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1 

Introduction 

1.1 History 

Computer networks have revolutionized our use of computers. They pervade our every-
day life, from automated teller machines, to airline reservation systems, to electronic mail 
services, to electronic bulletin boards. There are many reasons for the explosive growth 
in computer networks. 

• The proliferation of personal computers and workstations during the 1980s helped 
fuel the interest and need for networks. 

• Computer networks used to be expensive and were restricted to large universities, 
government research sites, and large corporations. Technology has greatly 
reduced the cost of establishing computer networks, and networks are now found 
in organizations of every size. 

• Many computer manufacturers now package networking software as part of the 
basic operating system. Networking software is no longer regarded as an add-on 
that only a few customers will want. It is now considered as essential as a text 
editor. 

• We are in an information age and computer networks are becoming an integral 
part in the dissemination of information. 

Computer systems used to be stand-alone entities. Each computer was self-
contained and had all the peripherals and software required to do a particular job. If a 
particular feature was needed, such as line printer output, a line printer was attached to 
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2 Introduction Chapter 1 

the system. If large amounts of disk storage were needed, disks were added to the sys-
tem. What helped change this is the realization that computers and their users need to 
share information and resources. 

Information sharing can be electronic mail or file transfer. Resource sharing can 
involve accessing a peripheral on another system. Twenty years ago this type of sharing 
took place by exchanging magnetic tapes, decks of punched cards, and line printer list-
ings. Today computers can be connected together using various electronic techniques 
called networks. A network can be as simple as two personal computers connected 
together using a 1200 baud modem, or as complex as the TCP/IP Internet, which con-
nects over 150,000 systems together. The number of ways to connect a computer to a 
network are many, as are the various things we can do once connected to a network. 
Some typical network applications are 

• Exchange electronic mail with users on other computers. It is commonplace these 
days for people to communicate regularly using electronic mail. 

• Exchange files between systems. For many applications it is just as easy to dis-
tribute the application electronically, instead of mailing diskettes or magnetic 
tapes. File transfer across a network also provides faster delivery. 

• Share peripheral devices. Examples range from the sharing of line printers to the 
sharing of magnetic tape drives. A large push towards the sharing of peripheral 
devices has come from the personal computer and workstation market, since often 
the cost of a peripheral can exceed the cost of the computer. In an organization 
with many personal computers or workstations, sharing peripherals makes sense. 

• Execute a program on another computer. There are cases where some other com-
puter is better suited to run a particular program. For example, a time-sharing 
system or a workstation with good program development tools might be the best 
system on which to edit and debug a program. Another system, however, might 
be better equipped to run the program. This is often the case with programs that 
require special features, such as parallel processing or vast amounts of storage. 
The National Science Foundation (NSF) has connected the six NSF super-
computer centers using a network, allowing scientists to access these computers 
electronically. Years ago, access to facilities such as this would have required 
mailing decks of punched cards or tapes. 

• Remote login. If two computers are connected using a network, we should be 
able to login to one from the other (assuming we have an account on both sys-
tems). It is usually easier to connect computers together using a network, and 
provide a remote login application, than to connect every terminal in an organiza-
tion to every computer. 

We'll consider each of these applications in more detail in the later chapters of this text. 
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Section 1.3 OSI Model 3 

1.2 Layering 

Given a particular task that we want to solve, such as providing a way to exchange files 
between two computers that are connected with a network, we divide the task into pieces 
and solve each piece. In the end we connect the pieces back together to form the final 
solution. We could write a single monolithic system to solve the problem, but experience 
has shown that solving the problem in pieces leads to a better, and more extensible, solu-
tion. 

It is possible that part of the solution developed for a file transfer program can also 
be used for a remote printing program. Also, if we're writing the file transfer program 
assuming the computers are connected with an Ethernet, it could turn out that part of this 
program is usable for computers connected with a leased telephone line. 

In the context of networking, this is called layering. We divide the communication 
problem into pieces (layers) and let each layer concentrate on providing a particular func-
tion. Well-defined interfaces are provided between layers. 

1.3 OSI Model 

The starting point for describing the layers in a network is the International Standards 
Organization (ISO) open systems interconnection model (OSI) for computer communica-
tions. This is a 7-layer model shown in Figure 1.1. 
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Figure 1.1 OSI 7-layer model. 

The OSI model provides a detailed standard for describing a network. Most computer 
networks today are described using the OSI model. In Chapter 5, each of the networks 
we describe is shown against the OSI model. 
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4 Introduction Chapter 1 

The transport layer is important because it is the lowest of the seven layers that pro-
vides reliable data transfer between two systems. The layers above the transport layer 
can assume they have an error-free communications path. Details such as sequence con-
trol, error detection, retransmission and flow control are handled by the transport layer 
and the layers below it. 

1.4 Processes 

A fundamental entity in a computer network is a process. A process is a program that is 
being executed by the computer's operating system. When we say that two computers 
are communicating with each other, we mean that two processes, one running on each 
computer, are in communication with each other. 

We describe processes in the Unix operating system in detail in Chapter 2. In Chap-
ter 3 we describe the various forms of interprocess communication (IPC) provided by 
Unix to allow processes on a single computer to exchange infaunation. In Chapters 6 
and 7 we expand the interprocess communication to include processes on different sys-
tems that are connected by a network. 

1.5 A Simplified Model 

This book is mainly concerned with the top three layers of the OSI model—the session, 
presentation, and application layers—along with the interface between these three layers 
and the transport layer beneath them. We'll often combine these three layers into one 
and call it the process layer. Additionally, we'll usually combine the bottom two layers 
into a single layer and call it the data-link layer. We'll use a simplified, 4-layer version 
of the OSI model, illustrated in Figure 1.2. 

In Figure 1.2 we show two systems that are connected with a network. The actual 
connection between the two systems is between the two data-link layers, the solid hor-
izontal line. Although it appears to the two processes that they are communicating with 
each other (the dashed horizontal line between the two process layers), the actual data 
flows from the process layer, down to the transport layer, down to the network layer, 
down to the data-link layer, across the physical network to the other data-link layer, up 
through the network layer, then the transport layer to the other process. 

Layering leads to the definitions of protocols at each layer. Even though physical 
communication takes place at the lowest layer (the physical layer in the OSI model), 
protocols exist at every layer. The protocols that are used at a given layer, the four hor-
izontal lines in Figure 1.2, are also called peer-to-peer protocols to reiterate that they are 
used between two entities at the same layer. We'll discuss various protocols at the data-
link, network, and transport layers, in Chapter 5. The later chapters, which describe 
specific applications, present various application-specific protocols at the process layer. 

Since the data always flows between a given layer and the layer immediately above 
it or immediately below it, the interfaces between the layers are also important for 
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Figure 1.2 Simplified 4-layer model. 
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network programming. Chapters 6 and 7 provide detailed descriptions of two interfaces 
between the transport layer and the layer above it: Berkeley sockets and the AT&T 
Transport Layer Interface (TLI). The Berkeley socket interface is then used in the 
remaining chapters for most of the examples. 

Another feature of the model shown in Figure 1.2 is that often the layers up through 
and including the transport layer (layers 1 through 4 of the OSI model) are included in 
the host operating system. This is the case for 4.3BSD and System V, the two examples 
used in this text. 

1.6 Client—Server Model 

The standard model for network applications is the client—server model. A server is a 
process that is waiting to be contacted by a client process so that the server can do some-
thing for the client. A typical (but not mandatory) scenario is as follows: 

o The server process is started on some computer system. It initializes itself, then 
goes to sleep waiting for a client process to contact it requesting some service. 

o A client process is started, either on the same system or on another system that is 
connected to the server's system with a network. Client processes are often ini-
tiated by an interactive user entering a command to a time-sharing system. The 
client process sends a request across the network to the server requesting service 
of some form. Some examples of the type of service that a server can provide are 
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6 Introduction Chapter 1 

o return the time-of-day to the client, 
o print a file on a printer for the client, 
o read or write a file on the server's system for the client, 
o allow the client to login to the server's system, 
o execute a command for the client on the server's system. 

o When the server process has finished providing its service to the client, the server 
goes back to sleep, waiting for the next client request to arrive. 

We can further divide the server processes into two types. 

1. When a client's request can be handled by the server in a known, short amount 
of time, the server process handles the request itself. We call these iterative 
servers. A time-of-day service is typically handled in an iterative fashion by the 
server. 

2. When the amount of time to service a request depends on the request itself (so 
that the server doesn't know ahead of time how much effort it takes to handle 
each request), the server typically handles it in a concurrent fashion. These are 
called concurrent servers. A concurrent server invokes another process to han-
dle each client request, so that the original server process can go back to sleep, 
waiting for the next client request. Naturally, this type of server requires an 
operating system that allows multiple processes to run at the same time. (More 
on this in the next chapter.) Most client requests that deal with a file of informa-
tion (print a file, read or write a file, for example) are handled in a concurrent 
fashion by the server, as the amount of processing required to handle each 
request depends on the size of the file. 

We'll see examples of both types of servers in later chapters. 

1.7 Plan of the Book 

The goal of the book is to develop and present examples of processes that are used for 
communication between different computer systems. In Figure 1.3, the chapters in this 
book are compared to the OSI model. 

To develop applications at the process layer, a thorough understanding of a process 
is required. Chapter 2 develops the process terminology for the Unix system. The 
emphasis is on process control and signals. Chapter 3 describes methods by which multi-
ple processes on a single computer can communicate with each other—interprocess com-
munication, or IPC. Understanding how independent processes communicate on a single 
computer system is a requisite to understanding IPC between processes on different sys-
tems. Chapter 3 also describes file locking and record locking under Unix, as these are 
often required when multiple processes are used for a task. 
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Chapters 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 

I  Chapters 6 and 7 

Chapters 4 and 5 

Figure 1.3 Outline of book compared to 7-layer OSI model. 

Chapter 4 provides an overview of networking and the terminology used to describe 
the services provided by a network. Various communication protocol suites are 
described in Chapter 5. The emphasis is on the services provided to an application pro-
cess by the protocol suite. We concentrate on the TCP/IP and Xerox NS (XNS) protocol 
suites, since they are used in the examples in the later chapters. We also cover the fol-
lowing protocol suites: IBM's SNA, NetBIOS, the OSI protocols, and UUCP. SNA is 
important since most Unix vendors today provide support for SNA. NetBIOS is used in 
many personal computer networks, which Unix systems need to communicate with. The 
OSI protocols, while still in their infancy, will be more important in the coming decade. 
An overview of UUCP is provided since it is the oldest of the Unix networking solutions, 
and is still widely used. An understanding of where these different protocol suites fit 
with regard to each other is important. 

Chapters 6 and 7 describe the two predominant interfaces provided by Unix today, 
between the transport layer and an application process: Berkeley sockets and System V 
TLI. The Berkeley socket interface is then used for most of the examples in the later 
chapters. 

The final eleven chapters contain detailed examples of actual process-level applica-
tion programs. Chapter 8 describes various utility functions that are used in the remain-
ing chapters. This includes converting network names into addresses, and timeout and 
retransmission algorithms for unreliable protocols. 

Security is an issue we'll encounter in almost every application, and we cover it in 
Chapter 9. We describe the security techniques currently used by the 4.3BSD system 
along with the newer Kerberos system. 

Chapter 10 is the first chapter describing a specific network application: obtaining 
the time and date from another computer on the network. Chapter 11 describes the ubiq-
uitous Internet "ping" program, which has become an everyday tool on most TCP/IP 
networks. We also present a similar application using the Xerox NS protocols. 
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8 Introduction Chapter 1 

Chapter 12 is a complete presentation of a file transfer program—the TCP/IP Trivial 
File Transfer Protocol (TFTP). File transfer is an important network application and 
TFTP is one of the simpler protocols. 

Line printer spoolers are covered in Chapter 13, both the Berkeley and System V 
print spoolers. Print spoolers are interesting from a process control viewpoint, in addi-
tion to the network printing option provided by 4.3BSD. 

Chapter 14 covers the execution of commands on another system. We concentrate 
on the rcmd function provided by 4.3BSD. This function is central to what are called 
the Berkeley "r" commands: rcp, rdump, rlogin, and the like. These programs are 
often provided by third-party TCP/IP vendors for systems other than 4.3BSD, and have 
become de facto standards for Unix networking applications. 

Remote login across a network is the topic of Chapter 15. This chapter also con-
cerns itself with details of terminal handling and pseudo-terminals, both important 
features in remote login programs. This chapter concludes with a complete presentation 
of the 4.3BSD rlogin client and server. 

In Chapter 16 we describe the use of a tape drive across a network, specifically the 
4.3BSD rmt protocol. This has become an important topic with workstations and per-
sonal computers that have disks but not tape drives. 

Chapter 17 is concerned with performance. This includes the performance of the 
various IPC techniques from Chapter 3, along with the performance of a network. Since 
a network is often used for file transfer and tape drive access, typical performance figures 
for disk drives and tape drives are also covered. 

Chapter 18 covers remote procedure calls (RPC), a technique used to simplify the 
programming of network applications. We cover three RPC implementations: Sun RPC, 
Xerox Courier, and Apollo NCA. 

1.8 A History of Unix Networking 

The first Unix network application was UUCP, the Unix-to-Unix copy program, and all 
its associated commands. UUCP was developed around 1976 [Redman 1989] and its first 
major release outside AT&T was with Version 7 Unix in 1978. UUCP is a batch-
oriented system that is typically used between systems with dial-up telephone lines or 
systems that are directly connected. Its major uses are for distributing software (file 
transfer) and electronic mail. We'll say more about the programs that comprise UUCP in 
Section 5.7. It is interesting that the first Unix networking application is still in wide use 
today. 

The program cu was also distributed with Version 7 Unix in 1978, and has been 
available with almost every Unix system since then. Although not strictly part of a 
specific networking package, it provides a remote login capability to another computer 
system. The cu program was typically used to connect to another system using a dial-up 
telephone line. A rewritten version of cu was distributed with 4.2BSD where it was 
called tip. 
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Section 1.8 A History of Unix Networking 9 

In 1978 Eric Schmidt developed a network application for Unix as part of his Mas-
ters degree at Berkeley. This network was called "Berknet" and was first distributed 
with the Berkeley release of Version 7 Unix for the PDP-11—the 2.xBSD systems. It 
provided file transfer, electronic mail, and remote printing. It was widely used on the 
Berkeley campus. Typically the systems were directly connected with 9600 baud 
RS-232 lines. This software moved to the VAX with the 4.xBSD releases, then it was 
slowly replaced with the faster Ethernet-based local area networks that started with the 
4.2BSD system. 

In September 1980 Bolt, Beranek, and Newman (BBN) was contracted by the 
Defense Advanced Research Projects Agency (DARPA) of the Department of Defense 
(DoD) to develop an implementation of the TCP/IP protocols for Berkeley Unix on the 
VAX [Walsh and Gurwitz 1984]. A version for the 4.1BSD system was turned over to 
Berkeley in the Fall of 1981. This was then integrated by Berkeley into the 4.2BSD sys-
tem that was being developed. The 4.2BSD system was released in August 1983 and 
with it the growth of local area networks, based mainly on Ethernet technology, grew 
rapidly. These 4.2BSD systems also allowed the computers to connect to the 
ARPANET, which also saw enormous growth in the early 1980s. With the 4.2BSD sys-
tem the socket interface was provided, which we describe in Chapter 6 and use for most 
of the examples in the remainder of the text. 

Networking development during this period was also underway at AT&T, however, 
other than UUCP, the results usually did not propagate outside AT&T. This is in contrast 
to the networking developments at Berkeley, which were widely disseminated. Fritz, 
Hefner, and Raleigh [1984] describe a network based on a HYPERchannel high-speed 
local network. Its development started around 1980 and it connected various types of 
systems running different versions of Unix: VAX 780, PDP-11/70, IBM 370, and AT&T 
3B205. The versions of Unix were the AT&T versions of System III and System V. The 
network was batch-oriented and supported file transfer, remote command execution, 
remote printing, and electronic mail. 

Various third-party networking packages appeared for System V in the mid-1980s. 
These typically supported the TCP/IP protocol suite and were often developed by the 
vendor who developed the interface hardware. 

The streams I/O facility was first described in Ritchie [1984b]. It did not get widely 
distributed outside the Bell Labs research environment, however, until System V 
Release 3.0 in 1986. The Transport Layer Interface (TLI), which we describe in Chap-
ter 7, was provided with this release of System V [Olander, McGrath, and Israel 1986]. 
Various third-party networking packages (mainly for the TCP/IP protocol suite) based on 
'ILI started to appear around 1988. 
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A Network Primer 

We have to define some basic networking terms and concepts before they are used in 
later chapters. When necessary, we jump ahead and use specific examples from the next 
chapter, to provide actual network examples, instead of trying to describe everything in a 
generic, abstract sense. Tanenbaum [1989] provides additional details on many of the 
networking topics discussed in this chapter. 

Internetworking 

A computer network is a communication system for connecting end-systems. We often 
refer to the end-systems as hosts. The hosts can range in size from small microcomputers 
to the largest supercomputers. Some hosts on a computer network are dedicated systems, 
such as print servers or file servers, without any capabilities for interactive users. Other 
hosts might be single-user personal computers, while others might be general purpose 
time-sharing systems. 

A local area network, or LAN, connects computer systems that are close together—
typically within a single building, but possibly up to a few kilometers apart. Popular 
technologies today for LANs are Ethernet and token ring. LANs typically operate at high 
speeds—an Ethernet operates at 10 Mbps (million bits per second) while IBM's token 
ring operates at both 4 and 16 Mbps. Newer LAN technologies, such as FDDI (Fiber 
Distributed Data Interface), use fiber optics and have a data rate of 100 Mbps. Each 
computer on a LAN has an interface card of some form that connects it to the actual net-
work hardware. (Be aware that these raw network speeds are usually not realized in 
actual data transfers. In Chapter 17 we'll discuss some actual performance measure-
ments.) 
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172 A Network Primer Chapter 4 

A wide area network or WAN connects computers in different cities or countries. 
These networks are sometimes referred to as long haul networks. A common technology 
for WANs is leased telephone lines operating between 9600 bps (bits per second) and 
1.544 Mbps (million bits per second). 

Between the LAN and WAN is the metropolitan area network or MAN. These cover 
an entire city or metropolitan area and frequently operate at LAN speeds. Common tech-
nologies are coaxial cable (similar to cable TV) and microwave. 

An internet or internetwork is the connection of two or more distinct networks so 
that computers on one network are able to communicate with computers on another net-
work. The goal of internetworking is to hide the details of what might be different physi-
cal networks, so that the internet functions as a coordinated unit. One way to connect 
two distinct physical networks is to have a gateway that is attached to both networks. 
This gateway must pass infamiation from one network to the other. It is sometimes 
called a router. As an example, Figure 4.1 shows an internet fomied from two distinct 
networks. 

H1 

H2 
toke-ri 
ring 

network 

H3 

gateway 

H4 H5 

Ethernet 

Figure 4.1 Internet example with two networks joined by a gateway. 

There are three hosts on the token ring, H1, H2, and H3, and two hosts on the Ethernet, 
H4 and H5. There is a gateway between the two physical networks, and it must contain 
an interface card to attach to the token ring network and another interface card to attach 
to the Ethernet. It must also detemiine when infomiation arriving on the Ethernet is des-
tined for a host on the token ring (and vice versa), and handle it appropriately. 

There are more ways to connect networks together. The teiiii we use to describe the 
interconnection depends on the layer in the OSI model at which the connection takes 
place. 

• Repeaters operate at the physical layer (layer 1) and typically just copy electrical 
signals (including noise) from one segment of a network to the next. Repeaters 
are often used with Ethernets, for example, to connect two cable segments 
together to fomi a single network. 
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• Bridges often operate at the data-link layer (layer 2) and they copy frames from 
one network to the next. Bridges often contain logic so that they only copy a sub-
set of the frames they receive. 

• Routers operate at the network layer (layer 3). The term router implies that this 
entity not only moves information (packets) from one network to another, but it 
can also make decisions about what route the information should take. (We talk 
more about routing later in this chapter.) 

• Gateway is a generic term that refers to an entity used to interconnect two or more 
networks. In the TCP/IP community, for example, the term gateway refers to a 
network level router. The term gateway is sometimes used to describe software 
that performs specific conversions at layers above the network layer. For exam-
ple, there are various mail gateways that convert electronic mail from one format 
to another. We mention an application-gateway in Section 5.6 that converts file 
transfer requests between the OSI FTAM protocol and the TCP/IP FTP protocol. 
We'll use the term gateway to describe a network level router, unless stated other-
wise. 

Repeaters are usually hardware devices, while bridges and routers can be implemented in 
either hardware or software. A router (gateway) is usually a dedicated system that only 
does this function. 4.2BSD, however, was the first general-purpose system that could 
also operate as a gateway. 

A host is said to be multihomed if it has more than one network interface. For exam-
ple, a host with an Ethernet interface and a token ring interface would be multihomed. 

Looking at the different levels of abstraction, we go from a user sitting at a terminal 
to an internet. 

• Users login to a host computer. 

• Host computers are connected to a network. 

• Networks are connected together to form an internet. 

An internet of computer networks is similar in principle to the international long distance 
telephone service that is available today. Telephones are connected to a local phone 
company, which in turn is connected into a national long distance network, which is then 
connected into an international network. When you direct dial an international call, this 
"telephone internet" hides all the details and connects all the telephones into a coordi-
nated unit. This is the goal of an internet of computer networks. 

OSI Model, Protocols, and Layering 

The computers in a network use well-defined protocols to communicate. A protocol is a 
set of rules and conventions between the communicating participants. Since these proto-
cols can be complex, they are designed in layers, to make their implementation more 
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manageable. Figure 4.2 shows the OSI model that was introduced in Section 1.3. 
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Figure 4.2 OSI model. 

This model, developed between 1977 and 1984, is a guide, not a specification. It pro-
vides a framework in which standards can be developed for the services and protocols at 
each layer. Indeed, the networks that we consider in this text (TCP/IP, XNS, and SNA) 
were developed before the OSI model. We will compare the layers for these actual net-
works against the OSI model, but realize that no network is implemented exactly as the 
OSI model shows. 

One advantage of layering is to provide well-defined interfaces between the layers, 
so that a change in one layer doesn't affect an adjacent layer. It is important to under-
stand that protocols exist at each layer. A protocol suite is a collection of protocols from 
more than one layer that Rums the basis of a useful network. This collection is also 
referred to as a protocol family. The protocol suites that we describe in Chapter 5 are 

• the TCP/IP protocol suite (the DARPA Internet protocols), 
• Xerox Network Systems (Xerox NS or XNS), 
• IBM's Systems Network Architecture (SNA), 
• IBM's NetBIOS, 
• the OSI protocols, 
• UUCP. 

Each of these protocol suites define different protocols at different layers, as we see in 
the next chapter. 
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Recall from Section 1.5 that we simplified the OSI model into a 4-layer model that 

we use in the text. Figure 4.3 shows this model for two systems that are connected with a 
network. 

r 

L 

Process 

A 

Transport 

V
Network 

A 

Data Link 

Process 

Transport 

A 

Network 

A 

V 
Physical 
Network 

Data Link 

Figure 4.3 Simplified 4-layer model connecting two systems. 

_J 

The layers that define a protocol suite are the two boxes called the transport layer and the 
network layer. The multiple layers that define the network and hardware characteristics 
(Ethernet, token ring, etc.) are grouped together into our data-link layer. Application 
programs exist at the process layer. It is the interface between the transport layer and the 
process layer that we describe in Chapters 6 and 7. 

Let's jump ahead to provide a concrete example for layering and some of the other 
concepts described in this chapter. Figure 4.4 shows the layering used by the TCP/IP 
protocol suite. 

Consider one specific user process whose protocol is defined by the TCP/IP protocol 
suite, TFTP, the Trivial File Transfer Protocol. This application allows a user on one 
system to send and receive files to and from another system. MP uses UDP (User 
Datagram Protocol), which in turn uses IP (Internet Protocol), to exchange data with the 
other host. 
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Figure 4.4 TCP/IP protocol suite using 4-layer model. 

If we consider two hosts connected with an Ethernet, Figure 4.5 shows the four 

layers. 
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Figure 4.5 4-layer model for ITTP over UDP/IP on an Ethernet. 
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We show the protocols between the top three boxes with dashed lines to indicate that the 
boxes at these three layers communicate "virtually" with each other using the indicated 
protocols. Realize that only the boxes at the lowest layer physically communicate with 
each other. We call these horizontal lines between layers at the same level peer-to-peer 
protocols. The actual flow of data is from the TFTP box on one side, down to the UDP 
box, down to the IP box, down to the Ethernet box, then across the physical link to the 
other side and up. 

Another goal of layering, besides making the protocol suite easier to understand, is 
to allow us to replace the contents of a layer with something else that provides the same 
functionality. With the example shown in Figure 4.5, if we are able to connect the two 
computer systems with a token ring network, we would have the layers shown in Fig-
ure 4.6. 

11-,1? 
client 

TFTP protocols TFTP 
server 

A A 

UDP 

A 

IP 

UDP protocols 

IP protocols 

UDP 

IP 

A A 

token ring 
token ring protocols 
physical connection 

>I token ring 

Figure 4.6 4-layer model for TFTP over UDP/IP on a token ring. 

The TFTP protocols do not have to change at all between this network and the previous 
one that used an Ethernet. Similarly, the UDP/IP protocols do not have to change either. 

We can take this example one step further and replace the middle two boxes that use 
the UDP/IP protocols from the TCP/IP protocol suite, with boxes that use the PEX/IDP 
protocols from the Xerox NS protocol suite. If this were done using an Ethernet connec-
tion between the two systems, we would have the layers shown in Figure 4.7. Again, the 
11,1P protocols do not have to change at all between the version that uses the UDP/IP 
protocols and the version that uses the Xerox PEX/IDP protocols. 

In Chapter 12 we develop a complete implementation of a TFTP client and server 
and implement it using different transport protocols. 
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Figure 4.7 4-layer model for TFTP over PEX/IDP on an Ethernet. 

Bytes and Octets 

A term that appears in the networking literature is octet, which means an 8-bit quantity of 
data. We will consistently use the term byte instead of octet. The teini octet arose 
because some computer systems, notably the DEC-10 series and the Control Data Cyber 
series, don't use 8-bit bytes. Fortunately, however, virtually all modern computers use 
8-bit bytes, so we use the term byte to mean an 8-bit byte. 

Network Byte Order 

Unfortunately, not all computers store the bytes that comprise a multibyte value in the 
same order. While the problems with systems that don't use 8-bit bytes are slowly disap-
pearing, as these older systems fade into history, the problems with byte ordering will be 
with us for a long time, as there is no clear standard. 

Consider a 16-bit integer that is made up of 2 bytes. There are two ways to store this 
value: with the low-order byte at the starting address, known as little endian, or with the 
high-order byte at the starting address, known as big endian. The first case is shown in 
Figure 4.8. 

little endian byte order: high-order byte low-order byte 

addr A+1 

Figure 4.8 Little endian byte order for a 16-bit quantity. 

addr A 
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Here we are looking at increasing memory addresses going from right to left. The rea-
soning behind this byte ordering is that a lower address implies a lower order byte. 

The big endian format can be pictured as in Figure 4.9. 

big endian byte order: high-order byte low-order byte 

addr A addr A+1 

Figure 4.9 Big endian byte order for a 16-bit quantity. 

Here we are looking at increasing memory addresses going from left to right. 
The byte ordering used by some current computer systems is shown in Figure 4.10. 

big endian: IBM 370, Motorola 68000, Pyramid 

little endian: Intel 80x86 (IBM PC), DEC VAX, DEC PDP-11 

Figure 4.10 Byte ordering used by different systems. 

The byte ordering with 32-bit integers is even worse, as some systems swap the two 
16-bit pieces of the 32-bit integer. 

The solution to this problem is for a network protocol to specify its network byte 
order. The TCP/IP, XNS, and SNA protocols all use the big endian format for the 16-bit 
integers and 32-bit integers that they maintain in the protocol headers. (Fortunately the 
protocols maintain only integer fields, as the differences in the internal formats for float-
ing point data are even worse.) The protocol has no control over the format of the data 
that the applications transfer across the network—the protocol only specifies the format 
for the fields that it maintains. We will be concerned with the network byte ordering of 
multibyte integer fields in Chapter 6 when we discuss the interface between a user pro-
cess and the networking software. We also return to the problem of application data for-
mat in Chapter 18 when we discuss remote procedure calls. 

Encapsulation 

Let's again consider the TFTP application, using the UDP/IP protocols, between two sys-
tems connected with an Ethernet. If there are 400 bytes for the TF1P client process to 
transfer to the TFTP server process, the TFTP client process adds 4 bytes of control 
information to the beginning of the data buffer, before passing the data down one layer to 
the UDP layer. This addition of control information to data is called encapsulation and is 
shown in Figure 4.11. 

The UDP layer does not interpret the 4-byte TFTP header at all. The task of the 
UDP layer is to transfer 404 bytes of data to the other UDP layer. The UDP layer then 
prepends its own 8-byte header and passes the 412-byte buffer to the IP layer. The IP 
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Figure 4.11 Encapsulation of user data by TFTP. 

layer prepends its 20-byte header and passes the 432-byte buffer to the data-link layer for 
the Ethernet. At this layer a 14-byte header and a 4-byte trailer are added to the buffer of 

information. Figure 4.12 shows this encapsulation by each layer. 
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Figure 4.12 Encapsulation of 1H P over UDP/IP on an Ethernet. 

The final diagram shows the Ethernet frame that is physically transmitted across the 

Ethernet, along with the sizes of each of the headers and trailers, in bytes. 
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We define the units of information that are passed along a network according to the 
layer at which the transfer is taking place. This is shown in Figure 4.13. 
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Figure 4.13 OSI model with units of information exchanged at each layer. 

We call the unit of interchange at the network layer packets. At the data-link layer we 
call them frames, and at the lowest layer, the physical layer, bits are exchanged. 

Multiplexing and Demultiplexing 

Multiplexing means to combine many into one, and we have examples of this happening 
at most layers in a network. Consider the multihomed, multiuser computer system shown 
in Figure 4.14. This figure shows applications using both UDP and TCP from the TCP/IP 
protocol suite along with PEX and SPP from the Xerox NS protocol suite. Both of these 
protocol suites can use a single Ethernet. There are many points to be made from Fig-
ure 4.14. 

• A user process can use different protocols at the same time. For example, process B is 
using both UDP and TCP at the same time. Similarly, process D is using TCP and 
PEX. 

• More than one user process at a time can be using any of the user-accessible protocols 
(UDP, TCP, PEX, or SPP). This requires that a given protocol box, the UDP box for 
example, must identify the user process (A or B) that is sending data when the UDP 
software passes this data down to the IP layer. This is one example of multiplexing. 
Conversely, when the UDP software receives data from the IP layer, it must be able to 
identify the user process to receive the data. This is demultiplexing. For these exam-
ples, both UDP and TCP have a 16-bit port number that identifies the user process. 
We discuss this field in the next chapter. 
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Figure 4.14 Multiplexing and demultiplexing. 

Ethernet 
interface 

• The IP module must determine if data that it receives from the Ethernet interface is for 
the UDP module or the TCP module. The IP header contains an 8-bit protocol field 
that is used for this purpose. 

• We show the computer system with two Ethernet interfaces. This system is a gateway 
between the two networks. The IP module must determine which interface is to be 
used for packets from either the UDP module or the TCP module. 

• The software (the device driver) for the interface connected to Ethernet cable 1 must 
determine if a received Ethernet frame is for the IP module or the IDP module. There 
is a 16-bit field in the Ethernet header that identifies the frame type. This allows mul-
tiple protocol suites, such as the TCP/IP suite and the XNS suite, to share the same 
Ethernet. 
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An Ethernet interface must determine if a frame that is being transmitted across the 
physical cable is for it, or for another interface. This determination is done by the 
Ethernet hardware. Each Ethernet frame contains a 6-byte address in its header that 
identifies the destination interface. Ethernet addresses are usually supplied by the 
hardware vendor so that every interface has a unique 6-byte address. 

Packet Switching 

Communication networks can be divided into two basic types: circuit-switched and 

packet-switched. The classic example of a circuit-switched network is the public tele-
phone system. When you place a telephone call, either local or long distance, a dedicated 

circuit is established for you by the telephone switching offices, from your telephone to 

the other telephone. Every telephone is directly connected to a local office, typically 

within a few miles of the phone. The local offices are then connected to toll centers, and 

these toll centers are connected together through sectional centers and regional centers. 

Once this circuit is established, the only delay involved in the communication is the time 
required for the propagation of the electromagnetic signal through all the wires and 
switches. While it might be hard to obtain a circuit sometimes (such as calling long dis-

tance on Christmas day), once the circuit is established you are guaranteed exclusive 

access to it. 
A leased telephone line, which is common for WANs, is a special case of a circuit-

switched network. But there is no setup required to establish a dedicated circuit between 

the two telephones. 
An internet, on the other hand, typically uses packet-switching techniques. Instead 

of trying to establish a dedicated communication line between one computer and another, 

the computers share communication links. Instead, the information is divided into pieces 

and each piece is transmitted on its own through the connection of networks. These 

pieces are called packets. 
A packet is the smallest unit that can be transferred through the networks by itself. 

A packet must contain the address of its final destination, so that it can be sent on its way 
through the internet. Most protocols also specify that a packet contain the sender's 

address, too. (We describe these addresses later in the chapter.) Recall from earlier in 

this chapter that we defined the unit of information that is exchanged at the network layer 

is' a packet. Indeed, it is the network layer that is involved in transferring packets around 

the networks. 
With a circuit-switched network, we are guaranteed that once a circuit is established, 

we can use the full capacity of the circuit. With a packet-switched network, however, we 

are sharing the communication bandwidth with other computers. 
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Packet switching on a local area network refers to multiple computers sharing a sin-
gle communications channel, such as an Ethernet or a token ring. A dedicated link is not 
used between each computer. All the computers on the LAN share the available capacity 
of the network. 

A WAN can also use packet switching. We'll show an example of this, after dis-
cussing gateways. 

Consider the internet shown in Figure 4.15. 

Figure 4.15 Internet example for routing. 

For a packet to go from host 1 to host 2, there are four possible acyclic paths. 

• host 1, net 1, Gl, net 3, host 2; 
• host 1, net 1, Gl, net 2, G3, net 3, host 2; 
• host 1, net 1, G2, net 2, G3, net 3, host 2; 
• host 1, net 1, G2, net 2, Gl, net 3, host 2. 

Each of these paths is called a route. Routing decisions are usually made at the network 
layer in the OSI model. We'll consider routing in more detail later in this chapter. 

In a packet-switched network, there is no guarantee how long it takes a packet to go 
from one host to another. The time taken for each packet depends on the route chosen 
for that packet, along with the volume of data being transferred along that route. 
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Gateways 

Earlier we defined a gateway as a system that interconnects two or more networks. The 
function of a gateway is to pass along information from one network to another. 

The layer at which a gateway operates depends on the type of translation and for-
warding done by the gateway. For example, if we have an internet of networks that all 
use the TCP/IP protocols, no translation of protocols is required. Instead, each gateway 
only needs to forward packets from one network to another. The IP layer is responsible 
for this forwarding of packets. An example of this is shown in Figure 4.16. 
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user 
process 

A 

TCP TCP 

IP IP IP IP 

A A 

V V V 
data net 1 data data net 2 data 

link LAN link WAN link LAN link 

host 1 gateway 1 gateway 2 host 2 

Figure 4.16 Gateway example. 

Each IP packet contains enough information (i.e., its final destination address) for it to be 
routed through the TCP/IP internet by itself. 

Things become more complicated, if we want a gateway between networks that use 
different protocol suites. The conversion is often done in layers above the network layer. 

Notice in Figure 4.16 that the TCP layer is not needed on the intermediate gateways. 
This is why we distinguished between the transport layer and the network layer, in Fig-
ures 4.3 and 4.4. You might think we could combine them, since they often appear as a 
single entity within the operating system, to the application programmer. Our reason for 
separating them is because of the different roles they each play in an internet. The trans-
port layer is the lowest layer that provides the virtual connection between the two hosts 
on which the user processes are running. 

To understand packet switching in a WAN, let's look at Figure 4.16 again. Assume 
the two LANs are Ethernets and assume that the two gateways are separated by 
thousands of miles but are connected with a leased phone line. Even though this leased 
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phone line is a circuit-switched connection, we still consider this a packet-switched net-
work. The reason is there are usually many hosts that share the Ethernets connecting 
each host and its gateway. (The number of hosts on an internet typically exceeds the
number of gateways on the internet by a factor of 10 or more. For example, the TCP/Ip 
Internet is currently estimated to have over 150,000 hosts and 850 networks.) All the 
hosts on one of these Ethernets compete with the other hosts on that same Ethernet for 
the single link between the two gateways. Nevertheless, this arrangement is more rea-
sonable than a leased phone line between every host on network 1 and every host on net-
work 2. 

Fragmentation and Reassembly 

Most network layers have a maximum packet size that they can handle, based on the 
characteristics of the data-link layer that they are sending its packets through. This is 
called the network's maximum transmission unit or MTU. (This term can be applied to 
the maximum size of a protocol message exchanged by any two layers in a protocol suite, 
not just the network layer.) For example, part of the Ethernet standard is that the data 
portion of a frame (the data between, but not including, the 14-byte Ethernet header and 
the 4-byte Ethernet trailer) cannot exceed 1500 bytes. The maximum for a token ring 
network is typically 4464 bytes, while some networks have small MTUs. Consider the 
example shown in Figure 4.16 and assume that the two LANs are Ethernets. But, if the 
WAN between the two gateways uses a data link with a maximum packet size of 128 
bytes, then something has to be done when IP packets are sent from host 1 to host 2. 

Fragmentation is the breaking up of a data stream into smaller pieces. Some net-
works use the temi segmentation instead of fragmentation. The reverse of fragmentation 
is reassembly. Using the layering concept that we've already talked about, fragmentation 
should happen at the lowest layer possible, so that upper layers need not be concerned 
with it. For example, using the gateway example in Figure 4.16, we would like fragmen-
tation to take place at the IP layer, without the TCP layer even knowing that it was taking 
place. Indeed, with the TCP/IP protocols, it is the IP layer that handles fragmentation 
and reassembly, as required by the different data-link layers that are used by TCP/IP. 

Modes of Service 

There are several parameters that desCribe the type of communication service provided 
between two peer entities at any layer of the OSI model. In this text we are interested in 
the service provided to an application program, typically by the transport layer. These 
parameters are 

• connection-oriented (virtual circuit) or connectionless, 
• sequencing, 
• error control, 
• flow control, 
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® byte stream or messages, 
e full-duplex or half-duplex. 

A connection-oriented service requires that the two application programs establish a 
logical connection with each other before communication can take place. There is some 
overhead involved in establishing this connection. We also use the term virtual circuit to 
describe this service, since it appears to the application programs that they have a dedi-
cated circuit between them, even though the actual data flow usually takes place using a 
packet-switched network. A connection-oriented service is often used when more than 
one message is to be exchanged between the two peer entities. A connection-oriented 
exchange involves three steps: 

• connection establishment, 
• data transfer (can be lengthy), 
• connection termination. 

