
evens

Apple Inc.
Ex. 1015 - Page 1

Apple Inc.
Ex. 1015 - Page 1

TCP/IP Illustrated, Volume 1

The Protocols

W. Richard Stevens

A
TV

ADDISON—WESLEY

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Apple Inc.
Ex. 1015 - Page 2

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and we were aware of a trademark claim, the
designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more informa-
tion, please contact:

Pearson Education Corporate Sales Division
201 W. 103rd Street
Indianapolis, IN 46290
(800) 428-5331
corpsales@pearsoned.com

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data
Stevens, W. Richard

TCP/IP Illustrated: the protocols/W. Richard Stevens.
p. cm.--(Addison-Wesley professional computing series)

Includes bibliographical references and index.
ISBN 0-201-63346-9 (v.1)
1.TCP/IP (Computer network protocol) I. Title. II. Series.

TK5105.55S74 1994
004.6'2—dc20

Copyright © 1994 by Addison Wesley

UNIX is a technology trademark of X/Open Company, Ltd,

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or other-wise, without the prior consent of the publisher. Printed in the United States of
America. Published
simultaneously in Canada.

Text printed an recycled and acid-free paper.

ISBN 0201633469

19 2021222324 MA 04 03 02 01

19th Printing July 2001

Apple Inc.
Ex. 1015 - Page 3

Introduction

1.1 Introduction

The TCP/IP protocol suite allows computers of all sizes, from many different computer
vendors, running totally different operating systems, to communicate with each other.
It is quite amazing because its use has far exceeded its original estimates. What started
in the late 1960s as a government-financed research project into packet switching net-
works has, in the 1990s, turned into the most widely used form of networking between
computers. It is -truly an open system in that the definition of the protocol suite and
many of its implementations are publicly available at little or no charge. It forms the
basis for what is called the worldwide Internet, or the Internet, a wide area network
(WAN) of more than one million computers that literally spans the globe.

This chapter provides an overview of the TCP/IP protocol suite, to establish an ade-
quate background for the remaining chapters. For a historical perspective on the early
development of TCP/IP see [Lynch 1993].

1.2 Layering

Networking protocols are normally developed in layers, with each layer responsible for a
different facet of the communications. A protocol suite, such as TCP/IP, is the combina-
tion of different protocols at various layers. TCP/IP is normally considered to be a
4-layer system, as shown in Figure 1.1.

Apple Inc.
Ex. 1015 - Page 4

2 Introduction Chapter 1.

Telnet, 1-1P, e-mail, etc.

TCP, UDP

IP, ICMP, IGMP

device driver and interface card

Application

Transport

Network

Link

Figure 1.1 The four layers of the TCP/IP protocol suite.

Each layer has a different responsibility

1. The link layer, sometimes called the data-link layer or network interface layer, nor-
mally includes the device driver in the operating system and the corresponding
network interface card in the computer. Together they handle all the hardware
details of physically interfacing with the cable (or whatever type of media is
being used).

2. The network layer (sometimes called the Internet layer) handles the movement of
packets around the network. Routing of packets, for example, takes place here.
IP (Internet Protocol), ICMP (Internet Control Message Protocol), and IGMP
(Internet Group Management Protocol) provide the network layer in the
TCP/IP protocol suite.

3. The transport layer provides a flow of data between two hosts, for the applica-
tion layer above. In the TCP/IP protocol suite there are two vastly different
transport protocols: TCP (Transmission Control Protocol) and UDP (User Data-
gram Protocol),

TCP provides a reliable flow of data between two hosts. It is concerned with
things such as dividing the data passed to it from the application into appropri-
ately sized chunks for the network layer below, acknowledging received pack-
ets, setting timeouts to make certain the other end acknowledges packets that
are sent, and so on. Because this reliable flow of data is provided by the trans-
port layer, the application layer can ignore all these details.

UDP, on the other hand, provides a much simpler service to the application
layer. It just sends packets of data called datagrams from one host to the other,
but there is no guarantee that the datagrams reach the other end. Any desired
reliability must be added by the application layer.

There is a use for each type of transport protocol, which we'll see when we look
at the different applications that use TCP and UDP.

