part because dramatic jumps in
microprocessor performance have exceeded increases
in network I/O performance.

In a computer network, individual user workstations
are referred to as clients, and shared resources for filing, 4
printing, data storage and wide-area communications
are referred to as servers. Clients and servers are all
considered nodes of a network. Client nodes use stan-
dard communications protocols to exchange service
requests and responses with server nodes. 5

Present-day network clients and servers usually run
the DOS, MacIntosh OS, OS/2, or Unix operating sys-
tems. Local networks are usually Ethernet or Token
Ring at the high end, Arcnet in the midrange, or Local-
Talk or StarLAN at the low end. The client-server 55
communication protocols are fairly strictly dictated by
the operating system environment—usually one of sev-
eral proprietary schemes for PCs (NetWare, 3Plus,
Vines, LANManager, LANServer); AppleTalk for
Macintoshes; and TCP/IP with NFS or RFS for Unix. 60
These protocols are all well-known in the industry.

Unix client nodes typically feature a 16- or 32-bit
microprocessor with 1-8 MB of primary memory, a
640x 1024 pixel display, and a built-in network inter-
face. A 40-100 MB local disk is often optional. Low-end 65
examples are 80286-based PCs or 68000-based MaoIn-
tosh I's; mid-range machines include 80386 PCs, MacIn-
tosh II's, and 680X0-based Unix workstations; high-end

10

15

0

5

5

0

2
machines include RISC-based DEC, HP, and Sun Unix
workstations. Servers are typically nothing more than
repackaged client nodes, configured in 19-inch racks
rather than desk sideboxes. The extra space of a 19-inch
rack is used for additional backplane slots, disk or tape
drives, and power supplies.

Driven by RISC and CISC microprocessor develop-
ments, client workstation performance has increased by
more than a factor of ten in the last few years. Concur-
rently, these extremely fast clients have also gained an
appetite for data that remote servers are unable to sat-
isfy. Because the I/O shortfall is most dramatic in the
Unix environment, the description of the preferred em-
bodiment of the present invention will focus on Unix
file servers. The architectural principles that solve the
Unix server I/O problem, however, extend easily to
server performance bottlenecks in other operating sys-
tem environments as well. Similarly, the description of
the preferred embodiment will focus on Ethernet imple-
mentations, though the principles extend easily to other
types of networks.

In most Unix environments, clients and servers ex-
change file data using the Network File System
("NFS"), a standard promulgated by Sun Microsystems
and now widely adopted by the Unix community. NFS
is defined in a document entitled, "NFS: Network File
System Protocol Specification," Request For Com-
ments (RFC) 1094, by Sun Microsystems, Inc. (March
1989). This document is incorporated herein by refer-
ence in its entirety.

While simple and reliable, NFS is not optimal. Clients
using NFS place considerable demands upon both net-
works and NFS servers supplying clients with NFS
data. This demand is particularly acute for so-called
diskless clients that have no local disks and therefore
depend on a file server for application binaries and
virtual memory paging as well as data. For these Unix
client-server configurations, the ten-to-one increase in
client power has not been matched by a ten-to-one
increase in Ethernet capacity, in disk speed, or server
disk-to-network I/O throughput.

The result is that the number of diskless clients that a
single modern high-end server can adequately support
has dropped to between 5-10, depending on client
power and application workload. For clients containing
small local disks for applications and paging, referred to
as dataless clients, the client-to-server ratio is about
twice this, or between 10-20.

Such low client/server ratios cause piecewise net-
work configurations in which each local Ethernet con-
tains isolated traffic for its own 5-10 (diskless) clients
and dedicated server. For overall connectivity, these
local networks are usually joined together with an
Ethernet backbone or, in the future, with an FDDI
backbone. These backbones are typically connected to
the local networks either by IP routers or MAC-level
bridges, coupling the local networks together directly,
or by a second server functioning as a network inter-
face, coupling servers for all the local networks to-
gether.

In addition to performance considerations, the low
client-to-server ratio creates computing problems in
several additional ways:

1. Sharing
Development groups of more than 50-people cannot

share the same server, and thus cannot easily share files
without file replication and manual, multi-server up-

Apple Inc.
Ex. 1012 - Page 14

3
dates. Bridges or routers are a partial solution but inflict
a performance penalty due to more network hops.

2. Administration
System administrators must maintain many limited-

capacity servers rather than a few more substantial 5
servers. This burden includes network administration,
hardware maintenance, and user account administra-
tion.

3. File System Backup
System administrators or operators must conduct 10

multiple file system backups, which can be onerously
time consuming tasks. It is also expensive to duplicate
backup peripherals on each server (or every few servers
if slower network backup is used).

4. Price Per Seat 15
With only 5-10 clients per server, the cost of the

server must be shared by only a small number of users.
The real cost of an entry-level Unix workstation is
therefore significantly greater, often as much as 140%
greater, than the cost of the workstation alone. 20

The widening I/O gap, as well as administrative and
economic considerations, demonstrates a need for high-
er-performance, larger-capacity Unix file servers. Con-
version of a display-less workstation into a server may
address disk capacity issues, but does nothing to address 25
fundamental I/0 limitations. As an NFS server, the
one-time workstation must sustain 5-10 or more times
the network, disk, backplane, and file system throughput
than it was designed to support as a client. Adding
larger disks, more network adaptors, extra primary 30
memory, or even a faster processor do not resolve basic
architectural I/O constraints; I/O throughput does not
increase sufficiently.

Other prior art computer architectures, while not
specifically designed as file servers, may potentially be 35
used as such. In one such well-known architecture, a
CPU, a memory unit, and two I/O processors are con-
nected to a single bus. One of the I/O processors oper-
ates a set of disk drives, and if the architecture is to be
used as a server, the other -I/O processor would be 40
connected to a network. This architecture is not optimal
as a file server, however, at least because the two I/O
processors cannot handle network file requests without
involving the CPU. All network file requests that are
received by the network I/O processor are first trans- 45
mitted to the CPU, which makes appropriate requests to
the disk-I/O processor for satisfaction of the network
request.

In another such computer architecture, a disk con-
troller CPU manages access to disk drives, and several 50
other CPUs, three for example, may be clustered
around the disk controller CPU. Each of the other
CPUs can be connected to its own network. The net-
work CPUs are each connected to the disk controller
CPU as well as to each other for interprocessor commu- 55
nication. One of the disadvantages of this computer
architecture is that each CPU in the system runs its own
complete operating system. Thus, network file server
requests must be handled by an operating system which
is also heavily loaded with facilities and processes for 60
performing a large number of other, non file-server
tasks. Additionally, the interprocessor communication
is not optimized for file server type requests.

In yet another computer architecture, a plurality of
CPUs, each having its own cache memory for data and 65
instruction storage, are connected to a common bus
with a system memory and a disk controller. The disk
controller and each of the CPUs have direct memory

5,163,131
4

access to the system memory, and one or more of the
CPUs can be connected to a network. This architecture
is disadvantageous as a file server because, among other
things, both file data and the instructions for the CPUs
reside in the same system memory. There will be in-
stances, therefore, in which the CPUs must stop run-
ning while they wait for large blocks of file data to be
transferred between system memory and the network
CPU. Additionally, as with both of the previously de-
scribed computer architectures, the entire operating
system runs on each of the CPUs, including the network
CPU.

In yet another type of computer architecture, a large
number of CPUs are connected together in a hypercube
topology. One of more of these CPUs can be connected
to networks, while another can be connected to disk
drives. This architecture is also disadvantageous as a file
server because, among other things, each processor
runs the entire operating system. Interprocessor com-
munication is also not optimal for file server applica-
tions.

SUMMARY OF THE INVENTION

The present invention involves a new, server-specific
I/O architecture that is optimized for a Unix file serv-
er's most common actions—file operations. Roughly
stated, the invention involves a file server architecture
comprising one or more network controllers, one or
more file controllers, one or more storage processors,
and a system or buffer memory, all connected over a
message passing bus and operating in parallel with the
Unix host processor. The network controllers each
connect to one or more network, and provide all proto-
col processing between the network layer data format
and an internal file server format for communicating
client requests to other processors in the server. Only
those data packets which cannot be interpreted by the
network controllers, for example client requests to run
a client-defined program on the server, are transmitted
to the Unix host for processing. Thus the network con-
trollers, file controllers and storage processors contain
only small parts of an overall operating system, and
each is optimized for the particular type of work to
which it is dedicated.

Client requests for file operations are transmitted to
one of the file controllers which, independently of the
Unix host, manages the virtual file system of a mass
storage device which is coupled to the storage proces-
sors. The file controllers may also control data buffer-
ing between the storage processors and the network
controllers, through the system memory. The file con-
trollers preferably each include a local buffer memory
for caching file control information, separate from the
system memory for caching file data. Additionally, the
network controllers, file processors and storage proces-
sors are all designed to avoid any instruction fetches
from the system memory, instead keeping all instruction
memory separate and local. This arrangement elimi-
nates contention on the backplane between micro-
processor instruction fetches and transmissions of mes-
sage and file data.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to par-
ticular embodiments thereof, and reference will be
made to the drawings, in which:

FIG. 1 is a block diagram of a prior art file server
architecture;

Apple Inc.
Ex. 1012 - Page 15

5
FIG. 2 is a block diagram of a file server architecture

according to the invention;
FIG. 3 is a block diagram of one of the network

controllers shown in FIG. 2;
FIG. 4 is a block diagram of one of the file controllers 5

shown in FIG. 2;
FIG. 5 is a block diagram of one of the storage pro-

cessors shown in FIG. 2;
FIG. 6 is a block diagram of one of the system mem-

ory cards shown in FIG. 2; 10
FIGS. 7A-C are a flowchart illustrating the opera-

tion of a fast transfer protocol BLOCK WRITE cycle;
and

FIGS. 8A-C are a flowchart illustrating the opera-
tion of a fast transfer protocol BLOCK READ cycle. 15

DETAILED DESCRIPTION

For comparison purposes and background, an illus-
trative prior-art file server architecture will first be
described with respect to FIG. 1. FIG. 1 is an overall 20
block diagram of a conventional prior-art Unix-based
file server for Ethernet networks. It consists of a host
CPU card 10 with a single microprocessor on board.
The host CPU card 10 connects to an Ethernet #1 12,
and it connects via a memory management unit (MMU) 25
11 to a large memory array 16. The host CPU card 10
also drives a keyboard, a video display, and two RS232
ports (not shown). It also connects via the MMU 11 and
a standard 32-bit VME bus 20 to various peripheral
devices, including an SMD disk controller 22 control- 30
ling one or two disk drives 24, a SCSI host adaptor 26
connected to a SCSI bus 28, a tape controller 30 con-
nected to a quarter-inch tape drive 32, and possibly a
network #2 controller 34 connected to a second Ether-
net 36. The SMD disk controller 22 can communicate 35
with memory array 16 by direct memory access via bus
20 and MMU 11, with either the disk controller or the
MMU acting as a bus master. This configuration is illus-
trative; many variations are available.

The system communicates over the Ethernets using 40
industry standard TCP/IP and NFS protocol stacks. A
description of protocol stacks in general can be found in
Tanenbaum, "Computer Networks" (Second Edition,
Prentice Hall:. 1988). File server protocol stacks are
described at pages 535-546. The Tanenbaum reference 45
is incorporated herein by reference.

Basically, the following protocol layers are imple-
mented in the apparatus of FIG. 1:

Network Layer
The network layer converts data packets between a 50

formal specific to Ethernets and a format which is inde-
pendent of the particular type of network used. The
Ethernet-specific format which is used in the apparatus
of FIG. 1 is described in Hornig, "A Standard For The
Transmission of IP Datagrams Over Ethernet Net- 55
works," RFC 894 (April 1984), which is incorporated
herein by reference.

The Internet Protocol (IP) Layer
This layer provides the functions necessary to deliver

a package of bits (an internet datagram) from a source to 60
a destination over an interconnected system of net-
works. For messages to be sent from the file server to a
client, a higher level in the server calls the IP module,
providing the internet address of the destination client
and the message to transmit. The IP module performs 65
any required fragmentation of the message to accom-
modate packet size limitations of any intervening gate-
way, adds internet headers to each fragment, and calls

5,163,131
6

on the network layer to transmit the resulting internet
datagrams. The internet header includes a local net-
work destination address (translated from the internet
address) as well as other parameters.

For messages received by the IP layer from the net-
work layer, the IP module determines from the internet
address whether the datagram is to be forwarded to
another host on another network, for example on a
second Ethernet such as 36 in FIG. 1, or whether it is
intended for the server itself. If it is intended for another
host on the second network, the IP module determines
a local net address for the destination and calls on the
local network layer for that network to send the data-
gram. If the datagram is intended for an application
program within the server, the IP layer strips off the
header and passes the remaining portion of the message
to the appropriate next higher layer. The internet proto-
col standard used in the illustrative apparatus of FIG. 1
is specified in Information Sciences Institute, "Internet
Protocol, DARPA Internet Program Protocol Specifi-
cation," RFC 791 (September 1981), which is incorpo-
rated herein by reference.

TCP/UDP Layer
This layer is datagram service with more elaborate

packaging and addressing options than the IP layer. For
example, whereas an IP datagram can hold about 1,500
bytes and be addressed to hosts, UDP datagrams can
hold about 64 KB and be addressed to a particular port
within a host. TCP and UDP are alternative protocols
at this layer; applications requiring ordered reliable
delivery of streams of data may use TCP, whereas ap-
plications (such as NFS) which do not require ordered
and reliable delivery may use UDP.

The prior art file server of FIG. 1 uses both TCP and
UDP. It uses UDP for file server-related services, and
uses TCP for certain other services which the server
provides to network clients. The UDP is specified in
Postel, "User Datagram Protocol," RFC 768 (Aug. 28,
1980), which is incorporated herein by reference. TCP
is specified in Postel, "Transmission Control Protocol,"
RFC 761 (January 1980) and RFC 793 (September
1981), which is also incorporated herein by reference.

XDR/RPC Layer
This layer provides functions callable from higher

level programs to run a designated procedure on a re-
mote machine. It also provides the decoding necessary
to permit a client machine to execute a procedure on the
server. For example, a caller process in a client node
may send a call message to the server of FIG. 1. The
call message includes a specification of the desired pro-
cedure, and its parameters. The message is passed up the
stack to the RPC layer, which calls the appropriate
procedure within the server. When the procedure is
complete, a reply message is generated and RPC passes
it back down the stack and over the network to the
caller client. RPC is described in Sun Microsystems,
Inc., "RPC: Remote Procedure Call Protocol Specifi-
cation, Version 2," RFC 1057 (June 1988), which is
incorporated herein by reference.

RPC uses the XDR external data representation stan-
dard to represent information passed to and from the
underlying UDP layer. XDR is merely a data encoding
standard, useful for transferring data between different
computer architectures. Thus, on the network side of
the XDR/RPC layer, information is machine-independ-
ent; on the host application side, it may not be. XDR is
described in Sun Microsystems, Inc., "XDR: External

Apple Inc.
Ex. 1012 - Page 16

7
Data Representation Standard," RFC 1014 (June 1987),
which is incorporated herein by reference.

NFS Layer
The NFS ("network file system") layer is one of the

programs available on the server which an RPC request
can call. The combination of host address, program
number, and procedure number in an RPC request can
specify one remote NFS procedure to be called.

Remote procedure calls to NFS on the file server of
FIG. 1 provide transparent, stateless, remote access to
shared files on the disks 24. NFS assumes a file system
that is hierarchical, with directories as all but the bot-
tom level of files. Client hosts can call any of about 20
NFS procedures including such procedures as reading a
specified number of bytes from a specified file; writing
a specified number of bytes to a specified file; creating,
renaming and removing specified files; parsing direc-
tory trees; creating and removing directories; and read-
ing and setting file attributes. The location on disk to
which and from which data is stored and retrieved is
always specified in logical terms, such as by a file han-
dle or Inode designation and a byte offset. The details of
the actual data storage are hidden from the client. The
NFS procedures, together with possible higher level
modules such as Unix VFS and UFS, perform all con-
version of logical data addresses to physical data ad-
dresses such as drive, head, track and sector identifica-
tion. NFS is specified in Sun Microsystems, Inc., "NFS:
Network File System Protocol Specification," RFC
1094 (March 1989), incorporated herein by reference.

With the possible exception of the network layer, all
the protocol processing described above is done in soft-
ware, by a single processor in the host CPU card 10.
That is, when an Ethernet packet arrives on Ethernet
12, the host CPU 10 performs all the protocol process-
ing in the NFS stack, as well as the protocol processing
for any other application which may be running on the
host 10. NFS procedures are run op the host CPU 10,
with access to memory 16 for both data and prograIn
code being provided via MMU 11. Logically specified.
data addresses are converted to a much more physically
specified form and communicated to the SMD disk
controller 22 or the SCSI bus 28, via the VME bus 20,
and all disk caching is done by the host CPU 10 through
the memory 16. The host CPU card 10 also runs proce-
dures for performing various other functions of the file
server, communicating with tape controller 30 via the
VME bus 20. Among these are client-defined remote
procedures requested by client workstations.

If the server serves a second Ethernet 36, packets
from that Ethernet are transmitted to the host CPU 10
over the same VME bus 20 in the form of IP datagrams.
Again, all protocol processing except for the network
layer is performed by software processes running on the
host CPU 10. In addition, the protocol processing for
any message that is to be sent from the server out on
either of the Ethernets 12 or 36 is also done by processes
running on the host CPU 10.

It can be seen that the host CPU 10 performs an
enormous amount of processing of data, especially if 60
5-10 clients on each of the two Ethemets are making
file server requests and need to be sent responses on a
frequent basis. The host CPU 10 runs a multitasking
Unix operating system, so each incoming request need
not wait for the previous request to be completely pro-
cessed and returned before being processed. Multiple
processes are activated on the host CPU 10 for perform-
ing different stages of the processing of different re-

5,163,131
8

quests, so many requests may be in process at the same
time. But there is only one CPU on the card 10, so the
processing of these requests is not accomplished in a
truly parallel manner. The processes are instead merely

5 time sliced. The CPU 10 therefore represents a major
bottleneck in the processing of file server requests.

Another bottleneck occurs in MMU 11, which must
transmit both instructions and data between the CPU
card 10 and the memory 16. All data flowing between

10 the disk drives and the network passes through this
interface at least twice.

Yet another bottleneck can occur on the VME bus
20, which must transmit data among the SMD disk
controller 22, the SCSI host adaptor 26, the host CPU

15 card 10, and possibly the network #2 controller 24.

PREFERRED EMBODIMENT-OVERALL
HARDWARE ARCHITECTURE

In FIG. 2 there is shown a block diagram of a net-
20 work file server 100 according to the invention. It can

include multiple network controller (NC) boards, one
or more file controller (FC) boards, one or more storage
processor (SP) boards, multiple system memory boards,
and one or more host processors. The particular em-

25 bodiment shown in FIG. 2 includes four network con-
troller boards 110a-110d, two file controller boards
112a-112b, two storage processors 1140-114b, four
system memory cards 116a-116d for a total of 192 MB
of memory, and one local host processor 118. The

30 boards 110, 112, 114, 116 and 118 are connected to-
gether over a VME bus 120 on which an enhanced
block transfer mode as described in the ENHANCED
VMEBUS PROTOCOL application identified above
may be used. Each of the four network controllers 110

35 shown in FIG. 2 can be connected to up to two Ether-
nets 122, for a total capacity of 8 Ethernets 122a-122h.
Each of the storage processors 114 operates ten parallel
SCSI busses, nine of which can each support up to three
SCSI disk drives each. The tenth SCSI channel on each

40 of the storage processors 114 is used for tape drives and
other SCSI peripherals.

The host 118 is essentially a standard SunOs Unix
processor, providing all the standard Sun Open Net-
work Computing (ONC) services except NFS and IP

45 routing. Importantly, all network requests to run a user-
defined procedure are passed to the host for execution.
Each of the NC boards 110, the FC boards 112 and the
SP boards 114 includes its own independent 32-bit mi-
croprocessor. These boards essentially off-load from

50 the host processor 118 virtually all of the NFS and disk
processing. Since the vast majority of messages to and
from clients over the Ethernets 122 involve NFS re-
quests and responses, the processing of these requests in
parallel by the NC, FC and SP processors, with minimal

55 involvement by the local host 118, vastly improves file
server performance. Unix is explicitly eliminated from
virtually all network, file, and storage processing.

OVERALL SOFTWARE ORGANIZATION AND
DATA FLOW

Prior to a detailed discussion of the hardware subsys-
tems shown in FIG. 2, an overview of the software
structure will now be undertaken. The software organi-
zation is described in more detail in the above-identified

65 application entitled MULTIPLE FACILITY OPER-
ATING SYSTEM ARCHITECTURE.

Most of the elements of the software are well known
in the field and are found in most networked Unix sys-

Apple Inc.
Ex. 1012 - Page 17

9
tems, but there are two components which are not:
Local NFS ("LNFS") and the messaging kernel
("MK") operating system kernel. These two compo-
nents will be explained first.

The Messaging Kernel
The various processors in file server 100 communi-

cate with each other through the use of a messaging
kernel running on each of the processors 110, 112, 114
and 118. These processors do not share any instruction
memory, so task-level communication cannot occur via
straightforward procedure calls a it does in conven-
tional Unix. Instead, the messaging kernel passes mes-
sages over VME bus 120 to accomplish all necessary
inter-processor communication. Message passing is pre-
ferred over remote procedure calls for reasons of sim-
plicity and speed.

Messages passed by the messaging kernel have a fixed
128-byte length. Within a single processor, messages are
sent by reference; between processors, they are copied
by the messaging kernel and then delivered to the desti-
nation process by reference. The processors of FIG. 2
have special hardware, discussed below, that can expe-
diently exchange and buffer interprocessor messaging
kernel messages.

The LNFS Local NFS interface
The 22-function NFS standard was specifically de-

signed for stateless operation using unreliable communi-
cation. This means that neither clients nor server can be
sure if they hear each other when they talk (unreliabil-
ity). In practice, an in an Ethernet environment, this
works well.