The converse of a connection-oriented service is a connectionless service, also called a 
datagram service. In this type of service, messages called datagrams are transmitted 
from one system to the other. Since each message is transmitted independently, each 
must contain all the information required for its delivery. In the TCP/IP protocol suite, 
TCP provides a connection-oriented virtual circuit, while UDP provides a connectionless 
datagram facility. 

Sequencing describes the property that the data is received by the receiver in the 
same order as it is transmitted by the sender. In a packet-switched network, it is possible 
for two consecutive packets to take different routes from the source computer to the des-
tination computer, and thus arrive at their destination in a different order from the order 
in which they were sent. 

Error control guarantees that error-free data is received by the application programs. 
There are two conditions that can generate errors: the data gets corrupted (modified dur-
ing transmission), or the data gets lost. A technique to detect data corruption is for the 
sender to include a checksum so the receiver can verify, with a high probability, that the 
data does not get modified. If the data does get corrupted, the receiver has to ask the 
sender to retransmit the data. Therefore, checksums are usually combined with a tech-
nique called positive acknowledgment—the receiver notifies the sender each time a data 
message is received, either correctly or with errors. If the data was received correctly the 
sender can discard it, otherwise the data must be retransmitted. To handle the loss of 
data somewhere in the network requires that the sender start a timer after it has sent a 
data message, and if the timer expires (called a timeout) the sender must retransmit the 
data. Note that when positive acknowledgments and timeouts are being used, it is possi-
ble not only for data to get lost but for acknowledgments to be lost as well. If this hap-
pens, the original sender will retransmit the data, causing the other end to receive the 
same data twice. This requires the receiver to perform duplicate detection—determine 
when data has already been received and ignore (but acknowledge) the duplicate mes-
sage. 
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Flow control assures that the sender does not overwhelm the receiver by sending 
data at a rate faster than the receiver can process the data. This is also called pacing. If 
flow control is not provided, it is possible for the receiver to lose data because of a lack 
of resources. Both TCP and SNA LU 6.2 provide sequencing, error control, and flow 
control. UDP, however, does not provide any of these services. 

A byte-stream service does not provide any record boundaries to the data stream. 
The converse of this feature is a message-oriented service that preserves the sender's 
message boundaries for the receiver. These features were described in Section 3.6. TCP 
is a byte-stream protocol, while UDP and the XNS SPP (Sequenced Packet Protocol) pro-
vide message boundaries. 

A full-duplex connection allows data to be transferred in both directions at the same 
time between the two peer entities. Some protocols are half-duplex and only allow one 
side to transfer at a time. TCP is full-duplex, while SNA LU 6.2 is a half-duplex proto-
col. 

Many of these parameters occur together. For example, sequencing and error con-
trol are usually provided together and the protocol is then termed reliable. It is also 
unusual to find a reliable protocol that does not provide flow control. It is unusual to 
have a connectionless protocol that provides sequencing, since the datagrams in such a 
protocol are usually unrelated to previous or future datagrams. We see an example of 
sequencing, positive acknowledgment, and retransmission after timeout in Chapter 12, 
when we develop an implementation of the Trivial File Transfer Protocol. 

Tanenbaum [1989] provides an excellent analogy between virtual circuits and data-
grams: A telephone call is similar to a virtual circuit. You establish a connection with 
the other party, exchange data for a while, then close the connection. The postal service 
resembles a datagram delivery service. Every letter contains the complete address of the 
destination. Every letter that you mail to the same address can follow a different route to 
the destination. (No doubt everyone has mailed two letters to the same destination, one 
or two days apart, only to have them arrive out of order.) There is no guarantee that a 
letter arrives at the destination. To receive an acknowledgment of delivery you must add 
extra processing to the normal mailing of a letter (i.e., pay extra for a "return receipt" if 
you're using the U.S. Postal Service). If you are expecting a response from your letter, 
you must also add extra processing—wait for some period and if a response is not 
received (timeout), retransmit the letter. 

End-to-End versus Hop-by-Hop 

When describing protocol features such as flow control, error control, and the like, we 
must differentiate between those features that are done on an end-to-end basis and those 
that are done on a hop-by-hop basis. End-to-end flow control, for example, regulates the 
flow of data between the two user processes that are exchanging data. Hop-by-hop flow 
control, on the other hand, worries about the flow of data at each hop of the communica-
tion link (i.e., all the gateways between the two end systems). As we'll see in the next 
chapter, TCP provides end-to-end flow control, while IP provides an elementary type of 
hop-by-hop flow control. 
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As another example, error control is usually handled on a hop-by-hop basis by the 
data-link layer. An Ethernet frame, a token ring frame, or an SDLC frame, all contain a. 
checksum that detects any modifications to the data as it travels across the physical link. 
This is a hop-by-hop form of error detection. Some protocols also provide some form of 
end-to-end error control also. The TCP layer in the TCP/IP suite provides this—the 
source TCP layer calculates and stores a checksum in the TCP message header which is 
then checked by the receiving TCP layer. 

Looking at Figure 4.16 again, we see that any feature that is to be implemented in 
the TCP/IP protocol suite on an end-to-end basis, has to be handled by the TCP layer, or 
the user process above TCP. Similarly, any hop-by-hop feature must be handled by the 
IP layer or the data-link layer. 

Buffering and Out-of-Band Data 

Consider a byte-stream service. The user process can read or write any number of bytes 
at a time, since there are no message boundaries. What typically happens is that the 
byte-stream service layer (TCP, for example) buffers this data internally and then passes 
it to the next lower layer for transmission to the other end. Buffering can also take place 
if the protocol does flow control (as most byte-stream service protocols do) since the 
sending side can be generating data faster than the receiving end can process the data. 
Also, a reliable protocol can be buffering data on the sending side while it is waiting for 
an acknowledgment of previously sent data from the other end. Note that buffering can 
be taking place on both ends, as the receiving byte-stream service can be receiving data 
from the network faster than the user process is reading the data. Figure 4.17 shows this 
buffering on both hosts. 
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Figure 4.17 Normal buffering that takes place with a byte-stream service. 

user 
process 

Sometimes a user process wants to disable this buffering. For instance, consider a 
terminal emulation program. The process that is reading the keystrokes wants to send 
each keystroke to the other end, one byte at a time, since the other end might be operating 
on each character as it is entered. This is how full screen editors under Unix operate, for 
example. Similarly, the process that is sending terminal output also wants to force the 
data to be transferred, perhaps at the end of every line. What we would like is the ability 
for a user process to tell its byte-stream service layer (e.g., TCP) to flush any data that is 
has buffered and send it to the other end. TCP, for example, supports this option, which 
it calls a push. 
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This type of buffering sounds like the type done by the standard I/O library, but net-
work buffering quickly becomes more complex. The complicating factors are that some 
network applications are interactive (e.g., remote echoing in a remote login application), 
which makes us want to buffer as little as possible, while performance considerations 
make us want to buffer as much as possible. Also, congestion can quickly become a 
problem if we send many small packets through a busy network, since there is a fixed 
overhead for every packet, no matter how much data it contains. The techniques used by 
the TCP implementation in 4.3BSD are covered in Section 12.7 of Leffler et al. [1989]. 
(We consider the buffering techniques of the 4.3BSD TCP implementation in more detail 
in Section 6.11 when we describe the TCP_NODELAY socket option.) 

Similarly, when a user at a terminal presses the attention key, it needs to be operated 
on as soon as possible. The Unix interrupt key (typically the Delete key or Control-C) is 
one example of this, as are the terminal flow control characters (typically Control-S and 
Control-Q). This type of information is termed out-of-band data or expedited data. With 
out-of-band data we want the byte-stream service layer on the sending side to send this 
data before any other data that it has buffered. Similarly we want the receiving end to 
pass this data to its user process ahead of any data that it might have buffered. Some 
method is also desired for the receiving byte-stream service layer to notify the user pro-
cess asynchronously that out-of-band data has arrived. As you might guess, a Unix sig-
nal can be used for this notification. The term out of band is used because it appears to 
the user processes that a separate communication channel is being used for this data, in 
addition to the normal data channel (band). This is shown in Figure 4.18. 
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Figure 4.18 In-band data and out-of-band data. 
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Some byte-stream layers provide out-of-band data and some don't. Those that do 
provide it allow differing amounts. For example, SPP provides a single byte of out-of-
band data, while TCP allows an unlimited amount. We return to both of these features, 
buffer flushing and out-of-band data, in the next three chapters when we examine each 
specific protocol family and then examine the user process interface to the transport 
layer. 
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Services and Protocols 

It is necessary to differentiate between services and protocols in a layered model such as 
the OSI model. A layer provides one or more services to the layer above it. As men-
tioned earlier, this text is mainly concerned with the services provided by the transport 
layer to an application. Earlier we defined a protocol as a set of rules and conventions 
that the communicating participants must follow, to exchange infounation. 

In many of the protocol suites that preceded the OSI model, the services provided by 
the different layers are not distinguished from the protocols that implement these ser-
vices. Most of the OSI protocols, however, separate the two, as we'll see in Section 5.6. 
The advantage in separating the service from the protocol is that multiple protocols can 
be developed over time to provide a given service. 

Chapter 5 is concerned mainly with protocols, although there will be some implied 
service features for those protocols that don't differentiate between services and proto-
cols. Chapters 6 and 7, however, deal with the services provided by the transport layer to 
a user process—Berkeley sockets and System V TLI. 

Addresses 

Recall that the end points for communication are two user processes, one on each system. 
With an internet, the two systems can be located on different networks, connected by one 
or more gateways. This requires three levels of addressing. 

® A particular network must be specified. As we've seen earlier in this chapter, a 
given host can be connected to more than one network. 

® Each host on a network must have a unique address. 

® Each process on a host must have a unique identifier on that host. 

Typically a host address consists of a network ID and a host ID on that network. The 
identification of the user process on a host is often done with an integer value assigned by 
the protocol. For example, the TCP/IP protocol suite uses a 32-bit integer to specify a 
combined network ID and host ID, and both TCP and UDP use 16-bit port numbers to 
identify specific user processes. The XNS protocol suite uses a 32-bit network ID, a 
48-bit host ID, and a 16-bit port number. In the next chapter we'll examine the specific 
address founats used by each protocol suite in more detail. 

Most protocol suites define a set of well-known addresses that are used to identify 
the well-known services that a host can provide. For example, most TCP/IP implementa-
tions provide a 'file transfer server named FTP that a client can contact to transfer a file. 
The 16-bit integer port for FTP is 21. In Chapter 8 we discuss how a service name such 
as FTP is mapped into a protocol-specific address, since it differs between protocol suites 
and between implementations. 
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Broadcast and Multicast 

Consider a single network without any gateways. A unicast message is sent by a host to 
one specific host on the network. A broadcast message is one that is transmitted by a 
host to every host on the network. A multicast message is one that is transmitted by a 
host to a specified group of hosts on the network. Some types of local area network tech-
nology support broadcast messages at the data-link layer—Ethernet and token ring, for 
example. A special destination address specifies a broadcast message. An Ethernet des-
tination address of all 1-bits, for example, specifies a broadcast. Other foons of network 
connections, such as point-to-point phone lines, require some foun of software imple-
mentation of broadcast. 

A multicast message implies that some subset of the host systems belong to a multi-
cast group. Some foons of network hardware provide support for multicast addresses, 
but this is more product specific than support for broadcast messages. For example, some 
(but not all) Ethernet interfaces allow the host to specify those multicast groups to which 
it belongs to. 

When a network is connected to another network through a gateway, should broad-
cast messages generated on the local network be passed along by the gateway to the next 
network? In nounal practice, broadcast messages are not forwarded. 

We will see examples of broadcast messages in the next chapter. Multicasting is not 
as widely supported as broadcasting. 

Routing 

The topic of network routing is complex and could consume an entire text of its own. 
Here we'll provide a brief overview. Note that the applications programmer typically has 
little control over routing. 

When a node, either a host or a gateway, has a packet to send to some other host, 
there are four possible cases. 

1. The destination host is either directly connected to the node (with a leased phone 
line, for example), or the destination host and the node are on the same network 
(an Ethernet, for example). In either case the node can send the packet directly 
to the destination host—no routing decision has to be made. 

2. The arriving packet can contain the address of the next node to send the packet 
to. This is called source routing since the list of addresses for the packet to fol-
low is established by the source host. No decisions have to be made by the 
current node about where to send the received packet. This technique is used by 
the IBM token ring [Dixon and Pitt 1988]. Additionally, the TCP/IP protocol 
suite has an option that allows source routing to be used, however, this is typi-
cally used only by network administrators for testing. See Section 7.8.2 of 
Comer [1988]. 
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3. The current node can already know the route that packets from this source are to 
follow to reach the specified destination. There are some packet-switched net-
works in which every packet from a given source to a given destination follow 
the same route. In this case there are no decisions to be made by the current 
node. The commercial TYMNET network, for example, uses this technique, as 
does the IBM SNA/LEN product [Baratz et al. 1985]. 

4. None of the three cases above apply. A routing decision must be made by the 
current node. This, for example, is the normal mode of operation for a gateway 
on the TCP/IP Internet. Source routing is not typically used and two consecutive 
datagrams from a given host to the same destination can follow different paths. 

Note that some routing decision has to be made for cases 2, 3, and 4 above. In cases 2 
and 3 the decision is made before the node receives the packet, so the node itself doesn't 
have to make a decision. Nevertheless, someone had to make a routing decision for this 
packet. In case 4 the routing decision is made on-the-fly by the node, which is typically a 
gateway. 

When routing decisions have to be made, there are four different types of algorithms 
that can be used. 

o static routing, 
o isolated dynamic routing, 
• centralized dynamic routing, 
• distributed dynamic routing. 

The routing algorithm can be applied by the source host (case 2), by a central authority 
(case 3), or by the gateway itself (case 4). 

Static routing chooses a route based on precomputed information. There is no con-
sideration of the current network dynamics—the load between gateways, for example. 
The Unix pathalias program generates static routing tables that are used by the Unix 
mailers. Sites typically run this program at some interval (every night or every week) to 
compute the routes that UUCP mail will follow. 

Dynamic routing takes into account the current load on the network. The first 
dynamic technique, isolated dynamic routing, bases its decisions on local information 
only. Typically this is the amount of data that the gateway currently has to send, or has 
recently sent, out each of its interfaces. This technique is rarely used. 

Centralized dynamic routing has a central authority that makes all routing decisions 
based on current network information. The commercial TYMNET network, for example, 
uses this technique. Each gateway regularly reports its traffic information to a central 
node and this central node uses all this information to choose routes. Since a source host 
must contact the central node each time a routing decision is made, realistically this tech-
nique is only applicable to networks that use virtual circuits at the network layer—all 
packets from a given host to a given destination follow the same path. This way the cen-
tral node only has to be contacted when a new virtual circuit is established. 
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Distributed dynamic routing uses a mixture of global and local information to make 
routing decisions. In order for a gateway to obtain global information, the gateways must 
have some way of exchanging this information. The TCP/IP Internet, for example, uses 
distributed dynamic routing. Marten [1989] discusses the history of the routing protocols 
used in the TCP/IP Internet. 

Connections and Associations 

We use the term connection to define the communication link between two processes. 
The term association is used for the 5-tuple that completely specifies the two processes 
that make up a connection: 

[protocol, local-addr, local-process, foreign-addr, foreign-process] 

The local-addr and foreign-addr specify the network ID and host ID of the local host and 
the foreign host, in whatever foimat is defined by the protocol suite. The local-process 
and foreign process are used to identify the specific processes on each system that are 
involved in the connection, again in whatever format is defined by the protocol suite. In 
the TCP/IP suite, for example, 

{tcp, 192.43.235.2, 1500, 192.43.235.6, 21} 

could be a valid association, where the protocol is TCP, the local-address is 
192.43.235.2, the local-process is 1500, the foreign-address is 192.43.235.6, and the 
foreign-process is 21. When we cover each protocol suite in the next chapter, we will see 
other examples of this 5-tuple. 

We also define a half association as either [protocol, local-addr, local-process] or 
[protocol, foreign-addr, foreign-process], which specify each half of a connection. This 
half association is also called a socket or a transport address. The term socket has been 
popularized by the Berkeley Unix networking system, where it is "an end point of com-
munication," which corresponds to our definition of a half association. A socket pair 
then corresponds to our definition of an association. Unfortunately the XNS protocol 
suite uses the term socket to refer to what we called the 16-bit port above. 

Client—Server Model 

In Section 1.6 we briefly described the client—server model that. is prevalent in computer 
networking. We defined iterative servers and concurrent servers. The former knows 
ahead of time about how long it takes to handle each request and the server process han-
dles each request itself. In the latter case, the amount of work required to handle a 
request is unknown, so the server starts another process to handle each request. 

Notice that the roles of the client and server processes are asymmetric. This means 
that both halves are coded differently. The server is started first and typically does the 
following steps: 
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1. Open a communication channel and inform the local host of its willingness to 
accept client requests on some well-known address. 

2. Wait for a client request to arrive at the well-known address. 

3. For an iterative server, process the request and send the reply. Iterative servers 
are typically used when a client request can be handled with a single response 
from the server. 

For a concurrent server, a new process is spawned to handle this client request. 
This requires a fork and possibly an exec under Unix, to start the new pro-
cess. This new process then handles this client's request, and does not have to 
respond to other client requests. When this new process is finished, it closes its 
communication channel with the client, and terminates. 

4. Go back to step 2: wait for another client request. 

Implicit in the steps above is that the system somehow queues client requests that arrive 
while the server is processing a previous client's request. For example, with a concurrent 
server it is possible for additional requests to arrive during the time it takes for the server 
to spawn a new process to handle a request. Also implicit above is that the main server 
process exists as long as the host system is running—server processes never terminate 
unless forced to (such as when the system is being shut down). 

The client process performs a different set of actions. 

1. Open a communication channel and connect to a specific well-known address on 
a specific host (i.e., the server). 

2. Send service request messages to the server, and receive the responses. Continue 
doing this as long as necessary. 

3. Close the communication channel and terminate. 

When the server opens a communication channel and waits for a client request, we call 
this a passive open. The client, on the other hand, executes what is called an active open 
since it expects the server to be waiting. 

Who's Who in Networking Standards 

There are many different organizations involved in the development of networking stan-
dards. Both the organizations and the standards are referred to by acronyms in most of 
the networking literature. 

ISO, the International Standards Organization, was founded in 1946 and develops 
standards on a wide variety of subjects. The members of ISO are the national standards 
organizations from the member countries. The U.S. member of ISO is ANSI, the 
American National Standards Institute. The open systems interconnection model (OSI 
model) was adopted by ISO in 1984. 
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ccn 1, the Consultative Committee for International Telephony and Telegraphy, 
develops standards for telephony and telegraphy. CCITT standards tend to be identified 
by a letter, followed by a period, followed by a number. For example, X.25 is a CCITT 
standard for packet-switched networks, and X.400 is a CCITT standard for electronic 
mail. 

IEEE (pronounced "I triple-E"), the Institute for Electrical and Electronic 
Engineers, also issues standards. Its 802 standards are used for local area networks and 
provide standardization at the two lowest layers of the OSI model. The 802.2 standard 
defines the logical link control (LLC) used by the data-link layer. The 802.3, 802.4, and 
802.5 standards define the media access control used by the data-link layer and the physi-
cal layer, for Ethernett, token bus, and token ring networks, respectively. 

EIA, the Electronics Industry Association, is a trade association concerned primarily 
with the physical layer of the OSI model. EIA developed the RS-232 standard that is 
used widely for connecting terminals to computers. 

IAB, the Internet Activities Board, is a small group of researchers who direct most of 
the work on the TCP/IP protocols. It functions as a board of directors of the Internet. 

Some networking standards originate with one organization and are then adopted by 
others. For example, the IEEE 802.2-1985 standard is also ISO Draft International Stan-
dard (DIS) 8802/2. The EIA RS-232 standard is also the CCITT V.24/V.28 standard. 

Exercises 

4.1 Draw a diagram of the local area network that you have access to. Include hosts, repeaters, 
bridges, routers, and gateways. Indicate what equipment (token ring, Ethernet, etc.) is being 
used at the physical layer. 

t The original Ethernet standard was developed at Xerox Corp. in the 1970s and then standardized 
by DEC, Intel, and Xerox in 1981. The newest version is the IEEE 802.3 standard, dated 1985. It 
differs slightly from the original Ethernet. 
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communication Protocols 

5.1 Introduction 

In this chapter we provide an overview of several communication protocol families. Our 
goal is to provide enough of an overview so that we understand how to use the protocols, 
and to provide references to more detailed descriptions of the actual design and imple-
mentation of the protocols. 

We cover the following protocol suites, in the order shown: 

• the TCP/IP protocol suite (the Internet protocols), 
• Xerox Networking Systems (Xerox NS or XNS), 
• IBM's Systems Network Architecture (SNA), 
• IBM's NetBIOS, 
• the OSI protocols, 
• Unix-to-Unix Copy (UUCP). 

For each protocol suite we give an overview, and then discuss the relevant portions for 
the protocol's layers. We start from the bottom layer and work our way up. Note that we 
cover each protocol family in its entirety, and we cover them in order of their importance 
in the remainder of this text. 
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5.2 TCP/IP—the Internet Protocols 

5.2.1 Introduction 

During the late 1960s and the 1970s the Advanced Research Projects Agency (ARPA) of 
the Department of Defense (DoD) sponsored the development of the ARPANET. The 
ARPANET included military, university, and research sites, and was used to support 
computer science and military research projects. (ARPA is now called DARPA, with the 
first letter of the acronym standing for "Defense.") In 1984 the DoD split the 
ARPANET into two networks—the ARPANET for experimental research, and the 
MILNET for military use. In the early 1980s a new family of protocols was specified as 
the standard for the ARPANET and associated DoD networks. Although the accurate 
name for this family of protocols is the "DARPA Internet protocol suite," it is com-
monly referred to as the TCP/IP protocol suite, or just TCP/IP. 

In 1987 the National Science Foundation (NSF) funded a network that connects the 
six national supercomputer centers together. This network is called the NSFNET. Physi-
cally this network connects 13 sites using high-speed leased phone lines and this is called 
the NSFNET backbone. About eight more backbone nodes are currently planned. Addi-
tionally the NSF has funded about a dozen regional networks that span almost every 
state. These regional networks are connected to the NSFNET backbone, and the 
NSFNET backbone is also connected to the DARPA Internet. The NSFNET backbone 
and the regional networks all use the TCP/IP protocol suite. 

There are several interesting points about TCP/IP. 

e It is not vendor-specific. 

e It has been implemented on everything from personal computers to the largest 
supercomputers. 

e It is used for both LANs and WANs. 

e It is used by many different government agencies and commercial sites, not just 
DARPA-funded research projects. 

The DARPA-funded research has led to the interconnection of many different individual 
networks into what appears as a single large network—an internet, as described in the 
previous chapter. We refer to this internet as just the Internet (capitalized). 

It is important to realize that while sites on the Internet use the TCP/IP protocols, 
many other organizations (with no government affiliation whatsoever) have established 
their own internets using the same TCP/IP protocols. At one extreme we have the Inter-
net using TCP/IP to connect more than 150,000 computers throughout the United States, 
Europe and Asia, and at the other extreme we could have a network consisting of only 
two personal computers in the same room connected by an Ethernet using the same 
TCP/IP protocols. 
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To avoid having to qualify everything with "the TCP/IP protocol suite" or "the 
DARPA Internet protocol suite," we use the capitalized word Internet, as in "an Internet 
address," or "the Internet protocols," to refer to the TCP/IP protocol suite. This is to 
avoid confusion with internets that use protocols other than TCP/IP. 

One reason for the increased use of the TCP/IP protocols during the 1980s was their 
inclusion in the BSD Unix system around 1982. This, along with the use of BSD Unix in 
technical workstations, allowed many organizations and university departments to estab-
lish their own LANs. 

5.2.2 Overview 

Although the protocol family is referred to as TCP/IP, there are more members of this 
family than TCP and IP. Figure 5.1 shows the relationship of the protocols in the proto-
col suite along with their approximate mapping into the OSI model. 
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Figure 5.1 Layering in the Internet protocol suite. 

1 

OSI Layer 3 

TCP Transmission Control Protocol. A connection-oriented protocol that pro-
vides a reliable, full-duplex, byte stream for a user process. Most Internet 
application programs use TCP. Since TCP uses IP (as shown in Figure 5.1) 
the entire Internet protocol suite is often called the TCP/IP protocol family. 
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UDP User Datagram Protocol. A connectionless protocol for user processes. 
Unlike TCP, which is a reliable protocol, there is no guarantee that UDP 
datagrams ever reach their intended destination. 

ICMP Internet Control Message Protocol. The protocol to handle error and control 
information between gateways and hosts. While ICMP messages are
transmitted using IP datagrams, these messages are normally generated by 
and processed by the TCP/IP networking software itself, not user processes. 

IP Internet Protocol. IP is the protocol that provides the packet delivery service 
for TCP, UDP, and ICMP. Note from the Figure 5.1 that user processes nor-
mally do not need to be involved with the IP layer. 

ARP Address Resolution Protocol. The protocol that maps an Internet address into 
a hardware address. This protocol and the next, RARP, are not used on all 
networks. Only some networks need it. 

RARP Reverse Address Resolution Protocol. The protocol that maps a hardware 
address into an Internet address. 

There are other protocols in the Internet protocol suite that we do not consider in this 
text—GGP (Gateway-to-Gateway Protocol) and VMTP (Versatile Message Transaction 
Protocol), for example. 

All the Internet protocols are defined by Request for Comments (RFCs), which are 
their formal specifications. Corrections and explanations for many of the RFCs are found 
in RFC 1009 [Braden and Postel 1987], RFC 1122 [Braden 1989a], and RFC 1123 
[Braden 1989b}. RFC 1118 [Krol 1989] provides hints for new members of the Internet 
community. It also describes how to obtain on-line information and how to be a good 
Internet neighbor. 

Additional details on the TCP/IP protocol suite can be found in Comer [1988]. A 
sample implementation of UDP and IP is given in Comer [1987]. The source code for 
the complete 4.3BSD implementation of TCP/IP is provided on the BSD Networking 
Software release—refer to the Bibliography. 

5.2.3 Data-Link Layer 

The ARPANET consists of about 50 special purpose computers that are connected 
together using leased telephone lines at 57.6 Kbps. The host computers and gateways on 
the ARPANET are then connected to these special purpose computers. The 13 backbone 
sites of the NSFNET are connected with T1 leased phone lines, which operate at 
1.544 Mbps. Most 4.3BSD systems using the TCP/IP suite for a LAN use Ethernet tech-
nology. Products also exist that use a token ring for a LAN using TCP/IP. There also 
exist implementations using an RS-232 serial line protocol (at speeds from 1200 bps to 
19.2 Kbps) called the Serial Line Internet Protocol (SLIP). There are a variety of other 
data-link connections in use by TCP/IP networks: satellite links and packet radio, for 
example. 
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5.2.4 Network Layer—IP 

IP Datagrams 

The IP layer provides a connectionless and unreliable delivery system. It is connection-
less because it considers each IP datagram independent of all others. Any association 
between datagrams must be provided by the upper layers. Every IP datagram contains 
the source address and the destination address (described below) so that each datagram 
can be delivered and routed independently. The IP layer is unreliable because it does not 
guarantee that IP datagrams ever get delivered or that they are delivered correctly. Reli-
ability must also be provided by the upper layers. The IP layer computes and verifies a 
checksum that covers its own 20-byte header (that contains, for example, the source and 
destination addresses). This allows it to verify the fields that it needs to examine and pro-
cess. But if an IP header is found in error, it is discarded, with the assumption that a 
higher layer protocol will retransmit the packet. 

As we saw in the gateway examples from the previous chapter, it is the IP layer that 
handles routing through an Internet. The IP layer is also responsible for fragmentation, 

as described in the previous chapter. For example, if a gateway receives an IP datagram 
that is too large to transmit across the next network, the IP module breaks up the data-

gram into fragments and sends each fragment as an IP packet. (Technically, the protocol 

unit exchanged by the end-to-end IP layers is an IP datagram. An IP datagram can be 
fragmented into smaller IP packets. When fragmentation does occur, the IP layer dupli-
cates the source address and destination address into each IP packet, so the resulting IP 
packets can be delivered independently of each other.) The fragments are reassembled 

into an IP datagram only when they reach their final destination. If any of the fragments 

are lost or discarded, the entire datagram is discarded by the destination host. 
The IP layer provides an elementary form of flow control. When IP packets arrive at 

a host or gateway so fast that they are discarded, the IP module sends an ICMP source 

quench message to the original source informing that system that the data is arriving too 

fast. With 4.3BSD, for example, the ICMP source quench is passed to the TCP module 

(assuming it was a TCP message that caused the source quench), which then decreases 

the amount of data being sent on that connection. 
The reference for IP is RFC 791 [Postel 1981a]. 

Internet Addresses 

Every protocol suite defines some type of addressing that identifies networks and com-

puters. An Internet address occupies 32 bits and encodes both a network ID and a host 

ID. The host ID is relative to the network ID. Every host on a TCP/IP internet must 

have a unique 32-bit address. TCP/IP addresses on the Internet are assigned by a central 

authority—the Network Information Center (NIC) located at SRI International. Even if 

you are establishing your own internet, and don't plan to join the Internet, you can still 

get an assigned Internet address by contacting SRI. (See Appendix M of Nemeth, 

Snyder, and Seebas [1989] for the details on how to do this.) 
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A 32-bit Internet address has one of the four formats shown in Figure 5.2. 

class A 

class B 

class C 

class D 

7 bits I 24 bits 

Chapter 5 

0 netid hostid 

14 bits 16 bits 

0 netid hostid 

21 bits 8 bits 

0 netid hostid 

28 bits 

0 multicast address 

Figure 5.2 Internet address formats. 

Class A addresses are used for those networks that have a lot of hosts on a single net-
work, while Class C addresses allow for more networks but fewer hosts per network. For 
network addresses assigned by the NIC, only the type of address (Class A, B, or C) and 
the network ID is assigned. The requesting organization then has responsibility for 
assigning individual host addresses on that network. We won't consider multicast 
addresses (Class D) any further. 

Internet addresses are usually written as four decimal numbers, separated by decimal 
points. Each decimal digit encodes one byte of the 32-bit Internet address. For example, 
the 32-bit hexadecimal value 0x0102141404 is written as 1.2.255.4. This example is a 
Class A address with a network ID of 1 and a host ID of 0x02141404. A sample Class B 
address is 128.3.0.5, and a sample class C address is 192.43.235.6. 

Every IP datagram contains the 32-bit Internet address of the source host and the 
32-bit Internet address of the destination host, in every 20-byte IP header. Since an Inter-
net address is comprised of a network ID and a host ID, gateways can easily extract the 
network ID field from a 32-bit address and route IP datagrams based solely on the net-
work ID. This is an important concept for routing, as it means that a gateway needs only 
to know the location of other networks, and does not to need to know the location of 
every host on an Internet. 

Recall that a multihomed host is connected to two or more networks. This implies 
that it must have two or more Internet addresses, one for each network that it is con-
nected to. This means that every Internet address specifies a unique host, but each host 
does not have a unique address. 
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Subnet Addresses 

Any organization with an Internet address of any class can subdivide the available host 
address space in any way it desires, to provide subnetworks. For example, if you have a 
Class B address, there are 16 bits allocated for the host ID. If your organization wants to 
assign host IDs to its 150 hosts, that are in turn organized into 10 physical networks, 
there are two different ways to do this. 

• You can allocate host IDs of 1 through 150, ignoring the physical network struc-
ture. This requires that all the gateway systems among the 150 hosts know where 
each individual host is located, for routing purposes. Adding a new host requires 
that each gateway's routing table be updated. 

• You can allocate some of the high-order bits from the host ID, say the high-order 
8 bits, for the network ID within your subnetwork. These 8 bits are independent 
of the Class B network ID. The remaining 8 bits of the Class B host ID you then 
use to identify the individual hosts on each internal network. Using this tech-
nique, your gateway systems can extract the 8-bit internal network ID and use it 
for routing, instead of having to know where each of the 150 hosts are located. 
Adding a new host on an existing internal network doesn't require any changes to 
the internal gateways. 

A picture of what the second option is doing is given in Figure 5.3. 

standard 
class B 
address 

subnetted 
class B 
address 

14 bits 16 bits 

1 0 netid hostid 

14 bits 8 bits 8 bits 

1 0 netid subnetid hostid 

Figure 5.3 Class B Internet address with subnetting. 

This feature adds another level to the Internet address hierarchy. 

• network ID 
• subnet ID within network 
• host ID within subnet 

The reference for subnetting is RFC 950 [Mogul and Postel 1985]. 
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Address Resolution 

If we have an Ethernet LAN consisting of hosts using the TCP/IP protocols, we have two 
types of addresses: 32-bit Internet addresses and 48-bit Ethernet addresses. Recall from 
the previous chapter that the 48-bit Ethernet addresses are typically assigned by the 
manufacturer of the interface board and are all unique. We have the following address 
resolution problems: 

• If we know the Internet address of the other host that we want to communicate 
with, how does the IP layer determine which Ethernet address corresponds to that 
host? This is the address resolution problem. 

• When a diskless workstation is initialized (bootstrapped), the operating system 
can usually determine its own 48-bit Ethernet address from its interface hardware. 
But we do not want to embed the workstation's 32-bit Internet address into the 
operating system image, as this prevents us from using the same image for multi-
ple workstations. How can the diskless workstation determine its Internet address 
at bootstrap time? This is the reverse address resolution problem. 

The first problem is solved using the Internet Address Resolution Protocol (ARP), and the 
second uses the Internet Reverse Address Resolution Protocol (RARP). 

The ARP allows a host to broadcast a special packet on the Ethernet that asks the 
host with a specified Internet address to respond with its Ethernet address. Every host on 
the Ethernet receives this broadcast packet, but only the specified host should respond. 
Once the requesting host receives the response it can maintain the mapping between the 
Internet address and the Ethernet address for all future packets destined for the same 
Internet address. The reference for ARP is RFC 826 [Plummer 1982]. 

The RARP is intended for a LAN with diskless workstations. One or more systems 
on the LAN are the RARP servers and contain the 32-bit Internet address and its 
corresponding 48-bit Ethernet address for each workstation. This allows the operating 
system for each workstation to be generated without having to have its Internet address 
as part of its configuration. When the workstation is initialized, it obtains its 48-bit 
Ethernet address from the interface hardware and broadcasts an Ethernet RARP packet 
containing its Ethernet address and asking for its Internet address. Every host on the 
Ethernet LAN receives this broadcast, but only the RARP servers should respond. The 
reference for RARP is RFC 903 [Finlayson et al. 1984a]. 

5.2.5 Transport Layer—UDP and TCP 

User processes interact with the TCP/IP protocol suite by sending and receiving either 
TCP data or UDP data. The relationship of TCP and UDP to our simplified 4-layer 
model from Section 1.5 is shown in Figure 5.4. 
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Figure 5.4 4-layer model showing UDP, TCP, and IP. 

These two protocols are sometimes referred to as TCP/IP or UDP/IP, to indicate that both 
use IP also. 

TCP provides a connection-oriented, reliable, full-duplex, byte-stream service to an 
application program. UDP, on the other hand, provides a connectionless, unreliable data-
gram service. Figure 5.5 compares IP, UDP, and TCP against the modes of service that 
we described in the previous chapter. 

IP UDP TCP 

connection-oriented ? no no yes 

message boundaries ? yes yes no 

data checksum ? no opt. yes 

positive ack. ? no no yes 

timeout and rexmit ? no no yes 

duplicate detection ? no no yes 

sequencing ? no no yes 

flow control ? no no yes 

Figure 5.5 Comparison of protocol features for IP, UDP, and TCP. 
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Notice that we list IP as not having flow control, since the source quench feature 
described earlier is not an end-to-end flow control technique. 

Since the IP layer provides an unreliable, connectionless delivery service for TCP, it 
is the TCP module that contains the logic necessary to provide a reliable, virtual circuit 
for a user process. TCP handles the establishment and termination of connections 
between processes, the sequencing of data that might be received out of order, the end-
to-end reliability (checksums, positive acknowledgments, timeouts), and the end-to-end 
flow control. RFC 793 [Postel 1981c] is the standard reference for TCP. 

UDP provides only two features that are not provided by IP: port numbers 
(described below) and an optional checksum to verify the contents of the UDP datagram. 
But these two features are enough reason for a user process to use UDP instead of trying 
to use IP directly, when a connectionless datagram protocol is required. The reference 
for UDP is RFC 768 [Postel 1980]. 

Port Numbers 

Figure 4.14 shows that it is possible for more than one user process at a time to be using 
either TCP or UDP. This requires some method for identifying the data associated with 
each user process. Both TCP and UDP use 16-bit integer port numbers for this identifi-
cation. 

When a client process wants to contact a server, the client must have a way of identi-
fying the server that it wants. If the client knows the 32-bit Internet address of the host 
on which the server resides it can contact that host, but how does the client identify the 
particular server process? To solve this problem, both TCP and UDP have defined a 
group of well-known ports. (These are the Internet-specific well-known addresses that 
we described in the previous chapter.) For example, every TCP/IP implementation that 
supports FTP, the File Transfer Protocol, assigns the well-known port of 21 (decimal) to 
it. TFTP, the Trivial File Transfer Protocol, is assigned the UDP port of 69. 

Let's take this client—server interaction to the next step and assume that a client 
sends a message to the FTP server on some host by sending a message to port 21 on that 
host. How does the FTP server know where to send its response? First, the server can 
obtain the 32-bit Intetnet address of the client from the IP datagram, since these data-
grams contain the source and destination Internet addresses in the 20-byte IP header. 
The client process also requests an unused port number from the TCP module on its local 
host. The server can obtain the 16-bit port number from the TCP header. As long as the 
client's TCP module does not reassign this port number to some other process before the 
first client is finished, there won't be any conflict. When TCP or UDP assign unique port 
numbers for user processes, they are called ephemeral port numbers (short lived). The 
process that receives the ephemeral port number (the client process in this example) 
doesn't care what value it is. It is the other end of the communication link (the server) 
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that needs it. TCP and UDP port numbers in the range 1 through 255 are reserved. All 
the well-known ports are in this range. Some operating systems reserve additional ports 
for privileged programs (4.3BSD reserves the ports 1-1023 for superuser processes as 
we describe in Section 6.8), and the ephemeral ports are above these reserved ports. 

We have described a hierarchical addressing scheme that involves multiple layers. 

• The IP datagram contains the source and destination Internet addresses in its IP 
header. These two 32-bit values uniquely identify the two host systems that are 
communicating. 

• Also contained in the IP header is a protocol identifier, so that the IP module can 
determine if an IP datagram is for TCP, UDP, or some other protocol module that 
uses IP, which isn't discussed in this text. 