Apple Inc.
Ex. 1015 - Page 5

IP

FTP
server

TCP

Ethernet protocol

Ethernet

Turk
Ethernet
driver

Ethernet
driver

Section 1.2 Layering 3

4. The application layer handles the details of the particular application. There are
many common TCP/IP applications that almost every implementation pro-
vides:

• Telnet for remote login,
• FTP, the File Transfer Protocol,
• SMTP, the Simple Mail Transfer protocol, for electronic mail,
• SNMP, the Simple Network Management Protocol,

and many more, some of which we cover in later chapters.

If we have two hosts, on a local area network (LAN) such as an Ethernet, both run-
ning FTP, Figure 1.2 shows the protocols involved.

application

transport

FTP
client

TCP

FTP protocol

TCP protocol

user
processes

kernel

handles
application

details

handles
communication

details

network

IP
IP protocol

Figure 1.2 Two hoses on a LAN running FTP.

We have labeled one application box the FTP client and the other the VIP server.
Most network applications are designed so that one end is the client and the other side
the server. The server provides some type of service to clients, in this case access to files
on the server host. In the remote login application, Telnet, the service provided to the
client is the ability to login to the server's host.

Each layer has one or more protocols for communicating with its peer at the same
layer, One protocol, for example, allows the two TCP layers to communicate, and
another protocol lets the two IP layers communicate,

On the right side of Figure 1.2 we have noted that normally the application layer is
a user process while the lower three layers are usually implemented in the kernel (the
operating system). Although this isn't a requirement, it's typical and this is the way it's
done under Unix.

Apple Inc.
Ex. 1015 - Page 6

4 Introduction Chapter 1

There is another critical difference between the top layer in Figure 1.2 and the lower
three layers. The application layer is concerned with the details of the application and
not with the movement of data across the network. The lower three layers know noth-
ing about the application but handle all the communication details.

We show four protocols in Figure 1.2, each at a different layer. FTP is an application
layer protocol, TCP is a transport layer protocol, IP is a network layer protocol, and the
Ethernet protocols operate at the link layer. The TCP/IP protocol suite is a combination of
many protocols. Although the commonly used name for the entire protocol suite is
TCP/IP, TCP and IP are only two of the protocols. (An alternative name is the Internet
Protocol Suite.)

The purpose of the network interface layer and the application layer are
obvious—the former handles the details of the communication media (Ethernet, token
ring, etc.) while the latter handles one specific user application (FTP, Telnet, etc.). But on
first glance the difference between the network layer and the transport layer is some-
what hazy. Why is there a distinction between the two? To understand the reason, we
have to expand our perspective from a single network to a collection of networks.

One of the reasons for the phenomenal growth in networking during the 1980s was
the realization that an island consisting of a stand-alone computer made little sense. A
few stand-alone systems were collected together into a network. While this was
progress, during the 1990s we have come to realize that this new, bigger island consist-
ing of a single network doesn't make sense either. People are combining multiple net-
works together into an intemetwork, or an internet. An internet is a collection of
networks that all use the same protocol suite.

The easiest way to build an Internet is to connect two or more networks with a
router. This is often a special-purpose hardware box for connecting networks. The nice
thing about routers is that they provide connections to many different types of physical
networks: Ethernet, token ring, point-to-point links, FDDI (Fiber Distributed Data Inter-
face), and so on.

These boxes are also called IP routers, but we'll use the term router.

Historically these boxes were called gateways, and this term is used throughout much of the
TCP/IP literature. Today the term gateway is used for an application gateway: a process that
connects two different protocol suites (say, TCP/IP and IBM's SNA) for one particular applica-
tion (often electronic mail or file transfer).

Figure 1.3 shows an internet consisting of two networks: an Ethernet and a token
ring, connected with a router. Although we show only two hosts communicating, with
the router connecting the two networks, any host on the Ethernet can communicate with
any host on the token ring.

In Figure 1.3 we can differentiate between an end system (the two hosts on either
side) and an intermediate system (the router in the middle). The application layer and the
transport layer use end-to-end protocols. In our picture these two layers are needed only
on the end systems. The network layer, however, provides a hop-by-hop protocol and is
used on the two end systems and every intermediate system.