Within the server 100, however, NFS level data-
grams are also used for communication between proces-
sors, in particular between the network controllers 110
and the file controller 112, and between the host proces- 35
sor 118 and the file controller 112. For this internal
communication to be both efficient and convenient, it is
undesirable and impractical to have complete stateless-
ness or unreliable communications. Consequently, a
modified form of NFS, namely LNFS, is used for inter- 40
nal communication of NFS requests and responses.
LNFS is used only within the file server 100; the exter-
nal network protocol supported by the server is pre-
cisely standard, licensed NFS. LNFS is described in
more detail below. 45

The Network Controllers 110 each run an NFS
server which, after all protocol processing is done up to
the NFS layer, converts between external NFS requests
and responses and internal LNFS requests and re-
sponses. For example, NFS requests arrive as RPC 50
requests with XDR and enclosed in a UDP datagram.
After protocol processing, the NFS server translates
the NFS request into LNFS form and uses the messag-
ing kernel to send the request to the file controller 112.

The file controller runs an LNFS server which han- 55
dles LNFS requests both from network controllers and
from the host 118. The LNFS server translates LNFS
requests to a form appropriate for a file system server,
also running on the file controller, which manages the
system memory file data cache through a block I/O 60
layer.

An overview of the software in each of the proces-
sors will now be set forth.

Network Controller 110 65
The optimized dataflow of the server 100 begins with

the intelligent network controller 110. This processor
receives Ethernet packets from client workstations. It

5,163,131
10

quickly identifies NFS-destined packets and then per-
forms full protocol processing on them to the NFS
level, passing the resulting LNFS requests directly to
the file controller 112. This protocol processing in-

5 cludes IP routing and reassembly, UDP demultiplexing,
XDR decoding, and NFS request dispatching. The
reverse steps are used to send an NFS reply back to a
client. Importantly, these time-consuming activities are
performed directly in the Network Controller 110, not

10 in the host 118.
The server 100 uses conventional NFS ported from

Sun Microsystems, Inc., Mountain View, Calif., and is
NFS protocol compatible.

Non-NFS network traffic is passed directly to its
15 destination host processor 118.

The NCs 110 also perform their own IP routing.
Each network controller 110 supports two fully parallel
Ethernets. There are four network controllers in the
embodiment of the server 100 shown in FIG. 2, so that

20 server can support up to eight Ethernets. For the two
Ethernets on the same network controller 110, IP rout-
ing occurs completely within the network controller
and generates no backplane traffic. Thus attaching two
mutually active Ethernets to the same controller not

25 only minimizes their inter-net transit time, but also sig-
nificantly reduces backplane contention on the VME
bus 120. Routing table updates are distributed to the
network controllers from the host processor 118, which
runs either the gated or routed Unix demon.

30 While the network controller described here is de-
signed for Ethernet LANs, it will be understood that
the invention can be used just as readily with other
network types, including FDDI.

File Controller 112

In addition to dedicating a separate processor for
NFS protocol processing and IP routing, the server 100
also dedicates a separate processor, the intelligent file
controller 112, to be responsible for all file system pro-
cessing. It uses conventional Berkeley Unix 4.3 file
system code and uses a binary-compatible data repre-
sentation on disk. These two choices allow all standard
file system utilities (particularly block-level tools) to run
unchanged.

The file controller 112 runs the shared file system
used by all NCs 110 and the host processor 118. Both
the NCs and the host processor communicate with the
file controller 12 using the LNFS interface. The NCs
110 use LNFS as described above, while the host pro-
cessor 118 uses LNFS as a plug-in module to SunOs's
standard Virtual File System ("VFS") interface.

When an NC receives an NFS read request from a
client workstation, the resulting LNFS request passes to
the FC 112. The FC 112 first searches the system mem-
ory 116 buffer cache for the requested data. If found, a
reference to the buffer is returned to the NC 110. If not
found, the LRU (least recently used) cache buffer in
system memory 116 is freed and reassigned for the re-
quested block. The FC then directs the SP 114 to read
the block into the cache buffer from a disk drive array.
When complete. The SP so notifies the FC, which in
turn notifies the NC 100. The NC 110 then sends an
NFS reply, with the data from the buffer, back to the
NFS client workstation out on the network. Note that
the SP 114 transfers the data into system memory 116, if
necessary, and the NC 110 transferred the data from
system memory 116 to the networks. The process takes
place without any involvement of the host 118.

Apple Inc.
Ex. 1012 - Page 18

11
Storage Processor

The intelligent storage processor 114 manages all disk
and tape storage operations. While autonomous, storage
processors are primarily directed by the file controller
112 to move file data between system memory 116 and
the disk subsystem. The exclusion of both the host 118
and the FC 112 from the actual data path helps to sup-
ply the performance needed to service many remote
clients.

Additionally, coordinated by a Server Manager in the
host 118, storage processor 114 can execute server
backup by moving data between the disk subsystem and
tape or other archival peripherals on the SCSI channels.
Further, if directly accessed by host processor 118, SP
114 can provide a much higher performance conven-
tional disk interface for Unix, virtual memory, and data-
bases. In Unix nomenclature, the host processor 118 can
mount boot, storage swap, and raw partitions via the
storage processors 114.

Each storage processor 114 operates ten parallel,
fully synchronous SCSI channels (busses) simulta-
neously. Nine of these channels support three arrays of
nine SCSI disk drives each, each drive in an array being
assigned to a different SCSI channel. The tenth SCSI
channel hosts up to seven tape and other SCSI peripher-
als. In addition to performing reads and writes, SP 114
performs device-level optimizations such as disk seek
queue sorting, directs device error recovery, and con-
trols DMA transfers between the devices and system
memory 116.

Host Processor 118

The local host 118 has three main purposes: to run
Unix, to provide standard ONC network services for
clients, and to run a Server Manager. Since Unix and
ONC are ported from the standard SunOs Release 4 and
ONC Services Release 2, the server 100 can provide
identically compatible high-level ONC services such as
the Yellow Pages, Lock Manager, DES Key Authenti- 40
cator, Auto Mounter, and Port Mapper. Sun/2 Net-
work disk booting and more general IP internet services
such as Telnet, FTP, SMTP, SNMP, and reverse ARP
are also supported. Finally, print spoolers and similar
Unix demons operate transparently. 45

The host processor 118 runs the following software
modules:

TCP and Socket Layers
The Transport Control Protocol ("TCP"), which is

used for certain server functions other than NFS, pro- 50
vides reliable bytestream communication between two
processors. Socket are used to establish TCP connec-
tions.

VFS Interface
The Virtual File System ("VFS") interface is a stan- 55

dard SunOs file system interface. It paints a uniform
file-system picture for both users and the non-file parts
of the Unix operating system, hiding the details of the
specific file system. Thus standard NFS, LNFS, and
any local Unix file system can coexist harmoniously. 60

UFS Interface
The Unix File System ("UFS") interface is the tradi-

tional and well-known Unix interface for communica-
tion with local-to-the-processor disk drives. In the
server 100, it is used to occasionally mount storage 65
processor volumes directly, without going through the
file controller 112. Normally, the host 118 uses LNFS
and goes through the file controller.

5,163,131
12

Device Layer
The device layer is a standard software interface

between the Unix device model and different physical
device implementations. In the server 100, disk devices

5 are not attached to host processors directly, so the disk
driver in the host's device layer uses the messaging
kernel to communicate with the storage processor 114.

Route and Port Mapper Demons
The Route and Port Mapper demons are Unix user-

10 level background processes that maintain the Route and
Port databases for packet routing. They are mostly
inactive and not in any performance path.

Yellow Pages and Authentication Demon
The Yellow Pages and Authentication services are

15 Sun-ONC standard network services. Yellow Pages is a
widely used multipurpose name-to-name directory
lookup service. The Authentication service uses crypto-
graphic keys to authenticate, or validate, requests to
insure that requestors have the proper privileges for any

20 actions or data they desire.
Server Manager
The Server Manager is an administrative application

suite that controls configuration, logs error and perfor-
mance reports, and provides a monitoring and tuning

25 interface for the system administrator. These functions
can be exercised from either system console connected
to the host 118, or from a system administrator's work-
station.

The host processor 118 is a conventional OEM Sun
30 central processor card, Model 3E/120. It incorporates a

Motorola 68020 microprocessor and 4 MB of on-board
memory. Other processors, such as a SPARC-based
processor, are also possible.

The structure and operation of each of the hardware
35 components of server 100 will now be described in

detail.

NETWORK CONTROLLER HARDWARE
ARCHITECTURE

FIG. 3 is a block diagram showing the data path and
some control paths for an illustrative one of the network
controllers 110a. It comprises a 20 MHz 68020 micro-
processor 210 connected to a 32-bit microprocessor
data bus 212. Also connected to the microprocessor
data bus 212 is a 256 K byte CPU memory 214. The low
order 8 bits of the microprocessor data bus 212 are
connected through a bidirectional buffer 216 to an 8-bit
slow-speed data bus 218. On the slow-speed data bus
218 is a 128 K byte EPROM 220, a 32 byte PROM 222,
and a multi-function peripheral (MFP) 224. The
EPROM 220 contains boot code for the network con-
troller 110a, while the PROM 222 stores various operat-
ing parameters such as the Ethernet addresses assigned
to each of the two Ethernet interfaces on the board.
Ethernet address information is read into the corre-
sponding interface control block in the CPU memory
214 during initialization. The MFP 224 is a Motorola
68901, and performs various local functions such as
timing, interrupts, and general purpose I/O. The MFP
224 also includes a UART for interfacing to an RS232
port 226. These functions are not critical to the inven-
tion and will not be further described herein.

The low order 16 bits of the microprocessor data bus
212 are also coupled through a bidirectional buffer 230
to a 16-bit LAN data bus 232. A LAN controller chip
234, such as the Am7990 LANCE Ethernet controller
manufactured by Advanced Micro Devices, Inc. Sun-
nyvale, Calif., interfaces the LAN data bus 232 with the

Apple Inc.
Ex. 1012 - Page 19

13
first Ethernet 122a shown in FIG. 2. Control and data
for the LAN controller 234 are stored in a 512 K byte
LAN memory 236, which is also connected to the LAN
data bus 232. A specialized 16 to 32 bit FIFO chip 240,
referred to herein as a parity FIFO chip and described 5
below, is also connected to the LAN data bus 232. Also
connected to the LAN data bus 232 is a LAN DMA
controller 242, which controls movements of packets of
data between the LAN memory 236 and the FIFO chip
240. The LAN DMA controller 242 may be a Motorola 10
M68440 DMA controller using channel zero only.

The second Ethernet 1226 shown in FIG. 2 connects
to a second LAN data bus 252 on the network control-
ler card 110a shown in FIG. 3. The LAN data bus 252
connects to the low order 16 bits of the microprocessor
data bus 212 via a bidirectional buffer 250, and has simi-
lar components to those appearing on the LAN data bus
232. In particular, a LAN controller 254 interfaces the
LAN data bus 252 with the Ethernet 122b, using LAN
memory 256 for data and control, and a LAN DMA
controller 262 controls DMA transfer of data between
the LAN memory 256 and the 16-bit wide data port A
of the parity FIFO 260.

The low order 16 bits of microprocessor data bus 212
are also connected directly to another parity FIFO 270,
and also to a control port of a VME/FIFO DMA con-
troller 272. The FIFO 270 is used for passing messages
between the CPU memory 214 and one of the remote
boards 110, 112, 114, 116 or 118 (FIG. 2) in a manner
described below. The VME/FIFO DMA controller
272, which supports three round-robin non-prioritized
channels for copying data, controls all data transfers
between one of the remote boards and any of the FIFOs
240, 260 or 270, as well as between the FIFOs 240 and
260.

32-bit data bus 274, which is connected to the 32-bit
port B of each of the FIFOs 240, 260 and 270, is the data
bus over which these transfers take place. Data bus 274
communicates with a local 32-bit bus 276 via a bidirec-
tional pipelining latch 278, which is also controlled by
VME/FIFO DMA controller 727, which in turn com-
municates with the VME bus 120 via a bidirectional
buffer 280.

The local data bus 276 is also connected to a set of
control registers 282, which are directly addressable
across the VME bus 120. The registers 282 are used
mostly for system initialization and diagnostics.

The local data bus 276 is also coupled to the micro-
processor data bus 212 via a bidirectional buffer 284.
When the NC 110a operates in slave mode, the CPU
memory 214 is directly addressable from VME bus 120.
One of the remote boards can copy data directly from
the CPU memory 214 via the bidirectional buffer 284.
LAN memories 236 and 256 are not directly addressed
over VME bus 120.

The parity FIFOs 240, 260 and 270 each consist of an
ASIC, the functions and operation of which are de-
scribed in the Appendix. The FIFOs 240 and 260 are
configured for packet data transfer and the FIFO 270 is
configured for massage passing. Referring to the Ap-
pendix, the FIFOs 240 and 260 are programmed with
the following bit settings in the Data Transfer Configu-
ration Register:

Bit Definition Setting

0 WD Mode
Parity Chip

N/A
N/A

5,163,131
14

-continued
Bit Definition Setting

2 Parity Correct Mode
3 8/16 bits CPU & PortA interface
4 Invert Port A address 0
5 Invert Port A address I
6 Checksum Carry Wrap
7 Reset

N/A
16 bits (1)
no (0)
Yes (1)
yes (1)
no (0)

The Data Transfer Control Register is programmed
as follows:

Bit Definition Setting

15 0 Enable PortA Req/Ack
1 Enable PoriB Req/Ack
2 Data Transfer Direction
3 CPU parity enable
4 PortA parity enable
5 PoriB parity enable

20 6 Checksum Enable
7 PortA Master

Yes (1)
yes (1)
(as desired)
no (0)
no (0)
no (0)
yes (I)
yes (1)

Unlike the configuration used on FIFOs 240 and 260,
the microprocessor 210 is responsible for loading and

25 unloading Port A directly. The microprocessor 210
reads an entire 32-bit word from port A with a single
instruction using two port A access cycles. Port A data
transfer is disabled by unsetting bits 0 (Enable PortA
Req/Ack) and 7 (PortA Master) of the Data Transfer

30 Control Register.
The remainder of the control settings in FIFO 270 are

the same as those in FIFOs 240 and 260 described
above.

The NC 110a also includes a command FIFO 290.
35 The command FIFO 290 includes an input port coupled

to the local data bus 276, and which is directly address-
able across the VME bus 120, and includes an output
port connected to the microprocessor data bus 212. As
explained in more detail below, when one of the remote

40 boards issues a command or response to the NC 110a, it
does so by directly writing a 1-word (32-bit) message
descriptor into NC 110a's command FIFO 290. Com-
mand FIFO 290 generates a "FIFO not empty" status
to the microprocessor 210, which then reads the mes-

45 sage descriptor off the top of FIFO 290 and processes it.
If the message is a command, then it includes a VME
address at which the message is located (presumably an
address in a shared memory similar to 214 on one of the
remote boards). The microprocessor 210 then programs

50 the FIFO 270 and the VME/FIFO DMA controller
272 to copy the message from the remote location into
the CPU memory 214.

Command FIFO 290 is a conventional two-port
FIFO, except that additional circuitry is included for

55 generating a Bus Error signal on VME bus 120 if an
attempt is made to write to the data input port while the
FIFO is full. Command FIFO 290 has space for 256
entries.

A noteworthy feature of the architecture of NC 110a
60 is that the LAN buses 232 and 252 are independent of

the microprocessor data bus 212. Data packets being
routed to or from an Ethernet are stored in LAN mem-
ory 236 on the LAN data bus 232 (or 256 on the LAN
data bus 252), and not in the CPU memory 214. Data

65 transfer between the LAN memories 236 and 256 and
the Ethernets 122a and 1226, are controlled by LAN
controllers 234 and 254, respectively, while most data
transfer between LAN memory 236 or 256 and a remote

Apple Inc.
Ex. 1012 - Page 20

5,163,131
15

port on the VME bus 120 are controlled by LAN DMA
controllers 242 and 262, FIFOs 240 and 260, and
VME/FIFO DMA controller 272. An exception to this
rule occurs when the size of the data transfer is small,
e.g., less than 64 bytes, in which case microprocessor
210 copies it directly without using DMA. The micro-
processor 210 is not involved in larger transfers except
in initiating them and in receiving notification when
they are complete.

The CPU memory 214 contains mostly instructions
for microprocessor 210, messages being transmitted to
or from a remote board via FIFO 270, and various data
blocks for controlling the FIFOs, the DMA controllers
and the LAN controllers. The microprocessor 210 ac-
cesses the data packets in the LAN memories 236 and
256 by directly addressing them through the bidirec-
tional buffers 230 and 250, respectively, for protocol
processing. The local high-speed station RAM in CPU
memory 214 can therefore provide zero wait state mem-
ory access for microprocessor 210 independent of net-
work traffic. This is in sharp contrast to the prior art
architecture shown in FIG. 1, in which all data and data
packets, as well as microprocessor instructions for host
CPU card 10, reside in the memory 16 and must com-
municate with the host CPU card 10 via the MMU 11.

While the LAN data buses 232 and 252 are shown as
separate buses in FIG. 3, it will be understood that they
may instead be implemented as a single combined bus.

NETWORK CONTROLLER OPERATION

In operation, when one of the LAN controllers (such
as 234) receives a packet of information over its Ether-
net 122a, it reads in the entire packet and stores it in
corresponding LAN memory 236. The LAN controller 35
234 then issues an interrupt to microprocessor 210 via
MFP 224, and the microprocessor 210 examines the
status register on LAN controller 234 (via bidirectional
buffer 230) to determine that the event causing the inter-
rupt was a "receive packet completed." In order to
avoid a potential lookout of the second Ethernet 122b
caused by the prioritized interrupt handling characteris-
tic of MFP 224, the microprocessor 210 does not at this
time immediately process the received packet; instead,
such processing is scheduled for a polling function.

When the polling function reaches the processing of
the received packet, control over the packet is passed to
a software link level receive module. The link level
receive module then decodes the packet according to
either of two different frame formats: standard Ethernet
format or SNAP (IEEE 802 LCC) format. An entry in
the header in the packet specifies which frame format
was used. The link level driver then determines which
of three types of messages is contained in the received
packet: (1) IP, (2) ARP packets which can be handled
by a local ARP module, or (3) ARP packets and other
packet types which must be forwarded to the local host
118 (FIG. 2) for processing. If the packet is an ARP
packet which can be handled by the NC 110a, such as a
request for the address of server 100, then the micro-
processor 210 assembles a response packet in LAN
memory 236 and, in a conventional manner, causes
LAN controller 234 to transmit that packet back over
Ethernet 122a. It is noteworthy that the data manipula-
tion for accomplishing this task is performed almost
completely in LAN memory 236, directly addressed by
microprocessor 210 as controlled by instructions in
CPU memory 214. The function is accomplished also

16
Without generating any traffic on the VME backplane
120 at all, and without disturbing the local host 118.

If the received packet is either an ARP packet which
cannot be processed completely in the NC 110a, or is

5 another type of packet which requires delivery to the
local host 118 (such as a client request for the server 100
to execute a client-defined procedure), then the micro-
processor 210 programs LAN DMA controller 242 to
load the packet from LAN memory 236 into FIFO 240,

10 programs FIFO 240 with the direction of data transfer,
and programs DMA controller 272 to read the packet
out of FIFO 240 and across the VME bus 120 into
system memory 116. In particular, the microprocessor
210 first programs the LAN DMA controller 242 with

15 the starting address and length of the packet in LAN
memory 236, and programs the controller to begin
transferring data from the LAN memory 236 to port A
of parity FIFO 240 as soon as the FIFO is ready to
receive data. Second, microprocessor 210 programs the

20 VME/FIFO DMA controller 272 with the destination
address in system memory 116 and the length of the
data packet, and instructs the controller to begin trans-
ferring data from port B of the FIFO 260 onto VME
bus 120. Finally, the microprocessor 210 programs

25 FIFO 240 With the direction of the transfer to take
place. The transfer then proceeds entirely under the
control of DMA controllers 242 and 272, without any
further involvement by microprocessor 210.

The microprocessor 210 then sends a message to host
30 118 that a packet is available at a specified system mem-

ory address. The microprocessor 210 sends such a mes-
sage by writing a message descriptor to a software-
emulated command FIFO on the host, which copies the
message from CPU memory 214 on the NC via buffer
284 and into the host's local memory, in ordinary VME
block transfer mode. The host then copies the packet
from system memory 116 into the host's own local
memory using ordinary VME transfers.

If the packet received by NC 110a from the network
40 is an IP packet, then the microprocessor 210 determines

whether it is (1) an IP packet for the server 100 which
is not an NFS packet; (2) an IP packet to be routed to a
different network; or (3) an NFS packet. If it is an IP
packet for the server 100, but not an NFS packet, then

45 the microprocessor 210 causes the packet to be trans-
mitted from the LAN memory 236 to the host 118 in the
same manner described above with respect to certain
ARP packets.

If the IP packet is not intended for the server 100, but
50 rather is to be routed to a client on a different network,

then the packet is copied into the LAN memory associ-
ated with the Ethernet to which the destination client is
connected. If the destination client is on the Ethernet
122b, which is on the same NC board as the source

55 Ethernet 122a, then the microprocessor 210 causes the
packet to be copied from LAN memory 236 into LAN
256 and then causes LAN controller 254 to transmit it
over Ethernet 122b. (Of course, if the two LAN data
buses 232 and 252 are combined, then copying would be

60 unnecessary; the microprocessor 210 would simply
cause the LAN controller 254 to read the packet out of
the same locations in LAN memory to which the packet
was written by LAN controller 234.)

