
UNIX®
Network

Programming

W. Richard Stevens
Health Systems International

PTR Prentice Hall
Englewood Cliffs, New Jersey 07632 Apple Inc.

Ex. 1013 - Page 1

Library of Congress Cataloging—in—Publication Data

Stevens, W. Richard.
UNIX network programming / W. Richard Stevens.

P. cm.
Includes bibliographical references.
ISBN 0-13-949876-1
1. UNIX (Computer operating system) 2. Computer networks.

I. Title.
0A76.76.063S755 1990
005.7'1--dc20

To Sally, Bill, and Ellen.

Editorial/production supervision: Brendan M. Stewart
Cover design: Lundgren Graphics Ltd.
Manufacturing buyer: Ray Sintel

Prentice Hall Software Series
Brian W. Kernighan, Advisor

© 1990 by P T R Prentice Hall
Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

UNIX® is a registered trademark of AT&T.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
20 19 18 17 16 15 14 13 12 11

ISBN 0-13-949876- 1

Prentice-Hall International (UK) Limited, London

Prentice-Hall of Australia Pty. Limited, Sydney

Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

89-25576
CIP

Apple Inc.
Ex. 1013 - Page 2

1

Introduction

1.1 History

Computer networks have revolutionized our use of computers. They pervade our every-
day life, from automated teller machines, to airline reservation systems, to electronic mail
services, to electronic bulletin boards. There are many reasons for the explosive growth
in computer networks.

• The proliferation of personal computers and workstations during the 1980s helped
fuel the interest and need for networks.

• Computer networks used to be expensive and were restricted to large universities,
government research sites, and large corporations. Technology has greatly
reduced the cost of establishing computer networks, and networks are now found
in organizations of every size.

• Many computer manufacturers now package networking software as part of the
basic operating system. Networking software is no longer regarded as an add-on
that only a few customers will want. It is now considered as essential as a text
editor.

• We are in an information age and computer networks are becoming an integral
part in the dissemination of information.

Computer systems used to be stand-alone entities. Each computer was self-
contained and had all the peripherals and software required to do a particular job. If a
particular feature was needed, such as line printer output, a line printer was attached to

1 Apple Inc.
Ex. 1013 - Page 3

2 Introduction Chapter 1

the system. If large amounts of disk storage were needed, disks were added to the sys-
tem. What helped change this is the realization that computers and their users need to
share information and resources.

Information sharing can be electronic mail or file transfer. Resource sharing can
involve accessing a peripheral on another system. Twenty years ago this type of sharing
took place by exchanging magnetic tapes, decks of punched cards, and line printer list-
ings. Today computers can be connected together using various electronic techniques
called networks. A network can be as simple as two personal computers connected
together using a 1200 baud modem, or as complex as the TCP/IP Internet, which con-
nects over 150,000 systems together. The number of ways to connect a computer to a
network are many, as are the various things we can do once connected to a network.
Some typical network applications are

• Exchange electronic mail with users on other computers. It is commonplace these
days for people to communicate regularly using electronic mail.

• Exchange files between systems. For many applications it is just as easy to dis-
tribute the application electronically, instead of mailing diskettes or magnetic
tapes. File transfer across a network also provides faster delivery.

• Share peripheral devices. Examples range from the sharing of line printers to the
sharing of magnetic tape drives. A large push towards the sharing of peripheral
devices has come from the personal computer and workstation market, since often
the cost of a peripheral can exceed the cost of the computer. In an organization
with many personal computers or workstations, sharing peripherals makes sense.

• Execute a program on another computer. There are cases where some other com-
puter is better suited to run a particular program. For example, a time-sharing
system or a workstation with good program development tools might be the best
system on which to edit and debug a program. Another system, however, might
be better equipped to run the program. This is often the case with programs that
require special features, such as parallel processing or vast amounts of storage.
The National Science Foundation (NSF) has connected the six NSF super-
computer centers using a network, allowing scientists to access these computers
electronically. Years ago, access to facilities such as this would have required
mailing decks of punched cards or tapes.

• Remote login. If two computers are connected using a network, we should be
able to login to one from the other (assuming we have an account on both sys-
tems). It is usually easier to connect computers together using a network, and
provide a remote login application, than to connect every terminal in an organiza-
tion to every computer.

We'll consider each of these applications in more detail in the later chapters of this text.

Apple Inc.
Ex. 1013 - Page 4

Section 1.3 OSI Model 3

1.2 Layering

Given a particular task that we want to solve, such as providing a way to exchange files
between two computers that are connected with a network, we divide the task into pieces
and solve each piece. In the end we connect the pieces back together to form the final
solution. We could write a single monolithic system to solve the problem, but experience
has shown that solving the problem in pieces leads to a better, and more extensible, solu-
tion.

It is possible that part of the solution developed for a file transfer program can also
be used for a remote printing program. Also, if we're writing the file transfer program
assuming the computers are connected with an Ethernet, it could turn out that part of this
program is usable for computers connected with a leased telephone line.

In the context of networking, this is called layering. We divide the communication
problem into pieces (layers) and let each layer concentrate on providing a particular func-
tion. Well-defined interfaces are provided between layers.

1.3 OSI Model

The starting point for describing the layers in a network is the International Standards
Organization (ISO) open systems interconnection model (OSI) for computer communica-
tions. This is a 7-layer model shown in Figure 1.1.

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 1.1 OSI 7-layer model.

The OSI model provides a detailed standard for describing a network. Most computer
networks today are described using the OSI model. In Chapter 5, each of the networks
we describe is shown against the OSI model.

Apple Inc.
Ex. 1013 - Page 5

4 Introduction Chapter 1

The transport layer is important because it is the lowest of the seven layers that pro-
vides reliable data transfer between two systems. The layers above the transport layer
can assume they have an error-free communications path. Details such as sequence con-
trol, error detection, retransmission and flow control are handled by the transport layer
and the layers below it.

1.4 Processes

A fundamental entity in a computer network is a process. A process is a program that is
being executed by the computer's operating system. When we say that two computers
are communicating with each other, we mean that two processes, one running on each
computer, are in communication with each other.

We describe processes in the Unix operating system in detail in Chapter 2. In Chap-
ter 3 we describe the various forms of interprocess communication (IPC) provided by
Unix to allow processes on a single computer to exchange infaunation. In Chapters 6
and 7 we expand the interprocess communication to include processes on different sys-
tems that are connected by a network.

1.5 A Simplified Model

This book is mainly concerned with the top three layers of the OSI model—the session,
presentation, and application layers—along with the interface between these three layers
and the transport layer beneath them. We'll often combine these three layers into one
and call it the process layer. Additionally, we'll usually combine the bottom two layers
into a single layer and call it the data-link layer. We'll use a simplified, 4-layer version
of the OSI model, illustrated in Figure 1.2.

In Figure 1.2 we show two systems that are connected with a network. The actual
connection between the two systems is between the two data-link layers, the solid hor-
izontal line. Although it appears to the two processes that they are communicating with
each other (the dashed horizontal line between the two process layers), the actual data
flows from the process layer, down to the transport layer, down to the network layer,
down to the data-link layer, across the physical network to the other data-link layer, up
through the network layer, then the transport layer to the other process.

Layering leads to the definitions of protocols at each layer. Even though physical
communication takes place at the lowest layer (the physical layer in the OSI model),
protocols exist at every layer. The protocols that are used at a given layer, the four hor-
izontal lines in Figure 1.2, are also called peer-to-peer protocols to reiterate that they are
used between two entities at the same layer. We'll discuss various protocols at the data-
link, network, and transport layers, in Chapter 5. The later chapters, which describe
specific applications, present various application-specific protocols at the process layer.

Since the data always flows between a given layer and the layer immediately above
it or immediately below it, the interfaces between the layers are also important for

Apple Inc.
Ex. 1013 - Page 6

Section 1.6 Client—Server Model 5

Process

V
Transport

Network

A

Data Link <

L

process layer protocols

transport layer protocols

network layer protocols

data-link layer protocols
(physical connection)

J L

Figure 1.2 Simplified 4-layer model.

Process

Transport

A

Network

A

V
Data Link

J

network programming. Chapters 6 and 7 provide detailed descriptions of two interfaces
between the transport layer and the layer above it: Berkeley sockets and the AT&T
Transport Layer Interface (TLI). The Berkeley socket interface is then used in the
remaining chapters for most of the examples.

Another feature of the model shown in Figure 1.2 is that often the layers up through
and including the transport layer (layers 1 through 4 of the OSI model) are included in
the host operating system. This is the case for 4.3BSD and System V, the two examples
used in this text.

1.6 Client—Server Model

The standard model for network applications is the client—server model. A server is a
process that is waiting to be contacted by a client process so that the server can do some-
thing for the client. A typical (but not mandatory) scenario is as follows:

o The server process is started on some computer system. It initializes itself, then
goes to sleep waiting for a client process to contact it requesting some service.

o A client process is started, either on the same system or on another system that is
connected to the server's system with a network. Client processes are often ini-
tiated by an interactive user entering a command to a time-sharing system. The
client process sends a request across the network to the server requesting service
of some form. Some examples of the type of service that a server can provide are

Apple Inc.
Ex. 1013 - Page 7

6 Introduction Chapter 1

o return the time-of-day to the client,
o print a file on a printer for the client,
o read or write a file on the server's system for the client,
o allow the client to login to the server's system,
o execute a command for the client on the server's system.

o When the server process has finished providing its service to the client, the server
goes back to sleep, waiting for the next client request to arrive.

We can further divide the server processes into two types.

1. When a client's request can be handled by the server in a known, short amount
of time, the server process handles the request itself. We call these iterative
servers. A time-of-day service is typically handled in an iterative fashion by the
server.

2. When the amount of time to service a request depends on the request itself (so
that the server doesn't know ahead of time how much effort it takes to handle
each request), the server typically handles it in a concurrent fashion. These are
called concurrent servers. A concurrent server invokes another process to han-
dle each client request, so that the original server process can go back to sleep,
waiting for the next client request. Naturally, this type of server requires an
operating system that allows multiple processes to run at the same time. (More
on this in the next chapter.) Most client requests that deal with a file of informa-
tion (print a file, read or write a file, for example) are handled in a concurrent
fashion by the server, as the amount of processing required to handle each
request depends on the size of the file.

We'll see examples of both types of servers in later chapters.

1.7 Plan of the Book

The goal of the book is to develop and present examples of processes that are used for
communication between different computer systems. In Figure 1.3, the chapters in this
book are compared to the OSI model.

To develop applications at the process layer, a thorough understanding of a process
is required. Chapter 2 develops the process terminology for the Unix system. The
emphasis is on process control and signals. Chapter 3 describes methods by which multi-
ple processes on a single computer can communicate with each other—interprocess com-
munication, or IPC. Understanding how independent processes communicate on a single
computer system is a requisite to understanding IPC between processes on different sys-
tems. Chapter 3 also describes file locking and record locking under Unix, as these are
often required when multiple processes are used for a task.

Apple Inc.
Ex. 1013 - Page 8

Section 1.7 Plan of the Book 7

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data Link

Physical

Chapters 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

I Chapters 6 and 7

Chapters 4 and 5

Figure 1.3 Outline of book compared to 7-layer OSI model.

Chapter 4 provides an overview of networking and the terminology used to describe
the services provided by a network. Various communication protocol suites are
described in Chapter 5. The emphasis is on the services provided to an application pro-
cess by the protocol suite. We concentrate on the TCP/IP and Xerox NS (XNS) protocol
suites, since they are used in the examples in the later chapters. We also cover the fol-
lowing protocol suites: IBM's SNA, NetBIOS, the OSI protocols, and UUCP. SNA is
important since most Unix vendors today provide support for SNA. NetBIOS is used in
many personal computer networks, which Unix systems need to communicate with. The
OSI protocols, while still in their infancy, will be more important in the coming decade.
An overview of UUCP is provided since it is the oldest of the Unix networking solutions,
and is still widely used. An understanding of where these different protocol suites fit
with regard to each other is important.

Chapters 6 and 7 describe the two predominant interfaces provided by Unix today,
between the transport layer and an application process: Berkeley sockets and System V
TLI. The Berkeley socket interface is then used for most of the examples in the later
chapters.

The final eleven chapters contain detailed examples of actual process-level applica-
tion programs. Chapter 8 describes various utility functions that are used in the remain-
ing chapters. This includes converting network names into addresses, and timeout and
retransmission algorithms for unreliable protocols.

Security is an issue we'll encounter in almost every application, and we cover it in
Chapter 9. We describe the security techniques currently used by the 4.3BSD system
along with the newer Kerberos system.

Chapter 10 is the first chapter describing a specific network application: obtaining
the time and date from another computer on the network. Chapter 11 describes the ubiq-
uitous Internet "ping" program, which has become an everyday tool on most TCP/IP
networks. We also present a similar application using the Xerox NS protocols.

Apple Inc.
Ex. 1013 - Page 9

8 Introduction Chapter 1

Chapter 12 is a complete presentation of a file transfer program—the TCP/IP Trivial
File Transfer Protocol (TFTP). File transfer is an important network application and
TFTP is one of the simpler protocols.

Line printer spoolers are covered in Chapter 13, both the Berkeley and System V
print spoolers. Print spoolers are interesting from a process control viewpoint, in addi-
tion to the network printing option provided by 4.3BSD.

Chapter 14 covers the execution of commands on another system. We concentrate
on the rcmd function provided by 4.3BSD. This function is central to what are called
the Berkeley "r" commands: rcp, rdump, rlogin, and the like. These programs are
often provided by third-party TCP/IP vendors for systems other than 4.3BSD, and have
become de facto standards for Unix networking applications.

Remote login across a network is the topic of Chapter 15. This chapter also con-
cerns itself with details of terminal handling and pseudo-terminals, both important
features in remote login programs. This chapter concludes with a complete presentation
of the 4.3BSD rlogin client and server.

In Chapter 16 we describe the use of a tape drive across a network, specifically the
4.3BSD rmt protocol. This has become an important topic with workstations and per-
sonal computers that have disks but not tape drives.

Chapter 17 is concerned with performance. This includes the performance of the
various IPC techniques from Chapter 3, along with the performance of a network. Since
a network is often used for file transfer and tape drive access, typical performance figures
for disk drives and tape drives are also covered.

Chapter 18 covers remote procedure calls (RPC), a technique used to simplify the
programming of network applications. We cover three RPC implementations: Sun RPC,
Xerox Courier, and Apollo NCA.

1.8 A History of Unix Networking

The first Unix network application was UUCP, the Unix-to-Unix copy program, and all
its associated commands. UUCP was developed around 1976 [Redman 1989] and its first
major release outside AT&T was with Version 7 Unix in 1978. UUCP is a batch-
oriented system that is typically used between systems with dial-up telephone lines or
systems that are directly connected. Its major uses are for distributing software (file
transfer) and electronic mail. We'll say more about the programs that comprise UUCP in
Section 5.7. It is interesting that the first Unix networking application is still in wide use
today.

The program cu was also distributed with Version 7 Unix in 1978, and has been
available with almost every Unix system since then. Although not strictly part of a
specific networking package, it provides a remote login capability to another computer
system. The cu program was typically used to connect to another system using a dial-up
telephone line. A rewritten version of cu was distributed with 4.2BSD where it was
called tip.

Apple Inc.
Ex. 1013 - Page 10

Section 1.8 A History of Unix Networking 9

In 1978 Eric Schmidt developed a network application for Unix as part of his Mas-
ters degree at Berkeley. This network was called "Berknet" and was first distributed
with the Berkeley release of Version 7 Unix for the PDP-11—the 2.xBSD systems. It
provided file transfer, electronic mail, and remote printing. It was widely used on the
Berkeley campus. Typically the systems were directly connected with 9600 baud
RS-232 lines. This software moved to the VAX with the 4.xBSD releases, then it was
slowly replaced with the faster Ethernet-based local area networks that started with the
4.2BSD system.

In September 1980 Bolt, Beranek, and Newman (BBN) was contracted by the
Defense Advanced Research Projects Agency (DARPA) of the Department of Defense
(DoD) to develop an implementation of the TCP/IP protocols for Berkeley Unix on the
VAX [Walsh and Gurwitz 1984]. A version for the 4.1BSD system was turned over to
Berkeley in the Fall of 1981. This was then integrated by Berkeley into the 4.2BSD sys-
tem that was being developed. The 4.2BSD system was released in August 1983 and
with it the growth of local area networks, based mainly on Ethernet technology, grew
rapidly. These 4.2BSD systems also allowed the computers to connect to the
ARPANET, which also saw enormous growth in the early 1980s. With the 4.2BSD sys-
tem the socket interface was provided, which we describe in Chapter 6 and use for most
of the examples in the remainder of the text.

Networking development during this period was also underway at AT&T, however,
other than UUCP, the results usually did not propagate outside AT&T. This is in contrast
to the networking developments at Berkeley, which were widely disseminated. Fritz,
Hefner, and Raleigh [1984] describe a network based on a HYPERchannel high-speed
local network. Its development started around 1980 and it connected various types of
systems running different versions of Unix: VAX 780, PDP-11/70, IBM 370, and AT&T
3B205. The versions of Unix were the AT&T versions of System III and System V. The
network was batch-oriented and supported file transfer, remote command execution,
remote printing, and electronic mail.

Various third-party networking packages appeared for System V in the mid-1980s.
These typically supported the TCP/IP protocol suite and were often developed by the
vendor who developed the interface hardware.

The streams I/O facility was first described in Ritchie [1984b]. It did not get widely
distributed outside the Bell Labs research environment, however, until System V
Release 3.0 in 1986. The Transport Layer Interface (TLI), which we describe in Chap-
ter 7, was provided with this release of System V [Olander, McGrath, and Israel 1986].
Various third-party networking packages (mainly for the TCP/IP protocol suite) based on
'ILI started to appear around 1988.

Apple Inc.
Ex. 1013 - Page 11

4

A Network Primer

We have to define some basic networking terms and concepts before they are used in
later chapters. When necessary, we jump ahead and use specific examples from the next
chapter, to provide actual network examples, instead of trying to describe everything in a
generic, abstract sense. Tanenbaum [1989] provides additional details on many of the
networking topics discussed in this chapter.

Internetworking

A computer network is a communication system for connecting end-systems. We often
refer to the end-systems as hosts. The hosts can range in size from small microcomputers
to the largest supercomputers. Some hosts on a computer network are dedicated systems,
such as print servers or file servers, without any capabilities for interactive users. Other
hosts might be single-user personal computers, while others might be general purpose
time-sharing systems.

A local area network, or LAN, connects computer systems that are close together—
typically within a single building, but possibly up to a few kilometers apart. Popular
technologies today for LANs are Ethernet and token ring. LANs typically operate at high
speeds—an Ethernet operates at 10 Mbps (million bits per second) while IBM's token
ring operates at both 4 and 16 Mbps. Newer LAN technologies, such as FDDI (Fiber
Distributed Data Interface), use fiber optics and have a data rate of 100 Mbps. Each
computer on a LAN has an interface card of some form that connects it to the actual net-
work hardware. (Be aware that these raw network speeds are usually not realized in
actual data transfers. In Chapter 17 we'll discuss some actual performance measure-
ments.)

171
Apple Inc.

Ex. 1013 - Page 12

172 A Network Primer Chapter 4

A wide area network or WAN connects computers in different cities or countries.
These networks are sometimes referred to as long haul networks. A common technology
for WANs is leased telephone lines operating between 9600 bps (bits per second) and
1.544 Mbps (million bits per second).

Between the LAN and WAN is the metropolitan area network or MAN. These cover
an entire city or metropolitan area and frequently operate at LAN speeds. Common tech-
nologies are coaxial cable (similar to cable TV) and microwave.

An internet or internetwork is the connection of two or more distinct networks so
that computers on one network are able to communicate with computers on another net-
work. The goal of internetworking is to hide the details of what might be different physi-
cal networks, so that the internet functions as a coordinated unit. One way to connect
two distinct physical networks is to have a gateway that is attached to both networks.
This gateway must pass infamiation from one network to the other. It is sometimes
called a router. As an example, Figure 4.1 shows an internet fomied from two distinct
networks.

H1

H2
toke-ri
ring

network

H3

gateway

H4 H5

Ethernet

Figure 4.1 Internet example with two networks joined by a gateway.

There are three hosts on the token ring, H1, H2, and H3, and two hosts on the Ethernet,
H4 and H5. There is a gateway between the two physical networks, and it must contain
an interface card to attach to the token ring network and another interface card to attach
to the Ethernet. It must also detemiine when infomiation arriving on the Ethernet is des-
tined for a host on the token ring (and vice versa), and handle it appropriately.

There are more ways to connect networks together. The teiiii we use to describe the
interconnection depends on the layer in the OSI model at which the connection takes
place.

• Repeaters operate at the physical layer (layer 1) and typically just copy electrical
signals (including noise) from one segment of a network to the next. Repeaters
are often used with Ethernets, for example, to connect two cable segments
together to fomi a single network.

Apple Inc.
Ex. 1013 - Page 13

Chapter 4 A Network Primer 173

• Bridges often operate at the data-link layer (layer 2) and they copy frames from
one network to the next. Bridges often contain logic so that they only copy a sub-
set of the frames they receive.

• Routers operate at the network layer (layer 3). The term router implies that this
entity not only moves information (packets) from one network to another, but it
can also make decisions about what route the information should take. (We talk
more about routing later in this chapter.)

• Gateway is a generic term that refers to an entity used to interconnect two or more
networks. In the TCP/IP community, for example, the term gateway refers to a
network level router. The term gateway is sometimes used to describe software
that performs specific conversions at layers above the network layer. For exam-
ple, there are various mail gateways that convert electronic mail from one format
to another. We mention an application-gateway in Section 5.6 that converts file
transfer requests between the OSI FTAM protocol and the TCP/IP FTP protocol.
We'll use the term gateway to describe a network level router, unless stated other-
wise.

Repeaters are usually hardware devices, while bridges and routers can be implemented in
either hardware or software. A router (gateway) is usually a dedicated system that only
does this function. 4.2BSD, however, was the first general-purpose system that could
also operate as a gateway.

A host is said to be multihomed if it has more than one network interface. For exam-
ple, a host with an Ethernet interface and a token ring interface would be multihomed.

Looking at the different levels of abstraction, we go from a user sitting at a terminal
to an internet.

• Users login to a host computer.

• Host computers are connected to a network.

• Networks are connected together to form an internet.

An internet of computer networks is similar in principle to the international long distance
telephone service that is available today. Telephones are connected to a local phone
company, which in turn is connected into a national long distance network, which is then
connected into an international network. When you direct dial an international call, this
"telephone internet" hides all the details and connects all the telephones into a coordi-
nated unit. This is the goal of an internet of computer networks.

OSI Model, Protocols, and Layering

The computers in a network use well-defined protocols to communicate. A protocol is a
set of rules and conventions between the communicating participants. Since these proto-
cols can be complex, they are designed in layers, to make their implementation more

Apple Inc.
Ex. 1013 - Page 14

174 A Network Primer Chapter 4

manageable. Figure 4.2 shows the OSI model that was introduced in Section 1.3.

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 4.2 OSI model.

This model, developed between 1977 and 1984, is a guide, not a specification. It pro-
vides a framework in which standards can be developed for the services and protocols at
each layer. Indeed, the networks that we consider in this text (TCP/IP, XNS, and SNA)
were developed before the OSI model. We will compare the layers for these actual net-
works against the OSI model, but realize that no network is implemented exactly as the
OSI model shows.

One advantage of layering is to provide well-defined interfaces between the layers,
so that a change in one layer doesn't affect an adjacent layer. It is important to under-
stand that protocols exist at each layer. A protocol suite is a collection of protocols from
more than one layer that Rums the basis of a useful network. This collection is also
referred to as a protocol family. The protocol suites that we describe in Chapter 5 are

• the TCP/IP protocol suite (the DARPA Internet protocols),
• Xerox Network Systems (Xerox NS or XNS),
• IBM's Systems Network Architecture (SNA),
• IBM's NetBIOS,
• the OSI protocols,
• UUCP.

Each of these protocol suites define different protocols at different layers, as we see in
the next chapter.

Apple Inc.
Ex. 1013 - Page 15

Chapter 4 A Network Primer 175

Recall from Section 1.5 that we simplified the OSI model into a 4-layer model that

we use in the text. Figure 4.3 shows this model for two systems that are connected with a
network.

r

L

Process

A

Transport

V
Network

A

Data Link

Process

Transport

A

Network

A

V
Physical
Network

Data Link

Figure 4.3 Simplified 4-layer model connecting two systems.

_J

The layers that define a protocol suite are the two boxes called the transport layer and the
network layer. The multiple layers that define the network and hardware characteristics
(Ethernet, token ring, etc.) are grouped together into our data-link layer. Application
programs exist at the process layer. It is the interface between the transport layer and the
process layer that we describe in Chapters 6 and 7.

Let's jump ahead to provide a concrete example for layering and some of the other
concepts described in this chapter. Figure 4.4 shows the layering used by the TCP/IP
protocol suite.

Consider one specific user process whose protocol is defined by the TCP/IP protocol
suite, TFTP, the Trivial File Transfer Protocol. This application allows a user on one
system to send and receive files to and from another system. MP uses UDP (User
Datagram Protocol), which in turn uses IP (Internet Protocol), to exchange data with the
other host.

Apple Inc.
Ex. 1013 - Page 16

176 A Network

r

Primer Chapter 4

1

user process user process Process Layer

L

r

J

1

1 V
TCP

Transntission Control Protocol)
UDP

(User Datagram Protocol)
1
1 Transport Layer

1
L J

r

L

r

L

IP
(Internet Protocol)

V
hardware
interface

1

J

1

J

Network Layer

Data-Link Layer

Figure 4.4 TCP/IP protocol suite using 4-layer model.

If we consider two hosts connected with an Ethernet, Figure 4.5 shows the four

layers.

TFTP
client

A

V
UDP

A

IP

A

Ethernet

1'1-'1 P protocols

UDP protocols

IP protocols

Ethernet protocols
physical connection

TFTP
server

A

UDP

A

IP

A

 > Ethernet

Figure 4.5 4-layer model for ITTP over UDP/IP on an Ethernet.

Apple Inc.
Ex. 1013 - Page 17

Chapter 4 A Network Primer 177

We show the protocols between the top three boxes with dashed lines to indicate that the
boxes at these three layers communicate "virtually" with each other using the indicated
protocols. Realize that only the boxes at the lowest layer physically communicate with
each other. We call these horizontal lines between layers at the same level peer-to-peer
protocols. The actual flow of data is from the TFTP box on one side, down to the UDP
box, down to the IP box, down to the Ethernet box, then across the physical link to the
other side and up.

Another goal of layering, besides making the protocol suite easier to understand, is
to allow us to replace the contents of a layer with something else that provides the same
functionality. With the example shown in Figure 4.5, if we are able to connect the two
computer systems with a token ring network, we would have the layers shown in Fig-
ure 4.6.

11-,1?
client

TFTP protocols TFTP
server

A A

UDP

A

IP

UDP protocols

IP protocols

UDP

IP

A A

token ring
token ring protocols
physical connection

>I token ring

Figure 4.6 4-layer model for TFTP over UDP/IP on a token ring.

The TFTP protocols do not have to change at all between this network and the previous
one that used an Ethernet. Similarly, the UDP/IP protocols do not have to change either.

We can take this example one step further and replace the middle two boxes that use
the UDP/IP protocols from the TCP/IP protocol suite, with boxes that use the PEX/IDP
protocols from the Xerox NS protocol suite. If this were done using an Ethernet connec-
tion between the two systems, we would have the layers shown in Figure 4.7. Again, the
11,1P protocols do not have to change at all between the version that uses the UDP/IP
protocols and the version that uses the Xerox PEX/IDP protocols.

In Chapter 12 we develop a complete implementation of a TFTP client and server
and implement it using different transport protocols.

Apple Inc.
Ex. 1013 - Page 18

178 A Network Primer Chapter 4

TFTP protocols 11-,1P 1B1P
client server

A A

I
PEX protocols

PEX PEX

A 1\

IDP protocols V
IDP IDP

A A

Ethernet protocols
Ethernet Ethernet

physical connection

Figure 4.7 4-layer model for TFTP over PEX/IDP on an Ethernet.

Bytes and Octets

A term that appears in the networking literature is octet, which means an 8-bit quantity of
data. We will consistently use the term byte instead of octet. The teini octet arose
because some computer systems, notably the DEC-10 series and the Control Data Cyber
series, don't use 8-bit bytes. Fortunately, however, virtually all modern computers use
8-bit bytes, so we use the term byte to mean an 8-bit byte.

Network Byte Order

Unfortunately, not all computers store the bytes that comprise a multibyte value in the
same order. While the problems with systems that don't use 8-bit bytes are slowly disap-
pearing, as these older systems fade into history, the problems with byte ordering will be
with us for a long time, as there is no clear standard.

Consider a 16-bit integer that is made up of 2 bytes. There are two ways to store this
value: with the low-order byte at the starting address, known as little endian, or with the
high-order byte at the starting address, known as big endian. The first case is shown in
Figure 4.8.

little endian byte order: high-order byte low-order byte

addr A+1

Figure 4.8 Little endian byte order for a 16-bit quantity.

addr A

Apple Inc.
Ex. 1013 - Page 19

Chapter 4 A Network Primer 179

Here we are looking at increasing memory addresses going from right to left. The rea-
soning behind this byte ordering is that a lower address implies a lower order byte.

The big endian format can be pictured as in Figure 4.9.

big endian byte order: high-order byte low-order byte

addr A addr A+1

Figure 4.9 Big endian byte order for a 16-bit quantity.

Here we are looking at increasing memory addresses going from left to right.
The byte ordering used by some current computer systems is shown in Figure 4.10.

big endian: IBM 370, Motorola 68000, Pyramid

little endian: Intel 80x86 (IBM PC), DEC VAX, DEC PDP-11

Figure 4.10 Byte ordering used by different systems.

The byte ordering with 32-bit integers is even worse, as some systems swap the two
16-bit pieces of the 32-bit integer.

The solution to this problem is for a network protocol to specify its network byte
order. The TCP/IP, XNS, and SNA protocols all use the big endian format for the 16-bit
integers and 32-bit integers that they maintain in the protocol headers. (Fortunately the
protocols maintain only integer fields, as the differences in the internal formats for float-
ing point data are even worse.) The protocol has no control over the format of the data
that the applications transfer across the network—the protocol only specifies the format
for the fields that it maintains. We will be concerned with the network byte ordering of
multibyte integer fields in Chapter 6 when we discuss the interface between a user pro-
cess and the networking software. We also return to the problem of application data for-
mat in Chapter 18 when we discuss remote procedure calls.

Encapsulation

Let's again consider the TFTP application, using the UDP/IP protocols, between two sys-
tems connected with an Ethernet. If there are 400 bytes for the TF1P client process to
transfer to the TFTP server process, the TFTP client process adds 4 bytes of control
information to the beginning of the data buffer, before passing the data down one layer to
the UDP layer. This addition of control information to data is called encapsulation and is
shown in Figure 4.11.

The UDP layer does not interpret the 4-byte TFTP header at all. The task of the
UDP layer is to transfer 404 bytes of data to the other UDP layer. The UDP layer then
prepends its own 8-byte header and passes the 412-byte buffer to the IP layer. The IP

Apple Inc.
Ex. 1013 - Page 20

180 A Network Primer Chapter 4

11-.1P
header

data

4 bytes 400 bytes

UDP layer

Figure 4.11 Encapsulation of user data by TFTP.

layer prepends its 20-byte header and passes the 432-byte buffer to the data-link layer for
the Ethernet. At this layer a 14-byte header and a 4-byte trailer are added to the buffer of

information. Figure 4.12 shows this encapsulation by each layer.

data

IF!P
header

data

TFTP message

UDP TFTP
data

header header

UDP message

IP UDP
data

IF1 P
header header header

IP packet

Ethernet IP UDP TFTP
data

Ethernet

header header header header trailer
_ _ _ •

14 20

Ethernet frame

ytes

Figure 4.12 Encapsulation of 1H P over UDP/IP on an Ethernet.

The final diagram shows the Ethernet frame that is physically transmitted across the

Ethernet, along with the sizes of each of the headers and trailers, in bytes.

Apple Inc.
Ex. 1013 - Page 21

Chapter 4 A Network Primer 181

We define the units of information that are passed along a network according to the
layer at which the transfer is taking place. This is shown in Figure 4.13.

he

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data Link

Physical

message

message

message

message

packets

frames

bits

Figure 4.13 OSI model with units of information exchanged at each layer.

We call the unit of interchange at the network layer packets. At the data-link layer we
call them frames, and at the lowest layer, the physical layer, bits are exchanged.

Multiplexing and Demultiplexing

Multiplexing means to combine many into one, and we have examples of this happening
at most layers in a network. Consider the multihomed, multiuser computer system shown
in Figure 4.14. This figure shows applications using both UDP and TCP from the TCP/IP
protocol suite along with PEX and SPP from the Xerox NS protocol suite. Both of these
protocol suites can use a single Ethernet. There are many points to be made from Fig-
ure 4.14.

• A user process can use different protocols at the same time. For example, process B is
using both UDP and TCP at the same time. Similarly, process D is using TCP and
PEX.

• More than one user process at a time can be using any of the user-accessible protocols
(UDP, TCP, PEX, or SPP). This requires that a given protocol box, the UDP box for
example, must identify the user process (A or B) that is sending data when the UDP
software passes this data down to the IP layer. This is one example of multiplexing.
Conversely, when the UDP software receives data from the IP layer, it must be able to
identify the user process to receive the data. This is demultiplexing. For these exam-
ples, both UDP and TCP have a 16-bit port number that identifies the user process.
We discuss this field in the next chapter.

Apple Inc.
Ex. 1013 - Page 22

182 A Network Primer Chapter 4

user user user user user user user
proc. A proc. B proc. C proc. D proc. E proc. F proc. G

r

UDP

IP

TCP

1

PEX SPP

IDP

L J L
TCP/IP protocol suite

Ethernet
interface

< Ethernet cable 2
V

Ethernet
interface

A

Ethernet cable 1

XNS protocol suite

V V
Ethernet
interface

Figure 4.14 Multiplexing and demultiplexing.

Ethernet
interface

• The IP module must determine if data that it receives from the Ethernet interface is for
the UDP module or the TCP module. The IP header contains an 8-bit protocol field
that is used for this purpose.

• We show the computer system with two Ethernet interfaces. This system is a gateway
between the two networks. The IP module must determine which interface is to be
used for packets from either the UDP module or the TCP module.

• The software (the device driver) for the interface connected to Ethernet cable 1 must
determine if a received Ethernet frame is for the IP module or the IDP module. There
is a 16-bit field in the Ethernet header that identifies the frame type. This allows mul-
tiple protocol suites, such as the TCP/IP suite and the XNS suite, to share the same
Ethernet.

Apple Inc.
Ex. 1013 - Page 23

Chapter 4 A Network Primer 183

An Ethernet interface must determine if a frame that is being transmitted across the
physical cable is for it, or for another interface. This determination is done by the
Ethernet hardware. Each Ethernet frame contains a 6-byte address in its header that
identifies the destination interface. Ethernet addresses are usually supplied by the
hardware vendor so that every interface has a unique 6-byte address.

Packet Switching

Communication networks can be divided into two basic types: circuit-switched and

packet-switched. The classic example of a circuit-switched network is the public tele-
phone system. When you place a telephone call, either local or long distance, a dedicated

circuit is established for you by the telephone switching offices, from your telephone to

the other telephone. Every telephone is directly connected to a local office, typically

within a few miles of the phone. The local offices are then connected to toll centers, and

these toll centers are connected together through sectional centers and regional centers.

Once this circuit is established, the only delay involved in the communication is the time
required for the propagation of the electromagnetic signal through all the wires and
switches. While it might be hard to obtain a circuit sometimes (such as calling long dis-

tance on Christmas day), once the circuit is established you are guaranteed exclusive

access to it.
A leased telephone line, which is common for WANs, is a special case of a circuit-

switched network. But there is no setup required to establish a dedicated circuit between

the two telephones.
An internet, on the other hand, typically uses packet-switching techniques. Instead

of trying to establish a dedicated communication line between one computer and another,

the computers share communication links. Instead, the information is divided into pieces

and each piece is transmitted on its own through the connection of networks. These

pieces are called packets.
A packet is the smallest unit that can be transferred through the networks by itself.

A packet must contain the address of its final destination, so that it can be sent on its way
through the internet. Most protocols also specify that a packet contain the sender's

address, too. (We describe these addresses later in the chapter.) Recall from earlier in

this chapter that we defined the unit of information that is exchanged at the network layer

is' a packet. Indeed, it is the network layer that is involved in transferring packets around

the networks.
With a circuit-switched network, we are guaranteed that once a circuit is established,

we can use the full capacity of the circuit. With a packet-switched network, however, we

are sharing the communication bandwidth with other computers.

Apple Inc.
Ex. 1013 - Page 24

184 A Network Primer Chapter 4

Packet switching on a local area network refers to multiple computers sharing a sin-
gle communications channel, such as an Ethernet or a token ring. A dedicated link is not
used between each computer. All the computers on the LAN share the available capacity
of the network.

A WAN can also use packet switching. We'll show an example of this, after dis-
cussing gateways.

Consider the internet shown in Figure 4.15.

Figure 4.15 Internet example for routing.

For a packet to go from host 1 to host 2, there are four possible acyclic paths.

• host 1, net 1, Gl, net 3, host 2;
• host 1, net 1, Gl, net 2, G3, net 3, host 2;
• host 1, net 1, G2, net 2, G3, net 3, host 2;
• host 1, net 1, G2, net 2, Gl, net 3, host 2.

Each of these paths is called a route. Routing decisions are usually made at the network
layer in the OSI model. We'll consider routing in more detail later in this chapter.

In a packet-switched network, there is no guarantee how long it takes a packet to go
from one host to another. The time taken for each packet depends on the route chosen
for that packet, along with the volume of data being transferred along that route.

Apple Inc.
Ex. 1013 - Page 25

Chapter 4 A Network Primer 185

Gateways

Earlier we defined a gateway as a system that interconnects two or more networks. The
function of a gateway is to pass along information from one network to another.

The layer at which a gateway operates depends on the type of translation and for-
warding done by the gateway. For example, if we have an internet of networks that all
use the TCP/IP protocols, no translation of protocols is required. Instead, each gateway
only needs to forward packets from one network to another. The IP layer is responsible
for this forwarding of packets. An example of this is shown in Figure 4.16.

user
process

user
process

A

TCP TCP

IP IP IP IP

A A

V V V
data net 1 data data net 2 data

link LAN link WAN link LAN link

host 1 gateway 1 gateway 2 host 2

Figure 4.16 Gateway example.

Each IP packet contains enough information (i.e., its final destination address) for it to be
routed through the TCP/IP internet by itself.

Things become more complicated, if we want a gateway between networks that use
different protocol suites. The conversion is often done in layers above the network layer.

Notice in Figure 4.16 that the TCP layer is not needed on the intermediate gateways.
This is why we distinguished between the transport layer and the network layer, in Fig-
ures 4.3 and 4.4. You might think we could combine them, since they often appear as a
single entity within the operating system, to the application programmer. Our reason for
separating them is because of the different roles they each play in an internet. The trans-
port layer is the lowest layer that provides the virtual connection between the two hosts
on which the user processes are running.