Apple Inc.
Ex. 1015 - Page 7

IP protocol IP protocol

Ethernet

token ring token ring
.111- protocol driver

Ethernet
protocol -14

Ethernet
driver

FTP protocol

TCP protocol

router

A

L

IP

token ring
driver

V
Ethernet
driver

TCP

FTP
server

FTP
client

IP

TCP

token ring

IP

Section 1.2 Layering 5

Figure 1.3 Two networks connected with a router.

In the TCP/IP protocol suite the network layer, IP, provides an unreliable service.
That is, it does its best job of moving a packet from its source to its final destination, but
there are no guarantees. TCP, on the other hand, provides a reliable transport layer
using the unreliable service of IP. To provide this service, TCP performs timeout and
retransmission, sends and receives end-to-end acknowledgments, and so on. The trans-
port layer and the network layer have distinct responsibilities.

A router, by definition, has two or more network interface layers (since it connects
two or more networks). Any system with multiple interfaces is called multihomed. A
host can also be multihomed but unless it specifically forwards packets from one inter-
face to another, it is not called a router. Also, routers need not be special hardware
boxes that only move packets around an internet. Most TCP/IP implementations allow
a multihomed host to act as a router also, but the host needs to be specifically config-

ured for this to happen. In this case we can call the system either a host (when an appli-
cation such as FTP or Telnet is being used) or a router (when it's forwarding packets
from one network to another). We'll use whichever term makes sense given the context.

One of the goals of an internet is to hide all the details of the physical layout of the
Internet from the applications. Although this isn't obvious from our two-network inter-
net in Figure 1.3, the application layers can't care (and don't care) that one host is on an
Ethernet, the other on a token ring, with a router between. There could be 20 routers
between, with additional types of physical interconnections, and the applications would
run the same. This hiding of the details is what makes the concept of an Internet so
powerful and useful.

Apple Inc.
Ex. 1015 - Page 8

TCP

L

UDP

IGMP

6 Introduction Chapter 1

Another way to connect networks is with a bridge. These connect networks at the
link layer, while routers connect networks at the network layer. Bridges makes multiple
LANs appear to the upper layers as a single LAN.

TCP/IP internets tend to be built using routers instead of bridges, so we'll focus on
routers. Chapter 12 of [Perlman 1992] compares routers and bridges.

1.3 TCP/IP Layering

There are more protocols in the TCP/IP protocol suite. Figure 1.4 shows some of the
additional protocols that we talk about in this text.

I-

User
Process

L

User
Process

User
Process

User
Process

7

application

7

transport

_J

IP

L

ICMP

L

1

network

J

link

ARP

Hardware
Interface

RARP

media

Figure 1.4 Various protocols at the different layers in the TCP/IP protocol suite.

TCP and UDP are the two predominant transport layer protocols. Both use IP as
the network layer.

TCP provides a reliable transport layer, even though the service it uses (IF) is unreli-
able. Chapters 17 through 22 provide a detailed look at the operation of TCP. We then
look at some TCP applications: Telnet and Rlogin in Chapter 26, FTP in Chapter 27, and
SMTP in Chapter 28. The applications are normally user processes.

Apple Inc.
Ex. 1015 - Page 9

Section 1A Internet Addresses 7

UDP sends and receives datagrams for applications. A datagram is a unit of infor-
mation (i.e., a certain number of bytes of information that is specified by the sender)
that travels from the sender to the receiver. Unlike TCP, however, UDP is unreliable.
There is no guarantee that the datagram ever gets to its final destination. Chapter 11
looks at UDP, and then Chapter 14 (the Domain Name System), Chapter 15 (the Trivial
File Transfer Protocol), and Chapter 16 (the Bootstrap Protocol) look at some applica-
tions that use UDP. SNMP (the Simple Network Management Protocol) also uses UDP,
but since it deals with many of the other protocols, we save a discussion of it until
Chapter 25.

IP is the main protocol at the network layer. It is used by both TCP and UDP. Every
piece of TCP and UDP data that gets transferred around an internet goes through the IP
layer at both end systems and at every intermediate router. In Figure 1.4 we also show
an application accessing IP directly. This is rare, but possible. (Some older routing pro-
tocols were implemented this way. Also, it is possible to experiment with new transport
layer protocols using this feature.) Chapter 3 looks at IP, but we save some of the details
for later chapters where their discussion makes more sense. Chapters 9 and 10 look at
how IP performs routing.