The copying of a packet from LAN memory 236 to
65 LAN memory 256 takes place similarly to the copying

described above from LAN memory to system mem-
ory. For transfer sizes of 64 bytes or more, the micro-
processor 210 first programs the LAN DMA controller

Apple Inc.
Ex. 1012 - Page 21

5,16
17

242 with the starting address and length of the packet in
LAN memory 236, and programs the controller to
begin transferring data from the LAN memory 236 into
port A of parity FIFO 240 as soon as the FIFO is ready
to receive data. Second, microprocessor 210 programs
the LAN DMA controller 262 with a destination ad-
dress in LAN memory 256 and the length of the data
packet, and instructs that controller to transfer data
from parity FIFO 260 into the LAN memory 256.
Third, microprocessor 210 programs the VME/FIFO I
DMA controller 272 to clock words of data out of port
B of the FIFO 240, over the data bus 274, and into port
B of FIFO 260. Finally, the microprocessor 210 pro-
grams the two FIFOs 240 and 260 with the direction of
the transfer to take place. The transfer then proceeds I
entirely under the control of DMA controllers 242, 262
and 272, without any further involvement by the micro-
processor 210. Like the copying from LAN memory to
system memory, if the transfer size is smaller than 64
bytes, the microprocessor 210 performs the transfer 2
directly, without DMA.

When each of the LAN DMA controllers 242 and
262 complete their Work, they so notify microprocessor
210 by a respective interrupt provided through MFP
224. When the microprocessor 210 has received both 2
interrupts, it programs LAN controller 254 to transmit
the packet on the Ethernet 1226 in a conventional man-
ner.

Thus, IP routing between the two Ethernets in a
single network controller 110 takes plaoe over data bus 3
274, generating no traffic over VME bus 120. Nor is the
host processor 118 disturbed for such routing, in con-
trast to the prior art architecture of FIG. 1. Moreover,
all but the shortest copying work is performed by con-
trollers outside microprocessor 210, requiring the in- 3
volvement of the microprocessor 210, and bus traffic on
microprocessor data bus 212, only for the supervisory
functions of programming the DMA controllers and the
parity FIFOs and instructing them to begin. The
VME/FIFO DMA controller 272 is programmed by 40
loading control registers via microprocessor data bus
212; the LAN DMA controllers 242 and 262 are pro-
grammed by loading control registers on the respective
controllers via the microprocessor data bus 212, respec-
tive bidirectional buffers 230 and 250, and respective 4
LAN data buses 232 and 252, and the parity FIFOs 240
and 260 are programmed as set forth in the Appendix.

If the destination workstation of the IP packet to be
routed is on an Ethernet connected to a different one of
the network controllers 110, then the packet is copied 5
into the appropriate LAN memory on the NC 110 to
which that Ethernet is connected. Such copying is ac-
complished by first copying the packet into system
memory 116, in the manner described above with re-
spect to certain ARP packets, and then notifying the 5
destination NC that a packet is available. When an NC
is so notified, it programs its own parity FIFO and
DMA controllers to copy the packet from system mem-
ory 116 into the appropriate LAN memory. It is note-
worthy that though this type of IP routing does create 60
VME bus traffic, it still does not involve the host CPU
118.

If the IP packet received over the Ethernet 122a and
now stored in LAN memory 236 is an NFS packet
intended for the server 100, then the microprocessor 6
210 performs all necessary protocol prepossessing to
extract the NFS message and convert it to the local
NFS (LNFS) format. This may well involve the logical

3,131
18

concatenation of data extracted from a large number of
individual IP packets stored in LAN memory 236, re-
sulting in a linked list, in CPU memory 214, pointing to
the different blocks of data in LAN memory 236 in the

5 correct sequence.
The exact details of the LNFS format are not impor-

tant for an understanding of the invention, except to
note that it includes commands to maintain a directory
of files which are stored on the disks attached to the

O storage processors 114, commands for reading and writ-
ing data to and from a file on the disks, and various
configuration management and diagnostics control mes-
sages. The directory maintenance commands which are
supported by LNFS include the following messages

5 based on conventional NFS: get attributes of a file (GE-
TATTR); set attributes of a file (SETATTR); look up a
file (LOOKUP); created a file (CREATE); remove a
file (REMOVE); rename a file (RENAME); created a
new linked file (LINK); create a symlink (SYMLINK);

o remove a directory (RMDIR); and return file system
statistics (STATFS). The data transfer commands sup-
ported by LNFS include read from a file (READ);
write to a file (WRITE); read from a directory (READ-
DIR); and read a link (READLINK). LNFS also sup-

5 ports a buffer release command (RELEASE), for noti-
fying the file controller that an NC is finished using a
specified buffer in system memory. It also supports a
VOP-derived access command, for determining
whether a given type access is legal for specified cre-

▪ dential on a specified file.
If the LNFS request includes the writing of file data

from the LAN memory 236 to disk, the NC 110a first
requests a buffer in system memory 116 to be allocated
by the appropriate FC 112. When a pointer to the buffer

5 is returned, microprocessor 210 programs LAN DMA
controller 242, parity FIFO 240 and VME/FIFO
DMA controller 272 to transmit the entire block of file
data to system memory 116. The only difference be-
tween this transfer and the transfer described above for
transmitting IP packets and ARP packets to system
memory 116 is that these data blocks will typically have
portions scattered throughout LAN memory 236. The
microprocessor 210 accommodates that situation by
programming LAN DMA controller 242 successively

5 for each portion of the data, in accordance with the
linked list, after receiving notification that the previous
portion is complete. The microprocessor 210 can pro-
gram the parity FIFO 240 and the VME/FIFO DMA
controller 272 once for the entire message, as long as the

O entire data block is to be placed contiguously in system
memory 116. If it is not, then the microprocessor 210
can program the DMA controller 272 for successive
blocks in the same manner LAN DMA controller 242.

If the network controller 110a receives a message
5 from another processor in server 100, usually from file

controller 112, that file data is available in system mem-
ory 116 for transmission on one of the Ethernets, for
example Ethernet 122a, then the network controller
110a copies the file data into LAN memory 236 in a
manner similar to the copying of file data in the opposite
direction. In particular, the microprocessor 210 first
programs VME/FIFO DMA controller 272 with the
starting address and length of the data in system mem-
ory 116, and programs the controller to begin transfer-

5 ring data over the VME bus 120 into port B of parity
FIFO 240 as soon as the FIFO is ready to receive data.
The microprocessor 210 then programs the LAN DMA
controller 242 with a destination address in LAN mem-

Apple Inc.
Ex. 1012 - Page 22

19
ory 236 and then length of the file data, and instructs
that controller to transfer data from the parity FIFO
240 into the LAN memory 236. Third, microprocessor
210 programs the parity FIFO 240 with the direction of
the transfer to take place. The transfer then proceeds
entirely under the control of DMA controllers 242 and
272, without any further involvement by the micro-
processor 210. Again, if the file data is scattered in
multiple blocks in system memory 116, the micro-
processor 210 programs the VME/FIFO DMA con-
troller 272 with a linked list of the blocks to transfer in
the proper order.

When each of the DMA controllers 242 and 272
complete their work, they so notify microprocessor 210
through MFP 224. The microprocessor 210 then per-
forms all necessary protocol processing on the LNFS
message in LAN memory 236 in order to prepare the
message for transmission over the Ethernet 122a in the
form of Ethernet IP packets. As set forth above, this
protocol processing is performed entirely in network
controller 110a, without any involvement of the local
host 118.

It should be noted that the parity FIFOs are designed
to move multiples of 128-byte blocks most efficiently.
The data transfer size through port B is always 32-bits
wide, and the VME address corresponding to the 32-bit
data must be quad-byte aligned. The data transfer size
for port A can be either 8 or 16 bits. For bus utilization
reasons, it is set to 16 bits when the corresponding local
start address is double-byte aligned, and is set at 8 bits
otherwise. The TCP/IP checksum is always computed
in the 16 bit mode. Therefore, the checksum word re-
quires byte swapping if the local start address is not
double-byte aligned.

Accordingly, for transfer from port B to port A of
any of the FIFOs 240, 260 or 270, the microprocessor
210 programs the VME/FIFO DMA controller to pad
the transfer count to the next 28-byte boundary. The
extra 32-bit word transfers do not involve the VME bus,
and only the desired number of 32-bit words will be
unloaded from port A.

For transfers from port A to port B of the parity
FIFO 270, the microprocessor 210 loads port A word-
by-word and forces a FIFO full indication when it is
finished. The FIFO full indication enables unloading
from port B. The same procedure also takes place for
transfers from port A to port B of either of the parity
FIFOs 240 or 260, since transfers of fewer than 128
bytes are performed under local microprocessor control
rather than under the control of LAN DMA controller
242 or 262. For all of the FIFOs, the VME/FIFO
DMA controller is programmed to unload only the
desired number of 32-bit words.

FILE CONTROLLER HARDWARE
ARCHITECTURE

The file controllers (FC) 112 may each be a standard
off-the-shelf microprocessor board, such as one manu-
factured by Motorola Inc. Preferably, however, a more
specialized board is used such as that shown in block
diagram form in FIG. 4.

FIG. 4 shows one of the FCs 112a, and it will be
understood that the other FC can be identical. In many
aspects it is simply a scaled-down version of the NC
110a shown in FIG. 3, and in some respects it is scaled
up. Like the NC 110a, FC 112a comprises a 20 MHz
68020 microprocessor 310 connected to a 32-bit micro-
processor data bus 312. Also connected to the micro-

5,163,131
20

processor data bus 312 is a 256 K byte shared CPU
memory 314. The low order 8 bits of the microproces-
sor data bus 312 are connected through a bidirectional
buffer 316 to an 8-bit slow-speed data bus 318. On slow-

5 speed data bus 318 are a 128 K byte PROM 320, and a
multifunction peripheral (MFP) 324. The functions of
the PROM 320 and MFP 324 are the same as those
described above with respect to EPROM 220 and MFP
224 on NC 110a. FC 112a does not include PROM like

10 the PROM 222 on NC 110a, but does include a parallel
port 392. The parallel port 392 is mainly for testing and
diagnostics.

Like the NC 110a, the FC 112a is connected to the
VME bus 120 via a bidirectional buffer 380 and a 32-bit

15 local data bus 376. A set of control registers 382 are
connected to the local data bus 376, and directly ad-
dressable across the VME bus 120. The local data bus
376 is also coupled to the microprocessor data bus 312
via a bidirectional buffer 384. This permits the direct

20 addressability of CPU memory 314 from VME bus 120.
FC 112a also includes a command FIFO 390, which

includes an input port coupled to the local data bus 376
and which is directly addressable across the VME bus
120. The command FIFO 390 also includes an output

25 port connected to the microprocessor data bus 312. The
structure, operation and purpose of command FIFO
390 are the same as those described above with respect
to command FIFO 290 on NC 110a.

The FC 112a omits the LAN data buses 323 and 352
30 which are present in NC 110a, but instead includes a 4

megabyte 32-bit wide FC memory 396 coupled to the
microprocessor data bus 312 via a bidirectional buffer
394. As will be seen, FC memory 396 is used as a cache
memory for file control information, separate from the

35 file data information cached in system memory 116.
The file controller embodiment shown in FIG. 4 does

not include any DMA controllers, and hence cannot act
as a master for transmitting or receiving data in any
block transfer mode, over the VME bus 120. Block

40 transfers do occur with the CPU memory 314 and the
FC memory 396, however, with the FC 112a acting as
an VME bus slave. In such transfers, the remote master
addresses the CPU memory 314 or the FC memory 396
directly over the VME bus 120 through the bidirec-

45 tional buffers 384 and, if appropriate, 394.

FILE CONTROLLER OPERATION

The purpose of the FC 112a is basically to provide
virtual file system services in response to requests pro-

50 vided in LNFS format by remote processors on the
VME bus 120. Most requests will come from a network
controller 110, but requests may also come from the
local host 118.

The file related commands supported by LNFS are
55 identified above. They are all specified to the FC 112a

in terms of logically identified disk data blocks. For
example, the LNFS command for reading data from a
file includes a specification of the file from which to
read (file system ID (FSID) and file ID (inode)), a byte

60 offset, and a count of the number of bytes to read. The
FC 112a converts that identification into physical form,
namely disk and sector numbers, in order to satisfy the
command.

The FC 112a runs a conventional Fast File System
65 (FFS or UFS), which is based on the Berkeley 4.3 VAX

release. This code performs the conversion and also
performs all disk data caching and control data caching.
However, as previously mentioned, control data cach-

Apple Inc.
Ex. 1012 - Page 23

21
ing is performed using the FC memory 396 on FC 112a,
whereas disk data caching is performed using the sys-
tem memory 116 FIG. 2 . Caching this file control
information within the FC 112a avoids the VME bus
congestion and speed degradation which would result if 5
file control information was cached in system memory
116.

The memory on the FC 112a is directly accessed over
the VME bus 120 for three main purposes. First, and by
far the most frequent, are accesses to FC memory 396 10
by an SP 114 to read or write cached file control infor-
mation. These are accesses requested by FC 112a to
write locally modified file control structures through to
disk, or to read file control structures from disk. Sec-
ond, the FC's CPU memory 314 is accessed directly by 15
other processors for message transmissions from the FC
112a to such other processors. For example, if a data
block in system memory is to be transferred to an SP
114 for writing to disk, the FC 112a first assembles a
message in its local memory 314 requesting such a trans- 20
fer. The FC 112a then notifies the SP 114, which copies
the message directly from the CPU memory 314 and
executes the requested transfer.

A third type of direct access to the FC's local mem-
ory occurs when an LNFS client reads directory 25
entries. When FC 112a receives an LNFS request to
read directory entries, the FC 112a formats the re-
quested directory entries in FC memory 396 and notifies
the requestor of their location. The requestor then di-
rectly accesses FC memory 396 to read the entries. 30

The version of the UFS code on FC 112a includes
some modifications in order to separate the two caches.
In particular, two sets of buffer headers are maintained,
one for the FC memory 396 and one for the system
memory 116. Additionally, a second set of the system 35
buffer routines (GETBLKO, BRELSEO, BREAD°,
BWRITEO, and BREADAO) exist, one for buffer ac-
cesses to FC Mem 396 and one for buffer accesses to
system memory 116. The UFS code is further modified
to call the appropriate buffer routines for FC memory 40
396 for accesses to file control information, and to call
the appropriate buffer routines for the system memory
116 for the caching of disk data. A description of UFS
may be found in chapters 2, 6, 7 and 8 of "Kernel Struc-
ture and Flow," by Rieken and Webb of .sh consulting 45
(Santa Clara, Calif.: 1988), incorporated herein by refer-
ence.

When a read command is sent to the FC by a re-
questor such as a network controller, the FC first con-
verts the file, offset and count information into disk and 50
sector information. It then locks the system memory
buffers which contain that information, instructing the
storage processor 114 to read them from disk if neces-
sary. When the buffer is ready, the FC returns a mes-
sage to the requestor containing both the attributes of 55
the designated file and an array of buffer descriptors
that identify the locations in system memory 116 hold-
ing the data.

After the requestor has read the data out of the buff-
ers, it sends a release request back to the FC. The re- 60
lease request is the same message that was returned by
the FC in response to the read request; the FC 112a uses
the information contained therein to determine which
buffers to free.

A write command is processed by FC 112a similarly 65
to the read command, but the caller is expected to write
to (instead of read from) the locations in system mem-
ory 116 identified by the buffer descriptors returned by

5,163, 131
22

the FC 112a. Since FC 112a employs write-through
caching, when it receives the release command from the
requestor, it instructs storage processor 114 to copy the
data from system memory 116 onto the appropriate disk
sectors before freeing the system memory buffers for
possible reallocation.

The READDIR transaction is similar to read and
write, but the request is satisfied by the FC 112a directly
out of its own FC memory 396 after formatting the
requested directory information specifically for this
purpose. The FC 112a causes the storage processor read
the requested directory information from disk if it is not
already locally cached. Also, the specified offset is a
"magic cookie" instead of a byte offset, identifying
directory entries instead of an absolute byte offset into
the file. No file attributes are returned.

The READLINK transaction also returns no file
attributes, and since links are always read in their en-
tirety, it does not require any offset or count.

For all of the disk data caching performed through
system memory 116, the FC 112a acts as a central au-
thority for dynamically allocating, deallocating and
keeping track of buffers. If there are two or more FCs
112, each has exclusive control over its own assigned
portion of system memory 116. In all of these transac-
tions, the requested buffers are locked during the period
between the initial request and the release request. This
prevents corruption of the data by other clients.

Also in the situation where there are two or more
FCs, each file system on the disks is assigned to a partic-
ular one of the FCs. FC #0 runs a process called
FC_VICE_PRESIDENT, which maintains a list of
which file systems are assigned to which FC. When a
client processor (for example an NC 110) is about to
make an LNFS request designating a particular file
system, it first sends the fsid in a message to the
FC_VICE_PRESIDENT asking which FC controls
the specified file system. The FC_VICE_PRESI-
DENT responds, and the client processor sends the
LNFS request to the designated FC. The client proces-
sor also maintains its own list of fsid/FC pairs as it
discovers them, so as to minimize the number of such
requests to the FC_VICE_PRESIDENT.

STORAGE PROCESSOR HARDWARE
ARCHITECTURE

In the file server 100, each of the storage processors
114 can interface the VME bus 120 with up to 10 differ-
ent SCSI buses. Additionally, it can do so at the full
usage rate of an enhanced block transfer protocol of 55
MB per second.

FIG. 5 is a block diagram of one of the SPs 114a. SP
114b is identical. SP 114a comprises a microprocessor
510, which may be a Motorola 68020 microprocessor
operating at 20 MHz. The microprocessor 510 is cou-
pled over a 32-bit microprocessor data bus 512 with
CPU memory 514, which may include up to 1 MB of
static RAM. The microprocessor 510 accesses instruc-
tions, data and status on its own private bus 512, with no
contention from any other source. The microprocessor
510 is the only master of bus 512.

The low order 16 bits of the microprocessor data bus
512 interface with a control bus 516 via a bidirectional
buffer 518. The low order 8 bits of the control bus 516
interface with a slow speed bus 520 via another bidirec-
tional buffer 522. The slow speed bus 520 connects to an
MFP 524, similar to the MFP 224 in NC 110a (FIG. 3),
and with a PROM 526, similar to PROM 220 on NC

Apple Inc.
Ex. 1012 - Page 24

23
ma. The PROM 526 comprises 128 K bytes of
EPROM which contains the functional code for SP
114a. Due to the width and speed of the EPROM 526,
the functional code is copied to CPU memory 514 upon
reset for faster execution.

MFP 524, like the MFP 224 on NC 110a, comprises a
Motorola 68901 multifunction peripheral device. It
provides the functions of a vectored interrupt control-
ler, individually programmable I/O pins, four timers
and a UART. The UART functions provide serial com-
munications across an RS 232 bus (not shown in FIG. 5)
for debug monitors and diagnostics. Two of the four
timing functions may be used as general-purpose timers
by the microprocessor 510, either independently or in
cascaded fashion. A third timer function provides the
refresh clock for a DMA controller described below,
and the fourth timer generates the UART clock. Addi-
tional information on the MFP 524 can be found in
"MC 6890 Multi-Function Peripheral Specification,"
by Motorola, Inc., which is incorporated herein by
reference.

The eight general-purpose I/O bits provided by MFP
524 are configured according to the following table:

Bit Direction Definition

7 input Power Failure is Imminent - This
functions as an early warning.

6 input SCSI Attention - A composite of the
SCSI. Attentions from all 10 SCSI
channels.

5 input Channel Operation Done - A composite of
the channel done bits from all 13
channels of the DMA controller,
described below.

4 output DMA Controller Enable. Enables the DMA
Controller to run.

3 input VMEbus Interrupt Done - Indicates the
completion of a VMEbus Interrupt.

2 input Command Available - Indicates that the
SP'S Command Fifo, described below,
contains one or more command pointers.

I output External Interrupts Disable. Disables
externally generated interrupts to the
microprocessor 510.

0 output Command Fifo Enable. Enables operation
of the SP'S Command Fifo. Clears the
Command Fifo when reset.

Commands are provided to the SP 114a from the
VME bus 120 via a bidirectional buffer 530, a local data
bus 532, and a command FIFO 534. The command
FIFO 534 is similar to the command FIFOs 290 and 390
on NC 110a and FC 112a, respectively, and has a depth
of 256 32-bit entries. The command FIFO 534 is a write-
only register as seen on the VME bus 120, and as a
read-only register as seen by microprocessor 510. If the
FIFO is full at the beginning of a write from the VME
bus, a VME bus error is generated. Pointers are re-
moved from the command FIFO 534 in the order re-
ceived, and only by the microprocessor 510. Command
available status is provided through I/O bit 4 of the
MFP 524, and as a long as one or more command point-
ers are still within the command FIFO 534, the com-
mand available status remains asserted.

As previously mentioned, the Sp 114a supports up to
10 SCSI buses or channels 540a-540j. In the typical
configuration, buses 540a-5401 support up to 3 SCSI
disk drives each, and channel 540j supports other SCSI
peripherals such as tape drives, optical disks, and so on.
Physically, the SP 114a connects to each of the SCSI
buses with an ultra-miniature D sub connector and

20

25

5,163,131
24

round shielded cables. Six 50-pin cables provide 300
conductors which carry 18 signals per bus and 12
grounds. The cables attach at the front panel of the SP
114a and to a commutator board at the disk drive array.

5 Standard 50-pin cables connect each SCSI device to the
commutator board. Termination resistors are installed
on the SP 114a.

The SP 114a supports synchronous parallel data
transfers up to 5 MB per second on each of the SCSI

10 buses 540, arbitration, and disconnect/reconnect ser-
vices. Each SCSI bus 540 is connected to a respective
SCSI adaptor 542, which in the present embodiment is
an AIC 6250 controller IC manufactured by Adaptec
Inc., Milpitas, Calif., operating in the non-multiplexed

15 address bus mode. The AIC 6250 is described in detail
in "AIC-6250 Functional Specification," by Adaptec
Inc., which is incorporated herein by reference. The
SCSI adaptors 542 each provide the necessary hard-
ware interface and low-level electrical protocol to im-
plement its respective SCSI channel.