To understand packet switching in a WAN, let's look at Figure 4.16 again. Assume
the two LANs are Ethernets and assume that the two gateways are separated by
thousands of miles but are connected with a leased phone line. Even though this leased

Apple Inc.
Ex. 1013 - Page 26

186 A Network Primer Chapter 4

phone line is a circuit-switched connection, we still consider this a packet-switched net-
work. The reason is there are usually many hosts that share the Ethernets connecting
each host and its gateway. (The number of hosts on an internet typically exceeds the
number of gateways on the internet by a factor of 10 or more. For example, the TCP/Ip
Internet is currently estimated to have over 150,000 hosts and 850 networks.) All the
hosts on one of these Ethernets compete with the other hosts on that same Ethernet for
the single link between the two gateways. Nevertheless, this arrangement is more rea-
sonable than a leased phone line between every host on network 1 and every host on net-
work 2.

Fragmentation and Reassembly

Most network layers have a maximum packet size that they can handle, based on the
characteristics of the data-link layer that they are sending its packets through. This is
called the network's maximum transmission unit or MTU. (This term can be applied to
the maximum size of a protocol message exchanged by any two layers in a protocol suite,
not just the network layer.) For example, part of the Ethernet standard is that the data
portion of a frame (the data between, but not including, the 14-byte Ethernet header and
the 4-byte Ethernet trailer) cannot exceed 1500 bytes. The maximum for a token ring
network is typically 4464 bytes, while some networks have small MTUs. Consider the
example shown in Figure 4.16 and assume that the two LANs are Ethernets. But, if the
WAN between the two gateways uses a data link with a maximum packet size of 128
bytes, then something has to be done when IP packets are sent from host 1 to host 2.

Fragmentation is the breaking up of a data stream into smaller pieces. Some net-
works use the temi segmentation instead of fragmentation. The reverse of fragmentation
is reassembly. Using the layering concept that we've already talked about, fragmentation
should happen at the lowest layer possible, so that upper layers need not be concerned
with it. For example, using the gateway example in Figure 4.16, we would like fragmen-
tation to take place at the IP layer, without the TCP layer even knowing that it was taking
place. Indeed, with the TCP/IP protocols, it is the IP layer that handles fragmentation
and reassembly, as required by the different data-link layers that are used by TCP/IP.

Modes of Service

There are several parameters that desCribe the type of communication service provided
between two peer entities at any layer of the OSI model. In this text we are interested in
the service provided to an application program, typically by the transport layer. These
parameters are

• connection-oriented (virtual circuit) or connectionless,
• sequencing,
• error control,
• flow control,

Apple Inc.
Ex. 1013 - Page 27

Chapter 4 A Network Primer 187

® byte stream or messages,
e full-duplex or half-duplex.

A connection-oriented service requires that the two application programs establish a
logical connection with each other before communication can take place. There is some
overhead involved in establishing this connection. We also use the term virtual circuit to
describe this service, since it appears to the application programs that they have a dedi-
cated circuit between them, even though the actual data flow usually takes place using a
packet-switched network. A connection-oriented service is often used when more than
one message is to be exchanged between the two peer entities. A connection-oriented
exchange involves three steps:

• connection establishment,
• data transfer (can be lengthy),
• connection termination.

The converse of a connection-oriented service is a connectionless service, also called a
datagram service. In this type of service, messages called datagrams are transmitted
from one system to the other. Since each message is transmitted independently, each
must contain all the information required for its delivery. In the TCP/IP protocol suite,
TCP provides a connection-oriented virtual circuit, while UDP provides a connectionless
datagram facility.

Sequencing describes the property that the data is received by the receiver in the
same order as it is transmitted by the sender. In a packet-switched network, it is possible
for two consecutive packets to take different routes from the source computer to the des-
tination computer, and thus arrive at their destination in a different order from the order
in which they were sent.

Error control guarantees that error-free data is received by the application programs.
There are two conditions that can generate errors: the data gets corrupted (modified dur-
ing transmission), or the data gets lost. A technique to detect data corruption is for the
sender to include a checksum so the receiver can verify, with a high probability, that the
data does not get modified. If the data does get corrupted, the receiver has to ask the
sender to retransmit the data. Therefore, checksums are usually combined with a tech-
nique called positive acknowledgment—the receiver notifies the sender each time a data
message is received, either correctly or with errors. If the data was received correctly the
sender can discard it, otherwise the data must be retransmitted. To handle the loss of
data somewhere in the network requires that the sender start a timer after it has sent a
data message, and if the timer expires (called a timeout) the sender must retransmit the
data. Note that when positive acknowledgments and timeouts are being used, it is possi-
ble not only for data to get lost but for acknowledgments to be lost as well. If this hap-
pens, the original sender will retransmit the data, causing the other end to receive the
same data twice. This requires the receiver to perform duplicate detection—determine
when data has already been received and ignore (but acknowledge) the duplicate mes-
sage.

Apple Inc.
Ex. 1013 - Page 28

188 A Network Primer Chapter 4

Flow control assures that the sender does not overwhelm the receiver by sending
data at a rate faster than the receiver can process the data. This is also called pacing. If
flow control is not provided, it is possible for the receiver to lose data because of a lack
of resources. Both TCP and SNA LU 6.2 provide sequencing, error control, and flow
control. UDP, however, does not provide any of these services.

A byte-stream service does not provide any record boundaries to the data stream.
The converse of this feature is a message-oriented service that preserves the sender's
message boundaries for the receiver. These features were described in Section 3.6. TCP
is a byte-stream protocol, while UDP and the XNS SPP (Sequenced Packet Protocol) pro-
vide message boundaries.

A full-duplex connection allows data to be transferred in both directions at the same
time between the two peer entities. Some protocols are half-duplex and only allow one
side to transfer at a time. TCP is full-duplex, while SNA LU 6.2 is a half-duplex proto-
col.

Many of these parameters occur together. For example, sequencing and error con-
trol are usually provided together and the protocol is then termed reliable. It is also
unusual to find a reliable protocol that does not provide flow control. It is unusual to
have a connectionless protocol that provides sequencing, since the datagrams in such a
protocol are usually unrelated to previous or future datagrams. We see an example of
sequencing, positive acknowledgment, and retransmission after timeout in Chapter 12,
when we develop an implementation of the Trivial File Transfer Protocol.

Tanenbaum [1989] provides an excellent analogy between virtual circuits and data-
grams: A telephone call is similar to a virtual circuit. You establish a connection with
the other party, exchange data for a while, then close the connection. The postal service
resembles a datagram delivery service. Every letter contains the complete address of the
destination. Every letter that you mail to the same address can follow a different route to
the destination. (No doubt everyone has mailed two letters to the same destination, one
or two days apart, only to have them arrive out of order.) There is no guarantee that a
letter arrives at the destination. To receive an acknowledgment of delivery you must add
extra processing to the normal mailing of a letter (i.e., pay extra for a "return receipt" if
you're using the U.S. Postal Service). If you are expecting a response from your letter,
you must also add extra processing—wait for some period and if a response is not
received (timeout), retransmit the letter.

End-to-End versus Hop-by-Hop

When describing protocol features such as flow control, error control, and the like, we
must differentiate between those features that are done on an end-to-end basis and those
that are done on a hop-by-hop basis. End-to-end flow control, for example, regulates the
flow of data between the two user processes that are exchanging data. Hop-by-hop flow
control, on the other hand, worries about the flow of data at each hop of the communica-
tion link (i.e., all the gateways between the two end systems). As we'll see in the next
chapter, TCP provides end-to-end flow control, while IP provides an elementary type of
hop-by-hop flow control.

Apple Inc.
Ex. 1013 - Page 29

Chapter 4 A Network Primer 189

As another example, error control is usually handled on a hop-by-hop basis by the
data-link layer. An Ethernet frame, a token ring frame, or an SDLC frame, all contain a.
checksum that detects any modifications to the data as it travels across the physical link.
This is a hop-by-hop form of error detection. Some protocols also provide some form of
end-to-end error control also. The TCP layer in the TCP/IP suite provides this—the
source TCP layer calculates and stores a checksum in the TCP message header which is
then checked by the receiving TCP layer.

Looking at Figure 4.16 again, we see that any feature that is to be implemented in
the TCP/IP protocol suite on an end-to-end basis, has to be handled by the TCP layer, or
the user process above TCP. Similarly, any hop-by-hop feature must be handled by the
IP layer or the data-link layer.

Buffering and Out-of-Band Data

Consider a byte-stream service. The user process can read or write any number of bytes
at a time, since there are no message boundaries. What typically happens is that the
byte-stream service layer (TCP, for example) buffers this data internally and then passes
it to the next lower layer for transmission to the other end. Buffering can also take place
if the protocol does flow control (as most byte-stream service protocols do) since the
sending side can be generating data faster than the receiving end can process the data.
Also, a reliable protocol can be buffering data on the sending side while it is waiting for
an acknowledgment of previously sent data from the other end. Note that buffering can
be taking place on both ends, as the receiving byte-stream service can be receiving data
from the network faster than the user process is reading the data. Figure 4.17 shows this
buffering on both hosts.

user
process

send
buffer

L

1

J

 network
receive
buffer

L

byte-stream byte-stream
service layer service layer

1

J

Figure 4.17 Normal buffering that takes place with a byte-stream service.

user
process

Sometimes a user process wants to disable this buffering. For instance, consider a
terminal emulation program. The process that is reading the keystrokes wants to send
each keystroke to the other end, one byte at a time, since the other end might be operating
on each character as it is entered. This is how full screen editors under Unix operate, for
example. Similarly, the process that is sending terminal output also wants to force the
data to be transferred, perhaps at the end of every line. What we would like is the ability
for a user process to tell its byte-stream service layer (e.g., TCP) to flush any data that is
has buffered and send it to the other end. TCP, for example, supports this option, which
it calls a push.

Apple Inc.
Ex. 1013 - Page 30

190 A Network Primer Chapter 4

This type of buffering sounds like the type done by the standard I/O library, but net-
work buffering quickly becomes more complex. The complicating factors are that some
network applications are interactive (e.g., remote echoing in a remote login application),
which makes us want to buffer as little as possible, while performance considerations
make us want to buffer as much as possible. Also, congestion can quickly become a
problem if we send many small packets through a busy network, since there is a fixed
overhead for every packet, no matter how much data it contains. The techniques used by
the TCP implementation in 4.3BSD are covered in Section 12.7 of Leffler et al. [1989].
(We consider the buffering techniques of the 4.3BSD TCP implementation in more detail
in Section 6.11 when we describe the TCP_NODELAY socket option.)

Similarly, when a user at a terminal presses the attention key, it needs to be operated
on as soon as possible. The Unix interrupt key (typically the Delete key or Control-C) is
one example of this, as are the terminal flow control characters (typically Control-S and
Control-Q). This type of information is termed out-of-band data or expedited data. With
out-of-band data we want the byte-stream service layer on the sending side to send this
data before any other data that it has buffered. Similarly we want the receiving end to
pass this data to its user process ahead of any data that it might have buffered. Some
method is also desired for the receiving byte-stream service layer to notify the user pro-
cess asynchronously that out-of-band data has arrived. As you might guess, a Unix sig-
nal can be used for this notification. The term out of band is used because it appears to
the user processes that a separate communication channel is being used for this data, in
addition to the normal data channel (band). This is shown in Figure 4.18.

user
process

out-of-band
data

L

send
buffer

1

network

out-of-band
data

receive
buffer

1

L

byte-stream byte-stream
service layer service layer

Figure 4.18 In-band data and out-of-band data.

user
process

Some byte-stream layers provide out-of-band data and some don't. Those that do
provide it allow differing amounts. For example, SPP provides a single byte of out-of-
band data, while TCP allows an unlimited amount. We return to both of these features,
buffer flushing and out-of-band data, in the next three chapters when we examine each
specific protocol family and then examine the user process interface to the transport
layer.

Apple Inc.
Ex. 1013 - Page 31

Chapter 4 A Network Primer 191

Services and Protocols

It is necessary to differentiate between services and protocols in a layered model such as
the OSI model. A layer provides one or more services to the layer above it. As men-
tioned earlier, this text is mainly concerned with the services provided by the transport
layer to an application. Earlier we defined a protocol as a set of rules and conventions
that the communicating participants must follow, to exchange infounation.

In many of the protocol suites that preceded the OSI model, the services provided by
the different layers are not distinguished from the protocols that implement these ser-
vices. Most of the OSI protocols, however, separate the two, as we'll see in Section 5.6.
The advantage in separating the service from the protocol is that multiple protocols can
be developed over time to provide a given service.

Chapter 5 is concerned mainly with protocols, although there will be some implied
service features for those protocols that don't differentiate between services and proto-
cols. Chapters 6 and 7, however, deal with the services provided by the transport layer to
a user process—Berkeley sockets and System V TLI.

Addresses

Recall that the end points for communication are two user processes, one on each system.
With an internet, the two systems can be located on different networks, connected by one
or more gateways. This requires three levels of addressing.

® A particular network must be specified. As we've seen earlier in this chapter, a
given host can be connected to more than one network.

® Each host on a network must have a unique address.

® Each process on a host must have a unique identifier on that host.

Typically a host address consists of a network ID and a host ID on that network. The
identification of the user process on a host is often done with an integer value assigned by
the protocol. For example, the TCP/IP protocol suite uses a 32-bit integer to specify a
combined network ID and host ID, and both TCP and UDP use 16-bit port numbers to
identify specific user processes. The XNS protocol suite uses a 32-bit network ID, a
48-bit host ID, and a 16-bit port number. In the next chapter we'll examine the specific
address founats used by each protocol suite in more detail.

Most protocol suites define a set of well-known addresses that are used to identify
the well-known services that a host can provide. For example, most TCP/IP implementa-
tions provide a 'file transfer server named FTP that a client can contact to transfer a file.
The 16-bit integer port for FTP is 21. In Chapter 8 we discuss how a service name such
as FTP is mapped into a protocol-specific address, since it differs between protocol suites
and between implementations.

Apple Inc.
Ex. 1013 - Page 32

192 A Network Primer Chapter 4

Broadcast and Multicast

Consider a single network without any gateways. A unicast message is sent by a host to
one specific host on the network. A broadcast message is one that is transmitted by a
host to every host on the network. A multicast message is one that is transmitted by a
host to a specified group of hosts on the network. Some types of local area network tech-
nology support broadcast messages at the data-link layer—Ethernet and token ring, for
example. A special destination address specifies a broadcast message. An Ethernet des-
tination address of all 1-bits, for example, specifies a broadcast. Other foons of network
connections, such as point-to-point phone lines, require some foun of software imple-
mentation of broadcast.

A multicast message implies that some subset of the host systems belong to a multi-
cast group. Some foons of network hardware provide support for multicast addresses,
but this is more product specific than support for broadcast messages. For example, some
(but not all) Ethernet interfaces allow the host to specify those multicast groups to which
it belongs to.

When a network is connected to another network through a gateway, should broad-
cast messages generated on the local network be passed along by the gateway to the next
network? In nounal practice, broadcast messages are not forwarded.

We will see examples of broadcast messages in the next chapter. Multicasting is not
as widely supported as broadcasting.

Routing

The topic of network routing is complex and could consume an entire text of its own.
Here we'll provide a brief overview. Note that the applications programmer typically has
little control over routing.

When a node, either a host or a gateway, has a packet to send to some other host,
there are four possible cases.

1. The destination host is either directly connected to the node (with a leased phone
line, for example), or the destination host and the node are on the same network
(an Ethernet, for example). In either case the node can send the packet directly
to the destination host—no routing decision has to be made.

2. The arriving packet can contain the address of the next node to send the packet
to. This is called source routing since the list of addresses for the packet to fol-
low is established by the source host. No decisions have to be made by the
current node about where to send the received packet. This technique is used by
the IBM token ring [Dixon and Pitt 1988]. Additionally, the TCP/IP protocol
suite has an option that allows source routing to be used, however, this is typi-
cally used only by network administrators for testing. See Section 7.8.2 of
Comer [1988].

Apple Inc.
Ex. 1013 - Page 33

Chapter 4 A Network Primer 193

3. The current node can already know the route that packets from this source are to
follow to reach the specified destination. There are some packet-switched net-
works in which every packet from a given source to a given destination follow
the same route. In this case there are no decisions to be made by the current
node. The commercial TYMNET network, for example, uses this technique, as
does the IBM SNA/LEN product [Baratz et al. 1985].

4. None of the three cases above apply. A routing decision must be made by the
current node. This, for example, is the normal mode of operation for a gateway
on the TCP/IP Internet. Source routing is not typically used and two consecutive
datagrams from a given host to the same destination can follow different paths.

Note that some routing decision has to be made for cases 2, 3, and 4 above. In cases 2
and 3 the decision is made before the node receives the packet, so the node itself doesn't
have to make a decision. Nevertheless, someone had to make a routing decision for this
packet. In case 4 the routing decision is made on-the-fly by the node, which is typically a
gateway.

When routing decisions have to be made, there are four different types of algorithms
that can be used.

o static routing,
o isolated dynamic routing,
• centralized dynamic routing,
• distributed dynamic routing.

The routing algorithm can be applied by the source host (case 2), by a central authority
(case 3), or by the gateway itself (case 4).

Static routing chooses a route based on precomputed information. There is no con-
sideration of the current network dynamics—the load between gateways, for example.
The Unix pathalias program generates static routing tables that are used by the Unix
mailers. Sites typically run this program at some interval (every night or every week) to
compute the routes that UUCP mail will follow.

Dynamic routing takes into account the current load on the network. The first
dynamic technique, isolated dynamic routing, bases its decisions on local information
only. Typically this is the amount of data that the gateway currently has to send, or has
recently sent, out each of its interfaces. This technique is rarely used.

Centralized dynamic routing has a central authority that makes all routing decisions
based on current network information. The commercial TYMNET network, for example,
uses this technique. Each gateway regularly reports its traffic information to a central
node and this central node uses all this information to choose routes. Since a source host
must contact the central node each time a routing decision is made, realistically this tech-
nique is only applicable to networks that use virtual circuits at the network layer—all
packets from a given host to a given destination follow the same path. This way the cen-
tral node only has to be contacted when a new virtual circuit is established.

Apple Inc.
Ex. 1013 - Page 34

194 A Network Primer Chapter 4

Distributed dynamic routing uses a mixture of global and local information to make
routing decisions. In order for a gateway to obtain global information, the gateways must
have some way of exchanging this information. The TCP/IP Internet, for example, uses
distributed dynamic routing. Marten [1989] discusses the history of the routing protocols
used in the TCP/IP Internet.

Connections and Associations

We use the term connection to define the communication link between two processes.
The term association is used for the 5-tuple that completely specifies the two processes
that make up a connection:

[protocol, local-addr, local-process, foreign-addr, foreign-process]

The local-addr and foreign-addr specify the network ID and host ID of the local host and
the foreign host, in whatever foimat is defined by the protocol suite. The local-process
and foreign process are used to identify the specific processes on each system that are
involved in the connection, again in whatever format is defined by the protocol suite. In
the TCP/IP suite, for example,

{tcp, 192.43.235.2, 1500, 192.43.235.6, 21}

could be a valid association, where the protocol is TCP, the local-address is
192.43.235.2, the local-process is 1500, the foreign-address is 192.43.235.6, and the
foreign-process is 21. When we cover each protocol suite in the next chapter, we will see
other examples of this 5-tuple.

We also define a half association as either [protocol, local-addr, local-process] or
[protocol, foreign-addr, foreign-process], which specify each half of a connection. This
half association is also called a socket or a transport address. The term socket has been
popularized by the Berkeley Unix networking system, where it is "an end point of com-
munication," which corresponds to our definition of a half association. A socket pair
then corresponds to our definition of an association. Unfortunately the XNS protocol
suite uses the term socket to refer to what we called the 16-bit port above.

Client—Server Model

In Section 1.6 we briefly described the client—server model that. is prevalent in computer
networking. We defined iterative servers and concurrent servers. The former knows
ahead of time about how long it takes to handle each request and the server process han-
dles each request itself. In the latter case, the amount of work required to handle a
request is unknown, so the server starts another process to handle each request.

Notice that the roles of the client and server processes are asymmetric. This means
that both halves are coded differently. The server is started first and typically does the
following steps:

Apple Inc.
Ex. 1013 - Page 35

Chapter 4 A Network Primer 195

1. Open a communication channel and inform the local host of its willingness to
accept client requests on some well-known address.

2. Wait for a client request to arrive at the well-known address.

3. For an iterative server, process the request and send the reply. Iterative servers
are typically used when a client request can be handled with a single response
from the server.

For a concurrent server, a new process is spawned to handle this client request.
This requires a fork and possibly an exec under Unix, to start the new pro-
cess. This new process then handles this client's request, and does not have to
respond to other client requests. When this new process is finished, it closes its
communication channel with the client, and terminates.

4. Go back to step 2: wait for another client request.

Implicit in the steps above is that the system somehow queues client requests that arrive
while the server is processing a previous client's request. For example, with a concurrent
server it is possible for additional requests to arrive during the time it takes for the server
to spawn a new process to handle a request. Also implicit above is that the main server
process exists as long as the host system is running—server processes never terminate
unless forced to (such as when the system is being shut down).

The client process performs a different set of actions.

1. Open a communication channel and connect to a specific well-known address on
a specific host (i.e., the server).

2. Send service request messages to the server, and receive the responses. Continue
doing this as long as necessary.

3. Close the communication channel and terminate.

When the server opens a communication channel and waits for a client request, we call
this a passive open. The client, on the other hand, executes what is called an active open
since it expects the server to be waiting.

Who's Who in Networking Standards

There are many different organizations involved in the development of networking stan-
dards. Both the organizations and the standards are referred to by acronyms in most of
the networking literature.

ISO, the International Standards Organization, was founded in 1946 and develops
standards on a wide variety of subjects. The members of ISO are the national standards
organizations from the member countries. The U.S. member of ISO is ANSI, the
American National Standards Institute. The open systems interconnection model (OSI
model) was adopted by ISO in 1984.

Apple Inc.
Ex. 1013 - Page 36

196 A Network Primer Chapter 4

ccn 1, the Consultative Committee for International Telephony and Telegraphy,
develops standards for telephony and telegraphy. CCITT standards tend to be identified
by a letter, followed by a period, followed by a number. For example, X.25 is a CCITT
standard for packet-switched networks, and X.400 is a CCITT standard for electronic
mail.

IEEE (pronounced "I triple-E"), the Institute for Electrical and Electronic
Engineers, also issues standards. Its 802 standards are used for local area networks and
provide standardization at the two lowest layers of the OSI model. The 802.2 standard
defines the logical link control (LLC) used by the data-link layer. The 802.3, 802.4, and
802.5 standards define the media access control used by the data-link layer and the physi-
cal layer, for Ethernett, token bus, and token ring networks, respectively.

EIA, the Electronics Industry Association, is a trade association concerned primarily
with the physical layer of the OSI model. EIA developed the RS-232 standard that is
used widely for connecting terminals to computers.

IAB, the Internet Activities Board, is a small group of researchers who direct most of
the work on the TCP/IP protocols. It functions as a board of directors of the Internet.

Some networking standards originate with one organization and are then adopted by
others. For example, the IEEE 802.2-1985 standard is also ISO Draft International Stan-
dard (DIS) 8802/2. The EIA RS-232 standard is also the CCITT V.24/V.28 standard.

Exercises

4.1 Draw a diagram of the local area network that you have access to. Include hosts, repeaters,
bridges, routers, and gateways. Indicate what equipment (token ring, Ethernet, etc.) is being
used at the physical layer.

t The original Ethernet standard was developed at Xerox Corp. in the 1970s and then standardized
by DEC, Intel, and Xerox in 1981. The newest version is the IEEE 802.3 standard, dated 1985. It
differs slightly from the original Ethernet.

Apple Inc.
Ex. 1013 - Page 37

5

communication Protocols

5.1 Introduction

In this chapter we provide an overview of several communication protocol families. Our
goal is to provide enough of an overview so that we understand how to use the protocols,
and to provide references to more detailed descriptions of the actual design and imple-
mentation of the protocols.

We cover the following protocol suites, in the order shown:

• the TCP/IP protocol suite (the Internet protocols),
• Xerox Networking Systems (Xerox NS or XNS),
• IBM's Systems Network Architecture (SNA),
• IBM's NetBIOS,
• the OSI protocols,
• Unix-to-Unix Copy (UUCP).

For each protocol suite we give an overview, and then discuss the relevant portions for
the protocol's layers. We start from the bottom layer and work our way up. Note that we
cover each protocol family in its entirety, and we cover them in order of their importance
in the remainder of this text.

197 Apple Inc.
Ex. 1013 - Page 38

198 Communication Protocols Chapter 5

5.2 TCP/IP—the Internet Protocols

5.2.1 Introduction

During the late 1960s and the 1970s the Advanced Research Projects Agency (ARPA) of
the Department of Defense (DoD) sponsored the development of the ARPANET. The
ARPANET included military, university, and research sites, and was used to support
computer science and military research projects. (ARPA is now called DARPA, with the
first letter of the acronym standing for "Defense.") In 1984 the DoD split the
ARPANET into two networks—the ARPANET for experimental research, and the
MILNET for military use. In the early 1980s a new family of protocols was specified as
the standard for the ARPANET and associated DoD networks. Although the accurate
name for this family of protocols is the "DARPA Internet protocol suite," it is com-
monly referred to as the TCP/IP protocol suite, or just TCP/IP.

In 1987 the National Science Foundation (NSF) funded a network that connects the
six national supercomputer centers together. This network is called the NSFNET. Physi-
cally this network connects 13 sites using high-speed leased phone lines and this is called
the NSFNET backbone. About eight more backbone nodes are currently planned. Addi-
tionally the NSF has funded about a dozen regional networks that span almost every
state. These regional networks are connected to the NSFNET backbone, and the
NSFNET backbone is also connected to the DARPA Internet. The NSFNET backbone
and the regional networks all use the TCP/IP protocol suite.

There are several interesting points about TCP/IP.

e It is not vendor-specific.

e It has been implemented on everything from personal computers to the largest
supercomputers.

e It is used for both LANs and WANs.

e It is used by many different government agencies and commercial sites, not just
DARPA-funded research projects.

The DARPA-funded research has led to the interconnection of many different individual
networks into what appears as a single large network—an internet, as described in the
previous chapter. We refer to this internet as just the Internet (capitalized).

It is important to realize that while sites on the Internet use the TCP/IP protocols,
many other organizations (with no government affiliation whatsoever) have established
their own internets using the same TCP/IP protocols. At one extreme we have the Inter-
net using TCP/IP to connect more than 150,000 computers throughout the United States,
Europe and Asia, and at the other extreme we could have a network consisting of only
two personal computers in the same room connected by an Ethernet using the same
TCP/IP protocols.

Apple Inc.
Ex. 1013 - Page 39

Section 5.2 TCP/IP—the Internet Protocols 199

To avoid having to qualify everything with "the TCP/IP protocol suite" or "the
DARPA Internet protocol suite," we use the capitalized word Internet, as in "an Internet
address," or "the Internet protocols," to refer to the TCP/IP protocol suite. This is to
avoid confusion with internets that use protocols other than TCP/IP.

One reason for the increased use of the TCP/IP protocols during the 1980s was their
inclusion in the BSD Unix system around 1982. This, along with the use of BSD Unix in
technical workstations, allowed many organizations and university departments to estab-
lish their own LANs.

5.2.2 Overview

Although the protocol family is referred to as TCP/IP, there are more members of this
family than TCP and IP. Figure 5.1 shows the relationship of the protocols in the proto-
col suite along with their approximate mapping into the OSI model.

user
process

user
process

OSI Layers 5-7

A A
L J

1
V

TCP UDP OSI Layer 4

L J

ICMP

L

IP

L

ARP

hardware
interface

I OSI Layers 1-2

J

RARP

Figure 5.1 Layering in the Internet protocol suite.

1

OSI Layer 3

TCP Transmission Control Protocol. A connection-oriented protocol that pro-
vides a reliable, full-duplex, byte stream for a user process. Most Internet
application programs use TCP. Since TCP uses IP (as shown in Figure 5.1)
the entire Internet protocol suite is often called the TCP/IP protocol family.

Apple Inc.
Ex. 1013 - Page 40

200 Communication Protocols Chapter 5

UDP User Datagram Protocol. A connectionless protocol for user processes.
Unlike TCP, which is a reliable protocol, there is no guarantee that UDP
datagrams ever reach their intended destination.

ICMP Internet Control Message Protocol. The protocol to handle error and control
information between gateways and hosts. While ICMP messages are
transmitted using IP datagrams, these messages are normally generated by
and processed by the TCP/IP networking software itself, not user processes.

IP Internet Protocol. IP is the protocol that provides the packet delivery service
for TCP, UDP, and ICMP. Note from the Figure 5.1 that user processes nor-
mally do not need to be involved with the IP layer.

ARP Address Resolution Protocol. The protocol that maps an Internet address into
a hardware address. This protocol and the next, RARP, are not used on all
networks. Only some networks need it.

RARP Reverse Address Resolution Protocol. The protocol that maps a hardware
address into an Internet address.

There are other protocols in the Internet protocol suite that we do not consider in this
text—GGP (Gateway-to-Gateway Protocol) and VMTP (Versatile Message Transaction
Protocol), for example.

All the Internet protocols are defined by Request for Comments (RFCs), which are
their formal specifications. Corrections and explanations for many of the RFCs are found
in RFC 1009 [Braden and Postel 1987], RFC 1122 [Braden 1989a], and RFC 1123
[Braden 1989b}. RFC 1118 [Krol 1989] provides hints for new members of the Internet
community. It also describes how to obtain on-line information and how to be a good
Internet neighbor.

Additional details on the TCP/IP protocol suite can be found in Comer [1988]. A
sample implementation of UDP and IP is given in Comer [1987]. The source code for
the complete 4.3BSD implementation of TCP/IP is provided on the BSD Networking
Software release—refer to the Bibliography.

5.2.3 Data-Link Layer

The ARPANET consists of about 50 special purpose computers that are connected
together using leased telephone lines at 57.6 Kbps. The host computers and gateways on
the ARPANET are then connected to these special purpose computers. The 13 backbone
sites of the NSFNET are connected with T1 leased phone lines, which operate at
1.544 Mbps. Most 4.3BSD systems using the TCP/IP suite for a LAN use Ethernet tech-
nology. Products also exist that use a token ring for a LAN using TCP/IP. There also
exist implementations using an RS-232 serial line protocol (at speeds from 1200 bps to
19.2 Kbps) called the Serial Line Internet Protocol (SLIP). There are a variety of other
data-link connections in use by TCP/IP networks: satellite links and packet radio, for
example.

Apple Inc.
Ex. 1013 - Page 41

Section 5.2 TCP/IP the Internet Protocols 201

5.2.4 Network Layer—IP

IP Datagrams

The IP layer provides a connectionless and unreliable delivery system. It is connection-
less because it considers each IP datagram independent of all others. Any association
between datagrams must be provided by the upper layers. Every IP datagram contains
the source address and the destination address (described below) so that each datagram
can be delivered and routed independently. The IP layer is unreliable because it does not
guarantee that IP datagrams ever get delivered or that they are delivered correctly. Reli-
ability must also be provided by the upper layers. The IP layer computes and verifies a
checksum that covers its own 20-byte header (that contains, for example, the source and
destination addresses). This allows it to verify the fields that it needs to examine and pro-
cess. But if an IP header is found in error, it is discarded, with the assumption that a
higher layer protocol will retransmit the packet.

As we saw in the gateway examples from the previous chapter, it is the IP layer that
handles routing through an Internet. The IP layer is also responsible for fragmentation,

as described in the previous chapter. For example, if a gateway receives an IP datagram
that is too large to transmit across the next network, the IP module breaks up the data-

gram into fragments and sends each fragment as an IP packet. (Technically, the protocol

unit exchanged by the end-to-end IP layers is an IP datagram. An IP datagram can be
fragmented into smaller IP packets. When fragmentation does occur, the IP layer dupli-
cates the source address and destination address into each IP packet, so the resulting IP
packets can be delivered independently of each other.) The fragments are reassembled

into an IP datagram only when they reach their final destination. If any of the fragments

are lost or discarded, the entire datagram is discarded by the destination host.
The IP layer provides an elementary form of flow control. When IP packets arrive at

a host or gateway so fast that they are discarded, the IP module sends an ICMP source

quench message to the original source informing that system that the data is arriving too

fast. With 4.3BSD, for example, the ICMP source quench is passed to the TCP module

(assuming it was a TCP message that caused the source quench), which then decreases

the amount of data being sent on that connection.
The reference for IP is RFC 791 [Postel 1981a].

Internet Addresses

Every protocol suite defines some type of addressing that identifies networks and com-

puters. An Internet address occupies 32 bits and encodes both a network ID and a host

ID. The host ID is relative to the network ID. Every host on a TCP/IP internet must

have a unique 32-bit address. TCP/IP addresses on the Internet are assigned by a central

authority—the Network Information Center (NIC) located at SRI International. Even if

you are establishing your own internet, and don't plan to join the Internet, you can still

get an assigned Internet address by contacting SRI. (See Appendix M of Nemeth,

Snyder, and Seebas [1989] for the details on how to do this.)

Apple Inc.
Ex. 1013 - Page 42

202 Communication Protocols

A 32-bit Internet address has one of the four formats shown in Figure 5.2.

class A

class B

class C

class D

7 bits I 24 bits

Chapter 5

0 netid hostid

14 bits 16 bits

0 netid hostid

21 bits 8 bits

0 netid hostid

28 bits

0 multicast address

Figure 5.2 Internet address formats.

Class A addresses are used for those networks that have a lot of hosts on a single net-
work, while Class C addresses allow for more networks but fewer hosts per network. For
network addresses assigned by the NIC, only the type of address (Class A, B, or C) and
the network ID is assigned. The requesting organization then has responsibility for
assigning individual host addresses on that network. We won't consider multicast
addresses (Class D) any further.

Internet addresses are usually written as four decimal numbers, separated by decimal
points. Each decimal digit encodes one byte of the 32-bit Internet address. For example,
the 32-bit hexadecimal value 0x0102141404 is written as 1.2.255.4. This example is a
Class A address with a network ID of 1 and a host ID of 0x02141404. A sample Class B
address is 128.3.0.5, and a sample class C address is 192.43.235.6.

Every IP datagram contains the 32-bit Internet address of the source host and the
32-bit Internet address of the destination host, in every 20-byte IP header. Since an Inter-
net address is comprised of a network ID and a host ID, gateways can easily extract the
network ID field from a 32-bit address and route IP datagrams based solely on the net-
work ID. This is an important concept for routing, as it means that a gateway needs only
to know the location of other networks, and does not to need to know the location of
every host on an Internet.

Recall that a multihomed host is connected to two or more networks. This implies
that it must have two or more Internet addresses, one for each network that it is con-
nected to. This means that every Internet address specifies a unique host, but each host
does not have a unique address.

Apple Inc.
Ex. 1013 - Page 43

Section 5.2 TCP/IP—the Internet Protocols 203

Subnet Addresses

Any organization with an Internet address of any class can subdivide the available host
address space in any way it desires, to provide subnetworks. For example, if you have a
Class B address, there are 16 bits allocated for the host ID. If your organization wants to
assign host IDs to its 150 hosts, that are in turn organized into 10 physical networks,
there are two different ways to do this.

• You can allocate host IDs of 1 through 150, ignoring the physical network struc-
ture. This requires that all the gateway systems among the 150 hosts know where
each individual host is located, for routing purposes. Adding a new host requires
that each gateway's routing table be updated.

• You can allocate some of the high-order bits from the host ID, say the high-order
8 bits, for the network ID within your subnetwork. These 8 bits are independent
of the Class B network ID. The remaining 8 bits of the Class B host ID you then
use to identify the individual hosts on each internal network. Using this tech-
nique, your gateway systems can extract the 8-bit internal network ID and use it
for routing, instead of having to know where each of the 150 hosts are located.
Adding a new host on an existing internal network doesn't require any changes to
the internal gateways.

A picture of what the second option is doing is given in Figure 5.3.

standard
class B
address

subnetted
class B
address

14 bits 16 bits

1 0 netid hostid

14 bits 8 bits 8 bits

1 0 netid subnetid hostid

Figure 5.3 Class B Internet address with subnetting.

This feature adds another level to the Internet address hierarchy.

• network ID
• subnet ID within network
• host ID within subnet

The reference for subnetting is RFC 950 [Mogul and Postel 1985].

Apple Inc.
Ex. 1013 - Page 44

204 Communication Protocols Chapter 5

Address Resolution

If we have an Ethernet LAN consisting of hosts using the TCP/IP protocols, we have two
types of addresses: 32-bit Internet addresses and 48-bit Ethernet addresses. Recall from
the previous chapter that the 48-bit Ethernet addresses are typically assigned by the
manufacturer of the interface board and are all unique. We have the following address
resolution problems:

• If we know the Internet address of the other host that we want to communicate
with, how does the IP layer determine which Ethernet address corresponds to that
host? This is the address resolution problem.

• When a diskless workstation is initialized (bootstrapped), the operating system
can usually determine its own 48-bit Ethernet address from its interface hardware.
But we do not want to embed the workstation's 32-bit Internet address into the
operating system image, as this prevents us from using the same image for multi-
ple workstations. How can the diskless workstation determine its Internet address
at bootstrap time? This is the reverse address resolution problem.

The first problem is solved using the Internet Address Resolution Protocol (ARP), and the
second uses the Internet Reverse Address Resolution Protocol (RARP).

The ARP allows a host to broadcast a special packet on the Ethernet that asks the
host with a specified Internet address to respond with its Ethernet address. Every host on
the Ethernet receives this broadcast packet, but only the specified host should respond.
Once the requesting host receives the response it can maintain the mapping between the
Internet address and the Ethernet address for all future packets destined for the same
Internet address. The reference for ARP is RFC 826 [Plummer 1982].

The RARP is intended for a LAN with diskless workstations. One or more systems
on the LAN are the RARP servers and contain the 32-bit Internet address and its
corresponding 48-bit Ethernet address for each workstation. This allows the operating
system for each workstation to be generated without having to have its Internet address
as part of its configuration. When the workstation is initialized, it obtains its 48-bit
Ethernet address from the interface hardware and broadcasts an Ethernet RARP packet
containing its Ethernet address and asking for its Internet address. Every host on the
Ethernet LAN receives this broadcast, but only the RARP servers should respond. The
reference for RARP is RFC 903 [Finlayson et al. 1984a].

5.2.5 Transport Layer—UDP and TCP

User processes interact with the TCP/IP protocol suite by sending and receiving either
TCP data or UDP data. The relationship of TCP and UDP to our simplified 4-layer
model from Section 1.5 is shown in Figure 5.4.

Apple Inc.
Ex. 1013 - Page 45

Section 5.2 TCP/IP—the Internet Protocols 205

r

L

r

L

user
process

A

user
process

A

V

TCP

L

r

L

UDP

IP

_ 1

 J

hardware
interface

 J

1

1

J

Process Layer

Transport Layer

Network Layer

Data-Link Layer

Figure 5.4 4-layer model showing UDP, TCP, and IP.

These two protocols are sometimes referred to as TCP/IP or UDP/IP, to indicate that both
use IP also.

TCP provides a connection-oriented, reliable, full-duplex, byte-stream service to an
application program. UDP, on the other hand, provides a connectionless, unreliable data-
gram service. Figure 5.5 compares IP, UDP, and TCP against the modes of service that
we described in the previous chapter.

IP UDP TCP

connection-oriented ? no no yes

message boundaries ? yes yes no

data checksum ? no opt. yes

positive ack. ? no no yes

timeout and rexmit ? no no yes

duplicate detection ? no no yes

sequencing ? no no yes

flow control ? no no yes

Figure 5.5 Comparison of protocol features for IP, UDP, and TCP.

Apple Inc.
Ex. 1013 - Page 46

206 Communication Protocols Chapter 5

Notice that we list IP as not having flow control, since the source quench feature
described earlier is not an end-to-end flow control technique.