ICMP is an adjunct to IP. It is used by the IP layer to exchange error messages and
other vital information with the IP layer in another host or router. Chapter 6 looks at
ICMP in more detail. Although ICMP is used primarily by IP, it is possible for an appli-
cation to also access it. Indeed we'll see that two popular diagnostic tools, Ping and
Traceroute (Chapters 7 and 8), both use ICMP.

IGMP is the Internet Group Management Protocol. It is used with multicasting:
sending a UDP datagram to multiple hosts. We describe the general properties of
broadcasting (sending a UDP datagram to every host on a specified network) and
multicasting in Chapter 12, and then describe IGMP itself in Chapter 13.

ARP (Address Resolution Protocol) and RARP (Reverse Address Resolution
Protocol) are specialized protocols used only with certain types of network interfaces
(such as Ethernet and token ring) to convert between the addresses used by the IP layer
and the addresses used by the network interface. We examine these protocols in Chap-
ters 4 and 5, respectively.

1.4 Internet Addresses

Every interface on an internet must have a unique Internet address (also called an IP
address). These addresses are 32-bit numbers. Instead of using a flat address space such
as 1, 2, 3, and so on, there is a structure to Internet addresses. Figure 1.5 shows the five
different classes of Internet addresses.

These 32-bit addresses are normally written as four decimal numbers, one for each
byte of the address. This is called dotted-decimal notation. For example, the class B
address of the author's primary system is 140.252.13.33.

The easiest way to differentiate between the different classes of addresses is to look
at the first number of a dotted-decimal address. Figure 1.6 shows the different classes,
with the first number in boldface.

Apple Inc.
Ex. 1015 - Page 10

8 Introduction

Class A 0

Class B 0

Class C 1 1

Class D 1 1

Class E 1

Chapter 1

7 bits 24 bits

netid hostid

14 bits 16 bits

netid hostid

21 bits 8 bits

0 netid hostid

28 bits

0 multicast group ID

28 bits

1 1 (reserved for future use)

Figure 1.5 The five different classes of Internet addresses.

Class Range

A 0.0.0.0 to 127.255.255.255
B 128.0.0.0 to 191.255.255.255
C 192.0.0.0 to 223.255.255.255
D 224.0.0.0 to 239.255.255.255
E 240.0.0.0 to 255.255.255.255

Figure 1.6 Ranges for different classes of IP addresses.

It is worth reiterating that a multihorned host will have multiple IP addresses: one per
interface.

Since every interface on an internet must have a unique IP address, there must be
one central authority for allocating these addresses for networks connected to the
worldwide Internet. That authority is the Internet Network Information Center, called the
InterNIC. The InterNIC assigns only network IDs. The assignment of host IDs is up to
the system administrator.

Registration services for the Internet (IP addresses and DNS domain names) used to be han-
dled by the NIC, at nic . ddn On April 1, 1993, the InterNIC was created. Now the NIC
handles these requests only for the Defense Data Network (DDN). All other Internet users now
use the InterNIC registration services, at rs . internic . net.

There are actually three parts to the InterNIC: registration services (rs . internic .net),
directory and database services (ds . internic . net), and information services
(is . internic . net). See Exercise 1.8 for additional information on the InterNIC.

There are three types of IP addresses: unicast (destined for a single host), broadcast
(destined for all hosts on a given network), and multicast (destined for a set of hosts that
belong to a multicast group). Chapters 12 and 13 look at broadcasting and rnulticasting
in more detail.

Apple Inc.
Ex. 1015 - Page 11

Section 1.6 Encapsulation 9

In Section 3.4 we'll extend our description of IP addresses to include subnetting,
after describing IP routing. Figure 3.9 shows the special case IP addresses: host IDs and
network IDs of all zero bits or all one bits.

1.5 The Domain Name System

Although the network interfaces on a host, and therefore the host itself, are known by IP
addresses, humans work best using the name of a host. In the TCP/IP world the Domain
Name System (DNS) is a distributed database that provides the mapping between IP
addresses and hostnames. Chapter 14 looks into the DNS in detail.

For now we must be aware that any application can call a standard library function
to look up the IP address (or addresses) corresponding to a given hostname. Similarly a
function is provided to do the reverse lookup—given an IP address, look up the corre-
sponding hostname.

Most applications that take a hostname as an argument also take an IP address.
When we use the Telnet client in Chapter 4, for example, one time we specify a host-
name and another time we specify an IP address.