The 8-bit data port of each of the SCSI adaptors 542
is connected to port A of a respective one of a set of ten
parity FIFOs 544a-544j. The FIFOs 544 are the same as
FIFOs 240, 260 and 270 on NC 110a, and are connected
and configured to provide parity covered data transfers
between the 8-bit data port of the respective SCSI adap-
tors 542 and a 36-bit (32-bit plus 4 bits of parity) com-
mon data bus 550. The FIFOs 544 provide handshake,

30 status, word assembly/disassembly and speed matching
FIFO buffering for this purpose. The FIFOs 544 also
generate and check parity for the 32-bit bus, and for
RAID 5 implementations they accumulate and check
redundant data and accumulate recovered data.

35 All of the SCSI adaptors 542 reside at a single loca-
tion of the address space of the microprocessor 510, as
do all of the parity FIFOs 544. The microprocessor 510
selects individual controllers and FIFOs for access in
pairs, by first programming a pair select register (not

40 shown) to point to the desired pair and then reading
from or writing to the control register address of the
desired chip in the pair. The microprocessor 510 com-
municates with the control registers on the SCSI adap-
tors 542 via the control bus 516 and an additional bidi-

45 rectional buffer 546, and communicates with the control
registers on FIFOs 544 via the control bus 516 and a
bidirectional buffer 552. Both the SCSI adaptors 542
and FIFOs 544 employ 8-bit control registers, and regis-
ter addressing of the FIFOs 544 is arranged such that

50 such registers alias in consecutive byte locations. This
allows the microprocessor 510 to write to the registers
as a single 32-bit register, thereby reducing instruction
overhead.

The parity FIFOs 544 are each configured in their
55 Adaptec 6250 mode. Referring to the Appendix, the

FIFOs 544 are programmed with the following bit set-
tings in the Data Transfer Configuration Register:

60 Bit Definition Setting

0 WD Mode (0)
Parity Chip (1)

2 Parity Correct Mode (0)
3 8/16 bits CPU & PortA interface (0)
4 Invert Port A address 0 (1)

65 5 Invert Port A address 1 (1)
6 Checksum Carry Wrap (0)
7 Reset (0)

Apple Inc.
Ex. 1012 - Page 25

5,163,131
25 26

The Data Transfer Control Register is programmed
as follows:

Bit Definition Setting

0 Enable PortA Req/Ack
1 Enable PortB Req/Aok
2 Data Transfer Direction
3 CPU parity enable
4 PortA parity enable
5 PortB parity enable
6 Checksum Enable
7 PortA Master

(I)
(1)

as desired
(0)
(I)
(1)
(0)
(0)

In addition, bit 4 of the RAM Access Control Regis-
ter (Long Burst) is programmed for 8-byte bursts.

SCSI adaptors 542 each generate a respective inter-
rupt signal, the status of which are provided to micro-
processor 510 as 10 bits of a 16-bit SCSI interrupt regis-
ter 556. The SCSI interrupt register 556 is connected to
the control bus 516. Additionally, a composite SCSI
interrupt is provided through the MFP 524 whenever
any one of the SCSI adaptors 542 needs servicing.

An additional parity FIFO 554 is also provided in the
SP 114a, for message passing. Again referring to the
Appendix, the parity FIFO 554 is programmed with the
following bit settings in the Data Transfer Configura-
tion Register:

Bit Definition Setting

0 WD Mode
1 Parity Chip
2 Parity Correct Mode
3 8/16 bits CPU & PortA interface
4 Invert Port A address 0
5 Invert Pori A address 1
6 Checksum Carry Wrap
7 Reset

(0)
(1)
(0)
(1)
(I)
(1)
(0)
(0)

The Data Transfer Control Register is programmed
as follows:

and recognizes completion of the specified operation by
testing for a "done" bit in the channel status register
562. The microprocessor 510 then resets the enable bit,
which causes the respective "done" bit in the channel

5 status register 562 to be cleared.
The channels are defined as follows:

10

15

20

25

30

35

40

Bit Definition Setting

0 Enable PortA Req/Ack (0)
Enable PortB Req/Ack (I)

2
3

Data Transfer Direction
CPU parity enable

as desired
(0) 45

4 PortA parity enable (0)
5 PortB parity enable (1)
6 Checksum Enable (0)
7 PortA Master (0)

50
In addition, bit 4 of the RAM Access Control Regis-

ter (Long Burst) is programmed for 8-byte bursts.
Port A of FIFO 554 is connected to the 16-bit control

bus 516, and port B is connected to the common data
bus 550. FIFO 554 provides one means by which the 55
microprocessor 510 can communicate directly with the
VME bus 120, as is described in more detail below.

The microprocessor 510 manages data movement
using a set of 15 channels, each of which has an unique
status which indicates its current state. Channels are 60
implemented using a channel enable register 560 and a
channel status register 562, both connected to the con-
trol bus 516. The channel enable register 560 is a 16-bit
write-only register, whereas the channel status register
562 is a 16-bit read-only register. The two registers 65
reside at the same address to microprocessor 510. The
microprocessor 510 enables a particular channel by
setting its respective bit in channel enable register 560,

CHANNEL FUNCTION

0:9 These channels control data movement to and
from the respective FIFOs 544 via the common
data bus 550. When a FIFO is enabled and a
request is received from it, the channel
becomes ready. Once the channel has been
serviced a status of done is generated.

11:10 These channels control data movement between
a local data buffer 564, described below,
and the VME bus 120. When enabled the
channel becomes ready. Once the channel has
been serviced a status of done is generated.

12 When enabled, this channel causes the DRAM in
local data buffer 564 to be refreshed based
on a clock which is generated by the MFP 524.
The refresh consists of a burst of 16 rows.
This channel does not generate a status of
done.

13 The microprocessor's communication FIFO 554
is serviced by this channel. When enable is
set and the FIFO 554 asserts a request then
the channel becomes ready. This channel
generates a status of done,

14 Low latency writes from microprocessor 510
onto the VME bus 120 are controlled by this
channel. When this channel is enabled data is
described below, onto the VME bus 120. This
channel generates a done status.

15 This is a null channel for which neither a
ready status nor done status is generated.

Channels are prioritized to allow servicing of the
more critical requests first. Channel priority is assigned
in a descending order starting at channel 14. That is, in
the event that all channels are requesting service, chan-
nel 14 will be the first one served.

The common data bus 550 is coupled via a bidirec-
tional register 570 to a 36-bit junction bus 572. A second
bidirectional register 574 connects the junction bus 572
with the local data bus 532. Local data buffer 564,
which comprises 1 MB of DRAM, with parity, is cou-
pled bidirectionally to the junction bus 572. It is orga-
nized to provide 256 K 32-bit words with byte parity.
The SP 114a operates the DRAMs in page mode to
support a very high data rate, which requires bursting
of data instead of random single-word accesses. It will
be seen that the local data buffer 564 is used to imple-
ment a RAID (redundant array of inexpensive disks)
algorithm, and is not used for direct reading and writing
between the VME bus 120 and a peripheral on one of
the SCSI buses 540.

A read-only register 576, containing all zeros, is also
connected to the junction bus 572. This register is used
mostly for diagnostics, initialization, and clearing of
large blocks of data in system memory 116.

The movement of data between the FIFOs 544 and
554, the local data buffer 564, and a remote entity such
as the system memory 116 on the VME bus 120, is all
controlled by a VME/FIFO DMA controller 580. The
VME/FIFO DMA controller 580 is similar to the
VME/FIFO DMA controller 272 on network control-
ler 110a (FIG. 3), and is described in the Appendix.
Briefly, it includes a bit slice engine 582 and a dual-port
static RAM 584. One port of the dual-port static RAM
584 communicates over the 32-bit microprocessor data

Apple Inc.
Ex. 1012 - Page 26

27
bus 512 with microprocessor 510, and the other port
communicates over a separate 16-bit bus with the bit
slice engine 582. The microprocessor 510 places com-
mand parameters in the dual-port RAM 584, and uses
the channel enables 560 to signal the VME/FIFO 5
DMA controller 580 to proceed with the command.
The VME/FIFO DMA controller is responsible for
scanning the channel status and servicing requests, and
returning ending status in the dual-port RAM 584. The
dual-port RAM 584 is organized as 1 K X 32 bits at the
32-bit port and as 2 K x 16 bits at the 16-bit port. An
example showing the method by which the micro-
processor 510 controls the VME/FIFO DMA control-
ler 580 is as follows. First, the microprocessor 510
writes into the dual-port RAM 584 the desired com-
mand and associated parameters for the desired chan-
nel. For example, the command might be, "copy a block
of data from FIFO 544h out into a block of system
memory 116 beginning at a specified VME address."
Second, the microprocessor sets the channel enable bit
in channel enable register 560 for the desired channel.

At the time the channel enable bit is set, the appropri-
ate FIFO may not yet be ready to send data. Only when
the VME/FIFO DMA controller 580 does receive a
"ready" status from the channel, will the controller 580

25

execute the command. In the meantime, the DMA con-
troller 580 is free to execute commands and move data
to or from other channels.

When the DMA controller 580 does receive a status 30
of "ready" from the specified channel, the controller
fetches the channel command and parameters from the
dual-ported RAM 584 and executes. When the com-
mand is complete, for example all the requested data has
been copied, the DMA controller writes status back 3
into the dual-port RAM 584 and asserts "done" for the
channel in channel status register 562. The micro-
processor 510 is then interrupted, at which time it reads
channel status register 562 to determine which channel
interrupted. The microprocessor 510 then clears the 40
channel enable for the appropriate channel and checks
the ending channel status in the dual-port RAM 584.

In this way a high-speed data transfer can take place
under the control of DMA controller 580, fully in paral-
lel with other activities being performed by micro- 45
processor 510. The data transfer takes place over busses
different from microprocessor data bus 512, thereby
avoiding any interference with microprocessor instruc-
tion fetches.

The SP 114a also includes a high-speed register 590, SO
which is coupled between the microprocessor data bus
512 and the local data bus 532. The high-speed register
590 is used to write a single 32-bit word to an VME bus
target with a minimum of overhead. The register is
write only as viewed from the microprocessor 510. In 5
order to write a word onto the VME bus 120, the mi-
croprocessor 510 first writes the word into the register
590, and the desired VME target address into dual-port
RAM 584. When the microprocessor 510 enables the
appropriate channel in channel enable register 560, the
DMA controller 580 transfers the data from the register
590 into the VME bus address specified in the dual-port
RAM 584. The DMA controller 580 then writes the
ending status to the dual-port RAM and sets the channel
"done" bit in channel status register 562. 65

This procedure is very efficient for transfer of a single
word of data, but becomes inefficient for large blocks of
data. Transfers of greater than one word of data, typi-

1 0

5

20

5

5

60

5,163,131
28

cally for message passing, are usually performed using
the FIFO 554.

The SP 114a also includes a series of registers 592,
similar to the registers 282 on NC 110a (FIG. 3) and the
registers 382 on FC 112a (FIG. 4). The details of these
registers are not important for an understanding of the
present invention.

STORAGE PROCESSOR OPERATION

The 30 SCSI disk drives supported by each of the SPs
114 are visible to a client processor, for example one of
the file controllers 112, either as three large, logical
disks or as 30 independent SCSI drives, depending on
configuration. When the drives are visible as three logi-
cal disks, the SP uses RAID 5 design algorithms to
distribute data for each logical drive on nine physical
drives to minimize disk arm contention. The tenth drive
is left as a spare. The RAID 5 algorithm (redundant
array of inexpensive drives, revision 5) is described in
"A Case For a Redundant Arrays of Inexpensive Disks
(RAID)", by Patterson et al., published at ACM SIG-
MOD Conference, Chicago, Ill., Jun. 1-3, 1988, incor-
porated herein by reference.

In the RAID 5 design, disk data are divided into
stripes. Data stripes are recorded sequentially on eight
different disk drives. A ninth parity stripe, the exclu-
sive-or of eight data stripes, is recorded on a ninth drive.
If a stripe size is set to 8 K bytes, a read of 8 K of data
involves only one drive. A write of 8 K of data involves
two drives: a data drive and a parity drive. Since a write
requires the reading back of old data to generate a new
parity stripe, writes are also referred to as modify
writes. The SP 114a supports nine small reads to nine
SCSI drives concurrently. When stripe size is set to 8 K,
a read of 64 K of data starts all eight SCSI drives, with
each drive reading one 8 K stripe worth of data. The
parallel operation is transparent to the caller client.

The parity stripes are rotated among the nine drives
in order to avoid drive contention during write opera-
tions. The parity stripe is used to improve availability of
data. When one drive is down, the SP 114a can recon-
struct the missing data from a parity stripe. In such case,
the SP 114a is running in error recovery mode. When a
bad drive is repaired, the SP 114a can be instructed to
restore data on the repaired drive while the system is
on-line.

When the SP 114a is used to attach thirty indepen-
dent SCSI drives, no parity stripe is created and the
client addresses each drive directly.

The SP 114a processes multiple messages (transac-
tions, commands) at one time, up to 200 messages per
second. The SP 114a does not initiate any messages
after initial system configuration. The following SP
114a operations are defined:

01 No Op
02 Send Configuration Data
03 Receive Configuration Data
05 Read and Write Sectors
06 Read and Write Cache Pages
07 IOCTL Operation
08 Dump SP 114a Local Data Buffer
09 Start/Stop A SCSI Drive
OC Inquiry
OE Read Message Log Buffer
OF Set SP 114a Interrupt

The above transactions are described in detail in the
above-identified application entitled MULTIPLE FA-

Apple Inc.
Ex. 1012 - Page 27

29
CILITY OPERATING SYSTEM ARCHITEC-
TURE. For and understanding of the invention, it will
be useful to describe the function and operation of only
two of these commands: read and write sectors, and
read and write cache pages.

Read and Write Sectors

This command, issued usually by an FC 112, causes
the SP 114a to transfer data between a specified block
of system memory and a specified series of contiguous
sectors on the SCSI disks. As previously described in
connection with the file controller 112, the particular
sectors are identified in physical terms. In particular,
the particular disk sectors are identified by SCSI chan-
nel number (0-9), SCSI ID on that channel number
(0-2), starting sector address on the specified drive, and
a count of the number of sectors to read or write. The
SCSI channel number is zero if the SP 114a is operating
under RAID 5.

The SP 114a can execute up to 30 messages on the 30
SCSI drives simultaneously. Unlike most of the com-
mands to an SP 114, which are processed by micro-
processor 510 as soon as they appear on the command
FIFO 534, read and write sectors commands (as well as
read and write cache memory commands) are first
sorted and queued. Hence, they are not served in the
order of arrival.

When a disk access command arrives, the micro-
processor 510 determines which disk drive is targeted
and inserts the message in a queue for that disk drive
sorted by the target sector address. The microprocessor
510 executes commands on all the queues simulta-
neously, in the order present in the queue for each disk
drive. In order to minimize disk arm movements, the
microprocessor 510 moves back and forth among queue
entries in an elevator fashion.

5,1 63,131
30

If no error conditions are detected from the SCSI
disk drives, the command is completed normally. When
a data check error condition occurs and the SP 114a is
configured for RAID 5, recovery actions using redun-

5 dant data begin automatically. When a drive is down
while the SP 114a is configured for RAID 5, recovery
actions similar to data check recovery take place.

Read/Write Cache Pages

10 This command is similar to read and write sectors,
except that multiple VME addresses are provided for
transferring disk data to and from system memory 116.
Each VME address points to a cache page in system
memory 116, the size of which is also specified in the

15 command. When transferring data from a disk to system
memory 116, data are scattered to different cache pages;
when writing data to a disk, data are gathered from
different cache pages in system memory 116. Hence,
this operation is referred to as a scatter-gather function.

20 The target sectors on the SCSI disks are specified in
the command in physical terms, in the same manner that
they are specified for the read and write sectors com-
mand. Termination of the command with or without
error conditions is the same as for the read and write

25 sectors command.
The dual-port RAM 584 in the DMA controller 580

maintains a separate set of commands for each channel
controlled by the bit slice engine 582. As each channel
completes its previous operation, the microprocessor

30 510 writes a new DMA operation into the dual-port
RAM 584 for that channel in order to satisfy the next
operation on a disk elevator queue.

The commands written to the DMA controller 580
include an operation code and a code indicating

35 whether the operation is to be performed in non-block
mode, in standard VME block mode, or in enhanced
block mode. The operation codes supported by DMA
controller 580 are as follows:

OP CODE OPERATION

0 NO-OP
1 ZEROES -> BUFFER

2 ZEROES -> FIFO

3 ZEROES -> VMEbus

4 VMEbus -> BUFFER

5 VMEbus -> FIFO

Move zeros from zeros
register 576 to local
data buffer 564.
Move zeros from zeros
register 576 to the
currently selected FIFO
on common data bus 550.
Move zeros from zeros
register 576 out onto the
VME bus 120. Used for
initializing cache
buffers in system memory
116.
Move data from the VME
bus 120 to the local data
buffer 564. This
operation is used during
a write, to move target
data intended for a down
drive into the buffer for
participation in
redundancy generation.
Used only for RAID S
application.
New data to be written
from VME bus onto a
drive. Since RAID 5
requires redundancy data
to be generated from data
that is buffered in local
data buffer 564. this
operation will be used

Apple Inc.
Ex. 1012 - Page 28

31
-continued

5,163,131

OP CODE OPERATION

6 VMEbus -> BUFFER & FIFO

7 BUFFER -> VMEbus

8 BUFFER -> FIFO

9 FIFO -> VMEbus

A FIFO -> BUFFER

B FIFO -> VMEbus & BUFFER

only if the SP 114a is
not configured for RAID
5.
Target data is moved from
VME bus 120 to a SCSI
device and is also
captured in the local
data buffer 564 for
participation in
redundancy generation.
Used only if SP 114a is
configured for RAID 5
operation.
This operation is not
used.
Participating data is
transferred to create
redundant data or
recovered data on a disk
drive. Used only in
RAID 5 applications.
This operation is used to
move target data directly
from a disk drive onto
the VME bus 120.
Used to move
participating data for
recovery and modify
operations. Used only in
RAID 5 applications.
This operation is used to
save target data for
participation in data
recovery. Used only in
RAID 5 applications.

SYSTEM MEMORY

FIG. 6 provides a simplified block diagram of the
preferred architecture of one of the system memory
cards 116a. Each of the other system memory cards are
the same. Each memory card 116 operates as a slave on
the enhanced VME bus 120 and therefore requires no
on-board CPU. Rather, a timing control block 610 is 40
sufficient to provide the necessary slave control opera-
tions. In particular, the timing control block 610, in
response to control signals from the control portion of
the enhanced VME bus 120, enables a 32-bit wide buffer
612 for an appropriate direction transfer of 32-bit data
between the enhanced VME bus 120 and a multiplexer
unit 614. The multiplexer 614 provides a multiplexing
and demultiplexing function, depending on data transfer
direction, for a six megabit by seventy-two bit word
memory array 620. An error correction code (ECC)
generation and testing unit 622 is also connected to the
multiplexer 614 to generate or verify, again depending
on transfer direction, eight bits of ECC data. The status
of ECC verification is provided back to the timing con-
trol block 610.

ENHANCED VME BUS PROTOCOL

VME bus 120 is physically the same as an ordinary
VME bus, but each of the NCs and SPs include addi-
tional circuitry and firmware for transmitting data using
an enhanced VME block transfer protocol. The en-
hanced protocol is described in detail in the above-iden-
tified application entitled ENHANCED VMEBUS
PROTOCOL UTILIZING PSEUDOSYNCHRO-
NOUS HANDSHAKING AND BLOCK MODE
DATA TRANSFER, and summarized in the Appendix
hereto. Typically transfers of SNFS file data between
NCs and system memory, or between SPs and system

32

memory, and transfers of packets being routed from one
35 NC to another through system memory, are the only

types of transfers that use the enhanced protocol in
server 100. All other data transfers on VME bus 120 use
either conventional VME block transfer protocols or
ordinary non-block transfer protocols.

MESSAGE PASSING

As is evident from the above description, the differ-
ent processors in the server 100 communicate with each
other via certain types of messages. In software, these

45 messages are all handled by the messaging kernel, de-
scribed in detail in the MULTIPLE FACILITY OP-
ERATING SYSTEM ARCHITECTURE application
cited above. In hardware, they are implemented as
follows.

50 Each of the NCs 110, each of the FCs 112, and each
of the SPs 114 includes a command or communication
FIFO such as 290 on NC 110a. The host 118 also in-
cludes a command FIFO, but since the host is an un-
modified purchased processor board, the FIFO is emu-

55 lated in software. The write port of the command FIFO
in each of the processors is directly addressable from
any of the other processors over VME bus 120.

Similarly, each of the processors except SPs 114 also
includes shared memory such as CPU memory 214 on

60 NC 110a. This shared memory is also directly address-
able by any of the other processors in the server 100.

If one processor, for example network controller
110a. is to send a message or command to a second
processor, for example file controller 112a, then it does

65 so as follows. First, it forms the message in its own
shared memory (e.g., in CPU memory 214 on NC 110a).
Second, the microprocessor in the sending processor
directly writes a message descriptor into the command

Apple Inc.
Ex. 1012 - Page 29

5,163,
33

FIFO in the receiving processor. For a command being
sent from network controller 110a to file controller
112a, the microprocessor 210 would perform the write
via buffer 284 on NC 110a, VME bus 120, and buffer
384 on file controller 112a. 5

The command descriptor is a single 32-bit word con-
taining in its high order 30 bits a VME address indicat-
ing the start of a quad-aligned message in the sender's
shared memory. The low order two bits indicate the
message type as follows: 10

Type Description

2
3

Pointer to a new message being sent
Pointer to a reply message
Pointer to message to be forwarded
Pointer to message to be freed;
also message acknowledgment

All messages are 128-bytes long.
When the receiving processor reaches the command

descriptor on its command FIFO, it directly accesses
the sender's shared memory and copies it into the re-
ceiver's own local memory. For a command issued
from network controller 1100 to file controller 112a,
this would be an ordinary VME block or non-block
mode transfer from NC CPU memory 214, via buffer
284, VME bus 120 and buffer 384, into FC CPU mem-
ory 314. The FC microprocessor 310 directly accesses
NC CPU memory 214 for this purpose over the VME
bus 120.