• The UDP header and the TCP header both contain the source port number and the 
destination port number. These two 16-bit integer values are used by the protocol 
modules to identify a particular user process. Note that the TCP ports are 
independent of the UDP ports, since the IP header specifies the protocol. TCP 
port 1035, for example, is independent of UDP port 1035. 

As described in the previous chapter, the addition of this control information by the dif-
ferent protocol modules is encapsulation. The combination of information from different 
sources using identifiers such as port numbers, protocol types, and Internet addresses is 
called multiplexing. 

The 5-tuple that defines an association in the Internet suite consists of 

• the protocol (TCP or UDP), 
• the local host's Internet address (a 32-bit value), 
• the local port number (a 16-bit value), 
• the foreign host's Internet address (a 32-bit value), 
• the foreign port number (a 16-bit value). 

An example could be 

(tcp, 128.10.0.3, 1500, 128.10.0.7, 21} 

Figure 5.6 diagrams the encapsulation that takes place with UDP data on an Ethernet. 
If the length of the IP datagram (the data, plus the UDP header, plus the IP header) is 

greater than the MTU of the network access layer, then the IP layer has to fragment the 
datagram before it is passed to the network access layer. If this happens, the receiving IP 
layer has to reassemble the fragments into a single datagram before it is passed to the 
upper layers (e.g., UDP). Whether fragmentation takes place or not, the size of the data 
message (the datagram) exchanged by the two UDP layers is the same. 
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As with UDP, it is also possible for the TCP layer to pass messages to the IP layer that 
exceed the underlying network's MTU. If this happens, the sending IP layer does frag-
mentation and the receiving IP layer does reassembly. For performance reasons, how-
ever, most TCP implementations try to prevent IP fragmentation. 

Concurrent Servers 

With a concurrent server, what happens if the child process that is spawned by the main 
server continues to use its well-known port number while servicing a long request? Let's 
examine a typical sequence. First, the server is started on the host orange and it does a 
passive open using its well-known port number (21, for this example). It is now waiting 
for a client request. 

server 

{tcp, *, 21} 

We use the notation {tcp, *, 21} to indicate that the server is waiting for a TCP 
connection on any connected network (i.e., interface), on port 21. If the host on which 
the server is running is connected to more than one TCP/IP network, the server can 
specify that it only wants to accept a connection from a client on one specific network. 
Our asterisk notation indicates that a connection will be accepted on any network. 

At some later time a client starts up and executes an active open to the server. The 
client has an ephemeral port number assigned to it by the protocol module (TCP, in this 
example). Assume the ephemeral port number is 1500 for this example, and assume that 
the name of the client's host is apple. This is shown in Figure 5.8. 

r 

L 

host orange host apple 
 1 r 

server 
connection 

{tcp, *, 21} 

client 

i{tcID apple, 1 500}1 

L   J 

Figure 5.8 Connection from client to server. 

The notation { t cp , apple, 1500} is the client's half association or socket. Here 
we are designating the Internet address as apple, using the name of the host instead of 
its 4-digit notation. When the server receives the client's connection request, it forks a 
copy of itself, passing the connection to the child process, as shown in Figure 5.9. 
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host orange 

{tcp,  21} 

fork 

connection 

{ tcp, orange, 21}

L J 

host apple 
r   1 

client , 

i{tcp apple, 1500}1

L   J 

Figure 5.9 Concurrent server passes connection to child. 

Chapter 5 

The association is { t cp, orange, 21, apple, 1500}. The server process that 
was waiting for the client connection now returns to its wait loop, letting the child pro-
cess handle the client's request. 

Assume that another client process on the host apple requests a connection to the 
same server. The client's TCP module assigns it a new ephemeral port number, say 

1501, so that the half association It cp , apple, 1501} is unique on the host 
apple. This gives us the picture shown in Figure 5.10. 

host orange 

fork 

L 

{tcp, 21}

server 
(child) 

{tcp, orange, 21} 

{ tcp, orange, 21}

J 

connection 

connection 

host apple 
r  

client 

{tcp, apple, 1500}, 

client , 

i{tcp apple, 1501}1 

L   J 

Figure 5.10 Second client connection passed to another child. 
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Note that even though there are two identical half associations on the orange host, 
{ t cp, orange, 21 } , the two complete associations are unique. 

{tcp, orange, 21, apple, 1500} 

{tcp, orange, 21, apple, 1501} 

The TCP module on the orange system is able to determine which server child process 
is to receive a given data message, based on the source Internet address and the source 
TCP port number. 

We assumed in the examples above that the TCP module assigns a unique ephemeral 
port number to a process (e.g., a client) if the process does not need to assign a well-
known port to itself (e.g., a server). This is what normally happens. There are instances, 
however, when a process can request that a specific port be used. The Internet FTP has 
this requirement, and it is interesting to examine this as another example of Internet 
addressing and port assignment. 

FTP normally runs using the standard client and concurrent-server relationship, as 
shown above. User commands are passed from the client to the server across the TCP 
connection, with the server's responses being returned on the connection. But when we 
request a file to be transferred between the client and server, another TCP connection is 
established between the two processes. This provides one connection for commands and 
one connection for data. The client initiates the transfer by sending a command across 
the existing connection to the server. The client also creates a new communication chan-
nel, using the same port number that it is using for the control connection. The client 
does a passive open on this new channel, waiting for the server to complete the connec-
tion. This is different from the previous examples, as the client now has to tell its TCP 
module that it is OK to use the same port number, even though the half association, 
{ t cp, apple, 1500 } , for example, is not unique on the client's host. (This is done 
using the SO REUSEADDR socket option, as we'll describe in Section 6.11.) To guaran-

- 
tee a unique association when the server completes the connection with this new client 
port, the server must use some other port. FTP dictates that the server use the well-
known port 20 for this purpose. If we assume that both the client processes in our previ-
ous examples are FTP clients, and both have established a data connection with their 
respective servers, we have the picture shown in Figure 5.11. All four associations are 
unique, as required by the Internet protocol suite. 

{tcp, orange, 20, apple, 1500} 

{tcp, orange, 21, apple, 1500} 

{tcp, orange, 20, apple, 1501} 

{tcp, orange, 21, apple, 1501} 
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L 

host orange 

FTP 

server 

{tcp, *, 21} 

{tcp, orange, 21} 

{tcp, orange, 20 

host apple 

I {tcp, apple, 1500} I 

cp apple, 1500} 

L J 

Figure 5.11 FTP example with two clients and two servers. 

Buffering and Out-of-Band Data 

UDP is a datagram service. Every datagram written by a user process has a header 
encapsulated by the UDP layer, then the datagram is passed to the IP layer for transmis-
sion. There is no reason for the UDP layer to let the user's data hang around in the UDP 
layer. The data is transmitted as soon as the IP layer can get to it, so the concepts of 

buffering and out-of-band data do not apply to UDP. 
TCP, however, presents a byte-stream service to the user process, and provides both 

of these features. In TCP terminology the flush output command is called the push flag, 
and out-of-band data is called urgent data. By definition, TCP supports any amount of 
out-of-band data, but not all implementations support more than one byte at a time of 
urgent data. 

We show how a user process can set the TCP push flag with a socket option in Sec-
tion 6.11, and we return to TCP out-of-band data in Section 6.14. 

Buffer Sizes and Limitations 

By definition the maximum size of an IP datagram is 65,536 bytes. Assuming a 20-byte 
IP header, this leaves up to 65,516 bytes for other data in the datagram. Realize, how-
ever, that as soon as the size of an IP datagram exceeds the size of the underlying 
network's MTU, fragmentation occurs. Furthermore, not all TCP/IP implementations 
support IP fragmentation, let alone fragmentation of a 65,536-byte datagram. Every 
TCP/IP implementation must support a minimum IP datagram size of 576 bytes. Note 
that a network can have an MTU smaller than 576, but any host must be able to 
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reassemble the fragmented IP packets into at least a 576-byte IP datagram. The actual 
maximum size of an IP datagram depends on the IP software on both ends, as well as the 
software on every gateway between the two ends. 

Since UDP packets are transmitted using IP, if the result of adding the UDP header 
and the IP header causes the datagram to exceed the network's MTU, fragmentation 
occurs. This means, for example, that sending 2048-byte UDP packets on an Ethernet 
guarantees fragmentation. 

TCP is different, since it breaks up the data into what it calls segments. The segment 
size used by TCP is agreed on between the two ends when a connection is established. In 
Section 6.11 we describe a socket option that allows a user process to determine the seg-
ment size being used by TCP. 

Cabrera et al. [1988] show the effects of IP fragmentation on network performance. 
Kent and Mogul [1987] provide arguments for not allowing fragmentation at all. 

5.2.6 Application Layer 

There are several application programs that are provided by almost every TCP/IP imple-
mentation. One strength of the TCP/IP protocol suite is the availability of these standard 
applications for a variety of operating environments. 

Additional details on FIP, TELNET, and SMTP are given in Stallings et al. [1988], 
in addition to the RFCs referenced below. 

ler 
is FTP—File Transfer Protocol 
DP 
of 11P is a program used to transfer files from one system to another. It provides a rich set 

of features and options, such as user authentication, data conversion, directory listings, 

Dth and the like. Its standard definition is RFC 959 [Postel and Reynolds 1985]. 
ag, A typical sequence of events is for an interactive user to invoke an FIP client pro-
of cess on the local system. This client process establishes a connection with an FTP server 
of process on the remote system using TCP. 1IP establishes two connections between the 

client and server processes—one for control information (commands and responses) and 
ec- the other for the data being transferred. The interactive user is prompted for access infor-

mation on the remote system (login name and password, if required), and files can then 
be transferred in both directions. 1IP handles both binary and text files. 

TFTP—Trivial File Transfer Protocol 
yte 

ov- Tr IP is a simpler protocol than FTP. While it provides for file transfer between a client 
ing process and a server process, it does not provide user authentication or some of the other 
OD S features of FTP (listing directories, moving between directories, etc.). TF1P uses UDP, 
ery not TCP. The reference for TI4r1P is RFC 783 [Sollins 1981]. 
ote We develop a complete client and server implementation of TFTP in Chapter 12. 
to 
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TELNET—Remote Login 

TELNET provides a remote login facility. It allows an interactive user on a client system 
to start a login session on a remote system. Once a login session is established, the client 
process passes the user's keystrokes to the server process. As with the FTP program, 
TELNET uses TCP. The standard for TELNET is RFC 854 [Postel and Reynolds 1983]. 

We consider the design of a remote login facility in Chapter 15 when we discuss the 
4.3BSD remote login command. 

SMTP—Simple Mail Transfer Protocol 

SMTP provides a protocol for two systems to exchange electronic mail using a TCP con-
nection between the two systems. The protocol definition for SWEEP is RFC 821 [Postel 
1982]. The standard for the format of the mail messages is RFC 822 [Crocker 1982]. 
RFC 974 [Partridge 1986] specifies how mail is routed. 

5.3 XNS—Xerox Network Systems 

5.3.1 Introduction 

Xerox Network Systems (also called Xerox NS, or XNS) is the network architecture 
developed by Xerox Corporation in the late 1970s for integrating their office products 
and computer systems. XNS is an open system, in that Xerox has published and made 
available the protocols used by XNS. Other vendors also provide hardware and software 
that supports the XNS protocols. Most 4.3BSD systems provide support for the XNS 
protocol suite. XNS is similar in structure to the TCP/IP protocol suite, so the presenta-
tion in this section assumes the reader has read the TCP/IP description in the previous 
section. 

5.3.2 Overview 

The arrangement of the layers in the XNS protocol suite, and their approximate mapping 
into the OSI model is shown in Figure 5.12. 

ECHO Echo Protocol. A simple protocol that causes a host to echo the packet that 
it receives. Most XNS implementations support this protocol. 

RIP Routing Information Protocol. A protocol used to maintain a routing data-
base for use on a host in the forwarding of IDP packets to another host. 
Typically a routing process exists on the host, and this process uses RIP to 
maintain the database. 
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Figure 5.12 Layering in the XNS protocol suite. 
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PEX Packet Exchange Protocol. An unreliable, connectionless, datagram proto-
col for user processes. Although PEX is not a reliable protocol, it does 
retransmission but does not perform duplicate detection. We describe PEX 
later in this section. 

SPP Sequenced Packet Protocol. A connection-oriented, reliable protocol for 
user processes. It provides a byte stream for the user process with optional 
message boundaries. SPP is the most commonly used protocol in the XNS 
suite, similar to TCP in the Internet suite. We describe SPP in more detail 
later in this section. 

ERROR Error Protocol. A protocol that can be used by any process to report that it 
has discovered an error and therefore discarded a packet. 

IDP Internet Datagram Protoc 1. IDP is the connectionless, unreliable data-
gram protocol that provid s the packet delivery service for all the above 
protocols. We describe ID later in this section. 
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The five protocols that we show at OSI layer 4 are termed the "Internet" Transpo 
Protocols by Xerox. These are defined by Xerox [1981b], with additional details give 
in O'Toole, Torek, and Weiser [1985]: Boggs et al. [1980] gives some insight into 
design of XNS. 

Most Xerox applications are built using the Courier remote procedure call protoco 
Courier, in turn, is built using SPP. We show this in Figure 5.13. 
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Figure 5.13 Typical XNS applications that use Courier. 

A user process has the choice of interacting directly with SPP or using Courier. We 
return to Courier in Chapter 18 when we describe remote procedure calls in more detail. 

Note that all XNS protocols use IDP. Recall from the TCP/IP protocol suite that 
ARP and RARP did not use IP. 

5.3.3 Data-Link Layer 

The typical XNS network is an Ethernet, although other technologies such as leased or 
switched telephone lines using SDLC are possible. 

5.3.4 Network Layer— IDP 

XNS Addresses 

An XNS address occupies 12 bytes and is comprised of three parts: 

• a 32-bit network ID, 
• a 48-bit host ID, 
• a 16-bit port number. 
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(Unfortunately, the XNS literature calls the 16-bit port number a socket. To avoid confu-
sion with the term socket that we defined in the previous chapter, we call this XNS field 
a port.) In our definition of a socket from the previous chapter, {protocol, local-addr, 
local-process], the protocol is xns, the local-addr is the combination of the network ID 
and the host ID, and the local process is the port number. Note that an association in the 
TCP/IP protocol suite interprets the local-process relative to the protocol, which is why 
we have to differentiate between TCP and UDP. With XNS, however, that distinction 
isn't required since the local-process (the port number) does not depend on any specific 
transport protocol within XNS. 

The host ID is an absolute number that must be unique across all XNS internets. 
Typically the 48-bit host ID is set to the 48-bit Ethernet address, as most Xerox internets 
are built using Ethernets. (Recall from the previous chapter that all Ethernet interfaces 
are provided by their manufacturer with a unique 48-bit Ethernet address.) With unique 
host IDs, the network ID is redundant, but it is required for routing purposes. Like the 
host ID, the network ID must also be unique across all XNS internets. Both host IDs and 
network IDs are assigned by Xerox Corp. to guarantee their uniqueness. Host IDs are 
typically written as six hexadecimal digits separated by periods, as in 2.7.1.0.2a.19. The 
network ID is typically written as a decimal integer. 

Recall that TCP/IP host IDs are relative to the network ID, not absolute. For exam-
ple, the host ID in both of the Class B addresses 128.1.0.3 and 128.2.0.3 is 3, but the first 
network ID is 1 and the second is 2. XNS host addresses, on the other hand, form a flat 
address space. 

IDP Packets 

Everything in XNS is eventually transmitted in an IDP packet. IDP provides a connec-
tionless and unreliable delivery service, similar to the IP layer in the TCP/IP protocol 
suite. Every IDP packet contains a 30-byte header with the following fields: 

• source XNS address (host ID, network ID, port), 
• destination XNS address (host ID, network ID, port), 
• checksum, 
• length of data (typically 0-546 bytes), 
• higher layer packet type (SPP, PEX, etc.). 

The differences between IP and IDP are as follows: 

• The IDP packet contains a checksum that includes the entire IDP packet. Recall 
that the IP checksum is only for the IP header, and does not include the data in the 
IP datagram. IP forces the upper layers (UDP and TCP) to add their own check-
sums, if desired. 

• IDP packets contain a 16-bit port number. In the TCP/IP suite, both UDP and 
TCP are required to define their own port numbers, which are stored in their own 
headers. The IDP port number is in the IDP header. 
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• IDP demultiplexes the incoming datagrams based on the port number, since the 
IDP port number is independent of the actual protocol. The IP layer, on the other 
hand, demultiplexes the incoming datagrams based on their protocol field—
usually TCP or UDP. The TCP and UDP layers then demultiplex the data based 
on the port numbers in the TCP and UDP headers. 

Given the first two points, it is more reasonable for a user process to use IDP directly, 
when an unreliable datagram protocol is required, than for a user process to use Ip 
directly. 

Since the IDP layer demultiplexes the incoming datagrams based on the local port 
number, and not the packet type, it is possible for a protocol module to receive packets of 
another protocol. For example, it is possible for the SPP protocol module to receive an 
ERROR protocol packet whose destination is the port using SPP. Each protocol package 
in the XNS suite must be prepared to receive ERROR protocol packets. Again, this 
differs from the TCP/IP suite. 

5.3.5 Transport Layer—SPP and PEX 

SPP—Sequenced Packet Protocol 

SPP, the predominant transport layer protocol in XNS, is similar to TCP. It provides a 
connection-oriented, reliable, full-duplex service to an application program. Unlike TCP, 
which provides only a byte-stream interface, there is a three-level hierarchy in the data 
being transferred using SPP. 

• Bytes are the basic entity. 
• A packet is composed of zero or more bytes. 
• A message is composed of one or more packets. 

Using these data forms, SPP can present three different interfaces to a user process. 

• A byte-stream interface: the bytes are delivered to the user process in order. The 
user process reads or writes the data using any convenient buffer size. Message 
boundaries are preserved, but there are no packet boundaries seen by the user pro-
cess. 

• A packet-stream interface: the packets are delivered to the user process in order. 
The user process reads or writes entire packets, each of which is passed on to the 
IDP layer. The user process has to know more details, such as the format of the 
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12-byte SPP header, to set and detect message boundaries. The user process is 
not to associate any semantics with the physical packet boundaries that it reads 
and writes; instead the message boundaries available through SPP are to be used 
for message demarcation. 

• A reliable packet interface: the packets are delivered to the user process, but they 
might be out of order. This interface presents the packets to the user process as 
they arrive, which might be out of order, since two consecutive IDP packets might 
travel from the source to the destination following different routes. Duplicate 
packets are removed by the SPP software. 

The first two interfaces are typically provided, while the reliable-packet interface is an 
option. Also, it is possible for both ends of a connection to be using a different interface. 
For example, there is nothing to prevent a client from using the byte-stream interface 
when communicating with a server that is using the packet-stream interface. We com-
pare these three interfaces in Figure 5.14. 

SPP 

byte-stream packet-stream reliable-packet 

connection-oriented ? yes yes yes 

message boundaries ? yes yes no 

packet boundaries ? no yes yes 

data checksum ? yes yes yes 

positive ack. ? yes yes yes 

timeout and rexmit ? yes yes yes 

duplicate detection ? yes yes yes 

sequencing ? yes yes no 

flow control ? yes yes yes 

Figure 5.14 Comparison of interfaces provided by SPP. 

In this figure we have added the line "packet boundaries" to differentiate between the 
byte-stream interface and the packet-stream interface. In future figures we show only the 
SPP byte-stream interface, since it supports message boundaries. Since the reliable-
packet interface is not common, we do not consider it any further in this text. 

In Figure 5.15 we diagram the encapsulation that takes place with SPP data on an 
Ethernet. 
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Figure 5.15 Encapsulation of SPP data on an Ethernet. 

The' datastream type field and the packet type field are termed bridge fields and w 
describe them later in this section. The 12-byte XNS address fields contain the 48-bi 
host address, the 32-bit network address and the 16-bit port number. 

PEX—Packet Exchange Protocol 

Another transport layer protocol is PEX the Packet Exchange Protocol. PEX is a data. 
gram oriented protocol, similar to UDP, but PEX retransmits a request when necessar3 
(reqUiring a timeout and retransmission) and PEX does not do duplicate detection. PE)i 
has a 6-byte header that includes a 32-bit ID field and a 16-bit client type. The protocol 
operates as follows: 

1. The client sets the ID field to some value that it chooses and sets the client type 
field to a value that specifies the type of service requested. The packet is sent t( 
the server. 

2. The server performs the service specified by the client type. 

3. When the server forms its response packet, it must return the same ID field that 
was sent by the client. This way, when the client receives the response it know 
which request the server is responding to. The client must then use a different 
ID field for its next request. 
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The purpose of the client type field in the PEX header is to allow a single server to han-
dle multiple service requests, each service corresponding to a different client type. The 

PEX module on the client end will retransmit the request if a response if not received in a 
specified amount of time, obviating the user's client process from having to do this. 

The encapsulation that takes place with PEX data on an Ethernet is shown in Fig-
ure 5.16. 

data 
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ID field C 1 

packet type = PEX 
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header 

data 
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Figure 5.16 Encapsulation of PEX data on an Ethernet. 

The relationship of the XNS protocols that we have described to our simplified 
4-layer model is shown in Figure 5.17. 
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Figure 5.17 4-layer model showing SPP, PEX, and IDP. 

Process Layer 

Transport Layer 

In Figure 5.18 we add IDP, PEX, and SPP to our table of protocol services from the 
previous section. 

IP IDP UDP PEX TCP SPP 

connection-oriented ? no no no no yes yes 

message boundaries ? yes yes yes yes no yes 

data checksum ? no yes opt. yes yes yes 

positive ack. ? no no no no yes yes 

timeout and rexmit ? no no no yes yes yes 

duplicate detection ? no no no no yes yes 

sequencing ? no no no no yes yes 

flow control ? no no no no yes yes 

Figure 5.18 Comparison of protocol features: Internet protocols and XNS protocols. 

As mentioned earlier in this section, the column for SPP is for either the byte-stream 
interface or the packet-stream interface, since both provide the same features for the ser-
vices listed. 
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XNS Bridge Fields 

The XNS protocols define bridge fields in the headers that are encapsulated by each 
layer. These fields are not used by a particular layer, but are set and interpreted by the 
next higher layer. There are three bridge fields. 

1. The packet type field in the IDP header is not used by the IDP layer. It specifies 
the protocol of the data in the IDP packet. This is how, for example, the SPP 
module knows that a received packet is an ERROR protocol packet and not an 
SPP data packet. 

2. The datastream type field in the SPP header is not used by the SPP module, but 
is available for the user process that is using SPP. The XNS reference, Xerox 
[1981b], provides an example use of this field in shutting down an SPP connec-
tion between two user processes. 

3. The client type field in the PEX header is not used by the PEX protocol module. 
Again, it is intended for the user process that is using PEX. 

The complication imposed by these bridge fields is that they are in the headers that are 
encapsulated and decapsulated by the protocol software—they are not in the normal data 
area that the user reads and writes. This requires some form of interface between the 
protocol modules (SPP and PEX) and the user process, to allow us to set and examine 
these bridge fields. 

We'll examine the 4.3BSD socket options that allow a user process to examine and 
set these bridge fields in Section 6.11. Additionally, the XNS echo client that we develop 
in Section 11.3 uses one of these socket options to set the packet type field in the IDP 
header. 

Buffering and Out-of-Band Data 

PEX is a datagram service, so the concepts of buffering and out-of-band data don't apply. 
SPP, however, provides a single byte of out-of-band data. The Xerox specification states 
that this byte of data is to be made available to the user process as quickly as possible, 
and furthermore it is presented to the user process again according to its normal 
sequence. This means that the receiving SPP layer makes a copy of the out-of-band byte 
in some special location and also puts the byte into its sequential position in the 
receiver's input buffer. 

We'll return to SPP out-of-band data in Section 6.14. 
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Buffer Sizes and Limitations 

IDP packets are not fragmented as Internet IP datagrams might be. Most Xerox systems 
enforce a maximum IDP packet size of 576 bytes. Allocating 30 bytes for the IDP 
header, this allows up to 546 bytes of data in an IDP packet. Allowing 12 bytes for an 
SPP header, the maximum SPP packet size is 534 bytes. 

5.3.6 Application Layer 

The main use of XNS today is to communicate with Xerox hardware. As mentioned ear-
lier, most of these applications use the Courier remote procedure facility, which we 
describe in Chapter 18. Xerox standards are available for the predominant application 
protocols—printing protocol (sending files to a Xerox printer), and filing protocol (send-
ing and receiving files from a Xerox file server), for example. Xerox [1985] provides 
additional information on some of these applications. 

5.4 SNA—Systems Network Architecture 

5.4.1 Introduction 

SNA, Systems Network Architecture, was originally released by IBM in 1974. It has 
since been enhanced many times and is now the predominant method used to form inter-
nets of various IBM computers. Additionally, many vendors other than IBM provide 
various levels of SNA support, allowing many non-IBM systems to participate in SNA 
networks. SNA is an architecture, not a product. There exist software and hardware 
products from both IBM and other vendors that implement different portions of SNA. 

Our reason for covering SNA in a book on Unix networking, is that most vendors of 
Unix systems now support SNA, in one form or another. Frequently the support is for 
LU 6.2, which is the emphasis of this section. Unfortunately there is no common pro-
gramming interface across all these products, so we won't be able to say much about the 
C interface to an SNA implementation. 

SNA was originally designed to support the networking of nonprogrammable 
devices, such as terminals (termed "workstations" by IBM) and printers, to IBM main-
frames. (An IBM "mainframe" is a system based on the System/370 architecture, as 
opposed to other IBM systems, both large and small.) Because of this non peer-to-peer 
evolution, where one system (the mainframe) is always the master in the communication 
relationship, SNA appears more complicated than the other communication architectures 
that we've discussed (TCP/IP, for example). SNA has always had a terminology all its 
own, and has been confounded by the mainframe requirements just to implement and 
configure an SNA network—CICS, VTAM, NCP, cluster controllers, and the like. Only 
in the past five years has SNA adopted the protocols and implementations that allow two 
user processes to communicate easily with each other, and without the requirement of a 
mainframe in the communication link. 
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The user of a network is defined to be an end user, which is either a user at a termi-
nal or an application program (process). An end user interacts with a logical unit 
(referred to as an LU) to access the network. The type of services provided by the LU to 
the end user differs for each type of LU. LU types 2, 3, 4, and 7 support communication 
between processes and terminals, while LU types 1, 6.1, and 6.2 are for communication 
between two processes. The LU in turn interacts with a physical unit (referred to as a 
PU). The PU is, in essence, the operating system of the node, and it controls the data-
link connections between the node and the network. We picture this in Figure 5.19. 

node 

L 

end user 

Logical Unit 
(LU) 

A 

Physical Unit 
(PU) 

A 

data link 

A 

V 
SNA network 

1 

J 

Figure 5.19 SNA node with logical unit and physical unit. 

If we consider the PU as the operating system of the node, then the data-link portion is 
the device driver of the node. The type of node is specified by the PU type. Five types 
of nodes are currently supported-1, 2.0, 2.1, 4, and 5. These are referred to, for exam-
ple, as a "Type 2.1 node," or "T2.1 node," or as PU 2.1. What we have called earlier 
in this text a "network host" or a "system on a network," is referred to by IBM as a 
node—an addressable unit on a network. IBM uses the term node, since an SNA node 
can be a nonprogrammable device such as a terminal or printer. 

Our interest in this text is only with LU 6.2 and PU 2.1, as these are the strategic 
IBM products, and the only SNA implementations that adequately support communica-
tion between processes. 

The bibliography lists several SNA manuals available from IBM that provide addi-
tional details on all the features mentioned here. 
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5.4.2 Overview 

Chapter 5 

SNA was developed in a layered approach that is similar to the OSI model. The seven 
SNA layers are shown in Figure 5.20. 
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user 
process 

Logical 
Unit 

Path 
Control 

Data 
Link 

SNA layers OSI layers 

Transaction Services Application 

Presentation Services Presentation 

Data-Flow Control 
Session 

Transmission Control 

Transport 

Path Control 
Network 

Data-Link Control Data Link 

Physical Control Physical 

Figure 5.20 7-layer SNA model and approximate mapping between SNA layers and OSI model. 

Since SNA predates the OSI model, there is no exact mapping from the seven SNA 
layers into the seven OSI layers. An approximate mapping between the two, along with a 

consolidation of the seven SNA layers into the corresponding SNA functions, is also 
shown in Figure 5.20. 

In the seven SNA layers, the LU performs the functions of layers 4, 5, and 6—
transmission control, data-flow control, and presentation services. The top layer, transac-
tion services, is what we have called the user process. The bottom two layers are com-
bined into what we have called the network access layer, as these are the two layers that 
change depending on the interface types supported by the node (SDLC, token ring, etc.). 

Note that the four SNA functions in Figure 5.20 correspond to our simplified 4-layer 
model. What we call a user process is called a transaction program (TP) by IBM. 
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Two forms of SNA networks have evolved. 

• Subarea SNA networks. 
These networks are built around IBM mainframes that maintain centralized con-
trol over the network. Internets of independent SNA subarea networks can be 
formed using the SNA network interconnect (SNI) facility. 

• APPN networks. 
APPN stands for "Advanced Peer-to-Peer Networking" and was introduced by 
IBM in 1986 for the System/36. It has also been called SNA/LEN (low entry net-
working). In 1988 the capability was introduced for APPN networks to be con-
nected together through an SNA subarea network. APPN is limited to PU 
Type 2.1 nodes and supports LU 6.2. APPN has features not found in subarea 
networks, such as dynamic routing. Baratz et al. [1985] describe the prototype 
implementation of APPN. 

Today most of the more than 20,000 SNA networks in existence are subarea networks 
based on IBM mainframes. But the increased shift towards smaller systems and the 
increased capabilities of APPN should lead to the creation of many APPN-based net-
works. 

5.4.3 Data-Link Layer 

The Predominant form of network access used in SNA networks is SDLC—synchronous 
data-link control. Typical SDLC links operate between 4.8 Kbps and 57.6 Kbps over 
leased or switched telephone lines. The token ring is now starting to be used for LANs. 
One IBM product, the RT, supports LU 6.2 over an Ethernet. IBM mainframes can com-
municate with each other using SNA over a System/370 data channel. 

5.4.4 Path-Control Layer 

In the TCP/IP and XNS protocol suites, the IP layer and the IDP layer both provided an 
unreliable datagram delivery service to the layers above. In SNA we encounter a dif-
ferent scenario where the SNA path-control layer provides a virtual circuit service to its 
upper layer (the LU). This means that the path-control layer, and the data-link layer 
beneath it, provide error control, flow control, and sequencing. 

Path control is the layer responsible for moving packets around in an SNA network. 
Figure 5.21 shows the encapsulation that each layer applies to a message of user data 
being transmitted by an SNA node, assuming an SDLC data link. 
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Figure 5.21 Encapsulation of SNA data on an SDLC link. 

The request header is the LU header, and the transmission header is the PC (path control) 
header, if we follow the conventions from the TCP/IP and XNS protocol suites where the 
name of an encapsulated header is the name of the layer that adds the header. There is 
another header that is sometimes added by the LU—a function management header 
(FMH) that carries control information between LUs. This header is placed between the 
request header and the data, with a bit turned on in the request header specifying that a 
function management header is present. 

In Figure 5.21 we show the data portion as being from 0 to 256 bytes in length. The 
maximum response unit size is typically 256 or 512 bytes, but this size can be negotiated 
to other values by the two LUs. 

Every LU in a given SNA network must have a unique name, from, 1 to 8 characters. 
In an internet of SNA networks, every network must have a unique name, also from 1 to 
8 characters. A particular LU in an internet is identified by its network-qualified LU 
name. This consists of 

• network name, 
• LU name within the network. 

The network-qualified LU name is written as netname.LUname using a period between 
the two names. The actual mapping of this network-qualified LU name to a physical 
address is handled by a portion of the LU called directory services. 
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The size of the transmission header that path control uses for moving packets 
through a network ranges from 6 to 26 bytes, depending on the node types. We showed a 
6-byte transmission header Figure 5.21. These 6-byte headers are used for traffic 
between two adjacent Type 2.1 nodes. The 26-byte transmission header is used for data 
exchanges between two adjacent subarea nodes that support explicit routing and virtual 
routing. A complete treatment of SNA routing and SNA address formats is beyond the 
scope of this text. Fortunately, it is not a requisite to understanding the use of LU 6.2, 
which is the intent of our coverage of SNA. 

Path control also does packet fragmentation and reassembly, termed segmenting in 
SNA, when a packet must be divided into pieces before being passed to the data-link 
layer. This is similar to the fragmentation and reassembly done by the IP layer, in 
TCP/IP. 

5.4.5 LU 6.2-APPC 

LU 6.2 is also referred to as APPC for Advanced Program-to-Program Communication 
and was released by IBM in 1982. LU 6.2 can use either PU 2.0 or PU 2.1. The major 
difference is that PU 2.0 can only be used to communicate with an IBM mainframe, and 
has inherent in it the master—slave relationship, where the mainframe is the master. 
PU 2.1, however, is newer, and systems implementing PU 2.1 can communicate with 
each other, without the need for a mainframe in the communication path. All newer IBM 
implementations of SNA (System/36, System/38, AS/400, RT, PC) support PU 2.1. 

LU 6.2 provides a connection-oriented, reliable, half-duplex service to an application 
program. Note that this is the first half-duplex service that we have encountered. Both 
TCP and SPP are full-duplex protocols. LU 6.2, however, allows data flow between the 
user processes only in a single direction at a time. In Figure 5.22 we add LU 6.2 to the 
table of protocol features that we have been building. This time, we'll add a row for the 
connection-oriented protocols indicating whether the protocol provides a full-duplex data 
stream to the user process. 

IP IDP UDP PEX TCP SPP LU6.2 

connection-oriented ? -- no no no no yes yes yes 

message boundaries ? yes yes yes yes no yes yes 

data checksum ? no yes opt. yes yes yes no 

positive ack. ? no no no no yes yes yes 

timeout and rexmit ? no no no yes yes yes yes 

duplicate detection ? no no no no yes yes yes 

sequencing ? no no no no yes yes yes 

flow control ? no no no no yes yes yes 

full-duplex ? yes yes no 

Figure 5.22 Comparison of protocol features: Internet, XNS, and SNA. 

Notice that LU 6.2 does not provide an end-to-end data checksum, which is different 
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from the other connection-oriented protocols we've covered—TCP and SPP. The
developers of SNA consider the hop-by-hop reliability of the data-link layer (the cyclic 
redundancy check provided by the SDLC protocol, for example) to be an adequate test 
for corrupted data. (We return to this topic in the last section of this chapter.) Yet 
LU 6.2 provides positive acknowledgments, timeout and retransmission, duplicate detec-
tion, and sequencing, so we still consider it a "reliable" protocol. 

Sessions and Conversations 

In SNA terminology, the peer-to-peer connection between two user processes is called a 
conversation. The peer-to-peer connection between two LUs is called a session. A ses-
sion is usually a long-term connection between two LUs, while a conversation is often of 
a shorter duration. This is shown in Figure 5.23. 
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Figure 5.23 SNA sessions and conversations. 

Using Figure 5.23 we can list some of the features provided by a Type 2.1 node that are 
not available with a Type 2.0 node. 

• A T2.1 node supports multiple hardware links. 

® A T2.1 node supports parallel sessions for its LUs. This means that two LUs, 
each in a different node, can have multiple sessions with each other. 

• A T2.1 node supports multiple sessions for its LUs. This means that a given LU 
can have sessions with more than one partner LU at the same time. 

An example is shown in Figure 5.24. 
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Figure 5.24 Example of sessions and conversations between Type 2.1 nodes. 

1 

Sessions are expensive to establish, so a typical LU establishes a certain number of 
sessions with its partner LUs. This forms a pool of active sessions for the LU to manage. 
When a user process wants to allocate a conversation, it requests the use of a session 
from the LU for the conversation. The LU picks an available session from its pool and 
dedicates this session to the conversation. The user process can use this conversation for 
a single transaction with its partner process, or it can hold on to the conversation for a 
long time. When the process is finished with the conversation, the process deallocates it. 
This allows the LU to put the conversation back into an available pool. 

Using the terminology from the previous chapter we would call a conversation a 
connection, and ignore the fact that a conversation takes place over a session. Indeed, 
sessions are usually established by a network operator or when the system is initialized, 
so the typical user has no control over the session allocations. Note that LU 6.2 differs 
from both TCP and SPP in its explicit allocation and use of sessions. While a TCP con-
nection between two user processes implies that the two TCP modules have a "session" 
of some foiiii between them, we do not have to preallocate a certain number of sessions 
between two TCP modules. There is no inherent limit on the number of "sessions" that 
a TCP module can have with other TCP modules, other than any resource limits in its 
implementation (table sizes, number of processes allowed by the operating system, etc.). 
LU 6.2 requires more user control in specifying the number of sessions to allocate 
between LUs. 

In our client—server model, we identified a server process as a process that had exe-
cuted a passive open, awaiting a connection from a client process. This implied that the 
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server process was already executing when it did the passive open. The server was
identified by a well-known address that was protocol-dependent. LU 6.2 is different in 
that the client specifies the name of the partner program to execute—called the TP 
(transaction program) name. Furthermore, the target LU usually creates a new program 
instance (i.e., a new process) for every conversation that is started with a given TP name. 

Each LU associates a conversation with a unique identifier, which we call a conver-
sation ID, and this ID associates a packet with a particular process. (Since a conversation 
has exclusive use of a session, we can call this either a conversation ID or a session ID.) 
In an APPN network the conversation ID is a 16-bit integer. This 16-bit value is carried 
in the transmission header and is used by APPN to specify the user process. From our 
definition of an association from the previous chapter, for SNA it consists of 

• the protocol (LU 6.2), 
• the local network-qualified LU name, 
• the local conversation ID, 
• the foreign network-qualified LU name, 
• the foreign conversation ID. 

An example of this 5-tuple could be 

{1u62, NET1.LUJOE, 5, NET1.LUMIKE, 3} 

Again, we are not concerned with the conversion of a network-qualified LU name, such 
as NE T 1 . LU JOE , into its internal representation as an SNA address. 

LU 6.2 Protocol Boundary 

The interface between a user proceSs and the LU is called "presentation services" in 
SNA. There are two interfaces possible for a user process to LU 6.2: 

• mapped conversations, 
• unmapped conversations. 

An unmapped conversation is also called a basic conversation. The major difference 
between the two types of conversations is in the format of the data that is exchanged 
between the process and the LU (which we discuss later in this section). 

The interface between a user process and LU 6.2 is defined as a collection of verbs 
that a transaction program can execute to request a service from the LU. This defines the 
protocol boundary between the program and LU 6.2. The actual mapping of these verbs 
into an application program interface (API) depends on the specific LU 6.2 software 
being used. An API could be a set of functions that a user process can call. As men-
tioned earlier, there is no standard API for LU 6.2, not even among different IBM prod-
ucts. Therefore, instead of describing an actual API, we'll describe the different LU 6.2 
verbs that most LU 6.2 implementations provide to an application program. 
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Here we provide a brief summary of the LU 6.2 verbs. We list only the names of the 
mapped conversation verbs—unless otherwise noted, a basic verb that does a similar 
function is available, and its name is formed by removing the MC_ prefix. For example, 
ALLOCATE is the basic conversation equivalent of MC ALLOCATE. 