Since the IP layer provides an unreliable, connectionless delivery service for TCP, it
is the TCP module that contains the logic necessary to provide a reliable, virtual circuit
for a user process. TCP handles the establishment and termination of connections
between processes, the sequencing of data that might be received out of order, the end-
to-end reliability (checksums, positive acknowledgments, timeouts), and the end-to-end
flow control. RFC 793 [Postel 1981c] is the standard reference for TCP.

UDP provides only two features that are not provided by IP: port numbers
(described below) and an optional checksum to verify the contents of the UDP datagram.
But these two features are enough reason for a user process to use UDP instead of trying
to use IP directly, when a connectionless datagram protocol is required. The reference
for UDP is RFC 768 [Postel 1980].

Port Numbers

Figure 4.14 shows that it is possible for more than one user process at a time to be using
either TCP or UDP. This requires some method for identifying the data associated with
each user process. Both TCP and UDP use 16-bit integer port numbers for this identifi-
cation.

When a client process wants to contact a server, the client must have a way of identi-
fying the server that it wants. If the client knows the 32-bit Internet address of the host
on which the server resides it can contact that host, but how does the client identify the
particular server process? To solve this problem, both TCP and UDP have defined a
group of well-known ports. (These are the Internet-specific well-known addresses that
we described in the previous chapter.) For example, every TCP/IP implementation that
supports FTP, the File Transfer Protocol, assigns the well-known port of 21 (decimal) to
it. TFTP, the Trivial File Transfer Protocol, is assigned the UDP port of 69.

Let's take this client—server interaction to the next step and assume that a client
sends a message to the FTP server on some host by sending a message to port 21 on that
host. How does the FTP server know where to send its response? First, the server can
obtain the 32-bit Intetnet address of the client from the IP datagram, since these data-
grams contain the source and destination Internet addresses in the 20-byte IP header.
The client process also requests an unused port number from the TCP module on its local
host. The server can obtain the 16-bit port number from the TCP header. As long as the
client's TCP module does not reassign this port number to some other process before the
first client is finished, there won't be any conflict. When TCP or UDP assign unique port
numbers for user processes, they are called ephemeral port numbers (short lived). The
process that receives the ephemeral port number (the client process in this example)
doesn't care what value it is. It is the other end of the communication link (the server)

Apple Inc.
Ex. 1013 - Page 47

Section 5.2 TCP/IP—the Internet Protocols 207

that needs it. TCP and UDP port numbers in the range 1 through 255 are reserved. All
the well-known ports are in this range. Some operating systems reserve additional ports
for privileged programs (4.3BSD reserves the ports 1-1023 for superuser processes as
we describe in Section 6.8), and the ephemeral ports are above these reserved ports.

We have described a hierarchical addressing scheme that involves multiple layers.

• The IP datagram contains the source and destination Internet addresses in its IP
header. These two 32-bit values uniquely identify the two host systems that are
communicating.

• Also contained in the IP header is a protocol identifier, so that the IP module can
determine if an IP datagram is for TCP, UDP, or some other protocol module that
uses IP, which isn't discussed in this text.

• The UDP header and the TCP header both contain the source port number and the
destination port number. These two 16-bit integer values are used by the protocol
modules to identify a particular user process. Note that the TCP ports are
independent of the UDP ports, since the IP header specifies the protocol. TCP
port 1035, for example, is independent of UDP port 1035.

As described in the previous chapter, the addition of this control information by the dif-
ferent protocol modules is encapsulation. The combination of information from different
sources using identifiers such as port numbers, protocol types, and Internet addresses is
called multiplexing.

The 5-tuple that defines an association in the Internet suite consists of

• the protocol (TCP or UDP),
• the local host's Internet address (a 32-bit value),
• the local port number (a 16-bit value),
• the foreign host's Internet address (a 32-bit value),
• the foreign port number (a 16-bit value).

An example could be

(tcp, 128.10.0.3, 1500, 128.10.0.7, 21}

Figure 5.6 diagrams the encapsulation that takes place with UDP data on an Ethernet.
If the length of the IP datagram (the data, plus the UDP header, plus the IP header) is

greater than the MTU of the network access layer, then the IP layer has to fragment the
datagram before it is passed to the network access layer. If this happens, the receiving IP
layer has to reassemble the fragments into a single datagram before it is passed to the
upper layers (e.g., UDP). Whether fragmentation takes place or not, the size of the data
message (the datagram) exchanged by the two UDP layers is the same.

Apple Inc.
Ex. 1013 - Page 48

Section 5.2 TCP/IP—the Internet Protocols 209

As with UDP, it is also possible for the TCP layer to pass messages to the IP layer that
exceed the underlying network's MTU. If this happens, the sending IP layer does frag-
mentation and the receiving IP layer does reassembly. For performance reasons, how-
ever, most TCP implementations try to prevent IP fragmentation.

Concurrent Servers

With a concurrent server, what happens if the child process that is spawned by the main
server continues to use its well-known port number while servicing a long request? Let's
examine a typical sequence. First, the server is started on the host orange and it does a
passive open using its well-known port number (21, for this example). It is now waiting
for a client request.

server

{tcp, *, 21}

We use the notation {tcp, *, 21} to indicate that the server is waiting for a TCP
connection on any connected network (i.e., interface), on port 21. If the host on which
the server is running is connected to more than one TCP/IP network, the server can
specify that it only wants to accept a connection from a client on one specific network.
Our asterisk notation indicates that a connection will be accepted on any network.

At some later time a client starts up and executes an active open to the server. The
client has an ephemeral port number assigned to it by the protocol module (TCP, in this
example). Assume the ephemeral port number is 1500 for this example, and assume that
the name of the client's host is apple. This is shown in Figure 5.8.

r

L

host orange host apple
 1 r

server
connection

{tcp, *, 21}

client

i{tcID apple, 1 500}1

L J

Figure 5.8 Connection from client to server.

The notation { t cp , apple, 1500} is the client's half association or socket. Here
we are designating the Internet address as apple, using the name of the host instead of
its 4-digit notation. When the server receives the client's connection request, it forks a
copy of itself, passing the connection to the child process, as shown in Figure 5.9.

Apple Inc.
Ex. 1013 - Page 49

210 Communication Protocols

host orange

{tcp, 21}

fork

connection

{ tcp, orange, 21}

L J

host apple
r 1

client ,

i{tcp apple, 1500}1

L J

Figure 5.9 Concurrent server passes connection to child.

Chapter 5

The association is { t cp, orange, 21, apple, 1500}. The server process that
was waiting for the client connection now returns to its wait loop, letting the child pro-
cess handle the client's request.

Assume that another client process on the host apple requests a connection to the
same server. The client's TCP module assigns it a new ephemeral port number, say

1501, so that the half association It cp , apple, 1501} is unique on the host
apple. This gives us the picture shown in Figure 5.10.

host orange

fork

L

{tcp, 21}

server
(child)

{tcp, orange, 21}

{ tcp, orange, 21}

J

connection

connection

host apple
r

client

{tcp, apple, 1500},

client ,

i{tcp apple, 1501}1

L J

Figure 5.10 Second client connection passed to another child.

Apple Inc.
Ex. 1013 - Page 50

Section 5.2 TCP/IP—the Internet Protocols 211

Note that even though there are two identical half associations on the orange host,
{ t cp, orange, 21 } , the two complete associations are unique.

{tcp, orange, 21, apple, 1500}

{tcp, orange, 21, apple, 1501}

The TCP module on the orange system is able to determine which server child process
is to receive a given data message, based on the source Internet address and the source
TCP port number.

We assumed in the examples above that the TCP module assigns a unique ephemeral
port number to a process (e.g., a client) if the process does not need to assign a well-
known port to itself (e.g., a server). This is what normally happens. There are instances,
however, when a process can request that a specific port be used. The Internet FTP has
this requirement, and it is interesting to examine this as another example of Internet
addressing and port assignment.

FTP normally runs using the standard client and concurrent-server relationship, as
shown above. User commands are passed from the client to the server across the TCP
connection, with the server's responses being returned on the connection. But when we
request a file to be transferred between the client and server, another TCP connection is
established between the two processes. This provides one connection for commands and
one connection for data. The client initiates the transfer by sending a command across
the existing connection to the server. The client also creates a new communication chan-
nel, using the same port number that it is using for the control connection. The client
does a passive open on this new channel, waiting for the server to complete the connec-
tion. This is different from the previous examples, as the client now has to tell its TCP
module that it is OK to use the same port number, even though the half association,
{ t cp, apple, 1500 } , for example, is not unique on the client's host. (This is done
using the SO REUSEADDR socket option, as we'll describe in Section 6.11.) To guaran-

-
tee a unique association when the server completes the connection with this new client
port, the server must use some other port. FTP dictates that the server use the well-
known port 20 for this purpose. If we assume that both the client processes in our previ-
ous examples are FTP clients, and both have established a data connection with their
respective servers, we have the picture shown in Figure 5.11. All four associations are
unique, as required by the Internet protocol suite.

{tcp, orange, 20, apple, 1500}

{tcp, orange, 21, apple, 1500}

{tcp, orange, 20, apple, 1501}

{tcp, orange, 21, apple, 1501}

Apple Inc.
Ex. 1013 - Page 51

212 Communication Protocols Chapter 5

L

host orange

FTP

server

{tcp, *, 21}

{tcp, orange, 21}

{tcp, orange, 20

host apple

I {tcp, apple, 1500} I

cp apple, 1500}

L J

Figure 5.11 FTP example with two clients and two servers.

Buffering and Out-of-Band Data

UDP is a datagram service. Every datagram written by a user process has a header
encapsulated by the UDP layer, then the datagram is passed to the IP layer for transmis-
sion. There is no reason for the UDP layer to let the user's data hang around in the UDP
layer. The data is transmitted as soon as the IP layer can get to it, so the concepts of

buffering and out-of-band data do not apply to UDP.
TCP, however, presents a byte-stream service to the user process, and provides both

of these features. In TCP terminology the flush output command is called the push flag,
and out-of-band data is called urgent data. By definition, TCP supports any amount of
out-of-band data, but not all implementations support more than one byte at a time of
urgent data.

We show how a user process can set the TCP push flag with a socket option in Sec-
tion 6.11, and we return to TCP out-of-band data in Section 6.14.

Buffer Sizes and Limitations

By definition the maximum size of an IP datagram is 65,536 bytes. Assuming a 20-byte
IP header, this leaves up to 65,516 bytes for other data in the datagram. Realize, how-
ever, that as soon as the size of an IP datagram exceeds the size of the underlying
network's MTU, fragmentation occurs. Furthermore, not all TCP/IP implementations
support IP fragmentation, let alone fragmentation of a 65,536-byte datagram. Every
TCP/IP implementation must support a minimum IP datagram size of 576 bytes. Note
that a network can have an MTU smaller than 576, but any host must be able to

Apple Inc.
Ex. 1013 - Page 52

Section 5.2 TCP/IP—the Internet Protocols 213

reassemble the fragmented IP packets into at least a 576-byte IP datagram. The actual
maximum size of an IP datagram depends on the IP software on both ends, as well as the
software on every gateway between the two ends.

Since UDP packets are transmitted using IP, if the result of adding the UDP header
and the IP header causes the datagram to exceed the network's MTU, fragmentation
occurs. This means, for example, that sending 2048-byte UDP packets on an Ethernet
guarantees fragmentation.

TCP is different, since it breaks up the data into what it calls segments. The segment
size used by TCP is agreed on between the two ends when a connection is established. In
Section 6.11 we describe a socket option that allows a user process to determine the seg-
ment size being used by TCP.

Cabrera et al. [1988] show the effects of IP fragmentation on network performance.
Kent and Mogul [1987] provide arguments for not allowing fragmentation at all.

5.2.6 Application Layer

There are several application programs that are provided by almost every TCP/IP imple-
mentation. One strength of the TCP/IP protocol suite is the availability of these standard
applications for a variety of operating environments.

Additional details on FIP, TELNET, and SMTP are given in Stallings et al. [1988],
in addition to the RFCs referenced below.

ler
is FTP—File Transfer Protocol
DP
of 11P is a program used to transfer files from one system to another. It provides a rich set

of features and options, such as user authentication, data conversion, directory listings,

Dth and the like. Its standard definition is RFC 959 [Postel and Reynolds 1985].
ag, A typical sequence of events is for an interactive user to invoke an FIP client pro-
of cess on the local system. This client process establishes a connection with an FTP server
of process on the remote system using TCP. 1IP establishes two connections between the

client and server processes—one for control information (commands and responses) and
ec- the other for the data being transferred. The interactive user is prompted for access infor-

mation on the remote system (login name and password, if required), and files can then
be transferred in both directions. 1IP handles both binary and text files.

TFTP—Trivial File Transfer Protocol
yte

ov- Tr IP is a simpler protocol than FTP. While it provides for file transfer between a client
ing process and a server process, it does not provide user authentication or some of the other
OD S features of FTP (listing directories, moving between directories, etc.). TF1P uses UDP,
ery not TCP. The reference for TI4r1P is RFC 783 [Sollins 1981].
ote We develop a complete client and server implementation of TFTP in Chapter 12.
to

Apple Inc.
Ex. 1013 - Page 53

214 Communication Protocols Chapter 5

TELNET—Remote Login

TELNET provides a remote login facility. It allows an interactive user on a client system
to start a login session on a remote system. Once a login session is established, the client
process passes the user's keystrokes to the server process. As with the FTP program,
TELNET uses TCP. The standard for TELNET is RFC 854 [Postel and Reynolds 1983].

We consider the design of a remote login facility in Chapter 15 when we discuss the
4.3BSD remote login command.

SMTP—Simple Mail Transfer Protocol

SMTP provides a protocol for two systems to exchange electronic mail using a TCP con-
nection between the two systems. The protocol definition for SWEEP is RFC 821 [Postel
1982]. The standard for the format of the mail messages is RFC 822 [Crocker 1982].
RFC 974 [Partridge 1986] specifies how mail is routed.

5.3 XNS—Xerox Network Systems

5.3.1 Introduction

Xerox Network Systems (also called Xerox NS, or XNS) is the network architecture
developed by Xerox Corporation in the late 1970s for integrating their office products
and computer systems. XNS is an open system, in that Xerox has published and made
available the protocols used by XNS. Other vendors also provide hardware and software
that supports the XNS protocols. Most 4.3BSD systems provide support for the XNS
protocol suite. XNS is similar in structure to the TCP/IP protocol suite, so the presenta-
tion in this section assumes the reader has read the TCP/IP description in the previous
section.

5.3.2 Overview

The arrangement of the layers in the XNS protocol suite, and their approximate mapping
into the OSI model is shown in Figure 5.12.

ECHO Echo Protocol. A simple protocol that causes a host to echo the packet that
it receives. Most XNS implementations support this protocol.

RIP Routing Information Protocol. A protocol used to maintain a routing data-
base for use on a host in the forwarding of IDP packets to another host.
Typically a routing process exists on the host, and this process uses RIP to
maintain the database.

Apple Inc.
Ex. 1013 - Page 54

Section 5.3 XNS—Xerox Network Systems 215

r

L

r

L

user
process

user
process

1

OSI Layers 5-7

_J

ECHO RIP PEX

A

V

IDP

L

-1

L _J

hardware
interface

SPP

OSI Layer 3

OSI Layers 1-2

Figure 5.12 Layering in the XNS protocol suite.

ERROR

1

OSI Layer 4

_J

PEX Packet Exchange Protocol. An unreliable, connectionless, datagram proto-
col for user processes. Although PEX is not a reliable protocol, it does
retransmission but does not perform duplicate detection. We describe PEX
later in this section.

SPP Sequenced Packet Protocol. A connection-oriented, reliable protocol for
user processes. It provides a byte stream for the user process with optional
message boundaries. SPP is the most commonly used protocol in the XNS
suite, similar to TCP in the Internet suite. We describe SPP in more detail
later in this section.

ERROR Error Protocol. A protocol that can be used by any process to report that it
has discovered an error and therefore discarded a packet.

IDP Internet Datagram Protoc 1. IDP is the connectionless, unreliable data-
gram protocol that provid s the packet delivery service for all the above
protocols. We describe ID later in this section.

Apple Inc.
Ex. 1013 - Page 55

The five protocols that we show at OSI layer 4 are termed the "Internet" Transpo
Protocols by Xerox. These are defined by Xerox [1981b], with additional details give
in O'Toole, Torek, and Weiser [1985]: Boggs et al. [1980] gives some insight into
design of XNS.

Most Xerox applications are built using the Courier remote procedure call protoco
Courier, in turn, is built using SPP. We show this in Figure 5.13.

L

Printing
Protocol

L

Filing
Protocol

A

user
process

V

Courier

t

L

-

SPP OSI Layer 4

J

J

OSI Layer 7

J

OSI Layers 5-6

Figure 5.13 Typical XNS applications that use Courier.

A user process has the choice of interacting directly with SPP or using Courier. We
return to Courier in Chapter 18 when we describe remote procedure calls in more detail.

Note that all XNS protocols use IDP. Recall from the TCP/IP protocol suite that
ARP and RARP did not use IP.

5.3.3 Data-Link Layer

The typical XNS network is an Ethernet, although other technologies such as leased or
switched telephone lines using SDLC are possible.

5.3.4 Network Layer— IDP

XNS Addresses

An XNS address occupies 12 bytes and is comprised of three parts:

• a 32-bit network ID,
• a 48-bit host ID,
• a 16-bit port number.

Apple Inc.
Ex. 1013 - Page 56

Section 5.3 XNS—Xerox Network Systems 217

(Unfortunately, the XNS literature calls the 16-bit port number a socket. To avoid confu-
sion with the term socket that we defined in the previous chapter, we call this XNS field
a port.) In our definition of a socket from the previous chapter, {protocol, local-addr,
local-process], the protocol is xns, the local-addr is the combination of the network ID
and the host ID, and the local process is the port number. Note that an association in the
TCP/IP protocol suite interprets the local-process relative to the protocol, which is why
we have to differentiate between TCP and UDP. With XNS, however, that distinction
isn't required since the local-process (the port number) does not depend on any specific
transport protocol within XNS.

The host ID is an absolute number that must be unique across all XNS internets.
Typically the 48-bit host ID is set to the 48-bit Ethernet address, as most Xerox internets
are built using Ethernets. (Recall from the previous chapter that all Ethernet interfaces
are provided by their manufacturer with a unique 48-bit Ethernet address.) With unique
host IDs, the network ID is redundant, but it is required for routing purposes. Like the
host ID, the network ID must also be unique across all XNS internets. Both host IDs and
network IDs are assigned by Xerox Corp. to guarantee their uniqueness. Host IDs are
typically written as six hexadecimal digits separated by periods, as in 2.7.1.0.2a.19. The
network ID is typically written as a decimal integer.

Recall that TCP/IP host IDs are relative to the network ID, not absolute. For exam-
ple, the host ID in both of the Class B addresses 128.1.0.3 and 128.2.0.3 is 3, but the first
network ID is 1 and the second is 2. XNS host addresses, on the other hand, form a flat
address space.

IDP Packets

Everything in XNS is eventually transmitted in an IDP packet. IDP provides a connec-
tionless and unreliable delivery service, similar to the IP layer in the TCP/IP protocol
suite. Every IDP packet contains a 30-byte header with the following fields:

• source XNS address (host ID, network ID, port),
• destination XNS address (host ID, network ID, port),
• checksum,
• length of data (typically 0-546 bytes),
• higher layer packet type (SPP, PEX, etc.).

The differences between IP and IDP are as follows:

• The IDP packet contains a checksum that includes the entire IDP packet. Recall
that the IP checksum is only for the IP header, and does not include the data in the
IP datagram. IP forces the upper layers (UDP and TCP) to add their own check-
sums, if desired.

• IDP packets contain a 16-bit port number. In the TCP/IP suite, both UDP and
TCP are required to define their own port numbers, which are stored in their own
headers. The IDP port number is in the IDP header.

Apple Inc.
Ex. 1013 - Page 57

218 Communication Protocols Chapter 5

• IDP demultiplexes the incoming datagrams based on the port number, since the
IDP port number is independent of the actual protocol. The IP layer, on the other
hand, demultiplexes the incoming datagrams based on their protocol field—
usually TCP or UDP. The TCP and UDP layers then demultiplex the data based
on the port numbers in the TCP and UDP headers.

Given the first two points, it is more reasonable for a user process to use IDP directly,
when an unreliable datagram protocol is required, than for a user process to use Ip
directly.

Since the IDP layer demultiplexes the incoming datagrams based on the local port
number, and not the packet type, it is possible for a protocol module to receive packets of
another protocol. For example, it is possible for the SPP protocol module to receive an
ERROR protocol packet whose destination is the port using SPP. Each protocol package
in the XNS suite must be prepared to receive ERROR protocol packets. Again, this
differs from the TCP/IP suite.

5.3.5 Transport Layer—SPP and PEX

SPP—Sequenced Packet Protocol

SPP, the predominant transport layer protocol in XNS, is similar to TCP. It provides a
connection-oriented, reliable, full-duplex service to an application program. Unlike TCP,
which provides only a byte-stream interface, there is a three-level hierarchy in the data
being transferred using SPP.

• Bytes are the basic entity.
• A packet is composed of zero or more bytes.
• A message is composed of one or more packets.

Using these data forms, SPP can present three different interfaces to a user process.

• A byte-stream interface: the bytes are delivered to the user process in order. The
user process reads or writes the data using any convenient buffer size. Message
boundaries are preserved, but there are no packet boundaries seen by the user pro-
cess.

• A packet-stream interface: the packets are delivered to the user process in order.
The user process reads or writes entire packets, each of which is passed on to the
IDP layer. The user process has to know more details, such as the format of the

Apple Inc.
Ex. 1013 - Page 58

Section 5.3 XNS—Xerox Network Systems 219

12-byte SPP header, to set and detect message boundaries. The user process is
not to associate any semantics with the physical packet boundaries that it reads
and writes; instead the message boundaries available through SPP are to be used
for message demarcation.

• A reliable packet interface: the packets are delivered to the user process, but they
might be out of order. This interface presents the packets to the user process as
they arrive, which might be out of order, since two consecutive IDP packets might
travel from the source to the destination following different routes. Duplicate
packets are removed by the SPP software.

The first two interfaces are typically provided, while the reliable-packet interface is an
option. Also, it is possible for both ends of a connection to be using a different interface.
For example, there is nothing to prevent a client from using the byte-stream interface
when communicating with a server that is using the packet-stream interface. We com-
pare these three interfaces in Figure 5.14.

SPP

byte-stream packet-stream reliable-packet

connection-oriented ? yes yes yes

message boundaries ? yes yes no

packet boundaries ? no yes yes

data checksum ? yes yes yes

positive ack. ? yes yes yes

timeout and rexmit ? yes yes yes

duplicate detection ? yes yes yes

sequencing ? yes yes no

flow control ? yes yes yes

Figure 5.14 Comparison of interfaces provided by SPP.

In this figure we have added the line "packet boundaries" to differentiate between the
byte-stream interface and the packet-stream interface. In future figures we show only the
SPP byte-stream interface, since it supports message boundaries. Since the reliable-
packet interface is not common, we do not consider it any further in this text.

In Figure 5.15 we diagram the encapsulation that takes place with SPP data on an
Ethernet.

Apple Inc.
Ex. 1013 - Page 59

220 Communication Protocols Chapter

data

datastream type field <

SPP
header

data

packet type = SPP
XNS 12-byte source addr <

XNS 12-byte dest. addr

frame type = IDP

IDP
header

SPP
header

data

Ethernet 48-bit source addr <
Ethernet 48-bit dest. addr

Ethernet
header

IDP
header

SPP
header

data Ethern
traile

14 30 12 0-534 bytes 4

Ethernet frame

Figure 5.15 Encapsulation of SPP data on an Ethernet.

The' datastream type field and the packet type field are termed bridge fields and w
describe them later in this section. The 12-byte XNS address fields contain the 48-bi
host address, the 32-bit network address and the 16-bit port number.

PEX—Packet Exchange Protocol

Another transport layer protocol is PEX the Packet Exchange Protocol. PEX is a data.
gram oriented protocol, similar to UDP, but PEX retransmits a request when necessar3
(reqUiring a timeout and retransmission) and PEX does not do duplicate detection. PE)i
has a 6-byte header that includes a 32-bit ID field and a 16-bit client type. The protocol
operates as follows:

1. The client sets the ID field to some value that it chooses and sets the client type
field to a value that specifies the type of service requested. The packet is sent t(
the server.

2. The server performs the service specified by the client type.

3. When the server forms its response packet, it must return the same ID field that
was sent by the client. This way, when the client receives the response it know
which request the server is responding to. The client must then use a different
ID field for its next request.

Apple Inc.
Ex. 1013 - Page 60

Section 5.3 XNS—Xerox Network Systems 221

The purpose of the client type field in the PEX header is to allow a single server to han-
dle multiple service requests, each service corresponding to a different client type. The

PEX module on the client end will retransmit the request if a response if not received in a
specified amount of time, obviating the user's client process from having to do this.

The encapsulation that takes place with PEX data on an Ethernet is shown in Fig-
ure 5.16.

data

client type field
ID field C 1

packet type = PEX

PEX
header

data

XNS 12-byte source addr
XNS 12-byte dest. addr

IDP
header

PEX
header

data

frame type = IDP
Ethernet 48-bit source addr

Ethernet 48-bit dest. addr

Ethernet IDP PEX Ethernet
header header header

data
trailer

14 30 6

Ethernet frame

0-534 bytes

Figure 5.16 Encapsulation of PEX data on an Ethernet.

The relationship of the XNS protocols that we have described to our simplified
4-layer model is shown in Figure 5.17.

Apple Inc.
Ex. 1013 - Page 61

222 Communication Protocols Chapter 5

L

L

user
process

user
process

user
process

A

SPP

L

L

IDP

hardware
interface

1

V

PEX

Network Layer

Data-Link Layer

Figure 5.17 4-layer model showing SPP, PEX, and IDP.

Process Layer

Transport Layer

In Figure 5.18 we add IDP, PEX, and SPP to our table of protocol services from the
previous section.

IP IDP UDP PEX TCP SPP

connection-oriented ? no no no no yes yes

message boundaries ? yes yes yes yes no yes

data checksum ? no yes opt. yes yes yes

positive ack. ? no no no no yes yes

timeout and rexmit ? no no no yes yes yes

duplicate detection ? no no no no yes yes

sequencing ? no no no no yes yes

flow control ? no no no no yes yes

Figure 5.18 Comparison of protocol features: Internet protocols and XNS protocols.

As mentioned earlier in this section, the column for SPP is for either the byte-stream
interface or the packet-stream interface, since both provide the same features for the ser-
vices listed.

Apple Inc.
Ex. 1013 - Page 62

Section 5.3 XNS—Xerox Network Systems 223

XNS Bridge Fields

The XNS protocols define bridge fields in the headers that are encapsulated by each
layer. These fields are not used by a particular layer, but are set and interpreted by the
next higher layer. There are three bridge fields.

1. The packet type field in the IDP header is not used by the IDP layer. It specifies
the protocol of the data in the IDP packet. This is how, for example, the SPP
module knows that a received packet is an ERROR protocol packet and not an
SPP data packet.

2. The datastream type field in the SPP header is not used by the SPP module, but
is available for the user process that is using SPP. The XNS reference, Xerox
[1981b], provides an example use of this field in shutting down an SPP connec-
tion between two user processes.

3. The client type field in the PEX header is not used by the PEX protocol module.
Again, it is intended for the user process that is using PEX.

The complication imposed by these bridge fields is that they are in the headers that are
encapsulated and decapsulated by the protocol software—they are not in the normal data
area that the user reads and writes. This requires some form of interface between the
protocol modules (SPP and PEX) and the user process, to allow us to set and examine
these bridge fields.

We'll examine the 4.3BSD socket options that allow a user process to examine and
set these bridge fields in Section 6.11. Additionally, the XNS echo client that we develop
in Section 11.3 uses one of these socket options to set the packet type field in the IDP
header.

Buffering and Out-of-Band Data

PEX is a datagram service, so the concepts of buffering and out-of-band data don't apply.
SPP, however, provides a single byte of out-of-band data. The Xerox specification states
that this byte of data is to be made available to the user process as quickly as possible,
and furthermore it is presented to the user process again according to its normal
sequence. This means that the receiving SPP layer makes a copy of the out-of-band byte
in some special location and also puts the byte into its sequential position in the
receiver's input buffer.

We'll return to SPP out-of-band data in Section 6.14.

Apple Inc.
Ex. 1013 - Page 63

224 Communication Protocols Chapter 5

Buffer Sizes and Limitations

IDP packets are not fragmented as Internet IP datagrams might be. Most Xerox systems
enforce a maximum IDP packet size of 576 bytes. Allocating 30 bytes for the IDP
header, this allows up to 546 bytes of data in an IDP packet. Allowing 12 bytes for an
SPP header, the maximum SPP packet size is 534 bytes.

5.3.6 Application Layer

The main use of XNS today is to communicate with Xerox hardware. As mentioned ear-
lier, most of these applications use the Courier remote procedure facility, which we
describe in Chapter 18. Xerox standards are available for the predominant application
protocols—printing protocol (sending files to a Xerox printer), and filing protocol (send-
ing and receiving files from a Xerox file server), for example. Xerox [1985] provides
additional information on some of these applications.

5.4 SNA—Systems Network Architecture

5.4.1 Introduction

SNA, Systems Network Architecture, was originally released by IBM in 1974. It has
since been enhanced many times and is now the predominant method used to form inter-
nets of various IBM computers. Additionally, many vendors other than IBM provide
various levels of SNA support, allowing many non-IBM systems to participate in SNA
networks. SNA is an architecture, not a product. There exist software and hardware
products from both IBM and other vendors that implement different portions of SNA.

Our reason for covering SNA in a book on Unix networking, is that most vendors of
Unix systems now support SNA, in one form or another. Frequently the support is for
LU 6.2, which is the emphasis of this section. Unfortunately there is no common pro-
gramming interface across all these products, so we won't be able to say much about the
C interface to an SNA implementation.

SNA was originally designed to support the networking of nonprogrammable
devices, such as terminals (termed "workstations" by IBM) and printers, to IBM main-
frames. (An IBM "mainframe" is a system based on the System/370 architecture, as
opposed to other IBM systems, both large and small.) Because of this non peer-to-peer
evolution, where one system (the mainframe) is always the master in the communication
relationship, SNA appears more complicated than the other communication architectures
that we've discussed (TCP/IP, for example). SNA has always had a terminology all its
own, and has been confounded by the mainframe requirements just to implement and
configure an SNA network—CICS, VTAM, NCP, cluster controllers, and the like. Only
in the past five years has SNA adopted the protocols and implementations that allow two
user processes to communicate easily with each other, and without the requirement of a
mainframe in the communication link.

Apple Inc.
Ex. 1013 - Page 64

Section 5.4 SNA—Systems Network Architecture 225

The user of a network is defined to be an end user, which is either a user at a termi-
nal or an application program (process). An end user interacts with a logical unit
(referred to as an LU) to access the network. The type of services provided by the LU to
the end user differs for each type of LU. LU types 2, 3, 4, and 7 support communication
between processes and terminals, while LU types 1, 6.1, and 6.2 are for communication
between two processes. The LU in turn interacts with a physical unit (referred to as a
PU). The PU is, in essence, the operating system of the node, and it controls the data-
link connections between the node and the network. We picture this in Figure 5.19.

node

L

end user

Logical Unit
(LU)

A

Physical Unit
(PU)

A

data link

A

V
SNA network

1

J

Figure 5.19 SNA node with logical unit and physical unit.

If we consider the PU as the operating system of the node, then the data-link portion is
the device driver of the node. The type of node is specified by the PU type. Five types
of nodes are currently supported-1, 2.0, 2.1, 4, and 5. These are referred to, for exam-
ple, as a "Type 2.1 node," or "T2.1 node," or as PU 2.1. What we have called earlier
in this text a "network host" or a "system on a network," is referred to by IBM as a
node—an addressable unit on a network. IBM uses the term node, since an SNA node
can be a nonprogrammable device such as a terminal or printer.

Our interest in this text is only with LU 6.2 and PU 2.1, as these are the strategic
IBM products, and the only SNA implementations that adequately support communica-
tion between processes.

The bibliography lists several SNA manuals available from IBM that provide addi-
tional details on all the features mentioned here.

Apple Inc.
Ex. 1013 - Page 65

226 Communication Protocols

5.4.2 Overview

Chapter 5

SNA was developed in a layered approach that is similar to the OSI model. The seven
SNA layers are shown in Figure 5.20.

SNA functions

user
process

Logical
Unit

Path
Control

Data
Link

SNA layers OSI layers

Transaction Services Application

Presentation Services Presentation

Data-Flow Control
Session

Transmission Control

Transport

Path Control
Network

Data-Link Control Data Link

Physical Control Physical

Figure 5.20 7-layer SNA model and approximate mapping between SNA layers and OSI model.

Since SNA predates the OSI model, there is no exact mapping from the seven SNA
layers into the seven OSI layers. An approximate mapping between the two, along with a

consolidation of the seven SNA layers into the corresponding SNA functions, is also
shown in Figure 5.20.

In the seven SNA layers, the LU performs the functions of layers 4, 5, and 6—
transmission control, data-flow control, and presentation services. The top layer, transac-
tion services, is what we have called the user process. The bottom two layers are com-
bined into what we have called the network access layer, as these are the two layers that
change depending on the interface types supported by the node (SDLC, token ring, etc.).

Note that the four SNA functions in Figure 5.20 correspond to our simplified 4-layer
model. What we call a user process is called a transaction program (TP) by IBM.

Apple Inc.
Ex. 1013 - Page 66

Section 5.4 SNA—Systems Network Architecture 227

Two forms of SNA networks have evolved.

• Subarea SNA networks.
These networks are built around IBM mainframes that maintain centralized con-
trol over the network. Internets of independent SNA subarea networks can be
formed using the SNA network interconnect (SNI) facility.

• APPN networks.
APPN stands for "Advanced Peer-to-Peer Networking" and was introduced by
IBM in 1986 for the System/36. It has also been called SNA/LEN (low entry net-
working). In 1988 the capability was introduced for APPN networks to be con-
nected together through an SNA subarea network. APPN is limited to PU
Type 2.1 nodes and supports LU 6.2. APPN has features not found in subarea
networks, such as dynamic routing. Baratz et al. [1985] describe the prototype
implementation of APPN.

Today most of the more than 20,000 SNA networks in existence are subarea networks
based on IBM mainframes. But the increased shift towards smaller systems and the
increased capabilities of APPN should lead to the creation of many APPN-based net-
works.

5.4.3 Data-Link Layer

The Predominant form of network access used in SNA networks is SDLC—synchronous
data-link control. Typical SDLC links operate between 4.8 Kbps and 57.6 Kbps over
leased or switched telephone lines. The token ring is now starting to be used for LANs.
One IBM product, the RT, supports LU 6.2 over an Ethernet. IBM mainframes can com-
municate with each other using SNA over a System/370 data channel.

5.4.4 Path-Control Layer

In the TCP/IP and XNS protocol suites, the IP layer and the IDP layer both provided an
unreliable datagram delivery service to the layers above. In SNA we encounter a dif-
ferent scenario where the SNA path-control layer provides a virtual circuit service to its
upper layer (the LU). This means that the path-control layer, and the data-link layer
beneath it, provide error control, flow control, and sequencing.

Path control is the layer responsible for moving packets around in an SNA network.
Figure 5.21 shows the encapsulation that each layer applies to a message of user data
being transmitted by an SNA node, assuming an SDLC data link.

Apple Inc.
Ex. 1013 - Page 67

228 Communication Protocols Chapter 5

data

Response Unit (RU) >

request
header

data

Basic Information Unit (BIU)

transmission
header

request
header

data

Path Information Unit (PIU) = packet

SDLC
header

transmission
header

request
header

data
SDLC
trailer

3 6 3 0-256 bytes

Basic Link Unit (BLU) = frame

Figure 5.21 Encapsulation of SNA data on an SDLC link.

The request header is the LU header, and the transmission header is the PC (path control)
header, if we follow the conventions from the TCP/IP and XNS protocol suites where the
name of an encapsulated header is the name of the layer that adds the header. There is
another header that is sometimes added by the LU—a function management header
(FMH) that carries control information between LUs. This header is placed between the
request header and the data, with a bit turned on in the request header specifying that a
function management header is present.

In Figure 5.21 we show the data portion as being from 0 to 256 bytes in length. The
maximum response unit size is typically 256 or 512 bytes, but this size can be negotiated
to other values by the two LUs.

Every LU in a given SNA network must have a unique name, from, 1 to 8 characters.
In an internet of SNA networks, every network must have a unique name, also from 1 to
8 characters. A particular LU in an internet is identified by its network-qualified LU
name. This consists of

• network name,
• LU name within the network.

The network-qualified LU name is written as netname.LUname using a period between
the two names. The actual mapping of this network-qualified LU name to a physical
address is handled by a portion of the LU called directory services.

Apple Inc.
Ex. 1013 - Page 68

Section 5.4 SNA—Systems Network Architecture 229

The size of the transmission header that path control uses for moving packets
through a network ranges from 6 to 26 bytes, depending on the node types. We showed a
6-byte transmission header Figure 5.21. These 6-byte headers are used for traffic
between two adjacent Type 2.1 nodes. The 26-byte transmission header is used for data
exchanges between two adjacent subarea nodes that support explicit routing and virtual
routing. A complete treatment of SNA routing and SNA address formats is beyond the
scope of this text. Fortunately, it is not a requisite to understanding the use of LU 6.2,
which is the intent of our coverage of SNA.

Path control also does packet fragmentation and reassembly, termed segmenting in
SNA, when a packet must be divided into pieces before being passed to the data-link
layer. This is similar to the fragmentation and reassembly done by the IP layer, in
TCP/IP.

5.4.5 LU 6.2-APPC

LU 6.2 is also referred to as APPC for Advanced Program-to-Program Communication
and was released by IBM in 1982. LU 6.2 can use either PU 2.0 or PU 2.1. The major
difference is that PU 2.0 can only be used to communicate with an IBM mainframe, and
has inherent in it the master—slave relationship, where the mainframe is the master.
PU 2.1, however, is newer, and systems implementing PU 2.1 can communicate with
each other, without the need for a mainframe in the communication path. All newer IBM
implementations of SNA (System/36, System/38, AS/400, RT, PC) support PU 2.1.

LU 6.2 provides a connection-oriented, reliable, half-duplex service to an application
program. Note that this is the first half-duplex service that we have encountered. Both
TCP and SPP are full-duplex protocols. LU 6.2, however, allows data flow between the
user processes only in a single direction at a time. In Figure 5.22 we add LU 6.2 to the
table of protocol features that we have been building. This time, we'll add a row for the
connection-oriented protocols indicating whether the protocol provides a full-duplex data
stream to the user process.

IP IDP UDP PEX TCP SPP LU6.2

connection-oriented ? -- no no no no yes yes yes

message boundaries ? yes yes yes yes no yes yes

data checksum ? no yes opt. yes yes yes no

positive ack. ? no no no no yes yes yes

timeout and rexmit ? no no no yes yes yes yes

duplicate detection ? no no no no yes yes yes

sequencing ? no no no no yes yes yes

flow control ? no no no no yes yes yes

full-duplex ? yes yes no

Figure 5.22 Comparison of protocol features: Internet, XNS, and SNA.

Notice that LU 6.2 does not provide an end-to-end data checksum, which is different

Apple Inc.
Ex. 1013 - Page 69

230 Communication Protocols Chapter 5

from the other connection-oriented protocols we've covered—TCP and SPP. The
developers of SNA consider the hop-by-hop reliability of the data-link layer (the cyclic
redundancy check provided by the SDLC protocol, for example) to be an adequate test
for corrupted data. (We return to this topic in the last section of this chapter.) Yet
LU 6.2 provides positive acknowledgments, timeout and retransmission, duplicate detec-
tion, and sequencing, so we still consider it a "reliable" protocol.