When the receiving processor has received the com-
mand and has completed its work, it sends a reply mes-
sage back to the sending processor. The reply message
may be no more than the original command message
unaltered, or it may be a modified version of that mes-
sage or a completely new message. If the reply message
is not identical to the original command message, then
the receiving processor directly accesses the original
sender's shared memory to modify the original com-
mand message or overwrite it completely. For replies
from the FC 12a to the NC 110a, this involves an ordi-
nary VME block or non-block mode transfer from the
FC 12a, via buffer 384, VME bus 120, buffer 284 and
into NC CPU memory 214. Again, the FC microproces-
sor 310 directly accesses NC CPU memory 214 for this
purpose over the VME bus 120.

Whether or not the original command message has
been changed, the receiving processor then writes a
reply message descriptor directly into the original send- 50
er's command FIFO. The reply message descriptor
contains the same VME address as the original com-
mand message descriptor, and the low order two bits of
the word are modified to indicate that this is a reply
message. For replies from the FC 112a to the NC 110a, 55
the message descriptor write is accomplished by micro-
processor 310 directly accessing command FIFO 290
via buffer 384, VME bus 120 and buffer 280 on the NC.
Once this is done, the receiving processor can free the
buffer in its local memory containing the copy of the 60
command message.

When the original sending processor reaches the
reply message descriptor on its command FIFO, it
wakes up the process that originally sent the message
and permits it to continue. After examining the reply 65
message, the original sending processor can free the
original command message buffer in its own local
shared memory.

15

20

25

30

35

40

45

131
34

As mentioned above, network controller 110a uses
the buffer 284 data path in order to write message de-
scriptors onto the VME bus 120, and uses VME/FIFO
DMA controller 272 together with parity FIFO 270 in
order to copy messages from the VME bus 120 into
CPU memory 214. Other processors read from CPU
memory 214 using the buffer 284 data path.

File controller 12a writes message descriptors onto
the VME bus 20 using the buffer 384 data path, and
copies messages from other processors' shared memory
via the same data path. Both take place under the con-
trol of microprocessor 310. Other processors copy mes-
sages from CPU memory 314 also via the buffer 384
data path.

Storage processor 114a writes message descriptors
onto the VME bus using high-speed register 590 in the
manner described above, and copies messages from
other processors using DMA controller 580 and FIFO
554. The Sp 114a has no shared memory, however, so it
uses a buffer in system memory 116 to emulate that
function. That is, before it writes a message descriptor
into another processor's command FIFO, the SP 114a
first copies the message into its own previously allo-
cated buffer in system memory 116 using DMA control-
ler 580 and FIFO 554. The VME address included in
the message descriptor then reflects the VME address
of the message in system memory 116.

In the host 118, the command FIFO and shared mem-
ory are both emulated in software.

The invention has been described with respect to
particular embodiments thereof, and it will be under-
stood that numerous modifications and variations are
possible within the scope of the invention.

APPENDIX A

VME/FIFO DMA Controller

In storage processor 114a, DMA controller 580 man-
ages the data path under the direction of the micro-
processor 510. The DMA controller 580 is a micro-
coded 16-bit bit-slice implementation executing pipe-
lined instructions at a rate of one each 62.5 ns. It is
responsible for scanning the channel status 562 and
servicing request with parameters stored in the dual-
ported ram 584 by the microprocessor 510. Ending
status is returned in the ram 584 and interrupts are gen-
erated for the microprocessor 510.

Control Store
The control store contains the microcoded instruc-

tions which control the DMA controller 580. The con-
trol store consists of 61 K X 8 proms configured to yield
a 1 K x48 bit microword. Locations within the control
store are addressed by the sequencer and data is pres-
ented at the input of the pipeline registers.

Sequencer
The sequencer controls program flow by generating

control store addresses based upon pipeline data and
various status bits. The control store address consists of
10 bits. Bits 8:0 of the control store address derive from
a multiplexer having as its inputs either an ALU output
or the output of an incrementer. The incrementer can be
preloaded with pipeline register bits 8:0, or it can be
incremented as a result of a test condition. The 1 K
address range is divided into two pages by a latched flag
such that the microprogram can execute from either
page. Branches, however remain within the selected
page. Conditional sequencing is performed by having
the test condition increment the pipeline provided ad-

Apple Inc.
Ex. 1012 - Page 30

35
dress. A false condition allows execution from the pipe-
line address while a true condition causes execution
from the address + 1. The alu output is selected as an
address source in order to directly vector to a routine or
in order to return to a calling routine. Note that when 5
calling a subroutine the calling routine must reside
within the same page as the subroutine or the wrong
page will be selected on the return.

ALU
The alu comprises a single IDT49C402A integrated

circuit. It is 16 bits in width and most closely resembles
four 2901s with 64 registers. The alu is used primarily
for incrementing, decrementing, addition and bit manip-
ulation. All necessary control signals originate in the
control store. The IDT HIGH PERFORMANCE
CMOS 1988 DATA BOOK, incorporated by reference
herein, contains additional information about the alu.

Microword
The 48 bit microword comprises several fields which

control various functions of the DMA controller 580.
The format of the microword is defined below along
with mnemonics and a description of each function.

AI <8.0> 47:39

CIN 38

RA <5:0> 37:32

RB<5:0> 31:26

LFD 25

LFS<2:0> 24:22

(Alu Instruction bits 8:0) The Al bits
provide the instruction for the 49C402A
alu. Refer to the 1DT data book for a
complete definition of the alu
instructions. Note that the 19 signal
input of the 49C402A is always low.
(Carry INput) This bit forces the carry
input to the alu.
(Register A address bits 5:0) These bits
select one of 64 registers as the "A"
operand for the alu. These bits also
provide literal bits 15:10 for the alu
bus.
(Register B address bits 5:0) These bits
select one of 64 registers as the "B"
operand for the alu. These bits also
provide literal bits 9:4 for the alu
bus.
(Latched Flag Data) When set this bit
causes the selected latched flag to be
set. When reset this bit causes the
selected latched flag to be cleared.
This bits also functions as literal bit
3 for the alu bus.
(Latched Flag Select bits 2:0) The

10

15

20

25

30

35

40

meaning of these bits is dependent upon 45
the selected source for the alu bus. In
the event that the literal field is
selected as the bus source then
LFS<2:0> function as literal bits <2:0>
otherwise the bits are used to select
one of the latched flags. 50

LFS<2:0> SELECTED FLAG

0

1

2

3
4

5

6

7

This value selects a null
flag.
When set this bit enables the
buffer clock. When reset this
bit disables the buffer
clock.
When this bit is cleared VME
bus transfers, buffer
operations and RAS arc all
disabled.
NOT USED
When set this bit enables VME
bus transfers.
When set this bit enables
buffer operations.
When set this bit asserts the
row address strobe to the dram
buffer.
When set this bit selects page
0 of the control store.

55

60

65

5,163,131
36

-continued

SRC <1,0> 20,21 (alu bus SouRCe select bits 1,0) These
bits select the data source to be
enabled onto the alu bus.

SRC<1.0> Selected Source

0
1
2
3

alu
dual ported ram
literal
reserved-not defined

PF<2:0> 19:17 (Pulsed Flag select bits 2:0) These bits
select a flag/signal to be pulsed.

PF< 2:0> Flag

0 null
1 SGL_CLK

generates a single transition
of buffer clock.

2 SET_VB
forces vme and buffer enable
to be set.

3 CL_PERR
clears buffer parity error
status.

4 SET_DN
set channel done status for
the currently selected
channel.

5 INC_ADR
increment dual ported ram
address.

6:7 RESERVED - NOT DEFINED

DEST <3:0> 16:13 (DESTination select bits 3:0) These
bits select one of 10 destinations
to be loaded from the alu bus.

DEST <3:0> Destination

0 null
WIk_RAM
causes the data on the alu bus
to be written to the dual
ported ram.
D<15:0> ram<15:0>

2 WR_BADD
loads the data from the alu
bus into the dram address
counters.
D<14:7> mux addr<8:0>

3 WR_VADL
loads the data from the alu
bus into the least significant
2 bytes of the VME address
register.
D<15:2> VME addr <15:2>
DI ENB_ENH
DO ENB_BLK

4 WR_VADH
loads the most significant 2
bytes of the VME address
register.
D<15:0> VME addr<31:16>

5 WR_RADD
loads the dual ported ram
address counters.
D<10:0> --. ram addr <10:0>

6 WR_WCNT
loads the word counters.
D15 --. count enable•
D<14:8> —.count <6:0>

7 WR_CO
loads the co-channel select
register.
D<7:4> CO<3:0>

8 WR_NXT
loads the next-channel select
register.
D<3:0> —.NEXT<3:0>

9 WR_CUR
loads the current-channel
select register.
D<3:0> CURR <3:0>

10:14 RESERVED - NOT DEFINED

Apple Inc.
Ex. 1012 - Page 31

37
-continued

5,163,131
38

point to the current command block. The current com-
mand block pointer should be initialized to 0 x 0000 by
the microprocessor 510 before enabling the channel.
Upon detecting a value of 0 X 0000 in the current block

5 pointer the DMA controller 580 will copy the lower 16
bits from the initial pointer to the current pointer. Once
the DMA controller 580 has completed the specified
operations for the parameter block the current pointer
will be updated to point to the next block. In the event

10 that no further parameter blocks are available the
pointer will be set to 0 X 0000.

The status byte indicates the ending status for the last
channel operation performed. The following status

15 bytes are defined:

15 JUMP
causes the control store
sequencer to select the alu
data bus.
D<8:0> CS_A <8:0>

TEST <3:0> 12:9 (TEST condition select bits 3:0) Select
one of 16 inputs to the test
multiplexor to be used as the carry
input to the incrementer.

TEST <3:0 > Condition

0 FALSE -always false
TRUE -always true

2 ALU_COUT -carry output of alu
3 ALU_EQ -equals output of

alu
4 ALU_OVR -alu overflow
S ALU_NEG -alu negative
6 XFR_DONE -transfer complete
7 PAR_ERR -buffer parity error
8 TIMOUT -bus operation

timeout
9 ANY_ERR -any error status

14:10 RESERVED -NOT DEFINED
15 CH_RDY -next channel ready

20

NEXT_A <8:0> 8:0 (NEXT Address bits 8:0) Selects an
instructions from the current page of
the control store for execution. 25

Dual Ported Ram
The dual ported ram is the medium by which com-

mand, parameters and status are communicated be-
tween the DMA controller 580 and the microprocessor 30
510. The ram is organized as 1K x 32 at the master port
and as 2 K x 16 at the DMA port. The ram may be both
written and read at either port.

The ram is addressed by the DMA controller 580 by
loading an 11 bit address into the address counters. Data 35
is then read into bidirectional registers and the address
counter is incremented to allow read of the next loca-
tion.

Writing the ram is accomplished by loading data
from the processor into the registers after loading the 40

ram address. Successive writes may be performed on
every other processor cycle.

The ram contains current block pointers, ending sta-
tus, high speed bus address and parameter blocks. The
following is the format of the ram: 45

OFFSET
0
4

58
5C
60
64
68
6C
70
74
78

31
CURR POINTER 0 1 STATUS 0

0

INITIAL POINTER 0

CURR POINTER B I STATUS B
INITIAL POINTER B

not used not used
not used not used

CURR POINTER D STATUS D
INITIAL POINTER D

not used STATUS E
HIGH SPEED BUS ADDRESS 31:2 1010

PARAMETER BLOCK 0

PARAMETER BLOCK n

The Initial Pointer is a 32 bit value which points the
first command block of a chain. The current pointer is a
sixteen bit value used by the DMA controller 580 to

50

55

60

65

STATUS MEANING

0 NO ERRORS
1 ILLEGAL OP CODE
2 BUS OPERATION TIMEOUT
3 BUS OPERATION ERROR
4 DATA PATH PARITY ERROR

The format of the parameter block is:
OFFSET 31
0
4
8
C

C+ (4Xn)

0
FORWARD LINK

NOT USED 1 WORD COUNT
VME ADDRESS 31:2, ENH, BLK

TERM 01 OP 0 1 BUF ADDR 0

!TERM n1 OP n I BUF ADDR n 1

FORWARD LINK—The forward link points to the
first word of the next parameter block for execution. It
allows several parameter blocks to be initialized and
chained to create a sequence of operations for execu-
tion. The forward pointer has the following format:

A31:A2,0,0

The format dictates that the parameter block must start
on a quad byte boundary. A pointer of 0 X 00030000 is a
special case which indicates no forward link exists.

WORD COUNT
The word count specifies the number of quad byte

words that are to be transferred to or from each buffer
address or to/from the VME address. A word count of
64 K words may be specified by initializing the word
count with the value of 0. The word count has the
following format:

ID15ID14
6
ID13

IDID5
D121D11IDIOID9IDSID71
D41D3ID2IDIIDOI

The word count is updated by the DMA controller
580 at the completion of a transfer to/from the last
specified buffer address. Word count is not updated
after transferring to/from each buffer address and is
therefore not an accurate indicator of the total data
moved to/from the buffer. Word count represents the
amount of data transferred to the VME bus or one of
the FIFOs 544 or 554.

VME ADDRESS
The VME address specifies the starting address for

data transfers. Thirty bits allows the address to start at
any quad byte boundary.

ENH

Apple Inc.
Ex. 1012 - Page 32

39
This bit when set selects the enhanced block transfer

protocol described in the above-cited ENHANCED
VMEBUS PROTOCOL UTILIZING PSEUDOSYN-
CHRONOUS HANDSHAKING AND BLOCK
MODE DATA TRANSFER application, to be used
during the VME bus transfer. Enhanced protocol will
be disabled automatically when performing any transfer
to or from 24 bit or 16 bit address space, when the
starting address is not 8 byte aligned or when the word
count is not even.

BLK
This bit when set selects the conventional VME

block mode protocol to be used during the VME bus
transfer. Block mode will be disabled automatically
when performing any transfer to or from 16 bit address
space.

BUF ADDR
The buffer address specifies the starting buffer ad-

dress for the adjacent operation. Only 16 bits are avail-
able for a 1M byte buffer and as a result the starting
address always falls on a 16 byte boundary. The pro-
grammer must ensure that the starting address is on a
modulo 128 byte boundary. The buffer address is up-
dated by the DMA controller 580 after completion of 25

each data burst.

iA191A181A171.4161A15
jA101A91A8IA7

A14IA131A121A111
A61A51A41

5,163,131

5

10

15

20

TERM 30

The last buffer address and operation within a param-
eter block is identified by the terminal bit. The DMA
controller 580 continues to fetch buffer addresses and
operations to perform until this bit is encountered. Once 35

the last operation within the parameter block is exe-
cuted the word counter is updated and if not equal to
zero the series of operations is repeated. Once the word
counter reaches zero the forward link pointer is used to
access the next parameter block. 40

1010101010101010IT I

OP
Operations are specified by the op code. The op code 45

byte has the following format:

1010101010P3I0P210P110P0

The op codes are listed below ("FIFO" refers to any of
50 the FIFOs 544 or 554):

OP CODE OPERATION

0 NO-OP
ZEROES -> BUFFER

2 ZEROES -> FIFO
3 ZEROES -> VMEbus
4 VMEbus -> BUFFER
S VMEbus -> FIFO
6 VMEbus -> BUFFER & FIFO
7 BUFFER -> VMEbus
8 BUFFER -> FIFO
9 FIFO -> VMEbus
A FIFO -> BUFFER
B FIFO -> VMEbus & BUFFER
C RESERVED
D RESERVED
E RESERVED
F RESERVED

55

60

65

40
APPENDIX B

Enhanced VME Block Transfer Protocol

The enhanced VME block transfer protocol is a
VMEbus compatible pseudo-synchronous fast transfer
handshake protocol for use on a VME backplane bus
having a master functional module and a slave func-
tional module logically interconnected by a data trans-
fer bus. The data transfer bus includes a data strobe
signal line and a data transfer acknowledge signal line.
To accomplish the handshake, the master transmits a
data strobe signal of a given duration on the data strobe
line. The master then awaits the reception of a data
transfer acknowledge signal from the slave module on
the data transfer acknowledge signal line. The slave
then responds by transmitting data transfer acknowl-
edge signal of a given duration on the data transfer
acknowledge signal line.

Consistent with the pseudo-synchronous nature of
the handshake protocol, the data to be transferred is
referenced to only one signal depending upon whether
the transfer operation is a READ or WRITE operation.
In transferring data from the master functional unit to
the slave, the master broadcasts the data to be trans-
ferred. The master asserts a data strobe signal and the
slave, in response to the data strobe signal, captures the
data broadcast by the master. Similarly, in transferring
data from the slave to the master, the slave broadcasts
the data to be transferred to the master unit. The slave
then asserts a data transfer acknowledge signal and the
master, in response to the data transfer acknowledge
signal, captures the data broadcast by the slave.

The fast transfer protocol, while not essential to the
present invention, facilitates the rapid transfer of large
amounts of data across a VME backplane bus by sub-
stantially increasing the data transfer rate. These data
rates are achieved by using a handshake wherein the
data strobe and data transfer acknowledge signals are
functionally decoupled and by specifying high current
drivers for all data and control lines.

The enhanced pseudo-synchronous method of data
transfer (hereinafter referred to as "fast transfer mode")
is implemented so as to comply and be compatible with
the IEEE VME backplane bus standard. The protocol
utilizes user-defined address modifiers, defined in the
VMEbus standard, to indicate use of the fast transfer
mode. Conventional VMEbus functional units, capable
only of implementing standard VMEbus protocols, will
ignore transfers made using the fast transfer mode and,
as a result, are fully compatible with functional units
capable of implementing the fast transfer mode.

The fast transfer mode reduces the number of bus
propagations required to accomplish a handshake from
four propagations, as required under conventional
VMEbus protocols, to only two bus propagations.
Likewise, the number of bus propagations required to
effect a BLOCK READ or BLOCK WRITE data
transfer is reduced. Consequently, by reducing the
propagations across the VMEbus to accomplish hand-
shaking and data transfer functions, the transfer rate is
materially increased.

The enhanced protocol is described in detail in the
above-cited ENHANCED VMEBUS PROTOCOL
application, and will only be summarized here. Famil-
iarity with the conventional VME bus standards is as-
sumed.

Apple Inc.
Ex. 1012 - Page 33

5,163,
41

In the fast transfer mode handshake protocol, only
two bus propagations are used to accomplish a hand-
shake, rather than four as required by the conventional
protocol. At the initiation of a data transfer cycle, the
master will assert and deassert DSO* in the form of a 5
pulse of a given duration. The deassertion of DSO* is
accomplished without regard as to whether a response
has been received from the slave. The master then waits
for an acknowledgement from the slave. Subsequent
pulsing of DSO* cannot occur until a responsive 10
DTACK* signal is received from the slave. Upon re-
ceiving the slave's assertion of DTACK*, the master
can then immediately reassert data strobe, if so desired.
The fast transfer mode protocol does not require the
master to wait for the deassertion of DTACK* by the 15
slave as a condition precedent to subsequent assertions
of DSO*. In the fast transfer mode, only the leading
edge (i.e., the assertion) of a signal is significant. Thus,
the deassertion of either DSO* or DTACK* is com-
pletely irrelevant for completion of a handshake. The 20
fast transfer protocol does not employ the DS1* line for
data strobe purposes at all.

The fast transfer mode protocol may be characterized
as pseudo-synchronous as it includes both synchronous
and asynchronous aspects. The fast transfer mode pro- 25
tocol is synchronous in character due to the fact that
DSO* is asserted and deasserted without regard to a
response from the slave. The asynohronous aspect of
the fast transfer mode protocol is attributable to the fact
that the master may not subsequently assert DSO* until 30
a response to the prior strobe is received from the slave.
Consequently, because the protocol includes both syn-
chronous and asynchronous components, it is most
accurately classified as "pseudo-synchronous."

The transfer of data during a BLOCK WRITE cycle 35
in the fast transfer protocol is referenced only to DSO*.
The master first broadcasts valid data to the slave, and
then asserts DSO to the slave. The slave is given a prede-
termined period of time after the assertion of DSO* in
which to capture the data. Hence, slave modules must 40
be prepared to capture data at any time, as DTACK* is
not referenced during the transfer cycle.

Similarly, the transfer of data during a BLOCK
READ cycle in the fast transfer protocol is referenced
only to DTACK*. The master first asserts DSO*. The 45
slave then broadcasts data to the master and then asserts
DTACK*. The master is given a predetermined period
of time after the assertion of DTACK in which to cap-
ture the data. Hence, master modules must be prepared
to capture data at any time as DSO is not referenced 50
during the transfer cycle.

FIG. 7, parts A through C, is a flowchart illustrating
the operations involved in accomplishing the fast trans-
fer protocol BLOCK WRITE cycle. To initiate a
BLOCK WRITE cycle, the master broadcasts the 55
memory address of the data to be transferred and the
address modifier across the DTB bus. The master also
drives interrupt acknowledge signal (IACK*) high and
the LWORD* signal low 701. A special address modi-
fier, for example "IF," broadcast by the master indi- 60
cates to the slave module that the fast transfer protocol
will be used to accomplish the BLOCK WRITE.

The starting memory address of the data to be trans-
ferred should reside on a 64-bit boundary and the size of
block of data to be transferred should be a multiple of 64 65
bits. In order to remain in compliance with the VMEbus
standard, the block must not cross a 256 byte boundary
without performing a new address cycle.

131
42

The slave modules connected to the DTB receive the
address and the address modifier broadcast by the mas-
ter across the bus and receive LWORD* low and
IACK* high 703. Shortly after broadcasting the address
and address modifier 701, the master drives the AS*
signal low 705. The slave modules receive the ASS low
signal 707. Each slave individually determines whether
it will participate in the data transfer by determining
whether the broadcasted address is valid for the slave in
question 709. If the address is not valid, the data transfer
does not involve that particular slave and it ignores the
remainder of the data transfer cycle.

