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[57] ABSTRACT 

A file server architecture is disclosed, comprising as 
separate processors, a network controller unit, a file 
controller unit and a storage processor unit. These units 
incorporate their own processors, and operate in paral-
lel with a local Unix host processor. All networks are 
connected to the network controller unit, which per-
forms all protocol processing up through the NFS 
layer. The virtual file system is implemented in the file 
control unit, and the storage processor provides high-
speed multiplexed access to an array of mass storage 
devices. The file controller unit control file information 
caching through its own local cache buffer, and con-
trols disk data caching through a large system memory 
which is accessible on a bus by any of the processors. 
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I 

PARALLEL I/O NETWORK FILE SERVER 
ARCHITECTURE 

5,163,131 

CROSS-REFERENCE TO RELATED 5 
APPLICATIONS 

The present application is related to the following 
U.S. patent applications, all filed concurrently here-
with: 

1. MULTIPLE FACILITY OPERATING SYS-
TEM ARCHITECTURE, invented by David Hitz, 
Allan Schwartz, James Lau and Guy Harris; 

2. ENHANCED VMEBUS PROTOCOL UTILIZ-
ING PSEUDOSYNCHRONOUS HANDSHAKING 
AND BLOCK MODE DATA TRANSFER, invented 
by Daryl Starr; and 

3. BUS LOCKING FIFO MULTI-PROCESSOR 
COMMUNICATIONS SYSTEM UTILIZING 
PSEUDOSYNCHRONOUS HANDSHAKING 
AND BLOCK MODE DATA TRANSFER invented 20
by Daryl D. Starr, William Pitts and Stephen Blight-
man. 

The above applications are all assigned to the as-
signee of the present invention and are all expressly 
incorporated herein by reference. 25 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The invention relates to computer data networks, and 

more particularly, to network file server architectures 3 
for computer networks. 

2. Description of the Related Art 
Over the past ten years, remarkable increases in hard-

ware price/performance ratios have caused a startling 
shift in both technical and office computing environ- 3 
ments. Distributed workstation-server networks are 
displacing the once pervasive dumb terminal attached 
to mainframe or minicomputer. To date, however, net-
work I/O limitations have constrained the potential 
performance available to workstation users. This situa- 40 
tion has developed in part because dramatic jumps in 
microprocessor performance have exceeded increases 
in network I/O performance. 

In a computer network, individual user workstations 
are referred to as clients, and shared resources for filing, 4 
printing, data storage and wide-area communications 
are referred to as servers. Clients and servers are all 
considered nodes of a network. Client nodes use stan-
dard communications protocols to exchange service 
requests and responses with server nodes. 5 

Present-day network clients and servers usually run 
the DOS, MacIntosh OS, OS/2, or Unix operating sys-
tems. Local networks are usually Ethernet or Token 
Ring at the high end, Arcnet in the midrange, or Local-
Talk or StarLAN at the low end. The client-server 55 
communication protocols are fairly strictly dictated by 
the operating system environment—usually one of sev-
eral proprietary schemes for PCs (NetWare, 3Plus, 
Vines, LANManager, LANServer); AppleTalk for 
Macintoshes; and TCP/IP with NFS or RFS for Unix. 60 
These protocols are all well-known in the industry. 

Unix client nodes typically feature a 16- or 32-bit 
microprocessor with 1-8 MB of primary memory, a 
640x 1024 pixel display, and a built-in network inter-
face. A 40-100 MB local disk is often optional. Low-end 65 
examples are 80286-based PCs or 68000-based MaoIn-
tosh I's; mid-range machines include 80386 PCs, MacIn-
tosh II's, and 680X0-based Unix workstations; high-end 

10 

15 

0 

5 

5 

0 

2 
machines include RISC-based DEC, HP, and Sun Unix 
workstations. Servers are typically nothing more than 
repackaged client nodes, configured in 19-inch racks 
rather than desk sideboxes. The extra space of a 19-inch 
rack is used for additional backplane slots, disk or tape 
drives, and power supplies. 

Driven by RISC and CISC microprocessor develop-
ments, client workstation performance has increased by 
more than a factor of ten in the last few years. Concur-
rently, these extremely fast clients have also gained an 
appetite for data that remote servers are unable to sat-
isfy. Because the I/O shortfall is most dramatic in the 
Unix environment, the description of the preferred em-
bodiment of the present invention will focus on Unix 
file servers. The architectural principles that solve the 
Unix server I/O problem, however, extend easily to 
server performance bottlenecks in other operating sys-
tem environments as well. Similarly, the description of 
the preferred embodiment will focus on Ethernet imple-
mentations, though the principles extend easily to other 
types of networks. 

In most Unix environments, clients and servers ex-
change file data using the Network File System 
("NFS"), a standard promulgated by Sun Microsystems 
and now widely adopted by the Unix community. NFS 
is defined in a document entitled, "NFS: Network File 
System Protocol Specification," Request For Com-
ments (RFC) 1094, by Sun Microsystems, Inc. (March 
1989). This document is incorporated herein by refer-
ence in its entirety. 

While simple and reliable, NFS is not optimal. Clients 
using NFS place considerable demands upon both net-
works and NFS servers supplying clients with NFS 
data. This demand is particularly acute for so-called 
diskless clients that have no local disks and therefore 
depend on a file server for application binaries and 
virtual memory paging as well as data. For these Unix 
client-server configurations, the ten-to-one increase in 
client power has not been matched by a ten-to-one 
increase in Ethernet capacity, in disk speed, or server 
disk-to-network I/O throughput. 

The result is that the number of diskless clients that a 
single modern high-end server can adequately support 
has dropped to between 5-10, depending on client 
power and application workload. For clients containing 
small local disks for applications and paging, referred to 
as dataless clients, the client-to-server ratio is about 
twice this, or between 10-20. 

Such low client/server ratios cause piecewise net-
work configurations in which each local Ethernet con-
tains isolated traffic for its own 5-10 (diskless) clients 
and dedicated server. For overall connectivity, these 
local networks are usually joined together with an 
Ethernet backbone or, in the future, with an FDDI 
backbone. These backbones are typically connected to 
the local networks either by IP routers or MAC-level 
bridges, coupling the local networks together directly, 
or by a second server functioning as a network inter-
face, coupling servers for all the local networks to-
gether. 

In addition to performance considerations, the low 
client-to-server ratio creates computing problems in 
several additional ways: 

1. Sharing 
Development groups of more than 50-people cannot 

share the same server, and thus cannot easily share files 
without file replication and manual, multi-server up-
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3 
dates. Bridges or routers are a partial solution but inflict 
a performance penalty due to more network hops. 

2. Administration 
System administrators must maintain many limited-

capacity servers rather than a few more substantial 5 
servers. This burden includes network administration, 
hardware maintenance, and user account administra-
tion. 

3. File System Backup 
System administrators or operators must conduct 10 

multiple file system backups, which can be onerously 
time consuming tasks. It is also expensive to duplicate 
backup peripherals on each server (or every few servers 
if slower network backup is used). 

4. Price Per Seat 15 
With only 5-10 clients per server, the cost of the 

server must be shared by only a small number of users. 
The real cost of an entry-level Unix workstation is 
therefore significantly greater, often as much as 140% 
greater, than the cost of the workstation alone. 20 

The widening I/O gap, as well as administrative and 
economic considerations, demonstrates a need for high-
er-performance, larger-capacity Unix file servers. Con-
version of a display-less workstation into a server may 
address disk capacity issues, but does nothing to address 25 
fundamental I/0 limitations. As an NFS server, the 
one-time workstation must sustain 5-10 or more times 
the network, disk, backplane, and file system throughput 
than it was designed to support as a client. Adding 
larger disks, more network adaptors, extra primary 30 
memory, or even a faster processor do not resolve basic 
architectural I/O constraints; I/O throughput does not 
increase sufficiently. 

Other prior art computer architectures, while not 
specifically designed as file servers, may potentially be 35 
used as such. In one such well-known architecture, a 
CPU, a memory unit, and two I/O processors are con-
nected to a single bus. One of the I/O processors oper-
ates a set of disk drives, and if the architecture is to be 
used as a server, the other -I/O processor would be 40 
connected to a network. This architecture is not optimal 
as a file server, however, at least because the two I/O 
processors cannot handle network file requests without 
involving the CPU. All network file requests that are 
received by the network I/O processor are first trans- 45 
mitted to the CPU, which makes appropriate requests to 
the disk-I/O processor for satisfaction of the network 
request. 

In another such computer architecture, a disk con-
troller CPU manages access to disk drives, and several 50 
other CPUs, three for example, may be clustered 
around the disk controller CPU. Each of the other 
CPUs can be connected to its own network. The net-
work CPUs are each connected to the disk controller 
CPU as well as to each other for interprocessor commu- 55 
nication. One of the disadvantages of this computer 
architecture is that each CPU in the system runs its own 
complete operating system. Thus, network file server 
requests must be handled by an operating system which 
is also heavily loaded with facilities and processes for 60 
performing a large number of other, non file-server 
tasks. Additionally, the interprocessor communication 
is not optimized for file server type requests. 

In yet another computer architecture, a plurality of 
CPUs, each having its own cache memory for data and 65 
instruction storage, are connected to a common bus 
with a system memory and a disk controller. The disk 
controller and each of the CPUs have direct memory 

5,163,131 
4 

access to the system memory, and one or more of the 
CPUs can be connected to a network. This architecture 
is disadvantageous as a file server because, among other 
things, both file data and the instructions for the CPUs 
reside in the same system memory. There will be in-
stances, therefore, in which the CPUs must stop run-
ning while they wait for large blocks of file data to be 
transferred between system memory and the network 
CPU. Additionally, as with both of the previously de-
scribed computer architectures, the entire operating 
system runs on each of the CPUs, including the network 
CPU. 

In yet another type of computer architecture, a large 
number of CPUs are connected together in a hypercube 
topology. One of more of these CPUs can be connected 
to networks, while another can be connected to disk 
drives. This architecture is also disadvantageous as a file 
server because, among other things, each processor 
runs the entire operating system. Interprocessor com-
munication is also not optimal for file server applica-
tions. 

SUMMARY OF THE INVENTION 

The present invention involves a new, server-specific 
I/O architecture that is optimized for a Unix file serv-
er's most common actions—file operations. Roughly 
stated, the invention involves a file server architecture 
comprising one or more network controllers, one or 
more file controllers, one or more storage processors, 
and a system or buffer memory, all connected over a 
message passing bus and operating in parallel with the 
Unix host processor. The network controllers each 
connect to one or more network, and provide all proto-
col processing between the network layer data format 
and an internal file server format for communicating 
client requests to other processors in the server. Only 
those data packets which cannot be interpreted by the 
network controllers, for example client requests to run 
a client-defined program on the server, are transmitted 
to the Unix host for processing. Thus the network con-
trollers, file controllers and storage processors contain 
only small parts of an overall operating system, and 
each is optimized for the particular type of work to 
which it is dedicated. 

Client requests for file operations are transmitted to 
one of the file controllers which, independently of the 
Unix host, manages the virtual file system of a mass 
storage device which is coupled to the storage proces-
sors. The file controllers may also control data buffer-
ing between the storage processors and the network 
controllers, through the system memory. The file con-
trollers preferably each include a local buffer memory 
for caching file control information, separate from the 
system memory for caching file data. Additionally, the 
network controllers, file processors and storage proces-
sors are all designed to avoid any instruction fetches 
from the system memory, instead keeping all instruction 
memory separate and local. This arrangement elimi-
nates contention on the backplane between micro-
processor instruction fetches and transmissions of mes-
sage and file data. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The invention will be described with respect to par-
ticular embodiments thereof, and reference will be 
made to the drawings, in which: 

FIG. 1 is a block diagram of a prior art file server 
architecture; 
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5 
FIG. 2 is a block diagram of a file server architecture 

according to the invention; 
FIG. 3 is a block diagram of one of the network 

controllers shown in FIG. 2; 
FIG. 4 is a block diagram of one of the file controllers 5 

shown in FIG. 2; 
FIG. 5 is a block diagram of one of the storage pro-

cessors shown in FIG. 2; 
FIG. 6 is a block diagram of one of the system mem-

ory cards shown in FIG. 2; 10 
FIGS. 7A-C are a flowchart illustrating the opera-

tion of a fast transfer protocol BLOCK WRITE cycle; 
and 

FIGS. 8A-C are a flowchart illustrating the opera-
tion of a fast transfer protocol BLOCK READ cycle. 15 

DETAILED DESCRIPTION 

For comparison purposes and background, an illus-
trative prior-art file server architecture will first be 
described with respect to FIG. 1. FIG. 1 is an overall 20 
block diagram of a conventional prior-art Unix-based 
file server for Ethernet networks. It consists of a host 
CPU card 10 with a single microprocessor on board. 
The host CPU card 10 connects to an Ethernet #1 12, 
and it connects via a memory management unit (MMU) 25 
11 to a large memory array 16. The host CPU card 10 
also drives a keyboard, a video display, and two RS232 
ports (not shown). It also connects via the MMU 11 and 
a standard 32-bit VME bus 20 to various peripheral 
devices, including an SMD disk controller 22 control- 30 
ling one or two disk drives 24, a SCSI host adaptor 26 
connected to a SCSI bus 28, a tape controller 30 con-
nected to a quarter-inch tape drive 32, and possibly a 
network #2 controller 34 connected to a second Ether-
net 36. The SMD disk controller 22 can communicate 35 
with memory array 16 by direct memory access via bus 
20 and MMU 11, with either the disk controller or the 
MMU acting as a bus master. This configuration is illus-
trative; many variations are available. 

The system communicates over the Ethernets using 40 
industry standard TCP/IP and NFS protocol stacks. A 
description of protocol stacks in general can be found in 
Tanenbaum, "Computer Networks" (Second Edition, 
Prentice Hall:. 1988). File server protocol stacks are 
described at pages 535-546. The Tanenbaum reference 45 
is incorporated herein by reference. 

Basically, the following protocol layers are imple-
mented in the apparatus of FIG. 1: 

Network Layer 
The network layer converts data packets between a 50 

formal specific to Ethernets and a format which is inde-
pendent of the particular type of network used. The 
Ethernet-specific format which is used in the apparatus 
of FIG. 1 is described in Hornig, "A Standard For The 
Transmission of IP Datagrams Over Ethernet Net- 55 
works," RFC 894 (April 1984), which is incorporated 
herein by reference. 

The Internet Protocol (IP) Layer 
This layer provides the functions necessary to deliver 

a package of bits (an internet datagram) from a source to 60 
a destination over an interconnected system of net-
works. For messages to be sent from the file server to a 
client, a higher level in the server calls the IP module, 
providing the internet address of the destination client 
and the message to transmit. The IP module performs 65 
any required fragmentation of the message to accom-
modate packet size limitations of any intervening gate-
way, adds internet headers to each fragment, and calls 
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on the network layer to transmit the resulting internet 
datagrams. The internet header includes a local net-
work destination address (translated from the internet 
address) as well as other parameters. 

For messages received by the IP layer from the net-
work layer, the IP module determines from the internet 
address whether the datagram is to be forwarded to 
another host on another network, for example on a 
second Ethernet such as 36 in FIG. 1, or whether it is 
intended for the server itself. If it is intended for another 
host on the second network, the IP module determines 
a local net address for the destination and calls on the 
local network layer for that network to send the data-
gram. If the datagram is intended for an application 
program within the server, the IP layer strips off the 
header and passes the remaining portion of the message 
to the appropriate next higher layer. The internet proto-
col standard used in the illustrative apparatus of FIG. 1 
is specified in Information Sciences Institute, "Internet 
Protocol, DARPA Internet Program Protocol Specifi-
cation," RFC 791 (September 1981), which is incorpo-
rated herein by reference. 

TCP/UDP Layer 
This layer is datagram service with more elaborate 

packaging and addressing options than the IP layer. For 
example, whereas an IP datagram can hold about 1,500 
bytes and be addressed to hosts, UDP datagrams can 
hold about 64 KB and be addressed to a particular port 
within a host. TCP and UDP are alternative protocols 
at this layer; applications requiring ordered reliable 
delivery of streams of data may use TCP, whereas ap-
plications (such as NFS) which do not require ordered 
and reliable delivery may use UDP. 

The prior art file server of FIG. 1 uses both TCP and 
UDP. It uses UDP for file server-related services, and 
uses TCP for certain other services which the server 
provides to network clients. The UDP is specified in 
Postel, "User Datagram Protocol," RFC 768 (Aug. 28, 
1980), which is incorporated herein by reference. TCP 
is specified in Postel, "Transmission Control Protocol," 
RFC 761 (January 1980) and RFC 793 (September 
1981), which is also incorporated herein by reference. 

XDR/RPC Layer 
This layer provides functions callable from higher 

level programs to run a designated procedure on a re-
mote machine. It also provides the decoding necessary 
to permit a client machine to execute a procedure on the 
server. For example, a caller process in a client node 
may send a call message to the server of FIG. 1. The 
call message includes a specification of the desired pro-
cedure, and its parameters. The message is passed up the 
stack to the RPC layer, which calls the appropriate 
procedure within the server. When the procedure is 
complete, a reply message is generated and RPC passes 
it back down the stack and over the network to the 
caller client. RPC is described in Sun Microsystems, 
Inc., "RPC: Remote Procedure Call Protocol Specifi-
cation, Version 2," RFC 1057 (June 1988), which is 
incorporated herein by reference. 

RPC uses the XDR external data representation stan-
dard to represent information passed to and from the 
underlying UDP layer. XDR is merely a data encoding 
standard, useful for transferring data between different 
computer architectures. Thus, on the network side of 
the XDR/RPC layer, information is machine-independ-
ent; on the host application side, it may not be. XDR is 
described in Sun Microsystems, Inc., "XDR: External 
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7 
Data Representation Standard," RFC 1014 (June 1987), 
which is incorporated herein by reference. 

NFS Layer 
The NFS ("network file system") layer is one of the 

programs available on the server which an RPC request 
can call. The combination of host address, program 
number, and procedure number in an RPC request can 
specify one remote NFS procedure to be called. 

Remote procedure calls to NFS on the file server of 
FIG. 1 provide transparent, stateless, remote access to 
shared files on the disks 24. NFS assumes a file system 
that is hierarchical, with directories as all but the bot-
tom level of files. Client hosts can call any of about 20 
NFS procedures including such procedures as reading a 
specified number of bytes from a specified file; writing 
a specified number of bytes to a specified file; creating, 
renaming and removing specified files; parsing direc-
tory trees; creating and removing directories; and read-
ing and setting file attributes. The location on disk to 
which and from which data is stored and retrieved is 
always specified in logical terms, such as by a file han-
dle or Inode designation and a byte offset. The details of 
the actual data storage are hidden from the client. The 
NFS procedures, together with possible higher level 
modules such as Unix VFS and UFS, perform all con-
version of logical data addresses to physical data ad-
dresses such as drive, head, track and sector identifica-
tion. NFS is specified in Sun Microsystems, Inc., "NFS: 
Network File System Protocol Specification," RFC 
1094 (March 1989), incorporated herein by reference. 

With the possible exception of the network layer, all 
the protocol processing described above is done in soft-
ware, by a single processor in the host CPU card 10. 
That is, when an Ethernet packet arrives on Ethernet 
12, the host CPU 10 performs all the protocol process-
ing in the NFS stack, as well as the protocol processing 
for any other application which may be running on the 
host 10. NFS procedures are run op the host CPU 10, 
with access to memory 16 for both data and prograIn 
code being provided via MMU 11. Logically specified. 
data addresses are converted to a much more physically 
specified form and communicated to the SMD disk 
controller 22 or the SCSI bus 28, via the VME bus 20, 
and all disk caching is done by the host CPU 10 through 
the memory 16. The host CPU card 10 also runs proce-
dures for performing various other functions of the file 
server, communicating with tape controller 30 via the 
VME bus 20. Among these are client-defined remote 
procedures requested by client workstations. 

If the server serves a second Ethernet 36, packets 
from that Ethernet are transmitted to the host CPU 10 
over the same VME bus 20 in the form of IP datagrams. 
Again, all protocol processing except for the network 
layer is performed by software processes running on the 
host CPU 10. In addition, the protocol processing for 
any message that is to be sent from the server out on 
either of the Ethernets 12 or 36 is also done by processes 
running on the host CPU 10. 

It can be seen that the host CPU 10 performs an 
enormous amount of processing of data, especially if 60 
5-10 clients on each of the two Ethemets are making 
file server requests and need to be sent responses on a 
frequent basis. The host CPU 10 runs a multitasking 
Unix operating system, so each incoming request need 
not wait for the previous request to be completely pro-
cessed and returned before being processed. Multiple 
processes are activated on the host CPU 10 for perform-
ing different stages of the processing of different re-
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quests, so many requests may be in process at the same 
time. But there is only one CPU on the card 10, so the 
processing of these requests is not accomplished in a 
truly parallel manner. The processes are instead merely 

5 time sliced. The CPU 10 therefore represents a major 
bottleneck in the processing of file server requests. 

Another bottleneck occurs in MMU 11, which must 
transmit both instructions and data between the CPU 
card 10 and the memory 16. All data flowing between 

10 the disk drives and the network passes through this 
interface at least twice. 

Yet another bottleneck can occur on the VME bus 
20, which must transmit data among the SMD disk 
controller 22, the SCSI host adaptor 26, the host CPU 

15 card 10, and possibly the network #2 controller 24. 

PREFERRED EMBODIMENT-OVERALL 
HARDWARE ARCHITECTURE 

In FIG. 2 there is shown a block diagram of a net-
20 work file server 100 according to the invention. It can 

include multiple network controller (NC) boards, one 
or more file controller (FC) boards, one or more storage 
processor (SP) boards, multiple system memory boards, 
and one or more host processors. The particular em-

25 bodiment shown in FIG. 2 includes four network con-
troller boards 110a-110d, two file controller boards 
112a-112b, two storage processors 1140-114b, four 
system memory cards 116a-116d for a total of 192 MB 
of memory, and one local host processor 118. The 

30 boards 110, 112, 114, 116 and 118 are connected to-
gether over a VME bus 120 on which an enhanced 
block transfer mode as described in the ENHANCED 
VMEBUS PROTOCOL application identified above 
may be used. Each of the four network controllers 110 

35 shown in FIG. 2 can be connected to up to two Ether-
nets 122, for a total capacity of 8 Ethernets 122a-122h. 
Each of the storage processors 114 operates ten parallel 
SCSI busses, nine of which can each support up to three 
SCSI disk drives each. The tenth SCSI channel on each 

40 of the storage processors 114 is used for tape drives and 
other SCSI peripherals. 

The host 118 is essentially a standard SunOs Unix 
processor, providing all the standard Sun Open Net-
work Computing (ONC) services except NFS and IP 

45 routing. Importantly, all network requests to run a user-
defined procedure are passed to the host for execution. 
Each of the NC boards 110, the FC boards 112 and the 
SP boards 114 includes its own independent 32-bit mi-
croprocessor. These boards essentially off-load from 

50 the host processor 118 virtually all of the NFS and disk 
processing. Since the vast majority of messages to and 
from clients over the Ethernets 122 involve NFS re-
quests and responses, the processing of these requests in 
parallel by the NC, FC and SP processors, with minimal 

55 involvement by the local host 118, vastly improves file 
server performance. Unix is explicitly eliminated from 
virtually all network, file, and storage processing. 