Sessions and Conversations

In SNA terminology, the peer-to-peer connection between two user processes is called a
conversation. The peer-to-peer connection between two LUs is called a session. A ses-
sion is usually a long-term connection between two LUs, while a conversation is often of
a shorter duration. This is shown in Figure 5.23.

user
process

A

Logical
Unit

A

Path
Control

network
access

conversation

session

physical connection

user
process

A

Logical
Unit

A

Path
Control

SDLC protocols
network
access

Figure 5.23 SNA sessions and conversations.

Using Figure 5.23 we can list some of the features provided by a Type 2.1 node that are
not available with a Type 2.0 node.

• A T2.1 node supports multiple hardware links.

® A T2.1 node supports parallel sessions for its LUs. This means that two LUs,
each in a different node, can have multiple sessions with each other.

• A T2.1 node supports multiple sessions for its LUs. This means that a given LU
can have sessions with more than one partner LU at the same time.

An example is shown in Figure 5.24.

Apple Inc.
Ex. 1013 - Page 70

Section 5.4 SNA—Systems Network Architecture 231

T2.1 Node T2.1 Node T2.1 Node

r ------

L

user
process

A

V

LU

--- 1

conversation user
process

A
user

process

—I

<-1

parallel sessions
— — I— --I — —>

conversation

conversation

parallel sessions

r

r>

user
process

user
process

LU <

A I I A

path control,
network access

physical

link

path control,
network access

physical

A

LU

A

link

path control,
network access

L

Figure 5.24 Example of sessions and conversations between Type 2.1 nodes.

1

Sessions are expensive to establish, so a typical LU establishes a certain number of
sessions with its partner LUs. This forms a pool of active sessions for the LU to manage.
When a user process wants to allocate a conversation, it requests the use of a session
from the LU for the conversation. The LU picks an available session from its pool and
dedicates this session to the conversation. The user process can use this conversation for
a single transaction with its partner process, or it can hold on to the conversation for a
long time. When the process is finished with the conversation, the process deallocates it.
This allows the LU to put the conversation back into an available pool.

Using the terminology from the previous chapter we would call a conversation a
connection, and ignore the fact that a conversation takes place over a session. Indeed,
sessions are usually established by a network operator or when the system is initialized,
so the typical user has no control over the session allocations. Note that LU 6.2 differs
from both TCP and SPP in its explicit allocation and use of sessions. While a TCP con-
nection between two user processes implies that the two TCP modules have a "session"
of some foiiii between them, we do not have to preallocate a certain number of sessions
between two TCP modules. There is no inherent limit on the number of "sessions" that
a TCP module can have with other TCP modules, other than any resource limits in its
implementation (table sizes, number of processes allowed by the operating system, etc.).
LU 6.2 requires more user control in specifying the number of sessions to allocate
between LUs.

In our client—server model, we identified a server process as a process that had exe-
cuted a passive open, awaiting a connection from a client process. This implied that the

Apple Inc.
Ex. 1013 - Page 71

232 Communication Protocols Chapter 5

server process was already executing when it did the passive open. The server was
identified by a well-known address that was protocol-dependent. LU 6.2 is different in
that the client specifies the name of the partner program to execute—called the TP
(transaction program) name. Furthermore, the target LU usually creates a new program
instance (i.e., a new process) for every conversation that is started with a given TP name.

Each LU associates a conversation with a unique identifier, which we call a conver-
sation ID, and this ID associates a packet with a particular process. (Since a conversation
has exclusive use of a session, we can call this either a conversation ID or a session ID.)
In an APPN network the conversation ID is a 16-bit integer. This 16-bit value is carried
in the transmission header and is used by APPN to specify the user process. From our
definition of an association from the previous chapter, for SNA it consists of

• the protocol (LU 6.2),
• the local network-qualified LU name,
• the local conversation ID,
• the foreign network-qualified LU name,
• the foreign conversation ID.

An example of this 5-tuple could be

{1u62, NET1.LUJOE, 5, NET1.LUMIKE, 3}

Again, we are not concerned with the conversion of a network-qualified LU name, such
as NE T 1 . LU JOE , into its internal representation as an SNA address.

LU 6.2 Protocol Boundary

The interface between a user proceSs and the LU is called "presentation services" in
SNA. There are two interfaces possible for a user process to LU 6.2:

• mapped conversations,
• unmapped conversations.

An unmapped conversation is also called a basic conversation. The major difference
between the two types of conversations is in the format of the data that is exchanged
between the process and the LU (which we discuss later in this section).

The interface between a user process and LU 6.2 is defined as a collection of verbs
that a transaction program can execute to request a service from the LU. This defines the
protocol boundary between the program and LU 6.2. The actual mapping of these verbs
into an application program interface (API) depends on the specific LU 6.2 software
being used. An API could be a set of functions that a user process can call. As men-
tioned earlier, there is no standard API for LU 6.2, not even among different IBM prod-
ucts. Therefore, instead of describing an actual API, we'll describe the different LU 6.2
verbs that most LU 6.2 implementations provide to an application program.

Apple Inc.
Ex. 1013 - Page 72

Section 5.4 SNA—Systems Network Architecture 233

Here we provide a brief summary of the LU 6.2 verbs. We list only the names of the
mapped conversation verbs—unless otherwise noted, a basic verb that does a similar
function is available, and its name is formed by removing the MC_ prefix. For example,
ALLOCATE is the basic conversation equivalent of MC ALLOCATE.

MC ALLOCATE

MC CONFIRM

MC CONF IRMED

MC DEALLOCATE

MC FLUSH

Allocates a conversation with another program.
Required arguments are the name of the program to
execute and the name of the LU where that program
is located. The process issuing the ALLOCATE starts
in the send state and the partner process starts in the
receive state.

Sends a confirmation request to the remote process
and waits for a reply. This allows the two processes
in a conversation to synchronize their processing
with each other.

Sends a confirmation reply to the remote process.

Deallocates a conversation.

Forces the transmission of the local send buffer to the
other LU. In general, LU 6.2 waits until a full buffer
is available before sending anything to the other pro-
cess.

MC GET ATTRIBUTES Obtains information about a conversation, such as the
name of the partner LU.

MC PREPARE TO RECEIVE Changes the conversation from send to receive state.
Recall that LU 6.2 is a half-duplex protocol, not full-
duplex.

MC_ RECEIVE AND WAIT Waits for information to be received from the partner
process. The information returned can be user data
or a confirmation request.

MC RECEIVE IMMEDIATE Receives any information that is available in the local
LU's buffer, but does not wait for information to
arrive.

MC REQUEST TO SEND Notifies the partner process that this process wants to
send data. When the local process receives a "send"
indication from the partner process, the state of the
conversation changes.

Apple Inc.
Ex. 1013 - Page 73

234 Communication Protocols

MC_ SEND DATA

Chapter 5

Sends one data record to the partner process. For a
mapped conversation, one user data record is option-
ally mapped into a mapped conversation record
(MCR), as described below. For an unmapped
conversation, some portion of a logical record is sent.
Note that regardless of the conversation type, this
verb might not cause any data to be sent to the other
process, depending on the buffering in the local LU.
See the MC FLUSH verb above.

MC_ SEND_ ERROR Informs the partner process that the local process has
detected an application error of some form.

There are additional verbs defined by LU 6.2 that are considered "control operator
verbs." These are used to start sessions, change the number of sessions, stop sessions,
and the like. Their usage is product dependent and we don't consider them in this text.

The LU 6.2 protocol boundary defines numerous return codes from each of the
verbs. For example, the SEND_DATA verb can return that all. is OK and additionally it
can indicate that the partner process has issued a REQUEST_ TO___S END.

Logical Records and GDS Variables

All user process data consists of a 2-byte length field (LL) followed by zero or more
bytes of data. This is called a logical record and is shown in Figure 5.25.

logical record

LL user data

2 bytes 0-32765 bytes

Figure 5.25 SNA logical record.

The length includes the two bytes occupied by the length field, so its value is always
greater than or equal to two. '

Two processes using the basic conversation verbs exchange logical records. A pro-
cess that is writing logical records need not write a complete logical record with every
SEND DATA verb. That is, a logical record consisting of 500 bytes (an LL field of 500,
followed by 498 bytes of user data) can be written in three pieces-100 bytes, followed
by a SEND_DATA of 250 bytes, followed by a SEND_DATA of 150 bytes. Similarly, the
receiving process can read the logical record (RE CE IVE_AND_WAI T) in whatever sized
chunks it desires. A process must write a complete logical record, based on the LL value.

t Some internal LU components exchange control information for a session with the partner LU
using length fields less than two. This "invalid" length field informs the LU that the record is a
control record and not user data. We don't consider these control records in this text.

Apple Inc.
Ex. 1013 - Page 74

Section 5.4 SNA—Systems Network Architecture 235

In the above example with an LL of 500, the process cannot write 400 bytes and then do
a read. Not writing a complete logical record is called truncation and generates an error
indication for the receiving process.

For mapped conversations each MC_SEND_DATA verb executed by the process gen-
erates a single user data record. If a mapping is being done, the mapping is applied to
the user data record, generating the mapped conversation record (MCR). A 2-byte LL
field and a 2-byte ID field are prepended to the beginning of the MCR, generating a logi-
cal record. This is shown in Figure 5.26.

user data record

optional mapping

mapped conversation record

prepend LLID prefix

LL ID mapped conversation record

2 2 0-32763 bytes

logical record

GDS variable

Figure 5.26 SNA mapped conversation record.

This logical record is the same as the logical record that is written using the basic conver-
sation verbs, except a 2-byte ID field follows the LL field. This guarantees that the
length of a logical record from an MC_SEND_DATA verb is greater than or equal to 4
bytes (since the lengths of the LL field and the ID field are include in the length). For all
user process data, the ID field is set to 0xl2FF by LU 6.2. Other values of the ID field
are used by IBM applications and by the LU for special purposes.

A logical record containing an ID field is also called a GDS variable. GDS is an
acronym for Generalized Data Stream. A GDS variable can be comprised of multiple
logical records, if the length of the MCR exceeds 32,763 bytes. But the utility of writing
such large records is questionable, so we won't confuse the diagrams to show this general
case. t

No matter how the data was written, using either the basic conversation write or the
mapped conversation write, the LU is free to break up the logical records into response
units (RUs) as it wishes. The maximum response unit size is negotiated by the two
partner LUs when the session is started and its value is typically 256 bytes for an SDLC
data link. The LU appends the request header (RH) to the response unit and passes the
buffer to path control, as shown earlier.

1' Indeed, a conforming LU 6.2 implementation need handle only 2048-byte logical records.

Apple Inc.
Ex. 1013 - Page 75

236 Communication Protocols

Confirmation

Chapter 5

One parameter for the ALLOCATE verbs is the synchronization level. This can be set to
NONE or CONF IRM.t Specifying the confirmation option allows the user processes to use
the CONFIRM and CONFIRMED verbs, which were described earlier. This provides an
end-to-end confirmation that is built into the LU 6.2 protocol itself. Note that the same
type of feature can be built into any protocol, if the two user processes agree on a con-
vention for indicating a confirmation. We'll see in Section 13.2 how the 4.3BSD line
printer spooler uses a single byte message to provide a confirmation message to its
partner process.

Buffering and Out-of-Band Data

LU 6.2 internally buffers almost everything that one process sends to another. To cir-
cumvent this, the FLUSH verbs are provided to force the LU to send what is has accumu-
lated in its buffer. For example, when a program ALLOCATEs a conversation with
another program and then executes a SEND_DATA to transfer data to that process, the
LU, by default, won't send the allocate until its buffer is full. This means that the initiat-
ing process won't know if there was an error invoking the partner program until some
number of SEND DATA verbs cause the allocate to be sent to the other side.

LU 6.2 has no out-of-band data mechanism, comparable to what we described with
TCP and SPP. A user process must issue a SEND_ERROR verb to notify the other pro-
cess that attention is required. It is then up to the user processes to detemine how to
handle things.

Well-Known Addresses

If the first character of the remote transaction program name (TP name) in an
ALLOCATE is a special character (0x00-0x0D or Ox10-0x3F), then the remote TP is a
service transaction program. These programs are typically supplied by IBM and only
privileged processes can allocate conversations with them. Three service TPs are DIA,
DDM, and SNADS, described in the next section. This feature corresponds to the
privileged port feature of 4.3BSD for ports in the Internet domain and in the XNS
domain.

t A third option, S YNCP T is specified in the LU 6.2 protocol definition. This option allows
conversations to specify synchronization points for potentially backing out changes that it has
made. This option appears to have been discarded by IBM [IBM 1988]. This feature is similar to
the Commitment, Concurrency, and Recovery feature of the OSI Common Application Service
Element, which we describe in Section 5.6.7.

Apple Inc.
Ex. 1013 - Page 76

Section 5.4

Option Sets

SNA—Systems Network Architecture 237

The LU 6.2 specification provides a base set of features that any implementation must
provide, along with 41 optional features that can also be provided by a given product.
For example, one option allows conversations between programs at the same LU.
Another option allows a process to flush the LU's buffer using the FLUSH verbs.

Unfortunately, this laxness in the "official" specification of the protocol makes por-
tability of LU 6.2 applications less than desired. But most real-world implementations of
LU 6.2 on computer systems of general interest (i.e., ignoring special purpose systems
that weren't intended to be programmed by end users) tend to support options that should
have been in the base set. Furthemiore, the publication by IBM of their CPI-
Communications API [IBM 1988] gives some indication about the features in LU 6.2
which will be supported in the future.

5.4.6 Application Layer

IBM is building distributed applications using LU 6.2. IBM differentiates between two
types of user processes that are at the layer above the LU:

• application transaction programs,
o service transaction programs.

The only real difference is that service TPs are supplied by IBM and a service TP can
provide a service for an application TP. Application TPs are user processes. Service TPs
can only be invoked by privileged processes, as described above. From a network pro-
gramming perspective the difference is negligible. Both types of TPs access the network
in the same way through the LU.

DIA—Document Interchange Architecture

DIA defines the functions required for interchanging documents between different IBM
office systems. DIA is implemented on top of LU 6.2. That is, DIA uses LU 6.2 for
communicating between different computer systems. DIA provides the following func-
tions: document library services (storing and retrieving documents), document distribu-
tion (delivering documents to others in the network), and file transfer. DIA specifies the
protocols and data structures used to exchange infounation between two DIA
processes—a DIA client process and a DIA server process. An implementation of DIA
usually provides a command language for an interactive user to execute DIA commands.
These user commands (such as sign on, sign off, search, retrieve, deliver, delete, etc.) are
translated into the appropriate DIA functions that are exchanged between the user's DIA
client process and the DIA server process, using LU 6.2. DISOSS (Distributed Office
Support System) is the IBM mainframe implementation of DIA that runs under CICS.

Apple Inc.
Ex. 1013 - Page 77

238 Communication Protocols Chapter 5

One type of document that is exchanged using DIA is one whose format is specified
by DCA. DCA (Document Content Architecture) specifies the internal format of a docu-
ment that can be exchanged between IBM office systems—the data stream and how it is
to be interpreted. There are two forms of DCA, revisable form and final form. The
revisable form specifies the structure of the document while it can be edited or formatted.
The final form specifies the structure of the completed document in a device independent
format. The intent of DCA is to allow a document to be moved between different IBM
office systems, in either a revisable form or a final format.

SNADS—SNA Distribution Services

SNADS is an asynchronous distribution service for moving distribution objects (such as
a document or an electronic mail message) from a source node to a destination node. By
asynchronous we mean that it initiates the sending of the object, but the actual delivery
might take place later. Furthermore, the delivery might require temporary storage in one
or more intermediate nodes. The asynchronous nature of SNADS is similar to the Unix
electronic mail delivery service provided by the Unix uucp program, which we describe
in Section 5.7.

Contrast this with a synchronous delivery service where the source and destination
are connected together through an LU 6.2 conversation. This synchronous capability is
similar to the TCP/IP SMTP application, which uses a TCP connection between the
source host and the destination host.

DDM—Distributed Data Management

DDM is another application available from IBM that uses LU 6.2. DDM is IBM's archi-
tecture for transparent remote file access in an SNA network. DDM allows an applica-
tion program to access the records in a file on another system. To do this, the application
program calls the local DDM interface to request a record from a file. If the interface
recognizes the request as one for a local file, the local file is accessed. Otherwise, the
local interface (the DDM client process) establishes an LU 6.2 session with the DDM
server process on the remote system, and the server accesses the record and returns it to

the client.

5.5 NetBIOS

5.5.1 History

In 1984 IBM released its first LAN, the IBM PC Network. It was similar in concept to an
Ethernet, but ran at 2 Mbps, whereas most Ethernets operate at 10 Mbps. The interface
card for the IBM PC (called an "adapter card" by IBM) was developed by Sytek, Inc.,

and contained on it the first implementation of NetBIOS. The name NetBIOS is derived

from the name BIOS for the "basic input output system" for the IBM PC. The BIOS

Apple Inc.
Ex. 1013 - Page 78

Section 5.5 NetBIOS 239

was contained in read-only memory on the PC and provided an interface between a pro-
gram on the PC and the actual hardware. Similarly, NetBIOS provides an interface
between a program and the actual hardware on the interface card.

When IBM introduced its token ring LAN in 1985, it provided an implementation of
NetBIOS for the token ring. The original PC Network implementation of NetBIOS was
implemented in read-only memory on the interface card, while the token ring version was
a software module. Despite the implementation differences, the token ring version pro-
vided the same interface to an application program as was provided by the original PC
network.

The third implementation of NetBIOS by IBM occurred when the IBM PS/2 systems
were introduced and the IBM LAN Support Program was available. This software pack-
age consists of device drivers and interface support for all of IBM's LAN interfaces.

NetBIOS is a software interface, not a network protocol. For example, the data
packets that are exchanged across the IBM PC Network differ from those on a token ring
network. We expect the actual frame that is transmitted by two different data-link layers
to be different, since the data link header and trailer are different for each type of data
link (token ring, Ethernet, SDLC, etc.). But the packet that is passed to the data-link
layer should not change for a given protocol. For example, in the TCP/IP protocol suite,
the IP datagram that starts with the IP header is the same, regardless of the data link
being used. With NetBIOS this packet equivalency is not true. Nevertheless, the inter-
faces provided by all IBM implementations of NetBIOS are equivalent, providing a con-
sistent software interface that has become a de facto standard for personal computers. In
addition, there exist implementations of NetBIOS that use TCP and UDP as the underly-
ing transport protocols, and standards exist for this in the Internet (RFC 1001 and
RFC 1002).

Even though NetBIOS is not a protocol, we give an overview of the services that it
provides here. Schwaderer [1988] provides details on using NetBIOS under the
MS-DOS system. IBM [1987] provides additional details.

5.5.2 Overview

NetBIOS was designed for a group of personal computers, all sharing a common broad-
cast medium (the IBM PC Network, which we said earlier is like an Ethernet). It pro-
vides both a connection-oriented service (virtual circuit) and a connectionless (datagram)
service. It supports both broadcast and multicast.

Four types of service are provided by NetBIOS:

• name service,
e session service,
e datagram service,
e general commands.

Figure 5.27 shows the relationship of these four services. Note that we do not indicate
how these four services interact. In most implementations, a single box providing some
fonu of datagram delivery (similar to the IP layer in the TCP/IP suite) is probably used.

Apple Inc.
Ex. 1013 - Page 79

240 Communication Protocols Chapter 5

r

NetBIOS
r

L

user
process

OSI Layers 5-7

Session
service

Name
service

L

Datagram
service

hardware
interface

OSI Layers 1-2

J

General
commands

Figure 5.27 Relationship of NetBIOS services.

OSI Layers 3-4

J

But unlike the IP layer, with NetBIOS the user process has no access to any services
other than the ones described in the following sections, so the actual implementation need
not concern us.

In many PC environments the application that NetBIOS is being used for is file shar-
ing. In this case, another protocol interface exists above NetBIOS. This interface is
called the Server Message Block protocol (SMB) and we show it in Figure 5.28.

Application

Presentation

Session

Transport

Network

Data Link

Physical

SMB interface

NetBIOS interface

Figure 5.28 Relationship of NetBIOS and SMB to OSI model.

Dunsmuir [1989] shows the format of the SMB header and gives a listing of all the SMB

Apple Inc.
Ex. 1013 - Page 80

Section 5.5 NetBIOS 241

functions: create directory, open file, read from file, and so on. Line printer access is
automatically handled by this software interface by providing three SMB operations that
are for print files, not regular files. These open, write, and close a print spool file.

5.5.3 Name Service

Names are used to identify resources in NetBIOS. For example, for two processes to
participate in a conversation, each must have a name. The client process identifies the
specific server by the server's name, and the server can determine the name of the client.
The name space is flat (that is, it is not hierarchical) and each name consists of from 1 to
16 alphanumeric characters. Upper case is different from lower case and names cannot
start with an asterisk or with the three characters "IBM."

There are two types of names: unique names and group names. A unique name
must be unique across the network. (As stated earlier, NetBIOS was designed for a
LAN, so the name must typically be unique on the local network.) A group name does
not have to be unique and all processes that have a given group name belong to the
group.

There are four commands pertaining to name service.

ADD NAME

ADD GROUP NAME

DELETE NAME

FIND NAME

Add a unique name
Add a group name
Delete name
Determine if a name is registered

To obtain a unique name or a group name, a process must bid for the use of the name.
This is done by broadcasting a notice that the process wants to use the name, as either a
unique name or a group name by issuing either the ADD_NAME command or the
ADD GROUP NAME command, respectively. If no objections are received from any
other NetBIOS node, the name is considered registered by the requesting node. An
objection occurs for an ADD_NAME if some other node responds that the name is
currently in use on that node as either a unique name or a group name. The only restric-
tion on the ADD GROUP NAME command is that no other node can be using the name as
a unique name.

Implied in the NetBIOS specification is that each NetBIOS node maintains a table of
all names that processes on that node currently own. These names continue to be owned
by the NetBIOS node, until the names are specifically deleted, or until the node is
powered off or reset. Realize that names are handled by two different entities: name
registration is done by NetBIOS for a process that issues a ADD_NAME command, but it
is NetBIOS that maintains the name table. Even though the process that registered the
name might cease to exist, unless the name is specifically deleted with the
DELETE NAME command, the node's NetBIOS name table continues to know the name.

Both the ADD NAME and ADD GROUP NAME commands return a local name num-_
ber that is a small integer identifying the name. This number is used for the datagram
commands and for the RECEIVE ANY command (both described below).

By default, the IBM PC LAN Support Program transmits a name registration request

Apple Inc.
Ex. 1013 - Page 81

242 Communication Protocols Chapter 5

six times, at half-second intervals, until it considers the name registered by itself. This
implies a 3-second delay every time an application that requires a new name is started for
the first time.

The FIND NAME command was added with the token ring implementation of Net-
BIOS and determines if a particular name has been registered by any other NetBIOS
node.

5.5.4 Session Service

The NetBIOS session service provides a connection-oriented, reliable, full-duplex mes-
sage service to a user process. The data is organized into messages and each message
can be between 0 and 131,071 bytes. NetBIOS does not provide any fomi of out-of-band
data.

The following commands provide session service:

CALL Call—active open
LISTEN Listen—passive open
SEND Send session data
SEND NO ACK Send session data, no acknowledgment
RECEIVE Receive session data
RECEIVE ANY Receive session data
HANG_UP Terminate session
SESSION STATUS Retrieve session status

NetBIOS requires one process to be the client and another to be the server. The
server first issues a passive open with the LISTEN command. The client,then connects
with the server when the client executes the CALL command.

The LISTEN command requires the caller (typically a server process) to specify
both the local name (which must be in the local NetBIOS name table) and the remote
name. The local name is the well-known address that the server is known by. The
remote name is the name of the specific client with which a session can be established.
The caller can specify the remote name as an asterisk, allowing any remote process that
specifies the local name to establish a connection. Since most servers are willing to
accept a connection from any process (perhaps doing some form of authentication once
the session is established), specifying the remote name as an asterisk is the typical
scenario. Both ends of the session can access the name of the other end.

Both the LISTEN command and the CALL command return a local session number
to the calling process. This small integer is then used for SEND and RECEIVE com-

mands to specify a particular session (since a process can have more than one session

active at any time). The local session number is also used by the HANG_UP command to

specify which session is to be terminated. When a session is terminated, all pending data

is first transferred.
In the normal SEND operation, the NetBIOS module waits for a positive acknowl-

edgment from the other system before returning to the caller. Similarly, the RECEIVE

command sends an acknowledgment to the other system before passing the received data

Apple Inc.
Ex. 1013 - Page 82

Section 5.5 NetBIOS 243

to the caller. This provides an end-to-end verification that the data was received. When
the token ring implementation of NetBIOS appeared, IBM introduced the
SEND_ NO_ ACK command, which does not perform the acknowledgments between the
NetBIOS modules. The reason for this is that the data-link layer of the token ring net-
work performs acknowledgments between the two data-link layers.

The IBM PC implementations provide a CHAIN SEND command that combines two
user buffers into a single message. The reason for this command is that the count associ-
ated with a normal SEND command is a 16-bit integer, which allows values between 0
and 65535. By combining two sends into a single operation, messages up to 131,071
bytes can be exchanged. This command, however, is an interface issue between the Net-
BIOS implementation and the user process, and we won't consider it any more in this
text.

The RECEIVE command receives data for a particular session that the process has
open. The local session number that was returned by the CALL or LISTEN specifies the
session. The RECEIVE ANY command allows a process to receive the next message
from any of its current session partners. NetBIOS returns the actual session number
corresponding to the received data.

5.5.5 Datagram Service

NetBIOS supports datagrams up to 512 bytes in length.t Datagrams can be sent to a
specific name (either a unique name or a group name) or can be broadcast to the entire
local area network. As with other datagram services, such as UDP/IP, the NetBIOS data-
grams are connectionless and unreliable.

There are four datagram commands.

SEND DATAGRAM Send datagram
SEND BROADCAST DATAGRAM Send broadcast datagram
RECEIVE DATAGRAM Receive datagram
RECEIVE BROADCAST DATAGRAM Receive broadcast datagram

The SEND DATAGRAM command requires the caller to specify the name of the destina-
-

tion. The name can be either a unique name or a group name. If the destination is a
group name, then every member of the group receives the datagram. The caller of the
RECEIVE DATAGRAM command must specify the local name for which it wants to
receive datagrams. Datagrams addressed to this name are received by the caller. The
RECEIVE DATAGRAM command also returns the name of the sender, in addition to the
actual datagram data. If NetBIOS receives a datagram (i.e., the NetBIOS module has
previously registered the name to which the datagram was addressed), but there are no
RECEIVE DATAGRAM commands pending, then the datagram is discarded.

The SEND BROADCAST DATAGRAM command sends the message to every

t The NetBIOS device driver supplied with the PC LAN Support Program allows a configuration
option to specify a maximum datagram length other than 512 bytes.

Apple Inc.
Ex. 1013 - Page 83

244 Communication Protocols Chapter 5

NetBIOS system on the local network. When a broadcast datagram is received by a Net-
BIOS node, every process that has issued a RECEIVE_ BROADCAST_DATAGRAM corn_
mand receives the datagram. If none of these commands are outstanding when the
broadcast datagram is received, the datagram is discarded. As with a nornial datagram,
the name of the broadcast datagram source is also returned to the receiver.

5.5.6 General Commands

There are four general commands.

RESET Reset NetBIOS
CANCEL Cancel an asynchronous command
ADAPTER STATUS Fetch adapter status
UNLINK Unlink from bootstrap server

The RE SET command clears the NetBIOS name and session tables, and also aborts any
existing sessions.

The CANCEL command assumes that NetBIOS commands can be issued
asynchronously by a user process. That is, the user process starts a command but does
not wait for it to complete. Some method is required for the process to be notified when
the command completes or for the process to check if a specific command is done or not.
If asynchronous commands are supported by the NetBIOS implementation, then the
CANCEL command cancels a specific outstanding command. If the command being can-
celled is a SEND, then the associated session is aborted.

The STATUS command returns interface-specific status associated with either a local
name or a remote name. Additionally, it returns the NetBIOS name table for that Net-
BIOS node (either the local node or a remote node). Unfortunately, for the IBM PC
implementations of NetBIOS, the actual contents of the adapter status information that is
returned to the caller depends on the adapter type (PC Network or token ring).

The UNLINK command was used with the original PC NetwOrk interface when a
diskless workstation was bootstrapped from a remote disk drive.

5.5.7 NetBIOS Summary

In Figure 5.29 we add the two NetBIOS services to the table that we have been building.
We use the terms NbS for the NetBIOS session services and NbD for the datagram ser-
vices. Note that the NetBIOS session service is like LU 6.2—both assume the underly-
ing data link provides reliability.

Apple Inc.
Ex. 1013 - Page 84

Section 5.6 OSI Protocols 245

IP IDP UDP PEX NbD TCP SPP LU6.2 NbS
connection-oriented ? no no no no no yes yes yes yes
message boundaries ? yes yes yes yes yes no yes yes yes
data checksum ? no yes opt. yes no yes yes no no
positive ack. ? no no no no no yes yes yes yes
timeout and rexmit ? no no no yes no yes yes yes yes
duplicate detection ? no no no no no yes yes yes yes
sequencing? no no no no no yes yes yes yes
flow control ? no no no no no yes yes yes yes
full-duplex ? yes yes no yes

Figure 5.29 Comparison of protocol features: Internet, XNS, SNA, and NetBIOS.

Using our definition of an association from the previous chapter, for the NetBIOS
session service it consists of

• the protocol (NetBIOS session service),
• the source name,
• the source session number,
• the destination name,
• the destination session number.

An example could be

{NbS, JOESXT, 4, PRINTER, 7}

For the NetBIOS datagram service, only the protocol and the names are required, as there
is no concept of a session for a datagram. Note also that the name of a partner process
implies both the host name and the server's name.

5.6 OSI Protocols

5.6.1 Introduction

As stated in the previous chapter, the OSI model provides a framework within which
standards can be developed for protocols at each layer. We refer to the protocol stan-
dards developed by ISO and other related organizations (CCITT, for example) as OSI
protocols. This is in contrast to other networking protocols, most of which predate the
OSI model, which have been developed by organizations other than ISO or CCITT.
TCP/IP, XNS, and SNA, for example, are protocol suites that are not based on ISO stan-
dards.

Apple Inc.
Ex. 1013 - Page 85

246 Communication Protocols Chapter 5

OSI protocols have become popular lately as many organizations (such as the U.S.
Government) have stated their intentions to move towards networks based on ISO stan-
dards. Unfortunately, networks based on OSI protocols are still in their infancy. Work-
ing examples of the lower layers exist, but most of the standards at these lower layers
(layers 1-3) were developed before the OSI model. Standards exist and are currently
being developed for the upper layers and for specific applications (see the description of
the ISODE package below). In the remainder of this section we describe the existing
ISO standards at each layer. We refer to the actual ISO standard documents by their
4-digit number.

As we mentioned in Chapter 4, the ISO standards differentiate between the services
provided by a layer (for the layer above it) and the actual protocol used to provide the
service. The protocol definitions describe the actual formats of the protocol packets, the
header fields, and the like. Most layers or applications have both a standard for the ser-
vice that it provides, along with a standard for the protocol used to provide that service.

A nonproprietary implementation of many of the OSI protocols is available as the
ISODE software package. This package runs under 4.2BSD, 4.3BSD, System V
Releases 2 and 3, along with other variants of these Unix systems. Refer to the Bibliog-
raphy or Appendix A of Rose [19901 for ordering information. Version 5.0 of this pack-
age provides support for the following features:

• Transport services: TPO and TP4,
• Session services,
• Presentation services,
• Association control services,
• Remote operation services (similar to the RPC techniques described in Chapter 18),
• ASN.1 abstract syntax notation tools,
• F1AM (transfer of text and binary files, directory listings, file management),
• FTAM/FTP gateway,
• VT (virtual terminal: basic class with TELNET profile),
• Directory services.

Future releases might provide the OSI electronic mail service (X.400) and a gateway
between this and the Internet SMTP application. All these features and acronyms are
described in the following sections.

Many people predict a gradual shift from non-OSI protocols to the OSI protocols
between 1990 and 1995. The next major release of 4.xBSD should have support for
some of the OSI protocols. The implementation of the upper layers in this release should
be based on the ISODE package.

One confusing feature of the ISO standards is that their terminology differs from
existing networking terminology. For example, what we call a client and server are
temied an initiator and responder, respectively, in the ISO-world. The concepts of an
iterative server and a concurrent server, which we introduced in Section 1.6, are called a
static responder and a dynamic responder. The packets or messages that are exchanged
by peer layers (see Figure 4.13, for example) are termed protocol data units in the OSI
model.

Apple Inc.
Ex. 1013 - Page 86

Section 5.6 OSI Protocols 247

For additional information on the OSI protocols, refer to Rose [1990], Henshall and
Shaw [1988], Stallings [1987a], and Knightson, Knowles, and Larmouth [1988]. A
detailed listing of all relevant ISO standards is in Chapin [1989].

5.6.2 Data-Link Layer

The data-link layer provides services to the network layer. LANs that use the OSI proto-
cols typically use the IEEE 802 standards for the data-link layer and the physical layer.
This provides for the IEEE 802.2 logical link control as the interface between the net-
work layer and the data-link layer. The lower portion of the data-link layer, along with
the physical layer, is then Ethernet (802.3), token bus (802.4), or token ring (802.5).
These four IEEE standards have comparable ISO standards: 8802/2, 8802/3, 8802/4, and
8802/5. The 802.2 standard allows either a connection-oriented service or a connection-
less service to be provided to the network layer. Stallings [1987b] provides additional
details on the IEEE 802 standards.

Networks that use the OSI protocols with point-to-point connections typically use
the link access procedure (LAP) that is part of the X.25 standard. (We mention X.25
below when we describe the network layer.) This protocol is similar to the SDLC proto-
col used by SNA for point-to-point links.

5.6.3 Network Layer

ISO standard 8348 defines the services provided by the network layer for the presenta-
tion layer. The original version of the standard provided only for a connection-oriented
network service (CONS). An addendum provides for a connectionless network service
(CLNS) also.

X.25 is the name used to describe the widely used connection-oriented protocol net-
work layer protocol. X.25 is a CCITT standard that first appeared in 1974. X.25 encom-
passes layers 1, 2, and 3, not just the network layer. ISO standard 8878 describes how
X.25 can be used to provide a connection-oriented network service.

ISO standard 8473 defines the protocol used to provide the connectionless network
service. This protocol is similar to the Internet Protocol, IP, which we discussed in Sec-
tion 5.2.4. One difference is that the Internet IP uses fixed-length address fields in its IP
header (the 32-bit network ID and host ID value) while the OSI IP uses variable-length
address fields.

5.6A Transport Layer

The task of the transport layer is to provide reliable, end-to-end data transfer for users of
the transport layer. ISO standard 8072 provides the definition of the services provided by
the transport layer. As with the network layer, the original standard only defined the ser-
vices for a connection-oriented transmission, with an addendum specifying the services
for connectionless transmission.

One service that the connection-oriented transport layer must provide is expedited

Apple Inc.
Ex. 1013 - Page 87

248 Communication Protocols Chapter 5

data, which we called out-of-band data in Chapter 4. Few specifics are given, however,
other than the requirement that up to 16 bytes of expedited data be sent in a single opera-
tion. Additionally, the service definition requires that noiiiial data sent after expedited
data must not be delivered to the peer before the expedited data.

The definition of the transport layer services also includes features such as establish-
ing a connection between two endpoints, and the negotiation of parameters during con-
nection establishment.

The specification of the actual connection-oriented transport layer protocols is given
in ISO standard 8073. Included in this standard is the definition of three different types
of network services that are provided to the transport layer, types A, B, and C.

Type A A reliable network service. The network layer and the data-link layer
handle all error conditions.

Type B A reliable network service with error notification. Although most error
conditions are handled by the network layer and the data-link layer for
this type of service, there can be some notifications to the transport layer
that something has gone wrong. A reset notification from the network
layer requires that both transport ends resynchronize. A restart notifica-
tion requires that both transport ends establish a new connection.

Type C An unreliable network service. This is the type of service provided by
datagram-oriented networks.

X.25 networks provide a type B network service, since both resets and restarts are possi-
ble. But, it is often assumed that an X.25 network provides a reliable type A service.

Given these three types of network services, there are five different classes of
connection-oriented transport protocols: classes 0 through 4. We can classify the five
protocol classes by the type of network service they are intended to be used with (A, B,
or C), whether they can detect errors on their own, whether they can recover from errors
that are signaled by the network layer, and whether they do multiplexing. We show this
in Figure 5.30. Multiplexing here means the ability to have two or more transport con-
nections over a single network connection.

Transport
protocol class

Network
service type

Error
detection ?

Error
recovery ?

Multiplexing ?

0 A no no no
1 B no yes no
2 A no no yes
3 B no yes yes
4 C yes yes yes

Figure 5.30 ISO connection-oriented transport protocol classes.

(Figure 5.30 is a simplified description of these five classes. We could show over 20

Apple Inc.
Ex. 1013 - Page 88

Section 5.6 OSI Protocols 249

different criteria, such as flow control, multiplexing, retransmission and timeout, and
then note whether each of the five classes supports that feature.) These five classes are
sometimes called TPO through TP4. TPO is a simple protocol—everything is handled by
the lower layers. TP1 can be used with an X.25 network service, although if a reliable
X.25 service is assumed, TP0 can be used instead. TP4 is similar to the Internet TCP,
since TP4 assumes an unreliable network layer. TP4 could be used with the ISO connec-
tionless network layer.

The ISO connectionless transport protocol is similar to UDP. It is defined in ISO
standard 8602. A single packet format is defined and each packet contains the source
address, destination address, an optional checksum, and the user data. The addresses can
be used to identify user processes, similar to the port numbers used by UDP. Similar to
UDP, if a checksum error is detected by the receiving transport layer, the packet is dis-
carded.

5.6.5 Session Layer

The session layer provides services to a user process, in addition to the services provided
by the transport layer. ISO standard 8326 defines the services to be provided by the ses-
sion layer and ISO standard 8327 defines the session layer protocol.

Two of the services provided by the session layer to the layers above it are session
establishment and session release. A session is similar in concept to a transport connec-
tion. During the life of a session there are two possible ways for the session layer to han-
dle the transport connection that it needs for the session: a single transport connection
can be used for the entire session, or two or more transport connections can be used for
the entire session. In the latter case, it must be transparent to the user of the session layer
that the actual transport connection has changed. It is also possible for a session layer to
have consecutive sessions use a single transport connection. One restriction, however, is
that the session layer cannot multiplex several sessions on a single transport connection.

Another service that can be provided by the session layer is dialog management.
This feature provides a half-duplex, flip-flop form of data exchange. To manage this
feature, an imaginary token is maintained by the two session layers. Only the end that
holds the token can transmit data. During the session establishment, it is determined
which end gets the token to start. One end can also ask the other end for the token when
it wants to transmit data. This half-duplex, flip-flop mode of operation is similar to the
SNA LU 6.2 protocol which we described in Section 5.4.5.

There are other services that the session layer can provide: synchronization, activity
management, and exception reporting. Furthermore, the ISO standard defines four sub-
sets of the session services, realizing that few applications, if any, need all the features
that the session layer can provide. These four subsets are called kernel, BCS (basic com-
bined subset), BSS (basic synchronized subset), and BAS (basic activity subset). The
simplest of these, the kernel, must be provided with any implementation. All the kernel
subset provides is session establishment and data transfer.

There is nothing similar to the session layer in the TCP/IP protocol suite.