The master drives WRITE* low to indicate that the
transfer cycle about to occur is a WRITE operation
711. The slave receives the WRITE* low signal 713
and, knowing that the data transfer operation is a
WRITE operation, awaits receipt of a high to low tran-
sition on the DSO* signal line 715. The master will wait
until both DTACK* and BERR* are high 718, which
indicates that the previous slave is no longer driving the
DTB.

The master proceeds to place the first segment of the
data to be transferred on data lines DOO through D31,
719. After placing data on DOO through D31, the master
drives DSO* low 721 and, after a predetermined inter-
val, drives DSO* high 723.

In response to the transition of DSO* from high to
low, respectively 721 and 723, the slave latches the data
being transmitted by the master over data lines DOO
through D31, 725. The master places the next segment
of the data to be transferred on data lines DOO through
D31, 727, and awaits receipt of a DTACK* signal in the
form of a high to low transition signal, 729 in FIG. 7B.

Referring to FIG. 7B, the slave then drives
DTACK* low, 731, and, after a predetermined period
of time, drives DTACK high, 733. The data latched by
the slave, 725, is written to a device, which has been
selected to store the data 735. The slave also increments
the device address 735. The slave then waits for another
transition of DSO* from high to low 737.

To commence the transfer of the next segment of the
block of data to be transferred, the master drives DSO*
low 739 and, after a predetermined period of time,
drives DSO* high 741. In response to the transition of
DSO* from high to low, respectively 739 and 741, the
slave latches the data being broadcast by the master
over data lines DOO through D31, 743. The master
places the next segment of the data to be transferred on
data lines DOO through D31, 745, and awaits receipt of
a DTACK* signal in the form of a high to low transi-
tion, 747.

The slave then drives DTACK* low, 749, and, after
a predetermined period of time, drives DTACK* high,
751. The data latched by the slave, 743, is written to the
device selected to store the data and the device address
is incremented 753. The slave waits for another transi-
tion of DSO* from high to low 737.

The transfer of data will continue in the above-
described manner until all of the data has been trans-
ferred from the master to the slave. After all of the data
has been transferred, the master will release the address
lines, address modifier lines, data lines, IACK* line,
LWORD* line and DSO* line, 755. The master will
then wait for receipt of a DTACK* high to low transi-
tion 757. The slave will drive DTACK* low, 759 and,
after a predetermined period of time, drive DTACK*
high 761. In response to the receipt of the DTACK*

Apple Inc.
Ex. 1012 - Page 34

43
high to low transition, the master will drive ASS high
763 and then release the AS* line 765.

FIG. 8, parts A through C, is a flowchart illustrating
the operations involved in accomplishing the fast trans-
fer protocol BLOCK READ cycle. To initiate a 5
BLOCK READ cycle, the master broadcasts the mem-
ory address of the data to be transferred and the address
modifier across the DTB bus 801. The master drives the
LWORD' signal low and the LACK* signal high 801.
As noted previously, a special address modifier indi- 10
cater to the slave module that the fast transfer protocol
will be used to accomplish the BLOCK READ.

The slave modules connected to the DTB receive the
address and the address modifier broadcast by the mas-
ter across the bus and receive LWORD' low and 15
LACK* high 803. Shortly after broadcasting the address
and address modifier 801, the master drives the AS'
signal low 805. The slave modules receive the ASS low
signal 807. Each slave individually determines whether
it will participate in the data transfer by determining 20
whether the broadcasted address is valid for the slave in
question 809. If the address is not valid, the data transfer
does not involve that particular slave and it ignores the
remainder of the data transfer cycle.

The master drives WRITE' high to indicate that the 25
transfer cycle about to occur is a READ operation 811.
The slave receives the WRITE* high signal 813 and,
knowing that the data transfer operation is a READ
operation, places the first segment of the data to be
transferred on data lines DOO through D31 819. The 30
master will wait until both DTACK* and BERR* are
high 818, which indicates that the previous slave is no
longer driving the DTB.

The master then drives DSO• low 821 and, after a
predetermined interval, drives DSO* high 823. The 35
master then awaits a high to low transition on the
DTACK' signal line 824. As shown in FIG. 8B, the
slave then drives the DTACK' signal low 825 and after
a predetermined period of time, driv,es the DTACK*
signal high 827. 40

In response to the transition of DTACK' from high
to low, respectively 825 and 827, the master latches the
data being transmitted by the slave over data lines DOO
through D31, 831. The data latched by the master, 831,
is written to a device, which has been selected to store 45
the data the device address is incremented 833.

The slave places the next segment of the data to be
transferred on data lines DOO through D31, 829, and
then waits for another transition of DSO* from high to
low 837. 50

To commence the transfer of the next segment of the
block of data to be transferred, the master drives DSO*
low 839 and, after a predetermined period of time,
drives DSO• high 841. The master then waits for the
DTACK' line to transition from high to low, 843. 55

The slave drives DTACK' low, 845, and, after a
predetermined period of time, drives DTACK' high,
847. In response to the transition of DTACK' from
high to low, respectively 839 and 841, the master
latches the data being transmitted by the slave over data 60
lines DOO through D31, 845. The data latched by the
master, 845, is written to the device selected to store the
data, 851 in FIG. 8C, and the device address is incre-
mented. The slave places the next segment of the data to
be transferred on data lines DOO through D31, 849. 65

The transfer of data will continue in the above-
described manner until all of the data to be transferred
from the slave to the master has been written into the

5,163,131
44

device selected to store the data. After all of the data to
be transferred has been written into the storage device,
the master will release the address lines, address modi-
fier lines, data lines, the LACK• line, the LWORD line
and DSO' line 852. The master will then wait for receipt
of a DTACK' high to low transition 853. The slave will
drive DTACK* low 855 and, after a predetermined
period of time, drive DTACK' high 857. In response to
the receipt of the DTACK' high to low transition, the
master will drive AS. high B59 and release the AS' line
861.

To implement the fast transfer protocol, a conven-
tional 64 mA tri-state driver is substituted for the 48 mA
open collector driver conventionally used in VME
slave modules to drive DTACK'. Similarly, the con-
ventional VMEbus data drivers are replaced with 64
mA tri-state drivers in SO-type packages. The latter
modification reduces the ground lead inductance of the
actual driver package itself and, thus, reduces "ground
bounce" effects which contribute to skew between data,
DSO* and DTACK•. In addition, signal return induc-
tance along the bus backplane is reduced by using a
connector system having a greater number of ground
pins so as to minimize signal return and mated-pair pin
inductance. One such connector system is the "High
Density Plus" connector, Model No. 420-8015-000,
manufactured by Teradyne Corporation.

APPENDIX C

Parity FIFO

The parity FIFOs 240, 260 and 270 (on the network
controllers 110), and 544 and 554 (on storage processors
114) are each implemented as an ASIC. All the parity
FIFOs are identical, and are configured on power-up or
during normal operation for the particular function
desired. The parity FIFO is designed to allow speed
matching between buses of different speed, and to per-
form the parity generation and correction for the paral-
lel SCSI drives.

The FIFO comprises two bidirectional data ports,
Port A and Port B, with 36 X 64 bits of RAM buffer
between them. Port A is 8 bits wide and Port B is 32 bits
wide. The RAM buffer is divided into two parts, each
36X 32 bits, designated RAM X and RAM Y. The two
ports access different halves of the buffer alternating to
the other half when available. When the chip is config-
ured as a parallel parity chip (e.g. one of the FIFOs 544
on SP 114a), all accesses on Port B are monitored and
parity is accumulated in RAM X and RAM Y alter-
nately.

The chip also has a CPU interface, which may be 8 or
16 bits wide. In 16 bit mode the Port A pins are used as
the most significant data bits of the CPU interface and
are only actually used when reading or writing to the
Fifo Data Register inside the chip.

A REQ, ACK handshake is used for data transfer on
both Ports A and B. The chip may be configured as
either a master or a slave on Port A in the sense that, in
master mode the Port A ACK / RDY output signifies
that the chip is ready to transfer data on Port A, and the
Port A REQ input specifies that the slave is responding.
In slave mode, however, the Port A REQ input speci-
fies that the master requires a data transfer, and the chip
responds with Port A ACK / RDY when data is avail-
able. The chip is a master on Port B since it raises Port
B REQ and waits for Port B ACK to indicate comple-
tion of the data transfer.

Apple Inc.
Ex. 1012 - Page 35

45
5,163,131

SIGNAL DESCRIPTIONS

Port A 0-7, P
Port A is the 8 bit data port. Port A P, if used, is the

odd parity bit for this port. 5
A Req, A Ack/Rdy
These two signals are used in the data transfer mode

to control the handshake of data on Port A.
uP Data 0-7, uP Data P, uPAdd 0-2, CS
These signals are used by a microprocessor to address 10

the programmable registers within the chip. The odd
parity signal uP Data P is only checked when data is
written to the Fifo Data or Checksum Registers and
microprocessor parity is enabled.

Clk 15
The clock input is used to generate some of the chip

timing. It is expected to be in the 10-20 Mhz range.
Read En, Write En
During microprocessor accesses, while CS is true,

these signals determine the direction of the micro- 20
processor accesses. During data transfers in the WD
mode these signals are data strobes used in conjunction
with Port A Ack.

Port B 00-07, 10-17, 20-27, 30-37, OP-3P
Port B is a 32 bit data port. There is one odd parity bit 25

for each byte. Port B OP is the parity of bits 00-07,
PortB IP is the parity of bits 10-17, Port B 2P is the
parity of bits 20-27, and Port B 3P is the parity of bits
30-37.

B Select, B Req, B Ack, Parity Sync, B Output En- 30
able

These signals are used in the data transfer mode to
control the handshake of data on Port B. Port B Req
and Port B Ack are both gated with Port B Select. The
Port B Ack signal is used to strobe the data on the Port 35
B data lines. The parity sync signal is used to indicate to
a chip configured as the parity chip to indicate that the
last words of data involved in the parity accumulation
are on Port B. The Port B data lines will only be driven
by the Fifo chip if all of the following conditions are 40
met:

a. the data transfer is from Port A to Port B;
b. the Port B select signal is true;
c. the Port B output enable signal is true; and
d. the chip is not configured as the parity chip or it is 45

in parity correct mode and the Parity Sync signal is
true.

Reset
This signal resets all the registers within the chip and

causes all bidirectional pins to be in a high impedance 50
state.

DESCRIPTION OF OPERATION

Normal Operation
Normally the chip acts as a simple FIFO chip. A 55

FIFO is simulated by using two RAM buffers in a sim-
ple ping-pong mode. It is intended, but not mandatory,
that data is burst into or out of the FIFO on Port B. This
is done by holding Port B Sel signal low and pulsing the
Port B Ack signal. When transferring data from Port B 60
to Port A, data is first written into RAM X and when
this is full, the data paths will be switched such that Port
B may start writing to RAM Y. Meanwhile the chip
will begin emptying RAM X to Port A. When RAM Y
is full and RAM X empty the data paths will be 65
switched again such that Port B may reload RAM X
and Port A may empty RAM Y.

Port A Slave Mode

46
This is the default mode and the chip is reset to this

condition. In this mode the chip waits for a master such
as one of the SCSI adapter chips 542 to raise Port A
Request for data transfer. If data is available the Fifo
chip will respond with Port A Ack/Rdy.

Port A WD Mode
The chip may be configured to run in the WD or

Western Digital mode. In this mode the chip must be
configured as a slave on Port A. It differs from the
default slave mode in that the chip responds with Read
Enable or Write Enable as appropriate together with
Port A Ack/Rdy. This mode is intended to allow the
chip to be interfaced to the Western Digital 33C93A
SCSI chip or the NCR 53C90 SCSI chip.

Port A Master Mode
When the chip is configured as a master, it will raise

Port A Aok/Rdy when it is ready for data transfer. This
signal is expected to be tied to the Request input of a
DMA controller which will respond with Port A Req
when data is available. In order to allow the DMA
controller to burst, the Port A Ack/Rdy signal will
only be negated after every 8 or 16 bytes transferred.

Port B Parallel Write Mode
In parallel write mode, the chip is configured to be

the parity chip for a parallel transfer from Port B to
Port A. In this mode, when Port B Select and Port B
Request are asserted, data is written into RAM X or
RAM Y each time the Port B Ack signal is received.
For the first block of 128 bytes data is simply copied
into the selected RAM. The next 128 bytes driven on
Port B will be exclusive-ORed with the first 128 bytes.
This procedure will be repeated for all drives such that
the parity is accumulated in this chip. The Parity Sync
signal should be asserted to the parallel chip together
with the last block of 128 bytes. This enables the chip to
switch access to the other RAM and start accumulating
a new 128 bytes of parity.

Port B Parallel Read Mode - Check Data
This mode is set if all drives are being read and parity

is to be checked. In this case the Parity Correct bit in
the Data Transfer Configuration Register is not set. The
parity chip will first read 128 bytes on Port A as in a
normal read mode and then raise Port B Request. While
it has this signal asserted the chip will monitor the Port
B Ack signals and exclusive-or the data on Port B with
the data in its selected RAM. The Parity Sync should
again be asserted with the last block of 128 bytes. In this
mode the chip will not drive the Port B data lines but
will check the output of its exclusive-or logic for zero.
If any bits are set at this time a parallel parity error will
be flagged.

Port B Parallel Read Mode - Correct Data
This mode is set by setting the Parity Correct bit in

the Data Transfer Configuration Register. In this case
the chip will work exactly as in the check mode except
that when Port B Output Enable, Port B Select and
Parity Sync are true the data is driven onto the Port B
data lines and a parallel parity check for zero is not
performed.

Byte Swap
In the normal mode it is expected that Port B bits

00-07 are the first byte, bits 10-17 the second byte, bits
20-27 the third byte, and bits 30-37 the last byte of each
word. The order of these bytes may be changed by
writing to the byte swap bits in the configuration regis-
ter such that the byte address bits are inverted. The way
the bytes are written and read also depend on whether
the CPU interface is configured as 16 or 8 bits. The

Apple Inc.
Ex. 1012 - Page 36

47
following table shows the byte alignments for the differ-
ent possibilities for data transfer using the Port A Re-
quest/Acknowledge handshake:

CPU Invert Invert Port B Port B Port B Port B
I/F Addr 1 Addr 0 00-07 10-17 20-27 30-37

8 False False

8 False True

8 True False

8 True True

16 False False

16 False True

16 True False

16 True True

Port A
byte 0
Port A
byte I
Port A
byte 2
Port A
byte 3
Port A
byte 0
uProc
byte 0
Port A
byte I
uProc
byte I

Port A
byte I
Port A
byte 0
Port A
byte 3
Port A
byte 2
uProc
byte 0
Port A
byte 0
uProc
byte I
Port A
byte I

Port A
byte 2
Port A
byte 3
Port A
byte 0
Port A
byte I
Port A
byte 1
uProc
byte
Port A
byte 0
uProc
byte 0

5,163,131

5

Port A
byte I
Port A
byte 2 10
Port A
byte I
Port A
byte 0
uProc
byte 1 15
Port A
byte I
uProc
byte 0
Port A
byte 0 20

When the Fifo is accessed by reading or writing the
Fifo Data Register through the microprocessor port in
8 bit mode, the bytes are in the same order as the table
above but the uProc data port is used instead of Port A.
In 16 bit mode the table above applies.

Odd Length Transfers
If the data transfer is not a multiple of 32 words, or

128 bytes, the microprocessor must manipulate the in-
ternal registers of the chip to ensure all data is trans-
ferred. Port A Ack and Port B Req are normally not
asserted until all 32 words of the selected RAM are
available. These signals may be forced by writing to the
appropriate RAM status bits of the Data Transfer Status
Register.

When an odd length transfer has taken place the
microprocessor must wait until both ports are quiescent
before manipulating any registers. It should then reset
both of the Enable Data Transfer bits for Port A and
Port B in the Data Transfer Control Register. It must
then determine by reading their Address Registers and
the RAM Access Control Register whether RAM X or
RAM Y holds the odd length data. It should then set the
corresponding Address Register to a value of 20 hexa-
decimal, forcing the RAM full bit and setting the ad-
dress to the first Word. Finally the microprocessor
should set the Enable Data Transfer bits to allow the
chip to complete the transfer.

At this point the Fifo chip will think that there are
now a full 128 bytes of data in the RAM and will trans-
fer 128 bytes if allowed to do so. The fact that some of
these 128 bytes are not valid must be recognized exter-
nally to the FIFO chip.

PROGRAMMABLE REGISTERS

Data Transfer Configuration Register (Read/Write)

Register Address 0
This register is cleared by the reset signal.

Bit 0 WD Mode. Set if data transfers are to
use the Western Digital WD33C93A
protocol, otherwise the Adaptec 6250
protocol will be used.

Bit I Parity Chip. Set if this chip is to
accumulate Port B parities.

Bit 2 Parity Correct Mode. Set if the
parity chip is to correct parallel
parity on Port B.

48
-continued

Bit 3 CPU Interface 16 bits wide. If set,
the microprocessor data bits are
combined with the Port A data bits to
effectively produce a 16 bit Port. All
accesses by the microprocessor as well
as all data transferred using the Port A
Request and Acknowledge handshake will
transfer 16 bits.

Bit 4 Invert Port A byte address 0. Set to
invert the least significant bit of
Port A byte address.

Bit 5 Invert Port A byte address 1. Set to
invert the most significant bit of Port
A byte address.

Bit 6 Checksum Carry Wrap. Set to enable the
carry out of the 16 bit checksum adder
to carry back into the least significant
bit of the adder.

Bit 7 Reset. Writing a 1 to this bit will
reset the other registers. This bit
resets itself after a maximum of 2
clock cycles and will therefore normally
be read as a 0. No other register
should be written for a minimum of 4
clock cycles after writing to this bit.

25 Data Transfer Control Register (Read/Write)

Register Address 1
This register is cleared by the reset signal or by writ-

ing to the reset bit.

30

35

40

45

50

55

60

65

Bit 0 Enable Data Transfer on Port A. Set to
enable the Port A Req/Ack handshake.

Bit I Enable Data Transfer on Port B. Set to
enable the Port B Req/Ack handshake.

Bit 2 Port A to Port B. If set, data
transfer is from Port A to Port B. If
reset, data transfer is from Port B to
Port A. In order to avoid any glitches
on the request lines, the state of this
bit should not be altered at the same
time as the enable data transfer bits 0
or I above.

Bit 3 uProcessor Parity Enable. Set if parity
is to be checked on the microprocessor
interface. It will only be checked when
writing to the Fifo Data Register or
reading from the Fifo Data or Checksum
Registers, or during a Port A
Request/Acknowledge transfer in 16 bit
mode. The chip will, however, always
re-generate parity ensuring that
correct parity is written to the RAM or
read on the microprocessor interface.

Bit 4 Port A Parity Enable. Set if parity is
to be checked on Port A. It is checked
when accessing the Fifo Data Register in
16 bit mode, or during a Port A
Request/Acknowledge transfer. The chip
will, however, always re-generate parity
ensuring that correct parity is written
to the RAM or read on the Port A
interface.

Bit 5 Port B Parity Enable. Set if Port B
data has valid byte parities. If it is
not set, byte parity is generated
internally to the chip when writing to
the RAMs. Byte parity is not checked
when writing from Port B, but always
checked when reading to Port B.

Bit 6 Checksum Enable. Set to enable writing
to the 16 bit checksum register. This
register accumulates a 16 bit checksum
for all RAM accesses, including
accesses to the Fifo Data Register, as
well as all writes to the checksum
register. This bit must be reset before
reading from the Checksum Register.

Apple Inc.
Ex. 1012 - Page 37

49
-continued

5,163,131

Bit 7 Port A Master. Set if Port A is to
operate in the master mode on Port A
during the data transfer.

Data Transfer Status Register (Read Only)

Register Address 2
This register is cleared by the reset signal or by writ-

ing to the reset bit.

Bit 0 Data in RAM X or RAM Y. Set if any bits
are true in the RAM X. RAM Y, or Port A
byte address registers.

Bit I uProc Port Parity Error. Set if the
uProc Parity Enable bit is set and a
parity error is detected on the
microprocessor interface during any RAM
access or write to the Checksum Register
in 16 bit mode.

Bit 2 Port A Parity Error. Set if the Port A
Parity Enable bit is set and a parity
error is detected on the Port A
interface during any RAM access or write
to the Checksum Register.

Bit 3 Port 13 Parallel Parity Error. Set if
the chip is configured as the parity
chip, is not in parity correct mode, and
a non zero result is detected when the
Parity Sync signal is true. It is also
set whenever data is read out onto Port
B and the data being read back through
the bidirectional buffer does not
compare.

Bits 4-7 Port B Bytes 0-3 Parity Error. Set
whenever the data being read out of the
RAMs on the Port B side has bad parity.

Ram Access Control Register (Read/Write)

Register Address 3
This register is cleared by the reset signal or by writ-

ing to the reset bit. The Enable Data Transfer bits in the
Data Transfer Control Register must be reset before
attempting to write to this register, else the write will be
ignored.

Bit 0 Port A byte address 0. This bit is the
least significant byte address bit. It
is read directly bypassing any inversion
done by the invert bit in the Data
Transfer Configuration Register.

Bit 1 Port A byte address I. This bit is the
most significant byte address bit. It
is read directly bypassing any inversion
done by the invert bit in the Data
Transfer Configuration Register.

Bit 2 Port A to RAM Y. Set if Port A is
accessing RAM Y, and reset if it is
accessing RAM X .

Bit 3 Port B to RAM Y. Set if Port B is
accessing RAM Y, and reset if it is
accessing RAM X .

Bit 4 Long Burst. If the chip is configured
to transfer data on Port A as a master,
and this bit is reset, the chip will
only negate Port A Ack/Rdy after every 8
bytes, or 4 words in 16 bit mode, have
been transferred. If this bit is set,
Port A Ack/Rdy will be negated every 16
bytes, or 8 words in 16 bit mode.