OVERALL SOFTWARE ORGANIZATION AND 
DATA FLOW 

Prior to a detailed discussion of the hardware subsys-
tems shown in FIG. 2, an overview of the software 
structure will now be undertaken. The software organi-
zation is described in more detail in the above-identified 

65 application entitled MULTIPLE FACILITY OPER-
ATING SYSTEM ARCHITECTURE. 

Most of the elements of the software are well known 
in the field and are found in most networked Unix sys-
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9 
tems, but there are two components which are not: 
Local NFS ("LNFS") and the messaging kernel 
("MK") operating system kernel. These two compo-
nents will be explained first. 

The Messaging Kernel 
The various processors in file server 100 communi-

cate with each other through the use of a messaging 
kernel running on each of the processors 110, 112, 114 
and 118. These processors do not share any instruction 
memory, so task-level communication cannot occur via 
straightforward procedure calls a it does in conven-
tional Unix. Instead, the messaging kernel passes mes-
sages over VME bus 120 to accomplish all necessary 
inter-processor communication. Message passing is pre-
ferred over remote procedure calls for reasons of sim-
plicity and speed. 

Messages passed by the messaging kernel have a fixed 
128-byte length. Within a single processor, messages are 
sent by reference; between processors, they are copied 
by the messaging kernel and then delivered to the desti-
nation process by reference. The processors of FIG. 2 
have special hardware, discussed below, that can expe-
diently exchange and buffer interprocessor messaging 
kernel messages. 

The LNFS Local NFS interface 
The 22-function NFS standard was specifically de-

signed for stateless operation using unreliable communi-
cation. This means that neither clients nor server can be 
sure if they hear each other when they talk (unreliabil-
ity). In practice, an in an Ethernet environment, this 
works well. 

Within the server 100, however, NFS level data-
grams are also used for communication between proces-
sors, in particular between the network controllers 110 
and the file controller 112, and between the host proces- 35 
sor 118 and the file controller 112. For this internal 
communication to be both efficient and convenient, it is 
undesirable and impractical to have complete stateless-
ness or unreliable communications. Consequently, a 
modified form of NFS, namely LNFS, is used for inter- 40 
nal communication of NFS requests and responses. 
LNFS is used only within the file server 100; the exter-
nal network protocol supported by the server is pre-
cisely standard, licensed NFS. LNFS is described in 
more detail below. 45 

The Network Controllers 110 each run an NFS 
server which, after all protocol processing is done up to 
the NFS layer, converts between external NFS requests 
and responses and internal LNFS requests and re-
sponses. For example, NFS requests arrive as RPC 50 
requests with XDR and enclosed in a UDP datagram. 
After protocol processing, the NFS server translates 
the NFS request into LNFS form and uses the messag-
ing kernel to send the request to the file controller 112. 

The file controller runs an LNFS server which han- 55 
dles LNFS requests both from network controllers and 
from the host 118. The LNFS server translates LNFS 
requests to a form appropriate for a file system server, 
also running on the file controller, which manages the 
system memory file data cache through a block I/O 60 
layer. 

An overview of the software in each of the proces-
sors will now be set forth. 

Network Controller 110 65 
The optimized dataflow of the server 100 begins with 

the intelligent network controller 110. This processor 
receives Ethernet packets from client workstations. It 

5,163,131 
10 

quickly identifies NFS-destined packets and then per-
forms full protocol processing on them to the NFS 
level, passing the resulting LNFS requests directly to 
the file controller 112. This protocol processing in-

5 cludes IP routing and reassembly, UDP demultiplexing, 
XDR decoding, and NFS request dispatching. The 
reverse steps are used to send an NFS reply back to a 
client. Importantly, these time-consuming activities are 
performed directly in the Network Controller 110, not 

10 in the host 118. 
The server 100 uses conventional NFS ported from 

Sun Microsystems, Inc., Mountain View, Calif., and is 
NFS protocol compatible. 

Non-NFS network traffic is passed directly to its 
15 destination host processor 118. 

The NCs 110 also perform their own IP routing. 
Each network controller 110 supports two fully parallel 
Ethernets. There are four network controllers in the 
embodiment of the server 100 shown in FIG. 2, so that 

20 server can support up to eight Ethernets. For the two 
Ethernets on the same network controller 110, IP rout-
ing occurs completely within the network controller 
and generates no backplane traffic. Thus attaching two 
mutually active Ethernets to the same controller not 

25 only minimizes their inter-net transit time, but also sig-
nificantly reduces backplane contention on the VME 
bus 120. Routing table updates are distributed to the 
network controllers from the host processor 118, which 
runs either the gated or routed Unix demon. 

30 While the network controller described here is de-
signed for Ethernet LANs, it will be understood that 
the invention can be used just as readily with other 
network types, including FDDI. 

File Controller 112 

In addition to dedicating a separate processor for 
NFS protocol processing and IP routing, the server 100 
also dedicates a separate processor, the intelligent file 
controller 112, to be responsible for all file system pro-
cessing. It uses conventional Berkeley Unix 4.3 file 
system code and uses a binary-compatible data repre-
sentation on disk. These two choices allow all standard 
file system utilities (particularly block-level tools) to run 
unchanged. 

The file controller 112 runs the shared file system 
used by all NCs 110 and the host processor 118. Both 
the NCs and the host processor communicate with the 
file controller 12 using the LNFS interface. The NCs 
110 use LNFS as described above, while the host pro-
cessor 118 uses LNFS as a plug-in module to SunOs's 
standard Virtual File System ("VFS") interface. 

When an NC receives an NFS read request from a 
client workstation, the resulting LNFS request passes to 
the FC 112. The FC 112 first searches the system mem-
ory 116 buffer cache for the requested data. If found, a 
reference to the buffer is returned to the NC 110. If not 
found, the LRU (least recently used) cache buffer in 
system memory 116 is freed and reassigned for the re-
quested block. The FC then directs the SP 114 to read 
the block into the cache buffer from a disk drive array. 
When complete. The SP so notifies the FC, which in 
turn notifies the NC 100. The NC 110 then sends an 
NFS reply, with the data from the buffer, back to the 
NFS client workstation out on the network. Note that 
the SP 114 transfers the data into system memory 116, if 
necessary, and the NC 110 transferred the data from 
system memory 116 to the networks. The process takes 
place without any involvement of the host 118. 
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Storage Processor 

The intelligent storage processor 114 manages all disk 
and tape storage operations. While autonomous, storage 
processors are primarily directed by the file controller 
112 to move file data between system memory 116 and 
the disk subsystem. The exclusion of both the host 118 
and the FC 112 from the actual data path helps to sup-
ply the performance needed to service many remote 
clients. 

Additionally, coordinated by a Server Manager in the 
host 118, storage processor 114 can execute server 
backup by moving data between the disk subsystem and 
tape or other archival peripherals on the SCSI channels. 
Further, if directly accessed by host processor 118, SP 
114 can provide a much higher performance conven-
tional disk interface for Unix, virtual memory, and data-
bases. In Unix nomenclature, the host processor 118 can 
mount boot, storage swap, and raw partitions via the 
storage processors 114. 

Each storage processor 114 operates ten parallel, 
fully synchronous SCSI channels (busses) simulta-
neously. Nine of these channels support three arrays of 
nine SCSI disk drives each, each drive in an array being 
assigned to a different SCSI channel. The tenth SCSI 
channel hosts up to seven tape and other SCSI peripher-
als. In addition to performing reads and writes, SP 114 
performs device-level optimizations such as disk seek 
queue sorting, directs device error recovery, and con-
trols DMA transfers between the devices and system 
memory 116. 

Host Processor 118 

The local host 118 has three main purposes: to run 
Unix, to provide standard ONC network services for 
clients, and to run a Server Manager. Since Unix and 
ONC are ported from the standard SunOs Release 4 and 
ONC Services Release 2, the server 100 can provide 
identically compatible high-level ONC services such as 
the Yellow Pages, Lock Manager, DES Key Authenti- 40 
cator, Auto Mounter, and Port Mapper. Sun/2 Net-
work disk booting and more general IP internet services 
such as Telnet, FTP, SMTP, SNMP, and reverse ARP 
are also supported. Finally, print spoolers and similar 
Unix demons operate transparently. 45 

The host processor 118 runs the following software 
modules: 

TCP and Socket Layers 
The Transport Control Protocol ("TCP"), which is 

used for certain server functions other than NFS, pro- 50 
vides reliable bytestream communication between two 
processors. Socket are used to establish TCP connec-
tions. 

VFS Interface 
The Virtual File System ("VFS") interface is a stan- 55 

dard SunOs file system interface. It paints a uniform 
file-system picture for both users and the non-file parts 
of the Unix operating system, hiding the details of the 
specific file system. Thus standard NFS, LNFS, and 
any local Unix file system can coexist harmoniously. 60 

UFS Interface 
The Unix File System ("UFS") interface is the tradi-

tional and well-known Unix interface for communica-
tion with local-to-the-processor disk drives. In the 
server 100, it is used to occasionally mount storage 65 
processor volumes directly, without going through the 
file controller 112. Normally, the host 118 uses LNFS 
and goes through the file controller. 
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Device Layer 
The device layer is a standard software interface 

between the Unix device model and different physical 
device implementations. In the server 100, disk devices 

5 are not attached to host processors directly, so the disk 
driver in the host's device layer uses the messaging 
kernel to communicate with the storage processor 114. 

Route and Port Mapper Demons 
The Route and Port Mapper demons are Unix user-

10 level background processes that maintain the Route and 
Port databases for packet routing. They are mostly 
inactive and not in any performance path. 

Yellow Pages and Authentication Demon 
The Yellow Pages and Authentication services are 

15 Sun-ONC standard network services. Yellow Pages is a 
widely used multipurpose name-to-name directory 
lookup service. The Authentication service uses crypto-
graphic keys to authenticate, or validate, requests to 
insure that requestors have the proper privileges for any 

20 actions or data they desire. 
Server Manager 
The Server Manager is an administrative application 

suite that controls configuration, logs error and perfor-
mance reports, and provides a monitoring and tuning 

25 interface for the system administrator. These functions 
can be exercised from either system console connected 
to the host 118, or from a system administrator's work-
station. 

The host processor 118 is a conventional OEM Sun 
30 central processor card, Model 3E/120. It incorporates a 

Motorola 68020 microprocessor and 4 MB of on-board 
memory. Other processors, such as a SPARC-based 
processor, are also possible. 

The structure and operation of each of the hardware 
35 components of server 100 will now be described in 

detail. 

NETWORK CONTROLLER HARDWARE 
ARCHITECTURE 

FIG. 3 is a block diagram showing the data path and 
some control paths for an illustrative one of the network 
controllers 110a. It comprises a 20 MHz 68020 micro-
processor 210 connected to a 32-bit microprocessor 
data bus 212. Also connected to the microprocessor 
data bus 212 is a 256 K byte CPU memory 214. The low 
order 8 bits of the microprocessor data bus 212 are 
connected through a bidirectional buffer 216 to an 8-bit 
slow-speed data bus 218. On the slow-speed data bus 
218 is a 128 K byte EPROM 220, a 32 byte PROM 222, 
and a multi-function peripheral (MFP) 224. The 
EPROM 220 contains boot code for the network con-
troller 110a, while the PROM 222 stores various operat-
ing parameters such as the Ethernet addresses assigned 
to each of the two Ethernet interfaces on the board. 
Ethernet address information is read into the corre-
sponding interface control block in the CPU memory 
214 during initialization. The MFP 224 is a Motorola 
68901, and performs various local functions such as 
timing, interrupts, and general purpose I/O. The MFP 
224 also includes a UART for interfacing to an RS232 
port 226. These functions are not critical to the inven-
tion and will not be further described herein. 

The low order 16 bits of the microprocessor data bus 
212 are also coupled through a bidirectional buffer 230 
to a 16-bit LAN data bus 232. A LAN controller chip 
234, such as the Am7990 LANCE Ethernet controller 
manufactured by Advanced Micro Devices, Inc. Sun-
nyvale, Calif., interfaces the LAN data bus 232 with the 
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first Ethernet 122a shown in FIG. 2. Control and data 
for the LAN controller 234 are stored in a 512 K byte 
LAN memory 236, which is also connected to the LAN 
data bus 232. A specialized 16 to 32 bit FIFO chip 240, 
referred to herein as a parity FIFO chip and described 5 
below, is also connected to the LAN data bus 232. Also 
connected to the LAN data bus 232 is a LAN DMA 
controller 242, which controls movements of packets of 
data between the LAN memory 236 and the FIFO chip 
240. The LAN DMA controller 242 may be a Motorola 10 
M68440 DMA controller using channel zero only. 

The second Ethernet 1226 shown in FIG. 2 connects 
to a second LAN data bus 252 on the network control-
ler card 110a shown in FIG. 3. The LAN data bus 252 
connects to the low order 16 bits of the microprocessor 
data bus 212 via a bidirectional buffer 250, and has simi-
lar components to those appearing on the LAN data bus 
232. In particular, a LAN controller 254 interfaces the 
LAN data bus 252 with the Ethernet 122b, using LAN 
memory 256 for data and control, and a LAN DMA 
controller 262 controls DMA transfer of data between 
the LAN memory 256 and the 16-bit wide data port A 
of the parity FIFO 260. 

The low order 16 bits of microprocessor data bus 212 
are also connected directly to another parity FIFO 270, 
and also to a control port of a VME/FIFO DMA con-
troller 272. The FIFO 270 is used for passing messages 
between the CPU memory 214 and one of the remote 
boards 110, 112, 114, 116 or 118 (FIG. 2) in a manner 
described below. The VME/FIFO DMA controller 
272, which supports three round-robin non-prioritized 
channels for copying data, controls all data transfers 
between one of the remote boards and any of the FIFOs 
240, 260 or 270, as well as between the FIFOs 240 and 
260. 

32-bit data bus 274, which is connected to the 32-bit 
port B of each of the FIFOs 240, 260 and 270, is the data 
bus over which these transfers take place. Data bus 274 
communicates with a local 32-bit bus 276 via a bidirec-
tional pipelining latch 278, which is also controlled by 
VME/FIFO DMA controller 727, which in turn com-
municates with the VME bus 120 via a bidirectional 
buffer 280. 

The local data bus 276 is also connected to a set of 
control registers 282, which are directly addressable 
across the VME bus 120. The registers 282 are used 
mostly for system initialization and diagnostics. 

The local data bus 276 is also coupled to the micro-
processor data bus 212 via a bidirectional buffer 284. 
When the NC 110a operates in slave mode, the CPU 
memory 214 is directly addressable from VME bus 120. 
One of the remote boards can copy data directly from 
the CPU memory 214 via the bidirectional buffer 284. 
LAN memories 236 and 256 are not directly addressed 
over VME bus 120. 

The parity FIFOs 240, 260 and 270 each consist of an 
ASIC, the functions and operation of which are de-
scribed in the Appendix. The FIFOs 240 and 260 are 
configured for packet data transfer and the FIFO 270 is 
configured for massage passing. Referring to the Ap-
pendix, the FIFOs 240 and 260 are programmed with 
the following bit settings in the Data Transfer Configu-
ration Register: 

Bit Definition Setting 

0 WD Mode 
Parity Chip 

N/A 
N/A 
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-continued 
Bit Definition Setting 

2 Parity Correct Mode 
3 8/16 bits CPU & PortA interface 
4 Invert Port A address 0 
5 Invert Port A address I 
6 Checksum Carry Wrap 
7 Reset 

N/A 
16 bits (1) 
no (0) 
Yes (1) 
yes (1) 
no (0) 

The Data Transfer Control Register is programmed 
as follows: 

Bit Definition Setting 

15 0 Enable PortA Req/Ack 
1 Enable PoriB Req/Ack 
2 Data Transfer Direction 
3 CPU parity enable 
4 PortA parity enable 
5 PoriB parity enable 

20 6 Checksum Enable 
7 PortA Master 

Yes (1) 
yes (1) 
(as desired) 
no (0) 
no (0) 
no (0) 
yes (I) 
yes (1) 

Unlike the configuration used on FIFOs 240 and 260, 
the microprocessor 210 is responsible for loading and 

25 unloading Port A directly. The microprocessor 210 
reads an entire 32-bit word from port A with a single 
instruction using two port A access cycles. Port A data 
transfer is disabled by unsetting bits 0 (Enable PortA 
Req/Ack) and 7 (PortA Master) of the Data Transfer 

30 Control Register. 
The remainder of the control settings in FIFO 270 are 

the same as those in FIFOs 240 and 260 described 
above. 

The NC 110a also includes a command FIFO 290. 
35 The command FIFO 290 includes an input port coupled 

to the local data bus 276, and which is directly address-
able across the VME bus 120, and includes an output 
port connected to the microprocessor data bus 212. As 
explained in more detail below, when one of the remote 

40 boards issues a command or response to the NC 110a, it 
does so by directly writing a 1-word (32-bit) message 
descriptor into NC 110a's command FIFO 290. Com-
mand FIFO 290 generates a "FIFO not empty" status 
to the microprocessor 210, which then reads the mes-

45 sage descriptor off the top of FIFO 290 and processes it. 
If the message is a command, then it includes a VME 
address at which the message is located (presumably an 
address in a shared memory similar to 214 on one of the 
remote boards). The microprocessor 210 then programs 

50 the FIFO 270 and the VME/FIFO DMA controller 
272 to copy the message from the remote location into 
the CPU memory 214. 

Command FIFO 290 is a conventional two-port 
FIFO, except that additional circuitry is included for 

55 generating a Bus Error signal on VME bus 120 if an 
attempt is made to write to the data input port while the 
FIFO is full. Command FIFO 290 has space for 256 
entries. 

A noteworthy feature of the architecture of NC 110a 
60 is that the LAN buses 232 and 252 are independent of 

the microprocessor data bus 212. Data packets being 
routed to or from an Ethernet are stored in LAN mem-
ory 236 on the LAN data bus 232 (or 256 on the LAN 
data bus 252), and not in the CPU memory 214. Data 

65 transfer between the LAN memories 236 and 256 and 
the Ethernets 122a and 1226, are controlled by LAN 
controllers 234 and 254, respectively, while most data 
transfer between LAN memory 236 or 256 and a remote 
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port on the VME bus 120 are controlled by LAN DMA 
controllers 242 and 262, FIFOs 240 and 260, and 
VME/FIFO DMA controller 272. An exception to this 
rule occurs when the size of the data transfer is small, 
e.g., less than 64 bytes, in which case microprocessor 
210 copies it directly without using DMA. The micro-
processor 210 is not involved in larger transfers except 
in initiating them and in receiving notification when 
they are complete. 

The CPU memory 214 contains mostly instructions 
for microprocessor 210, messages being transmitted to 
or from a remote board via FIFO 270, and various data 
blocks for controlling the FIFOs, the DMA controllers 
and the LAN controllers. The microprocessor 210 ac-
cesses the data packets in the LAN memories 236 and 
256 by directly addressing them through the bidirec-
tional buffers 230 and 250, respectively, for protocol 
processing. The local high-speed station RAM in CPU 
memory 214 can therefore provide zero wait state mem-
ory access for microprocessor 210 independent of net-
work traffic. This is in sharp contrast to the prior art 
architecture shown in FIG. 1, in which all data and data 
packets, as well as microprocessor instructions for host 
CPU card 10, reside in the memory 16 and must com-
municate with the host CPU card 10 via the MMU 11. 

While the LAN data buses 232 and 252 are shown as 
separate buses in FIG. 3, it will be understood that they 
may instead be implemented as a single combined bus. 

NETWORK CONTROLLER OPERATION 

In operation, when one of the LAN controllers (such 
as 234) receives a packet of information over its Ether-
net 122a, it reads in the entire packet and stores it in 
corresponding LAN memory 236. The LAN controller 35
234 then issues an interrupt to microprocessor 210 via 
MFP 224, and the microprocessor 210 examines the 
status register on LAN controller 234 (via bidirectional 
buffer 230) to determine that the event causing the inter-
rupt was a "receive packet completed." In order to 
avoid a potential lookout of the second Ethernet 122b 
caused by the prioritized interrupt handling characteris-
tic of MFP 224, the microprocessor 210 does not at this 
time immediately process the received packet; instead, 
such processing is scheduled for a polling function. 

When the polling function reaches the processing of 
the received packet, control over the packet is passed to 
a software link level receive module. The link level 
receive module then decodes the packet according to 
either of two different frame formats: standard Ethernet 
format or SNAP (IEEE 802 LCC) format. An entry in 
the header in the packet specifies which frame format 
was used. The link level driver then determines which 
of three types of messages is contained in the received 
packet: (1) IP, (2) ARP packets which can be handled 
by a local ARP module, or (3) ARP packets and other 
packet types which must be forwarded to the local host 
118 (FIG. 2) for processing. If the packet is an ARP 
packet which can be handled by the NC 110a, such as a 
request for the address of server 100, then the micro-
processor 210 assembles a response packet in LAN 
memory 236 and, in a conventional manner, causes 
LAN controller 234 to transmit that packet back over 
Ethernet 122a. It is noteworthy that the data manipula-
tion for accomplishing this task is performed almost 
completely in LAN memory 236, directly addressed by 
microprocessor 210 as controlled by instructions in 
CPU memory 214. The function is accomplished also 

16 
Without generating any traffic on the VME backplane 
120 at all, and without disturbing the local host 118. 

If the received packet is either an ARP packet which 
cannot be processed completely in the NC 110a, or is 

5 another type of packet which requires delivery to the 
local host 118 (such as a client request for the server 100 
to execute a client-defined procedure), then the micro-
processor 210 programs LAN DMA controller 242 to 
load the packet from LAN memory 236 into FIFO 240, 

10 programs FIFO 240 with the direction of data transfer, 
and programs DMA controller 272 to read the packet 
out of FIFO 240 and across the VME bus 120 into 
system memory 116. In particular, the microprocessor 
210 first programs the LAN DMA controller 242 with 

15 the starting address and length of the packet in LAN 
memory 236, and programs the controller to begin 
transferring data from the LAN memory 236 to port A 
of parity FIFO 240 as soon as the FIFO is ready to 
receive data. Second, microprocessor 210 programs the 

20 VME/FIFO DMA controller 272 with the destination 
address in system memory 116 and the length of the 
data packet, and instructs the controller to begin trans-
ferring data from port B of the FIFO 260 onto VME 
bus 120. Finally, the microprocessor 210 programs 

25 FIFO 240 With the direction of the transfer to take 
place. The transfer then proceeds entirely under the 
control of DMA controllers 242 and 272, without any 
further involvement by microprocessor 210. 

The microprocessor 210 then sends a message to host 
30 118 that a packet is available at a specified system mem-

ory address. The microprocessor 210 sends such a mes-
sage by writing a message descriptor to a software-
emulated command FIFO on the host, which copies the 
message from CPU memory 214 on the NC via buffer 
284 and into the host's local memory, in ordinary VME 
block transfer mode. The host then copies the packet 
from system memory 116 into the host's own local 
memory using ordinary VME transfers. 