MC ALLOCATE 

MC CONFIRM 

MC CONF IRMED 

MC DEALLOCATE 

MC FLUSH 

Allocates a conversation with another program. 
Required arguments are the name of the program to 
execute and the name of the LU where that program 
is located. The process issuing the ALLOCATE starts 
in the send state and the partner process starts in the 
receive state. 

Sends a confirmation request to the remote process 
and waits for a reply. This allows the two processes 
in a conversation to synchronize their processing 
with each other. 

Sends a confirmation reply to the remote process. 

Deallocates a conversation. 

Forces the transmission of the local send buffer to the 
other LU. In general, LU 6.2 waits until a full buffer 
is available before sending anything to the other pro-
cess. 

MC GET ATTRIBUTES Obtains information about a conversation, such as the 
name of the partner LU. 

MC PREPARE TO RECEIVE Changes the conversation from send to receive state. 
Recall that LU 6.2 is a half-duplex protocol, not full-
duplex. 

MC_ RECEIVE AND WAIT Waits for information to be received from the partner 
process. The information returned can be user data 
or a confirmation request. 

MC RECEIVE IMMEDIATE Receives any information that is available in the local 
LU's buffer, but does not wait for information to 
arrive. 

MC REQUEST TO SEND Notifies the partner process that this process wants to 
send data. When the local process receives a "send" 
indication from the partner process, the state of the 
conversation changes. 
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MC_ SEND DATA 

Chapter 5 

Sends one data record to the partner process. For a 
mapped conversation, one user data record is option-
ally mapped into a mapped conversation record 
(MCR), as described below. For an unmapped 
conversation, some portion of a logical record is sent. 
Note that regardless of the conversation type, this 
verb might not cause any data to be sent to the other 
process, depending on the buffering in the local LU. 
See the MC FLUSH verb above. 

MC_ SEND_ ERROR Informs the partner process that the local process has 
detected an application error of some form. 

There are additional verbs defined by LU 6.2 that are considered "control operator 
verbs." These are used to start sessions, change the number of sessions, stop sessions, 
and the like. Their usage is product dependent and we don't consider them in this text. 

The LU 6.2 protocol boundary defines numerous return codes from each of the 
verbs. For example, the SEND_DATA verb can return that all. is OK and additionally it 
can indicate that the partner process has issued a REQUEST_ TO___S END. 

Logical Records and GDS Variables 

All user process data consists of a 2-byte length field (LL) followed by zero or more 
bytes of data. This is called a logical record and is shown in Figure 5.25. 

logical record 

LL user data 

2 bytes 0-32765 bytes 

Figure 5.25 SNA logical record. 

The length includes the two bytes occupied by the length field, so its value is always 
greater than or equal to two. ' 

Two processes using the basic conversation verbs exchange logical records. A pro-
cess that is writing logical records need not write a complete logical record with every 
SEND DATA verb. That is, a logical record consisting of 500 bytes (an LL field of 500, 
followed by 498 bytes of user data) can be written in three pieces-100 bytes, followed 
by a SEND_DATA of 250 bytes, followed by a SEND_DATA of 150 bytes. Similarly, the 
receiving process can read the logical record (RE CE IVE_AND_WAI T) in whatever sized 
chunks it desires. A process must write a complete logical record, based on the LL value. 

t Some internal LU components exchange control information for a session with the partner LU 
using length fields less than two. This "invalid" length field informs the LU that the record is a 
control record and not user data. We don't consider these control records in this text. 
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In the above example with an LL of 500, the process cannot write 400 bytes and then do 
a read. Not writing a complete logical record is called truncation and generates an error 
indication for the receiving process. 

For mapped conversations each MC_SEND_DATA verb executed by the process gen-
erates a single user data record. If a mapping is being done, the mapping is applied to 
the user data record, generating the mapped conversation record (MCR). A 2-byte LL 
field and a 2-byte ID field are prepended to the beginning of the MCR, generating a logi-
cal record. This is shown in Figure 5.26. 

user data record 

optional mapping 

mapped conversation record 

prepend LLID prefix 

LL ID mapped conversation record 

2 2 0-32763 bytes 

logical record 

GDS variable 

Figure 5.26 SNA mapped conversation record. 

This logical record is the same as the logical record that is written using the basic conver-
sation verbs, except a 2-byte ID field follows the LL field. This guarantees that the 
length of a logical record from an MC_SEND_DATA verb is greater than or equal to 4 
bytes (since the lengths of the LL field and the ID field are include in the length). For all 
user process data, the ID field is set to 0xl2FF by LU 6.2. Other values of the ID field 
are used by IBM applications and by the LU for special purposes. 

A logical record containing an ID field is also called a GDS variable. GDS is an 
acronym for Generalized Data Stream. A GDS variable can be comprised of multiple 
logical records, if the length of the MCR exceeds 32,763 bytes. But the utility of writing 
such large records is questionable, so we won't confuse the diagrams to show this general 
case. t 

No matter how the data was written, using either the basic conversation write or the 
mapped conversation write, the LU is free to break up the logical records into response 
units (RUs) as it wishes. The maximum response unit size is negotiated by the two 
partner LUs when the session is started and its value is typically 256 bytes for an SDLC 
data link. The LU appends the request header (RH) to the response unit and passes the 
buffer to path control, as shown earlier. 

1' Indeed, a conforming LU 6.2 implementation need handle only 2048-byte logical records. 
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One parameter for the ALLOCATE verbs is the synchronization level. This can be set to 
NONE or CONF IRM.t Specifying the confirmation option allows the user processes to use 
the CONFIRM and CONFIRMED verbs, which were described earlier. This provides an 
end-to-end confirmation that is built into the LU 6.2 protocol itself. Note that the same 
type of feature can be built into any protocol, if the two user processes agree on a con-
vention for indicating a confirmation. We'll see in Section 13.2 how the 4.3BSD line 
printer spooler uses a single byte message to provide a confirmation message to its 
partner process. 

Buffering and Out-of-Band Data 

LU 6.2 internally buffers almost everything that one process sends to another. To cir-
cumvent this, the FLUSH verbs are provided to force the LU to send what is has accumu-
lated in its buffer. For example, when a program ALLOCATEs a conversation with 
another program and then executes a SEND_DATA to transfer data to that process, the 
LU, by default, won't send the allocate until its buffer is full. This means that the initiat-
ing process won't know if there was an error invoking the partner program until some 
number of SEND DATA verbs cause the allocate to be sent to the other side. 

LU 6.2 has no out-of-band data mechanism, comparable to what we described with 
TCP and SPP. A user process must issue a SEND_ERROR verb to notify the other pro-
cess that attention is required. It is then up to the user processes to detemine how to 
handle things. 

Well-Known Addresses 

If the first character of the remote transaction program name (TP name) in an 
ALLOCATE is a special character (0x00-0x0D or Ox10-0x3F), then the remote TP is a 
service transaction program. These programs are typically supplied by IBM and only 
privileged processes can allocate conversations with them. Three service TPs are DIA, 
DDM, and SNADS, described in the next section. This feature corresponds to the 
privileged port feature of 4.3BSD for ports in the Internet domain and in the XNS 
domain. 

t A third option, S YNCP T is specified in the LU 6.2 protocol definition. This option allows 
conversations to specify synchronization points for potentially backing out changes that it has 
made. This option appears to have been discarded by IBM [IBM 1988]. This feature is similar to 
the Commitment, Concurrency, and Recovery feature of the OSI Common Application Service 
Element, which we describe in Section 5.6.7. 
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The LU 6.2 specification provides a base set of features that any implementation must 
provide, along with 41 optional features that can also be provided by a given product. 
For example, one option allows conversations between programs at the same LU. 
Another option allows a process to flush the LU's buffer using the FLUSH verbs. 

Unfortunately, this laxness in the "official" specification of the protocol makes por-
tability of LU 6.2 applications less than desired. But most real-world implementations of 
LU 6.2 on computer systems of general interest (i.e., ignoring special purpose systems 
that weren't intended to be programmed by end users) tend to support options that should 
have been in the base set. Furthemiore, the publication by IBM of their CPI-
Communications API [IBM 1988] gives some indication about the features in LU 6.2 
which will be supported in the future. 

5.4.6 Application Layer 

IBM is building distributed applications using LU 6.2. IBM differentiates between two 
types of user processes that are at the layer above the LU: 

• application transaction programs, 
o service transaction programs. 

The only real difference is that service TPs are supplied by IBM and a service TP can 
provide a service for an application TP. Application TPs are user processes. Service TPs 
can only be invoked by privileged processes, as described above. From a network pro-
gramming perspective the difference is negligible. Both types of TPs access the network 
in the same way through the LU. 

DIA—Document Interchange Architecture 

DIA defines the functions required for interchanging documents between different IBM 
office systems. DIA is implemented on top of LU 6.2. That is, DIA uses LU 6.2 for 
communicating between different computer systems. DIA provides the following func-
tions: document library services (storing and retrieving documents), document distribu-
tion (delivering documents to others in the network), and file transfer. DIA specifies the 
protocols and data structures used to exchange infounation between two DIA 
processes—a DIA client process and a DIA server process. An implementation of DIA 
usually provides a command language for an interactive user to execute DIA commands. 
These user commands (such as sign on, sign off, search, retrieve, deliver, delete, etc.) are 
translated into the appropriate DIA functions that are exchanged between the user's DIA 
client process and the DIA server process, using LU 6.2. DISOSS (Distributed Office 
Support System) is the IBM mainframe implementation of DIA that runs under CICS. 
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One type of document that is exchanged using DIA is one whose format is specified 
by DCA. DCA (Document Content Architecture) specifies the internal format of a docu-
ment that can be exchanged between IBM office systems—the data stream and how it is 
to be interpreted. There are two forms of DCA, revisable form and final form. The 
revisable form specifies the structure of the document while it can be edited or formatted. 
The final form specifies the structure of the completed document in a device independent 
format. The intent of DCA is to allow a document to be moved between different IBM 
office systems, in either a revisable form or a final format. 

SNADS—SNA Distribution Services 

SNADS is an asynchronous distribution service for moving distribution objects (such as 
a document or an electronic mail message) from a source node to a destination node. By 
asynchronous we mean that it initiates the sending of the object, but the actual delivery 
might take place later. Furthermore, the delivery might require temporary storage in one 
or more intermediate nodes. The asynchronous nature of SNADS is similar to the Unix 
electronic mail delivery service provided by the Unix uucp program, which we describe 
in Section 5.7. 

Contrast this with a synchronous delivery service where the source and destination 
are connected together through an LU 6.2 conversation. This synchronous capability is 
similar to the TCP/IP SMTP application, which uses a TCP connection between the 
source host and the destination host. 

DDM—Distributed Data Management 

DDM is another application available from IBM that uses LU 6.2. DDM is IBM's archi-
tecture for transparent remote file access in an SNA network. DDM allows an applica-
tion program to access the records in a file on another system. To do this, the application 
program calls the local DDM interface to request a record from a file. If the interface 
recognizes the request as one for a local file, the local file is accessed. Otherwise, the 
local interface (the DDM client process) establishes an LU 6.2 session with the DDM 
server process on the remote system, and the server accesses the record and returns it to 

the client. 

5.5 NetBIOS 

5.5.1 History 

In 1984 IBM released its first LAN, the IBM PC Network. It was similar in concept to an 
Ethernet, but ran at 2 Mbps, whereas most Ethernets operate at 10 Mbps. The interface 
card for the IBM PC (called an "adapter card" by IBM) was developed by Sytek, Inc., 

and contained on it the first implementation of NetBIOS. The name NetBIOS is derived 

from the name BIOS for the "basic input output system" for the IBM PC. The BIOS 
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was contained in read-only memory on the PC and provided an interface between a pro-
gram on the PC and the actual hardware. Similarly, NetBIOS provides an interface 
between a program and the actual hardware on the interface card. 

When IBM introduced its token ring LAN in 1985, it provided an implementation of 
NetBIOS for the token ring. The original PC Network implementation of NetBIOS was 
implemented in read-only memory on the interface card, while the token ring version was 
a software module. Despite the implementation differences, the token ring version pro-
vided the same interface to an application program as was provided by the original PC 
network. 

The third implementation of NetBIOS by IBM occurred when the IBM PS/2 systems 
were introduced and the IBM LAN Support Program was available. This software pack-
age consists of device drivers and interface support for all of IBM's LAN interfaces. 

NetBIOS is a software interface, not a network protocol. For example, the data 
packets that are exchanged across the IBM PC Network differ from those on a token ring 
network. We expect the actual frame that is transmitted by two different data-link layers 
to be different, since the data link header and trailer are different for each type of data 
link (token ring, Ethernet, SDLC, etc.). But the packet that is passed to the data-link 
layer should not change for a given protocol. For example, in the TCP/IP protocol suite, 
the IP datagram that starts with the IP header is the same, regardless of the data link 
being used. With NetBIOS this packet equivalency is not true. Nevertheless, the inter-
faces provided by all IBM implementations of NetBIOS are equivalent, providing a con-
sistent software interface that has become a de facto standard for personal computers. In 
addition, there exist implementations of NetBIOS that use TCP and UDP as the underly-
ing transport protocols, and standards exist for this in the Internet (RFC 1001 and 
RFC 1002). 

Even though NetBIOS is not a protocol, we give an overview of the services that it 
provides here. Schwaderer [1988] provides details on using NetBIOS under the 
MS-DOS system. IBM [1987] provides additional details. 

5.5.2 Overview 

NetBIOS was designed for a group of personal computers, all sharing a common broad-
cast medium (the IBM PC Network, which we said earlier is like an Ethernet). It pro-
vides both a connection-oriented service (virtual circuit) and a connectionless (datagram) 
service. It supports both broadcast and multicast. 

Four types of service are provided by NetBIOS: 

• name service, 
e session service, 
e datagram service, 
e general commands. 

Figure 5.27 shows the relationship of these four services. Note that we do not indicate 
how these four services interact. In most implementations, a single box providing some 
fonu of datagram delivery (similar to the IP layer in the TCP/IP suite) is probably used. 
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Figure 5.27 Relationship of NetBIOS services. 
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But unlike the IP layer, with NetBIOS the user process has no access to any services 
other than the ones described in the following sections, so the actual implementation need 
not concern us. 

In many PC environments the application that NetBIOS is being used for is file shar-
ing. In this case, another protocol interface exists above NetBIOS. This interface is 
called the Server Message Block protocol (SMB) and we show it in Figure 5.28. 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

SMB interface 

NetBIOS interface 

Figure 5.28 Relationship of NetBIOS and SMB to OSI model. 

Dunsmuir [1989] shows the format of the SMB header and gives a listing of all the SMB 
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functions: create directory, open file, read from file, and so on. Line printer access is 
automatically handled by this software interface by providing three SMB operations that 
are for print files, not regular files. These open, write, and close a print spool file. 

5.5.3 Name Service 

Names are used to identify resources in NetBIOS. For example, for two processes to 
participate in a conversation, each must have a name. The client process identifies the 
specific server by the server's name, and the server can determine the name of the client. 
The name space is flat (that is, it is not hierarchical) and each name consists of from 1 to 
16 alphanumeric characters. Upper case is different from lower case and names cannot 
start with an asterisk or with the three characters "IBM." 

There are two types of names: unique names and group names. A unique name 
must be unique across the network. (As stated earlier, NetBIOS was designed for a 
LAN, so the name must typically be unique on the local network.) A group name does 
not have to be unique and all processes that have a given group name belong to the 
group. 

There are four commands pertaining to name service. 

ADD NAME 

ADD GROUP NAME 

DELETE NAME 

FIND NAME 

Add a unique name 
Add a group name 
Delete name 
Determine if a name is registered 

To obtain a unique name or a group name, a process must bid for the use of the name. 
This is done by broadcasting a notice that the process wants to use the name, as either a 
unique name or a group name by issuing either the ADD_NAME command or the 
ADD GROUP NAME command, respectively. If no objections are received from any 
other NetBIOS node, the name is considered registered by the requesting node. An 
objection occurs for an ADD_NAME if some other node responds that the name is 
currently in use on that node as either a unique name or a group name. The only restric-
tion on the ADD GROUP NAME command is that no other node can be using the name as 
a unique name. 

Implied in the NetBIOS specification is that each NetBIOS node maintains a table of 
all names that processes on that node currently own. These names continue to be owned 
by the NetBIOS node, until the names are specifically deleted, or until the node is 
powered off or reset. Realize that names are handled by two different entities: name 
registration is done by NetBIOS for a process that issues a ADD_NAME command, but it 
is NetBIOS that maintains the name table. Even though the process that registered the 
name might cease to exist, unless the name is specifically deleted with the 
DELETE NAME command, the node's NetBIOS name table continues to know the name. 

Both the ADD NAME and ADD GROUP NAME commands return a local name num-_ 
ber that is a small integer identifying the name. This number is used for the datagram 
commands and for the RECEIVE ANY command (both described below). 

By default, the IBM PC LAN Support Program transmits a name registration request 
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six times, at half-second intervals, until it considers the name registered by itself. This 
implies a 3-second delay every time an application that requires a new name is started for
the first time. 

The FIND NAME command was added with the token ring implementation of Net-
BIOS and determines if a particular name has been registered by any other NetBIOS 
node. 

5.5.4 Session Service 

The NetBIOS session service provides a connection-oriented, reliable, full-duplex mes-
sage service to a user process. The data is organized into messages and each message 
can be between 0 and 131,071 bytes. NetBIOS does not provide any fomi of out-of-band 
data. 

The following commands provide session service: 

CALL Call—active open 
LISTEN Listen—passive open 
SEND Send session data 
SEND NO ACK Send session data, no acknowledgment 
RECEIVE Receive session data 
RECEIVE ANY Receive session data 
HANG_UP Terminate session 
SESSION STATUS Retrieve session status 

NetBIOS requires one process to be the client and another to be the server. The 
server first issues a passive open with the LISTEN command. The client,then connects 
with the server when the client executes the CALL command. 

The LISTEN command requires the caller (typically a server process) to specify 
both the local name (which must be in the local NetBIOS name table) and the remote 
name. The local name is the well-known address that the server is known by. The 
remote name is the name of the specific client with which a session can be established. 
The caller can specify the remote name as an asterisk, allowing any remote process that 
specifies the local name to establish a connection. Since most servers are willing to 
accept a connection from any process (perhaps doing some form of authentication once 
the session is established), specifying the remote name as an asterisk is the typical 
scenario. Both ends of the session can access the name of the other end. 

Both the LISTEN command and the CALL command return a local session number 
to the calling process. This small integer is then used for SEND and RECEIVE com-

mands to specify a particular session (since a process can have more than one session 

active at any time). The local session number is also used by the HANG_UP command to 

specify which session is to be terminated. When a session is terminated, all pending data 

is first transferred. 
In the normal SEND operation, the NetBIOS module waits for a positive acknowl-

edgment from the other system before returning to the caller. Similarly, the RECEIVE 

command sends an acknowledgment to the other system before passing the received data 
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to the caller. This provides an end-to-end verification that the data was received. When 
the token ring implementation of NetBIOS appeared, IBM introduced the 
SEND_ NO_ ACK command, which does not perform the acknowledgments between the 
NetBIOS modules. The reason for this is that the data-link layer of the token ring net-
work performs acknowledgments between the two data-link layers. 

The IBM PC implementations provide a CHAIN SEND command that combines two 
user buffers into a single message. The reason for this command is that the count associ-
ated with a normal SEND command is a 16-bit integer, which allows values between 0 
and 65535. By combining two sends into a single operation, messages up to 131,071 
bytes can be exchanged. This command, however, is an interface issue between the Net-
BIOS implementation and the user process, and we won't consider it any more in this 
text. 

The RECEIVE command receives data for a particular session that the process has 
open. The local session number that was returned by the CALL or LISTEN specifies the 
session. The RECEIVE ANY command allows a process to receive the next message 
from any of its current session partners. NetBIOS returns the actual session number 
corresponding to the received data. 

5.5.5 Datagram Service 

NetBIOS supports datagrams up to 512 bytes in length.t Datagrams can be sent to a 
specific name (either a unique name or a group name) or can be broadcast to the entire 
local area network. As with other datagram services, such as UDP/IP, the NetBIOS data-
grams are connectionless and unreliable. 

There are four datagram commands. 

SEND DATAGRAM Send datagram 
SEND BROADCAST DATAGRAM Send broadcast datagram 
RECEIVE DATAGRAM Receive datagram 
RECEIVE BROADCAST DATAGRAM Receive broadcast datagram 

The SEND DATAGRAM command requires the caller to specify the name of the destina-
- 

tion. The name can be either a unique name or a group name. If the destination is a 
group name, then every member of the group receives the datagram. The caller of the 
RECEIVE DATAGRAM command must specify the local name for which it wants to 
receive datagrams. Datagrams addressed to this name are received by the caller. The 
RECEIVE DATAGRAM command also returns the name of the sender, in addition to the 
actual datagram data. If NetBIOS receives a datagram (i.e., the NetBIOS module has 
previously registered the name to which the datagram was addressed), but there are no 
RECEIVE DATAGRAM commands pending, then the datagram is discarded. 

The SEND BROADCAST DATAGRAM command sends the message to every 

t The NetBIOS device driver supplied with the PC LAN Support Program allows a configuration 
option to specify a maximum datagram length other than 512 bytes. 
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NetBIOS system on the local network. When a broadcast datagram is received by a Net-
BIOS node, every process that has issued a RECEIVE_ BROADCAST_DATAGRAM corn_ 
mand receives the datagram. If none of these commands are outstanding when the 
broadcast datagram is received, the datagram is discarded. As with a nornial datagram, 
the name of the broadcast datagram source is also returned to the receiver. 

5.5.6 General Commands 

There are four general commands. 

RESET Reset NetBIOS 
CANCEL Cancel an asynchronous command 
ADAPTER STATUS Fetch adapter status 
UNLINK Unlink from bootstrap server 

The RE SET command clears the NetBIOS name and session tables, and also aborts any 
existing sessions. 

The CANCEL command assumes that NetBIOS commands can be issued 
asynchronously by a user process. That is, the user process starts a command but does 
not wait for it to complete. Some method is required for the process to be notified when 
the command completes or for the process to check if a specific command is done or not. 
If asynchronous commands are supported by the NetBIOS implementation, then the 
CANCEL command cancels a specific outstanding command. If the command being can-
celled is a SEND, then the associated session is aborted. 

The STATUS command returns interface-specific status associated with either a local 
name or a remote name. Additionally, it returns the NetBIOS name table for that Net-
BIOS node (either the local node or a remote node). Unfortunately, for the IBM PC 
implementations of NetBIOS, the actual contents of the adapter status information that is 
returned to the caller depends on the adapter type (PC Network or token ring). 

The UNLINK command was used with the original PC NetwOrk interface when a 
diskless workstation was bootstrapped from a remote disk drive. 

5.5.7 NetBIOS Summary 

In Figure 5.29 we add the two NetBIOS services to the table that we have been building. 
We use the terms NbS for the NetBIOS session services and NbD for the datagram ser-
vices. Note that the NetBIOS session service is like LU 6.2—both assume the underly-
ing data link provides reliability. 
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IP IDP UDP PEX NbD TCP SPP LU6.2 NbS 
connection-oriented ? no no no no no yes yes yes yes 
message boundaries ? yes yes yes yes yes no yes yes yes 
data checksum ? no yes opt. yes no yes yes no no 
positive ack. ? no no no no no yes yes yes yes 
timeout and rexmit ? no no no yes no yes yes yes yes 
duplicate detection ? no no no no no yes yes yes yes 
sequencing? no no no no no yes yes yes yes 
flow control ? no no no no no yes yes yes yes 
full-duplex ? yes yes no yes 

Figure 5.29 Comparison of protocol features: Internet, XNS, SNA, and NetBIOS. 

Using our definition of an association from the previous chapter, for the NetBIOS 
session service it consists of 

• the protocol (NetBIOS session service), 
• the source name, 
• the source session number, 
• the destination name, 
• the destination session number. 

An example could be 

{NbS, JOESXT, 4, PRINTER, 7} 

For the NetBIOS datagram service, only the protocol and the names are required, as there 
is no concept of a session for a datagram. Note also that the name of a partner process 
implies both the host name and the server's name. 

5.6 OSI Protocols 

5.6.1 Introduction 

As stated in the previous chapter, the OSI model provides a framework within which 
standards can be developed for protocols at each layer. We refer to the protocol stan-
dards developed by ISO and other related organizations (CCITT, for example) as OSI 
protocols. This is in contrast to other networking protocols, most of which predate the 
OSI model, which have been developed by organizations other than ISO or CCITT. 
TCP/IP, XNS, and SNA, for example, are protocol suites that are not based on ISO stan-
dards. 
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OSI protocols have become popular lately as many organizations (such as the U.S. 
Government) have stated their intentions to move towards networks based on ISO stan-
dards. Unfortunately, networks based on OSI protocols are still in their infancy. Work-
ing examples of the lower layers exist, but most of the standards at these lower layers 
(layers 1-3) were developed before the OSI model. Standards exist and are currently 
being developed for the upper layers and for specific applications (see the description of 
the ISODE package below). In the remainder of this section we describe the existing 
ISO standards at each layer. We refer to the actual ISO standard documents by their 
4-digit number. 

As we mentioned in Chapter 4, the ISO standards differentiate between the services 
provided by a layer (for the layer above it) and the actual protocol used to provide the 
service. The protocol definitions describe the actual formats of the protocol packets, the 
header fields, and the like. Most layers or applications have both a standard for the ser-
vice that it provides, along with a standard for the protocol used to provide that service. 

A nonproprietary implementation of many of the OSI protocols is available as the 
ISODE software package. This package runs under 4.2BSD, 4.3BSD, System V 
Releases 2 and 3, along with other variants of these Unix systems. Refer to the Bibliog-
raphy or Appendix A of Rose [19901 for ordering information. Version 5.0 of this pack-
age provides support for the following features: 

• Transport services: TPO and TP4, 
• Session services, 
• Presentation services, 
• Association control services, 
• Remote operation services (similar to the RPC techniques described in Chapter 18), 
• ASN.1 abstract syntax notation tools, 
• F1AM (transfer of text and binary files, directory listings, file management), 
• FTAM/FTP gateway, 
• VT (virtual terminal: basic class with TELNET profile), 
• Directory services. 

Future releases might provide the OSI electronic mail service (X.400) and a gateway 
between this and the Internet SMTP application. All these features and acronyms are 
described in the following sections. 

Many people predict a gradual shift from non-OSI protocols to the OSI protocols 
between 1990 and 1995. The next major release of 4.xBSD should have support for 
some of the OSI protocols. The implementation of the upper layers in this release should 
be based on the ISODE package. 

One confusing feature of the ISO standards is that their terminology differs from 
existing networking terminology. For example, what we call a client and server are 
temied an initiator and responder, respectively, in the ISO-world. The concepts of an 
iterative server and a concurrent server, which we introduced in Section 1.6, are called a 
static responder and a dynamic responder. The packets or messages that are exchanged 
by peer layers (see Figure 4.13, for example) are termed protocol data units in the OSI 
model. 
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For additional information on the OSI protocols, refer to Rose [1990], Henshall and 
Shaw [1988], Stallings [1987a], and Knightson, Knowles, and Larmouth [1988]. A 
detailed listing of all relevant ISO standards is in Chapin [1989]. 

5.6.2 Data-Link Layer 

The data-link layer provides services to the network layer. LANs that use the OSI proto-
cols typically use the IEEE 802 standards for the data-link layer and the physical layer. 
This provides for the IEEE 802.2 logical link control as the interface between the net-
work layer and the data-link layer. The lower portion of the data-link layer, along with 
the physical layer, is then Ethernet (802.3), token bus (802.4), or token ring (802.5). 
These four IEEE standards have comparable ISO standards: 8802/2, 8802/3, 8802/4, and 
8802/5. The 802.2 standard allows either a connection-oriented service or a connection-
less service to be provided to the network layer. Stallings [1987b] provides additional 
details on the IEEE 802 standards. 

Networks that use the OSI protocols with point-to-point connections typically use 
the link access procedure (LAP) that is part of the X.25 standard. (We mention X.25 
below when we describe the network layer.) This protocol is similar to the SDLC proto-
col used by SNA for point-to-point links. 

5.6.3 Network Layer 

ISO standard 8348 defines the services provided by the network layer for the presenta-
tion layer. The original version of the standard provided only for a connection-oriented 
network service (CONS). An addendum provides for a connectionless network service 
(CLNS) also. 

X.25 is the name used to describe the widely used connection-oriented protocol net-
work layer protocol. X.25 is a CCITT standard that first appeared in 1974. X.25 encom-
passes layers 1, 2, and 3, not just the network layer. ISO standard 8878 describes how 
X.25 can be used to provide a connection-oriented network service. 

ISO standard 8473 defines the protocol used to provide the connectionless network 
service. This protocol is similar to the Internet Protocol, IP, which we discussed in Sec-
tion 5.2.4. One difference is that the Internet IP uses fixed-length address fields in its IP 
header (the 32-bit network ID and host ID value) while the OSI IP uses variable-length 
address fields. 

5.6A Transport Layer 

The task of the transport layer is to provide reliable, end-to-end data transfer for users of 
the transport layer. ISO standard 8072 provides the definition of the services provided by 
the transport layer. As with the network layer, the original standard only defined the ser-
vices for a connection-oriented transmission, with an addendum specifying the services 
for connectionless transmission. 

One service that the connection-oriented transport layer must provide is expedited 
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data, which we called out-of-band data in Chapter 4. Few specifics are given, however, 
other than the requirement that up to 16 bytes of expedited data be sent in a single opera-
tion. Additionally, the service definition requires that noiiiial data sent after expedited 
data must not be delivered to the peer before the expedited data. 

The definition of the transport layer services also includes features such as establish-
ing a connection between two endpoints, and the negotiation of parameters during con-
nection establishment. 

The specification of the actual connection-oriented transport layer protocols is given 
in ISO standard 8073. Included in this standard is the definition of three different types 
of network services that are provided to the transport layer, types A, B, and C. 

Type A A reliable network service. The network layer and the data-link layer 
handle all error conditions. 

Type B A reliable network service with error notification. Although most error 
conditions are handled by the network layer and the data-link layer for 
this type of service, there can be some notifications to the transport layer 
that something has gone wrong. A reset notification from the network 
layer requires that both transport ends resynchronize. A restart notifica-
tion requires that both transport ends establish a new connection. 

Type C An unreliable network service. This is the type of service provided by 
datagram-oriented networks. 

X.25 networks provide a type B network service, since both resets and restarts are possi-
ble. But, it is often assumed that an X.25 network provides a reliable type A service. 

Given these three types of network services, there are five different classes of 
connection-oriented transport protocols: classes 0 through 4. We can classify the five 
protocol classes by the type of network service they are intended to be used with (A, B, 
or C), whether they can detect errors on their own, whether they can recover from errors 
that are signaled by the network layer, and whether they do multiplexing. We show this 
in Figure 5.30. Multiplexing here means the ability to have two or more transport con-
nections over a single network connection. 

Transport 
protocol class 

Network 
service type 

Error 
detection ? 

Error 
recovery ? 

Multiplexing ?

0 A no no no 
1 B no yes no 
2 A no no yes 
3 B no yes yes 
4 C yes yes yes 

Figure 5.30 ISO connection-oriented transport protocol classes. 

(Figure 5.30 is a simplified description of these five classes. We could show over 20 
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different criteria, such as flow control, multiplexing, retransmission and timeout, and 
then note whether each of the five classes supports that feature.) These five classes are 
sometimes called TPO through TP4. TPO is a simple protocol—everything is handled by 
the lower layers. TP1 can be used with an X.25 network service, although if a reliable 
X.25 service is assumed, TP0 can be used instead. TP4 is similar to the Internet TCP, 
since TP4 assumes an unreliable network layer. TP4 could be used with the ISO connec-
tionless network layer. 

The ISO connectionless transport protocol is similar to UDP. It is defined in ISO 
standard 8602. A single packet format is defined and each packet contains the source 
address, destination address, an optional checksum, and the user data. The addresses can 
be used to identify user processes, similar to the port numbers used by UDP. Similar to 
UDP, if a checksum error is detected by the receiving transport layer, the packet is dis-
carded. 

5.6.5 Session Layer 

The session layer provides services to a user process, in addition to the services provided 
by the transport layer. ISO standard 8326 defines the services to be provided by the ses-
sion layer and ISO standard 8327 defines the session layer protocol. 

Two of the services provided by the session layer to the layers above it are session 
establishment and session release. A session is similar in concept to a transport connec-
tion. During the life of a session there are two possible ways for the session layer to han-
dle the transport connection that it needs for the session: a single transport connection 
can be used for the entire session, or two or more transport connections can be used for 
the entire session. In the latter case, it must be transparent to the user of the session layer 
that the actual transport connection has changed. It is also possible for a session layer to 
have consecutive sessions use a single transport connection. One restriction, however, is 
that the session layer cannot multiplex several sessions on a single transport connection. 

Another service that can be provided by the session layer is dialog management. 
This feature provides a half-duplex, flip-flop form of data exchange. To manage this 
feature, an imaginary token is maintained by the two session layers. Only the end that 
holds the token can transmit data. During the session establishment, it is determined 
which end gets the token to start. One end can also ask the other end for the token when 
it wants to transmit data. This half-duplex, flip-flop mode of operation is similar to the 
SNA LU 6.2 protocol which we described in Section 5.4.5. 

There are other services that the session layer can provide: synchronization, activity 
management, and exception reporting. Furthermore, the ISO standard defines four sub-
sets of the session services, realizing that few applications, if any, need all the features 
that the session layer can provide. These four subsets are called kernel, BCS (basic com-
bined subset), BSS (basic synchronized subset), and BAS (basic activity subset). The 
simplest of these, the kernel, must be provided with any implementation. All the kernel 
subset provides is session establishment and data transfer. 

There is nothing similar to the session layer in the TCP/IP protocol suite. 
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5.6.6 Presentation Layer 

The presentation layer is concerned with the representation of the data that is being 
exchanged. This can include conversion of the data between different formats (ASCII, 
EBCDIC, binary), data compression, and encryption. Additionally, the presentation layer 
must make the services of the session layer available to the application. Much of the 
presentation layer, therefore, is just a pass-through of application requests (establish a 
session, terminate a session, etc.) to the session layer. 

ISO standard 8822 defines the services for the presentation layer and ISO standard 
8823 defines the protocols. 

One task of the presentation layer is to convert the application data into some stan-
dard fowl. To explain this we'll introduce the ISO terminology of abstract syntax and 
transfer syntax. The application layer deals with an abstract syntax. This includes items 
such as "an integer whose value is 1." This is an abstract description that does not say 
how the data value is represented. A transfer syntax, however, specifies exactly how this 
data value is represented. For example, it could be represented as 16-bit integer in twos 
complement binary format with the most significant bit transferred first. To convert from 
an abstract syntax to a transfer syntax, encoding rules are applied by the presentation 
layer. Two presentation layers exchange data in the transfer format, while the two appli-
cation layers exchange data in the abstract format. 

ISO standard 8824 specifies an abstract syntax called ASN.1. This stands for 
"abstract syntax notation 1." The encoding rules for converting ASN.1 data structures 
into a bit stream for transmission are contained in ISO standard 8825. A full description 
of ASN.1 is beyond the scope of this text. Refer to Section 8.2 of Tanenbaum [1989] for 
additional details. We'll discuss some other standards for data representation in Sec-
tion 18.2 when we discuss remote procedure calls. 

SNA supports some features that resemble the presentation layer. For example, the 
mapping of user data into a mapped conversation record, which we described in Sec-
tion 5.4.5, is similar in concept. 

5.6.7 Application Layer 

Common Application Service Elements 

CASE stands for "common application service elements." It is intended to provide 
capabilities that are useful to a variety of applications. Currently there are only two 
CASEs. 

Association Control Service Elements (ACSE). 
This element allows the user process to establish and release associations with a 
peer. There is a one-to-one relationship between associations and presentation 

layer connections. 
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• Commitment, Concurrency, and Recovery (CCR). 
CCR provides atomic actions between application entities. An atomic action is a 
set of operations, with either all operations being done or none of the operations 
being done—there is no in-between. Atomic operations and the techniques used 
by CCR have been used by distributed database systems and transaction process-
ing systems for many years. This feature is similar to the syncpoint feature that 
we mentioned with the LU 6.2 ALLOCATE verb in Section 5.4.5. 

ISO standard 8649 defines the CASE services and ISO standard 8650 defines the CASE 
protocols. 

Electronic Mail 

In 1984 CCITT defined a set of protocols for what it calls MHS (message handling sys-
tem). The CCITT recommendations are defined in their X.400-series. These were incor-
porated in the OSI model at the application layer where they are called MOTIS 
(message-oriented text interchange system). X.400 provides for more than simple text-
oriented electronic mail. It provides for a variety of message types, including text, fac-
simile, and digitized voice, for example. 

Electronic mail under Unix is usually divided into two pieces. The user agent (UA) 
is the program the user interacts with the interactive user to send or receive mail. The 
user agent then communicates with a message transfer agent (MTA) that delivers the 
mail. Typical user agents are /u s r/ucb/Mail on 4.3BSD, /bin/mail and mailx 

on System V, and a variety of other programs. The typical message transfer agent on 
4.3BSD is sendrnail. X.400 is concerned with all aspects of message handling—the 
user agent and the message transfer agent. 

Directory Services 

Directory services (DS) are similar to a telephone book. It maps names of people and 
services into their corresponding attributes (addresses, etc.). It is intended that the direc-
tory services be usable by the message handling systems (MHS) and other OSI applica-
tions. Directory services are sometimes classified as "white pages" or "yellow pages," 
similar to a telephone book, depending whether you are searching for a name or a ser-
vice. 

ISO standard 9594 and the CCITT X.500 recommendation specify all the details of 
the OSI directory. 

Virtual Terminal 

The OSI virtual terminal (VT) allows various terminals to be used. The intent is to iso-
late applications from the differences in terminal characteristics. ISO standards 9040 and 
9041 describe the virtual terminal services and protocols, respectively. 
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When a virtual teiininal connection is started, the two peer entities negotiate the 
parameters of the terminal that can be supported. An example of the types of parameters 
that can be specified for the virtual terminal are: number of dimensions (two for a stan-
dard CRT, three for a bit-mapped display), maximum coordinate in each dimension, 
allowable character sets, and so on. Some example operations that can be done are: 
move cursor to absolute position, enter characters starting at current position, and erase 
this line from cursor to end. 

The ISO virtual terminal can be used to provide a remote login client and server, 
similar to the Internet TELNET application. 

File Transfer, Access, and Management 

The OSI file transfer, access, and management application (FTAM) is built around the 
concept of a virtual filestore. This virtual filestore presents a standard interface to its 
users. It is up to the software to map this virtual filestore into the actual filesystem being 
used. ISO standard '8571 specifies the services and protocols used by FTAM. 