1.6 Encapsulation

When an application sends data using TCP, the data is sent down the protocol stack,
through each layer, until it is sent as a stream of bits across the network. Each layer
adds information to the data by prepending headers (and sometimes adding trailer
information) to the data that it receives. Figure 1.7 shows this process. The unit of data
that TCP sends to IP is called a TCP segment. The unit of data that IP sends to the net-
work interface is called an IP datagram. The stream of bits that flows across the Ethernet
is called a frame.

The numbers at the bottom of the headers and trailer of the Ethernet frame in Fig-
ure 1.7 are the typical sizes of the headers in bytes. We'll have more to say about each of
these headers in later sections.

A physical property of an Ethernet frame is that the size of its data must be between
46 and 1500 bytes. We'll encounter this minimum in Section 4.5 and we cover the maxi-
mum in Section 2.8.

All the Internet standards and most books on TCP/IP use the term octet instead of byte. The
use of this cute, but baroque term is historical, since much of the early work on TCP/IP was
done on systems such as the DEC-10, which did not use 8-bit bytes. Since almost every current
computer system uses 8-bit bytes, we'll use the term byte in this text.

To be completely accurate in Figure 1.7 we should say that the unit of data passed between IP
and the network interface is a packet. This packet can be either an IP datagram or a fragment of
an IP datagram. We discuss fragmen.tation in detail in Section 11.5.

We could draw a nearly identical picture for UDP data. The only changes are that
the unit of information that UDP passes to IP is called a UDP datagram, and the size of
the UDP header is 8 bytes.

Apple Inc.
Ex. 1015 - Page 12

user data
Appl

header

application data
TCP

header

user data

i

i

TCP segment

IP TCP
header header

application data

IP datagram

Ethernet IP TCP Ethernet
header header header

application data
trailer

10 Introduction Chapter 1

20
Ethernet frame

46 to 1500 bytes

Figure 1.7 Encapsulation of data as it goes down the protocol stack.

Recall from Figure 1.4 (p. 6) that TCP, UDP, ICMP, and IGMP all send data to IP. IP
must add some type of identifier to the IP header that it generates, to indicate the layer
to which the data belongs. IP handles this by storing an 8-bit value in its header called
the protocol field. A value of 1 is for ICMP, 2 is for IGMP, 6 indicates TCP, and 17 is for
UDP.

Similarly, many different applications can be using TCP or UDP at any one time.
The transport layer protocols store an identifier in the headers they generate to identify
the application. Both TCP and UDP use 16-bit port numbers to identify applications.
TCP and UDP store the source port number and the destination port number in their
respective headers.

The network interface sends and receives frames on behalf of IP, ARP, and RARP.
There must be some form of identification in the Ethernet header indicating which net-
work layer protocol generated the data. To handle this there is a 16-bit frame type field
in the Ethernet header

14 20 4

Apple Inc.
Ex. 1015 - Page 13

TCP UDP

demultiplexing based on
destination port number
in TCP or UDP header

1

 demultiplexing based on
protocol value in IP header

demultiplexing based on
frame type in Ethernet header

application

RARP ARP

IP

IGMP ICMP

application application application

Section 1.7 Demultiplexing 11

1.7 Demultiplexing

When an Ethernet frame is received at the destination host it starts its way up the proto-
col stack and all the headers are removed by the appropriate protocol box. Each proto-
col box looks at certain identifiers in its header to determine which box in the next
upper layer receives the data. This is called demultiplexing. Figure 1.8 shows how this
takes place.

Ethernet
driver

incoming frame

Figure 1.8 The demultiplexing of a received Ethernet frame.

Positioning the protocol boxes labeled "ICMP" and "IGMP" is always a challenge. In Fig-
ure 1.4 we showed them at the same layer as IP, because they really are adjuncts to IP. But here
we show them above IP, to reiterate that ICMP messages and IGMP messages are encapsulated
in IP datagrams.

We have a similar problem with the boxes "ARP" and "RARP." Here we show them above the
Ethernet device driver because they both have their own Ethernet frame types, like IP data-
grams. But in Figure 2.4 we'll show ARP as part of the Ethernet device driver, beneath IP,
because that's where it logically fits.