If the packet received by NC 110a from the network 
40 is an IP packet, then the microprocessor 210 determines 

whether it is (1) an IP packet for the server 100 which 
is not an NFS packet; (2) an IP packet to be routed to a 
different network; or (3) an NFS packet. If it is an IP 
packet for the server 100, but not an NFS packet, then 

45 the microprocessor 210 causes the packet to be trans-
mitted from the LAN memory 236 to the host 118 in the 
same manner described above with respect to certain 
ARP packets. 

If the IP packet is not intended for the server 100, but 
50 rather is to be routed to a client on a different network, 

then the packet is copied into the LAN memory associ-
ated with the Ethernet to which the destination client is 
connected. If the destination client is on the Ethernet 
122b, which is on the same NC board as the source 

55 Ethernet 122a, then the microprocessor 210 causes the 
packet to be copied from LAN memory 236 into LAN 
256 and then causes LAN controller 254 to transmit it 
over Ethernet 122b. (Of course, if the two LAN data 
buses 232 and 252 are combined, then copying would be 

60 unnecessary; the microprocessor 210 would simply 
cause the LAN controller 254 to read the packet out of 
the same locations in LAN memory to which the packet 
was written by LAN controller 234.) 

The copying of a packet from LAN memory 236 to 
65 LAN memory 256 takes place similarly to the copying 

described above from LAN memory to system mem-
ory. For transfer sizes of 64 bytes or more, the micro-
processor 210 first programs the LAN DMA controller 

Apple Inc.
Ex. 1012 - Page 21



5,16 
17 

242 with the starting address and length of the packet in 
LAN memory 236, and programs the controller to 
begin transferring data from the LAN memory 236 into 
port A of parity FIFO 240 as soon as the FIFO is ready 
to receive data. Second, microprocessor 210 programs 
the LAN DMA controller 262 with a destination ad-
dress in LAN memory 256 and the length of the data 
packet, and instructs that controller to transfer data 
from parity FIFO 260 into the LAN memory 256. 
Third, microprocessor 210 programs the VME/FIFO I 
DMA controller 272 to clock words of data out of port 
B of the FIFO 240, over the data bus 274, and into port 
B of FIFO 260. Finally, the microprocessor 210 pro-
grams the two FIFOs 240 and 260 with the direction of 
the transfer to take place. The transfer then proceeds I 
entirely under the control of DMA controllers 242, 262 
and 272, without any further involvement by the micro-
processor 210. Like the copying from LAN memory to 
system memory, if the transfer size is smaller than 64 
bytes, the microprocessor 210 performs the transfer 2 
directly, without DMA. 

When each of the LAN DMA controllers 242 and 
262 complete their Work, they so notify microprocessor 
210 by a respective interrupt provided through MFP 
224. When the microprocessor 210 has received both 2 
interrupts, it programs LAN controller 254 to transmit 
the packet on the Ethernet 1226 in a conventional man-
ner. 

Thus, IP routing between the two Ethernets in a 
single network controller 110 takes plaoe over data bus 3 
274, generating no traffic over VME bus 120. Nor is the 
host processor 118 disturbed for such routing, in con-
trast to the prior art architecture of FIG. 1. Moreover, 
all but the shortest copying work is performed by con-
trollers outside microprocessor 210, requiring the in- 3 
volvement of the microprocessor 210, and bus traffic on 
microprocessor data bus 212, only for the supervisory 
functions of programming the DMA controllers and the 
parity FIFOs and instructing them to begin. The 
VME/FIFO DMA controller 272 is programmed by 40 
loading control registers via microprocessor data bus 
212; the LAN DMA controllers 242 and 262 are pro-
grammed by loading control registers on the respective 
controllers via the microprocessor data bus 212, respec-
tive bidirectional buffers 230 and 250, and respective 4 
LAN data buses 232 and 252, and the parity FIFOs 240 
and 260 are programmed as set forth in the Appendix. 

If the destination workstation of the IP packet to be 
routed is on an Ethernet connected to a different one of 
the network controllers 110, then the packet is copied 5 
into the appropriate LAN memory on the NC 110 to 
which that Ethernet is connected. Such copying is ac-
complished by first copying the packet into system 
memory 116, in the manner described above with re-
spect to certain ARP packets, and then notifying the 5 
destination NC that a packet is available. When an NC 
is so notified, it programs its own parity FIFO and 
DMA controllers to copy the packet from system mem-
ory 116 into the appropriate LAN memory. It is note-
worthy that though this type of IP routing does create 60 
VME bus traffic, it still does not involve the host CPU 
118. 

If the IP packet received over the Ethernet 122a and 
now stored in LAN memory 236 is an NFS packet 
intended for the server 100, then the microprocessor 6 
210 performs all necessary protocol prepossessing to 
extract the NFS message and convert it to the local 
NFS (LNFS) format. This may well involve the logical 
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concatenation of data extracted from a large number of 
individual IP packets stored in LAN memory 236, re-
sulting in a linked list, in CPU memory 214, pointing to 
the different blocks of data in LAN memory 236 in the 

5 correct sequence. 
The exact details of the LNFS format are not impor-

tant for an understanding of the invention, except to 
note that it includes commands to maintain a directory 
of files which are stored on the disks attached to the 

O storage processors 114, commands for reading and writ-
ing data to and from a file on the disks, and various 
configuration management and diagnostics control mes-
sages. The directory maintenance commands which are 
supported by LNFS include the following messages 

5 based on conventional NFS: get attributes of a file (GE-
TATTR); set attributes of a file (SETATTR); look up a 
file (LOOKUP); created a file (CREATE); remove a 
file (REMOVE); rename a file (RENAME); created a 
new linked file (LINK); create a symlink (SYMLINK); 

o remove a directory (RMDIR); and return file system 
statistics (STATFS). The data transfer commands sup-
ported by LNFS include read from a file (READ); 
write to a file (WRITE); read from a directory (READ-
DIR); and read a link (READLINK). LNFS also sup-

5 ports a buffer release command (RELEASE), for noti-
fying the file controller that an NC is finished using a 
specified buffer in system memory. It also supports a 
VOP-derived access command, for determining 
whether a given type access is legal for specified cre-

▪ dential on a specified file. 
If the LNFS request includes the writing of file data 

from the LAN memory 236 to disk, the NC 110a first 
requests a buffer in system memory 116 to be allocated 
by the appropriate FC 112. When a pointer to the buffer 

5 is returned, microprocessor 210 programs LAN DMA 
controller 242, parity FIFO 240 and VME/FIFO 
DMA controller 272 to transmit the entire block of file 
data to system memory 116. The only difference be-
tween this transfer and the transfer described above for 
transmitting IP packets and ARP packets to system 
memory 116 is that these data blocks will typically have 
portions scattered throughout LAN memory 236. The 
microprocessor 210 accommodates that situation by 
programming LAN DMA controller 242 successively 

5 for each portion of the data, in accordance with the 
linked list, after receiving notification that the previous 
portion is complete. The microprocessor 210 can pro-
gram the parity FIFO 240 and the VME/FIFO DMA 
controller 272 once for the entire message, as long as the 

O entire data block is to be placed contiguously in system 
memory 116. If it is not, then the microprocessor 210 
can program the DMA controller 272 for successive 
blocks in the same manner LAN DMA controller 242. 

If the network controller 110a receives a message 
5 from another processor in server 100, usually from file 

controller 112, that file data is available in system mem-
ory 116 for transmission on one of the Ethernets, for 
example Ethernet 122a, then the network controller 
110a copies the file data into LAN memory 236 in a 
manner similar to the copying of file data in the opposite 
direction. In particular, the microprocessor 210 first 
programs VME/FIFO DMA controller 272 with the 
starting address and length of the data in system mem-
ory 116, and programs the controller to begin transfer-

5 ring data over the VME bus 120 into port B of parity 
FIFO 240 as soon as the FIFO is ready to receive data. 
The microprocessor 210 then programs the LAN DMA 
controller 242 with a destination address in LAN mem-
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ory 236 and then length of the file data, and instructs 
that controller to transfer data from the parity FIFO 
240 into the LAN memory 236. Third, microprocessor 
210 programs the parity FIFO 240 with the direction of 
the transfer to take place. The transfer then proceeds 
entirely under the control of DMA controllers 242 and 
272, without any further involvement by the micro-
processor 210. Again, if the file data is scattered in 
multiple blocks in system memory 116, the micro-
processor 210 programs the VME/FIFO DMA con-
troller 272 with a linked list of the blocks to transfer in 
the proper order. 

When each of the DMA controllers 242 and 272 
complete their work, they so notify microprocessor 210 
through MFP 224. The microprocessor 210 then per-
forms all necessary protocol processing on the LNFS 
message in LAN memory 236 in order to prepare the 
message for transmission over the Ethernet 122a in the 
form of Ethernet IP packets. As set forth above, this 
protocol processing is performed entirely in network 
controller 110a, without any involvement of the local 
host 118. 

It should be noted that the parity FIFOs are designed 
to move multiples of 128-byte blocks most efficiently. 
The data transfer size through port B is always 32-bits 
wide, and the VME address corresponding to the 32-bit 
data must be quad-byte aligned. The data transfer size 
for port A can be either 8 or 16 bits. For bus utilization 
reasons, it is set to 16 bits when the corresponding local 
start address is double-byte aligned, and is set at 8 bits 
otherwise. The TCP/IP checksum is always computed 
in the 16 bit mode. Therefore, the checksum word re-
quires byte swapping if the local start address is not 
double-byte aligned. 

Accordingly, for transfer from port B to port A of 
any of the FIFOs 240, 260 or 270, the microprocessor 
210 programs the VME/FIFO DMA controller to pad 
the transfer count to the next 28-byte boundary. The 
extra 32-bit word transfers do not involve the VME bus, 
and only the desired number of 32-bit words will be 
unloaded from port A. 

For transfers from port A to port B of the parity 
FIFO 270, the microprocessor 210 loads port A word-
by-word and forces a FIFO full indication when it is 
finished. The FIFO full indication enables unloading 
from port B. The same procedure also takes place for 
transfers from port A to port B of either of the parity 
FIFOs 240 or 260, since transfers of fewer than 128 
bytes are performed under local microprocessor control 
rather than under the control of LAN DMA controller 
242 or 262. For all of the FIFOs, the VME/FIFO 
DMA controller is programmed to unload only the 
desired number of 32-bit words. 

FILE CONTROLLER HARDWARE 
ARCHITECTURE 

The file controllers (FC) 112 may each be a standard 
off-the-shelf microprocessor board, such as one manu-
factured by Motorola Inc. Preferably, however, a more 
specialized board is used such as that shown in block 
diagram form in FIG. 4. 

FIG. 4 shows one of the FCs 112a, and it will be 
understood that the other FC can be identical. In many 
aspects it is simply a scaled-down version of the NC 
110a shown in FIG. 3, and in some respects it is scaled 
up. Like the NC 110a, FC 112a comprises a 20 MHz 
68020 microprocessor 310 connected to a 32-bit micro-
processor data bus 312. Also connected to the micro-
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processor data bus 312 is a 256 K byte shared CPU 
memory 314. The low order 8 bits of the microproces-
sor data bus 312 are connected through a bidirectional 
buffer 316 to an 8-bit slow-speed data bus 318. On slow-

5 speed data bus 318 are a 128 K byte PROM 320, and a 
multifunction peripheral (MFP) 324. The functions of 
the PROM 320 and MFP 324 are the same as those 
described above with respect to EPROM 220 and MFP 
224 on NC 110a. FC 112a does not include PROM like 

10 the PROM 222 on NC 110a, but does include a parallel 
port 392. The parallel port 392 is mainly for testing and 
diagnostics. 

Like the NC 110a, the FC 112a is connected to the 
VME bus 120 via a bidirectional buffer 380 and a 32-bit 

15 local data bus 376. A set of control registers 382 are 
connected to the local data bus 376, and directly ad-
dressable across the VME bus 120. The local data bus 
376 is also coupled to the microprocessor data bus 312 
via a bidirectional buffer 384. This permits the direct 

20 addressability of CPU memory 314 from VME bus 120. 
FC 112a also includes a command FIFO 390, which 

includes an input port coupled to the local data bus 376 
and which is directly addressable across the VME bus 
120. The command FIFO 390 also includes an output 

25 port connected to the microprocessor data bus 312. The 
structure, operation and purpose of command FIFO 
390 are the same as those described above with respect 
to command FIFO 290 on NC 110a. 

The FC 112a omits the LAN data buses 323 and 352 
30 which are present in NC 110a, but instead includes a 4 

megabyte 32-bit wide FC memory 396 coupled to the 
microprocessor data bus 312 via a bidirectional buffer 
394. As will be seen, FC memory 396 is used as a cache 
memory for file control information, separate from the 

35 file data information cached in system memory 116. 
The file controller embodiment shown in FIG. 4 does 

not include any DMA controllers, and hence cannot act 
as a master for transmitting or receiving data in any 
block transfer mode, over the VME bus 120. Block 

40 transfers do occur with the CPU memory 314 and the 
FC memory 396, however, with the FC 112a acting as 
an VME bus slave. In such transfers, the remote master 
addresses the CPU memory 314 or the FC memory 396 
directly over the VME bus 120 through the bidirec-

45 tional buffers 384 and, if appropriate, 394. 

FILE CONTROLLER OPERATION 

The purpose of the FC 112a is basically to provide 
virtual file system services in response to requests pro-

50 vided in LNFS format by remote processors on the 
VME bus 120. Most requests will come from a network 
controller 110, but requests may also come from the 
local host 118. 

The file related commands supported by LNFS are 
55 identified above. They are all specified to the FC 112a 

in terms of logically identified disk data blocks. For 
example, the LNFS command for reading data from a 
file includes a specification of the file from which to 
read (file system ID (FSID) and file ID (inode)), a byte 

60 offset, and a count of the number of bytes to read. The 
FC 112a converts that identification into physical form, 
namely disk and sector numbers, in order to satisfy the 
command. 

The FC 112a runs a conventional Fast File System 
65 (FFS or UFS), which is based on the Berkeley 4.3 VAX 

release. This code performs the conversion and also 
performs all disk data caching and control data caching. 
However, as previously mentioned, control data cach-
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ing is performed using the FC memory 396 on FC 112a, 
whereas disk data caching is performed using the sys-
tem memory 116 FIG. 2 . Caching this file control 
information within the FC 112a avoids the VME bus 
congestion and speed degradation which would result if 5 
file control information was cached in system memory 
116. 

The memory on the FC 112a is directly accessed over 
the VME bus 120 for three main purposes. First, and by 
far the most frequent, are accesses to FC memory 396 10 
by an SP 114 to read or write cached file control infor-
mation. These are accesses requested by FC 112a to 
write locally modified file control structures through to 
disk, or to read file control structures from disk. Sec-
ond, the FC's CPU memory 314 is accessed directly by 15 
other processors for message transmissions from the FC 
112a to such other processors. For example, if a data 
block in system memory is to be transferred to an SP 
114 for writing to disk, the FC 112a first assembles a 
message in its local memory 314 requesting such a trans- 20 
fer. The FC 112a then notifies the SP 114, which copies 
the message directly from the CPU memory 314 and 
executes the requested transfer. 

A third type of direct access to the FC's local mem-
ory occurs when an LNFS client reads directory 25 
entries. When FC 112a receives an LNFS request to 
read directory entries, the FC 112a formats the re-
quested directory entries in FC memory 396 and notifies 
the requestor of their location. The requestor then di-
rectly accesses FC memory 396 to read the entries. 30 

The version of the UFS code on FC 112a includes 
some modifications in order to separate the two caches. 
In particular, two sets of buffer headers are maintained, 
one for the FC memory 396 and one for the system 
memory 116. Additionally, a second set of the system 35 
buffer routines (GETBLKO, BRELSEO, BREAD°, 
BWRITEO, and BREADAO) exist, one for buffer ac-
cesses to FC Mem 396 and one for buffer accesses to 
system memory 116. The UFS code is further modified 
to call the appropriate buffer routines for FC memory 40 
396 for accesses to file control information, and to call 
the appropriate buffer routines for the system memory 
116 for the caching of disk data. A description of UFS 
may be found in chapters 2, 6, 7 and 8 of "Kernel Struc-
ture and Flow," by Rieken and Webb of .sh consulting 45 
(Santa Clara, Calif.: 1988), incorporated herein by refer-
ence. 

When a read command is sent to the FC by a re-
questor such as a network controller, the FC first con-
verts the file, offset and count information into disk and 50 
sector information. It then locks the system memory 
buffers which contain that information, instructing the 
storage processor 114 to read them from disk if neces-
sary. When the buffer is ready, the FC returns a mes-
sage to the requestor containing both the attributes of 55 
the designated file and an array of buffer descriptors 
that identify the locations in system memory 116 hold-
ing the data. 

After the requestor has read the data out of the buff-
ers, it sends a release request back to the FC. The re- 60 
lease request is the same message that was returned by 
the FC in response to the read request; the FC 112a uses 
the information contained therein to determine which 
buffers to free. 

A write command is processed by FC 112a similarly 65 
to the read command, but the caller is expected to write 
to (instead of read from) the locations in system mem-
ory 116 identified by the buffer descriptors returned by 
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the FC 112a. Since FC 112a employs write-through 
caching, when it receives the release command from the 
requestor, it instructs storage processor 114 to copy the 
data from system memory 116 onto the appropriate disk 
sectors before freeing the system memory buffers for 
possible reallocation. 

The READDIR transaction is similar to read and 
write, but the request is satisfied by the FC 112a directly 
out of its own FC memory 396 after formatting the 
requested directory information specifically for this 
purpose. The FC 112a causes the storage processor read 
the requested directory information from disk if it is not 
already locally cached. Also, the specified offset is a 
"magic cookie" instead of a byte offset, identifying 
directory entries instead of an absolute byte offset into 
the file. No file attributes are returned. 

The READLINK transaction also returns no file 
attributes, and since links are always read in their en-
tirety, it does not require any offset or count. 

For all of the disk data caching performed through 
system memory 116, the FC 112a acts as a central au-
thority for dynamically allocating, deallocating and 
keeping track of buffers. If there are two or more FCs 
112, each has exclusive control over its own assigned 
portion of system memory 116. In all of these transac-
tions, the requested buffers are locked during the period 
between the initial request and the release request. This 
prevents corruption of the data by other clients. 

Also in the situation where there are two or more 
FCs, each file system on the disks is assigned to a partic-
ular one of the FCs. FC #0 runs a process called 
FC_VICE_PRESIDENT, which maintains a list of 
which file systems are assigned to which FC. When a 
client processor (for example an NC 110) is about to 
make an LNFS request designating a particular file 
system, it first sends the fsid in a message to the 
FC_VICE_PRESIDENT asking which FC controls 
the specified file system. The FC_VICE_PRESI-
DENT responds, and the client processor sends the 
LNFS request to the designated FC. The client proces-
sor also maintains its own list of fsid/FC pairs as it 
discovers them, so as to minimize the number of such 
requests to the FC_VICE_PRESIDENT. 

STORAGE PROCESSOR HARDWARE 
ARCHITECTURE 

In the file server 100, each of the storage processors 
114 can interface the VME bus 120 with up to 10 differ-
ent SCSI buses. Additionally, it can do so at the full 
usage rate of an enhanced block transfer protocol of 55 
MB per second. 

FIG. 5 is a block diagram of one of the SPs 114a. SP 
114b is identical. SP 114a comprises a microprocessor 
510, which may be a Motorola 68020 microprocessor 
operating at 20 MHz. The microprocessor 510 is cou-
pled over a 32-bit microprocessor data bus 512 with 
CPU memory 514, which may include up to 1 MB of 
static RAM. The microprocessor 510 accesses instruc-
tions, data and status on its own private bus 512, with no 
contention from any other source. The microprocessor 
510 is the only master of bus 512. 

The low order 16 bits of the microprocessor data bus 
512 interface with a control bus 516 via a bidirectional 
buffer 518. The low order 8 bits of the control bus 516 
interface with a slow speed bus 520 via another bidirec-
tional buffer 522. The slow speed bus 520 connects to an 
MFP 524, similar to the MFP 224 in NC 110a (FIG. 3), 
and with a PROM 526, similar to PROM 220 on NC 
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ma. The PROM 526 comprises 128 K bytes of 
EPROM which contains the functional code for SP 
114a. Due to the width and speed of the EPROM 526, 
the functional code is copied to CPU memory 514 upon 
reset for faster execution. 

MFP 524, like the MFP 224 on NC 110a, comprises a 
Motorola 68901 multifunction peripheral device. It 
provides the functions of a vectored interrupt control-
ler, individually programmable I/O pins, four timers 
and a UART. The UART functions provide serial com-
munications across an RS 232 bus (not shown in FIG. 5) 
for debug monitors and diagnostics. Two of the four 
timing functions may be used as general-purpose timers 
by the microprocessor 510, either independently or in 
cascaded fashion. A third timer function provides the 
refresh clock for a DMA controller described below, 
and the fourth timer generates the UART clock. Addi-
tional information on the MFP 524 can be found in 
"MC 6890 Multi-Function Peripheral Specification," 
by Motorola, Inc., which is incorporated herein by 
reference. 

The eight general-purpose I/O bits provided by MFP 
524 are configured according to the following table: 

Bit Direction Definition 

7 input Power Failure is Imminent - This 
functions as an early warning. 

6 input SCSI Attention - A composite of the 
SCSI. Attentions from all 10 SCSI 
channels. 

5 input Channel Operation Done - A composite of 
the channel done bits from all 13 
channels of the DMA controller, 
described below. 

4 output DMA Controller Enable. Enables the DMA 
Controller to run. 

3 input VMEbus Interrupt Done - Indicates the 
completion of a VMEbus Interrupt. 

2 input Command Available - Indicates that the 
SP'S Command Fifo, described below, 
contains one or more command pointers. 

I output External Interrupts Disable. Disables 
externally generated interrupts to the 
microprocessor 510. 

0 output Command Fifo Enable. Enables operation 
of the SP'S Command Fifo. Clears the 
Command Fifo when reset. 

Commands are provided to the SP 114a from the 
VME bus 120 via a bidirectional buffer 530, a local data 
bus 532, and a command FIFO 534. The command 
FIFO 534 is similar to the command FIFOs 290 and 390 
on NC 110a and FC 112a, respectively, and has a depth 
of 256 32-bit entries. The command FIFO 534 is a write-
only register as seen on the VME bus 120, and as a 
read-only register as seen by microprocessor 510. If the 
FIFO is full at the beginning of a write from the VME 
bus, a VME bus error is generated. Pointers are re-
moved from the command FIFO 534 in the order re-
ceived, and only by the microprocessor 510. Command 
available status is provided through I/O bit 4 of the 
MFP 524, and as a long as one or more command point-
ers are still within the command FIFO 534, the com-
mand available status remains asserted. 

As previously mentioned, the Sp 114a supports up to 
10 SCSI buses or channels 540a-540j. In the typical 
configuration, buses 540a-5401 support up to 3 SCSI 
disk drives each, and channel 540j supports other SCSI 
peripherals such as tape drives, optical disks, and so on. 
Physically, the SP 114a connects to each of the SCSI 
buses with an ultra-miniature D sub connector and 
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round shielded cables. Six 50-pin cables provide 300 
conductors which carry 18 signals per bus and 12 
grounds. The cables attach at the front panel of the SP 
114a and to a commutator board at the disk drive array. 