Apple Inc.
Ex. 1013 - Page 89

250 Communication Protocols Chapter 5

5.6.6 Presentation Layer

The presentation layer is concerned with the representation of the data that is being
exchanged. This can include conversion of the data between different formats (ASCII,
EBCDIC, binary), data compression, and encryption. Additionally, the presentation layer
must make the services of the session layer available to the application. Much of the
presentation layer, therefore, is just a pass-through of application requests (establish a
session, terminate a session, etc.) to the session layer.

ISO standard 8822 defines the services for the presentation layer and ISO standard
8823 defines the protocols.

One task of the presentation layer is to convert the application data into some stan-
dard fowl. To explain this we'll introduce the ISO terminology of abstract syntax and
transfer syntax. The application layer deals with an abstract syntax. This includes items
such as "an integer whose value is 1." This is an abstract description that does not say
how the data value is represented. A transfer syntax, however, specifies exactly how this
data value is represented. For example, it could be represented as 16-bit integer in twos
complement binary format with the most significant bit transferred first. To convert from
an abstract syntax to a transfer syntax, encoding rules are applied by the presentation
layer. Two presentation layers exchange data in the transfer format, while the two appli-
cation layers exchange data in the abstract format.

ISO standard 8824 specifies an abstract syntax called ASN.1. This stands for
"abstract syntax notation 1." The encoding rules for converting ASN.1 data structures
into a bit stream for transmission are contained in ISO standard 8825. A full description
of ASN.1 is beyond the scope of this text. Refer to Section 8.2 of Tanenbaum [1989] for
additional details. We'll discuss some other standards for data representation in Sec-
tion 18.2 when we discuss remote procedure calls.

SNA supports some features that resemble the presentation layer. For example, the
mapping of user data into a mapped conversation record, which we described in Sec-
tion 5.4.5, is similar in concept.

5.6.7 Application Layer

Common Application Service Elements

CASE stands for "common application service elements." It is intended to provide
capabilities that are useful to a variety of applications. Currently there are only two
CASEs.

Association Control Service Elements (ACSE).
This element allows the user process to establish and release associations with a
peer. There is a one-to-one relationship between associations and presentation

layer connections.

Apple Inc.
Ex. 1013 - Page 90

Section 5.6 OSI Protocols 251

• Commitment, Concurrency, and Recovery (CCR).
CCR provides atomic actions between application entities. An atomic action is a
set of operations, with either all operations being done or none of the operations
being done—there is no in-between. Atomic operations and the techniques used
by CCR have been used by distributed database systems and transaction process-
ing systems for many years. This feature is similar to the syncpoint feature that
we mentioned with the LU 6.2 ALLOCATE verb in Section 5.4.5.

ISO standard 8649 defines the CASE services and ISO standard 8650 defines the CASE
protocols.

Electronic Mail

In 1984 CCITT defined a set of protocols for what it calls MHS (message handling sys-
tem). The CCITT recommendations are defined in their X.400-series. These were incor-
porated in the OSI model at the application layer where they are called MOTIS
(message-oriented text interchange system). X.400 provides for more than simple text-
oriented electronic mail. It provides for a variety of message types, including text, fac-
simile, and digitized voice, for example.

Electronic mail under Unix is usually divided into two pieces. The user agent (UA)
is the program the user interacts with the interactive user to send or receive mail. The
user agent then communicates with a message transfer agent (MTA) that delivers the
mail. Typical user agents are /u s r/ucb/Mail on 4.3BSD, /bin/mail and mailx

on System V, and a variety of other programs. The typical message transfer agent on
4.3BSD is sendrnail. X.400 is concerned with all aspects of message handling—the
user agent and the message transfer agent.

Directory Services

Directory services (DS) are similar to a telephone book. It maps names of people and
services into their corresponding attributes (addresses, etc.). It is intended that the direc-
tory services be usable by the message handling systems (MHS) and other OSI applica-
tions. Directory services are sometimes classified as "white pages" or "yellow pages,"
similar to a telephone book, depending whether you are searching for a name or a ser-
vice.

ISO standard 9594 and the CCITT X.500 recommendation specify all the details of
the OSI directory.

Virtual Terminal

The OSI virtual terminal (VT) allows various terminals to be used. The intent is to iso-
late applications from the differences in terminal characteristics. ISO standards 9040 and
9041 describe the virtual terminal services and protocols, respectively.

Apple Inc.
Ex. 1013 - Page 91

252 Communication Protocols Chapter 5

When a virtual teiininal connection is started, the two peer entities negotiate the
parameters of the terminal that can be supported. An example of the types of parameters
that can be specified for the virtual terminal are: number of dimensions (two for a stan-
dard CRT, three for a bit-mapped display), maximum coordinate in each dimension,
allowable character sets, and so on. Some example operations that can be done are:
move cursor to absolute position, enter characters starting at current position, and erase
this line from cursor to end.

The ISO virtual terminal can be used to provide a remote login client and server,
similar to the Internet TELNET application.

File Transfer, Access, and Management

The OSI file transfer, access, and management application (FTAM) is built around the
concept of a virtual filestore. This virtual filestore presents a standard interface to its
users. It is up to the software to map this virtual filestore into the actual filesystem being
used. ISO standard '8571 specifies the services and protocols used by FTAM.

5.7 UUCP—Unix-to-Unix Copy

UUCP is the generic name used to describe a set of programs that can be used to copy

files between different systems and to execute commands on other systems. An early
version was made available with Version 7 Unix in 1978 and was intended for communi-
cation between systems using dial-up telephone lines. Today there are two major flavors
of UUCP in use, the version distributed with 4.3BSD, which is derived from the Ver-

sion 7 software, and a version known as Honey DanBer UUCP. (This name is derived
from the login names of its three authors, Peter Honeyman, David A. Nowitz, and Brian
E. Redman.) The Honey DanBer version is distributed with System V Release 3 where it
is officially called BNU—Basic Networking Utilities. All versions of UUCP communi-
cate with each other, so for our purposes it doesn't matter which specific version we
describe. Details on the 4.3BSD version of UUCP can be found in Chapter 16 of
Nemeth, Synder, and Seebas [1989]. Redman [1989] gives details on the Honey DanBer
version, along with a history of UUCP.

UUCP is a collection of programs. The four that we're interested in are as follows:

uucp This program can be invoked by users to copy a file from one system to
another. We'll use the term uucp to refer to this specific program, and the

term UUCP to refer to the collection of programs. uucp is patterned after the

Unix cp command, which copies one or more files. A typical use of uucp is

uucp main.c apple!-uucp

Apple Inc.
Ex. 1013 - Page 92

Section 5.7 UUCP—Unix-to-Unix Copy 253

UUX

This command says to copy the file main . c in the current directory to the
login directory of uucp on the system named apple.

This program spools a command for execution on another system. Although a
user can execute this command, frequently this command is generated auto-
matically by the mail software or the news software. (For additional details on
the Usenet news system, refer to Tanenbaum [1989].)

uucico This program is usually run as a daemon process to perform the actions that
have been requested by previous uucp or uux commands. Most Unix sys-
tems invoke the uucico program automatically at various times of the day
from the /usr/lib/crontab file. This is one fundamental feature of the
UUCP system—it is a batch mode system. The uucp and uux commands
just queue work, and the work is executed at some later time by the uucico
process.

uuxqt Executes files that were generated by uux. Normally uuxqt is invoked by
uux or it is spawned by uucico to process execution files that have been
received from another system.

Other programs exist in a typical UUCP software package—a program to display the
jobs queued for transmission, one to remove a job that's been queued, and so on.

Figure 5.31 shows the typical operation of UUCP. Note that it is the uucico
processes that communicate with each other across the network. There is no capability
for a user process to use the UUCP protocols to communicate with some other user pro-
cess.

The original uucico process supported a single data-link protocol known as the `g'
protocol. This was developed for dial-up or hardwired terminal lines and typically uses
64-byte packets. Its throughput is limited to around 9000 baud, even with higher line
speeds. The 4.3BSD version supports two additional protocols. The 't' protocol assumes
that the communication channel is error-free and no checksums are used. This protocol
is typically used with TCP links. The T protocol is used for X.25 links and relies on the
flow control provided by the data stream. The T protocol also applies a checksum only
to the entire file (not to each packet) and uses a 7-bit data path, instead of the usual 8-bit
data path.

Our overview of UUCP is to show where it belongs in relation to the other protocols
described in this chapter. Since there is no ability for user processes to communicate
across the network using UUCP, we don't describe it further in this text. Nevertheless,
UUCP is an important piece of the networking tools used by most Unix sites.

Apple Inc.
Ex. 1013 - Page 93

254 Communication Protocols Chapter 5

user

uucp
process

work data execute uucico
files files files process

A
L J

/usr/spool/uucp directory

kernel

Network

kernel

uucico
process

Figure 5.31 Overview of UUCP processes.

5.8 Protocol Comparisons

It is interesting to compare the types of services provided by the protocols we have dis-
cussed.

Fragmentation and Reassembly

TCP/UDP/IP IP handles this. TCP and UDP need not worry about it, other than per-
formance implications. Once a packet is fragmented, it is not reassem-
bled until it reaches the destination host.

XNS Never done. If a packet must be fragmented by some data-link layer,
then it must be reassembled by the other end of the link, to prevent any
other systems from knowing that it happened. The packet size is almost
always 576 bytes, which is less than optimal for an Ethernet.

Apple Inc.
Ex. 1013 - Page 94

r-

Section 5.8 Protocol Comparisons 255

SNA Done by path control.

NetBIOS An implementation detail that is not specified.

Flow Control

IP The IP layer sends ICMP source quench messages to a host when packets
are arriving too quickly from that host. This is a form of hop-by-hop flow
control.

Provides end-to-end flow control whereby the receiver tells the sender
how much data it can accept.

UDP No flow control is provided by UDP (other than the ICMP source quench
feature of the underlying IP layer).

IDP The error protocol can be used to notify a host when a packet from that
host has been discarded because of resource limitations. This is similar to
the ICMP source quench.

SPP Provides end-to-end flow control, similar to TCP.

PEX No flow control is provided (other than the error control packets provided
by the underlying IDP layer).

SNA Link-to-link flow control is provided by the data-link layer for most SNA
data links (SDLC, token ring). Additionally, an end-to-end flow control is
also provided by the LU.

NetBIOS An implementation detail that is not specified.

TCP

Reliability

The issue of reliability is a touchy area when talking about whether some form of end-
to-end reliability is needed. (This is one of the "religious topics" of networking.) Obvi-
ously, if the underlying data-link and network layers are unreliable, the transport layer
must provide an end-to-end check. This is how TCP and UDP operate. But with UDP
the end-to-end reliability is optional and there are some implementations that disable it
when running on a "reliable" LAN such as an Ethernet. t The reason we say that an
Ethernet is reliable is that every Ethernet frame has a 32-bit CRC appended to it, to verify
that the data is exchanged without any errors between the two Ethernet interface cards.
Other LAN technology, such as the token ring, also provides a 32-bit CRC to provide
link-to-link reliability.

If the data-link layer is reliable, do we still need an end-to-end reliability check?

ly t If you're running some form of BSD Unix, and if you have adequate permission and knowledge,
st look at the global variable udpcksum in the kernel with a debugger. If its value is zero, UDP

checksums are not calculated for outgoing UDP packets. A value of one enables the checksum
calculation for outgoing packets.

Apple Inc.
Ex. 1013 - Page 95

256 Communication Protocols Chapter S

Without answering this touchy question we should point out where the data could be cor-
rupted, even if it is transferred between the two interface cards without any errors. First,
the interface card contains memory in which the incoming and outgoing frames are
stored. This memory can be a source of errors. The data is also transferred between the
interface card and the computer's memory, typically along an input/output bus of some
form. On some LANs there might also be bridges or repeaters, which can also be the
source of errors.

IP Provides a 16-bit checksum that covers the IP header only. The upper
layers (TCP and UDP) are left to do their own checksum of the actual
message, if desired.

TCP Assumes the IP layer is unreliable and provides a 16-bit checksum of the
entire message.

UDP As with TCP, it provides a 16-bit checksum of the entire message.

XNS IDP provides a 16-bit checksum of the entire packet, therefore no addi-
tional end-to-end reliability checks are required by the upper layers (SPP
and PEX).

SNA Assumes the data-link layer provides the reliability. No form of end-to-
end checksum is provided.

NetBIOS Both the datagram service and the session service assume the data link
layer is reliable, with no additional checksums provided.

Sequencing

The datagram protocols do not perfoon sequencing—IP, UDP, IDP, PEX, and NetBIOS
datagram. The connection-oriented protocols all provide this feature—TCP, SPP,
LU 6.2, and NetBIOS session. SNA assumes that the data-link layer does the sequenc-
ing, with a verification of this taking place in the LU. NetBIOS also assumes the data
link does the sequencing. TCP and SPP both do the sequencing themselves, assuming
the underlying layers do not sequence the data.

Timeout and Retransmission

Most datagram protocols do not provide this service (IP, UDP, IDP, and NetBIOS).
PEX, however, is a datagram service that provides a timeout and retransmission. As
expected, the connection-oriented protocols do provide this service—TCP, SPP, LU 6.2,
and NetBIOS. As with sequencing, both SNA and NetBIOS require the data link to han-
dle this.

Apple Inc.
Ex. 1013 - Page 96

Chapter 5 Exercises 257

5.9 Summary

We have covered five protocol suites in this chapter.

• TCP/IP
• XNS
• SNA
• NetBIOS
• OSI
• UUCP

Our emphasis has been the TCP/IP protocol suite, as that is the one used for most of the
examples in the later chapters. We'll also show examples using XNS in Chapters 6
and 11. Protocbl comparisons are worthwhile, to help put things into perspective.

We've covered many protocols in this chapter, not all of which are essential for net-
work programming. For example, although you probably won't use the ARP or RARP
protocols directly (compared to UDP or TCP), you will encounter RARP as soon as you
connect a diskless workstation to a TCP/IP internet.

In the next two chapters we'll cover two application program interfaces (APIs)
between a user process and a networking protocol: Berkeley sockets and the System V
Transport Layer Interface.

Exercises

5.1 What is the maximum number of hosts on a TCP/IP internet?

5.2 What is the maximum number of hosts on a XNS internet?

5.3 Given the addressing structure of TCP/IP and XNS, would it be feasible for every home in
the U.S. to have a unique network address? How about every home in the world?

5.4 Compare the OSI connectionless network service (Section 5.6.3) with IP.

Apple Inc.
Ex. 1013 - Page 97

Be

6.1 Introduction

This chapter describes the first of several application program interfaces (APIs) to the
communication protocols. The API is the interface available to a programmer. The
availability of an API depends on both the operating system being used, and the program-
ming language. The two most prevalent communication APIs for Unix systems are
Berkeley sockets and the System V Transport Layer Interface (TLI). Both of these inter-
faces were developed for the C language. This chapter describes the Berkeley socket
interface, and the next chapter describes TLI.

First, let's compare network I/O to file I/O. For a Unix file, there are six system calls
for input and output: open, creat, close, read, write, and lseek. All these sys-
tem calls work with a file descriptor, as described in Section 2.3. It would be nice if the
interface to the network facilities maintained the file descriptor semantics of the Unix
filesystem, but network I/O involves more details and options than file I/O.t For exam-
ple, the following points must be considered:

t The original TCP/IP implementation for the BSD version of Unix was developed by Bolt,
Beranek, and Newman (BBN) under a DARPA contract in 1981 [Walsh and Gurwitz 1984]. It is
interesting to note that this version used these six system calls for both file I/O and network I/O.
The socket interface and the interprocess communication facilities, which we describe in this
chapter, were then added by Berkeley with the 4.1cBSD release.

258
Apple Inc.

Ex. 1013 - Page 98

Section 6.1 Introduction 259

• The typical client—server relationship is not symmetrical. To initiate a network
connection requires that the program know which role (client or server) it is to
play.

• A network connection can be connection-oriented or connectionless. The former
case is more like file I/O than the latter, since once we open a connection with
another process, the network I/O on that connection is always with the same peer
process. With a connectionless protocol, there is nothing like an "open" since
every network I/O operation could be with a different process on a different host.

• Names are more important in networking than for file operations. For example, a
program that is passed a file descriptor by a parent process can do file I/O on it
without ever needing to know the original name that the file was opened under.
The file descriptor is all the process needs. A networking application, however,
might need to know the name of its peer process to verify that the process has
authority to request the services.

• Recall our definition of an association in Chapter 4

[protocol, local-addr, , local-process, foreign-addr, foreign-process}

There are more parameters that must be specified for a network connection, than
for file I/O. Also, as we saw in Chapter 5, each of the parameters can differ from
one protocol to the next. Compare, for example, the format of either the
local-addr or the foreign-addr between the Internet and XNS: the Internet address
is 4 bytes while the XNS address is 10 bytes.

• For some communication protocols, record boundaries have significance. The
Unix I/O system is stream oriented, not message oriented, as discussed in Sec-
tion 3.6.

• The network interface should support multiple communication protocols. For
example, the network functions can't use a 32-bit integer to hold network
addresses, since even though this is adequate for Internet addresses, it is inade-
quate for XNS addresses. Generic techniques must be used to handle features that
can change from one protocol to another, such as addresses. Supporting multiple
communication protocols is almost akin to having Unix support multiple file
access techniques. Imagine the Unix I/O system if the kernel had to support Unix
I/O along with three or four other techniques (DEC's RMS, IBM's VSAM, etc.).

As another comparison between network I/O and file I/O, Figure 6.1 shows some of the
steps required to use sockets, TLI, System V message queues, and FIFOs, for a
connection-oriented transfer. We'll cover the details in Figure 6.1 as we proceed through
this chapter and the next. Our purpose now is to show the added complexity imposed by
the networking routines, compared to message queues and FIFOs.

Apple Inc.
Ex. 1013 - Page 99

260 Berkeley Sockets Chapter 6

Sockets TLI Messages FIFOs

Server: allocate space t alloc () _
create endpoint socket () t_open () msgget () mknod ()

open ()

bind address bind () t bind ()

specify queue listen ()

wait for connection _ accept () t listen () _
get new fd t_open ()

t_bind 0
taccept ()

Client: allocate space t alloo () _
create endpoint socket () t _open () msgget () open ()

bind address bind () tbind 0

connect to server connect () tconnect ()

transfer data read ()
write()
recv 0

send ()

read ()
write ()
t _rcv ()
t snd ()

ms grcv ()
msgsnd ()

read ()
write ()

datagrams recvf rom ()
sendto ()

t_ rcvudata ()
t sndudata ()

terminate close ()
shutdown ()

t close 0 _
t_s ndrel ()
tsnddis ()

msgctl () close ()
unlink ()

Figure 6.1 Comparison of sockets, TLI, message queues, and FilkOs.

In the examples that we show in this chapter we must specify the type of process
(client or server) and the type of protocol (connection-oriented or connectionless). Fur-
theiiiiore, for the server examples we have to specify if the server is a concurrent server
or an iterative server. (Usually it doesn't matter to the client whether it is communicating
with a concurrent server or an iterative server.) This gives four potential combinations.

connection-oriented protocol

connectionless protocol

iterative server concurrent server

infrequent (Daytime) typical

typical infrequent (11-, I P)

The Internet Daytime protocol, which we describe in Section 10.2, is an example of a
connection-oriented protocol whose server is usually implemented using an iterative
server. Indeed, the 4.3BSD Internet superserver which we describe in Section 6.16 pro-
vides an iterative server for this protocol. We provide an example of a concurrent server
using a connectionless protocol in Chapter 12—the TFTP server.

Apple Inc.
Ex. 1013 - Page 100

Section 6.2 Overview 261

6.2 Overview

The socket interface was first provided with the 4.1cBSD system for the VAX, circa
1982. The interface that we describe here corresponds to the original 4.3BSD VAX
release from 1986. This release supported the following communication protocols:

• Unix domain (described in Section 6.3)
• Internet domain (TCP/IP)
• Xerox NS domain

Be aware that some vendors who provide 4.3BSD-based systems do not provide the XNS
support that was provided by Berkeley. Nevertheless, we show examples using XNS,
since it provides a good working example, in addition to TCP/IP, for some of the porta-
bility problems in network programming.

Figure 6.2 shows a time line of the typical scenario that takes place for a
connection-oriented transfer—first the server is started, then sometime later a client is
started that connects to the server.

Server
(connection-oriented protocol)

socket ()

V
bind ()

listen ()

accept ()

blocks until connection
from client

connection establishment

read ()

process request

write ()

data (request)

Client

socket ()

 connect ()

data (rep y

write ()

read ()

Figure 6.2 Socket system calls for connection-oriented protocol.

Apple Inc.
Ex. 1013 - Page 101

262 Berkeley Sockets Chapter 6

For a client—server using a connectionless protocol, the system calls are different.
Figure 6.3 shows these system calls. The client does not establish a connection with the
server. Instead, the client just sends a datagram to the server using the sendto system
call, which requires the address of the destination (the server) as a parameter. Similarly,
the server does not have to accept a connection from a client. Instead, the server just
issues a recvfrom system call that waits until data arrives from some client. The
recvfrom returns the network address of the client process, along with the datagram,
so the server can send its response to the correct process.

Server
(connectionless protocol)

socket ()

V
bind()

V
recvfrom()

V

blocks until data
received from a client

V
process request

V
sendto()

data (request)

data (rep y

Client

socket ()

bind()

sendto ()

recvfrom()

Figure 6.3 Socket system calls for connectionless protocol.

6.3 Unix Domain Protocols

4.3BSD provides support for what it calls the "Unix domain" protocols. But unlike
other domains, such as the Internet domain and the XNS domain, sockets in the Unix
domain can only be used to communicate with processes on the same Unix system, We
did not provide a description of the Unix domain protocols in the previous chapter, as
they are limited to 4.3BSD, and are not "communication protocols" in the true sense of
the teiiii. They are a fowl of IPC, but their implementation has been built into the
4.3BSD networking system in the same fashion as other true communication protocols.

Apple Inc.
Ex. 1013 - Page 102

Section 6.3 Unix Domain Protocols 263

4.3BSD provides both a connection-oriented interface and a connectionless interface

to the Unix domain protocols. Both can be considered reliable, since they exist only
within the kernel and are not transmitted across external facilities such as a communica-
tion line between systems. Checksums and the like are not needed. As with other
connection-oriented protocols (TCP and SPP, for example), the connection-oriented Unix
version provides flow control. In a similar fashion, as with other connectionless proto-
cols (UDP and IDP, for example), the Unix domain datagram facility does not provide

flow control. This has implications for user programs, since it is possible for a datagram
client to send data so fast that buffer starvation can occur: If this happens, the sender
must try to send the data repeatedly. For this reason alone, it is recommended that you
use the connection-oriented Unix domain protocol.

The Unix domain protocols provide a feature that is not currently provided by any
other protocol family: the ability to pass access rights from one process to another.
We'll discuss this feature in more detail in Section 6.10 when we describe the passing of
file descriptors between processes.

Unlike the other protocols we've covered, there is nothing like encapsulation per-
formed on the Unix domain messages—their actual implementation is a kernel detail that
need not concern us. As it turns out, 4.3BSD implements pipes using the connection-
oriented Unix domain protocol.

The name space used by the Unix domain protocols consists of pathnames. A sam-
ple association could be

{unixstr, 0, /tmp/log.01528, 0, /dev/logfile}

The protocol here is unixstr, which stands for "Unix stream," the connection-
oriented protocol. The local-process in this example is /tmp/log.01528 and the
foreign process is /dev/logfile. We show both the local-addr and the foreign-addr
as zero, since the pathnames on the local host are the only addresses used in this
domain.t An association using the connectionless Unix protocol is similar, except that
we use the term unixdg to specify the datagram protocol, the first member of the
5-tuple.

The 4.3BSD implementation creates a file in the filesystem with the specified path-
name, although there are comments in the 4.3BSD manuals indicating that future ver-
sions might not create these files. This is somewhat misleading, however, because these
filesystem entries are not true "files." For example, we cannot open these files with the
open system call. These files have a type of S_IF SOCK as reported by the stat or
f stat system calls.

t We could define the local-addr and the foreign-addr to be the pathnames, with the local process
and foreign process both being zero. Our reason for specifying the association as we did is to
reiterate that a host address is not required since the association is limited to processes on the local
host.

Apple Inc.
Ex. 1013 - Page 103

264 Berkeley Sockets Chapter 6

6.4 Socket Addresses

Many of the BSD networking system calls require a pointer to a socket address structure
as an argument. The definition of this structure is in <sys / socket . h>:

struct sockaddr {

u_short sa family; /* address family: AF_xxx value */

char sa data[14]; /* up to 14 bytes of protocol-specific
address */

} ;

The contents of the 14 bytes of protocol-specific address are interpreted according to the
type of address. For the Internet family, the following structures are defined in

<net inet /in . h>:

struct in addr {

u long s addr;

} ;

/* 32-bit netid/hostid */

/* network byte ordered */

struct sockaddr in {

short sin family; /* AF INET */

u_short sin_port; /* 16-bit port number */
/* network byte ordered */

struct in addr sin addr; /* 32-bit netid/hostid */

/* network byte ordered */

char sin zero[8]; /* unused */

};

As we'll see throughout this chapter, almost every code example has

#include <sys/types.h>

at the beginning. This header file provides C definitions and data type definitions
(t ypede f s) that are used throughout the system. We will mainly use the names defined
for the four unsigned integer datatypes, which we show in Figure 6.4. Unfortunately
these four names differ between 4.3BSD and System V.

C Data type 4.3BSD System V

unsigned char
unsigned short
unsigned int
unsigned long

unchar
u_short
u_ int
u_ long

unchar
ushort
uint
ulong

Figure 6.4 Unsigned data types defined in <sys /types . h>.

For the Xerox NS family, the following structures are defined in <netns /ns . h>:

Apple Inc.
Ex. 1013 - Page 104

Section 6.4

union ns host {

Socket Addresses 265

u_char c host[6]; /* hostid addr as six bytes */

u_short s host[3]; /*

/*

hostid addr as three 16-bit shorts

network byte ordered */

1 ;

union ns net {

u_char c net[4]; /* netid as four bytes */

u_short s net[2]; /*

/*

netid as two 16-bit shorts */

network byte ordered */

1 ;

struct ns _addr { /* here is the combined 12-byte XNS address

union ns _ net x _net; /* 4-byte netid */

union ns _ host x _host; /* 6-byte hostid */

u_short x_port; /* 2-byte port (XNS "socket")

/* network byte ordered */
} ;

struct sockaddr_ns {

u_short sns family; /* AF_NS */

struct ns addr sns addr; /* the 12-byte XNS address */

char sns zero[2]; /* unused */

};
#define sns_port sns addr.x port

Things are more complicated with XNS, as some of the network code wants to get at the
hostid and netid fields in different ways.

For the Unix domain, the following structure is defined in <sys /un .h>:

struct sockaddr un {

short sun family; /* AF UNIX */

char sun path[108]; /* pathname */

};

(You may have noticed the discrepancies in the declarations of the first two bytes of
these address structures, the XX family members. The Internet and Unix domain
members are declared as short integers, while the XNS member and the generic
sockaddr member are unsigned short integers. Fortunately the values stored in these
variables, the AF_xxx constants that we define in the next section, all have values
between 1 and 20, so this discrepancy in the data types doesn't matter.)

Unlike most Unix system calls, the BSD network system calls don't assume that the
Unix pathname in sun_path is terminated with a null byte. Notice that this protocol-
specific structure is larger than the generic sockaddr structure, while the
s ockaddr in and sockaddr_ns structures were both identical in size (16 bytes) to

*/

Apple Inc.
Ex. 1013 - Page 105

266 Berkeley Sockets Chapter 6

the generic structure. The system interface currently supports structures up to 110 bytes,
but some of the generic system network routines (the routing tables in the kernel; for
example) only support the 16-byte structures. The Unix domain protocols, however, can
be larger than 16 bytes since they don't use these facilities. To handle socket address
structures of different sizes, the system interface always passes the size of the address
structure, in addition to a pointer to the structure, as we describe in the next paragraph.

A picture of these socket address structures is shown in Figure 6.5.

struct sockaddr in struct sockaddrns struct sockaddrun

family family family

2-byte port
4-byte net ID

4-byte
net ID, host ID

6-byte host ID
pathname

(unused) (up to 108 bytes)
2-byte port

(unused)

Figure 6.5 Socket address structures for Internet, XNS and Unix families.

The network system calls, such as connect and bind, work with any of the sup-
ported domains, so a technique must be used to pass any of the socket address structures
shown in Figure 6.5, sockaddr in, sockaddr ns, or sockaddr un, to these
generic system calls. The network system calls take two arguments: the address of the
generic sockaddr structure and the size of the actual protocol-specific structure. What
the caller must do is provide the address of the protocol-specific structure as an argument,
casting this pointer into a pointer to a generic sockaddr structure. For example, to
invoke the connect system call for an Internet domain socket, we write

struct sockaddr in sery addr; /* Internet —specific addr struct */

(fill in Internet-specific information)

• '
connect (sockfd, (struct sockaddr *) &serv_addr, sizeof (serv_addr));

The second argument is a pointer to the Internet address structure and the third argument
is its size (16 bytes).

The designers of the socket interface could have also chosen to use a C union to
define the socket address structure. The declaration could look like

Apple Inc.
Ex. 1013 - Page 106

5 Section 6.5 Elementary Socket System Calls 267

r

1
3

3

) ;

struct sock addr

short sa family; /* AF xxx value */
union

struct sockaddr in
struct sockaddr ns

struct sockaddr un

1 sa val;
l;

sain;

sa_ns;
sa_un;

/* Internet address

/* XNS address */

/* Unix address */

*/

The problem with this approach is that the size of the union is determined by the size of
the largest member, which is the Unix domain address. This would cause every
sock addr structure to be 110 bytes in size, even though Internet and XNS addresses
need only 8 bytes and 14 bytes, respectively. (Note that in this case the 8 bytes of zero at
the end of an Internet sockaddr in and the 2 bytes of zero at the end of an XNS
sockaddr ns are not needed.) One advantage of a union is that the size of the struc-_
ture would not have to be an argument (and sometimes a result) to the system calls, as
we'll see below. The actual interface design and the choice of a generic sockaddr

structure along with the protocol-specific socket address structures, was a compromise.

6.5 Elementary Socket System Calls

We now describe the elementary system calls required to perfoiin network programming.
In the following section we use these system calls to develop some networking examples.

socket System Call

To do network I/O, the first thing a process must do is call the socket system call,
specifying the type of communication protocol desired (Internet TCP, Internet UDP,
XNS SPP, etc.).

#include <sys/types.h>

#include <sys/socket.h>

int socket (int family, int type, int protocol) ;

The family is one of

AF UNIX

AF INET

AF NS

AF IMPLINK

Unix internal protocols
Internet protocols
Xerox NS protocols
IMP link layer

The AF_ prefix stands for "address family." There is another set of teiins that is
defined, starting with a PF_ prefix, which stands for "protocol family": PF_UNIX,
PF INET, PF NS, and PF IMPLINK. Either teen for a given family can be used, as
they are equivalent.

Apple Inc.
Ex. 1013 - Page 107

268 Berkeley Sockets Chapter 6

An IMP is an Interface Message Processor. This is an intelligent packet switching
node that was referred to in our description of the ARPANET in the previous chapter.
These nodes are connected with point-to-point links, typically leased telephone lines.
The BSD system provides a raw socket interface to the IMP, which is what the
AF IMPLINK address family is used for. We won't concern ourselves further with this
special purpose network interface.

The socket type is one of the following:

SOCK STREAM stream socket
SOCK DGRAM datagram socket
SOCK RAW raw socket
SOCK SEQPACKET sequenced packet socket
SOCK RDM reliably delivered message socket

(not implemented yet)

Not all combinations of socket family and type are valid. Figure 6.6 shows the valid
combinations, along with the actual protocol that is selected by the pair.

AF UNIX AF INET AF NS

SOCK STREAM

SOCK DGRAM

SOCK RAW

SOCK SEQPACKET

Yes TCP SPP

Yes UDP IDP

IP Yes

SPP

Figure 6.6 Protocols corresponding to socket family and type.

The boxes marked "Yes" are valid, but don't have handy acronyms. The empty boxes
are not implemented.

The protocol argument to the socket system call is typically set to 0 for most user

applications. There are specialized applications, however, that specify a protocol value,
to use a specific protocol. The valid combinations are shown in Figure 6.7.

family type protocol
Actual

protocol

AF INET _
AF INET _
AF INET _
AF INET

SOCK DGRAM

SOCK STREAM _
SOCK_RAW

SOCK RAW

IPPROTO UDP _
IPPROTO TCP _
IPPROTO ICMP _
IPPROTO RAW

UDP
TCP
NNW
(raw)

AF NS _
AF___NS

AF NS _
AF NS

SOCK STREAM _
SOCK SEQP ET ___ ACK

SOCK_ RAW' _
SOCK RAW

NSpROTO SPP _
NSPROO _ T SPP

NSPROTO ERROR _
NSPROTORAW

SPP
SPP
Error protocol
(raw)

Figure 6.7 Combinations of family, type, and protocol.

Apple Inc.
Ex. 1013 - Page 108

Section 6.5 Elementary Socket System Calls 269

The IPPROTO xxx constants are defined in the file <net inet / in . h> and the
NsPROTo xxx constants are defined in the file <netns /ns . h>. In Section 11.2 we'll
show the Internet ping program, which uses the ICMP protocol.

The socket system call returns a small integer value, similar to a file descriptor.
We'll call this a socket descriptor, or a sockfd. To obtain this socket descriptor, all we've
specified is an address family and the socket type (stream, datagram, etc.). For an associ-
ation

{protocol, local-addr, local-process, foreign-addr, foreign-process]

all the socket system call specifies is one element of this 5-tuple, the protocol. Before
the socket descriptor is of any real use, the remaining four elements of the association
must be specified. To show what a typical process does next, we'll differentiate between
both client and server, and between a connection-oriented protocol and a connectionless
protocol. Figure 6.8 shows the typical system calls for each case.

protocol local-addr, local-process foreign-addr, foreign process

connection-oriented server

connection-oriented client

connectionless server

connectionless client

socket () bind() listen() , accept ()

socket () connect ()

socket () bind() recvfrom()

socket () bind() sendto ()

Figure 6.8 Socket system calls and association elements.

socketpair System Call

This system call is implemented only for the Unix domain.

#include <sys/types.h>

#include <sys/socket.h>

int socketpair (int family, int type, int protocol, int sockvec[2]) ;

This returns two socket descriptors, sockvec[0] and sockvec[1] , that are unnamed and
connected. This system call is similar to the pipe system call, but socketpair
returns a pair of socket descriptors, not file descriptors. Additionally, the two socket
descriptors returned by socketpair are bidirectional, unlike pipes, which are unidirec-
tional. Recalling our pipe examples from Section 3.4, we had to execute the pipe sys-
tem call twice, obtaining four file descriptors, to get a bidirectional flow of data between
two processes. With sockets this isn't required. We'll call these bidirectional,
connection-oriented, Unix domain sockets stream pipes. We return to these stream pipes
in Section 6.9.

Apple Inc.
Ex. 1013 - Page 109

270 Berkeley Sockets Chapter 6

Since this system call is limited to the Unix domain, there are only two allowable
versions of it

int rc, sockfd[2];

rc = socketpair(AFUNIX, SOCK STREAM, 0, sockfd);

rc = socketpair(AFUNIX, SOCK DGRAM, 0, sockfd);

bind SI/Stern Ca11

The bind system call assigns a name to an unnamed socket.

or

#include <sys/types.h>

#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *myaddr, , int addrlen) ;

The second argument is a pointer to a protocol-specific address and the third argument is
the size of this address structure. There are three uses of bind.

I. Servers register their well-known address with the system. It tells the system
"this is my address and any messages received for this address are to be given to
ine." Both connection-oriented and connectionless servers need to do this
before accepting client requests.

2. A client can register a specific address for itself.

3. A connectionless client needs to assure that the system assigns it some unique
address, so that the other end (the server) has a valid return address to send its
responses to. This corresponds to making certain an envelope has a valid return
address, if we expect to get a reply from the person we send the letter to.

The bind system call fills in the local-addr and local-process elements of the associa-
tion 5-tuple.

connect System Call

A client process connects a socket descriptor following the socket system call to
establish a connection with a server.

#include <sys/types.h>

#include <sys/socket.h>

int connect (int sockfd, struct sockaddr *servaddr, int addrlen);

Apple Inc.
Ex. 1013 - Page 110

Section 6.5 Elementary Socket System Calls 271

The sockfd is a socket descriptor that was returned by the socket system call. The
second and third arguments are a pointer to a socket address, and its size, as described
earlier.

For most connection-oriented protocols (TCP and SPP, for example), the connect

system call results in the actual establishment of a connection between the local system
and the foreign system. Messages are typically exchanged between the two systems and
specific parameters relating to the conversation might be agreed on (buffer sizes, amount
of data to exchange between acknowledgments, etc.). In these cases the connect sys-
tem call does not return until the connection is established, or an error is returned to the
process. Section 12.15 of Corner [1988] discusses the three-way handshake used by TCP
to establish a connection. Section 7.4 of Xerox [198113] discusses a similar technique
used by SPP.

The client does not have to bind a local address before calling connect. The
connection typically causes these four elements of the association 5-tuple to be assigned:
local-addr, local-process, foreign-addr, and foreign-process. In all the connection-
oriented client examples that we'll show, we'll let connect assign the local address.
This is what we diagramed in Figure 6.2 and Figure 6.8.

A connectionless client can also use the connect system call, but the scenario is
different from what we just described. For a connectionless protocol, all that is done by
the connect system call is to store the servaddr specified by the process, so that the
system knows where to send any future data that the process writes to the sockfd descrip-
tor. Also, only datagrams from this address will be received by the socket. In this case
the connect system call returns immediately and there is not an actual exchange of
messages between the local system and the foreign system.

One advantage of connecting a socket associated with a connectionless protocol is
that we don't need to specify the destination address for every datagram that we send.
We can use the read, write, recv, and send system calls. (We describe the system
calls used for socket I/O later in this section.)

There is another feature provided for connectionless clients that call connect. If
the datagram protocol supports notification for invalid addresses, then the protocol rou-
tine can inform the user process if it sends a datagram to an invalid address. For exam-
ple, the Internet protocols specify that a host should generate an ICMP port unreachable
message if it receives a UDP datagram specifying a UDP port for which no process is
waiting to read from. The host that sent the UDP datagram and receives this ICMP mes-
sage can try to identify the process that sent the datagram, and notify the. process.
4.3BSD, for example, notifies the process with a "connection refused" error
(ECONNREFUSED) on the next system call for this socket, only if the process had
connected the socket to the destination address. We'll see an example of this with our
Internet time client in Section 10.2.

Note that the connect and bind system calls require only the pointer to the
address structure and its size as arguments, not the protocol. This is because the protocol
is available from two places: first, the AF xxx value is always contained in the first two

Apple Inc.
Ex. 1013 - Page 111

272 Berkeley Sockets Chapter 6

bytes of the socket address structure; second, these system calls all require a socket
descriptor as an argument, and this descriptor is always associated with a single protocol
family, from the socket system call that created the descriptor.

listen System Call

This system call is used by a connection-oriented server to indicate that it is willing to
receive connections.

int listen (int sockfd, int backlog);

It is usually executed after both the socket and bind system calls, and immediately
before the accept system call. The backlog argument specifies how many connection
requests can be queued by the system while it waits for the server to execute the accept
system call. This argument is usually specified as 5, the maximum value currently
allowed.

Recall our description of a concurrent connection-oriented server in Chapter 4. In
the time that it takes a server to handle the request of an accept (the time required for
the server to fork a child process and then have the parent process execute another
accept), it is possible for additional connection requests to arrive from other clients.
What the backlog argument refers to is this queue of pending requests for connections.

accept System Call

After a connection-oriented server executes the listen system call described above, an

actual connection from some client process is waited for by having the server execute the
accept system call.