Realize that these pictures of layered protocol boxes are not perfect.

When we describe TCP in detail we'll see that it really demultiplexes incoming seg-
ments using the destination port number, the source IP address, and the source port
number.

Apple Inc.
Ex. 1015 - Page 14

12 Introduction Chapter 1

1.8 Client—Server Model

Most networking applications are written assuming one side is the client and the other
the server. The purpose of the application is for the server to provide some defined ser-
vice for clients.

We can categorize servers into two classes: iterative or concurrent. An iterative
server iterates through the following .steps.

It Wait for a client request to arrive,

12. Process the client request.

13. Send the response back to the client that sent the request.

14. Go back to step It

The problem with an iterative server is when step 12 takes a while. During this time no
other clients are serviced.

A concurrent server, on the other hand, performs the following steps.

Cl. Wait for a client request to arrive.

C2. Start a new server to handle this client's request. This may involve creating a
new process, task, or thread, depending on what the underlying operating sys-
tem supports. How this step is performed depends on the operating system.

This new server handles this client's entire request. When complete, this new
server terminates.

C3. Go back to step Cl.

The advantage of a concurrent server is that the server just spawns other servers to han-
dle the client requests. Each client has, in essence, its own server. Assuming the operat-
ing system allows multiprogramming, multiple clients are serviced concurrently.

The reason we categorize servers, and not clients, is because a client normally can't
tell whether it's talking to an iterative server or a concurrent server.

As a general rule, TCP servers are concurrent, and UDP servers are iterative, but
there are a few exceptions. We'll look in detail at the impact of UDP on its servers in
Section 11.12, and the impact of TCP on its servers in Section 18.11.

1.9 Port Numbers

We said that TCP and UDP identify applications using 16-bit port numbers. How are
these port numbers chosen?

Servers are normally known by their well-known port number. For example, every
TCP/1P implementation that provides an FTP server provides that service on TCP port

Apple Inc.
Ex. 1015 - Page 15

Section L9 Port Numbers 13

21. Every Telnet server is on TCP port 23. Every implementation of (the Trivial
File Transfer Protocol) is on UDP port 69. Those services that can be provided by any
implementation of TCP/IP have well-known port numbers between 1 and 1023. The
well-known ports are managed by the Internet Assigned Numbers Authority (IANA).

Until 1992 the well-known ports were between 1 and 255. Ports between 256 and 1023 were
normally used by Unix systems for Unix-specific services—that is, services found on a Unix
system, but probably not found on other operating systems. The IANA now manages the
ports between 1 and 1023.

An example of the difference between an Internet-wide service and a Unix-specific service is
the difference between Telnet and Rlogin. Both allow us to login across a network to another
host. Telnet is a TCP/IP standard with a well-known port number of 23 and can be imple-
mented on almost any operating system. Rlogin, on the other hand, was originally designed
for Unix systems (although many non-Unix systems now provide it also) so its well-known
port was chosen in the early 1980s as 513.

A client usually doesn't care what port number it uses on its end. All it needs to be
certain of is that whatever port number it uses be unique on its host. Client port num-
bers are called ephemeral ports (Le., short lived). This is because a client typically exists
only as long as the user running the client needs its service, while servers typically run
as long as the host is up.

Most TCP/IP implementations allocate ephemeral port numbers between 1024 and
5000. The port numbers above 5000 are intended for other servers (those that aren't
well known across the Internet). We'll see many examples of how ephemeral ports are
allocated in the examples throughout the text.

Solaris 2.2 is a notable exception. By default the ephemeral ports for TCP and UDP start at
32768. Section E.4 details the configuration options that can be modified by the system admin-
istrator to change these defaults.

The well-known port numbers are contained in the file /etc/services on most
Unix systems. To find the port numbers for the Telnet server and the Domain Name
System, we can execute

sun % grep telnet /etc/services
telnet 23/tcp says it uses TCP port 23

sun % grep domain /etc/services
domain 53 /udp says it uses UDP port 53
domain 53/tcp and TCP port 53

Reserved Ports

Unix systems have the concept of reserved ports. Only a process with superuser privi-
leges can. assign itself a reserved port.

These port numbers are in the range of 1 to 1023, and are used by some applications
(notably Rlogin, Section 26.2), as part of the authentication between the client and
server.