5 Standard 50-pin cables connect each SCSI device to the 
commutator board. Termination resistors are installed 
on the SP 114a. 

The SP 114a supports synchronous parallel data 
transfers up to 5 MB per second on each of the SCSI 

10 buses 540, arbitration, and disconnect/reconnect ser-
vices. Each SCSI bus 540 is connected to a respective 
SCSI adaptor 542, which in the present embodiment is 
an AIC 6250 controller IC manufactured by Adaptec 
Inc., Milpitas, Calif., operating in the non-multiplexed 

15 address bus mode. The AIC 6250 is described in detail 
in "AIC-6250 Functional Specification," by Adaptec 
Inc., which is incorporated herein by reference. The 
SCSI adaptors 542 each provide the necessary hard-
ware interface and low-level electrical protocol to im-
plement its respective SCSI channel. 

The 8-bit data port of each of the SCSI adaptors 542 
is connected to port A of a respective one of a set of ten 
parity FIFOs 544a-544j. The FIFOs 544 are the same as 
FIFOs 240, 260 and 270 on NC 110a, and are connected 
and configured to provide parity covered data transfers 
between the 8-bit data port of the respective SCSI adap-
tors 542 and a 36-bit (32-bit plus 4 bits of parity) com-
mon data bus 550. The FIFOs 544 provide handshake, 

30 status, word assembly/disassembly and speed matching 
FIFO buffering for this purpose. The FIFOs 544 also 
generate and check parity for the 32-bit bus, and for 
RAID 5 implementations they accumulate and check 
redundant data and accumulate recovered data. 

35 All of the SCSI adaptors 542 reside at a single loca-
tion of the address space of the microprocessor 510, as 
do all of the parity FIFOs 544. The microprocessor 510 
selects individual controllers and FIFOs for access in 
pairs, by first programming a pair select register (not 

40 shown) to point to the desired pair and then reading 
from or writing to the control register address of the 
desired chip in the pair. The microprocessor 510 com-
municates with the control registers on the SCSI adap-
tors 542 via the control bus 516 and an additional bidi-

45 rectional buffer 546, and communicates with the control 
registers on FIFOs 544 via the control bus 516 and a 
bidirectional buffer 552. Both the SCSI adaptors 542 
and FIFOs 544 employ 8-bit control registers, and regis-
ter addressing of the FIFOs 544 is arranged such that 

50 such registers alias in consecutive byte locations. This 
allows the microprocessor 510 to write to the registers 
as a single 32-bit register, thereby reducing instruction 
overhead. 

The parity FIFOs 544 are each configured in their 
55 Adaptec 6250 mode. Referring to the Appendix, the 

FIFOs 544 are programmed with the following bit set-
tings in the Data Transfer Configuration Register: 

60 Bit Definition Setting 

0 WD Mode (0) 
Parity Chip (1) 

2 Parity Correct Mode (0) 
3 8/16 bits CPU & PortA interface (0) 
4 Invert Port A address 0 (1) 

65 5 Invert Port A address 1 (1) 
6 Checksum Carry Wrap (0) 
7 Reset (0) 
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The Data Transfer Control Register is programmed 
as follows: 

Bit Definition Setting 

0 Enable PortA Req/Ack 
1 Enable PortB Req/Aok 
2 Data Transfer Direction 
3 CPU parity enable 
4 PortA parity enable 
5 PortB parity enable 
6 Checksum Enable 
7 PortA Master 

(I) 
(1) 

as desired 
(0) 
(I) 
(1) 
(0) 
(0) 

In addition, bit 4 of the RAM Access Control Regis-
ter (Long Burst) is programmed for 8-byte bursts. 

SCSI adaptors 542 each generate a respective inter-
rupt signal, the status of which are provided to micro-
processor 510 as 10 bits of a 16-bit SCSI interrupt regis-
ter 556. The SCSI interrupt register 556 is connected to 
the control bus 516. Additionally, a composite SCSI 
interrupt is provided through the MFP 524 whenever 
any one of the SCSI adaptors 542 needs servicing. 

An additional parity FIFO 554 is also provided in the 
SP 114a, for message passing. Again referring to the 
Appendix, the parity FIFO 554 is programmed with the 
following bit settings in the Data Transfer Configura-
tion Register: 

Bit Definition Setting 

0 WD Mode 
1 Parity Chip 
2 Parity Correct Mode 
3 8/16 bits CPU & PortA interface 
4 Invert Port A address 0 
5 Invert Pori A address 1 
6 Checksum Carry Wrap 
7 Reset 

(0) 
(1) 
(0) 
(1) 
(I) 
(1) 
(0) 
(0) 

The Data Transfer Control Register is programmed 
as follows: 

and recognizes completion of the specified operation by 
testing for a "done" bit in the channel status register 
562. The microprocessor 510 then resets the enable bit, 
which causes the respective "done" bit in the channel 

5 status register 562 to be cleared. 
The channels are defined as follows: 

10 
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Bit Definition Setting 

0 Enable PortA Req/Ack (0) 
Enable PortB Req/Ack (I) 

2 
3 

Data Transfer Direction 
CPU parity enable 

as desired 
(0) 45 

4 PortA parity enable (0) 
5 PortB parity enable (1) 
6 Checksum Enable (0) 
7 PortA Master (0) 

50 
In addition, bit 4 of the RAM Access Control Regis-

ter (Long Burst) is programmed for 8-byte bursts. 
Port A of FIFO 554 is connected to the 16-bit control 

bus 516, and port B is connected to the common data 
bus 550. FIFO 554 provides one means by which the 55 
microprocessor 510 can communicate directly with the 
VME bus 120, as is described in more detail below. 

The microprocessor 510 manages data movement 
using a set of 15 channels, each of which has an unique 
status which indicates its current state. Channels are 60 
implemented using a channel enable register 560 and a 
channel status register 562, both connected to the con-
trol bus 516. The channel enable register 560 is a 16-bit 
write-only register, whereas the channel status register 
562 is a 16-bit read-only register. The two registers 65 
reside at the same address to microprocessor 510. The 
microprocessor 510 enables a particular channel by 
setting its respective bit in channel enable register 560, 

CHANNEL FUNCTION 

0:9 These channels control data movement to and 
from the respective FIFOs 544 via the common 
data bus 550. When a FIFO is enabled and a 
request is received from it, the channel 
becomes ready. Once the channel has been 
serviced a status of done is generated. 

11:10 These channels control data movement between 
a local data buffer 564, described below, 
and the VME bus 120. When enabled the 
channel becomes ready. Once the channel has 
been serviced a status of done is generated. 

12 When enabled, this channel causes the DRAM in 
local data buffer 564 to be refreshed based 
on a clock which is generated by the MFP 524. 
The refresh consists of a burst of 16 rows. 
This channel does not generate a status of 
done. 

13 The microprocessor's communication FIFO 554 
is serviced by this channel. When enable is 
set and the FIFO 554 asserts a request then 
the channel becomes ready. This channel 
generates a status of done, 

14 Low latency writes from microprocessor 510 
onto the VME bus 120 are controlled by this 
channel. When this channel is enabled data is 
described below, onto the VME bus 120. This 
channel generates a done status. 

15 This is a null channel for which neither a 
ready status nor done status is generated. 

Channels are prioritized to allow servicing of the 
more critical requests first. Channel priority is assigned 
in a descending order starting at channel 14. That is, in 
the event that all channels are requesting service, chan-
nel 14 will be the first one served. 

The common data bus 550 is coupled via a bidirec-
tional register 570 to a 36-bit junction bus 572. A second 
bidirectional register 574 connects the junction bus 572 
with the local data bus 532. Local data buffer 564, 
which comprises 1 MB of DRAM, with parity, is cou-
pled bidirectionally to the junction bus 572. It is orga-
nized to provide 256 K 32-bit words with byte parity. 
The SP 114a operates the DRAMs in page mode to 
support a very high data rate, which requires bursting 
of data instead of random single-word accesses. It will 
be seen that the local data buffer 564 is used to imple-
ment a RAID (redundant array of inexpensive disks) 
algorithm, and is not used for direct reading and writing 
between the VME bus 120 and a peripheral on one of 
the SCSI buses 540. 

A read-only register 576, containing all zeros, is also 
connected to the junction bus 572. This register is used 
mostly for diagnostics, initialization, and clearing of 
large blocks of data in system memory 116. 

The movement of data between the FIFOs 544 and 
554, the local data buffer 564, and a remote entity such 
as the system memory 116 on the VME bus 120, is all 
controlled by a VME/FIFO DMA controller 580. The 
VME/FIFO DMA controller 580 is similar to the 
VME/FIFO DMA controller 272 on network control-
ler 110a (FIG. 3), and is described in the Appendix. 
Briefly, it includes a bit slice engine 582 and a dual-port 
static RAM 584. One port of the dual-port static RAM 
584 communicates over the 32-bit microprocessor data 
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bus 512 with microprocessor 510, and the other port 
communicates over a separate 16-bit bus with the bit 
slice engine 582. The microprocessor 510 places com-
mand parameters in the dual-port RAM 584, and uses 
the channel enables 560 to signal the VME/FIFO 5 
DMA controller 580 to proceed with the command. 
The VME/FIFO DMA controller is responsible for 
scanning the channel status and servicing requests, and 
returning ending status in the dual-port RAM 584. The 
dual-port RAM 584 is organized as 1 K X 32 bits at the 
32-bit port and as 2 K x 16 bits at the 16-bit port. An 
example showing the method by which the micro-
processor 510 controls the VME/FIFO DMA control-
ler 580 is as follows. First, the microprocessor 510 
writes into the dual-port RAM 584 the desired com-
mand and associated parameters for the desired chan-
nel. For example, the command might be, "copy a block 
of data from FIFO 544h out into a block of system 
memory 116 beginning at a specified VME address." 
Second, the microprocessor sets the channel enable bit 
in channel enable register 560 for the desired channel. 

At the time the channel enable bit is set, the appropri-
ate FIFO may not yet be ready to send data. Only when 
the VME/FIFO DMA controller 580 does receive a 
"ready" status from the channel, will the controller 580 

25 

execute the command. In the meantime, the DMA con-
troller 580 is free to execute commands and move data 
to or from other channels. 

When the DMA controller 580 does receive a status 30 
of "ready" from the specified channel, the controller 
fetches the channel command and parameters from the 
dual-ported RAM 584 and executes. When the com-
mand is complete, for example all the requested data has 
been copied, the DMA controller writes status back 3
into the dual-port RAM 584 and asserts "done" for the 
channel in channel status register 562. The micro-
processor 510 is then interrupted, at which time it reads 
channel status register 562 to determine which channel 
interrupted. The microprocessor 510 then clears the 40
channel enable for the appropriate channel and checks 
the ending channel status in the dual-port RAM 584. 

In this way a high-speed data transfer can take place 
under the control of DMA controller 580, fully in paral-
lel with other activities being performed by micro- 45 
processor 510. The data transfer takes place over busses 
different from microprocessor data bus 512, thereby 
avoiding any interference with microprocessor instruc-
tion fetches. 

The SP 114a also includes a high-speed register 590, SO 
which is coupled between the microprocessor data bus 
512 and the local data bus 532. The high-speed register 
590 is used to write a single 32-bit word to an VME bus 
target with a minimum of overhead. The register is 
write only as viewed from the microprocessor 510. In 5 
order to write a word onto the VME bus 120, the mi-
croprocessor 510 first writes the word into the register 
590, and the desired VME target address into dual-port 
RAM 584. When the microprocessor 510 enables the 
appropriate channel in channel enable register 560, the 
DMA controller 580 transfers the data from the register 
590 into the VME bus address specified in the dual-port 
RAM 584. The DMA controller 580 then writes the 
ending status to the dual-port RAM and sets the channel 
"done" bit in channel status register 562. 65 

This procedure is very efficient for transfer of a single 
word of data, but becomes inefficient for large blocks of 
data. Transfers of greater than one word of data, typi-
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cally for message passing, are usually performed using 
the FIFO 554. 

The SP 114a also includes a series of registers 592, 
similar to the registers 282 on NC 110a (FIG. 3) and the 
registers 382 on FC 112a (FIG. 4). The details of these 
registers are not important for an understanding of the 
present invention. 

STORAGE PROCESSOR OPERATION 

The 30 SCSI disk drives supported by each of the SPs 
114 are visible to a client processor, for example one of 
the file controllers 112, either as three large, logical 
disks or as 30 independent SCSI drives, depending on 
configuration. When the drives are visible as three logi-
cal disks, the SP uses RAID 5 design algorithms to 
distribute data for each logical drive on nine physical 
drives to minimize disk arm contention. The tenth drive 
is left as a spare. The RAID 5 algorithm (redundant 
array of inexpensive drives, revision 5) is described in 
"A Case For a Redundant Arrays of Inexpensive Disks 
(RAID)", by Patterson et al., published at ACM SIG-
MOD Conference, Chicago, Ill., Jun. 1-3, 1988, incor-
porated herein by reference. 

In the RAID 5 design, disk data are divided into 
stripes. Data stripes are recorded sequentially on eight 
different disk drives. A ninth parity stripe, the exclu-
sive-or of eight data stripes, is recorded on a ninth drive. 
If a stripe size is set to 8 K bytes, a read of 8 K of data 
involves only one drive. A write of 8 K of data involves 
two drives: a data drive and a parity drive. Since a write 
requires the reading back of old data to generate a new 
parity stripe, writes are also referred to as modify 
writes. The SP 114a supports nine small reads to nine 
SCSI drives concurrently. When stripe size is set to 8 K, 
a read of 64 K of data starts all eight SCSI drives, with 
each drive reading one 8 K stripe worth of data. The 
parallel operation is transparent to the caller client. 

The parity stripes are rotated among the nine drives 
in order to avoid drive contention during write opera-
tions. The parity stripe is used to improve availability of 
data. When one drive is down, the SP 114a can recon-
struct the missing data from a parity stripe. In such case, 
the SP 114a is running in error recovery mode. When a 
bad drive is repaired, the SP 114a can be instructed to 
restore data on the repaired drive while the system is 
on-line. 

When the SP 114a is used to attach thirty indepen-
dent SCSI drives, no parity stripe is created and the 
client addresses each drive directly. 

The SP 114a processes multiple messages (transac-
tions, commands) at one time, up to 200 messages per 
second. The SP 114a does not initiate any messages 
after initial system configuration. The following SP 
114a operations are defined: 

01 No Op 
02 Send Configuration Data 
03 Receive Configuration Data 
05 Read and Write Sectors 
06 Read and Write Cache Pages 
07 IOCTL Operation 
08 Dump SP 114a Local Data Buffer 
09 Start/Stop A SCSI Drive 
OC Inquiry 
OE Read Message Log Buffer 
OF Set SP 114a Interrupt 

The above transactions are described in detail in the 
above-identified application entitled MULTIPLE FA-
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CILITY OPERATING SYSTEM ARCHITEC-
TURE. For and understanding of the invention, it will 
be useful to describe the function and operation of only 
two of these commands: read and write sectors, and 
read and write cache pages. 

Read and Write Sectors 

This command, issued usually by an FC 112, causes 
the SP 114a to transfer data between a specified block 
of system memory and a specified series of contiguous 
sectors on the SCSI disks. As previously described in 
connection with the file controller 112, the particular 
sectors are identified in physical terms. In particular, 
the particular disk sectors are identified by SCSI chan-
nel number (0-9), SCSI ID on that channel number 
(0-2), starting sector address on the specified drive, and 
a count of the number of sectors to read or write. The 
SCSI channel number is zero if the SP 114a is operating 
under RAID 5. 

The SP 114a can execute up to 30 messages on the 30 
SCSI drives simultaneously. Unlike most of the com-
mands to an SP 114, which are processed by micro-
processor 510 as soon as they appear on the command 
FIFO 534, read and write sectors commands (as well as 
read and write cache memory commands) are first 
sorted and queued. Hence, they are not served in the 
order of arrival. 

When a disk access command arrives, the micro-
processor 510 determines which disk drive is targeted 
and inserts the message in a queue for that disk drive 
sorted by the target sector address. The microprocessor 
510 executes commands on all the queues simulta-
neously, in the order present in the queue for each disk 
drive. In order to minimize disk arm movements, the 
microprocessor 510 moves back and forth among queue 
entries in an elevator fashion. 
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If no error conditions are detected from the SCSI 
disk drives, the command is completed normally. When 
a data check error condition occurs and the SP 114a is 
configured for RAID 5, recovery actions using redun-

5 dant data begin automatically. When a drive is down 
while the SP 114a is configured for RAID 5, recovery 
actions similar to data check recovery take place. 

Read/Write Cache Pages 

10 This command is similar to read and write sectors, 
except that multiple VME addresses are provided for 
transferring disk data to and from system memory 116. 
Each VME address points to a cache page in system 
memory 116, the size of which is also specified in the 

15 command. When transferring data from a disk to system 
memory 116, data are scattered to different cache pages; 
when writing data to a disk, data are gathered from 
different cache pages in system memory 116. Hence, 
this operation is referred to as a scatter-gather function. 

20 The target sectors on the SCSI disks are specified in 
the command in physical terms, in the same manner that 
they are specified for the read and write sectors com-
mand. Termination of the command with or without 
error conditions is the same as for the read and write 

25 sectors command. 
The dual-port RAM 584 in the DMA controller 580 

maintains a separate set of commands for each channel 
controlled by the bit slice engine 582. As each channel 
completes its previous operation, the microprocessor 

30 510 writes a new DMA operation into the dual-port 
RAM 584 for that channel in order to satisfy the next 
operation on a disk elevator queue. 

The commands written to the DMA controller 580 
include an operation code and a code indicating 

35 whether the operation is to be performed in non-block 
mode, in standard VME block mode, or in enhanced 
block mode. The operation codes supported by DMA 
controller 580 are as follows: 

OP CODE OPERATION 

0 NO-OP 
1 ZEROES -> BUFFER 

2 ZEROES -> FIFO 

3 ZEROES -> VMEbus 

4 VMEbus -> BUFFER 

5 VMEbus -> FIFO 

Move zeros from zeros 
register 576 to local 
data buffer 564. 
Move zeros from zeros 
register 576 to the 
currently selected FIFO 
on common data bus 550. 
Move zeros from zeros 
register 576 out onto the 
VME bus 120. Used for 
initializing cache 
buffers in system memory 
116. 
Move data from the VME 
bus 120 to the local data 
buffer 564. This 
operation is used during 
a write, to move target 
data intended for a down 
drive into the buffer for 
participation in 
redundancy generation. 
Used only for RAID S 
application. 
New data to be written 
from VME bus onto a 
drive. Since RAID 5 
requires redundancy data 
to be generated from data 
that is buffered in local 
data buffer 564. this 
operation will be used 
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OP CODE OPERATION 

6 VMEbus -> BUFFER & FIFO 

7 BUFFER -> VMEbus 

8 BUFFER -> FIFO 

9 FIFO -> VMEbus 

A FIFO -> BUFFER 

B FIFO -> VMEbus & BUFFER 

only if the SP 114a is 
not configured for RAID 
5. 
Target data is moved from 
VME bus 120 to a SCSI 
device and is also 
captured in the local 
data buffer 564 for 
participation in 
redundancy generation. 
Used only if SP 114a is 
configured for RAID 5 
operation. 
This operation is not 
used. 
Participating data is 
transferred to create 
redundant data or 
recovered data on a disk 
drive. Used only in 
RAID 5 applications. 
This operation is used to 
move target data directly 
from a disk drive onto 
the VME bus 120. 
Used to move 
participating data for 
recovery and modify 
operations. Used only in 
RAID 5 applications. 
This operation is used to 
save target data for 
participation in data 
recovery. Used only in 
RAID 5 applications. 

SYSTEM MEMORY 

FIG. 6 provides a simplified block diagram of the 
preferred architecture of one of the system memory 
cards 116a. Each of the other system memory cards are 
the same. Each memory card 116 operates as a slave on 
the enhanced VME bus 120 and therefore requires no 
on-board CPU. Rather, a timing control block 610 is 40 
sufficient to provide the necessary slave control opera-
tions. In particular, the timing control block 610, in 
response to control signals from the control portion of 
the enhanced VME bus 120, enables a 32-bit wide buffer 
612 for an appropriate direction transfer of 32-bit data 
between the enhanced VME bus 120 and a multiplexer 
unit 614. The multiplexer 614 provides a multiplexing 
and demultiplexing function, depending on data transfer 
direction, for a six megabit by seventy-two bit word 
memory array 620. An error correction code (ECC) 
generation and testing unit 622 is also connected to the 
multiplexer 614 to generate or verify, again depending 
on transfer direction, eight bits of ECC data. The status 
of ECC verification is provided back to the timing con-
trol block 610. 

ENHANCED VME BUS PROTOCOL 

VME bus 120 is physically the same as an ordinary 
VME bus, but each of the NCs and SPs include addi-
tional circuitry and firmware for transmitting data using 
an enhanced VME block transfer protocol. The en-
hanced protocol is described in detail in the above-iden-
tified application entitled ENHANCED VMEBUS 
PROTOCOL UTILIZING PSEUDOSYNCHRO-
NOUS HANDSHAKING AND BLOCK MODE 
DATA TRANSFER, and summarized in the Appendix 
hereto. Typically transfers of SNFS file data between 
NCs and system memory, or between SPs and system 

32 

memory, and transfers of packets being routed from one 
35 NC to another through system memory, are the only 

types of transfers that use the enhanced protocol in 
server 100. All other data transfers on VME bus 120 use 
either conventional VME block transfer protocols or 
ordinary non-block transfer protocols. 

MESSAGE PASSING 

As is evident from the above description, the differ-
ent processors in the server 100 communicate with each 
other via certain types of messages. In software, these 

45 messages are all handled by the messaging kernel, de-
scribed in detail in the MULTIPLE FACILITY OP-
ERATING SYSTEM ARCHITECTURE application 
cited above. In hardware, they are implemented as 
follows. 

50 Each of the NCs 110, each of the FCs 112, and each 
of the SPs 114 includes a command or communication 
FIFO such as 290 on NC 110a. The host 118 also in-
cludes a command FIFO, but since the host is an un-
modified purchased processor board, the FIFO is emu-

55 lated in software. The write port of the command FIFO 
in each of the processors is directly addressable from 
any of the other processors over VME bus 120. 