5.7 UUCP—Unix-to-Unix Copy 

UUCP is the generic name used to describe a set of programs that can be used to copy 

files between different systems and to execute commands on other systems. An early 
version was made available with Version 7 Unix in 1978 and was intended for communi-
cation between systems using dial-up telephone lines. Today there are two major flavors 
of UUCP in use, the version distributed with 4.3BSD, which is derived from the Ver-

sion 7 software, and a version known as Honey DanBer UUCP. (This name is derived 
from the login names of its three authors, Peter Honeyman, David A. Nowitz, and Brian 
E. Redman.) The Honey DanBer version is distributed with System V Release 3 where it 
is officially called BNU—Basic Networking Utilities. All versions of UUCP communi-
cate with each other, so for our purposes it doesn't matter which specific version we 
describe. Details on the 4.3BSD version of UUCP can be found in Chapter 16 of 
Nemeth, Synder, and Seebas [1989]. Redman [1989] gives details on the Honey DanBer 
version, along with a history of UUCP. 

UUCP is a collection of programs. The four that we're interested in are as follows: 

uucp This program can be invoked by users to copy a file from one system to 
another. We'll use the term uucp to refer to this specific program, and the 

term UUCP to refer to the collection of programs. uucp is patterned after the 

Unix cp command, which copies one or more files. A typical use of uucp is 

uucp main.c apple!-uucp 
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UUX 

This command says to copy the file main . c in the current directory to the 
login directory of uucp on the system named apple. 

This program spools a command for execution on another system. Although a 
user can execute this command, frequently this command is generated auto-
matically by the mail software or the news software. (For additional details on 
the Usenet news system, refer to Tanenbaum [1989].) 

uucico This program is usually run as a daemon process to perform the actions that 
have been requested by previous uucp or uux commands. Most Unix sys-
tems invoke the uucico program automatically at various times of the day 
from the /usr/lib/crontab file. This is one fundamental feature of the 
UUCP system—it is a batch mode system. The uucp and uux commands 
just queue work, and the work is executed at some later time by the uucico 
process. 

uuxqt Executes files that were generated by uux. Normally uuxqt is invoked by 
uux or it is spawned by uucico to process execution files that have been 
received from another system. 

Other programs exist in a typical UUCP software package—a program to display the 
jobs queued for transmission, one to remove a job that's been queued, and so on. 

Figure 5.31 shows the typical operation of UUCP. Note that it is the uucico 
processes that communicate with each other across the network. There is no capability 
for a user process to use the UUCP protocols to communicate with some other user pro-
cess. 

The original uucico process supported a single data-link protocol known as the `g' 
protocol. This was developed for dial-up or hardwired terminal lines and typically uses 
64-byte packets. Its throughput is limited to around 9000 baud, even with higher line 
speeds. The 4.3BSD version supports two additional protocols. The 't' protocol assumes 
that the communication channel is error-free and no checksums are used. This protocol 
is typically used with TCP links. The T protocol is used for X.25 links and relies on the 
flow control provided by the data stream. The T protocol also applies a checksum only 
to the entire file (not to each packet) and uses a 7-bit data path, instead of the usual 8-bit 
data path. 

Our overview of UUCP is to show where it belongs in relation to the other protocols 
described in this chapter. Since there is no ability for user processes to communicate 
across the network using UUCP, we don't describe it further in this text. Nevertheless, 
UUCP is an important piece of the networking tools used by most Unix sites. 
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user 

uucp 
process 

work data execute uucico 
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/usr/spool/uucp directory 

kernel 

Network 

kernel 

uucico 
process 

Figure 5.31 Overview of UUCP processes. 

5.8 Protocol Comparisons 

It is interesting to compare the types of services provided by the protocols we have dis-
cussed. 

Fragmentation and Reassembly 

TCP/UDP/IP IP handles this. TCP and UDP need not worry about it, other than per-
formance implications. Once a packet is fragmented, it is not reassem-
bled until it reaches the destination host. 

XNS Never done. If a packet must be fragmented by some data-link layer, 
then it must be reassembled by the other end of the link, to prevent any 
other systems from knowing that it happened. The packet size is almost 
always 576 bytes, which is less than optimal for an Ethernet. 
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SNA Done by path control. 

NetBIOS An implementation detail that is not specified. 

Flow Control 

IP The IP layer sends ICMP source quench messages to a host when packets 
are arriving too quickly from that host. This is a form of hop-by-hop flow 
control. 

Provides end-to-end flow control whereby the receiver tells the sender 
how much data it can accept. 

UDP No flow control is provided by UDP (other than the ICMP source quench 
feature of the underlying IP layer). 

IDP The error protocol can be used to notify a host when a packet from that 
host has been discarded because of resource limitations. This is similar to 
the ICMP source quench. 

SPP Provides end-to-end flow control, similar to TCP. 

PEX No flow control is provided (other than the error control packets provided 
by the underlying IDP layer). 

SNA Link-to-link flow control is provided by the data-link layer for most SNA 
data links (SDLC, token ring). Additionally, an end-to-end flow control is 
also provided by the LU. 

NetBIOS An implementation detail that is not specified. 

TCP 

Reliability 

The issue of reliability is a touchy area when talking about whether some form of end-
to-end reliability is needed. (This is one of the "religious topics" of networking.) Obvi-
ously, if the underlying data-link and network layers are unreliable, the transport layer 
must provide an end-to-end check. This is how TCP and UDP operate. But with UDP 
the end-to-end reliability is optional and there are some implementations that disable it 
when running on a "reliable" LAN such as an Ethernet. t The reason we say that an 
Ethernet is reliable is that every Ethernet frame has a 32-bit CRC appended to it, to verify 
that the data is exchanged without any errors between the two Ethernet interface cards. 
Other LAN technology, such as the token ring, also provides a 32-bit CRC to provide 
link-to-link reliability. 

If the data-link layer is reliable, do we still need an end-to-end reliability check? 

ly t If you're running some form of BSD Unix, and if you have adequate permission and knowledge, 
st look at the global variable udpcksum in the kernel with a debugger. If its value is zero, UDP 

checksums are not calculated for outgoing UDP packets. A value of one enables the checksum 
calculation for outgoing packets. 
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Without answering this touchy question we should point out where the data could be cor-
rupted, even if it is transferred between the two interface cards without any errors. First, 
the interface card contains memory in which the incoming and outgoing frames are 
stored. This memory can be a source of errors. The data is also transferred between the 
interface card and the computer's memory, typically along an input/output bus of some 
form. On some LANs there might also be bridges or repeaters, which can also be the 
source of errors. 

IP Provides a 16-bit checksum that covers the IP header only. The upper
layers (TCP and UDP) are left to do their own checksum of the actual 
message, if desired. 

TCP Assumes the IP layer is unreliable and provides a 16-bit checksum of the 
entire message. 

UDP As with TCP, it provides a 16-bit checksum of the entire message. 

XNS IDP provides a 16-bit checksum of the entire packet, therefore no addi-
tional end-to-end reliability checks are required by the upper layers (SPP 
and PEX). 

SNA Assumes the data-link layer provides the reliability. No form of end-to-
end checksum is provided. 

NetBIOS Both the datagram service and the session service assume the data link 
layer is reliable, with no additional checksums provided. 

Sequencing 

The datagram protocols do not perfoon sequencing—IP, UDP, IDP, PEX, and NetBIOS 
datagram. The connection-oriented protocols all provide this feature—TCP, SPP, 
LU 6.2, and NetBIOS session. SNA assumes that the data-link layer does the sequenc-
ing, with a verification of this taking place in the LU. NetBIOS also assumes the data 
link does the sequencing. TCP and SPP both do the sequencing themselves, assuming 
the underlying layers do not sequence the data. 

Timeout and Retransmission 

Most datagram protocols do not provide this service (IP, UDP, IDP, and NetBIOS). 
PEX, however, is a datagram service that provides a timeout and retransmission. As 
expected, the connection-oriented protocols do provide this service—TCP, SPP, LU 6.2, 
and NetBIOS. As with sequencing, both SNA and NetBIOS require the data link to han-
dle this. 
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5.9 Summary 

We have covered five protocol suites in this chapter. 

• TCP/IP 
• XNS 
• SNA 
• NetBIOS 
• OSI 
• UUCP 

Our emphasis has been the TCP/IP protocol suite, as that is the one used for most of the 
examples in the later chapters. We'll also show examples using XNS in Chapters 6 
and 11. Protocbl comparisons are worthwhile, to help put things into perspective. 

We've covered many protocols in this chapter, not all of which are essential for net-
work programming. For example, although you probably won't use the ARP or RARP 
protocols directly (compared to UDP or TCP), you will encounter RARP as soon as you 
connect a diskless workstation to a TCP/IP internet. 

In the next two chapters we'll cover two application program interfaces (APIs) 
between a user process and a networking protocol: Berkeley sockets and the System V 
Transport Layer Interface. 

Exercises 

5.1 What is the maximum number of hosts on a TCP/IP internet? 

5.2 What is the maximum number of hosts on a XNS internet? 

5.3 Given the addressing structure of TCP/IP and XNS, would it be feasible for every home in 
the U.S. to have a unique network address? How about every home in the world? 

5.4 Compare the OSI connectionless network service (Section 5.6.3) with IP. 
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6.1 Introduction 

This chapter describes the first of several application program interfaces (APIs) to the 
communication protocols. The API is the interface available to a programmer. The 
availability of an API depends on both the operating system being used, and the program-
ming language. The two most prevalent communication APIs for Unix systems are 
Berkeley sockets and the System V Transport Layer Interface (TLI). Both of these inter-
faces were developed for the C language. This chapter describes the Berkeley socket 
interface, and the next chapter describes TLI. 

First, let's compare network I/O to file I/O. For a Unix file, there are six system calls 
for input and output: open, creat, close, read, write, and lseek. All these sys-
tem calls work with a file descriptor, as described in Section 2.3. It would be nice if the 
interface to the network facilities maintained the file descriptor semantics of the Unix 
filesystem, but network I/O involves more details and options than file I/O.t For exam-
ple, the following points must be considered: 

t The original TCP/IP implementation for the BSD version of Unix was developed by Bolt, 
Beranek, and Newman (BBN) under a DARPA contract in 1981 [Walsh and Gurwitz 1984]. It is 
interesting to note that this version used these six system calls for both file I/O and network I/O. 
The socket interface and the interprocess communication facilities, which we describe in this 
chapter, were then added by Berkeley with the 4.1cBSD release. 
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• The typical client—server relationship is not symmetrical. To initiate a network 
connection requires that the program know which role (client or server) it is to 
play. 

• A network connection can be connection-oriented or connectionless. The former 
case is more like file I/O than the latter, since once we open a connection with 
another process, the network I/O on that connection is always with the same peer 
process. With a connectionless protocol, there is nothing like an "open" since 
every network I/O operation could be with a different process on a different host. 

• Names are more important in networking than for file operations. For example, a 
program that is passed a file descriptor by a parent process can do file I/O on it 
without ever needing to know the original name that the file was opened under. 
The file descriptor is all the process needs. A networking application, however, 
might need to know the name of its peer process to verify that the process has 
authority to request the services. 

• Recall our definition of an association in Chapter 4 

[protocol, local-addr, , local-process, foreign-addr, foreign-process} 

There are more parameters that must be specified for a network connection, than 
for file I/O. Also, as we saw in Chapter 5, each of the parameters can differ from 
one protocol to the next. Compare, for example, the format of either the 
local-addr or the foreign-addr between the Internet and XNS: the Internet address 
is 4 bytes while the XNS address is 10 bytes. 

• For some communication protocols, record boundaries have significance. The 
Unix I/O system is stream oriented, not message oriented, as discussed in Sec-
tion 3.6. 

• The network interface should support multiple communication protocols. For 
example, the network functions can't use a 32-bit integer to hold network 
addresses, since even though this is adequate for Internet addresses, it is inade-
quate for XNS addresses. Generic techniques must be used to handle features that 
can change from one protocol to another, such as addresses. Supporting multiple 
communication protocols is almost akin to having Unix support multiple file 
access techniques. Imagine the Unix I/O system if the kernel had to support Unix 
I/O along with three or four other techniques (DEC's RMS, IBM's VSAM, etc.). 

As another comparison between network I/O and file I/O, Figure 6.1 shows some of the 
steps required to use sockets, TLI, System V message queues, and FIFOs, for a 
connection-oriented transfer. We'll cover the details in Figure 6.1 as we proceed through 
this chapter and the next. Our purpose now is to show the added complexity imposed by 
the networking routines, compared to message queues and FIFOs. 
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Sockets TLI Messages FIFOs 

Server: allocate space t alloc ( ) _ 
create endpoint socket ( ) t_open ( ) msgget ( ) mknod ( ) 

open () 

bind address bind ( ) t bind ( ) 

specify queue listen () 

wait for connection _ accept ( ) t listen () _ 
get new fd t_open ( ) 

t_bind 0 
taccept ( ) 

Client: allocate space t alloo ( ) _ 
create endpoint socket ( ) t _open ( ) msgget ( ) open ( ) 

bind address bind ( ) tbind 0 

connect to server connect ( ) tconnect ( ) 

transfer data read ( ) 
write() 
recv 0 

send ( ) 

read ( ) 
write ( ) 
t _rcv ( ) 
t snd ( ) 

ms grcv ( ) 
msgsnd () 

read ( ) 
write ( ) 

datagrams recvf rom ( ) 
sendto ( ) 

t_ rcvudata ( ) 
t sndudata ( ) 

terminate close () 
shutdown ( ) 

t close 0 _ 
t_s ndrel ( ) 
tsnddis ( ) 

msgctl () close () 
unlink ( ) 

Figure 6.1 Comparison of sockets, TLI, message queues, and FilkOs. 

In the examples that we show in this chapter we must specify the type of process 
(client or server) and the type of protocol (connection-oriented or connectionless). Fur-
theiiiiore, for the server examples we have to specify if the server is a concurrent server 
or an iterative server. (Usually it doesn't matter to the client whether it is communicating 
with a concurrent server or an iterative server.) This gives four potential combinations. 

connection-oriented protocol 

connectionless protocol 

iterative server concurrent server 

infrequent (Daytime) typical 

typical infrequent (11-, I P) 

The Internet Daytime protocol, which we describe in Section 10.2, is an example of a 
connection-oriented protocol whose server is usually implemented using an iterative 
server. Indeed, the 4.3BSD Internet superserver which we describe in Section 6.16 pro-
vides an iterative server for this protocol. We provide an example of a concurrent server 
using a connectionless protocol in Chapter 12—the TFTP server. 
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6.2 Overview 

The socket interface was first provided with the 4.1cBSD system for the VAX, circa 
1982. The interface that we describe here corresponds to the original 4.3BSD VAX 
release from 1986. This release supported the following communication protocols: 

• Unix domain (described in Section 6.3) 
• Internet domain (TCP/IP) 
• Xerox NS domain 

Be aware that some vendors who provide 4.3BSD-based systems do not provide the XNS 
support that was provided by Berkeley. Nevertheless, we show examples using XNS, 
since it provides a good working example, in addition to TCP/IP, for some of the porta-
bility problems in network programming. 

Figure 6.2 shows a time line of the typical scenario that takes place for a 
connection-oriented transfer—first the server is started, then sometime later a client is 
started that connects to the server. 

Server 
(connection-oriented protocol) 

socket ( ) 

V 
bind ( ) 

listen ( ) 

accept ( ) 

blocks until connection 
from client 

connection establishment 

read ( ) 

process request 

write ( ) 

data (request) 

Client 

socket ( ) 

  connect ( ) 

data (rep y 

write ( ) 

read ( ) 

Figure 6.2 Socket system calls for connection-oriented protocol. 
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For a client—server using a connectionless protocol, the system calls are different. 
Figure 6.3 shows these system calls. The client does not establish a connection with the 
server. Instead, the client just sends a datagram to the server using the sendto system 
call, which requires the address of the destination (the server) as a parameter. Similarly, 
the server does not have to accept a connection from a client. Instead, the server just 
issues a recvfrom system call that waits until data arrives from some client. The 
recvfrom returns the network address of the client process, along with the datagram, 
so the server can send its response to the correct process. 

Server 
(connectionless protocol) 

socket () 

V 
bind() 

V 
recvfrom() 

V 

blocks until data 
received from a client 

V 
process request 

V
sendto() 

data (request) 

data (rep y 

Client 

socket () 

bind() 

sendto () 

recvfrom() 

Figure 6.3 Socket system calls for connectionless protocol. 

6.3 Unix Domain Protocols 

4.3BSD provides support for what it calls the "Unix domain" protocols. But unlike 
other domains, such as the Internet domain and the XNS domain, sockets in the Unix 
domain can only be used to communicate with processes on the same Unix system, We 
did not provide a description of the Unix domain protocols in the previous chapter, as 
they are limited to 4.3BSD, and are not "communication protocols" in the true sense of 
the teiiii. They are a fowl of IPC, but their implementation has been built into the 
4.3BSD networking system in the same fashion as other true communication protocols. 
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4.3BSD provides both a connection-oriented interface and a connectionless interface 

to the Unix domain protocols. Both can be considered reliable, since they exist only 
within the kernel and are not transmitted across external facilities such as a communica-
tion line between systems. Checksums and the like are not needed. As with other 
connection-oriented protocols (TCP and SPP, for example), the connection-oriented Unix 
version provides flow control. In a similar fashion, as with other connectionless proto-
cols (UDP and IDP, for example), the Unix domain datagram facility does not provide 

flow control. This has implications for user programs, since it is possible for a datagram 
client to send data so fast that buffer starvation can occur: If this happens, the sender 
must try to send the data repeatedly. For this reason alone, it is recommended that you 
use the connection-oriented Unix domain protocol. 

The Unix domain protocols provide a feature that is not currently provided by any 
other protocol family: the ability to pass access rights from one process to another. 
We'll discuss this feature in more detail in Section 6.10 when we describe the passing of 
file descriptors between processes. 

Unlike the other protocols we've covered, there is nothing like encapsulation per-
formed on the Unix domain messages—their actual implementation is a kernel detail that 
need not concern us. As it turns out, 4.3BSD implements pipes using the connection-
oriented Unix domain protocol. 

The name space used by the Unix domain protocols consists of pathnames. A sam-
ple association could be 

{unixstr, 0, /tmp/log.01528, 0, /dev/logfile} 

The protocol here is unixstr, which stands for "Unix stream," the connection-
oriented protocol. The local-process in this example is /tmp/log.01528 and the 
foreign process is /dev/logfile. We show both the local-addr and the foreign-addr 
as zero, since the pathnames on the local host are the only addresses used in this 
domain.t An association using the connectionless Unix protocol is similar, except that 
we use the term unixdg to specify the datagram protocol, the first member of the 
5-tuple. 

The 4.3BSD implementation creates a file in the filesystem with the specified path-
name, although there are comments in the 4.3BSD manuals indicating that future ver-
sions might not create these files. This is somewhat misleading, however, because these 
filesystem entries are not true "files." For example, we cannot open these files with the 
open system call. These files have a type of S_IF SOCK as reported by the stat or 
f stat system calls. 

t We could define the local-addr and the foreign-addr to be the pathnames, with the local process 
and foreign process both being zero. Our reason for specifying the association as we did is to 
reiterate that a host address is not required since the association is limited to processes on the local 
host. 
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6.4 Socket Addresses 

Many of the BSD networking system calls require a pointer to a socket address structure 
as an argument. The definition of this structure is in <sys / socket . h>: 

struct sockaddr { 

u_short sa family; /* address family: AF_xxx value */ 

char sa data[14]; /* up to 14 bytes of protocol-specific 
address */ 

} ; 

The contents of the 14 bytes of protocol-specific address are interpreted according to the 
type of address. For the Internet family, the following structures are defined in 

<net inet /in . h>: 

struct in addr { 

u long s addr; 

} ; 

/* 32-bit netid/hostid */ 

/* network byte ordered */ 

struct sockaddr in { 

short sin family; /* AF INET */ 

u_short sin_port; /* 16-bit port number */ 
/* network byte ordered */ 

struct in addr sin addr; /* 32-bit netid/hostid */ 

/* network byte ordered */ 

char sin zero[8]; /* unused */ 

}; 

As we'll see throughout this chapter, almost every code example has 

#include <sys/types.h> 

at the beginning. This header file provides C definitions and data type definitions 
(t ypede f s) that are used throughout the system. We will mainly use the names defined 
for the four unsigned integer datatypes, which we show in Figure 6.4. Unfortunately 
these four names differ between 4.3BSD and System V. 

C Data type 4.3BSD System V 

unsigned char 
unsigned short 
unsigned int 
unsigned long 

unchar 
u_short 
u_ int 
u_ long 

unchar 
ushort 
uint 
ulong 

Figure 6.4 Unsigned data types defined in <sys /types . h>. 

For the Xerox NS family, the following structures are defined in <netns /ns . h>: 
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union ns host { 

Socket Addresses 265 

u_char c host[6]; /* hostid addr as six bytes */ 

u_short s host[3]; /* 

/* 

hostid addr as three 16-bit shorts 

network byte ordered */ 

1 ; 

union ns net { 

u_char c net[4]; /* netid as four bytes */ 

u_short s net[2]; /* 

/* 

netid as two 16-bit shorts */ 

network byte ordered */ 

1 ; 

struct ns _addr { /* here is the combined 12-byte XNS address 

union ns _ net x _net; /* 4-byte netid */ 

union ns _ host x _host; /* 6-byte hostid */ 

u_short x_port; /* 2-byte port (XNS "socket") 

/* network byte ordered */ 
} ; 

struct sockaddr_ns { 

u_short sns family; /* AF_NS */ 

struct ns addr sns addr; /* the 12-byte XNS address */ 

char sns zero[2]; /* unused */ 

}; 
#define sns_port sns addr.x port 

Things are more complicated with XNS, as some of the network code wants to get at the 
hostid and netid fields in different ways. 

For the Unix domain, the following structure is defined in <sys /un .h>: 

struct sockaddr un { 

short sun family; /* AF UNIX */ 

char sun path[108]; /* pathname */ 

}; 

(You may have noticed the discrepancies in the declarations of the first two bytes of 
these address structures, the XX family members. The Internet and Unix domain 
members are declared as short integers, while the XNS member and the generic 
sockaddr member are unsigned short integers. Fortunately the values stored in these 
variables, the AF_xxx constants that we define in the next section, all have values 
between 1 and 20, so this discrepancy in the data types doesn't matter.) 

Unlike most Unix system calls, the BSD network system calls don't assume that the 
Unix pathname in sun_path is terminated with a null byte. Notice that this protocol-
specific structure is larger than the generic sockaddr structure, while the 
s ockaddr in and sockaddr_ns structures were both identical in size (16 bytes) to 

*/ 
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the generic structure. The system interface currently supports structures up to 110 bytes, 
but some of the generic system network routines (the routing tables in the kernel; for
example) only support the 16-byte structures. The Unix domain protocols, however, can 
be larger than 16 bytes since they don't use these facilities. To handle socket address 
structures of different sizes, the system interface always passes the size of the address 
structure, in addition to a pointer to the structure, as we describe in the next paragraph. 

A picture of these socket address structures is shown in Figure 6.5. 

struct sockaddr in struct sockaddrns struct sockaddrun 

family family family 

2-byte port 
4-byte net ID 

4-byte 
net ID, host ID 

6-byte host ID 
pathname 

(unused) (up to 108 bytes) 
2-byte port 

(unused) 

Figure 6.5 Socket address structures for Internet, XNS and Unix families. 

The network system calls, such as connect and bind, work with any of the sup-
ported domains, so a technique must be used to pass any of the socket address structures 
shown in Figure 6.5, sockaddr in, sockaddr ns, or sockaddr un, to these 
generic system calls. The network system calls take two arguments: the address of the 
generic sockaddr structure and the size of the actual protocol-specific structure. What 
the caller must do is provide the address of the protocol-specific structure as an argument, 
casting this pointer into a pointer to a generic sockaddr structure. For example, to 
invoke the connect system call for an Internet domain socket, we write 

struct sockaddr in sery addr; /* Internet —specific addr struct */ 

(fill in Internet-specific information) 

• ' 
connect (sockfd, (struct sockaddr *) &serv_addr, sizeof (serv_addr) ); 

The second argument is a pointer to the Internet address structure and the third argument 
is its size (16 bytes). 

The designers of the socket interface could have also chosen to use a C union to 
define the socket address structure. The declaration could look like 
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r 

1 
3 

3 

) ; 

struct sock addr 

short sa family; /* AF xxx value */ 
union 

struct sockaddr in 
struct sockaddr ns 

struct sockaddr un 

1 sa val; 
l; 

sain; 

sa_ns; 
sa_un; 

/* Internet address 

/* XNS address */ 

/* Unix address */ 

*/ 

The problem with this approach is that the size of the union is determined by the size of 
the largest member, which is the Unix domain address. This would cause every 
sock addr structure to be 110 bytes in size, even though Internet and XNS addresses 
need only 8 bytes and 14 bytes, respectively. (Note that in this case the 8 bytes of zero at 
the end of an Internet sockaddr in and the 2 bytes of zero at the end of an XNS 
sockaddr ns are not needed.) One advantage of a union is that the size of the struc-_ 
ture would not have to be an argument (and sometimes a result) to the system calls, as 
we'll see below. The actual interface design and the choice of a generic sockaddr 

structure along with the protocol-specific socket address structures, was a compromise. 

6.5 Elementary Socket System Calls 

We now describe the elementary system calls required to perfoiin network programming. 
In the following section we use these system calls to develop some networking examples. 

socket System Call 

To do network I/O, the first thing a process must do is call the socket system call, 
specifying the type of communication protocol desired (Internet TCP, Internet UDP, 
XNS SPP, etc.). 

#include <sys/types.h> 

#include <sys/socket.h> 

int socket (int family, int type, int protocol) ; 

The family is one of 

AF UNIX 

AF INET 

AF NS 

AF IMPLINK 

Unix internal protocols 
Internet protocols 
Xerox NS protocols 
IMP link layer 

The AF_ prefix stands for "address family." There is another set of teiins that is 
defined, starting with a PF_ prefix, which stands for "protocol family": PF_UNIX, 
PF INET, PF NS, and PF IMPLINK. Either teen for a given family can be used, as 
they are equivalent. 
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An IMP is an Interface Message Processor. This is an intelligent packet switching 
node that was referred to in our description of the ARPANET in the previous chapter.
These nodes are connected with point-to-point links, typically leased telephone lines. 
The BSD system provides a raw socket interface to the IMP, which is what the 
AF IMPLINK address family is used for. We won't concern ourselves further with this 
special purpose network interface. 

The socket type is one of the following: 

SOCK STREAM stream socket 
SOCK DGRAM datagram socket 
SOCK RAW raw socket 
SOCK SEQPACKET sequenced packet socket 
SOCK RDM reliably delivered message socket 

(not implemented yet) 

Not all combinations of socket family and type are valid. Figure 6.6 shows the valid 
combinations, along with the actual protocol that is selected by the pair. 

AF UNIX AF INET AF NS 

SOCK STREAM 

SOCK DGRAM 

SOCK RAW 

SOCK SEQPACKET 

Yes TCP SPP 

Yes UDP IDP 

IP Yes 

SPP 

Figure 6.6 Protocols corresponding to socket family and type. 

The boxes marked "Yes" are valid, but don't have handy acronyms. The empty boxes 
are not implemented. 

The protocol argument to the socket system call is typically set to 0 for most user 

applications. There are specialized applications, however, that specify a protocol value, 
to use a specific protocol. The valid combinations are shown in Figure 6.7. 

family type protocol 
Actual 

protocol 

AF INET _ 
AF INET _ 
AF INET _
AF INET 

SOCK DGRAM 

SOCK STREAM _ 
SOCK_RAW 

SOCK RAW 

IPPROTO UDP _ 
IPPROTO TCP _ 
IPPROTO ICMP _ 
IPPROTO RAW 

UDP 
TCP 
NNW 
(raw) 

AF NS _ 
AF___NS 

AF NS _ 
AF NS 

SOCK STREAM _ 
SOCK SEQP ET ___ ACK 

SOCK_ RAW' _ 
SOCK RAW 

NSpROTO SPP _ 
NSPROO _ T SPP 

NSPROTO ERROR _ 
NSPROTORAW 

SPP 
SPP 
Error protocol 
(raw) 

Figure 6.7 Combinations of family, type, and protocol. 
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The IPPROTO xxx constants are defined in the file <net inet / in . h> and the 
NsPROTo xxx constants are defined in the file <netns /ns . h>. In Section 11.2 we'll 
show the Internet ping program, which uses the ICMP protocol. 

The socket system call returns a small integer value, similar to a file descriptor. 
We'll call this a socket descriptor, or a sockfd. To obtain this socket descriptor, all we've 
specified is an address family and the socket type (stream, datagram, etc.). For an associ-
ation 

{protocol, local-addr, local-process, foreign-addr, foreign-process] 

all the socket system call specifies is one element of this 5-tuple, the protocol. Before 
the socket descriptor is of any real use, the remaining four elements of the association 
must be specified. To show what a typical process does next, we'll differentiate between 
both client and server, and between a connection-oriented protocol and a connectionless 
protocol. Figure 6.8 shows the typical system calls for each case. 

protocol local-addr, local-process foreign-addr, foreign process 

connection-oriented server 

connection-oriented client 

connectionless server 

connectionless client 

socket () bind() listen() , accept () 

socket () connect () 

socket () bind() recvfrom() 

socket () bind() sendto () 

Figure 6.8 Socket system calls and association elements. 

socketpair System Call 

This system call is implemented only for the Unix domain. 

#include <sys/types.h> 

#include <sys/socket.h> 

int socketpair (int family, int type, int protocol, int sockvec[2]) ; 

This returns two socket descriptors, sockvec[0] and sockvec[1] , that are unnamed and 
connected. This system call is similar to the pipe system call, but socketpair 
returns a pair of socket descriptors, not file descriptors. Additionally, the two socket 
descriptors returned by socketpair are bidirectional, unlike pipes, which are unidirec-
tional. Recalling our pipe examples from Section 3.4, we had to execute the pipe sys-
tem call twice, obtaining four file descriptors, to get a bidirectional flow of data between 
two processes. With sockets this isn't required. We'll call these bidirectional, 
connection-oriented, Unix domain sockets stream pipes. We return to these stream pipes 
in Section 6.9. 
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Since this system call is limited to the Unix domain, there are only two allowable 
versions of it 

int rc, sockfd[2]; 

rc = socketpair(AFUNIX, SOCK STREAM, 0, sockfd); 

rc = socketpair(AFUNIX, SOCK DGRAM, 0, sockfd); 

bind SI/Stern Ca11 

The bind system call assigns a name to an unnamed socket. 

or 

#include <sys/types.h> 

#include <sys/socket.h> 

int bind(int sockfd, struct sockaddr *myaddr, , int addrlen) ; 

The second argument is a pointer to a protocol-specific address and the third argument is 
the size of this address structure. There are three uses of bind. 

I. Servers register their well-known address with the system. It tells the system 
"this is my address and any messages received for this address are to be given to 
ine." Both connection-oriented and connectionless servers need to do this 
before accepting client requests. 

2. A client can register a specific address for itself. 

3. A connectionless client needs to assure that the system assigns it some unique 
address, so that the other end (the server) has a valid return address to send its 
responses to. This corresponds to making certain an envelope has a valid return 
address, if we expect to get a reply from the person we send the letter to. 

The bind system call fills in the local-addr and local-process elements of the associa-
tion 5-tuple. 

connect System Call 

A client process connects a socket descriptor following the socket system call to 
establish a connection with a server. 

#include <sys/types.h> 

#include <sys/socket.h> 

int connect (int sockfd, struct sockaddr *servaddr, int addrlen); 

Apple Inc.
Ex. 1013 - Page 110



Section 6.5 Elementary Socket System Calls 271 

The sockfd is a socket descriptor that was returned by the socket system call. The 
second and third arguments are a pointer to a socket address, and its size, as described 
earlier. 

For most connection-oriented protocols (TCP and SPP, for example), the connect 

system call results in the actual establishment of a connection between the local system 
and the foreign system. Messages are typically exchanged between the two systems and 
specific parameters relating to the conversation might be agreed on (buffer sizes, amount 
of data to exchange between acknowledgments, etc.). In these cases the connect sys-
tem call does not return until the connection is established, or an error is returned to the 
process. Section 12.15 of Corner [1988] discusses the three-way handshake used by TCP 
to establish a connection. Section 7.4 of Xerox [198113] discusses a similar technique 
used by SPP. 

The client does not have to bind a local address before calling connect. The 
connection typically causes these four elements of the association 5-tuple to be assigned: 
local-addr, local-process, foreign-addr, and foreign-process. In all the connection-
oriented client examples that we'll show, we'll let connect assign the local address. 
This is what we diagramed in Figure 6.2 and Figure 6.8. 

A connectionless client can also use the connect system call, but the scenario is 
different from what we just described. For a connectionless protocol, all that is done by 
the connect system call is to store the servaddr specified by the process, so that the 
system knows where to send any future data that the process writes to the sockfd descrip-
tor. Also, only datagrams from this address will be received by the socket. In this case 
the connect system call returns immediately and there is not an actual exchange of 
messages between the local system and the foreign system. 

One advantage of connecting a socket associated with a connectionless protocol is 
that we don't need to specify the destination address for every datagram that we send. 
We can use the read, write, recv, and send system calls. (We describe the system 
calls used for socket I/O later in this section.) 

There is another feature provided for connectionless clients that call connect. If 
the datagram protocol supports notification for invalid addresses, then the protocol rou-
tine can inform the user process if it sends a datagram to an invalid address. For exam-
ple, the Internet protocols specify that a host should generate an ICMP port unreachable 
message if it receives a UDP datagram specifying a UDP port for which no process is 
waiting to read from. The host that sent the UDP datagram and receives this ICMP mes-
sage can try to identify the process that sent the datagram, and notify the. process. 
4.3BSD, for example, notifies the process with a "connection refused" error 
(ECONNREFUSED) on the next system call for this socket, only if the process had 
connected the socket to the destination address. We'll see an example of this with our 
Internet time client in Section 10.2. 

Note that the connect and bind system calls require only the pointer to the 
address structure and its size as arguments, not the protocol. This is because the protocol 
is available from two places: first, the AF xxx value is always contained in the first two 
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bytes of the socket address structure; second, these system calls all require a socket 
descriptor as an argument, and this descriptor is always associated with a single protocol 
family, from the socket system call that created the descriptor. 

listen System Call 

This system call is used by a connection-oriented server to indicate that it is willing to 
receive connections. 

int listen (int sockfd, int backlog); 

It is usually executed after both the socket and bind system calls, and immediately 
before the accept system call. The backlog argument specifies how many connection 
requests can be queued by the system while it waits for the server to execute the accept 
system call. This argument is usually specified as 5, the maximum value currently 
allowed. 

Recall our description of a concurrent connection-oriented server in Chapter 4. In 
the time that it takes a server to handle the request of an accept (the time required for 
the server to fork a child process and then have the parent process execute another 
accept), it is possible for additional connection requests to arrive from other clients. 
What the backlog argument refers to is this queue of pending requests for connections. 

accept System Call 

After a connection-oriented server executes the listen system call described above, an 

actual connection from some client process is waited for by having the server execute the 
accept system call. 

#include <sys/types.h> 
#include <sys/socket.h> 

int accept (int sockfd, struct sockaddr *peer, int *addrlen); 

accept takes the first connection request on the queue and creates another socket with 
the same properties as sockfd. If there are no connection requests pending, this call 
blocks the caller until one arrives. (We discuss how a socket can be specified as non-
blocking in Section 6.11.) 

The peer and addrlen arguments are used to return the address of the connected peer 
process (the client). addrlen is called a value—result argument: the caller sets its value 
before the system call, and the system call stores a result in the variable. Often these 
value—result arguments are integers that the caller sets to the size of a buffer, with the 
system call changing this value on the return to the actual amount of data stored in the 
buffer. For this system call the caller sets addrlen to the size of the sockaddr structure 

whose address is passed as the peer argument. On return, addrlen contains the actual 

number of bytes that the system call stores in the peer argument. For the Internet and 

XNS address structures, since their sizes are constant (16 bytes), the value that we store 
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in the addrlen argument (16) is the actual number of bytes that the system call returns in 
the peer argument. The size of the structure can differ from the actual size of the address 
returned with Unix domain addresses. 

This system call returns up to three values: an integer return code that is either an 
error indication or a new socket descriptor, the address of the client process (peer), and 
the size of this address (addrlen). 

accept automatically creates a new socket descriptor, assuming the server is a con-
current server. If this is the case, the typical scenario is 

int sockfd, newsockfd; 

if ( (sockfd = socket( ... )) < 0) 

err_sys("socket error"); 
if (bind(sockfd, ) < 0) 

err_sys("bind error"); 
if (listen(sockfd, 5) < 0) 

errsys("listen error"); 

for ( ; ; ) { 

newsockfd = accept(sockfd, ); /* blocks 
if (newsockfd < 0) 

errsys("accept error"); 

if (fork() —= 0) { 

close(sockfd); 

doit(newsockfd); 

exit(0); 

} 

*/ 

/* child */ 

/* process the request */ 

close(newsockfd); /* parent */ 
} 

When a connection request is received and accepted, the process forks, with the child 
process servicing the connection and the parent process waiting for another connection 
request. The new socket descriptor returned by accept refers to a complete association 

[protocol, local-addr, local-process, foreign-addr, foreign process} 

All five elements of the 5-tuple associated with newsockfd have been filled in on 
return from accept. On the other hand, the sockfd argument that is passed to 
accept only has three elements of the 5-tuple filled in. The foreign-addr and 
foreign-process are still unspecified, and remain so after accept returns. This allows 
the original process (the parent) to accept another connection using sockfd, without 
having to create another socket descriptor. Since most connection-oriented servers are 
concurrent servers, and not iterative servers, the system goes ahead and creates a new 
socket automatically as part of the accept system call. If we wanted an iterative server, 
the scenario would be 
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int sockfd, newsockfd; 

if ( (sockfd = socket( ... ) < 0) 

err sys("socket error"); 

bind(sockfd, ) < 0) 

err sys("bind error"); 

listen(sockfd, 5) < 0) 

errsys("listen error"); 

for ( ; ; ) { 

newsockfd = accept(sockfd, ); /* blocks */ 

if (newsockfd < 0) 

err sys("accept error"); 

doit(newsockfd); /* process the request */ 

close(newsockfd); 

Here the server handles the request using the connected socket descriptor, new
It then terminates the connection with a close and waits for another connection using 
the original descriptor, sockfd, which still has its foreign-addr and foreign-process 
unspecified. 

send, sendto, recv and recvfrom System Calls 

These system calls are similar to the standard read and write system calls, but addi-
tional arguments are required. 