Apple Inc.
Ex. 1015 - Page 16

kw38200
StrikeOut

14 Introduction Chapter 1

1.10 Standardization Process

Who controls the TCP/IP protocol suite, approves new standards, and the like? There
are four groups responsible for Internet technology.

1. The Internet Society (ISOC) is a professional society to facilitate, support; and
promote the evolution and growth of the Internet as a global research communi-
cations infrastructure.

2. The Internet Architecture Board (IAB) is the technical oversight and coordination
body. It is composed of about 15 international volunteers from various disci-
plines and serves as the final editorial and technical review board for the quality
of Internet standards. The IAB falls under the ISOC.

3. The Internet Engineering Task Force (IETF) is the near-term, standards-oriented
group, divided into nine areas (applications, routing and addressing, security,
etc.). The IETF develops the specifications that become Internet standards. An
additional Internet Engineering Steering Group (IESG) was formed to help the
IETF chair.

4. The Internet Research Task Force (IRTF) pursues long-term research projects.

Both the IRTF and the IETF fall under the TAB. [Crocker 1993] provides additional
details on the standardization process within the Internet, as well as some of its early
history.

1.11 RFCs

All the official standards in the Internet community are published as a Request for Com-
ment, or RFC. Additionally there are lots of RFCs that are not official standards, but are
published for informational purposes. The RFCs range in size from 1 page to almost
200 pages. Each is identified by a number, such as RFC 1127, with higher numbers for
newer RFCs.

All the RFCs are available at no charge through electronic mail or using FTP across
the Internet. Sending electronic mail as shown here:

To: rfc-info@ISI.EDU
Subject: getting rfcs

help: ways_to_get_rfcs

returns a detailed listing of various ways to obtain the RFCs.
The latest RFC index is always a starting point when looking for something. This

index specifies when a certain RFC has been replaced by a newer RFC, and if a newer
RFC updates some of the information in that RFC.

There are a few important RFCs.

1. The Assigned Numbers RFC specifies all the magic numbers and constants that
are used in the Internet protocols. At the time of this writing the latest version

Apple Inc.
Ex. 1015 - Page 17

Section 1.12 Standard, Simple Services 15

of this RFC is 1340 [Reynolds and Postel 1992]. All the Internet-wide well-
known ports are listed here.

When this RFC is updated (it is normally updated at least yearly) the index list-
ing for 1340 will indicate which RFC has replaced it.

2. The Internet Official Protocol Standards, currently RFC 1600 [Postel 1994]. This
RFC specifies the state of standardization:of the various Internet protocols. Each
protocol has one of the following states of standardization: standard, draft stan-
dard, proposed standard, experimental, informational, or historic. Additionally
each protocol has a requirement level: required, recommended, elective, limited
use, or not recommended.

Like the Assigned Numbers RFC, this RFC is also reissued regularly. Be sure
you're reading the current copy.

3. The Host Requirements RFCs, 1122 and 1123 [Braden 1989a, 1989b]. RFC 1122
handles the link layer, network layer, and transport layer, while RFC 1123 han-
dles the application layer. These two RFcs make numerous corrections and
interpretations of the important earlier RFCs, and are often the starting point
when looking at any of the finer details of a given protocol. They list the fea-
tures and implementation details of the protocols as either "must," "sho-uld,"
"may," "should not," or "must not."

[Borman 1993b] provides a practical look at these two RFCs, and RFC 1127
[Braden 1989c] provides an informal summary of the discussions and conclu-
sions of the working group that developed the Host Requirements RFCs.

4. The Router Requirements RFC. The official version of this is RFC 1009 (Braden
and Postel 1987], but a new version is nearing completion [Almquist 1993]. This
is similar to the host requirements RFCs, but specifies the unique requirements
of routers.

1:12 Standard, Simple Services

There are a few standard, simple services that almost every implementation provides.
We'll use some of these servers throughout the text, usually with the Telnet client. Fig-
ure 1.9 describes these services. We can see from this figure that when the same service
is provided using both TCP and UDP, both port numbers are normally chosen to be the
same.