#include <sys/types.h>
#include <sys/socket.h>

int accept (int sockfd, struct sockaddr *peer, int *addrlen);

accept takes the first connection request on the queue and creates another socket with
the same properties as sockfd. If there are no connection requests pending, this call
blocks the caller until one arrives. (We discuss how a socket can be specified as non-
blocking in Section 6.11.)

The peer and addrlen arguments are used to return the address of the connected peer
process (the client). addrlen is called a value—result argument: the caller sets its value
before the system call, and the system call stores a result in the variable. Often these
value—result arguments are integers that the caller sets to the size of a buffer, with the
system call changing this value on the return to the actual amount of data stored in the
buffer. For this system call the caller sets addrlen to the size of the sockaddr structure

whose address is passed as the peer argument. On return, addrlen contains the actual

number of bytes that the system call stores in the peer argument. For the Internet and

XNS address structures, since their sizes are constant (16 bytes), the value that we store

Apple Inc.
Ex. 1013 - Page 112

Section 6.5 Elementary Socket System Calls 273

in the addrlen argument (16) is the actual number of bytes that the system call returns in
the peer argument. The size of the structure can differ from the actual size of the address
returned with Unix domain addresses.

This system call returns up to three values: an integer return code that is either an
error indication or a new socket descriptor, the address of the client process (peer), and
the size of this address (addrlen).

accept automatically creates a new socket descriptor, assuming the server is a con-
current server. If this is the case, the typical scenario is

int sockfd, newsockfd;

if ((sockfd = socket(...)) < 0)

err_sys("socket error");
if (bind(sockfd,) < 0)

err_sys("bind error");
if (listen(sockfd, 5) < 0)

errsys("listen error");

for (; ;) {

newsockfd = accept(sockfd,); /* blocks
if (newsockfd < 0)

errsys("accept error");

if (fork() —= 0) {

close(sockfd);

doit(newsockfd);

exit(0);

}

*/

/* child */

/* process the request */

close(newsockfd); /* parent */
}

When a connection request is received and accepted, the process forks, with the child
process servicing the connection and the parent process waiting for another connection
request. The new socket descriptor returned by accept refers to a complete association

[protocol, local-addr, local-process, foreign-addr, foreign process}

All five elements of the 5-tuple associated with newsockfd have been filled in on
return from accept. On the other hand, the sockfd argument that is passed to
accept only has three elements of the 5-tuple filled in. The foreign-addr and
foreign-process are still unspecified, and remain so after accept returns. This allows
the original process (the parent) to accept another connection using sockfd, without
having to create another socket descriptor. Since most connection-oriented servers are
concurrent servers, and not iterative servers, the system goes ahead and creates a new
socket automatically as part of the accept system call. If we wanted an iterative server,
the scenario would be

Apple Inc.
Ex. 1013 - Page 113

274 Berkeley Sockets Chapter 6

int sockfd, newsockfd;

if ((sockfd = socket(...) < 0)

err sys("socket error");

bind(sockfd,) < 0)

err sys("bind error");

listen(sockfd, 5) < 0)

errsys("listen error");

for (; ;) {

newsockfd = accept(sockfd,); /* blocks */

if (newsockfd < 0)

err sys("accept error");

doit(newsockfd); /* process the request */

close(newsockfd);

Here the server handles the request using the connected socket descriptor, new
It then terminates the connection with a close and waits for another connection using
the original descriptor, sockfd, which still has its foreign-addr and foreign-process
unspecified.

send, sendto, recv and recvfrom System Calls

These system calls are similar to the standard read and write system calls, but addi-
tional arguments are required.

#include <sys/types.h>

#include <sys/socket.h>

int send (int sockfd, char *buff, int nbytes, int flags) ;

int sendto (int sockfd, char *buff, int nbytes, int flags,

struct sockaddr *to, int addrlen) ;

int recv (int sockfd, char *buff, int nbytes, int flags) ;

int recvfrom(int sockfd, char *buff, int nbytes, int flags,

struct sockaddr *from, int *addrlen) ;

The first three arguments, sockfd, buff, and nbytes, to the four system calls are similar to
the first three arguments for read and write.

Apple Inc.
Ex. 1013 - Page 114

di-

to

Section 6.5 Elementary Socket System Calls 275

The flags argument is either zero, or is formed by or'ing one of the following con-
stants:

MSG 00B

MSG PEEK

MSG DONTROUTE

send or receive out-of-band data
peek at incoming message (recv or recvfrom)

bypass routing (send or sendto)

The MSG PEEK flag lets the caller look at the data that's available to be read, without
having the system discard the data after the recv or recvfrom returns. We'll discuss
the MSG 00B option in Section 6.14 and the MSG DONTROUTE option in Section 6.11.
The to argument for sendto specifies the protocol-specific address of where the data is
to be sent. Since this address is protocol-specific, its length must be specified by addrlen.
The recvf rom system call fills in the protocol-specific address of who sent the data into
from. The length of this address is also returned to the caller in addrlen. Note that the
final argument to sendto is an integer value, while the final argument to recvfrom is

a pointer to an integer value (a value—result argument).
All four system calls return the length of the data that was written or read as the

value of the function. In the typical use of recvfrom, with a connectionless protocol,
the return value is the length of the datagram that was received.

close System Call

The normal Unix close system call is also used to close a socket.

int close (int fd) ;

If the socket being closed is associated with a protocol that promises reliable delivery
(e.g., TCP or SPP), the system must assure that any data within the kernel that still has to
be transmitted or acknowledged, is sent. Normally the system returns from the close

immediately, but the kernel still tries to send any data already queued.
Later in this chapter we'll describe the SO_LINGER socket option. This socket

option allows a process to specify that either: (a) the close should try to send any
queued data, or (b) any data queued to be sent should be flushed.

Byte Ordering Routines

The following four functions handle the potential byte order differences between dif-
ferent computer architectures and different network protocols. We detailed some of the
differences in Chapter 4.

Apple Inc.
Ex. 1013 - Page 115

276 Berkeley Sockets Chapter 6

#include <sys/types .h>

#include <netinet/in.h>

u long htonl (u long hostlong) ;

u short htons (u short hastllort);

u long ntohl (u long netlong) ;

u short ntohs (u short netshort) ;

These functions were designed for the Internet protocols. Fortunately, the XNS protocols
use the same byte ordering as the Internet. On those systems that have the same byte
ordering as the Internet protocols (Motorola 68000-based systems, for example), these
four functions are null macros. The conversions done by these functions are shown in
Figure 6.9.

ht on1 convert host-to-network, long integer
ht ons convert host-to--network, short integer
ntohl convert network-to-host, long integer
ntohs convert network-to--host, short integer

Figure 6.9 Byte ordering functions.

These four functions all operate on unsigned integer values, although they work just as
well on signed integers. Implicit in these functions is that a short integer occupies 16 bits
and a long integer 32 bits.

Byte Operations

There are multibyte fields in the various socket address structures that need to be manip-
ulated. Some of these fields, however, are not C integer fields, so some other technique
must be used to operate on them portably.

4.3BSD defines the following three routines that operate on user-defined byte
strings. By user-defined we mean they are not the standard C character strings (which
are always terminated by a null byte). The user-defined byte strings can have null bytes
within them and these do not signify the end of the string. Instead, we must specify the
length of each string as an argument to the function.

bcopy (char *src, char *dest, int nbytes) ;

bzero (char *dest, int nbytes) ;

int bcmp (char *ptrl, char *ptr2, int nbytes) ;

bcopy moves the specified number of bytes from the source to the destination. Note

that the order of the two pointer arguments is different from the order used by the stan-

dard I/O st rcpy function. The bzero function writes the specified number of null

Apple Inc.
Ex. 1013 - Page 116

Section 6.5 Elementary Socket System Calls 277

bytes to the specified destination. bcmp compare two arbitrary byte strings. The return
value is zero if the two user-defined byte strings are identical, otherwise its nonzero.
Note that this differs from the return value from the standard I/O s t r cmp function.

We'll use these three functions throughout the remaining chapters, usually to operate
on socket address structures.

System V has three similar functions, memcpy, memset, and memcmp. But most
socket libraries for System V supply functions with the 4.3BSD names, for compatibility.
Details of the System V functions are on the memory(3) manual page.

Address Conversion Routines

As mentioned in Section 5.2, an Internet address is usually written in the dotted-decimal
format, for example 192.43.235.1. The following functions convert between the
dotted-decimal format and an in addr structure.

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

unsigned long inetaddr(char *per);

char *inet ntoa(struct in addr inaddr);

The first of these, inet_addr converts a character string in dotted-decimal notation to
a 32-bit Internet address.t The inet ntoa function does the reverse conversion.

Similar functions exist for handling XNS addresses, but there is not as clear a stan-
dard for representing XNS addresses in a readable form. The format of an XNS address
is typically three fields, delimited by a separator character:

<network-ID> <separator> <host-ID> <separator> <port#>

For example, we write

123:02.07.01.00.a1.62:6001

using a colon as the field separator and a period as the byte separator for the host ID
field. The function ns addr defined below is lenient in what it accepts. First it tries to
divide the character string into one to three fields, accepting either a period, colon, or
pound sign as the separator. Each field is then scanned for byte separators, either a colon
or a period. (Obviously you can't use the same character as the field separator and the
byte separator.)

t Note that this function returns an unsigned long integer, when it should return an in addr
structure. Some systems that are based on 4.3BSD have corrected this.

Apple Inc.
Ex. 1013 - Page 117

278 Berkeley Sockets Chapter 6

#include <sys/types.la>

#include <netnsIns.h>

struct ns addr ns addr(char *lotr);

char *ns ntoa(struct ns addr ns);

The first of these converts a character string representation of an XNS network ID, host
ID, and port number into an ns_addr structure. The second function does the reverse
conversion. This function generates strings using a period to separate the three fields,
with each field in hexadecimal.

6.6 A Simple Example

Now we'll use the elerrientary system calls from the previous section to provide 12 com-
plete programs, showing examples of client—servers using each of the three protocol fam-
ilies available with 4.3BSD. We have 12 programs since we have a connection-oriented
server, a connection-oriented client, a connectionless server and a connectionless client
for each of the three protocol families (Internet, XNS, and Unix domain). The programs
do the following:

1. The client reads a line from its standard input and writes the line to the server.

2. The server reads a line from its network input and echoes the line back to the
client.

3. The client reads the echoed line and prints it on its standard output.

This is an example of what is called an echo server. While we develop our own imple-
mentatiOn of an echo server, most TCP/IP implementations provide such a server, using
both TCP and UDP. See RFC 862 [Postel 1983a] for the official specification. Similarly,
most XNS implementations also provide an echo server that is different from our imple-
mentation. We'll present a client for the standard XNS echo server in Section 11.3.

A pair of client—server programs to echo input lines is a good example of a network
application. All the steps normally required to implement any client—server are illus-
trated by this example. All you need to do with this echo example, to expand it into your
own application, is change what the server does with the input it receives from its clients.

In all these examples, we have "hard-coded" protocol-specific constants such as
addresses and ports. There are two reasons for this. First, you should understand exactly
what needs to be stored in the protocol-specific address structures. Second, we have not
yet covered the library functions provided by 4.3BSD that make this more portable.
These functions are covered in Section 8.2.

In these examples we have coded the connection-oriented Internet and Unix servers
as concurrent servers, and the connection-oriented XNS server as an iterative server.
This is to show examples of both types of servers.

Apple Inc.
Ex. 1013 - Page 118

Section 6.6 A Simple Example 279

Utility Routines

t

d
It

is

ie

e-
ig

-

rk
is-
Ur

:s.
as
tly
lot
le.

ors
er.

Stream sockets exhibit a behavior with the read and write system calls that differs
from normal file I/O. A read or write on a socket might input or output fewer bytes
than requested, but this is not an error condition. The reason is that buffer limits might
be reached for the socket in the kernel and all that is required is for the caller to invoke
the read or write system call again, to input or output the remaining bytes. Some ver-
sions of Unix also exhibit this behavior when writing more than 4096 bytes to a pipe.

We show three functions below that we'll use whenever we read or write to or from
a stream socket. A datagram socket does not have this problem, since each I/O operation
corresponds to a single packet.

/*
* Read "n" bytes from a descriptor.

* Use in place of read() when fd is a stream socket.
*/

int

readn(fd, ptr, nbytes)

register int fd;

register char *ptr;

register int nbytes;

int nleft, nread;

nleft = nbytes;

while (nleft > 0) {

nread = read(fd, ptr, nleft);

if (nread < 0)

return(nread);

else if (nread == 0)

break;

nleft -= nread;

ptr += nread;

1
return(nbytes - nleft);

}

/* error, return < 0 */

/* EOF */

/* return >= 0 */

The following function writes to a stream socket:

/*

* Write "n" bytes to a descriptor.

* Use in place of write() when fd is a stream socket.
*/

int

writen(fd, ptr, nbytes)

register int fd;

register char *ptr;

register int nbytes;

Apple Inc.
Ex. 1013 - Page 119

280 Berkeley Sockets Chapter 6

int nleft, nwritten;

nleft = nbytes;

while (nleft > 0) {

nwritten = write(fd, ptr, nleft);
if (nwritten <= 0)

return(nwritten);

nleft -= nwritten;

ptr += nwritten;

1
return(nbytes - nleft);

}

/* error */

We use the following function to read a line from a stream socket. In our examples
we'll be exchanging Unix text lines between the client and server.

/*
* Read a line from a descriptor. Read the line one byte at a time,
* looking for the newline. We store the newline in the buffer,
* then follow it with a null (the same as fgets(3)).
* We return the number of characters up to, but not including,
* the null (the same as strlen(3)).

int

readline(fd, ptr, maxlen)

register int fd;

register char *ptr;

register int maxlen;

int n, rc;

char c;

for (n = 1; n < maxlen; n++) {

if ((rc = read(fd, &c, 1)) == 1) {
*ptr++ = c;

if (c == '\n')

break;
} else if (rc == 0) {

if (n == 1)

return(0); /* EOF, no data read */
else

break; /* EOF, some data was read */
1 else

return(-1); /* error */

}

*ptr = 0;
return(n);

}

Note that our readline function issues one read system call for every byte of
data. This is inefficient. Section 7.1 of Kernighan and Pike [1984], for example, shows

Apple Inc.
Ex. 1013 - Page 120

6

.es

1 */

of
ws

Section 6.6 A Simple Example 281

that this requires about ten times more CPU time than issuing a system call for every 10
bytes of data. What we would like to do is buffer the data by issuing a read system call
to read as much data as we can, and then examine the buffer one byte at a time. Indeed,
this is what the standard I/O library does. But to avoid having to worry about the possi-
ble interactions of the standard I/O library with a socket, we'll use the system call
directly. It is possible to use the standard I/O library with a socket, but we have to be
cognizant about the buffering that is taking place, and any interactions that can have with
our application.

The three functions shown above are used throughout the text. We'll now present
four functions that are common to the clients and servers shown in this section.

The following function is used by the three connection-oriented servers. It is an
echo function that reads a line from the stream socket and writes it back to the socket.

/*
* Read a stream socket one line at a time, and write each line back

* to the sender.
*

* Return when the connection is terminated.
*/

#define MAXLINE 512

str_echo(sockfd)

int sockfd;

1
int n;

char line[MAXLINE];

for (; ;) f

n = readline(sockfd, line, MAXLINE);

if (n == 0)

return; /* connection terminated */

else if (n < 0)

errdump("strecho: readline error");

if (writen(sockfd, line, n) != n)

err dump("str echo: writen error");

The following function is used by the three connection-oriented clients:

/*
* Read the contents of the FILE *fp, write each line to the

* stream socket (to the server process), then read a line back from

* the socket and write it to the standard output.
*

* Return to caller when an EOF is encountered on the input file.
*/

#include <stdio.h>

#define MAXLINE 512

Apple Inc.
Ex. 1013 - Page 121

282 Berkeley Sockets Chapter 6

strcli(fp, sockfd)

register FILE *fp;

register int sockfd;

int n;

char sendline[MAXLINE], recvline[MAXLINE + 1];

while (fgets(sendline, MAXLINE, fp) != NULL)

n = strlen(sendline);

if (writen(sockfd, sendline, n) != n)

err sys("str cli: writen error on socket");

/*

* Now read a line from the socket and write it to

* our standard output.
*/

n = readline(sockfd, recvline, MAXLINE);

if (n < 0)

errdump("strcli: readline error");

fputs(recvline, stdout);

}

if (ferror(fp))

errsys("strcli: error reading file");

}

The following function is used by the three connectionless servers. By passing the
address of the actual socket address structure to this function, it works with all three
protocol families. Since the size of the structure can differ between protocol families, we
also pass its size to this function, as it is needed for the recv f rom system call.

/*
* Read a datagram from a connectionless socket and write it back to

* the sender.
*

* We never return, as we never know when a datagram client is done.

#include

#include.

<sys/types.h>

<sys/socket.h>

#define MAXMESG 2048

dg_echo(sockfd, pcli_addr, maxclilen)

int sockfd;

struct sockaddr *pcliaddr; /* ptr to appropriate sockaddr_XX structure */

int maxclilen; /* sizeof(*pcli_addr) */

int n, clilen;

char mesg[MAXMESG];

for (; ;)

Apple Inc.
Ex. 1013 - Page 122

Section 6.6 A Simple Example 283

clilen = maxclilen;

n = recvfrom(sockfd, mesg, MAXMESG, 0, pcli_addr, &clilen);

if (n < 0)

err dump("dg echo: recvfrom error");

if (sendto(sockfd, mesg, n, 0, pcli_addr, clilen) != n)

err_dump("dg_echo: sendto error");

The following function is for the connectionless clients. It is similar to the one for a
connection-oriented client, with the writ en calls replaced by sendto and the readn

calls replaced by recvfrom. Also, we need the address of the actual socket address
structure and its size for the datagram system calls.

/*
Read the contents of the FILE *fp, write each line to the

* datagram socket, then read a line back from the datagram
* socket and write it to the standard output.
*

* Return to caller when an EOF is encountered on the input file.

*/

#include

#include

#include

<stdio.h>

<sys/types.h>

<sys/socket.h>

#define MAXLINE 512

dg_cli(fp, sockfd, pserv_addr, servlen)

FILE *fp;

int sockfd;

struct sockaddr *pserv_addr; /* ptr to appropriate sockaddr_XX structure */

int servlen; /* actual sizeof(*pservaddr) */

int n;

char sendline[MAXLINE], recvline[MAXLINE + 1];

while (fgets(sendline, MAXLINE, fp) != NULL) {

n = strlen(sendline);

if (sendto(sockfd, sendline, n, 0, pserv_addr, servlen) != n)

errdump("dgcli: sendto error on socket");

/*
* Now read a message from the socket and write it to

* our standard output.
*/

n = recvfrom(sockfd, recvline, MAXLINE, 0,

(struct sockaddr *) 0, (int *) 0);

if (n < 0)

err_dump("dg_cli: recvfrom error");

recvline[n] = 0; /* null terminate */

fputs(recvline, stdout);

Apple Inc.
Ex. 1013 - Page 123

284 Berkeley Sockets Chapter 6

if (ferror(fp))

errdump("dgcli: error reading file");

TCP Example

Our TCP example follows the flow of system calls that we diagramed in Figure 6.2 for a
connection-oriented client and server. First we show the header file that we use for both
the TCP and UDP examples, inet . h.

/*
* Definitions for TCP and UDP client/server programs.
*/

#include

#include

#include

#include

#include

<stdio.h>

<sys/types.h>

<sys/socket.h>

<netinet/in.h>

<arpa/inet.h>

#define SERV_UDP_PORT 6543

#define SERV_TCP_PORT 6543

#define SERV HOST ADDR "192.43.235.6" /* host addr for server */

char *pname;

Our choice of the TCP port number is arbitrary. It must be greater than 1023, should be
greater than 5000, and must not conflict with any other TCP server's port. (We describe
the 4.3BSD port number conventions in more detail in Section 6.8.) The
SERV HOST ADDR constant corresponds to the host being used by the author. As men-
ti
 — —
oned earlier, there are better ways of handling these magic numbers and constants, but

for now we want to concentrate on the socket system calls themselves.
The server program is as follows:

/*
* Example of server using TCP protocol.
*/

#include "inet.h"

main(argc, argv)

int argc;

char *argv[];

int sockfd, newsockfd, clilen, childpid;

struct sockaddrin cli addr, serv_addr;

pname = argvf01;

/*

Apple Inc.
Ex. 1013 - Page 124

Section 6.6 A Simple Example 285

* Open a TCP socket (an Internet stream socket).
*/

if ((sockfd = socket(AFINET, SOCK STREAM, 0)) < 0)

err_dump("server: can't open stream socket");

/*

* Bind our local address so that the client can send to us.
*/

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sin_family = AF INET;

sery addr.sin_addr.s_addr = htonl(INADDR_ANY);

servaddr.sinport = htons(SERV TCP PORT);

if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

errdump("server: can't bind local address");

listen(sockfd, 5);

for (; ;) {

/*

* Wait for a connection from a client process.

* This is an example of a concurrent server.

*/

clilen = sizeof(cli_addr);

newsockfd = accept(sockfd, (struct sockaddr

if (newsockfd < 0)

errdump("server: accept error");

if ((childpid = fork()) < 0)

err dump("server: fork error");

else if (childpid == 0) {

close(sockfd);

str_echo(newsockfd);

exit(0);

*) &cli_addr,

&clilen);

/* child process */

/* close original socket */

/* process the request */

close(newsockfd); /* parent process */

}

We specify the Internet address for the server's bind as the constant INADDR_ANY.

This tells the system that we will accept a connection on any Internet interface on the
system, if the system is multihomed.

The client program is as follows:

/*

* Example of client using TCP protocol.
*1

Apple Inc.
Ex. 1013 - Page 125

286 Berkeley Sockets Chapter 6

#include "inet.h"

main(argc, argv)

int argc;

char *argv[];

int

struct sockaddr in

pname = argv[0];

sockfd;

serv_addr;

/*
* Fill in the structure "sery addr" with the address of the

* server that we want to connect with.
*

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sin_family = AF_INET;

sery addr.sin addr.s addr = inet addr(SERV HOST ADDR); _ _ _ _ _ _
servaddr.sinport = htons(SERV TCP PORT);

/*
* Open a TCP socket (an Internet stream socket).
*/

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

err_sys("client: can't open stream socket");

/*

* Connect to the server.
*/

if (connect(sockfd, (struct sockaddr *) &sery addr,

sizeof(serv_addr)) < 0

err sys("client: can't connect to server");

strcli(stdin, sockfd); /* do it all */

close(sockfd);

exit(0);

UDP Example

Our UDP client and server programs follow the system call flow that we diagramed in
Figure 6.3 for a connectionless protocol.

The client calls bind after creating its socket, to have the system assign any local
address to the client's socket. In some instances this specific step isn't required, if the
system automatically assigns a local address when the sendt o system call is used for

Apple Inc.
Ex. 1013 - Page 126

Section 6.6 A Simple Example 287

the first time. But some connectionless protocols, such as the Unix domain datagram
protocol, don't do this (for reasons which we discuss later in this section). Therefore, as
both a good programming habit, and to provide consistency between protocols, we'll
always call bind for connectionless clients.

This UDP example is not reliable. If a datagram disappears, neither the client or
server are aware of it. To provide reliability for UDP requires additional user-level code
that we'll develop in Section 8.4.

First the server program.

/*

* Example of server using UDP protocol.
*/

#include "inet.h"

main(argc, argv)

int argc;

char *argv[];

int sockfd;

struct sockaddr in servaddr, cli addr;

pname = argv[0];

/*
* Open a UDP socket (an Internet datagram socket).
*/

if ((sockfd = socket(AFINET, SOCK_DGRAM, 0)) < 0)

err_dump("server: can't open datagram socket");

/*

* Bind our local address so that the client can send to us.
*/

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sin_family = AF INET;

serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);

servaddr.sinport = htons(SERV UDP PORT);

if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

err_dump("server: can't bind local address");

dg_echo(sockfd, (struct sockaddr *) &cli_addr, sizeof(cli_addr));

/* NOTREACHED */

}

As with the TCP server example, the Internet address for the bind is specified as
INADDR ANY.

Apple Inc.
Ex. 1013 - Page 127

288 Berkeley Sockets Chapter 6

The client program:

/*
* Example of client using UDP protocol.
*/

#include "inet.h"

main(argc, argv)

int argc;
char *argv[];

int sockfd;

struct sockaddr in cli addr, sere addr;

pname = argv[0];

/*
* Fill in the structure "sery addr" with the address of the

* server that we want to send to.
*/

bzero((char *) &serv_addr, sizeof(ser_addr));

sery addr.sin family = AF_INET;

serv_addr.sin_addr.s_addr = inet_addr(SERV_HOST_ADDR);

sery addr.sin_port = htons(SERV UDP_PORT);

/*
* Open a UDP socket (an Internet datagram socket).
*/

if ((sockfd = socket(AFINET, SOCK_DGRAM, 0)) < 0)

err_dump("client: can't open datagram socket");

/*
* Bind any local address for us.
*/

bzero((char *) &cli_addr, sizeof(cli_addr)); /* zero out */

cliaddr.sin_family = AF INET;

cli_addr.sin_addr.s_addr = htonl(INADDR ANY);

cli_addr.sin_port = htons(0);

if (bind(sockfd, (struct sockaddr *) &cli addr, sizeof(cli addr)) < 0)

err dump("client: can't bind local address");

dgcli(stdin, sockfd, (struct sockaddr *) &sery addr, sizeof(sery addr

close(sockfd);

exit(0);

In assigning a local address for the client using bind, we set the Internet address to
INADDR ANY and the 16-bit Internet port to zero. Setting the port to zero causes the
system to assign the client some unused port in the range 1024 through 5000. The system

Apple Inc.
Ex. 1013 - Page 128

T 6 Section 6.6 A Simple Example 289

< 0)

raddr));

S to
the

tem

guarantees that the assigned port is unique on the local system, so that the datagrams
returned by the server to this port are delivered to the correct client. When we send a
datagram to the server, the system determines which Internet interface to use to contact
the server, and sets the client's 32-bit Internet address accordingly.

SPP Example

The XNS examples are similar to the Internet examples, the only exception being the
handling of the XNS address structures.

First we show the header file used by both the SPP and IDP programs, xns . h.

/*
* Definitions for SPP and IDP client/server programs.
*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netns/ns.h>

#define SPP_SERV ADDR "123:02.07.01.00.a1.62:6001"

#define IDP SERV ADDR "123:02.07.01.00.a1.62:6000"

/* <netid>:<hostid>:<port> */

#define SERV_SPP_PORT 6001

#define SERV IDP PORT 6000

char *pname;

struct ns_addr nsaddr(); /* BSD library routine */

Our choice of port numbers is arbitrary. Note that the SPP and IDP port numbers are dif-
ferent, while our Internet example used the same port number for the TCP port and the
UDP port. Recall from Section 5.2 that TCP and UDP ports are independent on a system
(they are demultiplexed at the transport layer). XNS port numbers, however, are not
independent as they are demultiplexed at the network layer.

The SPP SERV ADDR and IDP SERV ADDR values correspond to the XNS
addresses of the systems used for this example.

As mentioned at the beginning of this section, we have coded this server as an itera-
tive server. It completely handles one client before accepting another connection. You
should compare this with the TCP example shown earlier in this section, which we coded
as a concurrent server.

/*

* Example of server using SPP protocol.
*/

#include "xns.h"

main(argc, argv)

int argc;

char *argv[];

Apple Inc.
Ex. 1013 - Page 129

290 Berkeley Sockets Chapter 6

int sockfd, newsockfd, clilen;

struct sockaddr_ns cli addr, serv_addr;

pname = argv[0];

/*
* Open a SPP socket (an XNS stream socket).
*/

if ((sockfd = socket(AFNS, SOCK_STREAM, 0)) < 0)

err dump("server: can't open stream socket");

/*
* Bind our local address so that the client can send to us.
*/

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sns_family = AF _NS;

servaddr.sns_addr.x_port = htons(SERVSPP_PORT);

if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) (

err dump("server: can't bind local address");

listen(sockfd, 5);

for (; ;) {

/*

* Wait for a connection from a client process,

* then process it without fork()'ing.

* This is an example of an iterative server.
*/

clilen = sizeof(cli_addr);

newsockfd = accept(sockfd, (struct sockaddr

if (newsockfd < 0)

err dump("server: accept error");

str_echo(newsockfd); /* returns when connection is closed */

close(newsockfd);

*) &cli_addr,

&clilen);

Before binding its well-known address, the server zeroes its address structure and then
stores its family and port, leaving the network ID and host ID as zero. This is similar to
setting the 32-bit Internet network ID and host ID to INADDR ANY. It tells the system
that the server is willing to accept a connection from any host.

Apple Inc.
Ex. 1013 - Page 130

Section 6.6 A Simple Example 291

The client program:

/*
* Example of client using SPP protocol.
*/

#include "xns.h"

main(argc, argv)

int argc;

char *argv[];

int sockfd;

struct sockaddr_ns sery addr;

pname = argv[0];

/*
* Fill in the structure "serv_addr" with the XNS address of the

* server that we want to connect with.

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sns_family = AF_NS;

serv_eddr.sns_addr = ns_addr(SPP_SERV_ADDR);

/* stores net-ID, host-ID and port */

/*
* Open a SPP socket (an XNS stream socket).
*/

if ((sockfd = socket(AF_NS, SOCK_STREAM, 0)) < 0)

err sys("client: can't open stream socket");

/*

* Connect to the server.
*/

if (connect(sockfd, (struct sockaddr *) &serv_addr,

sizeof(serv_addr)) < 0)

err sys("client: can't connect to server");

strcli(stdin, sockfd); /* do it all */

close(sockfd);

exit(0);

}

Apple Inc.
Ex. 1013 - Page 131

292 Berkeley Sockets Chapter 6

IDP Example

As with our UDP example, the IDP programs that follow are not reliable. The IDP
server program:

/*
* Example of server using XNS IDP protocol.
*/

#include "xns.h"

main(argc, argv)

int argc;

char *argv[];

int sockfd;

struct sockaddrns serv_addr, cli addr;

pname = argv[0];

/*

* Open an IDP socket (an XNS datagram socket).

*/

if ((sockfd = socket(AFNS, SOCK DGRAM, 0)) < 0)

err dump("server: can't open datagram socket");

/*
* Bind our local address so that the client can send to us.
*/

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sns_family = AF_NS;

servaddr.sns_addr.xport = htons(SERVIDP_PORT);

if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(sery addr)) < 0) 4

err dump("server: can't bind local address"); A

dg_echo(sockfd, (struct sockaddr *) &cli_addr, sizeof(cli_addr));

/* NOTREACHED */

The IDP client program:

/*

* Example of client using XNS IDP protocol.
*/

#include "xns.h"

main(argc, argv)

int argc;

char *argv[];

1

Apple Inc.
Ex. 1013 - Page 132

Section 6.6 A Simple Example 293

int sockfd;

struct sockaddrns cli addr, serv_addr;

pname = argv[0];

/*

* Fill in the structure "serv_addr" with the address of the

* server that we want to send to.
*/

bzero((char *) &serv_addr, sizeof(serv_addr));

sery addr.sns_family = AF_NS;

sery addr.sns addr = ns addr(IDP SERV ADDR);

/* stores net-ID, host-ID and port */

/*

* Open an IDP socket (an XNS datagram socket).
*/

if ((sockfd = socket(AFNS,_ SOCK_DGRAM, 0)) < 0)

errdumprclient: can't open datagram socket");

/*
* Bind any local address for us.
*/

bzero((char *) &cli_addr, sizeof(cli_addr)); /* zero out */

cli_addr.sns_family = AF_NS;

if (bind(sockfd, (struct sockaddr *) &cli_addr, sizeof(cli_addr)) < 0)

err dump("client: can't bind local address");

dgcli(stdin, sockfd, (struct sockaddr *) &servaddr, sizeof(servaddr));

close(sockfd);

exit(0);

}

Unix Stream Example

The Unix stream protocol example is similar to both the TCP and SPP examples. Here is
the header file that we use for both the stream and datagram examples, unix . h.

/*
* Definitions for UNIX domain stream and datagram client/server programs.
*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#define UNIXSTR PATH

#define UNIXDG PATH

"./s.unixstr"
"./s.unixdg"

Apple Inc.
Ex. 1013 - Page 133

294 Berkeley Sockets Chapter 6

#define UNIXDG TMP

char *pname;

"/tmp/dg.XXXXXX"

The server program:

/*
* Example of server using UNIX domain stream protocol.
*/

#include "unix.h"

main(argc, argv)

int argc;

char *argv[];

int sockfd, newsockfd, clilen, childpid, servlen;

struct sockaddtun cli addr, servaddr;

pname = argv[0];

/*
* Open a socket (a UNIX domain stream socket).
*/

if ((sockfd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)

err dump("server: can't open stream socket");

/*
* Bind our local address so that the client can send to us.
*/

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sun_family = AF_UNIX;

strcpy(serv_addr.sun_path, UNIXSTR_PATH);

servlen = strlen(servaddr.sun_path) + sizeof(servaddr.sun_family);

if (bind(sockfd, (struct sockaddr *) &serv_addr, servlen) < 0)

err dump("server: can't bind local address");

listen(sockfd, 5);

for (; ;) {

/*
* Wait for a connection from a client process.

* This is an example of a concurrent server.
*

clilen = sizeof(cli_addr);

newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr,

&clilen);

if (newsockfd < 0)

errdump("server: accept error");

Apple Inc.
Ex. 1013 - Page 134

Section 6.6 A Simple Example 295

if ((childpid = fork()) < 0)

err dump("server: fork error");

else if (childpid == 0) {

close(sockfd);

str_echo(newsockfd);

exit(0);

}

/* child process */

/* close original socket */

/* process the request */

close(newsockfd); /* parent process */

}

With a Unix domain address structure, we have to calculate the length of the structure for
the bind system call, since it depends on the length of the pathname specified. We
specify the length as the size of the sun_family variable plus the number of characters
in the pathname.

The client program:

/*
* Example of client using UNIX domain stream protocol.
*/

#include "unix.h"

min(argc, argv)

int argc;

char *argv[];

{

int sockfd, servlen;

struct sockaddrun servaddr;

pname = argv[0];

/*

* Fill in the structure "serv_addr" with the address of the

* server that we want to send to.
*/

bzero((char *) &servaddr, sizeof(serv_addr));

serv_addr.sun_family = AF_UNIX;

strcpy(serv_addr.sunpath, UNIXSTR PATH);

servlen = strlen(servaddr.sunpath) + sizeof(servaddr.sunfamily);

/*
* Open a socket (an UNIX domain stream socket).
*/

if ((sockfd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)

err sys("client: can't open stream socket");

/*

* Connect to the server.
*/

Apple Inc.
Ex. 1013 - Page 135

296 Berkeley Sockets Chapter 6

if (connect(sockfd, (struct sockaddr *) &serv_addr, servlen) < 0)

err sys("client: can't connect to server");

strcli(stdin, sockfd); /* do it all */

close(sockfd);

exit(0);

Unix Datagram Example

The Unix datagram protocol example presents an interesting problem that we haven't
encountered yet. Since Unix domain sockets are identified by pathnames of actual files
in the host's filesystem, the client has to form a unique pathname to use when it binds

its local address. When using UDP or IDP, the local port is specified by a 16-bit integer
that only has significance within the kernel. Therefore we let the system assign our local
port, leaving the responsibility to the system to guarantee its uniqueness on the local host.
But in the Unix domain we're dealing with pathnames that get turned into actual files by

the bind system call, so it is our responsibility to pick a local address and guarantee its
uniqueness on the local host. While this function could have been delegated to the kernel
(as is done with UDP and IDP), since side effects could occur (such as creating a file in a
directory in which the caller doesn't have permission to delete in), the designers chose to

leave this to the application.
In this example we use the mktemp function in the standard C library to create a

name for the client's socket, based on the client's process ID. Note that we must try to

create a unique name for the client's socket, since there is a possibility that multiple

clients are using the same server at the same time. With unique client addresses, each

server response is returned to the correct client process.t
The server program:

/*

* Example of server using UNIX domain datagram protocol.

*/

#include "unix.h"

main(argc, argv)

int argc;

t There is a feature in the 4.3BSD implementation of Unix domain datagrams that limits the

number of characters of this filename that are transmitted along with the datagram, to 14 characters.

If the client binds a local address with more than 14 characters in the filename, that file, of type

socket, is correctly created in the filesystem, but only the first 14 characters of its name are sent to

the server. This means the server won't be able to respond to the client. Furthermore, if the file-

name is less than 14 characters, extraneous characters are usually appended to the name, which also

prevents the server from responding to the client. We have purposely chosen the pathname

/tmp/dg . XXXXXX to be exactly 14 characters.

Apple Inc.
Ex. 1013 - Page 136

Section 6.6 A Simple Example 297

char *argv[];

int sockfd, servlen;

struct sockaddrun servaddr, cli addr;

pname = argv[0];

/*

* Open a socket (a UNIX domain datagram socket).
*/

if ((sockfd = socket(AFUNIX, SOCK_DGRAM, 0)) < 0)

err dump("server: can't open datagram socket");

/*

* Bind our local address so that the client can send to us.
*/

unlink(UNIXDG_PATH); /* in case it was left from last time */

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sun_family = AF_UNIX;

strcpy(servaddr.sun_path, UNIXDG_PATH);

servlen = sizeof(sery addr.sun family) + strlen(servaddr.sunpath);

if (bind(sockfd, (struct sockaddr *) &serv_addr, servlen) < 0)

err dump("server: can't bind local address");

dg echo(sockfd, (struct sockaddr *) &cli_addr, sizeof(cli_addr));

/* NOTREACHED */

The client program:

/*
* Example of client using UNIX domain datagram protocol.
*

#include "unix.h"

main(argc, argv)

int argc;

char *argv[];

int sockfd, clilen, servlen;

char *mktemp();

struct sockaddr_un cli addr, servaddr;

pname = argv[0];

/*
* Fill in the structure "serv_addr" with the address of the

* server that we want to send to.
*/

Apple Inc.
Ex. 1013 - Page 137

298 Berkeley Sockets Chapter 6

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sun family = AF_UNIX;

strcpy(sery addr.sun path, UNIXDO_PATH);

servlen = sizeof(servaddr.sun_family) + strlen(serv_addr.sunpath);

/*
* Open a socket (a UNIX domain datagram socket).

if ((sockfd = socket(AFUNIX, SOCK_DGRAM, 0)) < 0)

err dump("client: can't open datagram socket");

/*
* Bind a local address for us.

* In the UNIX domain we have to choose our own name (that

* should be unique). We'll use mktemp() to create a unique

* pathname, based on our process id.

*/

bzero((char *) &cli_addr, sizeof(cli_addr)); /* zero out */

cli_addr.sun_family = AF_UNIX;

strcpy(cli_addr.sun_path, UNIXDO_TMP);

mktemp(cliaddr.sun_path);

clilen = sizeof(cli_addr sun_family) + strlen(cli_addr.sun_path);

if (bind(sockfd, (struct sockaddr *) &cli_addr, clilen) < 0)

err dump("client: can't bind local address");

dgcli(stdin, sockfd, (struct sockaddr *) &serv_addr, servlen);

close(sockfd);

unlink(cli_addr.sun_path);

exit(0);

6.7 Advanced Socket System Calls

We now proceed to the more advanced socket system calls, which we need in later sec-
tions of this chapter, and in some of the later chapters of this text.

ready and writev System Calls

4.3BSD provides what are called scatter read and gather write variants of the standard

read and write system calls that we described in Section 2.3. What these two variants

provide is the ability to read into or write from noncontiguous buffers.