#include <sys/types.h> 

#include <sys/socket.h> 

int send (int sockfd, char *buff, int nbytes, int flags) ; 

int sendto (int sockfd, char *buff, int nbytes, int flags, 

struct sockaddr *to, int addrlen) ; 

int recv (int sockfd, char *buff, int nbytes, int flags) ; 

int recvfrom(int sockfd, char *buff, int nbytes, int flags, 

struct sockaddr *from, int *addrlen) ; 

The first three arguments, sockfd, buff, and nbytes, to the four system calls are similar to 
the first three arguments for read and write. 
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The flags argument is either zero, or is formed by or'ing one of the following con-
stants: 

MSG 00B 

MSG PEEK 

MSG DONTROUTE 

send or receive out-of-band data 
peek at incoming message (recv or recvfrom) 

bypass routing (send or sendto) 

The MSG PEEK flag lets the caller look at the data that's available to be read, without 
having the system discard the data after the recv or recvfrom returns. We'll discuss 
the MSG 00B option in Section 6.14 and the MSG DONTROUTE option in Section 6.11. 
The to argument for sendto specifies the protocol-specific address of where the data is 
to be sent. Since this address is protocol-specific, its length must be specified by addrlen. 
The recvf rom system call fills in the protocol-specific address of who sent the data into 
from. The length of this address is also returned to the caller in addrlen. Note that the 
final argument to sendto is an integer value, while the final argument to recvfrom is 

a pointer to an integer value (a value—result argument). 
All four system calls return the length of the data that was written or read as the 

value of the function. In the typical use of recvfrom, with a connectionless protocol, 
the return value is the length of the datagram that was received. 

close System Call 

The normal Unix close system call is also used to close a socket. 

int close (int fd) ; 

If the socket being closed is associated with a protocol that promises reliable delivery 
(e.g., TCP or SPP), the system must assure that any data within the kernel that still has to 
be transmitted or acknowledged, is sent. Normally the system returns from the close 

immediately, but the kernel still tries to send any data already queued. 
Later in this chapter we'll describe the SO_LINGER socket option. This socket 

option allows a process to specify that either: (a) the close should try to send any 
queued data, or (b) any data queued to be sent should be flushed. 

Byte Ordering Routines 

The following four functions handle the potential byte order differences between dif-
ferent computer architectures and different network protocols. We detailed some of the 
differences in Chapter 4. 
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#include <sys/types .h> 

#include <netinet/in.h> 

u long htonl (u long hostlong) ; 

u short htons (u short hastllort); 

u long ntohl (u long netlong) ; 

u short ntohs (u short netshort) ; 

These functions were designed for the Internet protocols. Fortunately, the XNS protocols 
use the same byte ordering as the Internet. On those systems that have the same byte 
ordering as the Internet protocols (Motorola 68000-based systems, for example), these
four functions are null macros. The conversions done by these functions are shown in 
Figure 6.9. 

ht on1 convert host-to-network, long integer 
ht ons convert host-to--network, short integer 
ntohl convert network-to-host, long integer 
ntohs convert network-to--host, short integer 

Figure 6.9 Byte ordering functions. 

These four functions all operate on unsigned integer values, although they work just as 
well on signed integers. Implicit in these functions is that a short integer occupies 16 bits 
and a long integer 32 bits. 

Byte Operations 

There are multibyte fields in the various socket address structures that need to be manip-
ulated. Some of these fields, however, are not C integer fields, so some other technique 
must be used to operate on them portably. 

4.3BSD defines the following three routines that operate on user-defined byte 
strings. By user-defined we mean they are not the standard C character strings (which 
are always terminated by a null byte). The user-defined byte strings can have null bytes 
within them and these do not signify the end of the string. Instead, we must specify the 
length of each string as an argument to the function. 

bcopy (char *src, char *dest, int nbytes) ; 

bzero (char *dest, int nbytes) ; 

int bcmp (char *ptrl, char *ptr2, int nbytes) ; 

bcopy moves the specified number of bytes from the source to the destination. Note 

that the order of the two pointer arguments is different from the order used by the stan-

dard I/O st rcpy function. The bzero function writes the specified number of null 
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bytes to the specified destination. bcmp compare two arbitrary byte strings. The return 
value is zero if the two user-defined byte strings are identical, otherwise its nonzero. 
Note that this differs from the return value from the standard I/O s t r cmp function. 

We'll use these three functions throughout the remaining chapters, usually to operate 
on socket address structures. 

System V has three similar functions, memcpy, memset, and memcmp. But most 
socket libraries for System V supply functions with the 4.3BSD names, for compatibility. 
Details of the System V functions are on the memory(3) manual page. 

Address Conversion Routines 

As mentioned in Section 5.2, an Internet address is usually written in the dotted-decimal 
format, for example 192.43.235.1. The following functions convert between the 
dotted-decimal format and an in addr structure. 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <arpa/inet.h> 

unsigned long inetaddr(char *per); 

char *inet ntoa(struct in addr inaddr); 

The first of these, inet_addr converts a character string in dotted-decimal notation to 
a 32-bit Internet address.t The inet ntoa function does the reverse conversion. 

Similar functions exist for handling XNS addresses, but there is not as clear a stan-
dard for representing XNS addresses in a readable form. The format of an XNS address 
is typically three fields, delimited by a separator character: 

<network-ID> <separator> <host-ID> <separator> <port#> 

For example, we write 

123:02.07.01.00.a1.62:6001 

using a colon as the field separator and a period as the byte separator for the host ID 
field. The function ns addr defined below is lenient in what it accepts. First it tries to 
divide the character string into one to three fields, accepting either a period, colon, or 
pound sign as the separator. Each field is then scanned for byte separators, either a colon 
or a period. (Obviously you can't use the same character as the field separator and the 
byte separator.) 

t Note that this function returns an unsigned long integer, when it should return an in addr 
structure. Some systems that are based on 4.3BSD have corrected this. 
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#include <sys/types.la> 

#include <netnsIns.h> 

struct ns addr ns addr(char *lotr); 

char *ns ntoa(struct ns addr ns); 

The first of these converts a character string representation of an XNS network ID, host 
ID, and port number into an ns_addr structure. The second function does the reverse 
conversion. This function generates strings using a period to separate the three fields, 
with each field in hexadecimal. 

6.6 A Simple Example 

Now we'll use the elerrientary system calls from the previous section to provide 12 com-
plete programs, showing examples of client—servers using each of the three protocol fam-
ilies available with 4.3BSD. We have 12 programs since we have a connection-oriented 
server, a connection-oriented client, a connectionless server and a connectionless client 
for each of the three protocol families (Internet, XNS, and Unix domain). The programs 
do the following: 

1. The client reads a line from its standard input and writes the line to the server. 

2. The server reads a line from its network input and echoes the line back to the 
client. 

3. The client reads the echoed line and prints it on its standard output. 

This is an example of what is called an echo server. While we develop our own imple-
mentatiOn of an echo server, most TCP/IP implementations provide such a server, using 
both TCP and UDP. See RFC 862 [Postel 1983a] for the official specification. Similarly, 
most XNS implementations also provide an echo server that is different from our imple-
mentation. We'll present a client for the standard XNS echo server in Section 11.3. 

A pair of client—server programs to echo input lines is a good example of a network 
application. All the steps normally required to implement any client—server are illus-
trated by this example. All you need to do with this echo example, to expand it into your 
own application, is change what the server does with the input it receives from its clients. 

In all these examples, we have "hard-coded" protocol-specific constants such as 
addresses and ports. There are two reasons for this. First, you should understand exactly 
what needs to be stored in the protocol-specific address structures. Second, we have not 
yet covered the library functions provided by 4.3BSD that make this more portable. 
These functions are covered in Section 8.2. 

In these examples we have coded the connection-oriented Internet and Unix servers 
as concurrent servers, and the connection-oriented XNS server as an iterative server. 
This is to show examples of both types of servers. 
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Utility Routines 
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Stream sockets exhibit a behavior with the read and write system calls that differs 
from normal file I/O. A read or write on a socket might input or output fewer bytes 
than requested, but this is not an error condition. The reason is that buffer limits might 
be reached for the socket in the kernel and all that is required is for the caller to invoke 
the read or write system call again, to input or output the remaining bytes. Some ver-
sions of Unix also exhibit this behavior when writing more than 4096 bytes to a pipe. 

We show three functions below that we'll use whenever we read or write to or from 
a stream socket. A datagram socket does not have this problem, since each I/O operation 
corresponds to a single packet. 

/* 
* Read "n" bytes from a descriptor. 

* Use in place of read() when fd is a stream socket. 
*/ 

int 

readn(fd, ptr, nbytes) 

register int fd; 

register char *ptr; 

register int nbytes; 

int nleft, nread; 

nleft = nbytes; 

while (nleft > 0) { 

nread = read(fd, ptr, nleft); 

if (nread < 0) 

return(nread); 

else if (nread == 0) 

break; 

nleft -= nread; 

ptr += nread; 

1 
return(nbytes - nleft); 

} 

/* error, return < 0 */ 

/* EOF */ 

/* return >= 0 */ 

The following function writes to a stream socket: 

/* 

* Write "n" bytes to a descriptor. 

* Use in place of write() when fd is a stream socket. 
*/ 

int 

writen(fd, ptr, nbytes) 

register int fd; 

register char *ptr; 

register int nbytes; 
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int nleft, nwritten; 

nleft = nbytes; 

while (nleft > 0) { 

nwritten = write(fd, ptr, nleft); 
if (nwritten <= 0) 

return(nwritten); 

nleft -= nwritten; 

ptr += nwritten; 

1 
return(nbytes - nleft); 

} 

/* error */ 

We use the following function to read a line from a stream socket. In our examples 
we'll be exchanging Unix text lines between the client and server. 

/* 
* Read a line from a descriptor. Read the line one byte at a time, 
* looking for the newline. We store the newline in the buffer, 
* then follow it with a null (the same as fgets(3)). 
* We return the number of characters up to, but not including, 
* the null (the same as strlen(3)). 

int 

readline(fd, ptr, maxlen) 

register int fd; 

register char *ptr; 

register int maxlen; 

int n, rc; 

char c; 

for (n = 1; n < maxlen; n++) { 

if ( (rc = read(fd, &c, 1)) == 1) { 
*ptr++ = c; 

if (c == '\n') 

break; 
} else if (rc == 0) { 

if (n == 1) 

return(0); /* EOF, no data read */ 
else 

break; /* EOF, some data was read */ 
1 else 

return(-1); /* error */ 

} 

*ptr = 0; 
return(n); 

} 

Note that our readline function issues one read system call for every byte of 
data. This is inefficient. Section 7.1 of Kernighan and Pike [1984], for example, shows 
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that this requires about ten times more CPU time than issuing a system call for every 10 
bytes of data. What we would like to do is buffer the data by issuing a read system call 
to read as much data as we can, and then examine the buffer one byte at a time. Indeed, 
this is what the standard I/O library does. But to avoid having to worry about the possi-
ble interactions of the standard I/O library with a socket, we'll use the system call 
directly. It is possible to use the standard I/O library with a socket, but we have to be 
cognizant about the buffering that is taking place, and any interactions that can have with 
our application. 

The three functions shown above are used throughout the text. We'll now present 
four functions that are common to the clients and servers shown in this section. 

The following function is used by the three connection-oriented servers. It is an 
echo function that reads a line from the stream socket and writes it back to the socket. 

/* 
* Read a stream socket one line at a time, and write each line back 

* to the sender. 
* 

* Return when the connection is terminated. 
*/ 

#define MAXLINE 512 

str_echo(sockfd) 

int sockfd; 

1 
int n; 

char line[MAXLINE]; 

for ( ; ; ) f 

n = readline(sockfd, line, MAXLINE); 

if (n == 0) 

return; /* connection terminated */ 

else if (n < 0) 

errdump("strecho: readline error"); 

if (writen(sockfd, line, n) != n) 

err dump("str echo: writen error"); 

The following function is used by the three connection-oriented clients: 

/* 
* Read the contents of the FILE *fp, write each line to the 

* stream socket (to the server process), then read a line back from 

* the socket and write it to the standard output. 
* 

* Return to caller when an EOF is encountered on the input file. 
*/ 

#include <stdio.h> 

#define MAXLINE 512 
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strcli(fp, sockfd) 

register FILE *fp; 

register int sockfd; 

int n; 

char sendline[MAXLINE], recvline[MAXLINE + 1]; 

while (fgets(sendline, MAXLINE, fp) != NULL) 

n = strlen(sendline); 

if (writen(sockfd, sendline, n) != n) 

err sys("str cli: writen error on socket"); 

/* 

* Now read a line from the socket and write it to 

* our standard output. 
*/ 

n = readline(sockfd, recvline, MAXLINE); 

if (n < 0) 

errdump("strcli: readline error"); 

fputs(recvline, stdout); 

} 

if (ferror(fp)) 

errsys("strcli: error reading file"); 

} 

The following function is used by the three connectionless servers. By passing the 
address of the actual socket address structure to this function, it works with all three 
protocol families. Since the size of the structure can differ between protocol families, we 
also pass its size to this function, as it is needed for the recv f rom system call. 

/* 
* Read a datagram from a connectionless socket and write it back to 

* the sender. 
* 

* We never return, as we never know when a datagram client is done. 

#include 

#include. 

<sys/types.h> 

<sys/socket.h> 

#define MAXMESG 2048 

dg_echo(sockfd, pcli_addr, maxclilen) 

int sockfd; 

struct sockaddr *pcliaddr; /* ptr to appropriate sockaddr_XX structure */ 

int maxclilen; /* sizeof(*pcli_addr) */ 

int n, clilen; 

char mesg[MAXMESG]; 

for ( ; ; ) 
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clilen = maxclilen; 

n = recvfrom(sockfd, mesg, MAXMESG, 0, pcli_addr, &clilen); 

if (n < 0) 

err dump("dg echo: recvfrom error"); 

if (sendto(sockfd, mesg, n, 0, pcli_addr, clilen) != n) 

err_dump("dg_echo: sendto error"); 

The following function is for the connectionless clients. It is similar to the one for a 
connection-oriented client, with the writ en calls replaced by sendto and the readn 

calls replaced by recvfrom. Also, we need the address of the actual socket address 
structure and its size for the datagram system calls. 

/* 
Read the contents of the FILE *fp, write each line to the 

* datagram socket, then read a line back from the datagram 
* socket and write it to the standard output. 
* 

* Return to caller when an EOF is encountered on the input file. 

*/ 

#include 

#include 

#include 

<stdio.h> 

<sys/types.h> 

<sys/socket.h> 

#define MAXLINE 512 

dg_cli(fp, sockfd, pserv_addr, servlen) 

FILE *fp; 

int sockfd; 

struct sockaddr *pserv_addr; /* ptr to appropriate sockaddr_XX structure */ 

int servlen; /* actual sizeof(*pservaddr) */ 

int n; 

char sendline[MAXLINE], recvline[MAXLINE + 1]; 

while (fgets(sendline, MAXLINE, fp) != NULL) { 

n = strlen(sendline); 

if (sendto(sockfd, sendline, n, 0, pserv_addr, servlen) != n) 

errdump("dgcli: sendto error on socket"); 

/* 
* Now read a message from the socket and write it to 

* our standard output. 
*/ 

n = recvfrom(sockfd, recvline, MAXLINE, 0, 

(struct sockaddr *) 0, (int *) 0); 

if (n < 0) 

err_dump("dg_cli: recvfrom error"); 

recvline[n] = 0; /* null terminate */ 

fputs(recvline, stdout); 
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if (ferror(fp)) 

errdump("dgcli: error reading file"); 

TCP Example 

Our TCP example follows the flow of system calls that we diagramed in Figure 6.2 for a 
connection-oriented client and server. First we show the header file that we use for both 
the TCP and UDP examples, inet . h. 

/* 
* Definitions for TCP and UDP client/server programs. 
*/ 

#include 

#include 

#include 

#include 

#include 

<stdio.h> 

<sys/types.h> 

<sys/socket.h> 

<netinet/in.h> 

<arpa/inet.h> 

#define SERV_UDP_PORT 6543 

#define SERV_TCP_PORT 6543 

#define SERV HOST ADDR "192.43.235.6" /* host addr for server */ 

char *pname; 

Our choice of the TCP port number is arbitrary. It must be greater than 1023, should be 
greater than 5000, and must not conflict with any other TCP server's port. (We describe 
the 4.3BSD port number conventions in more detail in Section 6.8.) The 
SERV HOST ADDR constant corresponds to the host being used by the author. As men-
ti
 — — 
oned earlier, there are better ways of handling these magic numbers and constants, but 

for now we want to concentrate on the socket system calls themselves. 
The server program is as follows: 

/* 
* Example of server using TCP protocol. 
*/ 

#include "inet.h" 

main(argc, argv) 

int argc; 

char *argv[]; 

int sockfd, newsockfd, clilen, childpid; 

struct sockaddrin cli addr, serv_addr; 

pname = argvf01; 

/* 
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* Open a TCP socket (an Internet stream socket). 
*/ 

if ( (sockfd = socket(AFINET, SOCK STREAM, 0)) < 0) 

err_dump("server: can't open stream socket"); 

/* 

* Bind our local address so that the client can send to us. 
*/ 

bzero((char *) &serv_addr, sizeof(serv_addr)); 

serv_addr.sin_family = AF INET; 

sery addr.sin_addr.s_addr = htonl(INADDR_ANY); 

servaddr.sinport = htons(SERV TCP PORT); 

if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) 

errdump("server: can't bind local address"); 

listen(sockfd, 5); 

for ( ; ; ) { 

/* 

* Wait for a connection from a client process. 

* This is an example of a concurrent server. 

*/ 

clilen = sizeof(cli_addr); 

newsockfd = accept(sockfd, (struct sockaddr 

if (newsockfd < 0) 

errdump("server: accept error"); 

if ( (childpid = fork()) < 0) 

err dump("server: fork error"); 

else if (childpid == 0) { 

close(sockfd); 

str_echo(newsockfd); 

exit(0); 

* ) &cli_addr, 

&clilen); 

/* child process */ 

/* close original socket */ 

/* process the request */ 

close(newsockfd); /* parent process */ 

} 

We specify the Internet address for the server's bind as the constant INADDR_ANY. 

This tells the system that we will accept a connection on any Internet interface on the 
system, if the system is multihomed. 

The client program is as follows: 

/* 

* Example of client using TCP protocol. 
*1 
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#include "inet.h" 

main(argc, argv) 

int argc; 

char *argv[]; 

int 

struct sockaddr in 

pname = argv[0]; 

sockfd; 

serv_addr; 

/* 
* Fill in the structure "sery addr" with the address of the 

* server that we want to connect with. 
* 

bzero((char *) &serv_addr, sizeof(serv_addr)); 

serv_addr.sin_family = AF_INET; 

sery addr.sin addr.s addr = inet addr(SERV HOST ADDR); _ _ _ _ _ _ 
servaddr.sinport = htons(SERV TCP PORT); 

/* 
* Open a TCP socket (an Internet stream socket). 
*/ 

if ( (sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) 

err_sys("client: can't open stream socket"); 

/* 

* Connect to the server. 
*/ 

if (connect(sockfd, (struct sockaddr *) &sery addr, 

sizeof(serv_addr)) < 0 

err sys("client: can't connect to server"); 

strcli(stdin, sockfd); /* do it all */ 

close(sockfd); 

exit(0); 

UDP Example 

Our UDP client and server programs follow the system call flow that we diagramed in 
Figure 6.3 for a connectionless protocol. 

The client calls bind after creating its socket, to have the system assign any local 
address to the client's socket. In some instances this specific step isn't required, if the 
system automatically assigns a local address when the sendt o system call is used for 
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the first time. But some connectionless protocols, such as the Unix domain datagram 
protocol, don't do this (for reasons which we discuss later in this section). Therefore, as 
both a good programming habit, and to provide consistency between protocols, we'll 
always call bind for connectionless clients. 

This UDP example is not reliable. If a datagram disappears, neither the client or 
server are aware of it. To provide reliability for UDP requires additional user-level code 
that we'll develop in Section 8.4. 

First the server program. 

/* 

* Example of server using UDP protocol. 
*/ 

#include "inet.h" 

main(argc, argv) 

int argc; 

char *argv[]; 

int sockfd; 

struct sockaddr in servaddr, cli addr; 

pname = argv[0]; 

/* 
* Open a UDP socket (an Internet datagram socket). 
*/ 

if ( (sockfd = socket(AFINET, SOCK_DGRAM, 0)) < 0) 

err_dump("server: can't open datagram socket"); 

/* 

* Bind our local address so that the client can send to us. 
*/ 

bzero((char *) &serv_addr, sizeof(serv_addr)); 

serv_addr.sin_family = AF INET; 

serv_addr.sin_addr.s_addr = htonl(INADDR_ANY); 

servaddr.sinport = htons(SERV UDP PORT); 

if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) 

err_dump("server: can't bind local address"); 

dg_echo(sockfd, (struct sockaddr *) &cli_addr, sizeof(cli_addr)); 

/* NOTREACHED */ 

} 

As with the TCP server example, the Internet address for the bind is specified as 
INADDR ANY. 
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The client program: 

/* 
* Example of client using UDP protocol. 
*/ 

#include "inet.h" 

main(argc, argv) 

int argc; 
char *argv[]; 

int sockfd; 

struct sockaddr in cli addr, sere addr; 

pname = argv[0]; 

/* 
* Fill in the structure "sery addr" with the address of the 

* server that we want to send to. 
*/ 

bzero((char *) &serv_addr, sizeof(ser_addr)); 

sery addr.sin family = AF_INET; 

serv_addr.sin_addr.s_addr = inet_addr(SERV_HOST_ADDR); 

sery addr.sin_port = htons(SERV UDP_PORT); 

/* 
* Open a UDP socket (an Internet datagram socket). 
*/ 

if ( (sockfd = socket(AFINET, SOCK_DGRAM, 0)) < 0) 

err_dump("client: can't open datagram socket"); 

/* 
* Bind any local address for us. 
*/ 

bzero((char *) &cli_addr, sizeof(cli_addr)); /* zero out */ 

cliaddr.sin_family = AF INET; 

cli_addr.sin_addr.s_addr = htonl(INADDR ANY); 

cli_addr.sin_port = htons(0); 

if (bind(sockfd, (struct sockaddr *) &cli addr, sizeof(cli addr)) < 0) 

err dump("client: can't bind local address"); 

dgcli(stdin, sockfd, (struct sockaddr *) &sery addr, sizeof(sery addr 

close(sockfd); 

exit(0); 

In assigning a local address for the client using bind, we set the Internet address to 
INADDR ANY and the 16-bit Internet port to zero. Setting the port to zero causes the 
system to assign the client some unused port in the range 1024 through 5000. The system 
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guarantees that the assigned port is unique on the local system, so that the datagrams 
returned by the server to this port are delivered to the correct client. When we send a 
datagram to the server, the system determines which Internet interface to use to contact 
the server, and sets the client's 32-bit Internet address accordingly. 

SPP Example 

The XNS examples are similar to the Internet examples, the only exception being the 
handling of the XNS address structures. 

First we show the header file used by both the SPP and IDP programs, xns . h. 

/* 
* Definitions for SPP and IDP client/server programs. 
*/ 

#include <stdio.h> 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netns/ns.h> 

#define SPP_SERV ADDR "123:02.07.01.00.a1.62:6001" 

#define IDP SERV ADDR "123:02.07.01.00.a1.62:6000" 

/* <netid>:<hostid>:<port> */ 

#define SERV_SPP_PORT 6001 

#define SERV IDP PORT 6000 

char *pname; 

struct ns_addr nsaddr(); /* BSD library routine */ 

Our choice of port numbers is arbitrary. Note that the SPP and IDP port numbers are dif-
ferent, while our Internet example used the same port number for the TCP port and the 
UDP port. Recall from Section 5.2 that TCP and UDP ports are independent on a system 
(they are demultiplexed at the transport layer). XNS port numbers, however, are not 
independent as they are demultiplexed at the network layer. 

The SPP SERV ADDR and IDP SERV ADDR values correspond to the XNS 
addresses of the systems used for this example. 

As mentioned at the beginning of this section, we have coded this server as an itera-
tive server. It completely handles one client before accepting another connection. You 
should compare this with the TCP example shown earlier in this section, which we coded 
as a concurrent server. 

/* 

* Example of server using SPP protocol. 
*/ 

#include "xns.h" 

main(argc, argv) 

int argc; 

char *argv[]; 
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int sockfd, newsockfd, clilen; 

struct sockaddr_ns cli addr, serv_addr; 

pname = argv[0]; 

/* 
* Open a SPP socket (an XNS stream socket). 
*/ 

if ( (sockfd = socket(AFNS, SOCK_STREAM, 0)) < 0) 

err dump("server: can't open stream socket"); 

/* 
* Bind our local address so that the client can send to us. 
*/ 

bzero((char *) &serv_addr, sizeof(serv_addr)); 

serv_addr.sns_family = AF _NS; 

servaddr.sns_addr.x_port = htons(SERVSPP_PORT); 

if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) ( 

err dump("server: can't bind local address"); 

listen(sockfd, 5); 

for ( ; ; ) { 

/* 

* Wait for a connection from a client process, 

* then process it without fork()'ing. 

* This is an example of an iterative server. 
*/ 

clilen = sizeof(cli_addr); 

newsockfd = accept(sockfd, (struct sockaddr 

if (newsockfd < 0) 

err dump("server: accept error"); 

str_echo(newsockfd); /* returns when connection is closed */ 

close(newsockfd); 

*) &cli_addr, 

&clilen); 

Before binding its well-known address, the server zeroes its address structure and then 
stores its family and port, leaving the network ID and host ID as zero. This is similar to 
setting the 32-bit Internet network ID and host ID to INADDR ANY. It tells the system 
that the server is willing to accept a connection from any host. 
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The client program: 

/* 
* Example of client using SPP protocol. 
*/ 

#include "xns.h" 

main(argc, argv) 

int argc; 

char *argv[]; 

int sockfd; 

struct sockaddr_ns sery addr; 

pname = argv[0]; 

/* 
* Fill in the structure "serv_addr" with the XNS address of the 

* server that we want to connect with. 

bzero((char *) &serv_addr, sizeof(serv_addr)); 

serv_addr.sns_family = AF_NS; 

serv_eddr.sns_addr = ns_addr(SPP_SERV_ADDR); 

/* stores net-ID, host-ID and port */ 

/* 
* Open a SPP socket (an XNS stream socket). 
*/ 

if ( (sockfd = socket(AF_NS, SOCK_STREAM, 0)) < 0) 

err sys("client: can't open stream socket"); 

/* 

* Connect to the server. 
*/ 

if (connect(sockfd, (struct sockaddr *) &serv_addr, 

sizeof(serv_addr)) < 0) 

err sys("client: can't connect to server"); 

strcli(stdin, sockfd); /* do it all */ 

close(sockfd); 

exit(0); 

} 
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IDP Example 

As with our UDP example, the IDP programs that follow are not reliable. The IDP 
server program: 

/* 
* Example of server using XNS IDP protocol. 
*/ 

#include "xns.h" 

main(argc, argv) 

int argc; 

char *argv[]; 

int sockfd; 

struct sockaddrns serv_addr, cli addr; 

pname = argv[0]; 

/* 

* Open an IDP socket (an XNS datagram socket). 

*/ 

if ( (sockfd = socket(AFNS, SOCK DGRAM, 0)) < 0) 

err dump("server: can't open datagram socket"); 

/* 
* Bind our local address so that the client can send to us. 
*/ 

bzero((char *) &serv_addr, sizeof(serv_addr)); 

serv_addr.sns_family = AF_NS; 

servaddr.sns_addr.xport = htons(SERVIDP_PORT); 

if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(sery addr)) < 0) 4

err dump("server: can't bind local address"); A

dg_echo(sockfd, (struct sockaddr *) &cli_addr, sizeof(cli_addr)); 

/* NOTREACHED */ 

The IDP client program: 

/* 

* Example of client using XNS IDP protocol. 
*/ 

#include "xns.h" 

main(argc, argv) 

int argc; 

char *argv[]; 

1 
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int sockfd; 

struct sockaddrns cli addr, serv_addr; 

pname = argv[0]; 

/* 

* Fill in the structure "serv_addr" with the address of the 

* server that we want to send to. 
*/ 

bzero((char *) &serv_addr, sizeof(serv_addr)); 

sery addr.sns_family = AF_NS; 

sery addr.sns addr = ns addr(IDP SERV ADDR); 

/* stores net-ID, host-ID and port */ 

/* 

* Open an IDP socket (an XNS datagram socket). 
*/ 

if ( (sockfd = socket(AFNS,_ SOCK_DGRAM, 0)) < 0) 

errdumprclient: can't open datagram socket"); 

/* 
* Bind any local address for us. 
*/ 

bzero((char *) &cli_addr, sizeof(cli_addr)); /* zero out */ 

cli_addr.sns_family = AF_NS; 

if (bind(sockfd, (struct sockaddr *) &cli_addr, sizeof(cli_addr)) < 0) 

err dump("client: can't bind local address"); 

dgcli(stdin, sockfd, (struct sockaddr *) &servaddr, sizeof(servaddr)); 

close(sockfd); 

exit(0); 

} 

Unix Stream Example 

The Unix stream protocol example is similar to both the TCP and SPP examples. Here is 
the header file that we use for both the stream and datagram examples, unix . h. 

/* 
* Definitions for UNIX domain stream and datagram client/server programs. 
*/ 

#include <stdio.h> 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <sys/un.h> 

#define UNIXSTR PATH 

#define UNIXDG PATH 

"./s.unixstr" 
"./s.unixdg" 
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#define UNIXDG TMP 

char *pname; 

"/tmp/dg.XXXXXX" 

The server program: 

/* 
* Example of server using UNIX domain stream protocol. 
*/ 

#include "unix.h" 

main(argc, argv) 

int argc; 

char *argv[]; 

int sockfd, newsockfd, clilen, childpid, servlen; 

struct sockaddtun cli addr, servaddr; 

pname = argv[0]; 

/* 
* Open a socket (a UNIX domain stream socket). 
*/ 

if ( (sockfd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) 

err dump("server: can't open stream socket"); 

/* 
* Bind our local address so that the client can send to us. 
*/ 

bzero((char *) &serv_addr, sizeof(serv_addr)); 

serv_addr.sun_family = AF_UNIX; 

strcpy(serv_addr.sun_path, UNIXSTR_PATH); 

servlen = strlen(servaddr.sun_path) + sizeof(servaddr.sun_family); 

if (bind(sockfd, (struct sockaddr *) &serv_addr, servlen) < 0) 

err dump("server: can't bind local address"); 

listen(sockfd, 5); 

for ( ; ; ) { 

/* 
* Wait for a connection from a client process. 

* This is an example of a concurrent server. 
* 

clilen = sizeof(cli_addr); 

newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, 

&clilen); 

if (newsockfd < 0) 

errdump("server: accept error"); 
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if ( (childpid = fork()) < 0) 

err dump("server: fork error"); 

else if (childpid == 0) { 

close(sockfd); 

str_echo(newsockfd); 

exit(0); 

} 

/* child process */ 

/* close original socket */ 

/* process the request */ 

close(newsockfd); /* parent process */ 

} 

With a Unix domain address structure, we have to calculate the length of the structure for 
the bind system call, since it depends on the length of the pathname specified. We 
specify the length as the size of the sun_family variable plus the number of characters 
in the pathname. 

The client program: 

/* 
* Example of client using UNIX domain stream protocol. 
*/ 

#include "unix.h" 

min(argc, argv) 

int argc; 

char *argv[]; 

{ 

int sockfd, servlen; 

struct sockaddrun servaddr; 

pname = argv[0]; 

/* 

* Fill in the structure "serv_addr" with the address of the 

* server that we want to send to. 
*/ 

bzero((char *) &servaddr, sizeof(serv_addr)); 

serv_addr.sun_family = AF_UNIX; 

strcpy(serv_addr.sunpath, UNIXSTR PATH); 

servlen = strlen(servaddr.sunpath) + sizeof(servaddr.sunfamily); 

/* 
* Open a socket (an UNIX domain stream socket). 
*/ 

if ( (sockfd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) 

err sys("client: can't open stream socket"); 

/* 

* Connect to the server. 
*/ 
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if (connect(sockfd, (struct sockaddr *) &serv_addr, servlen) < 0) 

err sys("client: can't connect to server"); 

strcli(stdin, sockfd); /* do it all */ 

close(sockfd); 

exit(0); 

Unix Datagram Example 

The Unix datagram protocol example presents an interesting problem that we haven't 
encountered yet. Since Unix domain sockets are identified by pathnames of actual files 
in the host's filesystem, the client has to form a unique pathname to use when it binds 

its local address. When using UDP or IDP, the local port is specified by a 16-bit integer 
that only has significance within the kernel. Therefore we let the system assign our local 
port, leaving the responsibility to the system to guarantee its uniqueness on the local host. 
But in the Unix domain we're dealing with pathnames that get turned into actual files by 

the bind system call, so it is our responsibility to pick a local address and guarantee its 
uniqueness on the local host. While this function could have been delegated to the kernel 
(as is done with UDP and IDP), since side effects could occur (such as creating a file in a 
directory in which the caller doesn't have permission to delete in), the designers chose to 

leave this to the application. 
In this example we use the mktemp function in the standard C library to create a 

name for the client's socket, based on the client's process ID. Note that we must try to 

create a unique name for the client's socket, since there is a possibility that multiple 

clients are using the same server at the same time. With unique client addresses, each 

server response is returned to the correct client process.t 
The server program: 

/* 

* Example of server using UNIX domain datagram protocol. 

*/ 

#include "unix.h" 

main(argc, argv) 

int argc; 

t There is a feature in the 4.3BSD implementation of Unix domain datagrams that limits the 

number of characters of this filename that are transmitted along with the datagram, to 14 characters. 

If the client binds a local address with more than 14 characters in the filename, that file, of type 

socket, is correctly created in the filesystem, but only the first 14 characters of its name are sent to 

the server. This means the server won't be able to respond to the client. Furthermore, if the file-

name is less than 14 characters, extraneous characters are usually appended to the name, which also 

prevents the server from responding to the client. We have purposely chosen the pathname 

/tmp/dg . XXXXXX to be exactly 14 characters. 
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char *argv[]; 

int sockfd, servlen; 

struct sockaddrun servaddr, cli addr; 

pname = argv[0]; 

/* 

* Open a socket (a UNIX domain datagram socket). 
*/ 

if ( (sockfd = socket(AFUNIX, SOCK_DGRAM, 0)) < 0) 

err dump("server: can't open datagram socket"); 

/* 

* Bind our local address so that the client can send to us. 
*/ 

unlink(UNIXDG_PATH); /* in case it was left from last time */ 

bzero((char *) &serv_addr, sizeof(serv_addr)); 

serv_addr.sun_family = AF_UNIX; 

strcpy(servaddr.sun_path, UNIXDG_PATH); 

servlen = sizeof(sery addr.sun family) + strlen(servaddr.sunpath); 

if (bind(sockfd, (struct sockaddr *) &serv_addr, servlen) < 0) 

err dump("server: can't bind local address"); 

dg echo(sockfd, (struct sockaddr *) &cli_addr, sizeof(cli_addr)); 

/* NOTREACHED */ 

The client program: 

/* 
* Example of client using UNIX domain datagram protocol. 
* 

#include "unix.h" 

main(argc, argv) 

int argc; 

char *argv[]; 

int sockfd, clilen, servlen; 

char *mktemp(); 

struct sockaddr_un cli addr, servaddr; 

pname = argv[0]; 

/* 
* Fill in the structure "serv_addr" with the address of the 

* server that we want to send to. 
*/ 
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bzero((char *) &serv_addr, sizeof(serv_addr)); 

serv_addr.sun family = AF_UNIX; 

strcpy(sery addr.sun path, UNIXDO_PATH); 

servlen = sizeof(servaddr.sun_family) + strlen(serv_addr.sunpath);

/* 
* Open a socket (a UNIX domain datagram socket). 

if ( (sockfd = socket(AFUNIX, SOCK_DGRAM, 0)) < 0) 

err dump("client: can't open datagram socket"); 

/* 
* Bind a local address for us. 

* In the UNIX domain we have to choose our own name (that 

* should be unique). We'll use mktemp() to create a unique 

* pathname, based on our process id. 

*/ 

bzero((char *) &cli_addr, sizeof(cli_addr)); /* zero out */ 

cli_addr.sun_family = AF_UNIX; 

strcpy(cli_addr.sun_path, UNIXDO_TMP); 

mktemp(cliaddr.sun_path); 

clilen = sizeof(cli_addr sun_family) + strlen(cli_addr.sun_path); 

if (bind(sockfd, (struct sockaddr *) &cli_addr, clilen) < 0) 

err dump("client: can't bind local address"); 

dgcli(stdin, sockfd, (struct sockaddr *) &serv_addr, servlen); 

close(sockfd); 

unlink(cli_addr.sun_path); 

exit(0); 

6.7 Advanced Socket System Calls 

We now proceed to the more advanced socket system calls, which we need in later sec-
tions of this chapter, and in some of the later chapters of this text. 

ready and writev System Calls 

4.3BSD provides what are called scatter read and gather write variants of the standard 

read and write system calls that we described in Section 2.3. What these two variants 

provide is the ability to read into or write from noncontiguous buffers. 
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#include <sys/types.h> 

#include <sys/uio.h> 

int writev (int fd, struct iovec int kwount); 

int ready (int fd, struct iovec int kwcomt); 

These two system calls use the following structure that is defined in <s y s /uio . h>: 

struct iovec { 

caddr t iov base; /* starting address of buffer */ 

int iov len; /* size of buffer in bytes */ 
} ; 

The writev system call writes the buffers specified by ioy[0], iov[1], through 
iov[iovcount-1]. The ready system call does the input equivalent. ready always fills 
one buffer (as specified by the i ov_len value) before proceeding to the next buffer in 
the boy array. Both system calls return the total number of bytes read or written. 

Consider, as an example, a hypothetical function named write hdr that writes a 
buffer preceded by some header. The actual format of the header doesn't concern us. 

int 

write_hdr(fd, buff, nbytes) 

int fd; 

char *buff; 

int nbytes; 

int n; 

struct hdr info header; 

/ ... set up the header as required .. 

if (write(fd, header, sizeof(header)) != sizeof(header)) 

return(-1); 

if (write(fd, buff, nbytes) != nbytes) 

return(-1); 

return(nbytes); 

Here two write system calls are used. Another way to do this is to allocate a temporary 
buffer, build the header in the beginning of the buffer, then copy the data into the buffer 
and do a single write of the entire buffer. A third way to do it (to avoid the extra 
write or to avoid the copy operation) is to force the caller to allocate space at the 
beginning of their buffer for the header. None of these three alternatives is optimal, 
which is why the writev system call (and its ready counterpart) were introduced. 
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The types of operation described here (adding information to either the beginning or end 
of a user's buffer) is just a form of encapsulation. The writev alternative for our

example is 

#include <sys/types.h> 

#include <sys/uio.h> 

int 

write_hdr(fd, buff, nbytes) 

int fd; 

char *buff; 

int nbytes; 

struct hdr_info header; 

struct iovec iov[2]; 

/* ... set up the header as required ... */ 

iov[0].iov_base = (char *) &header; 

iov[0].iovlen = sizeof(header); 

iov[1].iov_base = buff; 

iov[1].iovlen = nbytes; 

if (writev(fd, &iov[0], 2) != sizeof(header) + nbytes) 

return(-1); 

return(nbytes); 

} 

The ready and writev system calls can be used with any descriptor, not just sockets, 

although they are not portable beyond 4.3BSD. (One could write user functions named 

ready and writev that emulate these 4.3BSD system calls.) 
The writev system call is an atomic operation. This is important if the descriptor 

refers to a record-based entity, such as a datagram socket or a magnetic tape drive. For 

example, a writev to a datagram socket produces a single datagram, whereas multiple 

writes would produce multiple datagrams. The only correct way to emulate writev 

is to copy all the data into a single buffer and then execute a single write system call. 

sendmsg and recvmsg System Calls 

These two system calls are the most general of all the read and write system calls. 