Similarly, each of the processors except SPs 114 also 
includes shared memory such as CPU memory 214 on 

60 NC 110a. This shared memory is also directly address-
able by any of the other processors in the server 100. 

If one processor, for example network controller 
110a. is to send a message or command to a second 
processor, for example file controller 112a, then it does 

65 so as follows. First, it forms the message in its own 
shared memory (e.g., in CPU memory 214 on NC 110a). 
Second, the microprocessor in the sending processor 
directly writes a message descriptor into the command 
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FIFO in the receiving processor. For a command being 
sent from network controller 110a to file controller 
112a, the microprocessor 210 would perform the write 
via buffer 284 on NC 110a, VME bus 120, and buffer 
384 on file controller 112a. 5 

The command descriptor is a single 32-bit word con-
taining in its high order 30 bits a VME address indicat-
ing the start of a quad-aligned message in the sender's 
shared memory. The low order two bits indicate the 
message type as follows: 10 

Type Description 

2 
3 

Pointer to a new message being sent 
Pointer to a reply message 
Pointer to message to be forwarded 
Pointer to message to be freed; 
also message acknowledgment 

All messages are 128-bytes long. 
When the receiving processor reaches the command 

descriptor on its command FIFO, it directly accesses 
the sender's shared memory and copies it into the re-
ceiver's own local memory. For a command issued 
from network controller 1100 to file controller 112a, 
this would be an ordinary VME block or non-block 
mode transfer from NC CPU memory 214, via buffer 
284, VME bus 120 and buffer 384, into FC CPU mem-
ory 314. The FC microprocessor 310 directly accesses 
NC CPU memory 214 for this purpose over the VME 
bus 120. 

When the receiving processor has received the com-
mand and has completed its work, it sends a reply mes-
sage back to the sending processor. The reply message 
may be no more than the original command message 
unaltered, or it may be a modified version of that mes-
sage or a completely new message. If the reply message 
is not identical to the original command message, then 
the receiving processor directly accesses the original 
sender's shared memory to modify the original com-
mand message or overwrite it completely. For replies 
from the FC 12a to the NC 110a, this involves an ordi-
nary VME block or non-block mode transfer from the 
FC 12a, via buffer 384, VME bus 120, buffer 284 and 
into NC CPU memory 214. Again, the FC microproces-
sor 310 directly accesses NC CPU memory 214 for this 
purpose over the VME bus 120. 

Whether or not the original command message has 
been changed, the receiving processor then writes a 
reply message descriptor directly into the original send- 50 
er's command FIFO. The reply message descriptor 
contains the same VME address as the original com-
mand message descriptor, and the low order two bits of 
the word are modified to indicate that this is a reply 
message. For replies from the FC 112a to the NC 110a, 55 
the message descriptor write is accomplished by micro-
processor 310 directly accessing command FIFO 290 
via buffer 384, VME bus 120 and buffer 280 on the NC. 
Once this is done, the receiving processor can free the 
buffer in its local memory containing the copy of the 60 
command message. 

When the original sending processor reaches the 
reply message descriptor on its command FIFO, it 
wakes up the process that originally sent the message 
and permits it to continue. After examining the reply 65 
message, the original sending processor can free the 
original command message buffer in its own local 
shared memory. 
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As mentioned above, network controller 110a uses 
the buffer 284 data path in order to write message de-
scriptors onto the VME bus 120, and uses VME/FIFO 
DMA controller 272 together with parity FIFO 270 in 
order to copy messages from the VME bus 120 into 
CPU memory 214. Other processors read from CPU 
memory 214 using the buffer 284 data path. 

File controller 12a writes message descriptors onto 
the VME bus 20 using the buffer 384 data path, and 
copies messages from other processors' shared memory 
via the same data path. Both take place under the con-
trol of microprocessor 310. Other processors copy mes-
sages from CPU memory 314 also via the buffer 384 
data path. 

Storage processor 114a writes message descriptors 
onto the VME bus using high-speed register 590 in the 
manner described above, and copies messages from 
other processors using DMA controller 580 and FIFO 
554. The Sp 114a has no shared memory, however, so it 
uses a buffer in system memory 116 to emulate that 
function. That is, before it writes a message descriptor 
into another processor's command FIFO, the SP 114a 
first copies the message into its own previously allo-
cated buffer in system memory 116 using DMA control-
ler 580 and FIFO 554. The VME address included in 
the message descriptor then reflects the VME address 
of the message in system memory 116. 

In the host 118, the command FIFO and shared mem-
ory are both emulated in software. 

The invention has been described with respect to 
particular embodiments thereof, and it will be under-
stood that numerous modifications and variations are 
possible within the scope of the invention. 

APPENDIX A 

VME/FIFO DMA Controller 

In storage processor 114a, DMA controller 580 man-
ages the data path under the direction of the micro-
processor 510. The DMA controller 580 is a micro-
coded 16-bit bit-slice implementation executing pipe-
lined instructions at a rate of one each 62.5 ns. It is 
responsible for scanning the channel status 562 and 
servicing request with parameters stored in the dual-
ported ram 584 by the microprocessor 510. Ending 
status is returned in the ram 584 and interrupts are gen-
erated for the microprocessor 510. 

Control Store 
The control store contains the microcoded instruc-

tions which control the DMA controller 580. The con-
trol store consists of 61 K X 8 proms configured to yield 
a 1 K x48 bit microword. Locations within the control 
store are addressed by the sequencer and data is pres-
ented at the input of the pipeline registers. 

Sequencer 
The sequencer controls program flow by generating 

control store addresses based upon pipeline data and 
various status bits. The control store address consists of 
10 bits. Bits 8:0 of the control store address derive from 
a multiplexer having as its inputs either an ALU output 
or the output of an incrementer. The incrementer can be 
preloaded with pipeline register bits 8:0, or it can be 
incremented as a result of a test condition. The 1 K 
address range is divided into two pages by a latched flag 
such that the microprogram can execute from either 
page. Branches, however remain within the selected 
page. Conditional sequencing is performed by having 
the test condition increment the pipeline provided ad-
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35 
dress. A false condition allows execution from the pipe-
line address while a true condition causes execution 
from the address + 1. The alu output is selected as an 
address source in order to directly vector to a routine or 
in order to return to a calling routine. Note that when 5 
calling a subroutine the calling routine must reside 
within the same page as the subroutine or the wrong 
page will be selected on the return. 

ALU 
The alu comprises a single IDT49C402A integrated 

circuit. It is 16 bits in width and most closely resembles 
four 2901s with 64 registers. The alu is used primarily 
for incrementing, decrementing, addition and bit manip-
ulation. All necessary control signals originate in the 
control store. The IDT HIGH PERFORMANCE 
CMOS 1988 DATA BOOK, incorporated by reference 
herein, contains additional information about the alu. 

Microword 
The 48 bit microword comprises several fields which 

control various functions of the DMA controller 580. 
The format of the microword is defined below along 
with mnemonics and a description of each function. 

AI <8.0> 47:39 

CIN 38 

RA <5:0> 37:32 

RB<5:0> 31:26 

LFD 25 

LFS<2:0> 24:22 

(Alu Instruction bits 8:0) The Al bits 
provide the instruction for the 49C402A 
alu. Refer to the 1DT data book for a 
complete definition of the alu 
instructions. Note that the 19 signal 
input of the 49C402A is always low. 
(Carry INput) This bit forces the carry 
input to the alu. 
(Register A address bits 5:0) These bits 
select one of 64 registers as the "A" 
operand for the alu. These bits also 
provide literal bits 15:10 for the alu 
bus. 
(Register B address bits 5:0) These bits 
select one of 64 registers as the "B" 
operand for the alu. These bits also 
provide literal bits 9:4 for the alu 
bus. 
(Latched Flag Data) When set this bit 
causes the selected latched flag to be 
set. When reset this bit causes the 
selected latched flag to be cleared. 
This bits also functions as literal bit 
3 for the alu bus. 
(Latched Flag Select bits 2:0) The 

10 
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35 

40 

meaning of these bits is dependent upon 45 
the selected source for the alu bus. In 
the event that the literal field is 
selected as the bus source then 
LFS<2:0> function as literal bits <2:0> 
otherwise the bits are used to select 
one of the latched flags. 50 

LFS<2:0> SELECTED FLAG 

0 

1 

2 

3 
4 

5 

6 

7 

This value selects a null 
flag. 
When set this bit enables the 
buffer clock. When reset this 
bit disables the buffer 
clock. 
When this bit is cleared VME 
bus transfers, buffer 
operations and RAS arc all 
disabled. 
NOT USED 
When set this bit enables VME 
bus transfers. 
When set this bit enables 
buffer operations. 
When set this bit asserts the 
row address strobe to the dram 
buffer. 
When set this bit selects page 
0 of the control store. 

55 

60 

65 

5,163,131 
36 

-continued 

SRC <1,0> 20,21 (alu bus SouRCe select bits 1,0) These 
bits select the data source to be 
enabled onto the alu bus. 

SRC<1.0> Selected Source 

0 
1 
2 
3 

alu 
dual ported ram 
literal 
reserved-not defined 

PF<2:0> 19:17 (Pulsed Flag select bits 2:0) These bits 
select a flag/signal to be pulsed. 

PF< 2:0> Flag 

0 null 
1 SGL_CLK 

generates a single transition 
of buffer clock. 

2 SET_VB 
forces vme and buffer enable 
to be set. 

3 CL_PERR 
clears buffer parity error 
status. 

4 SET_DN 
set channel done status for 
the currently selected 
channel. 

5 INC_ADR 
increment dual ported ram 
address. 

6:7 RESERVED - NOT DEFINED 

DEST <3:0> 16:13 (DESTination select bits 3:0) These 
bits select one of 10 destinations 
to be loaded from the alu bus. 

DEST <3:0> Destination 

0 null 
WIk_RAM 
causes the data on the alu bus 
to be written to the dual 
ported ram. 
D<15:0> ram<15:0> 

2 WR_BADD 
loads the data from the alu 
bus into the dram address 
counters. 
D<14:7> mux addr<8:0> 

3 WR_VADL 
loads the data from the alu 
bus into the least significant 
2 bytes of the VME address 
register. 
D<15:2> VME addr <15:2> 
DI ENB_ENH 
DO ENB_BLK 

4 WR_VADH 
loads the most significant 2 
bytes of the VME address 
register. 
D<15:0> VME addr<31:16> 

5 WR_RADD 
loads the dual ported ram 
address counters. 
D<10:0> --. ram addr <10:0> 

6 WR_WCNT 
loads the word counters. 
D15 --. count enable• 
D<14:8> —.count <6:0> 

7 WR_CO 
loads the co-channel select 
register. 
D<7:4> CO<3:0> 

8 WR_NXT 
loads the next-channel select 
register. 
D<3:0> —.NEXT<3:0> 

9 WR_CUR 
loads the current-channel 
select register. 
D<3:0> CURR <3:0> 

10:14 RESERVED - NOT DEFINED 
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point to the current command block. The current com-
mand block pointer should be initialized to 0 x 0000 by 
the microprocessor 510 before enabling the channel. 
Upon detecting a value of 0 X 0000 in the current block 

5 pointer the DMA controller 580 will copy the lower 16 
bits from the initial pointer to the current pointer. Once 
the DMA controller 580 has completed the specified 
operations for the parameter block the current pointer 
will be updated to point to the next block. In the event 

10 that no further parameter blocks are available the 
pointer will be set to 0 X 0000. 

The status byte indicates the ending status for the last 
channel operation performed. The following status 

15 bytes are defined: 

15 JUMP 
causes the control store 
sequencer to select the alu 
data bus. 
D<8:0> CS_A <8:0> 

TEST <3:0> 12:9 (TEST condition select bits 3:0) Select 
one of 16 inputs to the test 
multiplexor to be used as the carry 
input to the incrementer. 

TEST <3:0 > Condition 

0 FALSE -always false 
TRUE -always true 

2 ALU_COUT -carry output of alu 
3 ALU_EQ -equals output of 

alu 
4 ALU_OVR -alu overflow 
S ALU_NEG -alu negative 
6 XFR_DONE -transfer complete 
7 PAR_ERR -buffer parity error 
8 TIMOUT -bus operation 

timeout 
9 ANY_ERR -any error status 

14:10 RESERVED -NOT DEFINED 
15 CH_RDY -next channel ready 

20 

NEXT_A <8:0> 8:0 (NEXT Address bits 8:0) Selects an 
instructions from the current page of 
the control store for execution.  25 

Dual Ported Ram 
The dual ported ram is the medium by which com-

mand, parameters and status are communicated be-
tween the DMA controller 580 and the microprocessor 30 
510. The ram is organized as 1K x 32 at the master port 
and as 2 K x 16 at the DMA port. The ram may be both 
written and read at either port. 

The ram is addressed by the DMA controller 580 by 
loading an 11 bit address into the address counters. Data 35 
is then read into bidirectional registers and the address 
counter is incremented to allow read of the next loca-
tion. 

Writing the ram is accomplished by loading data 
from the processor into the registers after loading the 40 

ram address. Successive writes may be performed on 
every other processor cycle. 

The ram contains current block pointers, ending sta-
tus, high speed bus address and parameter blocks. The 
following is the format of the ram: 45 

OFFSET 
0 
4 

58 
5C 
60 
64 
68 
6C 
70 
74 
78 

31 
CURR POINTER 0 1 STATUS 0 

0 

INITIAL POINTER 0 

CURR POINTER B I STATUS B 
INITIAL POINTER B 

not used not used 
not used not used 

CURR POINTER D STATUS D 
INITIAL POINTER D 

not used STATUS E 
HIGH SPEED BUS ADDRESS 31:2 1010 

PARAMETER BLOCK 0 

PARAMETER BLOCK n 

The Initial Pointer is a 32 bit value which points the 
first command block of a chain. The current pointer is a 
sixteen bit value used by the DMA controller 580 to 

50 

55 

60 

65 

STATUS MEANING 

0 NO ERRORS 
1 ILLEGAL OP CODE 
2 BUS OPERATION TIMEOUT 
3 BUS OPERATION ERROR 
4 DATA PATH PARITY ERROR 

The format of the parameter block is: 
OFFSET 31 
0 
4 
8 
C 

C+ (4Xn) 

0 
FORWARD LINK 

NOT USED 1 WORD COUNT 
VME ADDRESS 31:2, ENH, BLK 

TERM 01 OP 0 1 BUF ADDR 0 

!TERM n1 OP n I BUF ADDR n 1 

FORWARD LINK—The forward link points to the 
first word of the next parameter block for execution. It 
allows several parameter blocks to be initialized and 
chained to create a sequence of operations for execu-
tion. The forward pointer has the following format: 

A31:A2,0,0 

The format dictates that the parameter block must start 
on a quad byte boundary. A pointer of 0 X 00030000 is a 
special case which indicates no forward link exists. 

WORD COUNT 
The word count specifies the number of quad byte 

words that are to be transferred to or from each buffer 
address or to/from the VME address. A word count of 
64 K words may be specified by initializing the word 
count with the value of 0. The word count has the 
following format: 

ID15ID14
6 
ID13 

IDID5 
D121D11IDIOID9IDSID71 
D41D3ID2IDIIDOI 

The word count is updated by the DMA controller 
580 at the completion of a transfer to/from the last 
specified buffer address. Word count is not updated 
after transferring to/from each buffer address and is 
therefore not an accurate indicator of the total data 
moved to/from the buffer. Word count represents the 
amount of data transferred to the VME bus or one of 
the FIFOs 544 or 554. 

VME ADDRESS 
The VME address specifies the starting address for 

data transfers. Thirty bits allows the address to start at 
any quad byte boundary. 

ENH 
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39 
This bit when set selects the enhanced block transfer 

protocol described in the above-cited ENHANCED 
VMEBUS PROTOCOL UTILIZING PSEUDOSYN-
CHRONOUS HANDSHAKING AND BLOCK 
MODE DATA TRANSFER application, to be used 
during the VME bus transfer. Enhanced protocol will 
be disabled automatically when performing any transfer 
to or from 24 bit or 16 bit address space, when the 
starting address is not 8 byte aligned or when the word 
count is not even. 

BLK 
This bit when set selects the conventional VME 

block mode protocol to be used during the VME bus 
transfer. Block mode will be disabled automatically 
when performing any transfer to or from 16 bit address 
space. 

BUF ADDR 
The buffer address specifies the starting buffer ad-

dress for the adjacent operation. Only 16 bits are avail-
able for a 1M byte buffer and as a result the starting 
address always falls on a 16 byte boundary. The pro-
grammer must ensure that the starting address is on a 
modulo 128 byte boundary. The buffer address is up-
dated by the DMA controller 580 after completion of 25

each data burst. 

iA191A181A171.4161A15 
jA101A91A8IA7 

A14IA131A121A111 
A61A51A41 

5,163,131 

5 

10 

15 

20 

TERM 30

The last buffer address and operation within a param-
eter block is identified by the terminal bit. The DMA 
controller 580 continues to fetch buffer addresses and 
operations to perform until this bit is encountered. Once 35

the last operation within the parameter block is exe-
cuted the word counter is updated and if not equal to 
zero the series of operations is repeated. Once the word 
counter reaches zero the forward link pointer is used to 
access the next parameter block. 40 

1010101010101010IT I 

OP 
Operations are specified by the op code. The op code 45

byte has the following format: 

1010101010P3I0P210P110P0 

The op codes are listed below ("FIFO" refers to any of 
50 the FIFOs 544 or 554): 

OP CODE OPERATION 

0 NO-OP 
ZEROES -> BUFFER 

2 ZEROES -> FIFO 
3 ZEROES -> VMEbus 
4 VMEbus -> BUFFER 
S VMEbus -> FIFO 
6 VMEbus -> BUFFER & FIFO 
7 BUFFER -> VMEbus 
8 BUFFER -> FIFO 
9 FIFO -> VMEbus 
A FIFO -> BUFFER 
B FIFO -> VMEbus & BUFFER 
C RESERVED 
D RESERVED 
E RESERVED 
F RESERVED 

55 

60 

65 

40 
APPENDIX B 

Enhanced VME Block Transfer Protocol 

The enhanced VME block transfer protocol is a 
VMEbus compatible pseudo-synchronous fast transfer 
handshake protocol for use on a VME backplane bus 
having a master functional module and a slave func-
tional module logically interconnected by a data trans-
fer bus. The data transfer bus includes a data strobe 
signal line and a data transfer acknowledge signal line. 
To accomplish the handshake, the master transmits a 
data strobe signal of a given duration on the data strobe 
line. The master then awaits the reception of a data 
transfer acknowledge signal from the slave module on 
the data transfer acknowledge signal line. The slave 
then responds by transmitting data transfer acknowl-
edge signal of a given duration on the data transfer 
acknowledge signal line. 

Consistent with the pseudo-synchronous nature of 
the handshake protocol, the data to be transferred is 
referenced to only one signal depending upon whether 
the transfer operation is a READ or WRITE operation. 
In transferring data from the master functional unit to 
the slave, the master broadcasts the data to be trans-
ferred. The master asserts a data strobe signal and the 
slave, in response to the data strobe signal, captures the 
data broadcast by the master. Similarly, in transferring 
data from the slave to the master, the slave broadcasts 
the data to be transferred to the master unit. The slave 
then asserts a data transfer acknowledge signal and the 
master, in response to the data transfer acknowledge 
signal, captures the data broadcast by the slave. 

The fast transfer protocol, while not essential to the 
present invention, facilitates the rapid transfer of large 
amounts of data across a VME backplane bus by sub-
stantially increasing the data transfer rate. These data 
rates are achieved by using a handshake wherein the 
data strobe and data transfer acknowledge signals are 
functionally decoupled and by specifying high current 
drivers for all data and control lines. 

The enhanced pseudo-synchronous method of data 
transfer (hereinafter referred to as "fast transfer mode") 
is implemented so as to comply and be compatible with 
the IEEE VME backplane bus standard. The protocol 
utilizes user-defined address modifiers, defined in the 
VMEbus standard, to indicate use of the fast transfer 
mode. Conventional VMEbus functional units, capable 
only of implementing standard VMEbus protocols, will 
ignore transfers made using the fast transfer mode and, 
as a result, are fully compatible with functional units 
capable of implementing the fast transfer mode. 

The fast transfer mode reduces the number of bus 
propagations required to accomplish a handshake from 
four propagations, as required under conventional 
VMEbus protocols, to only two bus propagations. 
Likewise, the number of bus propagations required to 
effect a BLOCK READ or BLOCK WRITE data 
transfer is reduced. Consequently, by reducing the 
propagations across the VMEbus to accomplish hand-
shaking and data transfer functions, the transfer rate is 
materially increased. 

The enhanced protocol is described in detail in the 
above-cited ENHANCED VMEBUS PROTOCOL 
application, and will only be summarized here. Famil-
iarity with the conventional VME bus standards is as-
sumed. 
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In the fast transfer mode handshake protocol, only 
two bus propagations are used to accomplish a hand-
shake, rather than four as required by the conventional 
protocol. At the initiation of a data transfer cycle, the 
master will assert and deassert DSO* in the form of a 5 
pulse of a given duration. The deassertion of DSO* is 
accomplished without regard as to whether a response 
has been received from the slave. The master then waits 
for an acknowledgement from the slave. Subsequent 
pulsing of DSO* cannot occur until a responsive 10 
DTACK* signal is received from the slave. Upon re-
ceiving the slave's assertion of DTACK*, the master 
can then immediately reassert data strobe, if so desired. 
The fast transfer mode protocol does not require the 
master to wait for the deassertion of DTACK* by the 15 
slave as a condition precedent to subsequent assertions 
of DSO*. In the fast transfer mode, only the leading 
edge (i.e., the assertion) of a signal is significant. Thus, 
the deassertion of either DSO* or DTACK* is com-
pletely irrelevant for completion of a handshake. The 20 
fast transfer protocol does not employ the DS1* line for 
data strobe purposes at all. 

The fast transfer mode protocol may be characterized 
as pseudo-synchronous as it includes both synchronous 
and asynchronous aspects. The fast transfer mode pro- 25 
tocol is synchronous in character due to the fact that 
DSO* is asserted and deasserted without regard to a 
response from the slave. The asynohronous aspect of 
the fast transfer mode protocol is attributable to the fact 
that the master may not subsequently assert DSO* until 30 
a response to the prior strobe is received from the slave. 
Consequently, because the protocol includes both syn-
chronous and asynchronous components, it is most 
accurately classified as "pseudo-synchronous." 

The transfer of data during a BLOCK WRITE cycle 35 
in the fast transfer protocol is referenced only to DSO*. 
The master first broadcasts valid data to the slave, and 
then asserts DSO to the slave. The slave is given a prede-
termined period of time after the assertion of DSO* in 
which to capture the data. Hence, slave modules must 40 
be prepared to capture data at any time, as DTACK* is 
not referenced during the transfer cycle. 

Similarly, the transfer of data during a BLOCK 
READ cycle in the fast transfer protocol is referenced 
only to DTACK*. The master first asserts DSO*. The 45 
slave then broadcasts data to the master and then asserts 
DTACK*. The master is given a predetermined period 
of time after the assertion of DTACK in which to cap-
ture the data. Hence, master modules must be prepared 
to capture data at any time as DSO is not referenced 50 
during the transfer cycle. 

FIG. 7, parts A through C, is a flowchart illustrating 
the operations involved in accomplishing the fast trans-
fer protocol BLOCK WRITE cycle. To initiate a 
BLOCK WRITE cycle, the master broadcasts the 55 
memory address of the data to be transferred and the 
address modifier across the DTB bus. The master also 
drives interrupt acknowledge signal (IACK*) high and 
the LWORD* signal low 701. A special address modi-
fier, for example "IF," broadcast by the master indi- 60 
cates to the slave module that the fast transfer protocol 
will be used to accomplish the BLOCK WRITE. 