Bits 5-7 Not Used.

Bits 0-4
Bit 5
Bits 6-7

RAM X word address
RAM X full
Not Used

RAM Y Address Register (Read/Write)

Register Address 5
This register is cleared by the reset signal or by writ-

ing to the reset bit. The Enable Data Transfer bits in the
20 Data Transfer Control Register must be reset before

attempting to write to this register, else the write will be
ignored.

25

30

50
RAM X Address Register (Read/Write)

Register Address 4
This register is cleared by the reset signal or by writ-

5 ing to the reset bit. The Enable Data Transfer bits in the
Data Transfer Control Register must be reset before
attempting to write to this register, else the write will be
ignored.

10

15

Bits 0-4
Bit 5
Bits 6-7

RAM Y word address
RAM Y full
Not Used

Fifo Data Register (Read/Write)

Register Address 6
The Enable Data Transfer bits in the Data Transfer

Control Register must be reset before attempting to
write to this register, else the write will be ignored. The

35 Port A to Port B bit in the Data Transfer Control regis-
ter must also be set before writing this register. If it is
not, the RAM controls will be incremented but no data
will be written to the RAM. For consistency, the Port
A to PortB should be reset prior to reading this register.

40 Bits 0-7 are Fifo Data. The microprocessor may
access the FIFO by reading or writing this register. The
RAM control registers are updated as if the access was
using Port A. If the chip is configured with a 16 bit
CPU Interface the most significant byte will use the

45 Port A 0-7 data lines, and each Port A access will incre-
ment the Port A byte address by 2.

Port A Checksum Register (Read/Write)

Register Address 7
50 This register is cleared by the reset signal or by writ-

ing to the reset bit.
Bits 0-7 are Checksum Data. The chip will accumu-

late a 16 bit checksum for all Port A accesses. If the chip
is configured with a 16 bit CPU interface, the most

55 significant byte is read on the Port A 0-7 data lines. If
data is written directly to this register it is added to the
current contents rather than overwriting them. It is
important to note that the Checksum Enable bit in the
Data Transfer Control Register must be set to write this

60 register and reset to read it.

PROGRAMMING THE FIFO CHIP

In general the fifo chip is programmed by writing to
the data transfer configuration and control registers to

65 enable a data transfer, and by reading the data transfer
status register at the end of the transfer to check the
completion status. Usually the data transfer itself will
take place with both the Port A and the Port B hand-

Apple Inc.
Ex. 1012 - Page 38

51
shakes enabled, and in this case the data transfer itself
should be done without any other microprocessor inter-
action. In some applications, however, the Port A hand-
shake may not be enabled, and it will be necessary for
the microprocessor to fill or empty the fifo by repeat-
edly writing or reading the Fifo Data Register.

Since the fifo chip has no knowledge of any byte
counts, there is no way of telling when any data transfer
is complete by reading any register within this chip

struct FIFO_regs (
unsigned char config,al,a2,a3 ;

unsigned char control,b1,62,b3;

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

);

5,163,131
52

itself. Determination of whether the data transfer has
been completed must therefore be done by some other
circuitry outside this chip.

The following C language routines illustrate how the
5 parity FIFO chip may be programmed. The routines

assume that both Port A and the microprocessor port
are connected to the system microprocessor, and return
a size code of 16 bits, but that the hardware addresses
the Fifo chip as long 32 bit registers.

char status,c1,c2,c3;

char ram_access_control,d1,d2,d3;

char ram_X_addr,e1,e2,e3;
char ram_Y_addr,f1,f2,f3;

long data;
int checksum,h1;

#define FIFO1 ((struct FIFOregs*) FIFO_BASE_ADDRESS)

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

FIFO RESET 0x80
FIFO:16 BITS 0x08

FIFO_CAiRY WRAP 0x40

FIFO_PORT_A_ENABLE Ox01

FIFO_PORT 8 ENABLE 0x02

FIFO_PORT:ilABLES 0x03

FIFO PORT A_TO B 0x04

FIFO=CHECiSUM_iNABLE 0x40

FIFO_DATA IN_RAM Ox01

FIFO_FORCi_RAM_FULL 0x20

#define PORT_A_TO_PORT_B(fifo) ((fifo-> control

#define PORT_A_BYTE_ADDRESS(fifo) ((fifo->ram_access_control) &

0x03)
#define PORT_A_TO_RAM Y(fifo) ((fifo->ram_access_control) &

0x04)

#define PORT B _ TO _ RAM —Y(fifo) ((fifo-> ram_access_control) &

0x08)

) & 0x04)

/***

The following routine initiates a Fifo data transfer using

two values passed to it.

config_data This is the data to be written to the

configuration register.

control_data This is the data to be written to the Data

Transfer Control Register. If the data transfer

is to take place automatically using both the

Port Aand Port B handshakes, both data transfer

enables bits should be set in this parameter.
***/

FIFO_initiate_data_transfer(config_data, control_data)

unsigned char config_data, control_data;

Apple Inc.
Ex. 1012 - Page 39

5,163,131
53 54

FIFO1->config = config_data FIFO_RESET;

Configuration value & Reset */
/* Set

FIF01->control = control_data & ("FIFO_PORT_ENABLES); /* Set

everything but enables */
FIF01->control = control_data ; /* Set data transfer

enables */

)

/***

The following routine forces the transfer of any odd bytes
that have been left in the Fifo at the end of a data transfer.
It first disables both ports, then forces the Ram Full bits, and
then re-enables the appropriate Port.

FIFO_force_odd_length_transfer()

{
FIF01->control &= "FIFO_PORT_ENABLES; /* Disable Ports A & B */
if (PORT_A_TO_PORT_B(FIF01)) (

if (PORT_A_TO_RAM_Y(FIFO1)) (
FIFO' ->ram_Y_addr = FIFO_FORCE_RAM_FULL; /* Set RAM Y

full *

X full

else FIF01->ram_X_addr = FIFO_FORCE_RAM_FULL ; /* Set RAM
*/

FIF01->control := FIFO_PORT_B_ENABLE ; /* Re-Enable
Port B */

)

else (

if (PORT_B_TO_RAM_Y(FIF01)) (
FIF01->ram_f_addr = FIFO_FORCE_RAM_FULL ; /* Set

RAM Y full */

else FIF01->ram_X_addr = FIFO_FORCE_RAM_FULL ; /* Set RAM
X full */

FIF01->control := FIFO_PORT_A_ENABLE ; /* Re-Enable
Port A */

)

/***

The following routine returns how many odd bytes have been
left in the Fifo at the end of a data transfer.
***/

int FIFO_count_odd_bytes()

int number_odd_bytes;

number_odd_bytes=0;
if (FIF01->status & FIFO_DATA_IN_RAM) (

if (PORT_A TO_PORT_B(FIF01)) (

number_odd_bytes = (PORT_A_BYTE_ADDRESS(FIFO1)) ;

if (PORT_A_TO_RAM_Y(FIF01))

number_odd_bytes += (FIF01->ram_Y_addr) * 4 ;

Apple Inc.
Ex. 1012 - Page 40

5,163,131
55 56

else number_odd_bytes += (FIF01->ram_X_addr) * 4 ;

else

if (PORT_B_TO_RAM_Y(FIF01))

number_odd_bytes = (FIF01->ram_Y_addr) * 4 ;

else number_odd_bytes = (FIF01->ram_X_addr) * 4 ;

return (number_odd_bytes);

/***

The following routine tests the microprocessor interface of

the chip. It first writes and reads the first 6 registers. It

then writes Is, Os, and an address pattern to the RAM, reading the

data back and checking it.

The test returns a bit significant error code where each

bit represents the address of the registers that failed.

Bit 0 = config register failed

Bit 1 = control register failed

Bit 2 = status register failed

Bit 3 = ram access control register failed

Bit 4 = ram X address register failed

Bit 5 = ram Y address register failed

Bit 6 = data register failed

Bit 7 = checksum register failed

#define RAM_DEPTH 64 /* number of long words in Fifo Ram

reg_expected_data(61 = { Ox7F, OxFF, Ox00, Ox1F, 0x3F, Ox3F

char FIFO_uprocessor_interface_test()
{

unsigned long test_data;

char *register_addr;

int i;

char j,error;

FIF01->config = FIFO_RESET; /* reset the chip */

error=0;

register_addr =(char *) FIF01;

}= ;

/* first test registers 0 thru 5 *1

for (i=0; i<6; i++) (

register_addr = OxFF; 1 write test data */

if (*registeraddr 1= reg_expected_data(i]) error 1= j;

register_addr = 0; / write Os to register */
if (*register_addr) error 1= j;

register_addr = OxFF; / write test data again */
if (*register_addr 1= reg_expected_data[ii) error 1= j;
FIF01->config = FIFO_RESET; /* reset the chip */
if (*register_addr) error 1= j; /* register should be 0 */

Apple Inc.
Ex. 1012 - Page 41

5,163,131
57 58

register_addr++; /* go to next register */

j <<-1;

/* now test Ram data & checksum registers

test is throughout Ram & then test Os */

for (test_data = -1; test_data 1= 1; test_data++) (/* test

for is & Os */
FIF01->config = FIFO_RESET I FIFO_16_BITS ;

FIF01->control = FIFO_PORT_A_TO_B;

for (i0;i<RAM_DEPTH;i++) /* write data to RAM */

FIF01->data = test_data;

FIF01->control = 0;

for (i=0;i<RAM_DEPTH;i++)

if (FIF01->data 1= test_data) error I= j; /* read

& check data */

if (FIF01->checksum) error I= 0x80; /* checksum

should = 0 */

/* now test Ram data with address pattern

uses a different pattern for every byte t/

test_data=0x00010203; /* address pattern start */

FIF01->config = FIFO_RESET 1 FIFO_16_BITS I FIFO_CARRY_WRAP;

FIF01->control = FIFO_PORT_A_TO_B I FIFO_CHECKSUM_ENABLE;

for (i=0;i<RAM_DEPTH;i++) {

FIF01->data = test_data; /* write address pattern */

test_data += 0x04040404;

test_data=0x00010203; /* address pattern start */

FIFO1->control ='FIFO_CHECKSUM_ENABLE;

for (i=0;i<RAM_DEPTH;i++) {
if (FIF01->status 1= FIFO_DATA_IN_RAM)

error I= 0x04; /* should be data in ram */

if (FIF01->data 1= test_data) error I= j; /* read &

check address pattern */
test_data += 0x04040404;

if (FIF01->checksum 1= 0x0102) error 0x80; /* test

checksum of address pattern */
FIF01->config = FIFO_RESET I FIFO_ 16 BITS ; /* inhibit carry

wrap */

FIF01->checksum = OxFEFE; /* writing adds to checksum */

if (FIF01->checksum) error I=0x80; /* checksum should be 0 */
if (FIF01->status) error := 0x04; /* status should be 0 */
return (error);

I

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Apple Inc.
Ex. 1012 - Page 42

59
5,163,131

What is claimed is:
1. Network server apparatus for use with a data net-

work and a mass storage device, comprising:
an interface processor unit coupleable to said net-

work and to said mass storage device;
a host processor unit capable of running remote pro-

cedures defined by a client node on said network;
means in said interface processor unit for satisfying

requests from said network to store data from said
network on said mass storage device;

means in said interface processor unit for satisfying
requests from said network to retrieve data from
said mass storage device to said network; and

means in said interface processor unit for transmitting
predefined categories of messages from said net-
work to said host processor unit for processing in
said host processor unit, said transmitted messages
including all requests by a network client to run
client-defined procedures on said network server
apparatus.

2. Apparatus according to claim 1, wherein said inter-
face processor unit comprises:

a network control unit coupleable to said network;
a data control unit coupleable to said mass storage

device;
a buffer memory;
means in said network control unit for transmitting to

said data control unit requests from said network to
store specified storage data from said network on
said mass storage device;

means in said network control unit for transmitting
said specified storage data from said network to
said buffer memory and from said buffer memory
to said data control unit;

means in said network control unit for transmitting to
said data control unit requests from said network to
retrieve specified retrieval data from said mass
storage device to said network;

means in said network control unit for transmitting
said specified retrieval data from said data control
unit to said buffer memory and from said buffer
memory to said network; and

means in said network control unit for transmitting
said predefined categories of messages from said
network to said host processing unit for processing
by said host processing unit.

3. Apparatus according to claim 2, wherein said data
control unit comprises:

a storage processor unit coupleable to said mass stor-
age device;

a file processor unit;
means on said file processor unit; for translating said

file system level storage requests from said net-
work into requests to store data at specified physi-
cal storage locations in said mass storage device;

means on said file processor unit for instructing said
storage processor unit to write data from said
buffer memory into said specified physical storage
locations in said mass storage device;

means on said file processor unit for translating file
system level retrieval requests from said network
into requests to retrieve data from specified physi-
cal retrieval locations in said mass storage device;

means on said file processor unit for instructing said
storage processor unit to retrieve data from said
specified physical retrieval locations in said mass
storage device to said buffer memory if said data
from said specified physical locations is not already
in said buffer memory; and

60
means in said storage processor unit for transmitting

data between said buffer memory and said mass
storage device.

4. Network server apparatus for use with a data net-
5 work and a mass storage device, comprising:

a network control unit coupleable to said network;
a data control unit coupleable to said mass storage

device;
a buffer memory;

10 means for transmitting from said network control unit
to said data control unit requests from said network
to store specified storage data from said network
on said mass storage device;

means for transmitting said specified storage data by
15 DMA from said network control unit to said buffer

memory and by DMA from said buffer memory to
said data control unit;

means for transmitting from said network control unit
to said data control unit requests from said network

20 to retrieve specified retrieval data from said mass
storage device to said network; and

means for transmitting said specified retrieval data by
DMA from said data control unit to said buffer
memory and by DMA from said buffer memory to

25 said network control unit.
5. Apparatus according to claim 1, for use further

with a buffer memory, and wherein said requests from
said network to store and retrieve data include file sys-
tem level storage and retrieval requests respectively,

30 and wherein said interface processor unit comprises:
a storage processor unit coupleable to said mass stor-

age device;
a file processor unit;
means on said file processor unit for translating said

35 file system level storage requests into requests to
store data at specified physical storage locations in
said mass storage device;

means on said file processor unit for instructing said
storage processor unit to write data from said
buffer memory into said specified physical storage
locations in said mass storage device;

means on said file processor unit for translating said
file system level retrieval requests into requests to

45 retrieve data from specified physical retrieval loca-
tions in said mass storage device;

means on said file processor unit for instructing said
storage processor- unit to retrieve data from said
specified physical retrieval locations in said mass

50 storage device to said buffer memory if said data
from said specified physical locations is not already
in said buffer memory; and

means in said storage processor unit for transmitting
data between said buffer memory and said mass

55 storage device.
6. A data control unit for use with a data network and

a mass storage device, and in response to file system
level storage and retrieval requests from said data net-
work, comprising:

60 a data bus different from said network;
a buffer memory bank coupled to said bus;
storage processor apparatus coupled to said bus and

coupleable to said mass storage device;
file processor apparatus coupled to said bus, said file

65 processor apparatus including a local memory bank
first means on said file processor unit for translating

said file system level storage requests into requests
to store data at specified physical storage locations
in said mass storage device; and

40

Apple Inc.
Ex. 1012 - Page 43

61
second means on said file processor unit for translat-

ing said file system level retrieval requests into
requests to retrieve data from specified physical
retrieval locations in said mass storage device, said
first and second means for translating collectively 5
including means for caching file control informa-
tion through said local memory bank in said file
processor unit,

said data control unit further comprising means for
caching the file data, to be stored or retrieved ac- 10
cording to said storage and retrieval requests,
through said buffer memory bank.

7. A network node for use with a data network and a
mass storage device, comprising:

a system buffer memory; 15
a host processor unit having direct memory access to

said system buffer memory;
a network control unit coupleable to said network

and having direct memory access to said system
buffer memory; 20

a data control unit coupleable to said mass storage
device and having direct memory access to said
system buffer memory;

first means for satisfying requests from said network
to store data from said network on said mass stor- 25
age device;

second means for satisfying requests from said net-
work to retrieve data from said mass storage device
to said network; and

third means for transmitting predefined categories of 30
messages from said network to said host processor
unit for processing in said host processor unit, said
first, second and third means collectively including
means for transmitting from said network control

unit to said system memory bank by direct mem- 35
ory access file data from said network for stor-
age on said mass storage device,

means for transmitting from said system memory
bank to said data control unit by direct memory
access said file data from said network for stor- 40
age on said mass storage device,

means for transmitting from said data control unit
to said system memory bank by direct memory
access file data for retrieval from said mass stor-
age device to said network, and 45

means for transmitting from said system memory
bank to said network control unit said file data
for retrieval from said mass storage device to
said network;

50 at least said network control unit including a micro-
processor and local instruction storage means dis-
tinct from said system buffer memory, all instruc-
tions for said microprocessor residing in said local
instruction storage means.

8. A network file server for use with a data network
and a mass storage device, comprising:

a host processor unit running a Unix operating sys-
tem;

an interface processor unit coupleable to said net- 60
work and to said mass storage device, said interface
processor unit including means for decoding all
NFS requests from said network, means for per-
forming all procedures for satisfying said NFS
requests, means for encoding any NFS reply mes 65 -
sages for return transmission on said network, and
means for transmitting predefined non-NFS cate-
gories of messages from said network to said host

5,163,

55

131
62

processor unit for processing in said host processor
unit.

9. Network server apparatus for use with a data net-
work, comprising:

a network controller coupleable to said network to
receive incoming information packets over said
network, said incoming information packets in-
cluding certain packets which contain part or all of
a request to said server apparatus, said request
being in either a first or a second class of requests to
said server apparatus;

a first additional processor;
an interchange bus different from said network and

coupled between said network controller and said
first additional processor;

means in said network controller for detecting and
satisfying requests in said first class of requests
contained in said certain incoming information
packets, said network controller lacking means in
said network controller for satisfying requests in
said second class of requests;

means in said network controller for detecting and
assembling into assembled requests, requests in said
second class of requests contained in said certain
incoming information packets;

means for delivering said assembled requests from
said network controller to said first additional pro-
cessor over said interchange bus; and

means in said first additional processor for further
processing said assembled requests in said second
class of requests.

10. Apparatus according to claim 9, wherein said
packets each include a network node destination ad-
dress, and wherein said means in said network control-
ler for detecting and assembling into assembled re-
quests, assembles said assembled requests in a format
which omits said network node destination addresses.

11. Apparatus according to claim 9, wherein said
means in said network controller for detecting and satis-
fying requests in said first class of requests, assembles
said requests in said first class of requests into assembled
requests before satisfying said requests in said first class
of requests.

12. Apparatus according to claim 9, wherein said
packets each include a network node destination ad-
dress, wherein said means in said network controller for
detecting and assembling into assembled requests, as-
sembles said assembled requests in a format which omits
said network node destination addresses, and wherein
said means in said network controller for detecting and
satisfying requests in said first class of requests, assem-
bles said requests in said first class of requests, in a for-
mat which omits said network node destination ad-
dresses, before satisfying said requests in said first class
of requests.

13. Apparatus according to claim 9, wherein said
means in said network controller for detecting and satis-
fying requests in said first class includes means for pre-
paring an outgoing message in response to one of said
first class of requests, means for packaging said outgo-
ing message in outgoing information packets suitable for
transmission over said network, and means for transmit-
ting said outgoing information packets over said net-
work.

14. Apparatus according to claim 9, further compris-
ing a buffer memory coupled to said interchange bus,

Apple Inc.
Ex. 1012 - Page 44

5,163
63

and wherein said means for delivering said assembled
requests comprises:

means for transferring the contents of said assembled
requests over said interchange bus into said buffer
memory; and 5

means for notifying said first additional processor of
the presence of said contents in said buffer mem-
ory.

15. Apparatus according to claim 9, wherein said
means in said first additional processor for further pro- I
cessing said assembled requests includes means for pre-
paring an outgoing message in response to one of said
second class of requests, said apparatus further compris-
ing means for delivering said outgoing message from
said first additional processor to said network controller I
over said interchange bus, said network controller fur-
ther comprising means in said network controller for
packaging said outgoing message in outgoing informa-
tion packets suitable for transmission over said network,
and means in said network controller for transmitting 2
said outgoing information packages over said network.

16. Apparatus according to claim 9, wherein said first
class of requests comprises requests for an address of
said server apparatus, and wherein said means in said
network controller for detecting and satisfying requests 2
in said first class comprises means for preparing a re-
sponse packet to such an address request and means for
transmitting said response packet over said network.

17. Apparatus according to claim 9, for use further
with a second data network, said network controller 3

being coupleable further to said second network,
wherein said first class of requests comprises requests to
route a message to a destination reachable over said
second network, and wherein said means in said net-
work controller for detecting and satisfying requests in 3
said first class comprises means for detecting that one of
said certain packets comprises a request to route a mes-
sage contained in said one of said certain packets to a
destination reachable over said second network, and
means for transmitting said message over said second 40
network.

18. Apparatus according to claim 17, for use further
with a third data network, said network controller fur-
ther comprising means in said network controller for
detecting particular requests in said incoming informa- 4
tion packets to route a message contained in said partic-
ular requests, to a destination reachable over said third
network, said apparatus further comprising:

a second network controller coupled to said inter-
change bus and couplable to said third data net- 5
work;

means for delivering said message contained in said
particular requests to said second network control-
ler over said interchange bus; and

means in said second network controller for transmit- 5
ting said message contained in said particular re-
quests over said third network.

19. Apparatus according to claim 9, for use further
with a third data network, said network controller fur-
ther comprising means in said network controller for
detecting particular requests in said incoming informa-
tion packets to route a message contained in said partic-
ular requests, to a destination reachable over said third
network, said apparatus further comprising:

a second network controller coupled to said inter-
change bus and couplable to said third data net-
work;

,131
64

means for delivering said message contained in said
particular requests to said second network control-
ler over said interchange bus; and

means in said second network controller for transmit-
ting said message contained in said particular re-
quests over said third network.