Apple Inc.
Ex. 1013 - Page 138

Section 6.7 Advanced Socket System Calls 299

#include <sys/types.h>

#include <sys/uio.h>

int writev (int fd, struct iovec int kwount);

int ready (int fd, struct iovec int kwcomt);

These two system calls use the following structure that is defined in <s y s /uio . h>:

struct iovec {

caddr t iov base; /* starting address of buffer */

int iov len; /* size of buffer in bytes */
} ;

The writev system call writes the buffers specified by ioy[0], iov[1], through
iov[iovcount-1]. The ready system call does the input equivalent. ready always fills
one buffer (as specified by the i ov_len value) before proceeding to the next buffer in
the boy array. Both system calls return the total number of bytes read or written.

Consider, as an example, a hypothetical function named write hdr that writes a
buffer preceded by some header. The actual format of the header doesn't concern us.

int

write_hdr(fd, buff, nbytes)

int fd;

char *buff;

int nbytes;

int n;

struct hdr info header;

/ ... set up the header as required ..

if (write(fd, header, sizeof(header)) != sizeof(header))

return(-1);

if (write(fd, buff, nbytes) != nbytes)

return(-1);

return(nbytes);

Here two write system calls are used. Another way to do this is to allocate a temporary
buffer, build the header in the beginning of the buffer, then copy the data into the buffer
and do a single write of the entire buffer. A third way to do it (to avoid the extra
write or to avoid the copy operation) is to force the caller to allocate space at the
beginning of their buffer for the header. None of these three alternatives is optimal,
which is why the writev system call (and its ready counterpart) were introduced.

Apple Inc.
Ex. 1013 - Page 139

300 Berkeley Sockets Chapter 6

The types of operation described here (adding information to either the beginning or end
of a user's buffer) is just a form of encapsulation. The writev alternative for our

example is

#include <sys/types.h>

#include <sys/uio.h>

int

write_hdr(fd, buff, nbytes)

int fd;

char *buff;

int nbytes;

struct hdr_info header;

struct iovec iov[2];

/* ... set up the header as required ... */

iov[0].iov_base = (char *) &header;

iov[0].iovlen = sizeof(header);

iov[1].iov_base = buff;

iov[1].iovlen = nbytes;

if (writev(fd, &iov[0], 2) != sizeof(header) + nbytes)

return(-1);

return(nbytes);

}

The ready and writev system calls can be used with any descriptor, not just sockets,

although they are not portable beyond 4.3BSD. (One could write user functions named

ready and writev that emulate these 4.3BSD system calls.)
The writev system call is an atomic operation. This is important if the descriptor

refers to a record-based entity, such as a datagram socket or a magnetic tape drive. For

example, a writev to a datagram socket produces a single datagram, whereas multiple

writes would produce multiple datagrams. The only correct way to emulate writev

is to copy all the data into a single buffer and then execute a single write system call.

sendmsg and recvmsg System Calls

These two system calls are the most general of all the read and write system calls.

#include <sys/types.h>

#include <sys/socket.h>

int sendmsg (int sockfd, struct msghdr mug(], int flags);

int recvmsg (int sockfd, struct msghdr 'raga, int flags);

Apple Inc.
Ex. 1013 - Page 140

Section 6.7 Advanced Socket System Calls 301

These use the msghdr structure that is defined in < sys / socket . h>

struct msghdr

caddr t

int

struct iovec

int

caddr t

int
};

msg_name;

msg_namelen;

*msgiov;

msg_iovlen;

msg_accrights;

msgaccrightslen;

/* optional address */

/* size of address */

/* scatter/gather array */
/* # elements in msg_iov */
/* access rights sent/recvd */

The msg_name and msg_namelen fields are used when the socket is not connected,
similar to the final two arguments to the recvfrom and sendto system calls. The
msg_name field can be specified as a NULL pointer if a name is either not required or
not desired. The msg_ioy and msg_iovlen, fields are used for scatter read and gather
write operations, as described above for the ready and writev system calls. The final
two elements of the structure, msg_accrights and msg_accrightslen deal with
the passing and receiving of access rights between processes. We discuss this in Sec-
tion 6.10 when we explain the passing of file descriptors between processes. The flags

argument is the same as with the send and recv system calls, which we described in
Section 6.5.

Figure 6.10 compares the five different read and write function groups.

System call
Any

descriptor
Only

socket
descriptor

Single
read/write

buffer

Scatter/
gather

read/write

Optional
flags

Optional
peer

address

Optional
access
rights

read, write • •

ready, writev • •

recv, send • • •

recvfrom, sendto • • • •

recvmsg, sendmsg • • • • •

Figure 6.10 Read and write system call variants.

getpeername System Call

This system call returns the name of the peer process that is connected to a given socket.

#include <sys/types.h>

#include <sys/socket.h>

int getpeername (int sockfd, struct sockaddr *peer, int *addrlen);

When we say that this system call returns the "name" of the peer process, we mean that
it returns the foreign-addr and foreign process elements of the 5-tuple associated with
sockfd. Note that the final argument is a value—result argument.

Apple Inc.
Ex. 1013 - Page 141

302 Berkeley Sockets Chapter 6

The original 4.3BSD release did not support this system call for Unix domain sock-
ets, but fixes exist to correct this limitation.

get sockname System Can

This system call returns the name associated with a socket.

#include <sys/types.h>

#include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *peer, int *addden);

This call returns the local-addr and local process elements of an association. As with the
getpeername system call, the final argument is a value—result argument.

The original 4.3BSD release did not support this system call for Unix domain sock-
ets, but fixes exist to correct this limitation.

get sockopt and setsockopt System Calls

These two system calls manipulate the options associated with a socket. We'll describe
them in more detail in Section 6.11, along with two other system calls, fcntl and
ioct 1, that can modify the properties of a socket.

shutdown System Call

The normal way to terminate a network connection is to call the close system call. As
we mentioned earlier, close normally attempts to deliver any data that is still to be sent.
But the shutdown system call provides more control over a full-duplex connection.

int shutdown (int sockfd, int howto);

If the howto argument is 0, no more data can be received on the socket. A value of 1
causes no more output to be allowed on the socket. A value of 2 causes both sends and
receives to be disallowed.

ReMember that a socket is usually a full-duplex communication path. The data flow-
ing in one direction is logically independent of the data going in the other direction. This
is why shutdown allows either direction to be closed, independent of the other direc-
tion.

select System Call

This system call can be used when dealing with multiple descriptors. We'll discuss it in
detail in Section 6.13.

Apple Inc.
Ex. 1013 - Page 142

Section 6.8 Reserved Ports 303

6.8 Reserved Ports

There are two ways for a process to have an Internet port or an XNS port assigned to a
socket.

• The process can request a specific port. This is typical for servers that need to
assign a well-known port to a socket. All our server examples shown in Sec-
tion 6.6 do this.

• The process can let the system automatically assign a port. For both the Internet
domain and the XNS domain, specifying a port number of zero before calling
bind requests the system to do this. Both our UDP and EDP client examples do
this.

4.3BSD supports the concept of reserved ports in both the Internet and XNS domains. In
the Internet domain, any TCP or UDP port in the range 1-1023 is reserved, and in the
XNS domain ports in the range 1-2999 are reserved. A process is not allowed to bind

a reserved port unless its effective user ID is zero (the superuser).
4.3BSD provides a library function that assigns a reserved TCP stream socket to its

caller:

int rresvport (int *aport) ;

This function creates an Internet stream socket and binds a reserved port to the socket.
The socket descriptor is returned as the value of the function, unless an error occurs, in
which case —1 is returned. Note that the argument to this function is the address of an
integer (a value—result argument), not an integer value. The integer pointed to by aport is
the first port number that the function attempts to bind. The caller typically initializes
the starting port number to IPPORT_RESERVED-1. (The value of the constant
IPPORT RESERVED is defined to be 1024 in <netinet /in . h>.) If this bind fails
with an errno of EADDRINUSE, then this function decrements the port number and
tries again. If it finally reaches port 512 and finds it already in use, it sets errno to
EAGAIN, and returns —1. If this function returns successfully, it not only returns the
socket as the value of the function, but the port number is also returned in the location
pointed to by aport.

Figure 6.11 summarizes the assignment of ports in the Internet and XNS domains.

Internet XNS

reserved ports 1-1023 1-2999
ports automatically assigned by system 1024-5000 3000-65535
ports assigned by rresvport 0 512-1023

Figure 6.11 Port assignment in the Internet and XNS domains.

Apple Inc.
Ex. 1013 - Page 143

304 Berkeley Sockets Chapter 6

Note that all ports assigned by standard Internet applications (FTP, TELNET, TFTp,
SMTP, etc.) are between 1 and 255 and are therefore reserved. The servers for these
applications must have superuser privileges when they create their socket and bind their
well-known address. Also, the ports between 256 and 511 are considered reserved by
4.3BSD, but they are not currently used by any standard Internet application, and they are
never allocated by the rresvport function.

The system doesn't automatically assign an Internet port greater than 5000. It leaves
these ports for user-developed, nonprivileged servers. This provides a higher degree of
certainty that a server can assign itself its well-known port, since any of the ports
between 1024 and 5000 might be in use by some client.

Finally, note that any process that wants to obtain a privileged UDP, IDP, or SPP
port has to do the same steps that rresvport does. There does not exist a standard
library function similar to rresvport for these three protocols.

The concept of reserved ports as described above only handles the binding of ports
to unbound sockets by the system. It is up to the application program (the server) that
receives a request from a client with a reserved port, to consider the request as special or
not. The server can obtain the address of the client using the getpeername system
call. A connection-oriented server can also obtain the client's address from the peer
argument of the accept system call, and a datagram server can obtain the address of the
client from the from argument of the re cvf r om system call. In Section 9.2 we consider
reserved ports and their use by typical 4.3BSD servers for authentication.

6.9 Stream Pipes

We introduced the term stream pipe in Section 6.5 when describing the socketpair
system call. We consider a stream pipe to be similar to a pipe, but a stream pipe is
bidirectional. Furthermore, stream pipes are used in both 4.3BSD and in System V
Release 3 for passing file descriptors between processes. Therefore we'll provide a func-
tion named s_pipe to create a stream pipe and have it look just like the pipe system
call.

We also have the option of associating a name with a stream pipe, so we can provide
two versions: unnamed stream pipes and named stream pipes. Figure 6.12 compares the
four types of pipes that we've described.

Unidirectional Bidirectional 4.3BSD System V

pipe
named pipe (FIFO)

•
•

yes
some

yes
yes

stream pipe
named stream pipe

•
•

yes
yes

yes
yes

Figure 6.12 Comparison of pipes, FIF0s, stream pipes, and named stream pipes.

Pipes and named pipes were described in Chapter 3.

Apple Inc.
Ex. 1013 - Page 144

Section 6.9 Stream Pipes 305

A function to create an unnamed stream pipe is trivial for 4.3BSD.

/*
* Create an unnamed stream pipe.
*/

#include <sys/types.h>

#include <sys/socket.h>

int

s_pipe(fd)

int fd[2];

{

/* returns 0 if all OK, -1 if error (with errno set) */

/* two file descriptors returned through here */

return(socketpair(AF UNIX, SOCK STREAM, 0, fd));

Our function to create a named stream pipe first creates an unnamed stream pipe,
then associates a name with one end of it, using the bind system call. This function
requires another argument: the name within the filesystem to be associated with the
stream pipe.

/*
* Create a named stream pipe.
*/

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

int

ns_pipe(name, fd)

char *name;

int fd[2];

{

}

/* returns 0 if all OK, -1 if error (with errno set) */

/* user-specified name to assign to the stream pipe */

/* two file descriptors returned through here */

int

struct sockaddr_un

len;

unixaddr;

if (s pipe(fd) < 0) /* first create an unnamed stream pipe */

return(-1);

unlink(name); /* remove the name, if it already exists */

bzero((char *) &unix_addr, sizeof(unix_addr));

unix_addr.sun_family = AF_UNIX;

strcpy(unix_addr.sunpath, name);

len = strlen(unix addr.sun path) + sizeof(unixaddr.sunfamily);

if (bind(fd[0], (struct sockaddr *) &unix_addr, len) < 0)

return(-1);

return(0);

Apple Inc.
Ex. 1013 - Page 145

306 Berkeley Sockets Chapter 6

As we mentioned in Section 6.3, the filename that is specified for a socket that is created
in the Unix domain (as we are doing to implement named stream pipes) refers to a
socket, not a true Unix file. The only way another process can access this endpoint is
through the socket system calls. We cannot, for example, use the open system call on
these named stream pipes.

With stream pipes, both unnamed and named, the two descriptors returned by the
functions s_pipe and ns_pipe are indistinguishable: both can be used for reading and
writing, since these stream pipes are bidirectional. Recall with the pipe system call that
only one descriptor is available for reading and the other is only available for writing.

6.10 Passing File Descriptors

Recall from Chapter 2 that for most Unix systems the only way to pass an open file from
one process to another is for a parent process to open a file and then either fork or
exec another process. There is normally no way for one process to pass an open file to
some other, arbitrary (i.e., unrelated) process, or for a child to pass an open file to its
parent process. 4.3BSD and System V Release 3 both provide a mechanism to do this.
When we say "open file" we mean "open descriptor," since either a file descriptor or a
socket descriptor can be passed. Since devices are handled using the same descriptors as

files, descriptors that refer to devices can also be passed. When we use the term "file
descriptor" in this section, realize that 4.3BSD descriptors are not restricted to actual

files.
Recall our picture of the open file table in the kernel for a given process (Fig-

ure 2.12). It is a vector that is indexed by the file descriptor to obtain a pointer into the
kernel's file table. When we say we want to pass an open file from one process to

another, what we want to do is take an open file from-the sending process and generate
another pointer to the file table entry for that file. Pictorially, we want the data structures

as shown in Figure 6.13.
Notice that the actual descriptor value is generally different between the sending

process and the receiving process. Figure 6.13 shows, for example, that the descriptor
could be 3 in the sending process, but the descriptor in the receiving process could be 4,

if that is the first available value. Nevertheless, entry fd[3] in the sending process and

entry fd[4] in the receiving process both point to the same file table entry in the kernel,
allowing the two processes to share the same file. Typically the sending process closes

the file after it has been sent to the receiving process.
To pass a descriptor from one process to another, the two processes must be con-

nected with a Unix domain socket. This connection can be either a stream socket or a

datagram socket. Given the comments we presented earlier about the potential buffer

problems with a datagram protocol, we'll use a stream protocol in our examples. We'll

use the s_pipe function from the previous section to create a stream pipe which is

really a Unix domain stream socket. The only way to pass a descriptor is for the sending

process to use the sendmsg system call and then the receiving process must use the

Apple Inc.
Ex. 1013 - Page 146

Section 6.10 Passing File DescriptorS 307

process
table entry

process
table entry

file table

current file
position

i-node ptr

Figure 6.13 Sharing a file table entry between two processes.

I-node table

i-node
information

recvmsg system call. These two system calls are the only ones that support the concept
of "access rights," which is how descriptors are passed.

The term "access rights" indicates that a process has the right to access a system-
maintained object. In this case the object is a file, device, or socket that the system has
granted access to by opening the object and returning a file descriptor to the process. The
process that has this access right (the sending process that obtained the right from the
kernel) passes it to another process. Although we can imagine other access rights that
might be passed from one process to another (access to a portion of memory, for exam-
ple), 4.3BSD only supports the passing of file descriptors.

There are two instances where the ability to pass a file descriptor can be useful.
(These ideas come from Pregotto and Ritchie [1985].)

1. A process forks a child process and the child then execs another process to
open a particular file. The execed process does whatever it has to do to open
the file and then passes the open file descriptor back to the original process.
Since the execed process is a child process of the original process, there is no
way for it to pass an open file back to the parent, other than passing an open file
as we describe in this section.

Apple Inc.
Ex. 1013 - Page 147

308 Berkeley Sockets Chapter 6

2. A connection server can be invoked to handle all network connections. Instead
of using fork and exec as described above, this scenario requires any client
process to connect with a well-known server. The client writes its request to the
server using this connection (a Unix domain stream socket, for example) and the
server responds with an open file descriptor or an error indication.

An example of scenario 1 is the establishment of a network connection using an auto-
matic dialer. In 4.3BSD, for example, the programs tip (also known as cu) and
uucico (the program that does most of the work for UUCP) both include functions to
handle all possible dialers. The uucico program also includes code to establish TCP
connections with the other system. Whenever a new dialer is introduced, a new function
has to be written to handle it and all programs wanting to access the new dialer have to
be recompiled and link edited. Another solution is to have a network access program that
is execed by both tip and uucico to handle all the details involved with establishing
a network connection. This new program passes the open file descriptor (or an error indi-
cation) back to the invoking process. Any arguments required by the network access
program (dialer type, telephone number, network address, etc.) can be passed as com-
mand line arguments in the exec system call. Note that this solution does involve a
fork and exec, while the current technique only involves a function call.

An Example

The following example shows how to pass and receive file descriptors in a 4.3BSD
environment. First we have a ma in function that takes zero or more command line argu-
ments that specify files to be copied to the standard output. If the program is called
mycat then it can be invoked as

mycat /etc/passwd

to print the password file on your terminal.

/*
* Catenate one or more files to standard output.

* If no files are specified, default to standard input.
*/

#define BUFFSIZE 4096

main(argc, argv)

int argc;

char *argv[];

int fd, i, n;

char buff[BUFFSIZE];

extern char *pname;

pname = argv[0];

argv++; argc--;

Apple Inc.
Ex. 1013 - Page 148

Section 6.10 Passing File Descriptors 309

fd = 0;

i = 0;

do {

/* default to stdin if no arguments */

if (argc > 0 && (fd = my_open(argv[i], 0)) < 0) {

err_ret("can't open %s", argv[i]);

continue;

}

while ((n = read(fd, buff, BUFFSIZE)) > 0)

if (write(1, buff, n) != n)

errsys("write error");

if (n < 0)

errsys("read error");

} while (++i < argc);

exit(0);

}

If the call to the function my_open shown above is replaced with a call to the standard
library function named open, the program works fine. It is similar to the standard Unix
cat command. What we'll do, however, is provide our own function named my_open.

Our version goes through the steps listed in scenario 1 above: it forks a copy of itself
and the child process execs another program to do the actual open system call, return-
ing a file descriptor to the parent process. Here is our version of the open function.

/*
* Open a file, returning a file descriptor.
*

* This function is similar to the UNIX open() system call,

* however here we invoke another program to do the actual

* open(), to illustrate the passing of open files

* between processes.
*/

int

my_open(filename, mode)

char *filename;

int mode;

int fd, childpid, sfd[2], status;

char argsfd[10], argmode[10];

extern int errno;

if (s_pipe(sfd) < 0) /* create an unnamed stream pipe */

return(-1); /* errno will be set */

if ((childpid = fork()) < 0)

errsys("can't fork");

else if (childpid == 0) { /* child process */

close(sfd[0]); /* close the end we don't use

sprintf(argsfd, "%d", sfd[1]);

sprintf(argmode, "%d", mode);

if (execl("./openfile", "openfile", argsfd, filename,

*

Apple Inc.
Ex. 1013 - Page 149

310 Berkeley Sockets Chapter 6

argmode, (char *) 0) < 0)

errsys("can't execl");

}

/* parent process - wait for the child's execl() to complete *

close(sfd[1]); /* close the end we don't use */

if (wait(&status) != childpid)

err_dump("wait error");

if ((status & 255) != 0)

err_dump("child did not exit");

status = (status >> 8) & 255; /* child's exit() argument */

if (status == 0) {

fd = recvfile(sfd[0]); /* all OK, receive fd */

} else {

errno = status; /* error, set errno value from child's errno */
fd = -1;

close(sfd[0]); /* close the stream pipe */

return(fd);

The program that is execed by the child is the one that does the open system call. Its
pathname was specified as . /openfile in the function shown above.

/*
openfile <socket-descriptor-number> <filename> <mode>

*

* Open the specified file using the specified mode.

* Return the open file descriptor on the specified socket descriptor

• (which the invoker has to set up before exec'ing us).

* We exit() with a value of 0 if all is OK, otherwise we pass back the

* errno value as our exit status.
*/

main(argc, argv)

int argc;

char *argv[];

int fd;

extern int errno;

extern char *pname;

pname = argv[0];

if (argc != 4)

err_guit("openfile <sockfd#> <filename> <mode>");

/*
* Open the file.
*1

if ((fd = open(argv[2], atoi(argv[3]))) < 0)

exit((errno > 0) ? errno : 255);

Apple Inc.
Ex. 1013 - Page 150

Section 6.10 Passing File Descriptors 311

/*
* And pass the descriptor back to caller.
*/

exit(sendfile(atoi(argv[1]), fd));

Both of the programs above use the following two functions to send and receive the
file descriptor being passed. We have, coded the actual calls to sendmsg and r ecvmsg
as separate functions, to allow their inclusion into other programs that might want to pass
descriptors.

/*
* Pass a file descriptor to another process.

* Return 0 if OK, otherwise return the errno value from the

* sendmsg() system call.
*/

#include

#include

#include

<sys/types.h>

<sys/socket.h>

<sys/uio.h>

int

sendfile (sockfd, fd)

sockfd;

fd;

int

int

struct iovec

struct msghdr

extern int

/* UNIX domain socket to pass descriptor on */

/* the actual fd value to pass */

iov[1];

ms g;

errno;

iov[0].iov_base = (char *) 0;

iov[0].iovlen = 0;

msg.msg_iov

msg.msgiovlen

msg.msg_name

msg.msg_accrights

msg.msgaccrightslen = sizeof(fd);

= iov;

= 1;

= (caddr_t) 0;

= (caddr t) &fd;

/* no data to send */

/* address of descriptor

/* pass 1 descriptor */

if (sendmsg(sockfd, &msg, 0) < 0)

return((errno > 0) ? errno : 255);

return(0);

/*

* Receive a file descriptor from another process.

* Return the file descriptor if OK, otherwise return -1.
*/

#include

#include

#include

<sys/types.h>

<sys/socket.h>

<sys/uio.h>

Apple Inc.
Ex. 1013 - Page 151

312 Berkeley Sockets Chapter 6

int

recvfile(sockfd)

int sockfd;

}

/* UNIX domain socket to receive descriptor on */

int fd;

struct iovec iov[1];

struct msghdr msg;

iov[0].iov_base = (char *) 0; /* no data to receive */

iov[0].iovlen = 0;

msg.msg_iov = iov;

msg.msgiovlen = 1;

msg.msg_name = (caddr_t) 0;

msg.msg_accrights = (caddr_t) &fd; /* address of descriptor */

msg.msgaccrightslen = sizeof(fd); /* receive 1 descriptor */

if (recvmsg(sockfd, &msg, 0) < 0)

return(-1);

return(fd);

6.11 Socket Options

There are a multitude of ways to set options that affect a socket.

• the setsockopt system call

• the fcntl system call

• the ioct 1 system call

We mentioned the fcntl and ioct 1 system calls in Section 2.3, and describe their
effect on sockets later in this section.

getsockopt and setsockopt System Calls

These two system calls apply only to sockets.

#include <sys/types.h>

#include <sys/socket.h>

int getsockopt (int sockfd, int level, int optname, char opm4 int *op"

int setsockopt (int sockfd, int level, int optname, char *optvcd, int optle

Apple Inc.
Ex. 1013 - Page 152

Section 6.11 Socket Options 313

The sockfd argument must refer to an open socket descriptor. The level specifies who in
the system is to interpret the option: the general socket code, the TCP/IP code, or the
XNS code. Some options are protocol-specific and others are applicable to all sockets.

The optval argument is a pointer to a user variable from which an option value is set
by setsockopt, or into which an option value is returned by get sockopt.

Although this argument is type coerced into a `char *', none of the supported options
are character values. The "data type" column in Figure 6.14 shows the data type of
what the optval pointer must point to for each option. The optlen argument to
setsockopt specifies the size of the variable. The optlen argument to getsockopt

is a value—result parameter that we set to the size of the optval variable before the call.

This size is then set by the system on return to specify the amount of data stored into the
optval variable. This ability to handle variable-length options is only used by a single

option currently: IP_OPTIONS. All the other options described below pass a fixed
amount of data between the kernel and the user process.

Figure 6.14 provides a summary of all options that can be queried by getsockopt

or set by setsockopt. There are two types of options: binary options that enable or

disable a certain feature (flags), and options that fetch and return specific values that we

can either set or examine (values). The column labeled "flag" specifies if the option is a

flag option. When calling getsockopt for these flag options, optval is an integer. The

value returned in optval is zero if the option is disabled, or nonzero if the option is

enabled. Similarly, setsockopt requires a nonzero optval to turn the option on, and a

zero value to turn the option off. If the "flag" column does not contain a "•" then the

option is used to pass a value of the specified data type between the user process and the

system.

ptlen);

tlen);

Apple Inc.
Ex. 1013 - Page 153

314 Berkeley Sockets Chapter 6

level optname get set Description flag Data type

IPPROTO_IP IP_OPTIONS • • options in IP header
---::

IPPROTO_TCP TCP_MAXSEG • get TCP maximum segment size int

TCP_NODELAY • • don't delay send to coalesce packets • int

NSPROTO_SPP SO_HEADERS_ON_INPUT • • pass SPP header on input • int

SO_HEADERS_ON_OUTPUT • • pass SPP header on output • int

SO_DEFAULT_HEADERS • • set default SPP header for output struct sphdr

SO_LAST_HEADER • fetch last SPP header struct sphdr

SO MTU • • SPP MTU value u_short

NSPROTOPE SO_SEQN0 • generate unique PEX ID long

NSPROTO_RAW SO_HEADERS_ON_INPUT • • pass IDP header on input • int

So_HEADERS_ON_OUTPUT • • pass IDP header on output • int

SO_DEFAULT_HEADERS • • set default IDP header for output struct idp

SO_ALL_PACKETS • • pass all IDP packets to user • int

SO NSIP ROUTE • specify IP route for XNS struct nsip_req

SOL_SOCKET SO_BROADCAST • • permit sending of broadcast msgs • int

SO_DEBUG • • turn on debugging info recording • int

SO_DONTROUTE • • just use interface addresses • int

SO_ERROR • get error status and clear int

SO_KEEPALIVE • • keep connections alive • int

SO_LINGER • • linger on close if data present struct linger

SO_OOBINLINE • • leave received 00B data in-line • int

SO_RCVBUF • • receive buffer size int

SO_SNDBUF • • send buffer size int

SO_RCVLOWAT • • receive low-water mark int

SOSNDLOWAT • • send low-water mark int

SO_RCVTIME0 • • receive timeout int

SO_SNDTIME0 • • send timeout int

SO_REUSEADDR • • allow local address reuse • int

SO_TYPE • get socket type int

SO_USELOOPBACK • • bypass hardware when possible • int

Figure 6.14 Socket options for get sockopt and set sockopt.

Let's first show a simple program that both fetches an option and sets an option.

* Example of getsockopt() and setsockopt().
*/

#include <sys/types.h>

#include <sys/socket.h> /* for SOL_SOCKET and SO_xx values */

#include <netinet/in.h> /* for IPPROTO_TCP value */

#include <netinet/tcp.h> /* for TCP MAXSEG value */

main()

{

int sockfd, maxseg, sendbuff, optlen;

if ((sockfd = socket(AFINET, SOCK STREAM, 0)) < 0)

Apple Inc.
Ex. 1013 - Page 154

Section 6.11 Socket Options 315

errsys("can't create socket");

/*

* Fetch and print the TCP maximum segment size.
*/

optlen = sizeof(maxseg);

if (getsockopt(sockfd, IPPROTO_TCP, TCPMAXSEG, (char *) &maxseg,

&optlen) < 0)

err_sys("TCPMAXSEG getsockopt error");

printf("TCP maxseg = %d\n", maxseg);

/*
* Set the send buffer size, then fetch it and print its value.
*

sendbuff = 16384; /* just some number for example purposes */

if (setsockopt(sockfd, SOL_SOCKET, SOSNDBUF, (char *) &sendbuff,

sizeof(sendbuff)) < 0)

errsys("SOSNDBUF setsockopt error");

optlen = sizeof(sendbuff);

if (getsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, (char *) &sendbuff,

&optlen) < 0)

err_sys("SO_SNDBUF getsockopt error");

printf("send buffer size = 96d\n", sendbuff);

If we compile and execute this program, its output is

TCP maxseg = 512

send buffer size = 16384

The most confusing thing about the getsockopt and setsockopt system calls is the
handling of the final argument.

The following list gives additional details on the options that affect a socket. When
we say allows us to specify we are referring to the setsockopt system call. We say
when requested to refer to the getsockopt system call. When a given option can only
be used with a specific type of socket, the socket type (such as SOCK_DGRAM) is listed in
parentheses first. For example, the TCP MAXSEG option only applies to an Internet
SOCK STREAM socket.

IP OPTIONS (Internet SOCK STREAM or SOCK DGRAM.) Allows us to set
specific options in the IP header. Requires intimate knowledge of
the IP header. See Section 7.8 of Comer [1988] for a description of
the possible IP options. We'll use this option in our remote com-
mand server in Section 14.3 and our remote login server in Sec-
tion 15.12. Both of these servers check for client connections that
specify IP options, and if encountered, record the fact in the system
log and disable the options.

Apple Inc.
Ex. 1013 - Page 155

316 Berkeley Sockets Chapter 6

TCP MAXSEG (Internet SOCK STREAM.) Returns the maximum segment size in
use for the socket. The typical value for a 4.3BSD socket using an
Ethernet is 1024 bytes. Note that the value for this option can only
be examined, it cannot be set by us, since the system decides what
size to use.

Note in the example program shown above that the value printed for
this option was 512 and not 1024. This is because the socket was
not yet connected, so TCP does not know the type of interface being
used. It defaults the size to 512 until the socket is connected when it
decides on the size to use.

TCP NODELAY (Internet SOCK_ STREAM.) When TCP is being used for a remote
login (which we discuss in Chapter 15) there will be many small
data packets sent from the client's system to the server. Each packet
can contain a single character that the client enters, which is sent to
the server for echoing and processing. On a fast LAN these small
packets are not a problem, since the capacity of the network (its
bandwidth) is usually adequate to handle all the packets. On a
slower WAN, however, it is desirable to reduce the number of these
small packets, to reduce the traffic on the network. The scheme
used by 4.3BSD is to allow only a single small packet to be out-
standing on a given TCP connection at any time. (For additional
details on the 4.3BSD TCP output algorithms, see Section 12.7 of
Leffler et al. [1989].) On a fast LAN this isn't a problem since the
round-trip time for a 1-character packet is usually less than the time
between a user entering successive characters on a terminal. On a
slower WAN, what happens is the client's TCP buffers input charac-
ters until the previous small packet is acknowledged. One problem,
however, is if the client is sending small packets that are not key-
strokes being entered on a terminal to be echoed by the server. This
can happen if the client is sending input from a mouse, for example,
on a windowed terminal. The client's input can consist of small
packets that are not echoed by the server. The TCP_NODELAY
option is used for these clients, to defeat the buffering algorithm
described above, to allow the client's TCP to send small packets as
soon as possible.

SO HEADERS ON INPUT
(XNS SOCK DGRAM.) When set, the first 30 bytes of the data
returned by the read and receive system calls is the IDP header.

(XNS SOCK_STREAM or SOCK_SEQPACKET.) When set, the first
12 bytes of the data returned by the read and receive system calls is
the SPP header.

Apple Inc.
Ex. 1013 - Page 156

Section 6.11 Socket Options 317

SO HEADERS ON OUTPUT
(XNS SOCK DGRAM.) When set, the first 30 bytes of the data
passed to the send and write system calls must be the IDP header.

(XNS SOCK_STREAM or SOCK_SEQPACKET.) When set, the first
12 bytes of the data passed to the send and write system calls must
be the SPP header.

SO DEFAULT HEADERS
This option provides a way for a user process to set and examine the
XNS bridge fields that we described in Section 5.3.

(XNS SOCK DGRAM.) Allows us to specify a default IDP header for
outgoing packets. The actual variable pointed to by the optval argu-
ment must be a struct idp (the structure defining an IDP
header). The only value used by the system from this header is the
packet type field. When requested, the system returns its default
IDP header, with the following fields filled in: packet type, local
address, and foreign address. We'll show an example using this
option in Section 11.3.

(XNS SOCK STREAM or SOCK_ SEQPACKET.) Allows us to
specify a default SPP header for outgoing packets. The actual vari-
able pointed to by the optval argument must be a struct sphdr
(the structure defining an SPP header). The only values used by the
system from this header are the End-of-Message bit and the Data-
stream Type. When requested, the system returns its default SPP
header.

SO LAST HEADER

SO MTU

(XNS SOCK STREAM or SOCK SEQPACKET.) When requested,
returns the most recent SPP header received. The actual variable
pointed to by the optval argument must be a struct sphdr (the
structure defining an SPP header).

(XNS SOCK STREAM or SOCK SEQPACKET.) By default the SPP
MTU is 534 bytes, the Xerox standard. This allows a maximum
IDP packet size of 576 bytes, allowing 30 bytes for the IDP header
and 12 bytes for the SPP header. Note that any value other than this
default is frowned on by an actual Xerox system. This option
applies only to SPP sockets, since the BSD implementation of XNS
allows IDP packets up to the maximum size of the underlying inter-
face. For an Ethernet, this maximum IDP packet size is 1500 bytes.
Again, however, these larger than normal IDP packets can create
problems with true Xerox systems.

Apple Inc.
Ex. 1013 - Page 157

318 Berkeley Sockets Chapter 6

SO SEQNO

SO ALL PACKETS

SO NSIP ROUTE

(XNS SOCK_ DGRAM.) The XNS Packet Exchange protocol requires
a unique 32-bit ID field, called the transaction ID, with every
packet. This ID should be unique among different processes on the
same system. This socket option allows the caller to obtain a unique
value. The kernel allocates these IDs to any requesting process,
incrementing the ID each time a process needs one. Furtheiniore,
the kernel initializes its starting ID whenever the system is rebooted,
from a random source (usually the time-of-day clock). This way
individual processes can obtain unique IDs and, if the system is
taken down and rebooted quickly (while a packet is possibly being
retransmitted by some other host on the network), the IDs provided
after rebooting are different from those used earlier. Note that the
value for this option can only be examined, it cannot be set by us.

(XNS SOCK DGRAM.) When set, prevents the system from process-
ing Error Protocol packets and SPP packets. Instead, these packets
are passed to us.

(XNS SOCK DGRAM.) NSIP is an option that can be enabled when
the 4.3BSD kernel is configured. If enabled, it allows XNS packets
to be sent to another 4.3BSD system, encapsulated in Internet IP
datagrams. This allows us, for example, to share a single data link
on a WAN between Internet applications and XNS applications.
Using this feature any two cooperating systems that are connected
on an Internet using the TCP/IP protocols can also exchange XNS
packets. This socket option allows us to specify an Internet address
to be associated with an XNS address. We won't discuss this option
any further in this text.

SO BROADCAST (Internet or XNS SOCK DGRAM.) Enables or disables the ability of
the process to send broadcast messages. Broadcasting is only pro-
vided for datagram sockets and only on networks that support the
concept of a broadcast message (the kernel does not provide a simu-
lation of broadcasting through software).

SO DEBUG Enables or disables low-level debugging within the kernel. This
option allows the kernel to maintain a history of the recent packets
that have been received or sent. With adequate knowledge of the
kernel, this history can either be examined (by looking at kernel
memory with a debugger) or printed on the console.

s 0 DONTROUTE Specifies that outgoing messages are to bypass the normal routing
mechanisms of the underlying protocol. Instead, the message is
directed to the appropriate network interface, as specified by the net-
work portion of the destination address. The equivalent of this

Apple Inc.
Ex. 1013 - Page 158

Section 6.11 Socket Options 319

option can also be applied to individual datagrams using the
MSG DONTROUTE flag with the send, sendto, or sendmsg sys-

tem calls.

SO ERROR Returns to the caller the current contents of the variable
so error, which is defined in <sys/socketvar.h>. This
variable holds the standard Unix error numbers (the same values
found in the Unix errno variable) for the socket. This error vari-
able is then cleared by the kernel.

SO KEEPALIVE (Internet or XNS SOCK STREAM.) Enables periodic transmissions
on a connected socket, when no other data is being exchanged. If
the other end does not respond to these messages, the connection is
considered broken and the so error variable is set to
ETIMEDOUT.

SO LINGER

SO OOBINLINE

(Internet SOCK STREAM.) This option determines what to do when
unsent messages exist for a socket when the process executes a
close on the socket. By default, the close returns immediately
and the system attempts to deliver any unsent data. But if the linger
option is set for the socket, the action taken depends on the linger
time specified by the user. This option requires the following struc-
ture to be passed between the user process and the kernel. It is
defined in <sys/socket . h>.

struct linger {

int 1 onoff; /* zero=off, nonzero=on */

int 1 linger; /* linger time, in seconds */
} ;

If the linger time is specified as zero, any remaining data to be sent
is discarded when the socket is closed. If the linger time is nonzero,
the system attempts to deliver any unsent data. Currently the actual
value of a nonzero linger time is ignored, despite the comment in the
structure definition.

(Internet SOCK STREAM.) When set, specifies that out-of-band data
also be placed in the normal input queue (i.e., in-line). When the
out-of-band data is placed in-line, the MSG___00B flag to the receive
system calls is not needed to read the out-of-band data. This option
applies only to TCP sockets, since the XNS SPP protocol specifies
that out-of-band data also be placed in the normal input queue by
default. We discuss out-of-band data in more detail in Section 6.14.

SO RCVBUF and SO SNDBUF

Specifies the size of the receive queue buffer or the send queue
buffer for the socket. These options are only needed when we
would like more buffer space than is provided by default. These
options are not required for these cases, but they can improve

Apple Inc.
Ex. 1013 - Page 159

320 Berkeley Sockets Chapter 6

performance. For example, the BSD rdump command, which
writes 32768-byte buffers using TCP, sets its SO_SNDBUF option
value to 32768, overriding the default TCP send buffer of 4096
bytes. Similarly, the /etc/rmt daemon, which receives these
buffers and writes them to tape, sets its SO_RCVBUF option to
32768 also. With 4.3BSD there is an upper limit of around 52,000
bytes for either of these buffer sizes. We'll see one use of these
options when we look at the 4.3BSD remote tape server in Chap-
ter 16.

SO RCVLOWAT and SO SNDLOWAT
These two options specify the sizes of the receive and send low-
water marks. These values are currently unused.

SO RCVTIMEO and SO SNDTIMEO
These two options specify the receive and send timeout values.
These values are not currently used for anything. Note that this does
not imply that the reliable protocols do not use timers for detecting
lost packets and lost connections. Timers are indeed used by TCP
and SPP, for example, but these two socket options don't currently
affect these timers.

SO REUSEADDR (Internet SOCK STREAM or SOCK DGRAM.) Instructs the system to
allow local addresses, the local-process portion of an association
5-tuple, to be reused. Noimally the system does not allow a local
address to be reused. When connect is called for the socket, the
system still requires that the complete association be unique, as dis-
cussed earlier. We mentioned this requirement in Section 5.2 when
discussing the use of TCP port numbers by FTP.

SO TYPE Returns the socket type. The integer value returned is a value such
as SOCK STREAM or SOCK DGRAM. This option is typically used
by a process that inherits a socket when it is started.

SO USELOOPBACK
This option is unused.

fcntl System Call

This system call affects an open file, referenced by the fd argument.

#include <fcntl.h>

int fcntl (int fd, int cmd, int arg) ;

As mentioned in Section 2.3, the cmd argument specifies the operation to be performed.
Regarding sockets we are interested in the cmd values of F_GETOWN, F_SETOWN,
F GETFL, and F SETFL.