The starting memory address of the data to be trans-
ferred should reside on a 64-bit boundary and the size of 
block of data to be transferred should be a multiple of 64 65 
bits. In order to remain in compliance with the VMEbus 
standard, the block must not cross a 256 byte boundary 
without performing a new address cycle. 

131 
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The slave modules connected to the DTB receive the 
address and the address modifier broadcast by the mas-
ter across the bus and receive LWORD* low and 
IACK* high 703. Shortly after broadcasting the address 
and address modifier 701, the master drives the AS* 
signal low 705. The slave modules receive the ASS low 
signal 707. Each slave individually determines whether 
it will participate in the data transfer by determining 
whether the broadcasted address is valid for the slave in 
question 709. If the address is not valid, the data transfer 
does not involve that particular slave and it ignores the 
remainder of the data transfer cycle. 

The master drives WRITE* low to indicate that the 
transfer cycle about to occur is a WRITE operation 
711. The slave receives the WRITE* low signal 713 
and, knowing that the data transfer operation is a 
WRITE operation, awaits receipt of a high to low tran-
sition on the DSO* signal line 715. The master will wait 
until both DTACK* and BERR* are high 718, which 
indicates that the previous slave is no longer driving the 
DTB. 

The master proceeds to place the first segment of the 
data to be transferred on data lines DOO through D31, 
719. After placing data on DOO through D31, the master 
drives DSO* low 721 and, after a predetermined inter-
val, drives DSO* high 723. 

In response to the transition of DSO* from high to 
low, respectively 721 and 723, the slave latches the data 
being transmitted by the master over data lines DOO 
through D31, 725. The master places the next segment 
of the data to be transferred on data lines DOO through 
D31, 727, and awaits receipt of a DTACK* signal in the 
form of a high to low transition signal, 729 in FIG. 7B. 

Referring to FIG. 7B, the slave then drives 
DTACK* low, 731, and, after a predetermined period 
of time, drives DTACK high, 733. The data latched by 
the slave, 725, is written to a device, which has been 
selected to store the data 735. The slave also increments 
the device address 735. The slave then waits for another 
transition of DSO* from high to low 737. 

To commence the transfer of the next segment of the 
block of data to be transferred, the master drives DSO* 
low 739 and, after a predetermined period of time, 
drives DSO* high 741. In response to the transition of 
DSO* from high to low, respectively 739 and 741, the 
slave latches the data being broadcast by the master 
over data lines DOO through D31, 743. The master 
places the next segment of the data to be transferred on 
data lines DOO through D31, 745, and awaits receipt of 
a DTACK* signal in the form of a high to low transi-
tion, 747. 

The slave then drives DTACK* low, 749, and, after 
a predetermined period of time, drives DTACK* high, 
751. The data latched by the slave, 743, is written to the 
device selected to store the data and the device address 
is incremented 753. The slave waits for another transi-
tion of DSO* from high to low 737. 

The transfer of data will continue in the above-
described manner until all of the data has been trans-
ferred from the master to the slave. After all of the data 
has been transferred, the master will release the address 
lines, address modifier lines, data lines, IACK* line, 
LWORD* line and DSO* line, 755. The master will 
then wait for receipt of a DTACK* high to low transi-
tion 757. The slave will drive DTACK* low, 759 and, 
after a predetermined period of time, drive DTACK* 
high 761. In response to the receipt of the DTACK* 
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high to low transition, the master will drive ASS high 
763 and then release the AS* line 765. 

FIG. 8, parts A through C, is a flowchart illustrating 
the operations involved in accomplishing the fast trans-
fer protocol BLOCK READ cycle. To initiate a 5 
BLOCK READ cycle, the master broadcasts the mem-
ory address of the data to be transferred and the address 
modifier across the DTB bus 801. The master drives the 
LWORD' signal low and the LACK* signal high 801. 
As noted previously, a special address modifier indi- 10 
cater to the slave module that the fast transfer protocol 
will be used to accomplish the BLOCK READ. 

The slave modules connected to the DTB receive the 
address and the address modifier broadcast by the mas-
ter across the bus and receive LWORD' low and 15 
LACK* high 803. Shortly after broadcasting the address 
and address modifier 801, the master drives the AS' 
signal low 805. The slave modules receive the ASS low 
signal 807. Each slave individually determines whether 
it will participate in the data transfer by determining 20 
whether the broadcasted address is valid for the slave in 
question 809. If the address is not valid, the data transfer 
does not involve that particular slave and it ignores the 
remainder of the data transfer cycle. 

The master drives WRITE' high to indicate that the 25 
transfer cycle about to occur is a READ operation 811. 
The slave receives the WRITE* high signal 813 and, 
knowing that the data transfer operation is a READ 
operation, places the first segment of the data to be 
transferred on data lines DOO through D31 819. The 30 
master will wait until both DTACK* and BERR* are 
high 818, which indicates that the previous slave is no 
longer driving the DTB. 

The master then drives DSO• low 821 and, after a 
predetermined interval, drives DSO* high 823. The 35 
master then awaits a high to low transition on the 
DTACK' signal line 824. As shown in FIG. 8B, the 
slave then drives the DTACK' signal low 825 and after 
a predetermined period of time, driv,es the DTACK* 
signal high 827. 40 

In response to the transition of DTACK' from high 
to low, respectively 825 and 827, the master latches the 
data being transmitted by the slave over data lines DOO 
through D31, 831. The data latched by the master, 831, 
is written to a device, which has been selected to store 45 
the data the device address is incremented 833. 

The slave places the next segment of the data to be 
transferred on data lines DOO through D31, 829, and 
then waits for another transition of DSO* from high to 
low 837. 50 

To commence the transfer of the next segment of the 
block of data to be transferred, the master drives DSO* 
low 839 and, after a predetermined period of time, 
drives DSO• high 841. The master then waits for the 
DTACK' line to transition from high to low, 843. 55 

The slave drives DTACK' low, 845, and, after a 
predetermined period of time, drives DTACK' high, 
847. In response to the transition of DTACK' from 
high to low, respectively 839 and 841, the master 
latches the data being transmitted by the slave over data 60 
lines DOO through D31, 845. The data latched by the 
master, 845, is written to the device selected to store the 
data, 851 in FIG. 8C, and the device address is incre-
mented. The slave places the next segment of the data to 
be transferred on data lines DOO through D31, 849. 65 

The transfer of data will continue in the above-
described manner until all of the data to be transferred 
from the slave to the master has been written into the 
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device selected to store the data. After all of the data to 
be transferred has been written into the storage device, 
the master will release the address lines, address modi-
fier lines, data lines, the LACK• line, the LWORD line 
and DSO' line 852. The master will then wait for receipt 
of a DTACK' high to low transition 853. The slave will 
drive DTACK* low 855 and, after a predetermined 
period of time, drive DTACK' high 857. In response to 
the receipt of the DTACK' high to low transition, the 
master will drive AS. high B59 and release the AS' line 
861. 

To implement the fast transfer protocol, a conven-
tional 64 mA tri-state driver is substituted for the 48 mA 
open collector driver conventionally used in VME 
slave modules to drive DTACK'. Similarly, the con-
ventional VMEbus data drivers are replaced with 64 
mA tri-state drivers in SO-type packages. The latter 
modification reduces the ground lead inductance of the 
actual driver package itself and, thus, reduces "ground 
bounce" effects which contribute to skew between data, 
DSO* and DTACK•. In addition, signal return induc-
tance along the bus backplane is reduced by using a 
connector system having a greater number of ground 
pins so as to minimize signal return and mated-pair pin 
inductance. One such connector system is the "High 
Density Plus" connector, Model No. 420-8015-000, 
manufactured by Teradyne Corporation. 

APPENDIX C 

Parity FIFO 

The parity FIFOs 240, 260 and 270 (on the network 
controllers 110), and 544 and 554 (on storage processors 
114) are each implemented as an ASIC. All the parity 
FIFOs are identical, and are configured on power-up or 
during normal operation for the particular function 
desired. The parity FIFO is designed to allow speed 
matching between buses of different speed, and to per-
form the parity generation and correction for the paral-
lel SCSI drives. 

The FIFO comprises two bidirectional data ports, 
Port A and Port B, with 36 X 64 bits of RAM buffer 
between them. Port A is 8 bits wide and Port B is 32 bits 
wide. The RAM buffer is divided into two parts, each 
36X 32 bits, designated RAM X and RAM Y. The two 
ports access different halves of the buffer alternating to 
the other half when available. When the chip is config-
ured as a parallel parity chip (e.g. one of the FIFOs 544 
on SP 114a), all accesses on Port B are monitored and 
parity is accumulated in RAM X and RAM Y alter-
nately. 

The chip also has a CPU interface, which may be 8 or 
16 bits wide. In 16 bit mode the Port A pins are used as 
the most significant data bits of the CPU interface and 
are only actually used when reading or writing to the 
Fifo Data Register inside the chip. 

A REQ, ACK handshake is used for data transfer on 
both Ports A and B. The chip may be configured as 
either a master or a slave on Port A in the sense that, in 
master mode the Port A ACK / RDY output signifies 
that the chip is ready to transfer data on Port A, and the 
Port A REQ input specifies that the slave is responding. 
In slave mode, however, the Port A REQ input speci-
fies that the master requires a data transfer, and the chip 
responds with Port A ACK / RDY when data is avail-
able. The chip is a master on Port B since it raises Port 
B REQ and waits for Port B ACK to indicate comple-
tion of the data transfer. 
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SIGNAL DESCRIPTIONS 

Port A 0-7, P 
Port A is the 8 bit data port. Port A P, if used, is the 

odd parity bit for this port. 5 
A Req, A Ack/Rdy 
These two signals are used in the data transfer mode 

to control the handshake of data on Port A. 
uP Data 0-7, uP Data P, uPAdd 0-2, CS 
These signals are used by a microprocessor to address 10 

the programmable registers within the chip. The odd 
parity signal uP Data P is only checked when data is 
written to the Fifo Data or Checksum Registers and 
microprocessor parity is enabled. 

Clk 15 
The clock input is used to generate some of the chip 

timing. It is expected to be in the 10-20 Mhz range. 
Read En, Write En 
During microprocessor accesses, while CS is true, 

these signals determine the direction of the micro- 20 
processor accesses. During data transfers in the WD 
mode these signals are data strobes used in conjunction 
with Port A Ack. 

Port B 00-07, 10-17, 20-27, 30-37, OP-3P 
Port B is a 32 bit data port. There is one odd parity bit 25 

for each byte. Port B OP is the parity of bits 00-07, 
PortB IP is the parity of bits 10-17, Port B 2P is the 
parity of bits 20-27, and Port B 3P is the parity of bits 
30-37. 

B Select, B Req, B Ack, Parity Sync, B Output En- 30 
able 

These signals are used in the data transfer mode to 
control the handshake of data on Port B. Port B Req 
and Port B Ack are both gated with Port B Select. The 
Port B Ack signal is used to strobe the data on the Port 35 
B data lines. The parity sync signal is used to indicate to 
a chip configured as the parity chip to indicate that the 
last words of data involved in the parity accumulation 
are on Port B. The Port B data lines will only be driven 
by the Fifo chip if all of the following conditions are 40 
met: 

a. the data transfer is from Port A to Port B; 
b. the Port B select signal is true; 
c. the Port B output enable signal is true; and 
d. the chip is not configured as the parity chip or it is 45 

in parity correct mode and the Parity Sync signal is 
true. 

Reset 
This signal resets all the registers within the chip and 

causes all bidirectional pins to be in a high impedance 50 
state. 

DESCRIPTION OF OPERATION 

Normal Operation 
Normally the chip acts as a simple FIFO chip. A 55 

FIFO is simulated by using two RAM buffers in a sim-
ple ping-pong mode. It is intended, but not mandatory, 
that data is burst into or out of the FIFO on Port B. This 
is done by holding Port B Sel signal low and pulsing the 
Port B Ack signal. When transferring data from Port B 60 
to Port A, data is first written into RAM X and when 
this is full, the data paths will be switched such that Port 
B may start writing to RAM Y. Meanwhile the chip 
will begin emptying RAM X to Port A. When RAM Y 
is full and RAM X empty the data paths will be 65 
switched again such that Port B may reload RAM X 
and Port A may empty RAM Y. 

Port A Slave Mode 

46 
This is the default mode and the chip is reset to this 

condition. In this mode the chip waits for a master such 
as one of the SCSI adapter chips 542 to raise Port A 
Request for data transfer. If data is available the Fifo 
chip will respond with Port A Ack/Rdy. 

Port A WD Mode 
The chip may be configured to run in the WD or 

Western Digital mode. In this mode the chip must be 
configured as a slave on Port A. It differs from the 
default slave mode in that the chip responds with Read 
Enable or Write Enable as appropriate together with 
Port A Ack/Rdy. This mode is intended to allow the 
chip to be interfaced to the Western Digital 33C93A 
SCSI chip or the NCR 53C90 SCSI chip. 

Port A Master Mode 
When the chip is configured as a master, it will raise 

Port A Aok/Rdy when it is ready for data transfer. This 
signal is expected to be tied to the Request input of a 
DMA controller which will respond with Port A Req 
when data is available. In order to allow the DMA 
controller to burst, the Port A Ack/Rdy signal will 
only be negated after every 8 or 16 bytes transferred. 

Port B Parallel Write Mode 
In parallel write mode, the chip is configured to be 

the parity chip for a parallel transfer from Port B to 
Port A. In this mode, when Port B Select and Port B 
Request are asserted, data is written into RAM X or 
RAM Y each time the Port B Ack signal is received. 
For the first block of 128 bytes data is simply copied 
into the selected RAM. The next 128 bytes driven on 
Port B will be exclusive-ORed with the first 128 bytes. 
This procedure will be repeated for all drives such that 
the parity is accumulated in this chip. The Parity Sync 
signal should be asserted to the parallel chip together 
with the last block of 128 bytes. This enables the chip to 
switch access to the other RAM and start accumulating 
a new 128 bytes of parity. 

Port B Parallel Read Mode - Check Data 
This mode is set if all drives are being read and parity 

is to be checked. In this case the Parity Correct bit in 
the Data Transfer Configuration Register is not set. The 
parity chip will first read 128 bytes on Port A as in a 
normal read mode and then raise Port B Request. While 
it has this signal asserted the chip will monitor the Port 
B Ack signals and exclusive-or the data on Port B with 
the data in its selected RAM. The Parity Sync should 
again be asserted with the last block of 128 bytes. In this 
mode the chip will not drive the Port B data lines but 
will check the output of its exclusive-or logic for zero. 
If any bits are set at this time a parallel parity error will 
be flagged. 

Port B Parallel Read Mode - Correct Data 
This mode is set by setting the Parity Correct bit in 

the Data Transfer Configuration Register. In this case 
the chip will work exactly as in the check mode except 
that when Port B Output Enable, Port B Select and 
Parity Sync are true the data is driven onto the Port B 
data lines and a parallel parity check for zero is not 
performed. 

Byte Swap 
In the normal mode it is expected that Port B bits 

00-07 are the first byte, bits 10-17 the second byte, bits 
20-27 the third byte, and bits 30-37 the last byte of each 
word. The order of these bytes may be changed by 
writing to the byte swap bits in the configuration regis-
ter such that the byte address bits are inverted. The way 
the bytes are written and read also depend on whether 
the CPU interface is configured as 16 or 8 bits. The 
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following table shows the byte alignments for the differ-
ent possibilities for data transfer using the Port A Re-
quest/Acknowledge handshake: 

CPU Invert Invert Port B Port B Port B Port B 
I/F Addr 1 Addr 0 00-07 10-17 20-27 30-37 

8 False False 

8 False True 

8 True False 

8 True True 

16 False False 

16 False True 

16 True False 

16 True True 

Port A 
byte 0 
Port A 
byte I 
Port A 
byte 2 
Port A 
byte 3 
Port A 
byte 0 
uProc 
byte 0 
Port A 
byte I 
uProc 
byte I 

Port A 
byte I 
Port A 
byte 0 
Port A 
byte 3 
Port A 
byte 2 
uProc 
byte 0 
Port A 
byte 0 
uProc 
byte I 
Port A 
byte I 

Port A 
byte 2 
Port A 
byte 3 
Port A 
byte 0 
Port A 
byte I 
Port A 
byte 1 
uProc 
byte 
Port A 
byte 0 
uProc 
byte 0 
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5 

Port A 
byte I 
Port A 
byte 2 10 
Port A 
byte I 
Port A 
byte 0 
uProc 
byte 1 15 
Port A 
byte I 
uProc 
byte 0 
Port A 
byte 0 20 

When the Fifo is accessed by reading or writing the 
Fifo Data Register through the microprocessor port in 
8 bit mode, the bytes are in the same order as the table 
above but the uProc data port is used instead of Port A. 
In 16 bit mode the table above applies. 

Odd Length Transfers 
If the data transfer is not a multiple of 32 words, or 

128 bytes, the microprocessor must manipulate the in-
ternal registers of the chip to ensure all data is trans-
ferred. Port A Ack and Port B Req are normally not 
asserted until all 32 words of the selected RAM are 
available. These signals may be forced by writing to the 
appropriate RAM status bits of the Data Transfer Status 
Register. 

When an odd length transfer has taken place the 
microprocessor must wait until both ports are quiescent 
before manipulating any registers. It should then reset 
both of the Enable Data Transfer bits for Port A and 
Port B in the Data Transfer Control Register. It must 
then determine by reading their Address Registers and 
the RAM Access Control Register whether RAM X or 
RAM Y holds the odd length data. It should then set the 
corresponding Address Register to a value of 20 hexa-
decimal, forcing the RAM full bit and setting the ad-
dress to the first Word. Finally the microprocessor 
should set the Enable Data Transfer bits to allow the 
chip to complete the transfer. 

At this point the Fifo chip will think that there are 
now a full 128 bytes of data in the RAM and will trans-
fer 128 bytes if allowed to do so. The fact that some of 
these 128 bytes are not valid must be recognized exter-
nally to the FIFO chip. 

PROGRAMMABLE REGISTERS 

Data Transfer Configuration Register (Read/Write) 

Register Address 0 
This register is cleared by the reset signal. 

Bit 0 WD Mode. Set if data transfers are to 
use the Western Digital WD33C93A 
protocol, otherwise the Adaptec 6250 
protocol will be used. 

Bit I Parity Chip. Set if this chip is to 
accumulate Port B parities. 

Bit 2 Parity Correct Mode. Set if the 
parity chip is to correct parallel 
parity on Port B. 

48 
-continued 

Bit 3 CPU Interface 16 bits wide. If set, 
the microprocessor data bits are 
combined with the Port A data bits to 
effectively produce a 16 bit Port. All 
accesses by the microprocessor as well 
as all data transferred using the Port A 
Request and Acknowledge handshake will 
transfer 16 bits. 

Bit 4 Invert Port A byte address 0. Set to 
invert the least significant bit of 
Port A byte address. 

Bit 5 Invert Port A byte address 1. Set to 
invert the most significant bit of Port 
A byte address. 

Bit 6 Checksum Carry Wrap. Set to enable the 
carry out of the 16 bit checksum adder 
to carry back into the least significant 
bit of the adder. 

Bit 7 Reset. Writing a 1 to this bit will 
reset the other registers. This bit 
resets itself after a maximum of 2 
clock cycles and will therefore normally 
be read as a 0. No other register 
should be written for a minimum of 4 
clock cycles after writing to this bit. 

25 Data Transfer Control Register (Read/Write) 

Register Address 1 
This register is cleared by the reset signal or by writ-

ing to the reset bit. 

30 

35 

40 

45 

50 

55 

60 

65 

Bit 0 Enable Data Transfer on Port A. Set to 
enable the Port A Req/Ack handshake. 

Bit I Enable Data Transfer on Port B. Set to 
enable the Port B Req/Ack handshake. 

Bit 2 Port A to Port B. If set, data 
transfer is from Port A to Port B. If 
reset, data transfer is from Port B to 
Port A. In order to avoid any glitches 
on the request lines, the state of this 
bit should not be altered at the same 
time as the enable data transfer bits 0 
or I above. 

Bit 3 uProcessor Parity Enable. Set if parity 
is to be checked on the microprocessor 
interface. It will only be checked when 
writing to the Fifo Data Register or 
reading from the Fifo Data or Checksum 
Registers, or during a Port A 
Request/Acknowledge transfer in 16 bit 
mode. The chip will, however, always 
re-generate parity ensuring that 
correct parity is written to the RAM or 
read on the microprocessor interface. 

Bit 4 Port A Parity Enable. Set if parity is 
to be checked on Port A. It is checked 
when accessing the Fifo Data Register in 
16 bit mode, or during a Port A 
Request/Acknowledge transfer. The chip 
will, however, always re-generate parity 
ensuring that correct parity is written 
to the RAM or read on the Port A 
interface. 

Bit 5 Port B Parity Enable. Set if Port B 
data has valid byte parities. If it is 
not set, byte parity is generated 
internally to the chip when writing to 
the RAMs. Byte parity is not checked 
when writing from Port B, but always 
checked when reading to Port B. 

Bit 6 Checksum Enable. Set to enable writing 
to the 16 bit checksum register. This 
register accumulates a 16 bit checksum 
for all RAM accesses, including 
accesses to the Fifo Data Register, as 
well as all writes to the checksum 
register. This bit must be reset before 
reading from the Checksum Register. 
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Bit 7 Port A Master. Set if Port A is to 
operate in the master mode on Port A 
during the data transfer. 

Data Transfer Status Register (Read Only) 

Register Address 2 
This register is cleared by the reset signal or by writ-

ing to the reset bit. 

Bit 0 Data in RAM X or RAM Y. Set if any bits 
are true in the RAM X. RAM Y, or Port A 
byte address registers. 

Bit I uProc Port Parity Error. Set if the 
uProc Parity Enable bit is set and a 
parity error is detected on the 
microprocessor interface during any RAM 
access or write to the Checksum Register 
in 16 bit mode. 

Bit 2 Port A Parity Error. Set if the Port A 
Parity Enable bit is set and a parity 
error is detected on the Port A 
interface during any RAM access or write 
to the Checksum Register. 

Bit 3 Port 13 Parallel Parity Error. Set if 
the chip is configured as the parity 
chip, is not in parity correct mode, and 
a non zero result is detected when the 
Parity Sync signal is true. It is also 
set whenever data is read out onto Port 
B and the data being read back through 
the bidirectional buffer does not 
compare. 

Bits 4-7 Port B Bytes 0-3 Parity Error. Set 
whenever the data being read out of the 
RAMs on the Port B side has bad parity. 

Ram Access Control Register (Read/Write) 

Register Address 3 
This register is cleared by the reset signal or by writ-

ing to the reset bit. The Enable Data Transfer bits in the 
Data Transfer Control Register must be reset before 
attempting to write to this register, else the write will be 
ignored. 

Bit 0 Port A byte address 0. This bit is the 
least significant byte address bit. It 
is read directly bypassing any inversion 
done by the invert bit in the Data 
Transfer Configuration Register. 

Bit 1 Port A byte address I. This bit is the 
most significant byte address bit. It 
is read directly bypassing any inversion 
done by the invert bit in the Data 
Transfer Configuration Register. 