20. Apparatus according to claim 9, for use further
with a mass storage device, wherein said first additional
processor comprises a data control unit couplable to

0 said mass storage device, wherein said second class of
requests comprises remote calls to procedures for man-
aging a file system in said mass storage device, and
wherein said means in said first additional processor for
further processing said assembled requests in said sec-

5 and class of requests comprises means for executing file
system procedures on said mass storage device in re-
sponse to said assembled requests.

21. Apparatus according to claim 20, wherein said file
system procedures include a read procedure for reading

o data from said mass storage device,
said means in said first additional processor for fur-

ther processing said assembled requests including
means for reading data from a specified location in
said mass storage device in response to a remote

5 call to said read procedure,
said apparatus further including means for delivering

said data to said network controller,
said network controller further comprising means on

said network controller for packaging said data in
O outgoing information packets suitable for transmis-

sion over said network, and means for transmitting
said outgoing information packets over said net-
work.

22. Apparatus according to claim 21, wherein said
5 means for delivering comprises:

a system buffer memory coupled to said interchange
bus;

means in said data control unit for transferring said
data over said interchange bus into said buffer
memory; and

means in said network controller for transferring said
data over said interchange bus from said system
buffer memory to said network controller.

5 23. Apparatus according to claim 20, wherein said file
system procedures include a read procedure for reading
a specified number of bytes of data from said mass stor-
age device beginning at an address specified in logical
terms including a file system ID and a file ID, said

O means for executing file system procedures comprising:
means for converting the logical address specified in

a remote call to said read procedure to a physical
address; and

means for reading data from said physical address in

5 said mass storage device.
24. Apparatus according to claim 23, wherein said

mass storage device comprises a disk drive having a
numbered tracks and sectors, wherein said logical ad-
dress specifies said file system ID, said file ID, and a

60 byte offset, and wherein said physical address specifies
a corresponding track and sector number.

25. Apparatus according to claim 20, wherein said file
system procedures include a read procedure for reading
a specified number of bytes of data from said mass stor-

65 age device beginning at an address specified in logical
terms including a file system ID and a file ID,

said data control unit comprising a file processor
coupled to said interchange bus and a storage pro-

Apple Inc.
Ex. 1012 - Page 45

5,163,131
65 66

censor coupled to said interchange bus and coupla- perform said function of detecting and assembling
ble to said mass storage device, into assembled requests, requests in said second

said file processor comprising means for converting class of requests.
the logical address specified in a remote call to said 31. Network server apparatus for use with a data
read procedure to a physical address, 5 network, comprising:

said apparatus further comprising means for deliver- a network controller coupleable to said network to
receive incoming information packets over said
network, said incoming information packets in-
cluding certain packets which contain part or all of
a message to said server apparatus, said message
being in either a first or a second class of messages
to said server apparatus, said messages in said first
class or messages including certain messages con-
taining requests;

a host computer;
an interchange bus different from said network and

coupled between said network controller and said
host computer;

means in said network controller for detecting and
satisfying said requests in said first class of mes-
sages;

means for delivering messages in said second class of
messages from said network controller to said host
computer over said interchange bus; and

means in said host computer for further processing
said messages in said second class of messages.

of requests comprises remote calls to procedures other 32. Apparatus according to claim 31, wherein said
than procedures for managing a file system, and packets each include a network node destination ad-
wherein said means in said first additional processor for 30 dress, and wherein said means for delivering messages
further processing said assembled requests in said sec- in said second class of messages comprises means in said
and class of requests comprises means for executing network controller for detecting said messages in said
remote procedure calls in response to said assembled second class of messages and assembling them into as-
requests. sembled messages in a format which omits said network

28. Apparatus according to claim 27, for use further node' destination addresses.
with a mass storage device and a data control unit " 33. Apparatus according to claim 31, wherein said
couplable to said mass storage device and coupled to means in said network controller for detecting and satis-
said interchange bus, wherein said network controller fying requests in said first class includes means for pre-
further comprises means in said network controller for paring an outgoing message in response to one of said
detecting and assembling remote calls, received over 40 requests in said first class of messages, means for pack-
said network, to procedures for managing a file system aging said outgoing message in outgoing information
in said mass storage device, and wherein said data con- packets suitable for transmission over said network, and
trol unit comprises means for executing file system pro- means for transmitting said outgoing information pack-
cedures on said mass storage device in response to said ets over said network.
remote calls to procedures for managing a file system in 45 34. Apparatus according to claim 31, for use further
said mass storage device. with a second data network, said network controller

29. Apparatus according to claim 27, further compris- being coupleable further to said second network,

ing means for delivering all of said incoming informa- wherein said first class of messages comprises messages

tion packets not recognized by said network controller to be routed to a destination reachable over said second

to said host computer over said interchange bus. 50 network, and wherein said means in said network con-
troller for detecting and satisfying requests in said first

30. Apparatus according to claim 9, wherein said class comprises means for detecting that one of said
network controller comprises: certain packets includes a request to route a message

a microprocessor; contained in said one of said certain packets to a destina-
a local instruction memory containing local instruc- tion reachable over said second network, and means for

tion code; 55
transmitting said message over said second network.

a local bus coupled between said microprocessor and 35. Apparatus according to claim 31, for use further
said local instruction memory; with a third data network, said network controller fur-

bus interface means for interfacing said microproces- ther comprising means in said network controller for
sor with said interchange bus at times determined detecting particular messages in said incoming informa-
by said microprocessor in response to said local 60 tion packets to be routed to a destination reachable over
instruction code; and said third network, said apparatus further comprising:

network interface means for interfacing said micro- a second network controller coupled to said inter-
processor with said data network, change bus and couplable to said third data net-.

said local instruction memory including all instruc- work; 65
tion code necessary for said microprocessor to means for delivering said particular messages to said
perform said function of detecting and satisfying second network controller over said interchange
requests in said first class of requests, and all in- bus, substantially without involving said host corn-
struction code necessary for said microprocessor to puter; and

ing said physical address to said storage processor,
said storage processor comprising means for reading

data from said physical address in said mass storage
device and for transferring said data over said in- 10
terchange bus into said buffer memory; and

means in said network controller for transferring said
data over said interchange bus from said system
buffer memory to said network controller.

26. Apparatus according to claim 20, wherein said file 15
system procedures include a write procedure for writ-
ing data contained in an assembled request, to said mass
storage device,

said means in said first additional processor for fur-
ther processing said assembled requests including 20
means for writing said data to a specified location
in said mass storage device in response to a remote
call to said read procedure.

27. Apparatus according to claim 9, wherein said first
additional processor comprises a host computer cou- "
pled to said interchange bus, wherein said second class

Apple Inc.
Ex. 1012 - Page 46

5,163,131
67

means in said second network controller for transmit-
ting said message contained in said particular re-
quests over said third network, substantially with-
out involving said host computer.

36. Apparatus according to claim 31, for use further
with a mass storage device, further comprising a data
control unit coupleable to said mass storage device,

said network controller further comprising means in
said network controller for detecting ones of said
incoming information packets containing remote
calls to procedures for managing a file system in
said mass storage device, and means in said net-
work controller for assembling said remote calls
from said incoming packets into assembled calls,
substantially without involving said host computer,

said apparatus further comprising means for deliver-
ing said assembled file system calls to said data
control unit over said interchange bus substantially
without involving said host computer,

and said data control unit comprising means in said
data control unit for executing file system proce-
dures on said mass storage device in response to
said assembled file system calls, substantially with-
out involving said host computer.

37. Apparatus according to claim 31, further compris-
ing means for delivering all of said incoming informa-
tion packets not recognized by said network controller
to said host computer over said interchange bus.

38. Apparatus according to claim 31, wherein said
network controller comprises:

a microprocessor;
a local instruction memory containing local instruc-

tion code;
a local bus coupled between said microprocessor and

said local instruction memory;
bus interface means for interfacing said microproces-

sor with said interchange bus at times determined
by said microprocessor in response to said local
instruction code; and

network interface means for interfating
processor with said data network,

said local instruction memory including all instruc-
tion code necessary for said microprocessor to
perform said function of detecting and satisfying
requests in said first class of requests.

39. File server apparatus for use with a mass storage
device, comprising:

a requesting unit capable of issuing calls to file system
procedures in a device-independent form;

a file controller including means for converting said
file system procedure calls from said device-
independent form to a device-specific form and
means for issuing device-specific commands in
response to at least a subset of said procedure calls,
said file controller operating in parallel with said
requesting unit; and

a storage processor including means for executing
said device-specific commands on said mass stor-
age device, said storage processor operating in
parallel with said requesting unit and said file con-
troller.

40. Apparatus according to claim 39, further compris-
ing:

an interchange bus;
first delivery means for delivering said file system

procedure calls from said requesting unit to said file
controller over said interchange bus; and

said micro- 40

68
second delivery means for delivering said device-

specific commands from said file controller to said
storage processor over said interchange bus.

41. Apparatus according to claim 39, further compris-
5 ing:

an interchange bus coupled to said requesting unit
and to said file controller;

first memory means in said requesting unit and ad-
dressable over said interchange bus;

10 second memory means in said file controller;
means in said requesting unit for preparing in said first

memory means one of said calls to file system pro-
cedures;

means for notifying said file controller of the avail-
15 ability of said one of said calls in said first memory

means; and
means in said file controller for controlling an access

to said first memory means for reading said one of
said calls over said interchange bus into said second

20 memory means in response to said notification.
42. Apparatus according to claim 41, wherein said

means for notifying said file controller comprises:
a command FIFO in said file controller addressable

over said interchange bus; and
25 means in said requesting unit for controlling an access

to said FIFO for writing a descriptor into said
FIFO over said interchange bus, said descriptor
describing an address in said first memory means of
said one of said calls and an indication that said

30 address points to a message being sent.
43. Apparatus according to claim 41, further compris-

ing:
means in said file controller for controlling an access

to said first memory means over said interchange
35 bus for modifying said one of said calls in said first

memory means to prepare a reply to said one of
said calls; and

means for notifying said requesting unit of the avail-
ability of said reply in said first memory.

44. Apparatus according to claim 41, further compris-
ing:

a command FIFO in said requesting processor ad-
dressable over said interchange bus; and

means in said file controller for controlling an access
45 to said FIFO for writing a descriptor into said

FIFO over said interchange bus, said descriptor
describing said address in said first memory and an
indication that said address points to a reply to said
one of said calls.

45. Apparatus according to claim 39, further compris-
ing:

an interchange bus coupled to said file controller and
to said storage processor;

55 second memory means in said file controller and
addressable over said interchange bus;

means in said file controller for preparing one of said
device-specific commands in said second memory
means;

means for notifying said storage processor of the
availability of said one of said commands in said
second memory means; and

means in said storage processor for controlling an
access to said second memory means for reading
said one of said commands over said interchange
bus in response to said notification.

46. Apparatus according to claim 45, wherein said
means for notifying said storage processor comprises:

50

60

65

Apple Inc.
Ex. 1012 - Page 47

5,163,
69

a command FIFO in said storage processor address-
able over said interchange bus; and

means in said file controller for controlling an access
to said FIFO for writing a descriptor into said
FIFO over said interchange bus, said descriptor 5
describing an address in said second memory of
said one of said calls and an indication that said
address points to a message being sent.

47. Apparatus according to claim 39, wherein said
means for converting said file system procedure calls 10
comprises:

a file control cache in said file controller, storing
device-independent to device-specific conversion
information; and

means for performing said conversions in accordance 15
with said conversion information in said file con-
trol cache.

48. Apparatus according to claim 39, wherein said
mass storage device includes a disk drive having num-
bered sectors, wherein one of said file system procedure 20
calls is a read data procedure call,

said apparatus further comprising an interchange bus
and a system buffer memory addressable over said
interchange bus,

said means for converting said file system procedure 25
calls including means for issuing a read sectors
command in response to one of said read data pro-
cedure calls, said read sectors command specifying
a starting sector on said disk drive, a count indicat-
ing the amount of data to read, and a pointer to a 30
buffer in said system buffer memory, and

said means for executing device-specific commands
including means for reading data from said disk
drive beginning at said starting sector and continu-
ing for the number of sectors indicated by said 35
count, and controlling an access to said system
buffer memory for writing said data over said inter-
change bus to said buffer in said system buffer
memory.

49. Apparatus according to claim 48, wherein said file 40
controller further includes means for determining
whether the data specified in said one of said read data
procedure calls is already present in said system buffer
memory, said means for converting issuing said read
sectors command only if said data is not already present 45
in said system buffer memory.

50. Apparatus according to claim 48, further compris-
ing:

means in said storage processor for controlling a
notification of said file controller when said read 50
sectors command has been executed;

means in said file controller, responsive to said notifi-
cation from said storage processor, for controlling
a notification of said requesting unit that said read
data procedure call has been executed; and 55

means in said requesting unit, responsive to said noti-
fication from said file controller, for controlling an
access to said system buffer memory for reading
said data over said interchange bus from said buffer
in said system buffer memory to said requesting 60
unit.

51. Apparatus according to claim 39, wherein said
mass storage device includes a disk drive having num-
bered sectors, wherein one of said file system procedure
calls is a write data procedure call, 65

said apparatus further comprising an interchange bus
and a system buffer memory addressable over said
interchange bus,

131
70

said means for converting said file system procedure
calls including means for issuing a write sectors
command in response to one of said write data
procedure calls, said write data procedure call
including a pointer to a buffer in said system buffer
memory containing data to be written, and said
write sectors command including a starting sensor
on said disk drive, a count indicating the amount of
data to write, and said pointer to said buffer in said
buffer memory, and

said means for executing device-specific commands
including means for controlling an access to said
buffer memory for reading said data over said in-
terchange bus from said buffer in said system buffer
memory, and writing said data to said disk drive
beginning at said starting sector and continuing for
the number of sectors indicated by said count.

52. Apparatus according to claim 51, further compris-
ing:

means in said requesting unit for controlling an access
to said system buffer memory for writing said data
over said interchange bus to said buffer in said
system buffer memory; and

means in said requesting unit for issuing said one of
said write data procedure calls when said data has
been written to said buffer in said system buffer
memory.

53. Apparatus according to claim 52, further compris-
ing:

means in said requesting unit for issuing a buffer allo-
cation request; and

means in said file controller for allocating said buffer
in said system buffer memory in response to said
buffer allocation request, and for providing said
pointer, before said data is written to said buffer in
said system buffer memory.

54. Network controller apparatus for use with a first
data network carrying signals representing information
packets encoded according to a first physical layer
protocol, comprising:

a first network interface unit, a first packet bus and
first packet memory addressable by said first net-
work interface unit over said first packet bus, said
first network interface unit including means for
receiving signals over said first network represent-
ing incoming information packets, extracting said
incoming information packets and writing said
incoming information packets into said first packet
memory over said first packet bus;

a first packet bus port;
first packet DMA means for reading data over said

first packet bus from said first packet memory to
said first packet bus port; and

a local processor including means for accessing said
incoming information packets in said first packet
memory and, in response to the contents of said
incoming information packets, controlling said first
packet DMA means to read selected data over said
first packet bus from said first packet memory to
said first packet bus port, said local processor in-
cluding a CPU, a CPU bus and CPU memory con-
taining CPU instructions, said local processor op-
erating in response to said CPU instructions, said
CPU instructions being received by said CPU over
said CPU bus independently of any of said writing
by said first network interface unit of incoming
information packets into said first packet memory
over said first packet bus and independently of any

Apple Inc.
Ex. 1012 - Page 48

71
of said reading by said first packet DMA means of
data over said first packet bus from said first packet
memory to said first packet bus port.

55. Apparatus according to claim 54, wherein said
first network interface unit further includes means for
reading outgoing information packets from said first
packet memory over said first packet bus, encoding said
outgoing information packets according to said first
physical layer protocol, and transmitting signals over
said first network representing said outgoing informa-
tion packets,

said local processor further including means for pre-
paring said outgoing information packets in said
first packet memory, and for controlling said first
network interface unit to read, encode and transmit
said outgoing information packets,

said receipt of CPU instructions by said CPU over
said CPU bus being independent further of any of
said reading by said first network interface unit of
outgoing information packets from said first packet
memory over said first packet bus.

56. Apparatus according to claim 54, further compris-
ing a first FIFO having first and second ports, said first
port of said first FIFO being said first packet bus port.

57. Apparatus according to claim 56, for use further
with an interchange bus, further comprising inter-
change bus DMA means for reading data from said
second port of said first FIFO onto said interchange
bus,

said local processor further including means for con-
trolling said interchange bus DMA means to read
said data from said second port of said first FIFO
onto said interchange bus.

58. Apparatus according to claim 54, for use further
with a second data network carrying signals represent-
ing information packets encoded according to a second
physical layer protocol, further comprising:

a second network interface unit, a second packet bus
and second packet memory addressable by said
second network interface unit over said second
packet bus, said second network interface unit in-
cluding means for reading outgoing information
packets from said second packet memory over said
second packet bus, encoding said outgoing infor-
mation packets according to said second physical
layer protocol, and transmitting signals over said
second network representing said outgoing infor-
mation packets;

a second packet bus port; and
second packet DMA means for reading data over said

second packet bus from said second packet bus port
to said second packet memory,
said local processor further including means for

controlling said second packet DMA means to
read data over said second packet bus from said
second packet bus port to said second packet
memory, and for controlling said second net-
work interface unit to read, encode and transmit
outgoing information packets from said data in
said second packet memory,

said receipt of CPU instructions by said CPU over
said CPU bus being independent further of any
of said reading by said second packet DMA
means of data over said second packet bus from
said second packet bus port to said second packet
memory, and independent further of any of said
reading by said second network interface unit of
outgoing information packets from said second
packet memory over said second packet bus,

5,163,131
72

and all of said accesses to said first packet memory
over said first packet bus being independent of
said accesses to said second packet memory over
said second packet bus.

5 59. Apparatus according to claim 58, wherein said
second physical layer protocol is the same as said first
physical layer protocol.

60. Apparatus according to claim 58, further compris-
ing means, responsive to signals from said processor, for

10 coupling data from said first packet bus port to said
second packet bus port.

61. Apparatus according to claim 60, further compris-
ing:

first and second FIFOs, each having first and second
15 ports, said fist port of said first FIFO being said

first packet bus port and said first port of said sec-
ond FIFO being said second packet bus port;

an interchange bus; and
interchange bus DMA means for transferring data

20 between said interchange bus and either said sec-
ond port of said first FIFO or said second port of
said second FIFO, selectably in response to DMA
control signals from said local processor.

25

30

62. Apparatus according to claim 61, wherein said
interchange bus DMA means comprises:

a transfer bus coupled to said second port of said first
FIFO and to said second port of said second FIFO;

coupling means coupled between said transfer bus
and said interchange bus; and

a controller coupled to receive said DMA control
signals from said processor and coupled to said first
and second FIFOs and to said coupling means to
control data transfers over said transfer bus.

35 63. Storage processing apparatus for use with a plu-
rality of storage devices on a respective plurality of
channel buses, and an interchange bus, said interchange
bus capable of transferring data at a higher rate than any
of said channel buses, comprising:

40 data transfer means coupled to each of said channel
buses and to said interchange bus, for transferring
data in parallel between said data transfer means
and each of said channel buses at the data transfer
rates of each of said channel buses, respectively,

45 and for transferring data between said data transfer
means and said interchange bus at a data transfer
rate higher than said data transfer rates of any of
said channel buses; 'and

a local processor including transfer control means for
50 controlling said data transfer means to transfer data

between said data transfer means and specified ones
of said channel buses and for controlling said data
transfer means to transfer data between said data
transfer means and said interchange bus,

55 said local processor including a CPU, a CPU bus
and CPU memory containing CPU instructions,
said local processor operating in response to said
CPU instructions, said CPU instructions being
received by said CPU over said CPU bus inde-
pendently of any of said data transfers between
said channel buses and said data transfer means
and independently of any of said data transfers
between said data transfer means and said inter-
change bus.

64. Apparatus according to claim 63, wherein the
highest data transfer rate of said interchange bus is
substantially equal to the sum of the highest data trans-
fer rates of all of said channel buses.

60

65

Apple Inc.
Ex. 1012 - Page 49

73
65. Apparatus according to claim 63, wherein said

data transfer means comprises:
a FIFO corresponding to each of said channel buses,

each of said FIFOs having a first port and a second
port;

a channel adapter coupled between the first port of
each of said FIFOs and a respective one of said
channels; and

DMA means coupled to the second port of each of
said FIFOs and to said interchange bus, for trans-
ferring data between said interchange bus and one
of said FIFOs as specified by said local processor,
said transfer control means in said local processor

comprising means for controlling each of said
channel adapters separately to transfer data be-
tween the channel bus coupled to said channel
adapter and the FIFO coupled to said channel
adapter, and for controlling said DMA control-
ler to transfer data between separately specified
ones of said FIFOs and said interchange bus, said
DMA means performing said transfers sequen-
tially.

5,163,131

5

10

15

20

25

30

35

40

45

50

55

60

65

74
66. Apparatus according to claim 65, wherein said

DMA means comprises a command memory and a
DMA processor, said local processor having means for
writing FIFO/interchange bus DMA commands into
said command memory, each of said commands being
specific to a given one said FIFOs and including an
indication of the direction of data transfer between said
interchange bus and said given FIFO, each of said
FIFOs generating a ready status indication, said DMA
processor controlling the data transfer specified in each
of said commands sequentially after the corresponding
FIFO indicates a ready status, and notifying said local
processor upon completion of the data transfer specified
in each of said commands.

67. Apparatus according to claim 65 further compris-
ing an additional FIFO coupled between said CPU bus
and said DMA memory, said local processor further
having means for transferring data between said CPU
and said additional FIFO, and said DMA means being
further for transferring data between said interchange
bus and said additional FIFO in response to commands
issued by said local processor.

* * * * *

Apple Inc.
Ex. 1012 - Page 50