Apple Inc.
Ex. 1013 - Page 160

Section 6.11 Socket Options 321

The F SETOWN command sets either the process ID or the process group ID to
receive the SIGIO or S I GURG signals for the socket associated with fd. Every socket
has an associated process group number, similar to the terminal process group number
that we discussed in Chapter 2. For a socket, its process group number is initialized to
zero and can be set by calling fcntl with the F SETOWN command. (It can also be set
by both the F T_OSE TOWN and SIOCSPGRP ioctls. As we said, there are many ways
to set options that affect a socket.) The arg value for the F_SE TOWN command can be
either a positive integer, specifying a process ID, or a negative integer, specifying a pro-
cess group ID. The F_GETOWN command returns, as the return value from the fcntl

system call, either the process ID (a positive return value) or the process group ID (a
negative value other than —1) associated with the socket. The difference between speci-
fying a process or a process group to receive the signal is that the former causes only a
single process to receive the signal, while the latter causes all processes in the process
group (perhaps more than one) to receive the signal. This fcntl command is only
available for terminals and sockets. We show an example of the F_SETOWN command
in Section 6.12.

A file's flag bits are set and examined with the F SETFL and F_GETFL commands.
Figure 6.15 shows the arg values that can be used with the F_GETFL and F_SETFL

commands.

arg Meaning

FAPPEND

FASYNC

FCREAT

FEXCL

FNDELAY

FTRUNC

append on each write
signal process group when data ready
create if nonexistent
error if already created
nonblocking I/O
truncate to zero length

Figure 6.15 fcntl options for F_GETFL and F_SETFL commands.

Of these five values, only the following two are of interest to us now.

FNDELAY This option designates the socket as "nonblocking." An I/O request that
cannot complete on a nonblocking socket is not done. Instead, return is
made to the caller immediately and the global errno is set to
EWOULDBLOCK.

This option affects the following system calls: accept, connect, read,

ready, recv, recvfrom, recvmsg, send, sendto, sendmsg,

write, and writev. Note that a connect on a connectionless socket
cannot block, since all the system does is record the peer address that is to
be used for future output. On a connection-oriented socket, however, the
connect can take a while to execute, since it usually involves the
exchange of actual information with the peer system. In this case a non-
blocking socket returns immediately from the connect system call, but
the errno value is set to EINPROGRESS instead of EWOULDBLOCK.

Apple Inc.
Ex. 1013 - Page 161

322 Berkeley Sockets Chapter 6

Note also that the output system calls (the five starting with send in the list
above) do partial writes on a nonblocking socket when it makes sense (e.g.,
if the socket is a stream socket). When the socket has record boundaries
associated with it (e.g., a datagram socket), if the entire record cannot be
written, nothing is written.

FASYNC This option allows the receipt of asynchronous I/O signals. The SIGIO
signal is sent to the process group of the socket when data is available to be
read. We'll cover asynchronous I/O in the next section.

ioctl System Call

This system call affects an open file, referenced by the fd argument. The intent is for
oct is to manipulate device options.

#include <sys/ioctl.h>

int ioctl (int fd, unsigned long request, char *arg) ;

System V defines the second argument to be an int instead of an unsigned long,

but that is not a problem, since the header file <sys/ioctl.h> defines the constants
that should be used for this argument.

We can divide the requests into four categories.

• file operations
• socket operations
• routing operations
• interface operations

Figure 6.16 lists the requests provided by 4.3BSD, along with the data type of what the
arg address must point to. (Notice that none of the requests use the character-pointer
data type specified in the function prototype.) We now give a brief description of these
options.

FIOCLEX Sets the close-on-exec flag for the file descriptor. Similar to the
F SETFD command of fcntl (with an arg of one).

FIONCLEX Clears the close-on-exec flag for the file descriptor. Similar to the
F SETFD command of fcntl (with an arg of zero).

FIONBIO Set or clear the nonblocking I/O flag for the file. This flag accom-
plishes the same affect as the FNDELAY argument for the F_SETFL

command to the fcntl system call. Note one difference between the
two system calls, however: with the F_SETFL command of fcntl

we must specify all the flag values for the file each time we want to

Apple Inc.
Ex. 1013 - Page 162

Section 6.11 Socket Options 323

Category request Description Data type

file F IOCLEX

F IONCLEX

FIONBIO

FIOASYNC

FIONREAD

FIOSETOWN

FIOGETOWN

set close-on-exec for fd
clear close-on-exec for fd
set/clear nonblocking i/o
set/clear asynchronous i/o
get # bytes to read
set owner
get owner

int
int
int
int
int

socket SIOCSHIWAT

SIOCGHIWAT

S IOCSLOWAT

SIOCGLOWAT
SIOCATMARK
SIOCSPGRP
SIOCGPGRP

set high-water mark
get high-water mark
set low-water mark
get low-water mark
at out-of-band mark ?
set process group
get process group

int
int
int
int
int
int
int

routing SIOCADDRT
SIOCDELRT

add route
delete route

struct rtentry
struct rtentry

interface SIOCSIFADDR
SIOCGIFADDR

SIOCSIFFLAGS

SIOCGIFFLAGS

SIOCGIFCONF

SIOCSIFDSTADDR

SIOCGIFDSTADDR

SIOCGIFBRDADDR

SIOCSIFBRDADDR

SIOCGIFNETMASK

SIOCSIFNETMASK

SIOCGIFMETRIC

SIOCSIFMETRIC

SIOCSARP

S 1 OCGARP

SIOCDARP

set ifnet address
get ifnet address
set ifnet flags
get ifnet flags
get ifnet list
set point-to-point address
get point-to-point address
get broadcast addr
set broadcast addr
get net addr mask
set net addr mask
get IF metric
set IF metric
set ARP entry
get ARP entry
delete ARP entry

struct ifreq
struct ifreq

struct ifreq

struct ifreq

struct ifconf

struct ifreq
st ruct ifreq
struct ifreq

struct ifreq

struct ifreq

struct ifreq

struct ifreq

struct ifreq
struct arpreq
struct arpreq
struct arpreq

FIOASYNC

FIONREAD

FIOSETOWN

Figure 6.16 ioct 1 options for networking.

turn a specific flag on or off. With this ioct 1 call, however, we can
turn a flag on or off, by specifying a zero or nonzero value for arg.

Set or clear the flag that allows the receipt of asynchronous I/O signals
(S I G 0). This flag accomplishes the same affect as the FASYNC argu-
ment for the F SETFL command to the f cnt 1 system call.

Returns in arg the number of bytes available to read from the file
descriptor. This feature works for files, pipes, terminals and sockets.

Set either the process ID or the process group ID to receive the S I GIO

and S I GURG signals. This request works only for terminals and sock-
ets. This command is identical to an f cnt 1 of F SE TOWN.

Apple Inc.
Ex. 1013 - Page 163

324 Berkeley Sockets Chapter 6

FIOGETOWN

SIOCSHIWAT

SIOCGHIWAT

SIOCSLOWAT

SIOCGLOWAT

SIOCATMARK

Get either the process ID or the process group ID that is set to receive
the SIGIO and SIGURG signals. This request works only for termi-
nals and sockets. This command is identical to an fcntl of

F GETOWN.

Set the high-water mark. This command is not currently implemented,

Get the high-water mark. This command is not currently implemented.

Set the low-water mark. This command is not currently implemented.

Get the low-water mark. This command is not currently implemented.

Return a zero or nonzero value, depending whether the specified
socket's read pointer is currently at the out-of-band mark. We describe
out-of-band data in more detail in Section 6.14.

SIOCSPGRP Equivalent to FIOSETOWN for a socket.

S IOCGPGRP Equivalent to FIOGETOWN for a socket.

The following requests are for lower level operations, usually relating to the actual net-
work interface being used. We briefly mention their purpose. The interested reader
should consult both of the references by Leffler et al. [1986a, 1986b] for additional infor-
mation. Several of these commands are used by the network configuration program,
ifconfig, which is described in Section 8 of the 4.3BSD Programmer's Manual. This
program is usually invoked on system startup to initialize all the network interfaces on
the system. Some of the commands related to routing are used by the BSD routing dae-
mon, routed, which is also described in Section 8 of the BSD manual.

SIOCADDRT Add an entry to the interface routing table.

S IOCDELRT Delete an entry from the interface routing table.

SIOCSIFADDR

SIOCGIFADDR

SIOCSIFFLAGS

Set the interface address. Additionally the initialization function for
the interface is also called.

Get the interface address-.

Set the interface flags.

SIOCSIFFLAGS

Get the interface flags. The flags indicate, for example, if the interface
is a point-to-point interface, if the interface supports broadcast address-
ing, if the interface is running, and so on.

SIOCGIFCONF

Get the interface configuration list. This command returns a list con-
taining one i f req structure for every interface currently is use by the

Apple Inc.
Ex. 1013 - Page 164

Section 6.11 Socket Options 325

system. This command allows a user program to determine at run time,
the interfaces on the system. A program can then go through this list
and determine which interfaces it is interested in (all interfaces that are
point-to-point Internet interfaces, for example).

SIOCSIFDSTADDR

Set the point-to-point interface address.

SIOCGIFDSTADDR

Get the point-to-point interface address.

SIOCSIFBRDADDR

Set the broadcast address for the interface.

SIOCSIFBRDADDR

Get the broadcast address for the interface.

S I OCS IFNETMASK

Set the mask for the network portion of the interface address. For
Internet addresses the network mask defines the netid portion of the
32-bit address. If this mask contains more bits that would normally be
indicated by the class of Internet address (class A, B, or C) then sub-
nets are being used. Refer to Section 5.2 for additional details on Inter-
net addresses.

SIOCGIFNETMASK

Get the interface network mask for an Internet address.

SIOCGIFMETRIC

Get the interface routing metric. The routing metric is stored in the
kernel for each interface, but is used by the routing protocol, the
routed daemon.

SIOCSIFMETRIC

Set the interface routing metric. The 4.3BSD kernel does not make
policy decisions for routing. Instead, this is left to a user process,
which then uses this ioctl to modify the kernel's routing tables.
Refer to Section 11.5 of Leffler et al. [1989] for additional details.

S I OCSARP Set an entry in the Internet ARP (Address Resolution Protocol) table.
The structure arpreq is defined in <net / f_arp . h>. Refer to the
entry for arp(4P) in Section 4 of the BSD manual for additional infor-
mation.

SIOCGARP Get an entry from the Internet ARP entry. The caller specifies an Inter-
net address and this system call returns the corresponding Ethernet
address.

S I OCDARP Delete an entry from the Internet ARP table. The caller specifies the
Internet address for the entry to be deleted.

Apple Inc.
Ex. 1013 - Page 165

326 Berkeley Sockets Chapter 6

6.12 Asynchronous I/O

Asynchronous I/O allows the process to tell the kernel to notify it when a specified
descriptor is ready for I/O. It is also called signal-driven I/O. The notification from the
kernel to the user process takes place with a signal, the S I G I0 signal.

To do asynchronous I/O, a process must perfoini the following three steps:

1. The process must establish a handler for the SIGIO I signal. This is done by call-
ing the signal system call, as described in Section 2.4.

2. The process must set the process ID or the process group ID to receive the
SIGIO signals. This is done with the fcntl system call, with the F_SETOWN
command, as described in Section 6.11.

3. The process must enable asynchronous I/O using the fcntl system call, with
the F SETFL command and the FASYNC argument.

To show an example of asynchronous I/O, let's first show a simple program that
copies standard input to standard output.

/*
* Copy standard input to standard output.
*/

#define BUFFSIZE 4096

main()

int

char

n;

buff[BUFFSIZE];

while ((n = read(0, buff, BUFFSIZE)) > 0)

if (write(1, buff, n) != n)

err_sys("write error");

if (n < 0)

err_sys("read error");

exit(0);

We now change this program to do the three steps listed, using asynchronous I/O.

/*
* Copy standard input to standard output, using asynchronous I/O.
*/

#include <signal.h>

#include <fcntl.h>

#define BUFFSIZE 4096

Apple Inc.
Ex. 1013 - Page 166

Section 6.12 Asynchronous I/O 327

int sigflag;

main()

int n;

char buff[BUFFSIZE];

int sigiofunc();

signal(SIGIO, sigiofunc);

if (fcnt1(0, F_SETOWN, getpid()) < 0)

errsys("FSETOWN error");

if (fcntl(0, F_SETFL, FASYNC) < 0)

err_sys("F_SETFL FASYNC error");

for (; ;) {

sigblock(sigmask(SIGIO));

while (sigflag == 0)
sigpause(0);

int

sigiofunc()

/* wait for a signal */

/*

* We're here if (sigflag != 0). Also, we know that the

* SIGIO signal is currently blocked.
*

if ((n = read(0, buff, BUFFSIZE)) > 0) 1

if (write(1, buff, n) != n)

err_sys("write error");

else if (n < 0)

err_sys("read error");

else if (n == 0)

• exit(0); /* EOF */

sigflag = 0; /* turn off our flag */

sigsetmask(0); /* and reenable signals */

sigflag = 1; /* just set flag and return */

/* the 4.3BSD signal facilities leave this handler enabled

for any further SIGIO signals. */

This interrupt driven example works only for terminals (and would work for a socket
too, if the appropriate code were added to create a socket) because of the restrictions of
the 4.3BSD F SETOWN command.

Apple Inc.
Ex. 1013 - Page 167

328 Berkeley Sockets Chapter 6

This example also shows the use of the reliable signals provided by 4.3BSD, which
we described in Section 2.4.

Since a process can have only one signal handler for a given signal, if asynchronous
I/O is enabled for more than one descriptor, the process doesn't know, when the signal
occurs, which descriptor is ready for I/O. To do this, the select system call is used,
which we describe in the next section.

6.13 Input/Output Multiplexing

Consider a process that reads input from more than one source. An actual example is the
4.3BSD line printer spooler that we cover in Section 13.2. It opens two sockets, a Unix
stream socket to receive print requests from processes on the same host, and a TCP
socket to receive print requests from processes on other hosts. Since it doesn't know
when requests will arrive on the two sockets, it can't start a read on one socket, as it
could block while waiting for a request on that socket, and in the mean time a request can
arrive on the other socket. There are a few different techniques available to handle this
multiplexing of different I/O channels.

1. It can set both sockets to nonblocking, using either the FNDELAY flag to fcntl
or the F I ONB I0 request to ioct 1. But the process has to execute a loop that
reads from each socket, and if nothing is available to read, wait some amount of
time before trying the reads again. This is called polling. The software polls
each socket at some interval (every second, perhaps) and if no data is available
to read, the process waits by calling the sleep function in the standard C
library. Polling can waste computer resources, since most of the time there is no
work to be done.

2. The process can fork one child process to handle each I/O annel. In this
example it spawns two processes, one to read from the Unix socket and one to
read from the TCP socket. Each child process calls read and blocks until data
is available. When a child returns from its read it passes the data to the parent
process using some form of IPC (that the parent must set up before spawning its
children). Any of the techniques that we discussed in Chapter 3 can be used:
pipes, FIFOs, message queues, shared memory with a semaphore, or another
socket can also be used.

3. Asynchronous I/O can be used. The problem with this method is that signals are
expensive to catch [Leffler et al. 1989]. Also, if more than one descriptor has
been enabled for asynchronous I/O, the occurrence of the SIGIO signal doesn't
tell us which descriptor is ready for I/O. Finally, as mentioned in Section 6.12,
this technique is only available for terminals and sockets under 4.3BSD.

Apple Inc.
Ex. 1013 - Page 168

Section 6.13 Input/Output Multiplexing 329

4. Another technique is provided by 4.3BSD with its select system call, which
we describe below. This system call allows the user process to instruct the ker-
nel to wait for any one of multiple events to occur and to wake up the process
only when one of these events occurs. In this example the kernel can be
instructed to notify the process only when data is available to be read from either
of the two sockets that we're interested in.

The prototype for the system call is

#include <sys/types.h>

#include <sys/time.h>

int select (int maxfdpl , fdset *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout) ;

FD ZERO (fd_set *fdset) ; /* clear

FD SET (int fd, fd set *fdset) ; /* turn

FD CLR (int fd, fd set *fdset) ; /* turn

FD ISSET (int fd, fd set *fdset) ; /* test

all bits in fdset */
the bit for fd on in fdset * /
the bit for fd off in fdset */
the bit for fd in fdset */

The structure pointed to by the timeout argument is defined in <sys /time . h> as

struct timeval {

long tv sec; /* seconds */

long tv usec; /* microseconds */

} ;

The C typedef for the fd set structure, and the definitions of the FD_xxx macros
are in the <sys /types .h> include file. The definition of this system call makes it

look more complicated than it is.
A request to select could be: tell us if any of the file descriptors in the set { 1, 4,

5 } are ready for reading, or if any of the file descriptors in the set { 2, 7 } are ready for
writing, or if any of the file descriptors in the set { 1, 4} have an exceptional condition
pending. Additionally we can tell the kernel to

• Return immediately after checking the descriptors. This is a poll. For this, the
timeout argument must point to a timeval structure, and the timer value (the
number of seconds and microseconds specified by the structure) must be zero.

• Return when one of the specified descriptors is ready for I/O, but don't wait
beyond a fixed amount of time. For this, the timeout argument must point to a
timeval structure, and its value (the number of seconds and microseconds
specified by the structure members) must be the nonzero amount of time to wait.

• Return only when one of the specified descriptors is ready for I/O—wait
indefinitely. For this, the timeout argument must be NULL. This wait can also be
interrupted by a signal.

Apple Inc.
Ex. 1013 - Page 169

330 Berkeley Sockets Chapter 6

Before describing how to specify the file descriptors to be checked, let's first show an
example where we are not interested in any file descriptors. We'll use select as a
higher precision timer than is provided by the sleep function. (sleep provides a reso-
lution of seconds, whereas select allows us to specify a resolution in microseconds.)

#include

#include

main(argc, argv)

int argc;

char *argv[];

}

<sys/types.h>

<sys/time.h>

long atoll);

static struct timeval timeout;

if (argc != 3)

err_quit("usage: timer <#seconds> <#microseconds>");

timeout.tv_sec = atol(argv[1]);

timeout.tvusec = atol(argv[2]);

if (select(0, (fd_set *) 0, (fdset *) 0, (fdset *) 0, &timeout) < 0)
err_sys("select error");

exit(0);

Here we have-specified the second, third and fourth arguments to select as NULL.
The readfds, writefds, and excepds arguments specify which file descriptors we're

interested in checking for each of the conditions—descriptor ready for reading, descrip-
tor ready for writing and exceptional condition on descriptor, respectively. There are
only two exceptional conditions currently supported.

1. The arrival of out-of-band data for a socket. We describe this in more detail in
the next section.

2. The presence of control status information to be read from the master side of a
pseudo-terminal that has been put into packet mode. We cover this in Sec-
tion 15.10.

The problem the designers of this system call had was how to specify one or more
descriptor values for each of these three arguments. The decision was made to represent
the set of all possible descriptors using an array of integers, where each bit corresponds
to a descriptor. For example, using 32-bit integers, the first element of the array
corresponds to descriptors 0 through 31, the second element of the array corresponds to
descriptors 32 through 63, and so on. All this implementation detail is hidden through
the t ypedef of the fd set structure and the FDxxx macros.

Apple Inc.
Ex. 1013 - Page 170

Section 6.13 Input/Output Multiplexing 331

For example, to define a variable of type fd_set and then turn on the indicators for
descriptors 1, 4, and 5

fd set fdvar;

FD ZER0(&fdvar); /* initialize the set - all bits off */

FD SET(1, &fdvar); /* turn on bit for fd 1 */

FD SET(4, &fdvar); /* turn on bit for fd 4 */

FD SET(5, &fdvar); /* turn on bit for fd 5 */

It is important to initialize the set, since unpredictable results can occur if the set is allo-
cated as an automatic variable and not initialized. Any of the three arguments to
select, readfds, writefds, or exceptfds, can be specified as NULL pointers, if we're not
interested in that condition.

The maxfdpl argument specifies the number of file descriptors to be tested. Its value
is the maximum file descriptor to be tested, plus one. The descriptors 0, 1, 2, up through
and including maxfdpl-1 are tested. The system allows for a potentially huge number of
descriptors to be tested (currently 256), although most BSD kernels don't allow any sin-
gle process to have that many open files. The maxfdpl argument lets us tell the system
the largest descriptor that we're interested in, which is usually much less than 256. For
example, given the example code above that turns on the indicators for descriptors 1, 4,
and 5, a maxfdpl value of 6 can be specified. The reason it is 6 and not 5 is that we're
specifying the number of descriptors, not the largest value, and descriptors start at zero.

This system call modifies the three arguments readfds, writefds, and exceptfds to
indicate which descriptors are ready for the specified condition. These three arguments
are value—result arguments. The caller should use the FD_ISSET macro to test a
specific bit in an fd_set structure. The return value from this system call indicates the
total number of descriptors that are ready. If the timer value expired before any of the
descriptors were ready, a value of zero is returned. As usual, a return value of —1 indi-
cates an error.

We have been talking about waiting for a file descriptor to become ready for I/O
(reading or writing) or to have an exceptional condition pending on it. For sockets, this
assumes that the process wants to do I/O on the socket. The select system call can
also be used to await a connection on a socket. For example, if a process is awaiting a
connect on more than one socket, if it doesn't want to execute the accept system call
and potentially block, it can issue a select instead. If a connect is received by the
system for a socket that is being waited for, the socket is then considered ready for read-
ing, and the select returns.

Apple Inc.
Ex. 1013 - Page 171

332 Berkeley Sockets Chapter 6

6.14 Out-of-Band Data

We described the notion of out-of-band data in Chapter 4, and also mentioned it in Chap-
ter 5 when we discussed the TCP and SPP protocols. Of all the protocols we've dis-
cussed so far, only TCP and SPP support out-of-band data. (Out-of-band data is only
defined for stream sockets, and the Unix domain stream sockets don't support it.) Unfor-
tunately, TCP and SPP treat out-of-band data differently. The designers of the socket
interface tried to support out-of-band data in a generic way, but there are many programs
that have been written using the TCP out-of-band data features that would be hard to port
to SPP. The BSD socket abstraction calls for the protocol to support at least one out-
standing out-of-band message at any time, and the out-of-band message must contain at
least one byte of data.

To send an out-of-band message, the MSG__00B flag must be specified for the send,
sendto, or sendrnsg system calls. SPP only allows a single byte of out-of-band data
to be sent, while TCP has no restriction.

SPP Out-of-Band Data

When out-of-band data is received by the other end, several possibilities exist about how
it is handled. Let's first consider how SPP handles it, as it is less complicated than the
TCP implementation.

• The out-of-band byte is received along with a special flag specifying that the byte
contains out-of-band data. (This flag is the Attention bit in the SPP header.)

• If the socket has a process group, the SIGURG signal is generated for the process
group of the socket.

• The socket option SO_OOBINLINE has no effect, since the Xerox protocol
specifies that the out-of-band byte is to be delivered again to the receiving pro-
cess, in its normal position in the data stream.

• The process can read the out-of-band byte by calling any one of the three receive
system calls, specifying the MSG___00B flag. Only the single out-of-band byte is
returned. If there is no out-of-band data when the MSG 00B flag is specified, an
error of EINVAL is returned by these three system calls instead.

• Regardless whether the process reads the out-of-band byte or not, the position of
the byte in the normal data stream is remembered.

• The process continues reading data from the socket. Since the system remembers
the position of the out-of-band data byte, it does not read right past it in a single
read request. That is, if there are 20 bytes from the current read position until the
out-of-band byte, and if we execute a read or receive system call specifying a
length of 30 bytes, the system only returns 20 bytes. This forced stopping at the

Apple Inc.
Ex. 1013 - Page 172

Section 6.15 Sockets and Signals 333

out-of-band mark is to allow us to execute the SIOCATMARK ioctl to deter-
mine when we're at the mark. This allows us to ignore all the data up to the out-
of-band byte. When this ioctl indicates that we're at the mark, the next byte
we read is the out-of-band byte.

TCP Out-of-Band Data

All this gets more complicated with TCP because it can send the notification that out-of-
band data exists (termed "urgent data" by TCP) before it sends the out-of-band data. In
this case, if the process executes one of the three receive system calls, an error of
EWOULDBLOCK is returned if the out-of-band data has not arrived. As with the SPP
example above, an error of EINVAL is returned by these three system calls if the
MSG_OOB flag is specified when there isn't any out-of-band data.

Still another option is provided with the TCP implementation, to allow for multiple
bytes of out-of-band data. By default, only a single byte of out-of-band data is provided,
and unlike SPP, this byte of data is not stored in the normal data stream. This data byte
can only be read by specifying the MSG_OOB flag to the receive system calls. But if we
set the SO 00BINLINE option for the socket, using the setsockopt system call
described in Section 6.11, the out-of-band data is left in the normal data stream and is
read without specifying the MSG_OOB flag. If this socket option is enabled, we must use
the SIOCATMARK ioctl to determine where in the data stream the out-of-band data
occurs. In this case, if multiple occurrences of out-of-band data are received, all the data
is left in-line (i.e., none of the data can be lost) but the mark returned by the
SIOCATMARK ioctl corresponds to the final sequence of out-of-band data that was
received. If the out-of-band data is not received in-line, it is possible to lose some inter-
mediate out-of-band data when the out-of-band data arrives faster than it is processed by
the user.

The remote login application in Chapter 15 uses TCP out-of-band data along with
the S I OCATMARK ioctl.

6.15 Sockets and Signals

We have mentioned signals in relation to sockets a few times in this chapter, and its
worth taking a moment to summarize the conditions under which signals are generated
for a socket and all the related nuances. There are three signals that can be generated for
a socket

SIGIO This signal indicates that a socket is ready for asynchronous I/O. The sig-
nal is sent to the process group of the socket. This process group is estab-
lished by calling ioctl with a command of either FIOSETOWN or
SIOCSPGRP, or by calling fcntl with a command of F SETOWN. This

Apple Inc.
Ex. 1013 - Page 173

334 Berkeley Sockets Chapter 6

signal is sent to the process group only if the process has enabled asynchro-
nous I/O on the socket by calling ioct 1 with a command of FIOASYNC

or by calling fcntl with a command of F_SETFL and an argument of
FASYNC.

SIGURG This signal indicates that an urgent condition is present on a socket. An
urgent condition is either the arrival of out-of-band data on the socket or the
presence of control status infoiiiiation to be read from the master side of a
pseudo-terminal that has been put into packet mode. (We discuss pseudo-
terminal packet mode in Section 15.10.) The signal is sent to the process
group of the socket. This process group is established by calling ioc t.1
with a command of either FIOSETOWN or SIOCSPGRP, or by calling

fcntl with a command of F SETOWN.

SIGPIPE This signal indicates that we can no longer write to a socket, pipe, or FIFO.
Nothing special\is required by a process to receive this signal, but unless the
process arranges to catch the signal, the default action is to terminate the
process. This signal is sent only to the process associated with the socket;
the process group of the socket is not used for this signal.

We mentioned in Section 2.4 that certain system calls (termed the "slow" system
calls) can be interrupted when the process handles a signal. This always has to be con-
sidered when handling signals. Although 4.3BSD tries automatically to restart certain
system calls that are interrupted, the accept and recvfrom system calls are never
restarted automatically by the kernel. Since both of these system calls can typically
block, if you are using them and handling signals, be prepared to restart the system call if
they're interrupted.

6.16 Internet Superserver

On a typical 4.3BSD system there can be many daemons in existence, just waiting for a
request to arrive. For example, there could be an Internet FTP daemon, an Internet
TELNET daemon, and Internet TFTP daemon, a remote login daemon, a remote shell
daemon, and so on. With systems before 4.3BSD, each of these services had a process
associated with it. This process was started at boot time from the /etc/rc startup file,
and each process did nearly identical startup tasks: create a socket, bind the server's
well-known address to the socket, wait for a connection, then fork. The child process
performed the service while the parent waited for another request.

The 4.3BSD release simplified this by providing an Internet superserver: the inetd
process. This daemon can be used by a server that uses either TCP or UDP. It does not
handle either the XNS or Unix domain protocols. What this daemon provides is two
features:

Apple Inc.
Ex. 1013 - Page 174

Section 6.16 Internet Sup ers erver 335

® It allows a single process (in et d) to be waiting to service multiple connection
requests, instead of one process for each potential service. This reduces the total
number of processes in the system.

® It simplifies the writing of the daemon processes to handle the requests, since
many of the start-up details are handled by inetd. This obviates the need for the
actual service process to call the daemon_start function that we developed in
Section 2.6. All the details that we said had to be handled by a typical daemon,
are done by inetd, before the actual server is invoked.

There is a price to pay for this, however, in that the inetd daemon has to execute both a
fork and an exec to invoke the actual server process, while a self-contained daemon
that did everything itself only has to execute a fork to handle each request. This addi-
tional overhead, however, is worth the simplification of the actual servers and the reduc-
tion in the total number of processes in the system.

The inetd process establishes itself as a daemon using many of the techniques that
we described in Section 2.6. It then reads the file / et c / inet d . conf to initialize
itself. This text file specifies the services that the superserver is to listen for, and what to
do when a service request arrives. Each line contains the fields shown in Figure 6.17.

Field Description

service-name
socket-type
protocol
wait-flag
login-name
server-program
server-program-arguments

must be in /etc/services
stream or dgram
must be in /etc/protocols: either tcp or udp
wait or nowait
from /etc/pas swd: typically root
full pathname to exec
maximum of 5 arguments

Figure 6.17 Fields in inetd configuration file.

Some sample lines are

ftp stream tcp nowait root /etc/ftpd ftpd
telnet stream tcp nowait root /etc/telnetd telnetd
login stream tcp nowait root /etc/rlogind rlogind
tftp dgram udp wait nobody /etc/tftpd tftpd

The actual name of the server is always passed as the first argument to a program when it
is execed.

A picture of what the daemon does is shown in Figure 6.18. Let's go through a typi-
cal scenario for this daemon.

1. On startup it reads the /etc/inetd. conf file and creates a socket of the appropri-
ate type (stream or datagram) for all the services specified in the file. Realize that

Apple Inc.
Ex. 1013 - Page 175

336 Berkeley Sockets Chapter 6

r

L

socket ()

bind ()

listen()
(if stream socket)

parent

select ()
for readability

accept ()
(if stream socket)

fork ()

close connected
socket

(if stream socket)

For each service listed in the

/etc/inetd. conf file

J

child

close all files
other than socket

V
dup socket to

fds 0, 1 and 2;
close socket

setgid ()
setuid ()

(if user not root)

exec () server

Figure 6.18 Steps performed by inetd.

Apple Inc.
Ex. 1013 - Page 176

Section 6.16 Internet Superserver 337

there is a limit to the number of servers that inetd can be waiting for, as the total
number of file descriptors used by inetd can't exceed the system's per-process
limit. On most BSD systems this limit is 64, but it can be changed by reconfiguring
the kernel.

2. As each socket is created, a bind is executed for every socket, specifying the well-
known address for the server. This TCP orUDP port number is obtained by looking
up the service-name field from the configuration file in the /etc/services file.
Some typical lines in this file, corresponding to the example lines in the configuration
file that we showed above, are

ftp 21/tcp
telnet 23/tcp
tftp 69/udp
login 513/tcp

Both the service-name (such as telnet) and the protocol from the inetd
configuration file are passed as arguments to the library function getservbyname,
to locate the correct port number for the bind. (We describe the get servbyname
function in Section 8.2.)

3. For stream sockets, a listen is executed, specifying a willingness to receive con-
nections on the socket and the queue length for incoming connections. This step is
not done for datagram sockets.

4. A select is then executed, to wait for the first socket to become ready for reading.
Recall from our description of this system call in Section 6.13, that a stream socket is
considered ready for reading when a connection request arrives for that socket. A
datagram socket is ready for reading when a datagram arrives. At this point the
inetd daemon just waits for the select system call to return.

5. When a socket is ready for reading, if it is a stream socket, an accept system call is
executed to accept the connection.

6. The inetd daemon forks and the child process handles the service request. The
child closes all the file descriptors other than the socket descriptor that it is handling
and then calls dup2 to cause the socket to be duplicated on file descriptors 0, 1, and
2. The original socket descriptor is then closed. Doing this, the only file descriptors
that are open in the child are 0, 1, and 2. It then calls getpwnam to get the password
file entry for the login-name that is specified in the /et c/ inetd . conf file. If this
entry does not have a user ID of zero (the superuser) then the child becomes the
specified user by executing the setgid and setuid system calls. (Since the
inetd process is executing with a user ID of zero, the child process inherits this user
ID across the fork, so it is able to become any user that it chooses.) The child pro-
cess now does an exec to execute the appropriate server program to handle the
request, passing the arguments that are specified in the configuration file.

Apple Inc.
Ex. 1013 - Page 177

338 Berkeley Sockets Chapter 6

7. If the socket is a stream socket, the parent process must close the connected socket.
The parent goes back and executes the select system call again, waiting for the
next socket to become ready for reading.

The scenario we've described above handles the case where the configuration file
specifies nowait for the server. This is typical for all TCP services. If another connec-
tion request arrives for the same server, it is returned to the parent process as soon as it
executes the select. The steps listed above are executed again, and another child pro-
cess handles this new service request.

Specifying the wait flag for a datagram service changes the steps done by the
parent process. First, after the fork the parent saves the process ID of the child, so it
can tell later when that specific child process terminates, by looking at the value returned
by the wait system call. Second, the parent disables the current socket from future
selects by using the FD_CLR macro to turn off the bit in the fd_s et structure that it
uses for the select. This means that the child process takes over the socket until it ter-
minates. Once the child process terminates, the parent process is notified by a SIGCLD

signal, and the parent's signal handler obtains the process ID of the terminating child and
reenables the select for the corresponding socket by using the FD SET macro. When
the child process terminates, the parent is probably waiting for its select system call to
return. As mentioned in Section 2.4, when a signal handler is invoked while a process is
executing a "slow" system call, when the signal handler returns, the system call (the
select in this case) returns with an error indication and an errno value of EINTR.

The inetd process recognizes this and executes the select system call again. But by

executing the system call again, it can now wait for the socket corresponding to the child
process that terminated. If the occurrence of the signal did not interrupt the select

system call, the parent would not be able to wait for the socket corresponding to the ter-
minating child process. When we go through the TFTP example in Chapter 12 we'll see
how a datagram server uses the wait mode.

It is worth going through a time sequence of the steps involved in the previous para-
graph, making certain we understand the interaction of the parent and child processes, the
SIGCLD signal, and how the select system call can be interrupted.

• The datagram request arrives on socket N, the select returns to the inetd pro-
cess.

• A child process is forked and execed to handle the request.

• inetd disables socket descriptor N from its fd set structure for the select.
The child process takes over the socket.

• The child handles this request and inetd handles requests for other services.

• Eventually inetd calls select and blocks.

• The child terminates, the SIGCLD signal is generated for the inetd process.

Apple Inc.
Ex. 1013 - Page 178

Section 6.17 Socket Implementation 339

• inetd handles the signal and obtains the process ID of the terminating child pro-
cess from the wait system call. It figures out which socket descriptor
corresponded to this child process and turns on the appropriate bit in its fd_set

structure.

• When the signal handler returns, the select returns to the inetd process, with
an errno of EINTR.

• inetd calls select again, this time with an fd_set structure that enables
socket descriptor N.

While the inetd daemon is set up to handle both a TCP socket with the wait flag
and a UDP socket with the nowait flag, there are no examples of this in the distributed
4.3BSD system.

The inetd daemon has several servers that are handled by the daemon itself.
These internal servers handle some of the standard Internet services.

• Echo service—RFC 862 [Postel 1983a]
• Discard service—RFC 863 [Postel 1983b]
• Character generator service—RFC 864 [Postel 1983c]
• Daytime (human readable) service—RFC 867 [Postel 1983d]
• Machine time (binary) service—RFC 868 [Postel and Harrenstien 1983]

Each of these services can be contacted using either TCP or UDP. The TCP servers for
these internal functions are handled as iterative servers if the amount of time to handle
the request is fixed (the daytime and machine time servers), or as concurrent servers if
the amount of time depends on the request (echo, discard and character generator).

Since inetd is the process that does the accept of a stream connection, the server
that is invoked by inetd has to execute the getpeername system call to obtain the
address of the client. This is done, for example, by servers that want to verify that the
client is using a reserved port. For datagram servers, the address of the client is returned
to the server when it executes one of the receive system calls.

6.17 Socket Implementation

Sockets, as implemented by 4.3BSD, are implemented within the Unix kernel. All the
system calls that we discussed in this chapter are entry points into the kernel. All the
algorithms and code to support the communication protocols (TCP, UDP, IDP, etc.) are
completely within the kernel. Adding a new protocol (such as the OSI-related standards)
requires changing the kernel. The overall networking design gets more modular with
each release (the addition of XNS support in 4.3BSD required changes, as documented in
O'Toole, Torek, and Weiser [1985], and the addition of OSI protocols in 4.4BSD will
require additional changes that weren't anticipated in earlier releases), but it still requires
kernel changes.

Apple Inc.
Ex. 1013 - Page 179

340 Berkeley Sockets Chapter 6

The actual kernel implementation separates the network system into three layers, as
shown in Figure 6.19. See Leffler et al. [1989] for additional details.

user process

socket system
call interface

A
\I

communication
protocol

(TCP/UDP/IP)

V
data link

device driver
(Ethernet)

L J

kernel

Figure 6.19 Networking implementation in 4.3BSD.

6.18 Summary

This has been a long chapter with many details. Our presentation was divided into four
parts.

• Elementary socket system calls
• Examples using only the elementary socket system calls
• Advanced socket system calls
• Advanced socket features and options

One key point is that the simple examples presented in Section 6.6 can form the basis for
any networking application. Just modify the client and server to do whatever you desire.

We'll present additional features for these examples in Chapter 8. For example, in
Section 8.2 we show a better way of obtaining the address of a remote system (instead of
hard coding it in a header file). Section 8.3 develops some functions that simplify the
standard operations that most client applications execute when opening a socket. Sec-
tion 8.4 shows how to add reliability to a datagram application.

Apple Inc.
Ex. 1013 - Page 180

Chapter 6 Exercises 341

The advanced features that we've described in this chapter are used in the examples
that follow in the text. For example, the remote login example in Chapter 15 uses socket
options, I/O multiplexing, out-of-band data and signals. You should review the later sec-
tions of this chapter as you encounter examples that use a particular feature.

Exercises

6.1 The example servers in Section 6.6 do not call the daemon_start function which we
developed in Section 2.6. Modify one of these servers to call this function. What other
changes do you have to make to the server?

6.2 Rewrite the SPP example from Section 6.6 to use the packet-stream interface,
SOCK SEQPACKET, and set the end-of-message bit at the end of every line.

6.3 What happens with the clients and servers in Section 6.6 if standard input is a binary file?

6.4 Code a function that is similar to rresvport, but for UDP sockets.

6.5 Print the value of TCP MAXSEG after the socket has been connected to a peer process. If
possible, connect to a peer process on a LAN and print value and then connect to a peer pro-
cess on a WAN and compare the results.

6.6 Write a program that copies standard input to standard output using the select system call.

6.7 Now that we have covered asynchronous I/O and I/O multiplexing, compare the use of Unix
domain stream sockets and message queues. If you had to write a server to handle multiple
client requests on a single host, which would you use and why?

6.8 Write a simple client and server to verify that a single datagram is produced by the writev

system call.

6.9 If your system supports file access across a network (such as Sun's NFS) test the Unix stream
example from Section 6.6 with the client and server on different systems. Modify the path-
name used by the client and server to be on a filesystem that is accessible to both.

Apple Inc.
Ex. 1013 - Page 181