Bit 2 Port A to RAM Y. Set if Port A is 
accessing RAM Y, and reset if it is 
accessing RAM X . 

Bit 3 Port B to RAM Y. Set if Port B is 
accessing RAM Y, and reset if it is 
accessing RAM X . 

Bit 4 Long Burst. If the chip is configured 
to transfer data on Port A as a master, 
and this bit is reset, the chip will 
only negate Port A Ack/Rdy after every 8 
bytes, or 4 words in 16 bit mode, have 
been transferred. If this bit is set, 
Port A Ack/Rdy will be negated every 16 
bytes, or 8 words in 16 bit mode. 

Bits 5-7 Not Used. 

Bits 0-4 
Bit 5 
Bits 6-7 

RAM X word address 
RAM X full 
Not Used 

RAM Y Address Register (Read/Write) 

Register Address 5 
This register is cleared by the reset signal or by writ-

ing to the reset bit. The Enable Data Transfer bits in the 
20 Data Transfer Control Register must be reset before 

attempting to write to this register, else the write will be 
ignored. 

25 

30 

50 
RAM X Address Register (Read/Write) 

Register Address 4 
This register is cleared by the reset signal or by writ-

5 ing to the reset bit. The Enable Data Transfer bits in the 
Data Transfer Control Register must be reset before 
attempting to write to this register, else the write will be 
ignored. 

10 

15 

Bits 0-4 
Bit 5 
Bits 6-7 

RAM Y word address 
RAM Y full 
Not Used 

Fifo Data Register (Read/Write) 

Register Address 6 
The Enable Data Transfer bits in the Data Transfer 

Control Register must be reset before attempting to 
write to this register, else the write will be ignored. The 

35 Port A to Port B bit in the Data Transfer Control regis-
ter must also be set before writing this register. If it is 
not, the RAM controls will be incremented but no data 
will be written to the RAM. For consistency, the Port 
A to PortB should be reset prior to reading this register. 

40 Bits 0-7 are Fifo Data. The microprocessor may 
access the FIFO by reading or writing this register. The 
RAM control registers are updated as if the access was 
using Port A. If the chip is configured with a 16 bit 
CPU Interface the most significant byte will use the 

45 Port A 0-7 data lines, and each Port A access will incre-
ment the Port A byte address by 2. 

Port A Checksum Register (Read/Write) 

Register Address 7 
50 This register is cleared by the reset signal or by writ-

ing to the reset bit. 
Bits 0-7 are Checksum Data. The chip will accumu-

late a 16 bit checksum for all Port A accesses. If the chip 
is configured with a 16 bit CPU interface, the most 

55 significant byte is read on the Port A 0-7 data lines. If 
data is written directly to this register it is added to the 
current contents rather than overwriting them. It is 
important to note that the Checksum Enable bit in the 
Data Transfer Control Register must be set to write this 

60 register and reset to read it. 

PROGRAMMING THE FIFO CHIP 

In general the fifo chip is programmed by writing to 
the data transfer configuration and control registers to 

65 enable a data transfer, and by reading the data transfer 
status register at the end of the transfer to check the 
completion status. Usually the data transfer itself will 
take place with both the Port A and the Port B hand-
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shakes enabled, and in this case the data transfer itself 
should be done without any other microprocessor inter-
action. In some applications, however, the Port A hand-
shake may not be enabled, and it will be necessary for 
the microprocessor to fill or empty the fifo by repeat-
edly writing or reading the Fifo Data Register. 

Since the fifo chip has no knowledge of any byte 
counts, there is no way of telling when any data transfer 
is complete by reading any register within this chip 

struct FIFO_regs ( 
unsigned char config,al,a2,a3 ; 

unsigned char control,b1,62,b3; 

unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 

); 
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itself. Determination of whether the data transfer has 
been completed must therefore be done by some other 
circuitry outside this chip. 

The following C language routines illustrate how the 
5 parity FIFO chip may be programmed. The routines 

assume that both Port A and the microprocessor port 
are connected to the system microprocessor, and return 
a size code of 16 bits, but that the hardware addresses 
the Fifo chip as long 32 bit registers. 

char status,c1,c2,c3; 

char ram_access_control,d1,d2,d3; 

char ram_X_addr,e1,e2,e3; 
char ram_Y_addr,f1,f2,f3; 

long data; 
int checksum,h1; 

#define FIFO1 ((struct FIFOregs*) FIFO_BASE_ADDRESS) 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

FIFO RESET 0x80 
FIFO:16 BITS 0x08 

FIFO_CAiRY WRAP 0x40 

FIFO_PORT_A_ENABLE Ox01 

FIFO_PORT 8 ENABLE 0x02 

FIFO_PORT:ilABLES 0x03 

FIFO PORT A_TO B 0x04 

FIFO=CHECiSUM_iNABLE 0x40 

FIFO_DATA IN_RAM Ox01 

FIFO_FORCi_RAM_FULL 0x20 

#define PORT_A_TO_PORT_B(fifo) ((fifo-> control 

#define PORT_A_BYTE_ADDRESS(fifo) ((fifo->ram_access_control) & 

0x03) 
#define PORT_A_TO_RAM Y(fifo) ((fifo->ram_access_control ) & 

0x04) 

#define PORT B _ TO _ RAM —Y(fifo) ((fifo-> ram_access_control ) & 

0x08) 

) & 0x04) 

/*********************************************************** 

The following routine initiates a Fifo data transfer using 

two values passed to it. 

config_data This is the data to be written to the 

configuration register. 

control_data This is the data to be written to the Data 

Transfer Control Register. If the data transfer 

is to take place automatically using both the 

Port Aand Port B handshakes, both data transfer 

enables bits should be set in this parameter. 
***********************************************************/ 

FIFO_initiate_data_transfer(config_data, control_data) 

unsigned char config_data, control_data; 
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FIFO1->config = config_data FIFO_RESET; 

Configuration value & Reset */ 
/* Set 

FIF01->control = control_data & ("FIFO_PORT_ENABLES); /* Set 

everything but enables */ 
FIF01->control = control_data ; /* Set data transfer 

enables */ 

) 

/*********************************************************** 

The following routine forces the transfer of any odd bytes 
that have been left in the Fifo at the end of a data transfer. 
It first disables both ports, then forces the Ram Full bits, and 
then re-enables the appropriate Port. 

FIFO_force_odd_length_transfer() 

{ 
FIF01->control &= "FIFO_PORT_ENABLES; /* Disable Ports A & B */ 
if (PORT_A_TO_PORT_B(FIF01)) ( 

if (PORT_A_TO_RAM_Y(FIFO1)) ( 
FIFO' ->ram_Y_addr = FIFO_FORCE_RAM_FULL; /* Set RAM Y 

full * 

X full 

else FIF01->ram_X_addr = FIFO_FORCE_RAM_FULL ; /* Set RAM 
*/ 

FIF01->control := FIFO_PORT_B_ENABLE ; /* Re-Enable 
Port B */ 

) 

else ( 

if (PORT_B_TO_RAM_Y(FIF01)) ( 
FIF01->ram_f_addr = FIFO_FORCE_RAM_FULL ; /* Set 

RAM Y full */ 

else FIF01->ram_X_addr = FIFO_FORCE_RAM_FULL ; /* Set RAM 
X full */ 

FIF01->control := FIFO_PORT_A_ENABLE ; /* Re-Enable 
Port A */ 

) 

/*********************************************************** 

The following routine returns how many odd bytes have been 
left in the Fifo at the end of a data transfer. 
***********************************************************/ 

int FIFO_count_odd_bytes() 

int number_odd_bytes; 

number_odd_bytes=0; 
if (FIF01->status & FIFO_DATA_IN_RAM) ( 

if (PORT_A TO_PORT_B(FIF01)) ( 

number_odd_bytes = (PORT_A_BYTE_ADDRESS(FIFO1)) ; 

if (PORT_A_TO_RAM_Y(FIF01)) 

number_odd_bytes += (FIF01->ram_Y_addr) * 4 ; 
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else number_odd_bytes += (FIF01->ram_X_addr) * 4 ; 

else 

if (PORT_B_TO_RAM_Y(FIF01)) 

number_odd_bytes = (FIF01->ram_Y_addr) * 4 ; 

else number_odd_bytes = (FIF01->ram_X_addr) * 4 ; 

return (number_odd_bytes); 

/*********************************************************** 

The following routine tests the microprocessor interface of 

the chip. It first writes and reads the first 6 registers. It 

then writes Is, Os, and an address pattern to the RAM, reading the 

data back and checking it. 

The test returns a bit significant error code where each 

bit represents the address of the registers that failed. 

Bit 0 = config register failed 

Bit 1 = control register failed 

Bit 2 = status register failed 

Bit 3 = ram access control register failed 

Bit 4 = ram X address register failed 

Bit 5 = ram Y address register failed 

Bit 6 = data register failed 

Bit 7 = checksum register failed 

#define RAM_DEPTH 64 /* number of long words in Fifo Ram 

reg_expected_data(61 = { Ox7F, OxFF, Ox00, Ox1F, 0x3F, Ox3F 

char FIFO_uprocessor_interface_test() 
{ 

unsigned long test_data; 

char *register_addr; 

int i; 

char j,error; 

FIF01->config = FIFO_RESET; /* reset the chip */ 

error=0; 

register_addr =(char *) FIF01; 

}= ; 

/* first test registers 0 thru 5 *1 

for (i=0; i<6; i++) ( 

*register_addr = OxFF; 1* write test data */ 

if (*registeraddr 1= reg_expected_data(i]) error 1= j; 

*register_addr = 0; /* write Os to register */ 
if (*register_addr) error 1= j; 

*register_addr = OxFF; /* write test data again */ 
if (*register_addr 1= reg_expected_data[ii) error 1= j; 
FIF01->config = FIFO_RESET; /* reset the chip */ 
if (*register_addr) error 1= j; /* register should be 0 */ 

Apple Inc.
Ex. 1012 - Page 41



5,163,131 
57 58 

register_addr++; /* go to next register */ 

j <<-1; 

/* now test Ram data & checksum registers 

test is throughout Ram & then test Os */ 

for (test_data = -1; test_data 1= 1; test_data++) ( /* test 

for is & Os */ 
FIF01->config = FIFO_RESET I FIFO_16_BITS ; 

FIF01->control = FIFO_PORT_A_TO_B; 

for (i0;i<RAM_DEPTH;i++) /* write data to RAM */ 

FIF01->data = test_data; 

FIF01->control = 0; 

for (i=0;i<RAM_DEPTH;i++) 

if (FIF01->data 1= test_data) error I= j; /* read 

& check data */ 

if (FIF01->checksum) error I= 0x80; /* checksum 

should = 0 */ 

/* now test Ram data with address pattern 

uses a different pattern for every byte t/ 

test_data=0x00010203; /* address pattern start */ 

FIF01->config = FIFO_RESET 1 FIFO_16_BITS I FIFO_CARRY_WRAP; 

FIF01->control = FIFO_PORT_A_TO_B I FIFO_CHECKSUM_ENABLE; 

for (i=0;i<RAM_DEPTH;i++) { 

FIF01->data = test_data; /* write address pattern */ 

test_data += 0x04040404; 

test_data=0x00010203; /* address pattern start */ 

FIFO1->control ='FIFO_CHECKSUM_ENABLE; 

for (i=0;i<RAM_DEPTH;i++) { 
if (FIF01->status 1= FIFO_DATA_IN_RAM) 

error I= 0x04; /* should be data in ram */ 

if (FIF01->data 1= test_data) error I= j; /* read &

check address pattern */ 
test_data += 0x04040404; 

if (FIF01->checksum 1= 0x0102) error 0x80; /* test 

checksum of address pattern */ 
FIF01->config = FIFO_RESET I FIFO_ 16 BITS ; /* inhibit carry 

wrap */ 

FIF01->checksum = OxFEFE; /* writing adds to checksum */ 

if (FIF01->checksum) error I=0x80; /* checksum should be 0 */ 
if (FIF01->status) error := 0x04; /* status should be 0 */ 
return (error); 

I 

Attorney Docket No.:AUSP7209 
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What is claimed is: 
1. Network server apparatus for use with a data net-

work and a mass storage device, comprising: 
an interface processor unit coupleable to said net-

work and to said mass storage device; 
a host processor unit capable of running remote pro-

cedures defined by a client node on said network; 
means in said interface processor unit for satisfying 

requests from said network to store data from said 
network on said mass storage device; 

means in said interface processor unit for satisfying 
requests from said network to retrieve data from 
said mass storage device to said network; and 

means in said interface processor unit for transmitting 
predefined categories of messages from said net-
work to said host processor unit for processing in 
said host processor unit, said transmitted messages 
including all requests by a network client to run 
client-defined procedures on said network server 
apparatus. 

2. Apparatus according to claim 1, wherein said inter-
face processor unit comprises: 

a network control unit coupleable to said network; 
a data control unit coupleable to said mass storage 

device; 
a buffer memory; 
means in said network control unit for transmitting to 

said data control unit requests from said network to 
store specified storage data from said network on 
said mass storage device; 

means in said network control unit for transmitting 
said specified storage data from said network to 
said buffer memory and from said buffer memory 
to said data control unit; 

means in said network control unit for transmitting to 
said data control unit requests from said network to 
retrieve specified retrieval data from said mass 
storage device to said network; 

means in said network control unit for transmitting 
said specified retrieval data from said data control 
unit to said buffer memory and from said buffer 
memory to said network; and 

means in said network control unit for transmitting 
said predefined categories of messages from said 
network to said host processing unit for processing 
by said host processing unit. 

3. Apparatus according to claim 2, wherein said data 
control unit comprises: 

a storage processor unit coupleable to said mass stor-
age device; 

a file processor unit; 
means on said file processor unit; for translating said 

file system level storage requests from said net-
work into requests to store data at specified physi-
cal storage locations in said mass storage device; 

means on said file processor unit for instructing said 
storage processor unit to write data from said 
buffer memory into said specified physical storage 
locations in said mass storage device; 

means on said file processor unit for translating file 
system level retrieval requests from said network 
into requests to retrieve data from specified physi-
cal retrieval locations in said mass storage device; 

means on said file processor unit for instructing said 
storage processor unit to retrieve data from said 
specified physical retrieval locations in said mass 
storage device to said buffer memory if said data 
from said specified physical locations is not already 
in said buffer memory; and 

60 
means in said storage processor unit for transmitting 

data between said buffer memory and said mass 
storage device. 

4. Network server apparatus for use with a data net-
5 work and a mass storage device, comprising: 

a network control unit coupleable to said network; 
a data control unit coupleable to said mass storage 

device; 
a buffer memory; 

10 means for transmitting from said network control unit 
to said data control unit requests from said network 
to store specified storage data from said network 
on said mass storage device; 

means for transmitting said specified storage data by 
15 DMA from said network control unit to said buffer 

memory and by DMA from said buffer memory to 
said data control unit; 

means for transmitting from said network control unit 
to said data control unit requests from said network 

20 to retrieve specified retrieval data from said mass 
storage device to said network; and 

means for transmitting said specified retrieval data by 
DMA from said data control unit to said buffer 
memory and by DMA from said buffer memory to 

25 said network control unit. 
5. Apparatus according to claim 1, for use further 

with a buffer memory, and wherein said requests from 
said network to store and retrieve data include file sys-
tem level storage and retrieval requests respectively, 

30 and wherein said interface processor unit comprises: 
a storage processor unit coupleable to said mass stor-

age device; 
a file processor unit; 
means on said file processor unit for translating said 

35 file system level storage requests into requests to 
store data at specified physical storage locations in 
said mass storage device; 

means on said file processor unit for instructing said 
storage processor unit to write data from said 
buffer memory into said specified physical storage 
locations in said mass storage device; 

means on said file processor unit for translating said 
file system level retrieval requests into requests to 

45 retrieve data from specified physical retrieval loca-
tions in said mass storage device; 

means on said file processor unit for instructing said 
storage processor- unit to retrieve data from said 
specified physical retrieval locations in said mass 

50 storage device to said buffer memory if said data 
from said specified physical locations is not already 
in said buffer memory; and 

means in said storage processor unit for transmitting 
data between said buffer memory and said mass 

55 storage device. 
6. A data control unit for use with a data network and 

a mass storage device, and in response to file system 
level storage and retrieval requests from said data net-
work, comprising: 

60 a data bus different from said network; 
a buffer memory bank coupled to said bus; 
storage processor apparatus coupled to said bus and 

coupleable to said mass storage device; 
file processor apparatus coupled to said bus, said file 

65 processor apparatus including a local memory bank 
first means on said file processor unit for translating 

said file system level storage requests into requests 
to store data at specified physical storage locations 
in said mass storage device; and 

40 
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second means on said file processor unit for translat-

ing said file system level retrieval requests into 
requests to retrieve data from specified physical 
retrieval locations in said mass storage device, said 
first and second means for translating collectively 5 
including means for caching file control informa-
tion through said local memory bank in said file 
processor unit, 

said data control unit further comprising means for 
caching the file data, to be stored or retrieved ac- 10 
cording to said storage and retrieval requests, 
through said buffer memory bank. 

7. A network node for use with a data network and a 
mass storage device, comprising: 

a system buffer memory; 15 
a host processor unit having direct memory access to 

said system buffer memory; 
a network control unit coupleable to said network 

and having direct memory access to said system 
buffer memory; 20 

a data control unit coupleable to said mass storage 
device and having direct memory access to said 
system buffer memory; 

first means for satisfying requests from said network 
to store data from said network on said mass stor- 25 
age device; 

second means for satisfying requests from said net-
work to retrieve data from said mass storage device 
to said network; and 

third means for transmitting predefined categories of 30 
messages from said network to said host processor 
unit for processing in said host processor unit, said 
first, second and third means collectively including 
means for transmitting from said network control 

unit to said system memory bank by direct mem- 35 
ory access file data from said network for stor-
age on said mass storage device, 

means for transmitting from said system memory 
bank to said data control unit by direct memory 
access said file data from said network for stor- 40 
age on said mass storage device, 

means for transmitting from said data control unit 
to said system memory bank by direct memory 
access file data for retrieval from said mass stor-
age device to said network, and 45

means for transmitting from said system memory 
bank to said network control unit said file data 
for retrieval from said mass storage device to 
said network; 

50 at least said network control unit including a micro-
processor and local instruction storage means dis-
tinct from said system buffer memory, all instruc-
tions for said microprocessor residing in said local 
instruction storage means. 

8. A network file server for use with a data network 
and a mass storage device, comprising: 

a host processor unit running a Unix operating sys-
tem; 

an interface processor unit coupleable to said net- 60 
work and to said mass storage device, said interface 
processor unit including means for decoding all 
NFS requests from said network, means for per-
forming all procedures for satisfying said NFS 
requests, means for encoding any NFS reply mes 65 -
sages for return transmission on said network, and 
means for transmitting predefined non-NFS cate-
gories of messages from said network to said host 
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processor unit for processing in said host processor 
unit. 

9. Network server apparatus for use with a data net-
work, comprising: 

a network controller coupleable to said network to 
receive incoming information packets over said 
network, said incoming information packets in-
cluding certain packets which contain part or all of 
a request to said server apparatus, said request 
being in either a first or a second class of requests to 
said server apparatus; 

a first additional processor; 
an interchange bus different from said network and 

coupled between said network controller and said 
first additional processor; 

means in said network controller for detecting and 
satisfying requests in said first class of requests 
contained in said certain incoming information 
packets, said network controller lacking means in 
said network controller for satisfying requests in 
said second class of requests; 

means in said network controller for detecting and 
assembling into assembled requests, requests in said 
second class of requests contained in said certain 
incoming information packets; 

means for delivering said assembled requests from 
said network controller to said first additional pro-
cessor over said interchange bus; and 

means in said first additional processor for further 
processing said assembled requests in said second 
class of requests. 

10. Apparatus according to claim 9, wherein said 
packets each include a network node destination ad-
dress, and wherein said means in said network control-
ler for detecting and assembling into assembled re-
quests, assembles said assembled requests in a format 
which omits said network node destination addresses. 

11. Apparatus according to claim 9, wherein said 
means in said network controller for detecting and satis-
fying requests in said first class of requests, assembles 
said requests in said first class of requests into assembled 
requests before satisfying said requests in said first class 
of requests. 

12. Apparatus according to claim 9, wherein said 
packets each include a network node destination ad-
dress, wherein said means in said network controller for 
detecting and assembling into assembled requests, as-
sembles said assembled requests in a format which omits 
said network node destination addresses, and wherein 
said means in said network controller for detecting and 
satisfying requests in said first class of requests, assem-
bles said requests in said first class of requests, in a for-
mat which omits said network node destination ad-
dresses, before satisfying said requests in said first class 
of requests. 

13. Apparatus according to claim 9, wherein said 
means in said network controller for detecting and satis-
fying requests in said first class includes means for pre-
paring an outgoing message in response to one of said 
first class of requests, means for packaging said outgo-
ing message in outgoing information packets suitable for 
transmission over said network, and means for transmit-
ting said outgoing information packets over said net-
work. 

14. Apparatus according to claim 9, further compris-
ing a buffer memory coupled to said interchange bus, 
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and wherein said means for delivering said assembled 
requests comprises: 

means for transferring the contents of said assembled 
requests over said interchange bus into said buffer 
memory; and 5 

means for notifying said first additional processor of 
the presence of said contents in said buffer mem-
ory. 

15. Apparatus according to claim 9, wherein said 
means in said first additional processor for further pro- I 
cessing said assembled requests includes means for pre-
paring an outgoing message in response to one of said 
second class of requests, said apparatus further compris-
ing means for delivering said outgoing message from 
said first additional processor to said network controller I 
over said interchange bus, said network controller fur-
ther comprising means in said network controller for 
packaging said outgoing message in outgoing informa-
tion packets suitable for transmission over said network, 
and means in said network controller for transmitting 2 
said outgoing information packages over said network. 

16. Apparatus according to claim 9, wherein said first 
class of requests comprises requests for an address of 
said server apparatus, and wherein said means in said 
network controller for detecting and satisfying requests 2 
in said first class comprises means for preparing a re-
sponse packet to such an address request and means for 
transmitting said response packet over said network. 

17. Apparatus according to claim 9, for use further 
with a second data network, said network controller 3 

being coupleable further to said second network, 
wherein said first class of requests comprises requests to 
route a message to a destination reachable over said 
second network, and wherein said means in said net-
work controller for detecting and satisfying requests in 3 
said first class comprises means for detecting that one of 
said certain packets comprises a request to route a mes-
sage contained in said one of said certain packets to a 
destination reachable over said second network, and 
means for transmitting said message over said second 40 
network. 

18. Apparatus according to claim 17, for use further 
with a third data network, said network controller fur-
ther comprising means in said network controller for 
detecting particular requests in said incoming informa- 4
tion packets to route a message contained in said partic-
ular requests, to a destination reachable over said third 
network, said apparatus further comprising: 

a second network controller coupled to said inter-
change bus and couplable to said third data net- 5
work; 

means for delivering said message contained in said 
particular requests to said second network control-
ler over said interchange bus; and 

means in said second network controller for transmit- 5
ting said message contained in said particular re-
quests over said third network. 