#include <sys/types.h> 

#include <sys/socket.h> 

int sendmsg (int sockfd, struct msghdr mug(], int flags); 

int recvmsg (int sockfd, struct msghdr 'raga, int flags); 
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These use the msghdr structure that is defined in < sys / socket . h> 

struct msghdr 

caddr t 

int 

struct iovec 

int 

caddr t 

int 
}; 

msg_name; 

msg_namelen; 

*msgiov; 

msg_iovlen; 

msg_accrights; 

msgaccrightslen; 

/* optional address */ 

/* size of address */ 

/* scatter/gather array */ 
/* # elements in msg_iov */ 
/* access rights sent/recvd */ 

The msg_name and msg_namelen fields are used when the socket is not connected, 
similar to the final two arguments to the recvfrom and sendto system calls. The 
msg_name field can be specified as a NULL pointer if a name is either not required or 
not desired. The msg_ioy and msg_iovlen, fields are used for scatter read and gather 
write operations, as described above for the ready and writev system calls. The final 
two elements of the structure, msg_accrights and msg_accrightslen deal with 
the passing and receiving of access rights between processes. We discuss this in Sec-
tion 6.10 when we explain the passing of file descriptors between processes. The flags 

argument is the same as with the send and recv system calls, which we described in 
Section 6.5. 

Figure 6.10 compares the five different read and write function groups. 

System call 
Any 

descriptor 
Only 

socket 
descriptor 

Single 
read/write 

buffer 

Scatter/ 
gather 

read/write 

Optional 
flags 

Optional 
peer 

address 

Optional 
access 
rights 

read, write • • 

ready, writev • • 

recv, send • • • 

recvfrom, sendto • • • • 

recvmsg, sendmsg • • • • • 

Figure 6.10 Read and write system call variants. 

getpeername System Call 

This system call returns the name of the peer process that is connected to a given socket. 

#include <sys/types.h> 

#include <sys/socket.h> 

int getpeername (int sockfd, struct sockaddr *peer, int *addrlen); 

When we say that this system call returns the "name" of the peer process, we mean that 
it returns the foreign-addr and foreign process elements of the 5-tuple associated with 
sockfd. Note that the final argument is a value—result argument. 
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The original 4.3BSD release did not support this system call for Unix domain sock-
ets, but fixes exist to correct this limitation. 

get sockname System Can 

This system call returns the name associated with a socket. 

#include <sys/types.h> 

#include <sys/socket.h> 

int getsockname(int sockfd, struct sockaddr *peer, int *addden); 

This call returns the local-addr and local process elements of an association. As with the 
getpeername system call, the final argument is a value—result argument. 

The original 4.3BSD release did not support this system call for Unix domain sock-
ets, but fixes exist to correct this limitation. 

get sockopt and setsockopt System Calls 

These two system calls manipulate the options associated with a socket. We'll describe 
them in more detail in Section 6.11, along with two other system calls, fcntl and 
ioct 1, that can modify the properties of a socket. 

shutdown System Call 

The normal way to terminate a network connection is to call the close system call. As 
we mentioned earlier, close normally attempts to deliver any data that is still to be sent. 
But the shutdown system call provides more control over a full-duplex connection. 

int shutdown (int sockfd, int howto); 

If the howto argument is 0, no more data can be received on the socket. A value of 1 
causes no more output to be allowed on the socket. A value of 2 causes both sends and 
receives to be disallowed. 

ReMember that a socket is usually a full-duplex communication path. The data flow-
ing in one direction is logically independent of the data going in the other direction. This 
is why shutdown allows either direction to be closed, independent of the other direc-
tion. 

select System Call 

This system call can be used when dealing with multiple descriptors. We'll discuss it in 
detail in Section 6.13. 
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6.8 Reserved Ports 

There are two ways for a process to have an Internet port or an XNS port assigned to a 
socket. 

• The process can request a specific port. This is typical for servers that need to 
assign a well-known port to a socket. All our server examples shown in Sec-
tion 6.6 do this. 

• The process can let the system automatically assign a port. For both the Internet 
domain and the XNS domain, specifying a port number of zero before calling 
bind requests the system to do this. Both our UDP and EDP client examples do 
this. 

4.3BSD supports the concept of reserved ports in both the Internet and XNS domains. In 
the Internet domain, any TCP or UDP port in the range 1-1023 is reserved, and in the 
XNS domain ports in the range 1-2999 are reserved. A process is not allowed to bind 

a reserved port unless its effective user ID is zero (the superuser). 
4.3BSD provides a library function that assigns a reserved TCP stream socket to its 

caller: 

int rresvport (int *aport) ; 

This function creates an Internet stream socket and binds a reserved port to the socket. 
The socket descriptor is returned as the value of the function, unless an error occurs, in 
which case —1 is returned. Note that the argument to this function is the address of an 
integer (a value—result argument), not an integer value. The integer pointed to by aport is 
the first port number that the function attempts to bind. The caller typically initializes 
the starting port number to IPPORT_RESERVED-1. (The value of the constant 
IPPORT RESERVED is defined to be 1024 in <netinet /in . h>.) If this bind fails 
with an errno of EADDRINUSE, then this function decrements the port number and 
tries again. If it finally reaches port 512 and finds it already in use, it sets errno to 
EAGAIN, and returns —1. If this function returns successfully, it not only returns the 
socket as the value of the function, but the port number is also returned in the location 
pointed to by aport. 

Figure 6.11 summarizes the assignment of ports in the Internet and XNS domains. 

Internet XNS 

reserved ports 1-1023 1-2999 
ports automatically assigned by system 1024-5000 3000-65535 
ports assigned by rresvport 0 512-1023 

Figure 6.11 Port assignment in the Internet and XNS domains. 
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Note that all ports assigned by standard Internet applications (FTP, TELNET, TFTp, 
SMTP, etc.) are between 1 and 255 and are therefore reserved. The servers for these 
applications must have superuser privileges when they create their socket and bind their 
well-known address. Also, the ports between 256 and 511 are considered reserved by 
4.3BSD, but they are not currently used by any standard Internet application, and they are 
never allocated by the rresvport function. 

The system doesn't automatically assign an Internet port greater than 5000. It leaves 
these ports for user-developed, nonprivileged servers. This provides a higher degree of 
certainty that a server can assign itself its well-known port, since any of the ports 
between 1024 and 5000 might be in use by some client. 

Finally, note that any process that wants to obtain a privileged UDP, IDP, or SPP 
port has to do the same steps that rresvport does. There does not exist a standard 
library function similar to rresvport for these three protocols. 

The concept of reserved ports as described above only handles the binding of ports 
to unbound sockets by the system. It is up to the application program (the server) that 
receives a request from a client with a reserved port, to consider the request as special or 
not. The server can obtain the address of the client using the getpeername system 
call. A connection-oriented server can also obtain the client's address from the peer 
argument of the accept system call, and a datagram server can obtain the address of the 
client from the from argument of the re cvf r om system call. In Section 9.2 we consider 
reserved ports and their use by typical 4.3BSD servers for authentication. 

6.9 Stream Pipes 

We introduced the term stream pipe in Section 6.5 when describing the socketpair 
system call. We consider a stream pipe to be similar to a pipe, but a stream pipe is 
bidirectional. Furthermore, stream pipes are used in both 4.3BSD and in System V 
Release 3 for passing file descriptors between processes. Therefore we'll provide a func-
tion named s_pipe to create a stream pipe and have it look just like the pipe system 
call. 

We also have the option of associating a name with a stream pipe, so we can provide 
two versions: unnamed stream pipes and named stream pipes. Figure 6.12 compares the 
four types of pipes that we've described. 

Unidirectional Bidirectional 4.3BSD System V 

pipe 
named pipe (FIFO) 

• 
• 

yes 
some 

yes 
yes 

stream pipe 
named stream pipe 

• 
• 

yes 
yes 

yes 
yes 

Figure 6.12 Comparison of pipes, FIF0s, stream pipes, and named stream pipes. 

Pipes and named pipes were described in Chapter 3. 
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A function to create an unnamed stream pipe is trivial for 4.3BSD. 

/* 
* Create an unnamed stream pipe. 
*/ 

#include <sys/types.h> 

#include <sys/socket.h> 

int 

s_pipe(fd) 

int fd[2]; 

{ 

/* returns 0 if all OK, -1 if error (with errno set) */ 

/* two file descriptors returned through here */ 

return( socketpair(AF UNIX, SOCK STREAM, 0, fd) ); 

Our function to create a named stream pipe first creates an unnamed stream pipe, 
then associates a name with one end of it, using the bind system call. This function 
requires another argument: the name within the filesystem to be associated with the 
stream pipe. 

/* 
* Create a named stream pipe. 
*/ 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <sys/un.h> 

int 

ns_pipe(name, fd) 

char *name; 

int fd[2]; 

{ 

} 

/* returns 0 if all OK, -1 if error (with errno set) */ 

/* user-specified name to assign to the stream pipe */ 

/* two file descriptors returned through here */ 

int 

struct sockaddr_un 

len; 

unixaddr; 

if (s pipe(fd) < 0) /* first create an unnamed stream pipe */ 

return(-1); 

unlink(name); /* remove the name, if it already exists */ 

bzero((char *) &unix_addr, sizeof(unix_addr)); 

unix_addr.sun_family = AF_UNIX; 

strcpy(unix_addr.sunpath, name); 

len = strlen(unix addr.sun path) + sizeof(unixaddr.sunfamily); 

if (bind(fd[0], (struct sockaddr *) &unix_addr, len) < 0) 

return(-1); 

return(0); 
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As we mentioned in Section 6.3, the filename that is specified for a socket that is created 
in the Unix domain (as we are doing to implement named stream pipes) refers to a 
socket, not a true Unix file. The only way another process can access this endpoint is 
through the socket system calls. We cannot, for example, use the open system call on 
these named stream pipes. 

With stream pipes, both unnamed and named, the two descriptors returned by the 
functions s_pipe and ns_pipe are indistinguishable: both can be used for reading and 
writing, since these stream pipes are bidirectional. Recall with the pipe system call that 
only one descriptor is available for reading and the other is only available for writing. 

6.10 Passing File Descriptors 

Recall from Chapter 2 that for most Unix systems the only way to pass an open file from 
one process to another is for a parent process to open a file and then either fork or 
exec another process. There is normally no way for one process to pass an open file to 
some other, arbitrary (i.e., unrelated) process, or for a child to pass an open file to its 
parent process. 4.3BSD and System V Release 3 both provide a mechanism to do this. 
When we say "open file" we mean "open descriptor," since either a file descriptor or a 
socket descriptor can be passed. Since devices are handled using the same descriptors as 

files, descriptors that refer to devices can also be passed. When we use the term "file 
descriptor" in this section, realize that 4.3BSD descriptors are not restricted to actual 

files. 
Recall our picture of the open file table in the kernel for a given process (Fig-

ure 2.12). It is a vector that is indexed by the file descriptor to obtain a pointer into the 
kernel's file table. When we say we want to pass an open file from one process to 

another, what we want to do is take an open file from-the sending process and generate 
another pointer to the file table entry for that file. Pictorially, we want the data structures 

as shown in Figure 6.13. 
Notice that the actual descriptor value is generally different between the sending 

process and the receiving process. Figure 6.13 shows, for example, that the descriptor 
could be 3 in the sending process, but the descriptor in the receiving process could be 4, 

if that is the first available value. Nevertheless, entry fd[3] in the sending process and 

entry fd[4] in the receiving process both point to the same file table entry in the kernel, 
allowing the two processes to share the same file. Typically the sending process closes 

the file after it has been sent to the receiving process. 
To pass a descriptor from one process to another, the two processes must be con-

nected with a Unix domain socket. This connection can be either a stream socket or a 

datagram socket. Given the comments we presented earlier about the potential buffer 

problems with a datagram protocol, we'll use a stream protocol in our examples. We'll 

use the s_pipe function from the previous section to create a stream pipe which is 

really a Unix domain stream socket. The only way to pass a descriptor is for the sending 

process to use the sendmsg system call and then the receiving process must use the 
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Figure 6.13 Sharing a file table entry between two processes. 
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recvmsg system call. These two system calls are the only ones that support the concept 
of "access rights," which is how descriptors are passed. 

The term "access rights" indicates that a process has the right to access a system-
maintained object. In this case the object is a file, device, or socket that the system has 
granted access to by opening the object and returning a file descriptor to the process. The 
process that has this access right (the sending process that obtained the right from the 
kernel) passes it to another process. Although we can imagine other access rights that 
might be passed from one process to another (access to a portion of memory, for exam-
ple), 4.3BSD only supports the passing of file descriptors. 

There are two instances where the ability to pass a file descriptor can be useful. 
(These ideas come from Pregotto and Ritchie [1985].) 

1. A process forks a child process and the child then execs another process to 
open a particular file. The execed process does whatever it has to do to open 
the file and then passes the open file descriptor back to the original process. 
Since the execed process is a child process of the original process, there is no 
way for it to pass an open file back to the parent, other than passing an open file 
as we describe in this section. 

Apple Inc.
Ex. 1013 - Page 147



308 Berkeley Sockets Chapter 6 

2. A connection server can be invoked to handle all network connections. Instead 
of using fork and exec as described above, this scenario requires any client 
process to connect with a well-known server. The client writes its request to the 
server using this connection (a Unix domain stream socket, for example) and the 
server responds with an open file descriptor or an error indication. 

An example of scenario 1 is the establishment of a network connection using an auto-
matic dialer. In 4.3BSD, for example, the programs tip (also known as cu) and 
uucico (the program that does most of the work for UUCP) both include functions to 
handle all possible dialers. The uucico program also includes code to establish TCP 
connections with the other system. Whenever a new dialer is introduced, a new function 
has to be written to handle it and all programs wanting to access the new dialer have to 
be recompiled and link edited. Another solution is to have a network access program that 
is execed by both tip and uucico to handle all the details involved with establishing 
a network connection. This new program passes the open file descriptor (or an error indi-
cation) back to the invoking process. Any arguments required by the network access 
program (dialer type, telephone number, network address, etc.) can be passed as com-
mand line arguments in the exec system call. Note that this solution does involve a 
fork and exec, while the current technique only involves a function call. 

An Example 

The following example shows how to pass and receive file descriptors in a 4.3BSD 
environment. First we have a ma in function that takes zero or more command line argu-
ments that specify files to be copied to the standard output. If the program is called 
mycat then it can be invoked as 

mycat /etc/passwd 

to print the password file on your terminal. 

/* 
* Catenate one or more files to standard output. 

* If no files are specified, default to standard input. 
*/ 

#define BUFFSIZE 4096 

main(argc, argv) 

int argc; 

char *argv[]; 

int fd, i, n; 

char buff[BUFFSIZE]; 

extern char *pname; 

pname = argv[0]; 

argv++; argc--; 
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fd = 0; 

i = 0; 

do { 

/* default to stdin if no arguments */ 

if (argc > 0 && (fd = my_open(argv[i], 0)) < 0) { 

err_ret("can't open %s", argv[i]); 

continue; 

} 

while ( (n = read(fd, buff, BUFFSIZE)) > 0) 

if (write(1, buff, n) != n) 

errsys("write error"); 

if (n < 0) 

errsys("read error"); 

} while (++i < argc); 

exit(0); 

} 

If the call to the function my_open shown above is replaced with a call to the standard 
library function named open, the program works fine. It is similar to the standard Unix 
cat command. What we'll do, however, is provide our own function named my_open. 

Our version goes through the steps listed in scenario 1 above: it forks a copy of itself 
and the child process execs another program to do the actual open system call, return-
ing a file descriptor to the parent process. Here is our version of the open function. 

/* 
* Open a file, returning a file descriptor. 
* 

* This function is similar to the UNIX open() system call, 

* however here we invoke another program to do the actual 

* open(), to illustrate the passing of open files 

* between processes. 
*/ 

int 

my_open(filename, mode) 

char *filename; 

int mode; 

int fd, childpid, sfd[2], status; 

char argsfd[10], argmode[10]; 

extern int errno; 

if (s_pipe(sfd) < 0) /* create an unnamed stream pipe */ 

return(-1); /* errno will be set */ 

if ( (childpid = fork()) < 0) 

errsys("can't fork"); 

else if (childpid == 0) { /* child process */ 

close(sfd[0]); /* close the end we don't use 

sprintf(argsfd, "%d", sfd[1]); 

sprintf(argmode, "%d", mode); 

if (execl("./openfile", "openfile", argsfd, filename, 

* 
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argmode, (char *) 0) < 0) 

errsys("can't execl"); 

} 

/* parent process - wait for the child's execl() to complete * 

close(sfd[1]); /* close the end we don't use */ 

if (wait(&status) != childpid) 

err_dump("wait error"); 

if ((status & 255) != 0) 

err_dump("child did not exit"); 

status = (status >> 8) & 255; /* child's exit() argument */ 

if (status == 0) { 

fd = recvfile(sfd[0]); /* all OK, receive fd */ 

} else { 

errno = status; /* error, set errno value from child's errno */ 
fd = -1; 

close(sfd[0]); /* close the stream pipe */ 

return(fd); 

The program that is execed by the child is the one that does the open system call. Its 
pathname was specified as . /openfile in the function shown above. 

/* 
openfile <socket-descriptor-number> <filename> <mode> 

* 

* Open the specified file using the specified mode. 

* Return the open file descriptor on the specified socket descriptor 

• (which the invoker has to set up before exec'ing us). 

* We exit() with a value of 0 if all is OK, otherwise we pass back the 

* errno value as our exit status. 
*/ 

main(argc, argv) 

int argc; 

char *argv[]; 

int fd; 

extern int errno; 

extern char *pname; 

pname = argv[0]; 

if (argc != 4) 

err_guit("openfile <sockfd#> <filename> <mode>"); 

/* 
* Open the file. 
*1 

if ( (fd = open(argv[2], atoi(argv[3]))) < 0) 

exit( (errno > 0) ? errno : 255 ); 
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/* 
* And pass the descriptor back to caller. 
*/ 

exit( sendfile(atoi(argv[1]), fd) ); 

Both of the programs above use the following two functions to send and receive the 
file descriptor being passed. We have, coded the actual calls to sendmsg and r ecvmsg 
as separate functions, to allow their inclusion into other programs that might want to pass 
descriptors. 

/* 
* Pass a file descriptor to another process. 

* Return 0 if OK, otherwise return the errno value from the 

* sendmsg() system call. 
*/ 

#include 

#include 

#include 

<sys/types.h> 

<sys/socket.h> 

<sys/uio.h> 

int 

sendfile (sockfd, fd) 

sockfd; 

fd; 

int 

int 

struct iovec 

struct msghdr 

extern int 

/* UNIX domain socket to pass descriptor on */ 

/* the actual fd value to pass */ 

iov[1]; 

ms g; 

errno; 

iov[0].iov_base = (char *) 0; 

iov[0].iovlen = 0; 

msg.msg_iov 

msg.msgiovlen 

msg.msg_name 

msg.msg_accrights 

msg.msgaccrightslen = sizeof(fd); 

= iov; 

= 1; 

= (caddr_t) 0; 

= (caddr t) &fd; 

/* no data to send */ 

/* address of descriptor 

/* pass 1 descriptor */ 

if (sendmsg(sockfd, &msg, 0) < 0) 

return( (errno > 0) ? errno : 255 ); 

return(0); 

/* 

* Receive a file descriptor from another process. 

* Return the file descriptor if OK, otherwise return -1. 
*/ 

#include 

#include 

#include 

<sys/types.h> 

<sys/socket.h> 

<sys/uio.h> 
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int 

recvfile(sockfd) 

int sockfd; 

} 

/* UNIX domain socket to receive descriptor on */ 

int fd; 

struct iovec iov[1]; 

struct msghdr msg; 

iov[0].iov_base = (char *) 0; /* no data to receive */ 

iov[0].iovlen = 0; 

msg.msg_iov = iov; 

msg.msgiovlen = 1; 

msg.msg_name = (caddr_t) 0; 

msg.msg_accrights = (caddr_t) &fd; /* address of descriptor */ 

msg.msgaccrightslen = sizeof(fd); /* receive 1 descriptor */ 

if (recvmsg(sockfd, &msg, 0) < 0) 

return(-1); 

return(fd); 

6.11 Socket Options 

There are a multitude of ways to set options that affect a socket. 

• the setsockopt system call 

• the fcntl system call 

• the ioct 1 system call 

We mentioned the fcntl and ioct 1 system calls in Section 2.3, and describe their 
effect on sockets later in this section. 

getsockopt and setsockopt System Calls 

These two system calls apply only to sockets. 

#include <sys/types.h> 

#include <sys/socket.h> 

int getsockopt (int sockfd, int level, int optname, char opm4 int *op" 

int setsockopt (int sockfd, int level, int optname, char *optvcd, int optle 
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The sockfd argument must refer to an open socket descriptor. The level specifies who in 
the system is to interpret the option: the general socket code, the TCP/IP code, or the 
XNS code. Some options are protocol-specific and others are applicable to all sockets. 

The optval argument is a pointer to a user variable from which an option value is set 
by setsockopt, or into which an option value is returned by get sockopt. 

Although this argument is type coerced into a `char *', none of the supported options 
are character values. The "data type" column in Figure 6.14 shows the data type of 
what the optval pointer must point to for each option. The optlen argument to 
setsockopt specifies the size of the variable. The optlen argument to getsockopt 

is a value—result parameter that we set to the size of the optval variable before the call. 

This size is then set by the system on return to specify the amount of data stored into the 
optval variable. This ability to handle variable-length options is only used by a single 

option currently: IP_OPTIONS. All the other options described below pass a fixed 
amount of data between the kernel and the user process. 

Figure 6.14 provides a summary of all options that can be queried by getsockopt 

or set by setsockopt. There are two types of options: binary options that enable or 

disable a certain feature (flags), and options that fetch and return specific values that we 

can either set or examine (values). The column labeled "flag" specifies if the option is a 

flag option. When calling getsockopt for these flag options, optval is an integer. The 

value returned in optval is zero if the option is disabled, or nonzero if the option is 

enabled. Similarly, setsockopt requires a nonzero optval to turn the option on, and a 

zero value to turn the option off. If the "flag" column does not contain a "•" then the 

option is used to pass a value of the specified data type between the user process and the 

system. 

ptlen); 

tlen); 
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level optname get set Description flag Data type 

IPPROTO_IP IP_OPTIONS • • options in IP header 
---:: 

IPPROTO_TCP TCP_MAXSEG • get TCP maximum segment size int 

TCP_NODELAY • • don't delay send to coalesce packets • int 

NSPROTO_SPP SO_HEADERS_ON_INPUT • • pass SPP header on input • int 

SO_HEADERS_ON_OUTPUT • • pass SPP header on output • int 

SO_DEFAULT_HEADERS • • set default SPP header for output struct sphdr 

SO_LAST_HEADER • fetch last SPP header struct sphdr 

SO MTU • • SPP MTU value u_short 

NSPROTOPE SO_SEQN0 • generate unique PEX ID long 

NSPROTO_RAW SO_HEADERS_ON_INPUT • • pass IDP header on input • int 

So_HEADERS_ON_OUTPUT • • pass IDP header on output • int 

SO_DEFAULT_HEADERS • • set default IDP header for output struct idp 

SO_ALL_PACKETS • • pass all IDP packets to user • int 

SO NSIP ROUTE • specify IP route for XNS struct nsip_req 

SOL_SOCKET SO_BROADCAST • • permit sending of broadcast msgs • int 

SO_DEBUG • • turn on debugging info recording • int 

SO_DONTROUTE • • just use interface addresses • int 

SO_ERROR • get error status and clear int 

SO_KEEPALIVE • • keep connections alive • int 

SO_LINGER • • linger on close if data present struct linger 

SO_OOBINLINE • • leave received 00B data in-line • int 

SO_RCVBUF • • receive buffer size int 

SO_SNDBUF • • send buffer size int 

SO_RCVLOWAT • • receive low-water mark int 

SOSNDLOWAT • • send low-water mark int 

SO_RCVTIME0 • • receive timeout int 

SO_SNDTIME0 • • send timeout int 

SO_REUSEADDR • • allow local address reuse • int 

SO_TYPE • get socket type int 

SO_USELOOPBACK • • bypass hardware when possible • int 

Figure 6.14 Socket options for get sockopt and set sockopt. 

Let's first show a simple program that both fetches an option and sets an option. 

* Example of getsockopt() and setsockopt(). 
*/ 

#include <sys/types.h> 

#include <sys/socket.h> /* for SOL_SOCKET and SO_xx values */ 

#include <netinet/in.h> /* for IPPROTO_TCP value */ 

#include <netinet/tcp.h> /* for TCP MAXSEG value */ 

main() 

{ 

int sockfd, maxseg, sendbuff, optlen; 

if ( (sockfd = socket(AFINET, SOCK STREAM, 0)) < 0) 
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errsys("can't create socket"); 

/* 

* Fetch and print the TCP maximum segment size. 
*/ 

optlen = sizeof(maxseg); 

if (getsockopt(sockfd, IPPROTO_TCP, TCPMAXSEG, (char *) &maxseg, 

&optlen) < 0) 

err_sys("TCPMAXSEG getsockopt error"); 

printf("TCP maxseg = %d\n", maxseg); 

/* 
* Set the send buffer size, then fetch it and print its value. 
* 

sendbuff = 16384; /* just some number for example purposes */ 

if (setsockopt(sockfd, SOL_SOCKET, SOSNDBUF, (char *) &sendbuff, 

sizeof(sendbuff)) < 0) 

errsys("SOSNDBUF setsockopt error"); 

optlen = sizeof(sendbuff); 

if (getsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, (char *) &sendbuff, 

&optlen) < 0) 

err_sys("SO_SNDBUF getsockopt error"); 

printf("send buffer size = 96d\n", sendbuff); 

If we compile and execute this program, its output is 

TCP maxseg = 512 

send buffer size = 16384 

The most confusing thing about the getsockopt and setsockopt system calls is the 
handling of the final argument. 

The following list gives additional details on the options that affect a socket. When 
we say allows us to specify we are referring to the setsockopt system call. We say 
when requested to refer to the getsockopt system call. When a given option can only 
be used with a specific type of socket, the socket type (such as SOCK_DGRAM) is listed in 
parentheses first. For example, the TCP MAXSEG option only applies to an Internet 
SOCK STREAM socket. 

IP OPTIONS (Internet SOCK STREAM or SOCK DGRAM.) Allows us to set 
specific options in the IP header. Requires intimate knowledge of 
the IP header. See Section 7.8 of Comer [1988] for a description of 
the possible IP options. We'll use this option in our remote com-
mand server in Section 14.3 and our remote login server in Sec-
tion 15.12. Both of these servers check for client connections that 
specify IP options, and if encountered, record the fact in the system 
log and disable the options. 
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TCP MAXSEG (Internet SOCK STREAM.) Returns the maximum segment size in
use for the socket. The typical value for a 4.3BSD socket using an 
Ethernet is 1024 bytes. Note that the value for this option can only 
be examined, it cannot be set by us, since the system decides what 
size to use. 

Note in the example program shown above that the value printed for
this option was 512 and not 1024. This is because the socket was 
not yet connected, so TCP does not know the type of interface being 
used. It defaults the size to 512 until the socket is connected when it 
decides on the size to use. 

TCP NODELAY (Internet SOCK_ STREAM.) When TCP is being used for a remote 
login (which we discuss in Chapter 15) there will be many small 
data packets sent from the client's system to the server. Each packet 
can contain a single character that the client enters, which is sent to 
the server for echoing and processing. On a fast LAN these small 
packets are not a problem, since the capacity of the network (its 
bandwidth) is usually adequate to handle all the packets. On a 
slower WAN, however, it is desirable to reduce the number of these 
small packets, to reduce the traffic on the network. The scheme 
used by 4.3BSD is to allow only a single small packet to be out-
standing on a given TCP connection at any time. (For additional 
details on the 4.3BSD TCP output algorithms, see Section 12.7 of 
Leffler et al. [1989].) On a fast LAN this isn't a problem since the 
round-trip time for a 1-character packet is usually less than the time 
between a user entering successive characters on a terminal. On a 
slower WAN, what happens is the client's TCP buffers input charac-
ters until the previous small packet is acknowledged. One problem, 
however, is if the client is sending small packets that are not key-
strokes being entered on a terminal to be echoed by the server. This 
can happen if the client is sending input from a mouse, for example, 
on a windowed terminal. The client's input can consist of small 
packets that are not echoed by the server. The TCP_NODELAY 
option is used for these clients, to defeat the buffering algorithm 
described above, to allow the client's TCP to send small packets as 
soon as possible. 

SO HEADERS ON INPUT 
(XNS SOCK DGRAM.) When set, the first 30 bytes of the data 
returned by the read and receive system calls is the IDP header. 

(XNS SOCK_STREAM or SOCK_SEQPACKET.) When set, the first 
12 bytes of the data returned by the read and receive system calls is 
the SPP header. 
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SO HEADERS ON OUTPUT 
(XNS SOCK DGRAM.) When set, the first 30 bytes of the data 
passed to the send and write system calls must be the IDP header. 

(XNS SOCK_STREAM or SOCK_SEQPACKET.) When set, the first 
12 bytes of the data passed to the send and write system calls must 
be the SPP header. 

SO DEFAULT HEADERS 
This option provides a way for a user process to set and examine the 
XNS bridge fields that we described in Section 5.3. 

(XNS SOCK DGRAM.) Allows us to specify a default IDP header for 
outgoing packets. The actual variable pointed to by the optval argu-
ment must be a struct idp (the structure defining an IDP 
header). The only value used by the system from this header is the 
packet type field. When requested, the system returns its default 
IDP header, with the following fields filled in: packet type, local 
address, and foreign address. We'll show an example using this 
option in Section 11.3. 

(XNS SOCK STREAM or SOCK_ SEQPACKET.) Allows us to 
specify a default SPP header for outgoing packets. The actual vari-
able pointed to by the optval argument must be a struct sphdr 
(the structure defining an SPP header). The only values used by the 
system from this header are the End-of-Message bit and the Data-
stream Type. When requested, the system returns its default SPP 
header. 

SO LAST HEADER 

SO MTU 

(XNS SOCK STREAM or SOCK SEQPACKET.) When requested, 
returns the most recent SPP header received. The actual variable 
pointed to by the optval argument must be a struct sphdr (the 
structure defining an SPP header). 

(XNS SOCK STREAM or SOCK SEQPACKET.) By default the SPP 
MTU is 534 bytes, the Xerox standard. This allows a maximum 
IDP packet size of 576 bytes, allowing 30 bytes for the IDP header 
and 12 bytes for the SPP header. Note that any value other than this 
default is frowned on by an actual Xerox system. This option 
applies only to SPP sockets, since the BSD implementation of XNS 
allows IDP packets up to the maximum size of the underlying inter-
face. For an Ethernet, this maximum IDP packet size is 1500 bytes. 
Again, however, these larger than normal IDP packets can create 
problems with true Xerox systems. 
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SO SEQNO 

SO ALL PACKETS 

SO NSIP ROUTE 

(XNS SOCK_ DGRAM.) The XNS Packet Exchange protocol requires 
a unique 32-bit ID field, called the transaction ID, with every 
packet. This ID should be unique among different processes on the 
same system. This socket option allows the caller to obtain a unique 
value. The kernel allocates these IDs to any requesting process, 
incrementing the ID each time a process needs one. Furtheiniore, 
the kernel initializes its starting ID whenever the system is rebooted, 
from a random source (usually the time-of-day clock). This way 
individual processes can obtain unique IDs and, if the system is
taken down and rebooted quickly (while a packet is possibly being 
retransmitted by some other host on the network), the IDs provided 
after rebooting are different from those used earlier. Note that the 
value for this option can only be examined, it cannot be set by us. 

(XNS SOCK DGRAM.) When set, prevents the system from process-
ing Error Protocol packets and SPP packets. Instead, these packets 
are passed to us. 

(XNS SOCK DGRAM.) NSIP is an option that can be enabled when 
the 4.3BSD kernel is configured. If enabled, it allows XNS packets 
to be sent to another 4.3BSD system, encapsulated in Internet IP 
datagrams. This allows us, for example, to share a single data link 
on a WAN between Internet applications and XNS applications. 
Using this feature any two cooperating systems that are connected 
on an Internet using the TCP/IP protocols can also exchange XNS 
packets. This socket option allows us to specify an Internet address 
to be associated with an XNS address. We won't discuss this option 
any further in this text. 

SO BROADCAST (Internet or XNS SOCK DGRAM.) Enables or disables the ability of 
the process to send broadcast messages. Broadcasting is only pro-
vided for datagram sockets and only on networks that support the 
concept of a broadcast message (the kernel does not provide a simu-
lation of broadcasting through software). 

SO DEBUG Enables or disables low-level debugging within the kernel. This 
option allows the kernel to maintain a history of the recent packets 
that have been received or sent. With adequate knowledge of the 
kernel, this history can either be examined (by looking at kernel 
memory with a debugger) or printed on the console. 

s 0 DONTROUTE Specifies that outgoing messages are to bypass the normal routing 
mechanisms of the underlying protocol. Instead, the message is 
directed to the appropriate network interface, as specified by the net-
work portion of the destination address. The equivalent of this 
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option can also be applied to individual datagrams using the 
MSG DONTROUTE flag with the send, sendto, or sendmsg sys-

tem calls. 

SO ERROR Returns to the caller the current contents of the variable 
so error, which is defined in <sys/socketvar.h>. This 
variable holds the standard Unix error numbers (the same values 
found in the Unix errno variable) for the socket. This error vari-
able is then cleared by the kernel. 

SO KEEPALIVE (Internet or XNS SOCK STREAM.) Enables periodic transmissions 
on a connected socket, when no other data is being exchanged. If 
the other end does not respond to these messages, the connection is 
considered broken and the so error variable is set to 
ETIMEDOUT. 

SO LINGER 

SO OOBINLINE 

(Internet SOCK STREAM.) This option determines what to do when 
unsent messages exist for a socket when the process executes a 
close on the socket. By default, the close returns immediately 
and the system attempts to deliver any unsent data. But if the linger 
option is set for the socket, the action taken depends on the linger 
time specified by the user. This option requires the following struc-
ture to be passed between the user process and the kernel. It is 
defined in <sys/socket . h>. 

struct linger { 

int 1 onoff; /* zero=off, nonzero=on */ 

int 1 linger; /* linger time, in seconds */ 
} ; 

If the linger time is specified as zero, any remaining data to be sent 
is discarded when the socket is closed. If the linger time is nonzero, 
the system attempts to deliver any unsent data. Currently the actual 
value of a nonzero linger time is ignored, despite the comment in the 
structure definition. 

(Internet SOCK STREAM.) When set, specifies that out-of-band data 
also be placed in the normal input queue (i.e., in-line). When the 
out-of-band data is placed in-line, the MSG___00B flag to the receive 
system calls is not needed to read the out-of-band data. This option 
applies only to TCP sockets, since the XNS SPP protocol specifies 
that out-of-band data also be placed in the normal input queue by 
default. We discuss out-of-band data in more detail in Section 6.14. 

SO RCVBUF and SO SNDBUF 

Specifies the size of the receive queue buffer or the send queue 
buffer for the socket. These options are only needed when we 
would like more buffer space than is provided by default. These 
options are not required for these cases, but they can improve 
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performance. For example, the BSD rdump command, which 
writes 32768-byte buffers using TCP, sets its SO_SNDBUF option 
value to 32768, overriding the default TCP send buffer of 4096 
bytes. Similarly, the /etc/rmt daemon, which receives these 
buffers and writes them to tape, sets its SO_RCVBUF option to 
32768 also. With 4.3BSD there is an upper limit of around 52,000 
bytes for either of these buffer sizes. We'll see one use of these 
options when we look at the 4.3BSD remote tape server in Chap-
ter 16. 

SO RCVLOWAT and SO SNDLOWAT 
These two options specify the sizes of the receive and send low-
water marks. These values are currently unused. 

SO RCVTIMEO and SO SNDTIMEO 
These two options specify the receive and send timeout values. 
These values are not currently used for anything. Note that this does 
not imply that the reliable protocols do not use timers for detecting 
lost packets and lost connections. Timers are indeed used by TCP 
and SPP, for example, but these two socket options don't currently 
affect these timers. 

SO REUSEADDR (Internet SOCK STREAM or SOCK DGRAM.) Instructs the system to 
allow local addresses, the local-process portion of an association 
5-tuple, to be reused. Noimally the system does not allow a local 
address to be reused. When connect is called for the socket, the 
system still requires that the complete association be unique, as dis-
cussed earlier. We mentioned this requirement in Section 5.2 when 
discussing the use of TCP port numbers by FTP. 

SO TYPE Returns the socket type. The integer value returned is a value such 
as SOCK STREAM or SOCK DGRAM. This option is typically used 
by a process that inherits a socket when it is started. 

SO USELOOPBACK 
This option is unused. 

fcntl System Call 

This system call affects an open file, referenced by the fd argument. 

#include <fcntl.h> 

int fcntl (int fd, int cmd, int arg) ; 

As mentioned in Section 2.3, the cmd argument specifies the operation to be performed. 
Regarding sockets we are interested in the cmd values of F_GETOWN, F_SETOWN, 
F GETFL, and F SETFL. 
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The F SETOWN command sets either the process ID or the process group ID to 
receive the SIGIO or S I GURG signals for the socket associated with fd. Every socket 
has an associated process group number, similar to the terminal process group number 
that we discussed in Chapter 2. For a socket, its process group number is initialized to 
zero and can be set by calling fcntl with the F SETOWN command. (It can also be set 
by both the F T_OSE TOWN and SIOCSPGRP ioctls. As we said, there are many ways 
to set options that affect a socket.) The arg value for the F_SE TOWN command can be 
either a positive integer, specifying a process ID, or a negative integer, specifying a pro-
cess group ID. The F_GETOWN command returns, as the return value from the fcntl 

system call, either the process ID (a positive return value) or the process group ID (a 
negative value other than —1) associated with the socket. The difference between speci-
fying a process or a process group to receive the signal is that the former causes only a 
single process to receive the signal, while the latter causes all processes in the process 
group (perhaps more than one) to receive the signal. This fcntl command is only 
available for terminals and sockets. We show an example of the F_SETOWN command 
in Section 6.12. 