19. Apparatus according to claim 9, for use further 
with a third data network, said network controller fur-
ther comprising means in said network controller for 
detecting particular requests in said incoming informa-
tion packets to route a message contained in said partic-
ular requests, to a destination reachable over said third 
network, said apparatus further comprising: 

a second network controller coupled to said inter-
change bus and couplable to said third data net-
work; 
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means for delivering said message contained in said 
particular requests to said second network control-
ler over said interchange bus; and 

means in said second network controller for transmit-
ting said message contained in said particular re-
quests over said third network. 

20. Apparatus according to claim 9, for use further 
with a mass storage device, wherein said first additional 
processor comprises a data control unit couplable to 

0 said mass storage device, wherein said second class of 
requests comprises remote calls to procedures for man-
aging a file system in said mass storage device, and 
wherein said means in said first additional processor for 
further processing said assembled requests in said sec-

5 and class of requests comprises means for executing file 
system procedures on said mass storage device in re-
sponse to said assembled requests. 

21. Apparatus according to claim 20, wherein said file 
system procedures include a read procedure for reading 

o data from said mass storage device, 
said means in said first additional processor for fur-

ther processing said assembled requests including 
means for reading data from a specified location in 
said mass storage device in response to a remote 

5 call to said read procedure, 
said apparatus further including means for delivering 

said data to said network controller, 
said network controller further comprising means on 

said network controller for packaging said data in 
O outgoing information packets suitable for transmis-

sion over said network, and means for transmitting 
said outgoing information packets over said net-
work. 

22. Apparatus according to claim 21, wherein said 
5 means for delivering comprises: 

a system buffer memory coupled to said interchange 
bus; 

means in said data control unit for transferring said 
data over said interchange bus into said buffer 
memory; and 

means in said network controller for transferring said 
data over said interchange bus from said system 
buffer memory to said network controller. 

5 23. Apparatus according to claim 20, wherein said file 
system procedures include a read procedure for reading 
a specified number of bytes of data from said mass stor-
age device beginning at an address specified in logical 
terms including a file system ID and a file ID, said 

O means for executing file system procedures comprising: 
means for converting the logical address specified in 

a remote call to said read procedure to a physical 
address; and 

means for reading data from said physical address in 

5 said mass storage device. 
24. Apparatus according to claim 23, wherein said 

mass storage device comprises a disk drive having a 
numbered tracks and sectors, wherein said logical ad-
dress specifies said file system ID, said file ID, and a 

60 byte offset, and wherein said physical address specifies 
a corresponding track and sector number. 

25. Apparatus according to claim 20, wherein said file 
system procedures include a read procedure for reading 
a specified number of bytes of data from said mass stor-

65 age device beginning at an address specified in logical 
terms including a file system ID and a file ID, 

said data control unit comprising a file processor 
coupled to said interchange bus and a storage pro-
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censor coupled to said interchange bus and coupla- perform said function of detecting and assembling 
ble to said mass storage device, into assembled requests, requests in said second 

said file processor comprising means for converting class of requests. 
the logical address specified in a remote call to said 31. Network server apparatus for use with a data 
read procedure to a physical address, 5 network, comprising: 

said apparatus further comprising means for deliver- a network controller coupleable to said network to 
receive incoming information packets over said 
network, said incoming information packets in-
cluding certain packets which contain part or all of 
a message to said server apparatus, said message 
being in either a first or a second class of messages 
to said server apparatus, said messages in said first 
class or messages including certain messages con-
taining requests; 

a host computer; 
an interchange bus different from said network and 

coupled between said network controller and said 
host computer; 

means in said network controller for detecting and 
satisfying said requests in said first class of mes-
sages; 

means for delivering messages in said second class of 
messages from said network controller to said host 
computer over said interchange bus; and 

means in said host computer for further processing 
said messages in said second class of messages. 

of requests comprises remote calls to procedures other 32. Apparatus according to claim 31, wherein said 
than procedures for managing a file system, and packets each include a network node destination ad-
wherein said means in said first additional processor for 30 dress, and wherein said means for delivering messages 
further processing said assembled requests in said sec- in said second class of messages comprises means in said 
and class of requests comprises means for executing network controller for detecting said messages in said 
remote procedure calls in response to said assembled second class of messages and assembling them into as-
requests. sembled messages in a format which omits said network 

28. Apparatus according to claim 27, for use further node' destination addresses. 
with a mass storage device and a data control unit " 33. Apparatus according to claim 31, wherein said 
couplable to said mass storage device and coupled to means in said network controller for detecting and satis-
said interchange bus, wherein said network controller fying requests in said first class includes means for pre-
further comprises means in said network controller for paring an outgoing message in response to one of said 
detecting and assembling remote calls, received over 40 requests in said first class of messages, means for pack-
said network, to procedures for managing a file system aging said outgoing message in outgoing information 
in said mass storage device, and wherein said data con- packets suitable for transmission over said network, and 
trol unit comprises means for executing file system pro- means for transmitting said outgoing information pack-
cedures on said mass storage device in response to said ets over said network. 
remote calls to procedures for managing a file system in 45 34. Apparatus according to claim 31, for use further 
said mass storage device. with a second data network, said network controller 

29. Apparatus according to claim 27, further compris- being coupleable further to said second network, 

ing means for delivering all of said incoming informa- wherein said first class of messages comprises messages 

tion packets not recognized by said network controller to be routed to a destination reachable over said second 

to said host computer over said interchange bus. 50 network, and wherein said means in said network con-
troller for detecting and satisfying requests in said first 

30. Apparatus according to claim 9, wherein said class comprises means for detecting that one of said 
network controller comprises: certain packets includes a request to route a message 

a microprocessor; contained in said one of said certain packets to a destina-
a local instruction memory containing local instruc- tion reachable over said second network, and means for 

tion code; 55 
transmitting said message over said second network. 

a local bus coupled between said microprocessor and 35. Apparatus according to claim 31, for use further 
said local instruction memory; with a third data network, said network controller fur-

bus interface means for interfacing said microproces- ther comprising means in said network controller for 
sor with said interchange bus at times determined detecting particular messages in said incoming informa-
by said microprocessor in response to said local 60 tion packets to be routed to a destination reachable over 
instruction code; and said third network, said apparatus further comprising: 

network interface means for interfacing said micro- a second network controller coupled to said inter-
processor with said data network, change bus and couplable to said third data net-. 

said local instruction memory including all instruc- work; 65
tion code necessary for said microprocessor to means for delivering said particular messages to said 
perform said function of detecting and satisfying second network controller over said interchange 
requests in said first class of requests, and all in- bus, substantially without involving said host corn-
struction code necessary for said microprocessor to puter; and 

ing said physical address to said storage processor, 
said storage processor comprising means for reading 

data from said physical address in said mass storage 
device and for transferring said data over said in- 10
terchange bus into said buffer memory; and 

means in said network controller for transferring said 
data over said interchange bus from said system 
buffer memory to said network controller. 

26. Apparatus according to claim 20, wherein said file 15
system procedures include a write procedure for writ-
ing data contained in an assembled request, to said mass 
storage device, 

said means in said first additional processor for fur-
ther processing said assembled requests including 20
means for writing said data to a specified location 
in said mass storage device in response to a remote 
call to said read procedure. 

27. Apparatus according to claim 9, wherein said first 
additional processor comprises a host computer cou- " 
pled to said interchange bus, wherein said second class 
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means in said second network controller for transmit-
ting said message contained in said particular re-
quests over said third network, substantially with-
out involving said host computer. 

36. Apparatus according to claim 31, for use further 
with a mass storage device, further comprising a data 
control unit coupleable to said mass storage device, 

said network controller further comprising means in 
said network controller for detecting ones of said 
incoming information packets containing remote 
calls to procedures for managing a file system in 
said mass storage device, and means in said net-
work controller for assembling said remote calls 
from said incoming packets into assembled calls, 
substantially without involving said host computer, 

said apparatus further comprising means for deliver-
ing said assembled file system calls to said data 
control unit over said interchange bus substantially 
without involving said host computer, 

and said data control unit comprising means in said 
data control unit for executing file system proce-
dures on said mass storage device in response to 
said assembled file system calls, substantially with-
out involving said host computer. 

37. Apparatus according to claim 31, further compris-
ing means for delivering all of said incoming informa-
tion packets not recognized by said network controller 
to said host computer over said interchange bus. 

38. Apparatus according to claim 31, wherein said 
network controller comprises: 

a microprocessor; 
a local instruction memory containing local instruc-

tion code; 
a local bus coupled between said microprocessor and 

said local instruction memory; 
bus interface means for interfacing said microproces-

sor with said interchange bus at times determined 
by said microprocessor in response to said local 
instruction code; and 

network interface means for interfating 
processor with said data network, 

said local instruction memory including all instruc-
tion code necessary for said microprocessor to 
perform said function of detecting and satisfying 
requests in said first class of requests. 

39. File server apparatus for use with a mass storage 
device, comprising: 

a requesting unit capable of issuing calls to file system 
procedures in a device-independent form; 

a file controller including means for converting said 
file system procedure calls from said device-
independent form to a device-specific form and 
means for issuing device-specific commands in 
response to at least a subset of said procedure calls, 
said file controller operating in parallel with said 
requesting unit; and 

a storage processor including means for executing 
said device-specific commands on said mass stor-
age device, said storage processor operating in 
parallel with said requesting unit and said file con-
troller. 

40. Apparatus according to claim 39, further compris-
ing: 

an interchange bus; 
first delivery means for delivering said file system 

procedure calls from said requesting unit to said file 
controller over said interchange bus; and 

said micro- 40 

68 
second delivery means for delivering said device-

specific commands from said file controller to said 
storage processor over said interchange bus. 

41. Apparatus according to claim 39, further compris-
5 ing: 

an interchange bus coupled to said requesting unit 
and to said file controller; 

first memory means in said requesting unit and ad-
dressable over said interchange bus; 

10 second memory means in said file controller; 
means in said requesting unit for preparing in said first 

memory means one of said calls to file system pro-
cedures; 

means for notifying said file controller of the avail-
15 ability of said one of said calls in said first memory 

means; and 
means in said file controller for controlling an access 

to said first memory means for reading said one of 
said calls over said interchange bus into said second 

20 memory means in response to said notification. 
42. Apparatus according to claim 41, wherein said 

means for notifying said file controller comprises: 
a command FIFO in said file controller addressable 

over said interchange bus; and 
25 means in said requesting unit for controlling an access 

to said FIFO for writing a descriptor into said 
FIFO over said interchange bus, said descriptor 
describing an address in said first memory means of 
said one of said calls and an indication that said 

30 address points to a message being sent. 
43. Apparatus according to claim 41, further compris-

ing: 
means in said file controller for controlling an access 

to said first memory means over said interchange 
35 bus for modifying said one of said calls in said first 

memory means to prepare a reply to said one of 
said calls; and 

means for notifying said requesting unit of the avail-
ability of said reply in said first memory. 

44. Apparatus according to claim 41, further compris-
ing: 

a command FIFO in said requesting processor ad-
dressable over said interchange bus; and 

means in said file controller for controlling an access 
45 to said FIFO for writing a descriptor into said 

FIFO over said interchange bus, said descriptor 
describing said address in said first memory and an 
indication that said address points to a reply to said 
one of said calls. 

45. Apparatus according to claim 39, further compris-
ing: 

an interchange bus coupled to said file controller and 
to said storage processor; 

55 second memory means in said file controller and 
addressable over said interchange bus; 

means in said file controller for preparing one of said 
device-specific commands in said second memory 
means; 

means for notifying said storage processor of the 
availability of said one of said commands in said 
second memory means; and 

means in said storage processor for controlling an 
access to said second memory means for reading 
said one of said commands over said interchange 
bus in response to said notification. 

46. Apparatus according to claim 45, wherein said 
means for notifying said storage processor comprises: 

50 
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a command FIFO in said storage processor address-
able over said interchange bus; and 

means in said file controller for controlling an access 
to said FIFO for writing a descriptor into said 
FIFO over said interchange bus, said descriptor 5 
describing an address in said second memory of 
said one of said calls and an indication that said 
address points to a message being sent. 

47. Apparatus according to claim 39, wherein said 
means for converting said file system procedure calls 10 
comprises: 

a file control cache in said file controller, storing 
device-independent to device-specific conversion 
information; and 

means for performing said conversions in accordance 15 
with said conversion information in said file con-
trol cache. 

48. Apparatus according to claim 39, wherein said 
mass storage device includes a disk drive having num-
bered sectors, wherein one of said file system procedure 20 
calls is a read data procedure call, 

said apparatus further comprising an interchange bus 
and a system buffer memory addressable over said 
interchange bus, 

said means for converting said file system procedure 25 
calls including means for issuing a read sectors 
command in response to one of said read data pro-
cedure calls, said read sectors command specifying 
a starting sector on said disk drive, a count indicat-
ing the amount of data to read, and a pointer to a 30 
buffer in said system buffer memory, and 

said means for executing device-specific commands 
including means for reading data from said disk 
drive beginning at said starting sector and continu-
ing for the number of sectors indicated by said 35 
count, and controlling an access to said system 
buffer memory for writing said data over said inter-
change bus to said buffer in said system buffer 
memory. 

49. Apparatus according to claim 48, wherein said file 40 
controller further includes means for determining 
whether the data specified in said one of said read data 
procedure calls is already present in said system buffer 
memory, said means for converting issuing said read 
sectors command only if said data is not already present 45 
in said system buffer memory. 

50. Apparatus according to claim 48, further compris-
ing: 

means in said storage processor for controlling a 
notification of said file controller when said read 50 
sectors command has been executed; 

means in said file controller, responsive to said notifi-
cation from said storage processor, for controlling 
a notification of said requesting unit that said read 
data procedure call has been executed; and 55 

means in said requesting unit, responsive to said noti-
fication from said file controller, for controlling an 
access to said system buffer memory for reading 
said data over said interchange bus from said buffer 
in said system buffer memory to said requesting 60 
unit. 

51. Apparatus according to claim 39, wherein said 
mass storage device includes a disk drive having num-
bered sectors, wherein one of said file system procedure 
calls is a write data procedure call, 65 

said apparatus further comprising an interchange bus 
and a system buffer memory addressable over said 
interchange bus, 
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said means for converting said file system procedure 
calls including means for issuing a write sectors 
command in response to one of said write data 
procedure calls, said write data procedure call 
including a pointer to a buffer in said system buffer 
memory containing data to be written, and said 
write sectors command including a starting sensor 
on said disk drive, a count indicating the amount of 
data to write, and said pointer to said buffer in said 
buffer memory, and 

said means for executing device-specific commands 
including means for controlling an access to said 
buffer memory for reading said data over said in-
terchange bus from said buffer in said system buffer 
memory, and writing said data to said disk drive 
beginning at said starting sector and continuing for 
the number of sectors indicated by said count. 

52. Apparatus according to claim 51, further compris-
ing: 

means in said requesting unit for controlling an access 
to said system buffer memory for writing said data 
over said interchange bus to said buffer in said 
system buffer memory; and 

means in said requesting unit for issuing said one of 
said write data procedure calls when said data has 
been written to said buffer in said system buffer 
memory. 

53. Apparatus according to claim 52, further compris-
ing: 

means in said requesting unit for issuing a buffer allo-
cation request; and 

means in said file controller for allocating said buffer 
in said system buffer memory in response to said 
buffer allocation request, and for providing said 
pointer, before said data is written to said buffer in 
said system buffer memory. 

54. Network controller apparatus for use with a first 
data network carrying signals representing information 
packets encoded according to a first physical layer 
protocol, comprising: 

a first network interface unit, a first packet bus and 
first packet memory addressable by said first net-
work interface unit over said first packet bus, said 
first network interface unit including means for 
receiving signals over said first network represent-
ing incoming information packets, extracting said 
incoming information packets and writing said 
incoming information packets into said first packet 
memory over said first packet bus; 

a first packet bus port; 
first packet DMA means for reading data over said 

first packet bus from said first packet memory to 
said first packet bus port; and 

a local processor including means for accessing said 
incoming information packets in said first packet 
memory and, in response to the contents of said 
incoming information packets, controlling said first 
packet DMA means to read selected data over said 
first packet bus from said first packet memory to 
said first packet bus port, said local processor in-
cluding a CPU, a CPU bus and CPU memory con-
taining CPU instructions, said local processor op-
erating in response to said CPU instructions, said 
CPU instructions being received by said CPU over 
said CPU bus independently of any of said writing 
by said first network interface unit of incoming 
information packets into said first packet memory 
over said first packet bus and independently of any 
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of said reading by said first packet DMA means of 
data over said first packet bus from said first packet 
memory to said first packet bus port. 

55. Apparatus according to claim 54, wherein said 
first network interface unit further includes means for 
reading outgoing information packets from said first 
packet memory over said first packet bus, encoding said 
outgoing information packets according to said first 
physical layer protocol, and transmitting signals over 
said first network representing said outgoing informa-
tion packets, 

said local processor further including means for pre-
paring said outgoing information packets in said 
first packet memory, and for controlling said first 
network interface unit to read, encode and transmit 
said outgoing information packets, 

said receipt of CPU instructions by said CPU over 
said CPU bus being independent further of any of 
said reading by said first network interface unit of 
outgoing information packets from said first packet 
memory over said first packet bus. 

56. Apparatus according to claim 54, further compris-
ing a first FIFO having first and second ports, said first 
port of said first FIFO being said first packet bus port. 

57. Apparatus according to claim 56, for use further 
with an interchange bus, further comprising inter-
change bus DMA means for reading data from said 
second port of said first FIFO onto said interchange 
bus, 

said local processor further including means for con-
trolling said interchange bus DMA means to read 
said data from said second port of said first FIFO 
onto said interchange bus. 

58. Apparatus according to claim 54, for use further 
with a second data network carrying signals represent-
ing information packets encoded according to a second 
physical layer protocol, further comprising: 

a second network interface unit, a second packet bus 
and second packet memory addressable by said 
second network interface unit over said second 
packet bus, said second network interface unit in-
cluding means for reading outgoing information 
packets from said second packet memory over said 
second packet bus, encoding said outgoing infor-
mation packets according to said second physical 
layer protocol, and transmitting signals over said 
second network representing said outgoing infor-
mation packets; 

a second packet bus port; and 
second packet DMA means for reading data over said 

second packet bus from said second packet bus port 
to said second packet memory, 
said local processor further including means for 

controlling said second packet DMA means to 
read data over said second packet bus from said 
second packet bus port to said second packet 
memory, and for controlling said second net-
work interface unit to read, encode and transmit 
outgoing information packets from said data in 
said second packet memory, 

said receipt of CPU instructions by said CPU over 
said CPU bus being independent further of any 
of said reading by said second packet DMA 
means of data over said second packet bus from 
said second packet bus port to said second packet 
memory, and independent further of any of said 
reading by said second network interface unit of 
outgoing information packets from said second 
packet memory over said second packet bus, 

5,163,131 
72 

and all of said accesses to said first packet memory 
over said first packet bus being independent of 
said accesses to said second packet memory over 
said second packet bus. 

5 59. Apparatus according to claim 58, wherein said 
second physical layer protocol is the same as said first 
physical layer protocol. 

60. Apparatus according to claim 58, further compris-
ing means, responsive to signals from said processor, for 

10 coupling data from said first packet bus port to said 
second packet bus port. 

61. Apparatus according to claim 60, further compris-
ing: 

first and second FIFOs, each having first and second 
15 ports, said fist port of said first FIFO being said 

first packet bus port and said first port of said sec-
ond FIFO being said second packet bus port; 

an interchange bus; and 
interchange bus DMA means for transferring data 

20 between said interchange bus and either said sec-
ond port of said first FIFO or said second port of 
said second FIFO, selectably in response to DMA 
control signals from said local processor. 

25 

30 

62. Apparatus according to claim 61, wherein said 
interchange bus DMA means comprises: 

a transfer bus coupled to said second port of said first 
FIFO and to said second port of said second FIFO; 

coupling means coupled between said transfer bus 
and said interchange bus; and 

a controller coupled to receive said DMA control 
signals from said processor and coupled to said first 
and second FIFOs and to said coupling means to 
control data transfers over said transfer bus. 

35 63. Storage processing apparatus for use with a plu-
rality of storage devices on a respective plurality of 
channel buses, and an interchange bus, said interchange 
bus capable of transferring data at a higher rate than any 
of said channel buses, comprising: 

40 data transfer means coupled to each of said channel 
buses and to said interchange bus, for transferring 
data in parallel between said data transfer means 
and each of said channel buses at the data transfer 
rates of each of said channel buses, respectively, 

45 and for transferring data between said data transfer 
means and said interchange bus at a data transfer 
rate higher than said data transfer rates of any of 
said channel buses; 'and 

a local processor including transfer control means for 
50 controlling said data transfer means to transfer data 

between said data transfer means and specified ones 
of said channel buses and for controlling said data 
transfer means to transfer data between said data 
transfer means and said interchange bus, 

55 said local processor including a CPU, a CPU bus 
and CPU memory containing CPU instructions, 
said local processor operating in response to said 
CPU instructions, said CPU instructions being 
received by said CPU over said CPU bus inde-
pendently of any of said data transfers between 
said channel buses and said data transfer means 
and independently of any of said data transfers 
between said data transfer means and said inter-
change bus. 

64. Apparatus according to claim 63, wherein the 
highest data transfer rate of said interchange bus is 
substantially equal to the sum of the highest data trans-
fer rates of all of said channel buses. 

60 

65 
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65. Apparatus according to claim 63, wherein said 

data transfer means comprises: 
a FIFO corresponding to each of said channel buses, 

each of said FIFOs having a first port and a second 
port; 

a channel adapter coupled between the first port of 
each of said FIFOs and a respective one of said 
channels; and 

DMA means coupled to the second port of each of 
said FIFOs and to said interchange bus, for trans-
ferring data between said interchange bus and one 
of said FIFOs as specified by said local processor, 
said transfer control means in said local processor 

comprising means for controlling each of said 
channel adapters separately to transfer data be-
tween the channel bus coupled to said channel 
adapter and the FIFO coupled to said channel 
adapter, and for controlling said DMA control-
ler to transfer data between separately specified 
ones of said FIFOs and said interchange bus, said 
DMA means performing said transfers sequen-
tially. 
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66. Apparatus according to claim 65, wherein said 

DMA means comprises a command memory and a 
DMA processor, said local processor having means for 
writing FIFO/interchange bus DMA commands into 
said command memory, each of said commands being 
specific to a given one said FIFOs and including an 
indication of the direction of data transfer between said 
interchange bus and said given FIFO, each of said 
FIFOs generating a ready status indication, said DMA 
processor controlling the data transfer specified in each 
of said commands sequentially after the corresponding 
FIFO indicates a ready status, and notifying said local 
processor upon completion of the data transfer specified 
in each of said commands. 

67. Apparatus according to claim 65 further compris-
ing an additional FIFO coupled between said CPU bus 
and said DMA memory, said local processor further 
having means for transferring data between said CPU 
and said additional FIFO, and said DMA means being 
further for transferring data between said interchange 
bus and said additional FIFO in response to commands 
issued by said local processor. 

* * * * * 
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