A file's flag bits are set and examined with the F SETFL and F_GETFL commands. 
Figure 6.15 shows the arg values that can be used with the F_GETFL and F_SETFL 

commands. 

arg Meaning 

FAPPEND 

FASYNC 

FCREAT 

FEXCL 

FNDELAY 

FTRUNC 

append on each write 
signal process group when data ready 
create if nonexistent 
error if already created 
nonblocking I/O 
truncate to zero length 

Figure 6.15 fcntl options for F_GETFL and F_SETFL commands. 

Of these five values, only the following two are of interest to us now. 

FNDELAY This option designates the socket as "nonblocking." An I/O request that 
cannot complete on a nonblocking socket is not done. Instead, return is 
made to the caller immediately and the global errno is set to 
EWOULDBLOCK. 

This option affects the following system calls: accept, connect, read, 

ready, recv, recvfrom, recvmsg, send, sendto, sendmsg, 

write, and writev. Note that a connect on a connectionless socket 
cannot block, since all the system does is record the peer address that is to 
be used for future output. On a connection-oriented socket, however, the 
connect can take a while to execute, since it usually involves the 
exchange of actual information with the peer system. In this case a non-
blocking socket returns immediately from the connect system call, but 
the errno value is set to EINPROGRESS instead of EWOULDBLOCK. 
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Note also that the output system calls (the five starting with send in the list 
above) do partial writes on a nonblocking socket when it makes sense (e.g., 
if the socket is a stream socket). When the socket has record boundaries 
associated with it (e.g., a datagram socket), if the entire record cannot be 
written, nothing is written. 

FASYNC This option allows the receipt of asynchronous I/O signals. The SIGIO 
signal is sent to the process group of the socket when data is available to be 
read. We'll cover asynchronous I/O in the next section. 

ioctl System Call 

This system call affects an open file, referenced by the fd argument. The intent is for 
oct is to manipulate device options. 

#include <sys/ioctl.h> 

int ioctl (int fd, unsigned long request, char *arg) ; 

System V defines the second argument to be an int instead of an unsigned long, 

but that is not a problem, since the header file <sys/ioctl.h> defines the constants 
that should be used for this argument. 

We can divide the requests into four categories. 

• file operations 
• socket operations 
• routing operations 
• interface operations 

Figure 6.16 lists the requests provided by 4.3BSD, along with the data type of what the 
arg address must point to. (Notice that none of the requests use the character-pointer 
data type specified in the function prototype.) We now give a brief description of these 
options. 

FIOCLEX Sets the close-on-exec flag for the file descriptor. Similar to the 
F SETFD command of fcntl (with an arg of one). 

FIONCLEX Clears the close-on-exec flag for the file descriptor. Similar to the 
F SETFD command of fcntl (with an arg of zero). 

FIONBIO Set or clear the nonblocking I/O flag for the file. This flag accom-
plishes the same affect as the FNDELAY argument for the F_SETFL 

command to the fcntl system call. Note one difference between the 
two system calls, however: with the F_SETFL command of fcntl 

we must specify all the flag values for the file each time we want to 

Apple Inc.
Ex. 1013 - Page 162



Section 6.11 Socket Options 323 

Category request Description Data type 

file F IOCLEX 

F IONCLEX 

FIONBIO 

FIOASYNC 

FIONREAD 

FIOSETOWN 

FIOGETOWN 

set close-on-exec for fd 
clear close-on-exec for fd 
set/clear nonblocking i/o 
set/clear asynchronous i/o 
get # bytes to read 
set owner 
get owner 

int 
int 
int 
int 
int 

socket SIOCSHIWAT 

SIOCGHIWAT 

S IOCSLOWAT 

SIOCGLOWAT 
SIOCATMARK 
SIOCSPGRP 
SIOCGPGRP 

set high-water mark 
get high-water mark 
set low-water mark 
get low-water mark 
at out-of-band mark ? 
set process group 
get process group 

int 
int 
int 
int 
int 
int 
int 

routing SIOCADDRT 
SIOCDELRT 

add route 
delete route 

struct rtentry 
struct rtentry 

interface SIOCSIFADDR 
SIOCGIFADDR 

SIOCSIFFLAGS 

SIOCGIFFLAGS 

SIOCGIFCONF 

SIOCSIFDSTADDR 

SIOCGIFDSTADDR 

SIOCGIFBRDADDR 

SIOCSIFBRDADDR 

SIOCGIFNETMASK 

SIOCSIFNETMASK 

SIOCGIFMETRIC 

SIOCSIFMETRIC 

SIOCSARP 

S 1 OCGARP 

SIOCDARP 

set ifnet address 
get ifnet address 
set ifnet flags 
get ifnet flags 
get ifnet list 
set point-to-point address 
get point-to-point address 
get broadcast addr 
set broadcast addr 
get net addr mask 
set net addr mask 
get IF metric 
set IF metric 
set ARP entry 
get ARP entry 
delete ARP entry 

struct ifreq 
struct ifreq 

struct ifreq 

struct ifreq 

struct ifconf 

struct ifreq 
st ruct ifreq 
struct ifreq 

struct ifreq 

struct ifreq 

struct ifreq 

struct ifreq 

struct ifreq 
struct arpreq 
struct arpreq 
struct arpreq 

FIOASYNC 

FIONREAD 

FIOSETOWN 

Figure 6.16 ioct 1 options for networking. 

turn a specific flag on or off. With this ioct 1 call, however, we can 
turn a flag on or off, by specifying a zero or nonzero value for arg. 

Set or clear the flag that allows the receipt of asynchronous I/O signals 
(S I G 0). This flag accomplishes the same affect as the FASYNC argu-
ment for the F SETFL command to the f cnt 1 system call. 

Returns in arg the number of bytes available to read from the file 
descriptor. This feature works for files, pipes, terminals and sockets. 

Set either the process ID or the process group ID to receive the S I GIO 

and S I GURG signals. This request works only for terminals and sock-
ets. This command is identical to an f cnt 1 of F SE TOWN. 
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FIOGETOWN 

SIOCSHIWAT 

SIOCGHIWAT 

SIOCSLOWAT 

SIOCGLOWAT 

SIOCATMARK 

Get either the process ID or the process group ID that is set to receive 
the SIGIO and SIGURG signals. This request works only for termi-
nals and sockets. This command is identical to an fcntl of 

F GETOWN. 

Set the high-water mark. This command is not currently implemented, 

Get the high-water mark. This command is not currently implemented. 

Set the low-water mark. This command is not currently implemented. 

Get the low-water mark. This command is not currently implemented. 

Return a zero or nonzero value, depending whether the specified 
socket's read pointer is currently at the out-of-band mark. We describe 
out-of-band data in more detail in Section 6.14. 

SIOCSPGRP Equivalent to FIOSETOWN for a socket. 

S IOCGPGRP Equivalent to FIOGETOWN for a socket. 

The following requests are for lower level operations, usually relating to the actual net-
work interface being used. We briefly mention their purpose. The interested reader 
should consult both of the references by Leffler et al. [1986a, 1986b] for additional infor-
mation. Several of these commands are used by the network configuration program, 
ifconfig, which is described in Section 8 of the 4.3BSD Programmer's Manual. This 
program is usually invoked on system startup to initialize all the network interfaces on 
the system. Some of the commands related to routing are used by the BSD routing dae-
mon, routed, which is also described in Section 8 of the BSD manual. 

SIOCADDRT Add an entry to the interface routing table. 

S IOCDELRT Delete an entry from the interface routing table. 

SIOCSIFADDR 

SIOCGIFADDR 

SIOCSIFFLAGS 

Set the interface address. Additionally the initialization function for 
the interface is also called. 

Get the interface address-. 

Set the interface flags. 

SIOCSIFFLAGS 

Get the interface flags. The flags indicate, for example, if the interface 
is a point-to-point interface, if the interface supports broadcast address-
ing, if the interface is running, and so on. 

SIOCGIFCONF 

Get the interface configuration list. This command returns a list con-
taining one i f req structure for every interface currently is use by the 
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system. This command allows a user program to determine at run time, 
the interfaces on the system. A program can then go through this list 
and determine which interfaces it is interested in (all interfaces that are 
point-to-point Internet interfaces, for example). 

SIOCSIFDSTADDR 

Set the point-to-point interface address. 

SIOCGIFDSTADDR 

Get the point-to-point interface address. 

SIOCSIFBRDADDR 

Set the broadcast address for the interface. 

SIOCSIFBRDADDR 

Get the broadcast address for the interface. 

S I OCS IFNETMASK 

Set the mask for the network portion of the interface address. For 
Internet addresses the network mask defines the netid portion of the 
32-bit address. If this mask contains more bits that would normally be 
indicated by the class of Internet address (class A, B, or C) then sub-
nets are being used. Refer to Section 5.2 for additional details on Inter-
net addresses. 

SIOCGIFNETMASK 

Get the interface network mask for an Internet address. 

SIOCGIFMETRIC 

Get the interface routing metric. The routing metric is stored in the 
kernel for each interface, but is used by the routing protocol, the 
routed daemon. 

SIOCSIFMETRIC 

Set the interface routing metric. The 4.3BSD kernel does not make 
policy decisions for routing. Instead, this is left to a user process, 
which then uses this ioctl to modify the kernel's routing tables. 
Refer to Section 11.5 of Leffler et al. [1989] for additional details. 

S I OCSARP Set an entry in the Internet ARP (Address Resolution Protocol) table. 
The structure arpreq is defined in <net / f_arp . h>. Refer to the 
entry for arp(4P) in Section 4 of the BSD manual for additional infor-
mation. 

SIOCGARP Get an entry from the Internet ARP entry. The caller specifies an Inter-
net address and this system call returns the corresponding Ethernet 
address. 

S I OCDARP Delete an entry from the Internet ARP table. The caller specifies the 
Internet address for the entry to be deleted. 
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6.12 Asynchronous I/O 

Asynchronous I/O allows the process to tell the kernel to notify it when a specified 
descriptor is ready for I/O. It is also called signal-driven I/O. The notification from the 
kernel to the user process takes place with a signal, the S I G I0 signal. 

To do asynchronous I/O, a process must perfoini the following three steps: 

1. The process must establish a handler for the SIGIO I  signal. This is done by call-
ing the signal system call, as described in Section 2.4. 

2. The process must set the process ID or the process group ID to receive the 
SIGIO signals. This is done with the fcntl system call, with the F_SETOWN 
command, as described in Section 6.11. 

3. The process must enable asynchronous I/O using the fcntl system call, with 
the F SETFL command and the FASYNC argument. 

To show an example of asynchronous I/O, let's first show a simple program that 
copies standard input to standard output. 

/* 
* Copy standard input to standard output. 
*/ 

#define BUFFSIZE 4096 

main() 

int 

char 

n; 

buff[BUFFSIZE]; 

while ( (n = read(0, buff, BUFFSIZE)) > 0) 

if (write(1, buff, n) != n) 

err_sys("write error"); 

if (n < 0) 

err_sys("read error"); 

exit(0); 

We now change this program to do the three steps listed, using asynchronous I/O. 

/* 
* Copy standard input to standard output, using asynchronous I/O. 
*/ 

#include <signal.h> 

#include <fcntl.h> 

#define BUFFSIZE 4096 
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int sigflag; 

main() 

int n; 

char buff[BUFFSIZE]; 

int sigiofunc(); 

signal(SIGIO, sigiofunc); 

if (fcnt1(0, F_SETOWN, getpid()) < 0) 

errsys("FSETOWN error"); 

if (fcntl(0, F_SETFL, FASYNC) < 0) 

err_sys("F_SETFL FASYNC error"); 

for ( ; ; ) { 

sigblock(sigmask(SIGIO)); 

while (sigflag == 0) 
sigpause(0); 

int 

sigiofunc() 

/* wait for a signal */ 

/* 

* We're here if (sigflag != 0). Also, we know that the 

* SIGIO signal is currently blocked. 
* 

if ( (n = read(0, buff, BUFFSIZE)) > 0) 1 

if (write(1, buff, n) != n) 

err_sys("write error"); 

else if (n < 0) 

err_sys("read error"); 

else if (n == 0) 

• exit(0); /* EOF */ 

sigflag = 0; /* turn off our flag */ 

sigsetmask(0); /* and reenable signals */ 

sigflag = 1; /* just set flag and return */ 

/* the 4.3BSD signal facilities leave this handler enabled 

for any further SIGIO signals. */ 

This interrupt driven example works only for terminals (and would work for a socket 
too, if the appropriate code were added to create a socket) because of the restrictions of 
the 4.3BSD F SETOWN command. 
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This example also shows the use of the reliable signals provided by 4.3BSD, which 
we described in Section 2.4. 

Since a process can have only one signal handler for a given signal, if asynchronous 
I/O is enabled for more than one descriptor, the process doesn't know, when the signal 
occurs, which descriptor is ready for I/O. To do this, the select system call is used, 
which we describe in the next section. 

6.13 Input/Output Multiplexing 

Consider a process that reads input from more than one source. An actual example is the 
4.3BSD line printer spooler that we cover in Section 13.2. It opens two sockets, a Unix 
stream socket to receive print requests from processes on the same host, and a TCP 
socket to receive print requests from processes on other hosts. Since it doesn't know 
when requests will arrive on the two sockets, it can't start a read on one socket, as it 
could block while waiting for a request on that socket, and in the mean time a request can 
arrive on the other socket. There are a few different techniques available to handle this 
multiplexing of different I/O channels. 

1. It can set both sockets to nonblocking, using either the FNDELAY flag to fcntl 
or the F I ONB I0 request to ioct 1. But the process has to execute a loop that 
reads from each socket, and if nothing is available to read, wait some amount of 
time before trying the reads again. This is called polling. The software polls 
each socket at some interval (every second, perhaps) and if no data is available 
to read, the process waits by calling the sleep function in the standard C 
library. Polling can waste computer resources, since most of the time there is no 
work to be done. 

2. The process can fork one child process to handle each I/O annel. In this 
example it spawns two processes, one to read from the Unix socket and one to 
read from the TCP socket. Each child process calls read and blocks until data 
is available. When a child returns from its read it passes the data to the parent 
process using some form of IPC (that the parent must set up before spawning its 
children). Any of the techniques that we discussed in Chapter 3 can be used: 
pipes, FIFOs, message queues, shared memory with a semaphore, or another 
socket can also be used. 

3. Asynchronous I/O can be used. The problem with this method is that signals are 
expensive to catch [Leffler et al. 1989]. Also, if more than one descriptor has 
been enabled for asynchronous I/O, the occurrence of the SIGIO signal doesn't 
tell us which descriptor is ready for I/O. Finally, as mentioned in Section 6.12, 
this technique is only available for terminals and sockets under 4.3BSD. 
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4. Another technique is provided by 4.3BSD with its select system call, which 
we describe below. This system call allows the user process to instruct the ker-
nel to wait for any one of multiple events to occur and to wake up the process 
only when one of these events occurs. In this example the kernel can be 
instructed to notify the process only when data is available to be read from either 
of the two sockets that we're interested in. 

The prototype for the system call is 

#include <sys/types.h> 

#include <sys/time.h> 

int select (int maxfdpl , fdset *readfds, fd_set *writefds, fd_set *exceptfds, 
struct timeval *timeout) ; 

FD ZERO (fd_set *fdset) ; /* clear 

FD SET (int fd, fd set *fdset) ; /* turn 

FD CLR (int fd, fd set *fdset) ; /* turn 

FD ISSET (int fd, fd set *fdset) ; /* test 

all bits in fdset */ 
the bit for fd on in fdset * / 
the bit for fd off in fdset */ 
the bit for fd in fdset */ 

The structure pointed to by the timeout argument is defined in <sys /time . h> as 

struct timeval { 

long tv sec; /* seconds */ 

long tv usec; /* microseconds */ 

} ; 

The C typedef for the fd set structure, and the definitions of the FD_xxx macros 
are in the <sys /types .h> include file. The definition of this system call makes it 

look more complicated than it is. 
A request to select could be: tell us if any of the file descriptors in the set { 1, 4, 

5 } are ready for reading, or if any of the file descriptors in the set { 2, 7 } are ready for 
writing, or if any of the file descriptors in the set { 1, 4} have an exceptional condition 
pending. Additionally we can tell the kernel to 

• Return immediately after checking the descriptors. This is a poll. For this, the 
timeout argument must point to a timeval structure, and the timer value (the 
number of seconds and microseconds specified by the structure) must be zero. 

• Return when one of the specified descriptors is ready for I/O, but don't wait 
beyond a fixed amount of time. For this, the timeout argument must point to a 
timeval structure, and its value (the number of seconds and microseconds 
specified by the structure members) must be the nonzero amount of time to wait. 

• Return only when one of the specified descriptors is ready for I/O—wait 
indefinitely. For this, the timeout argument must be NULL. This wait can also be 
interrupted by a signal. 
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Before describing how to specify the file descriptors to be checked, let's first show an 
example where we are not interested in any file descriptors. We'll use select as a 
higher precision timer than is provided by the sleep function. (sleep provides a reso-
lution of seconds, whereas select allows us to specify a resolution in microseconds.) 

#include 

#include 

main(argc, argv) 

int argc; 

char *argv[]; 

} 

<sys/types.h> 

<sys/time.h> 

long atoll); 

static struct timeval timeout; 

if (argc != 3) 

err_quit("usage: timer <#seconds> <#microseconds>"); 

timeout.tv_sec = atol(argv[1]); 

timeout.tvusec = atol(argv[2]); 

if (select(0, (fd_set *) 0, (fdset *) 0, (fdset *) 0, &timeout) < 0) 
err_sys("select error"); 

exit(0); 

Here we have-specified the second, third and fourth arguments to select as NULL. 
The readfds, writefds, and excepds arguments specify which file descriptors we're 

interested in checking for each of the conditions—descriptor ready for reading, descrip-
tor ready for writing and exceptional condition on descriptor, respectively. There are 
only two exceptional conditions currently supported. 

1. The arrival of out-of-band data for a socket. We describe this in more detail in 
the next section. 

2. The presence of control status information to be read from the master side of a 
pseudo-terminal that has been put into packet mode. We cover this in Sec-
tion 15.10. 

The problem the designers of this system call had was how to specify one or more 
descriptor values for each of these three arguments. The decision was made to represent 
the set of all possible descriptors using an array of integers, where each bit corresponds 
to a descriptor. For example, using 32-bit integers, the first element of the array 
corresponds to descriptors 0 through 31, the second element of the array corresponds to 
descriptors 32 through 63, and so on. All this implementation detail is hidden through 
the t ypedef of the fd set structure and the FDxxx macros. 
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For example, to define a variable of type fd_set and then turn on the indicators for 
descriptors 1, 4, and 5 

fd set fdvar; 

FD ZER0(&fdvar); /* initialize the set - all bits off */ 

FD SET(1, &fdvar); /* turn on bit for fd 1 */ 

FD SET(4, &fdvar); /* turn on bit for fd 4 */ 

FD SET(5, &fdvar); /* turn on bit for fd 5 */ 

It is important to initialize the set, since unpredictable results can occur if the set is allo-
cated as an automatic variable and not initialized. Any of the three arguments to 
select, readfds, writefds, or exceptfds, can be specified as NULL pointers, if we're not 
interested in that condition. 

The maxfdpl argument specifies the number of file descriptors to be tested. Its value 
is the maximum file descriptor to be tested, plus one. The descriptors 0, 1, 2, up through 
and including maxfdpl-1 are tested. The system allows for a potentially huge number of 
descriptors to be tested (currently 256), although most BSD kernels don't allow any sin-
gle process to have that many open files. The maxfdpl argument lets us tell the system 
the largest descriptor that we're interested in, which is usually much less than 256. For 
example, given the example code above that turns on the indicators for descriptors 1, 4, 
and 5, a maxfdpl value of 6 can be specified. The reason it is 6 and not 5 is that we're 
specifying the number of descriptors, not the largest value, and descriptors start at zero. 

This system call modifies the three arguments readfds, writefds, and exceptfds to 
indicate which descriptors are ready for the specified condition. These three arguments 
are value—result arguments. The caller should use the FD_ISSET macro to test a 
specific bit in an fd_set structure. The return value from this system call indicates the 
total number of descriptors that are ready. If the timer value expired before any of the 
descriptors were ready, a value of zero is returned. As usual, a return value of —1 indi-
cates an error. 

We have been talking about waiting for a file descriptor to become ready for I/O 
(reading or writing) or to have an exceptional condition pending on it. For sockets, this 
assumes that the process wants to do I/O on the socket. The select system call can 
also be used to await a connection on a socket. For example, if a process is awaiting a 
connect on more than one socket, if it doesn't want to execute the accept system call 
and potentially block, it can issue a select instead. If a connect is received by the 
system for a socket that is being waited for, the socket is then considered ready for read-
ing, and the select returns. 

Apple Inc.
Ex. 1013 - Page 171



332 Berkeley Sockets Chapter 6 

6.14 Out-of-Band Data 

We described the notion of out-of-band data in Chapter 4, and also mentioned it in Chap-
ter 5 when we discussed the TCP and SPP protocols. Of all the protocols we've dis-
cussed so far, only TCP and SPP support out-of-band data. (Out-of-band data is only 
defined for stream sockets, and the Unix domain stream sockets don't support it.) Unfor-
tunately, TCP and SPP treat out-of-band data differently. The designers of the socket 
interface tried to support out-of-band data in a generic way, but there are many programs 
that have been written using the TCP out-of-band data features that would be hard to port 
to SPP. The BSD socket abstraction calls for the protocol to support at least one out-
standing out-of-band message at any time, and the out-of-band message must contain at 
least one byte of data. 

To send an out-of-band message, the MSG__00B flag must be specified for the send, 
sendto, or sendrnsg system calls. SPP only allows a single byte of out-of-band data 
to be sent, while TCP has no restriction. 

SPP Out-of-Band Data 

When out-of-band data is received by the other end, several possibilities exist about how 
it is handled. Let's first consider how SPP handles it, as it is less complicated than the 
TCP implementation. 

• The out-of-band byte is received along with a special flag specifying that the byte 
contains out-of-band data. (This flag is the Attention bit in the SPP header.) 

• If the socket has a process group, the SIGURG signal is generated for the process 
group of the socket. 

• The socket option SO_OOBINLINE has no effect, since the Xerox protocol 
specifies that the out-of-band byte is to be delivered again to the receiving pro-
cess, in its normal position in the data stream. 

• The process can read the out-of-band byte by calling any one of the three receive 
system calls, specifying the MSG___00B flag. Only the single out-of-band byte is 
returned. If there is no out-of-band data when the MSG 00B flag is specified, an 
error of EINVAL is returned by these three system calls instead. 

• Regardless whether the process reads the out-of-band byte or not, the position of 
the byte in the normal data stream is remembered. 

• The process continues reading data from the socket. Since the system remembers 
the position of the out-of-band data byte, it does not read right past it in a single 
read request. That is, if there are 20 bytes from the current read position until the 
out-of-band byte, and if we execute a read or receive system call specifying a 
length of 30 bytes, the system only returns 20 bytes. This forced stopping at the 
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out-of-band mark is to allow us to execute the SIOCATMARK ioctl to deter-
mine when we're at the mark. This allows us to ignore all the data up to the out-
of-band byte. When this ioctl indicates that we're at the mark, the next byte 
we read is the out-of-band byte. 

TCP Out-of-Band Data 

All this gets more complicated with TCP because it can send the notification that out-of-
band data exists (termed "urgent data" by TCP) before it sends the out-of-band data. In 
this case, if the process executes one of the three receive system calls, an error of 
EWOULDBLOCK is returned if the out-of-band data has not arrived. As with the SPP 
example above, an error of EINVAL is returned by these three system calls if the 
MSG_OOB flag is specified when there isn't any out-of-band data. 

Still another option is provided with the TCP implementation, to allow for multiple 
bytes of out-of-band data. By default, only a single byte of out-of-band data is provided, 
and unlike SPP, this byte of data is not stored in the normal data stream. This data byte 
can only be read by specifying the MSG_OOB flag to the receive system calls. But if we 
set the SO 00BINLINE option for the socket, using the setsockopt system call 
described in Section 6.11, the out-of-band data is left in the normal data stream and is 
read without specifying the MSG_OOB flag. If this socket option is enabled, we must use 
the SIOCATMARK ioctl to determine where in the data stream the out-of-band data 
occurs. In this case, if multiple occurrences of out-of-band data are received, all the data 
is left in-line (i.e., none of the data can be lost) but the mark returned by the 
SIOCATMARK ioctl corresponds to the final sequence of out-of-band data that was 
received. If the out-of-band data is not received in-line, it is possible to lose some inter-
mediate out-of-band data when the out-of-band data arrives faster than it is processed by 
the user. 

The remote login application in Chapter 15 uses TCP out-of-band data along with 
the S I OCATMARK ioctl. 

6.15 Sockets and Signals 

We have mentioned signals in relation to sockets a few times in this chapter, and its 
worth taking a moment to summarize the conditions under which signals are generated 
for a socket and all the related nuances. There are three signals that can be generated for 
a socket 

SIGIO This signal indicates that a socket is ready for asynchronous I/O. The sig-
nal is sent to the process group of the socket. This process group is estab-
lished by calling ioctl with a command of either FIOSETOWN or 
SIOCSPGRP, or by calling fcntl with a command of F SETOWN. This 
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signal is sent to the process group only if the process has enabled asynchro-
nous I/O on the socket by calling ioct 1 with a command of FIOASYNC 

or by calling fcntl with a command of F_SETFL and an argument of 
FASYNC. 

SIGURG This signal indicates that an urgent condition is present on a socket. An 
urgent condition is either the arrival of out-of-band data on the socket or the 
presence of control status infoiiiiation to be read from the master side of a 
pseudo-terminal that has been put into packet mode. (We discuss pseudo-
terminal packet mode in Section 15.10.) The signal is sent to the process 
group of the socket. This process group is established by calling ioc t.1 
with a command of either FIOSETOWN or SIOCSPGRP, or by calling 

fcntl with a command of F SETOWN. 

SIGPIPE This signal indicates that we can no longer write to a socket, pipe, or FIFO. 
Nothing special\is required by a process to receive this signal, but unless the 
process arranges to catch the signal, the default action is to terminate the 
process. This signal is sent only to the process associated with the socket; 
the process group of the socket is not used for this signal. 

We mentioned in Section 2.4 that certain system calls (termed the "slow" system 
calls) can be interrupted when the process handles a signal. This always has to be con-
sidered when handling signals. Although 4.3BSD tries automatically to restart certain 
system calls that are interrupted, the accept and recvfrom system calls are never 
restarted automatically by the kernel. Since both of these system calls can typically 
block, if you are using them and handling signals, be prepared to restart the system call if 
they're interrupted. 

6.16 Internet Superserver 

On a typical 4.3BSD system there can be many daemons in existence, just waiting for a 
request to arrive. For example, there could be an Internet FTP daemon, an Internet 
TELNET daemon, and Internet TFTP daemon, a remote login daemon, a remote shell 
daemon, and so on. With systems before 4.3BSD, each of these services had a process 
associated with it. This process was started at boot time from the /etc/rc startup file, 
and each process did nearly identical startup tasks: create a socket, bind the server's 
well-known address to the socket, wait for a connection, then fork. The child process 
performed the service while the parent waited for another request. 

The 4.3BSD release simplified this by providing an Internet superserver: the inetd 
process. This daemon can be used by a server that uses either TCP or UDP. It does not 
handle either the XNS or Unix domain protocols. What this daemon provides is two 
features: 

Apple Inc.
Ex. 1013 - Page 174



Section 6.16 Internet Sup ers erver 335 

® It allows a single process (in et d) to be waiting to service multiple connection 
requests, instead of one process for each potential service. This reduces the total 
number of processes in the system. 

® It simplifies the writing of the daemon processes to handle the requests, since 
many of the start-up details are handled by inetd. This obviates the need for the 
actual service process to call the daemon_start function that we developed in 
Section 2.6. All the details that we said had to be handled by a typical daemon, 
are done by inetd, before the actual server is invoked. 

There is a price to pay for this, however, in that the inetd daemon has to execute both a 
fork and an exec to invoke the actual server process, while a self-contained daemon 
that did everything itself only has to execute a fork to handle each request. This addi-
tional overhead, however, is worth the simplification of the actual servers and the reduc-
tion in the total number of processes in the system. 

The inetd process establishes itself as a daemon using many of the techniques that 
we described in Section 2.6. It then reads the file / et c / inet d . conf to initialize 
itself. This text file specifies the services that the superserver is to listen for, and what to 
do when a service request arrives. Each line contains the fields shown in Figure 6.17. 

Field Description 

service-name 
socket-type 
protocol 
wait-flag 
login-name 
server-program 
server-program-arguments 

must be in /etc/services 
stream or dgram 
must be in /etc/protocols: either tcp or udp 
wait or nowait 
from /etc/pas swd: typically root 
full pathname to exec 
maximum of 5 arguments 

Figure 6.17 Fields in inetd configuration file. 

Some sample lines are 

ftp stream tcp nowait root /etc/ftpd ftpd 
telnet stream tcp nowait root /etc/telnetd telnetd 
login stream tcp nowait root /etc/rlogind rlogind 
tftp dgram udp wait nobody /etc/tftpd tftpd 

The actual name of the server is always passed as the first argument to a program when it 
is execed. 

A picture of what the daemon does is shown in Figure 6.18. Let's go through a typi-
cal scenario for this daemon. 

1. On startup it reads the /etc/inetd. conf file and creates a socket of the appropri-
ate type (stream or datagram) for all the services specified in the file. Realize that 

Apple Inc.
Ex. 1013 - Page 175



336 Berkeley Sockets Chapter 6 
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socket ( ) 

bind ( ) 

listen() 
(if stream socket) 

parent 

select ( ) 
for readability 

accept ( ) 
(if stream socket) 

fork () 

close connected 
socket 

(if stream socket) 

For each service listed in the 

/etc/inetd. conf file 

J 

child 

close all files 
other than socket 

V
dup socket to 

fds 0, 1 and 2; 
close socket 

setgid () 
setuid ( ) 

(if user not root) 

exec ( ) server 

Figure 6.18 Steps performed by inetd. 
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there is a limit to the number of servers that inetd can be waiting for, as the total 
number of file descriptors used by inetd can't exceed the system's per-process 
limit. On most BSD systems this limit is 64, but it can be changed by reconfiguring 
the kernel. 

2. As each socket is created, a bind is executed for every socket, specifying the well-
known address for the server. This TCP orUDP port number is obtained by looking 
up the service-name field from the configuration file in the /etc/services file. 
Some typical lines in this file, corresponding to the example lines in the configuration 
file that we showed above, are 

ftp 21/tcp 
telnet 23/tcp 
tftp 69/udp 
login 513/tcp 

Both the service-name (such as telnet) and the protocol from the inetd 
configuration file are passed as arguments to the library function getservbyname, 
to locate the correct port number for the bind. (We describe the get servbyname 
function in Section 8.2.) 

3. For stream sockets, a listen is executed, specifying a willingness to receive con-
nections on the socket and the queue length for incoming connections. This step is 
not done for datagram sockets. 

4. A select is then executed, to wait for the first socket to become ready for reading. 
Recall from our description of this system call in Section 6.13, that a stream socket is 
considered ready for reading when a connection request arrives for that socket. A 
datagram socket is ready for reading when a datagram arrives. At this point the 
inetd daemon just waits for the select system call to return. 

5. When a socket is ready for reading, if it is a stream socket, an accept system call is 
executed to accept the connection. 

6. The inetd daemon forks and the child process handles the service request. The 
child closes all the file descriptors other than the socket descriptor that it is handling 
and then calls dup2 to cause the socket to be duplicated on file descriptors 0, 1, and 
2. The original socket descriptor is then closed. Doing this, the only file descriptors 
that are open in the child are 0, 1, and 2. It then calls getpwnam to get the password 
file entry for the login-name that is specified in the /et c/ inetd . conf file. If this 
entry does not have a user ID of zero (the superuser) then the child becomes the 
specified user by executing the setgid and setuid system calls. (Since the 
inetd process is executing with a user ID of zero, the child process inherits this user 
ID across the fork, so it is able to become any user that it chooses.) The child pro-
cess now does an exec to execute the appropriate server program to handle the 
request, passing the arguments that are specified in the configuration file. 
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7. If the socket is a stream socket, the parent process must close the connected socket. 
The parent goes back and executes the select system call again, waiting for the 
next socket to become ready for reading. 

The scenario we've described above handles the case where the configuration file 
specifies nowait for the server. This is typical for all TCP services. If another connec-
tion request arrives for the same server, it is returned to the parent process as soon as it 
executes the select. The steps listed above are executed again, and another child pro-
cess handles this new service request. 

Specifying the wait flag for a datagram service changes the steps done by the 
parent process. First, after the fork the parent saves the process ID of the child, so it 
can tell later when that specific child process terminates, by looking at the value returned 
by the wait system call. Second, the parent disables the current socket from future 
selects by using the FD_CLR macro to turn off the bit in the fd_s et structure that it 
uses for the select. This means that the child process takes over the socket until it ter-
minates. Once the child process terminates, the parent process is notified by a SIGCLD 

signal, and the parent's signal handler obtains the process ID of the terminating child and 
reenables the select for the corresponding socket by using the FD SET macro. When 
the child process terminates, the parent is probably waiting for its select system call to 
return. As mentioned in Section 2.4, when a signal handler is invoked while a process is 
executing a "slow" system call, when the signal handler returns, the system call (the 
select in this case) returns with an error indication and an errno value of EINTR. 

The inetd process recognizes this and executes the select system call again. But by 

executing the system call again, it can now wait for the socket corresponding to the child 
process that terminated. If the occurrence of the signal did not interrupt the select 

system call, the parent would not be able to wait for the socket corresponding to the ter-
minating child process. When we go through the TFTP example in Chapter 12 we'll see 
how a datagram server uses the wait mode. 

It is worth going through a time sequence of the steps involved in the previous para-
graph, making certain we understand the interaction of the parent and child processes, the 
SIGCLD signal, and how the select system call can be interrupted. 

• The datagram request arrives on socket N, the select returns to the inetd pro-
cess. 

• A child process is forked and execed to handle the request. 

• inetd disables socket descriptor N from its fd set structure for the select. 
The child process takes over the socket. 

• The child handles this request and inetd handles requests for other services. 

• Eventually inetd calls select and blocks. 

• The child terminates, the SIGCLD signal is generated for the inetd process. 
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• inetd handles the signal and obtains the process ID of the terminating child pro-
cess from the wait system call. It figures out which socket descriptor 
corresponded to this child process and turns on the appropriate bit in its fd_set 

structure. 

• When the signal handler returns, the select returns to the inetd process, with 
an errno of EINTR. 

• inetd calls select again, this time with an fd_set structure that enables 
socket descriptor N. 

While the inetd daemon is set up to handle both a TCP socket with the wait flag 
and a UDP socket with the nowait flag, there are no examples of this in the distributed 
4.3BSD system. 

The inetd daemon has several servers that are handled by the daemon itself. 
These internal servers handle some of the standard Internet services. 

• Echo service—RFC 862 [Postel 1983a] 
• Discard service—RFC 863 [Postel 1983b] 
• Character generator service—RFC 864 [Postel 1983c] 
• Daytime (human readable) service—RFC 867 [Postel 1983d] 
• Machine time (binary) service—RFC 868 [Postel and Harrenstien 1983] 

Each of these services can be contacted using either TCP or UDP. The TCP servers for 
these internal functions are handled as iterative servers if the amount of time to handle 
the request is fixed (the daytime and machine time servers), or as concurrent servers if 
the amount of time depends on the request (echo, discard and character generator). 

Since inetd is the process that does the accept of a stream connection, the server 
that is invoked by inetd has to execute the getpeername system call to obtain the 
address of the client. This is done, for example, by servers that want to verify that the 
client is using a reserved port. For datagram servers, the address of the client is returned 
to the server when it executes one of the receive system calls. 

6.17 Socket Implementation 

Sockets, as implemented by 4.3BSD, are implemented within the Unix kernel. All the 
system calls that we discussed in this chapter are entry points into the kernel. All the 
algorithms and code to support the communication protocols (TCP, UDP, IDP, etc.) are 
completely within the kernel. Adding a new protocol (such as the OSI-related standards) 
requires changing the kernel. The overall networking design gets more modular with 
each release (the addition of XNS support in 4.3BSD required changes, as documented in 
O'Toole, Torek, and Weiser [1985], and the addition of OSI protocols in 4.4BSD will 
require additional changes that weren't anticipated in earlier releases), but it still requires 
kernel changes. 
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The actual kernel implementation separates the network system into three layers, as 
shown in Figure 6.19. See Leffler et al. [1989] for additional details. 

user process 

socket system 
call interface 

A 
\I 

communication 
protocol 

(TCP/UDP/IP) 

V
data link 

device driver 
(Ethernet) 

L J 

kernel 

Figure 6.19 Networking implementation in 4.3BSD. 

6.18 Summary 

This has been a long chapter with many details. Our presentation was divided into four 
parts. 

• Elementary socket system calls 
• Examples using only the elementary socket system calls 
• Advanced socket system calls 
• Advanced socket features and options 

One key point is that the simple examples presented in Section 6.6 can form the basis for 
any networking application. Just modify the client and server to do whatever you desire. 

We'll present additional features for these examples in Chapter 8. For example, in 
Section 8.2 we show a better way of obtaining the address of a remote system (instead of 
hard coding it in a header file). Section 8.3 develops some functions that simplify the 
standard operations that most client applications execute when opening a socket. Sec-
tion 8.4 shows how to add reliability to a datagram application. 
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The advanced features that we've described in this chapter are used in the examples 
that follow in the text. For example, the remote login example in Chapter 15 uses socket 
options, I/O multiplexing, out-of-band data and signals. You should review the later sec-
tions of this chapter as you encounter examples that use a particular feature. 

Exercises 

6.1 The example servers in Section 6.6 do not call the daemon_start function which we 
developed in Section 2.6. Modify one of these servers to call this function. What other 
changes do you have to make to the server? 

6.2 Rewrite the SPP example from Section 6.6 to use the packet-stream interface, 
SOCK SEQPACKET, and set the end-of-message bit at the end of every line. 

6.3 What happens with the clients and servers in Section 6.6 if standard input is a binary file? 

6.4 Code a function that is similar to rresvport, but for UDP sockets. 

6.5 Print the value of TCP MAXSEG after the socket has been connected to a peer process. If 
possible, connect to a peer process on a LAN and print value and then connect to a peer pro-
cess on a WAN and compare the results. 

6.6 Write a program that copies standard input to standard output using the select system call. 

6.7 Now that we have covered asynchronous I/O and I/O multiplexing, compare the use of Unix 
domain stream sockets and message queues. If you had to write a server to handle multiple 
client requests on a single host, which would you use and why? 

6.8 Write a simple client and server to verify that a single datagram is produced by the writev 

system call. 

6.9 If your system supports file access across a network (such as Sun's NFS) test the Unix stream 
example from Section 6.6 with the client and server on different systems. Modify the path-
name used by the client and server to be on a filesystem that is accessible to both. 
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