If we examine the port numbers for these standard services and other standard TCP/IP ser-
vices (Telnet, F[P, SMTP, etc.), most are odd numbers. This is historical as these port numbers
are derived from. the NCP port numbers. (NCP, the Network Control Protocol, preceded TCP
as a transport layer protocol for the ARPANET.) NCP was simplex, not full-duplex, so each
application required two connections, and an even-odd pair of port numbers was reserved for
each application. When TCP and UDP became the standard transport layers, only a single
port number was needed per application, so the odd port numbers from NCP were used.

Apple Inc.
Ex. 1015 - Page 18

16 Introduction Chapter 1

Name TCP part UDP port RFC Description

echo 7 7 862 Server returns whatever the client sends.
discard 9 9 863 Server discards whatever the client sends.
daytime 13 13 867 Server returns the time and date in a human-readable

format
chargen 19 19 864 TCP server sends a continual stream of characters, until the

connection is terminated by the client. UDP server
sends a datagram containing a random number of
characters each time the client sends a datagram.

t ime 37 37 868 Server returns the time as a 32-bit binary number. This
number represents the number of seconds since
midnight January 1, 1900, UTC.

Figure 1.9 Standard, simple services provided by most implementations.

1.13 The Internet

In Figure 1.3 we showed an Internet composed of two networks—an Ethernet and a
token ring. In Sections 1.4 and 1.9 we talked about the worldwide Internet and the need
to allocate IP addresses centrally (the InterNIC) and the well-known port numbers (the
TANA). The word internet means different things depending on whether it's capitalized
or not.

The lowercase internet means multiple networks connected together, using a com-
mon protocol suite. The uppercase Internet refers to the collection of hosts (over one
million) around the world that can communicate with each other using TCP/IP. While
the Internet is an internet, the reverse is not true.

1.14 Implementations

The de facto standard for TCP/IP implementations is the one from the Computer Sys-
tems Research Group at the University of California at Berkeley. Historically this has
been distributed with the 4.x BSD system (Berkeley Software Distribution), and with the
"BSD Networking Releases." This source code has been the starting point for many
other implementations.

Figure 1.10 shows a chronology of the various BSD releases, indicating the impor-
tant TCP/IP features. The BSD Networking Releases shown on the left side are publicly
available source code releases containing all of the networking code: both the protocols
themselves and many of the applications and utilities (such as Telnet and FTP).

Throughout the text we'll use the term Berkeley-derived implementation to refer to
vendor implementations such as SunOS 4.x, SVR4, and AIX 3.2 that were originally
developed from the Berkeley sources. These implementations have much in common,
often including the same bugs!

Apple Inc.
Ex. 1015 - Page 19

Section 1.15 Application Programming Interfaces 17

4.2BSD (1983)
first widely available

release of TCP/IP

4.3BSD (1986)
TCP performance improvements

4.3BSD Tahoe (1988)
slow start,

congestion avoidance,
fast retransmit

BSD Networking Software
Release 1.0 (1989): Net/1

4.3BSD Reno (1990)
fast recovery,

TCP header prediction,
SLIP header compression,

routing table changes

BSD Networking Software
Release 2.0 (1991): Net/2 1

4.4BSD (1993)
multicasting,

long fat pipe modifications

4.4BSD-Lite (1994)
also referred to as Netl3

Figure 1.10 Various BSD releases with important TCP/IP features.

Much of the original research in the Internet is still being applied to the Berkeley
system—new congestion control algorithms (Section 21.7), multicasting (Section 12.4),
"long fat pipe" modifications (Section 243), and the like.

.15 Application Programming Interfaces

Two popular application programming interfaces (APIs) for applications using the TCP/IP
protocols are called sockets and TLI (Transport Layer Interface). The former is some-
times called "Berkeley sockets," indicating where it was originally developed. The laf-
ter, originally developed by AT&T, is sometimes called XTI (X/Open Transport
Interface), recognizing the work done by X/Open, an international group of computer
vendors that produce their own set of standards. XTI is effectively a superset of TLI.

Apple Inc.
Ex. 1015 - Page 20

.13.66
• bsdi sun svr4

.13.34

SLIP

BSD/386 1.0 BSD/386 1.0 SunOS 4.1.3 .1.29 SVR4

Ethernet

.13.35 .13.33

slip
.13.65

18 Introduction Chapter 1

This text is not a programming text, but occasional reference is made to features of
TCP/IP that we look at, and whether that feature is provided by the most popular API
(sockets) or not. All the programming details for both sockets and TLI are available in
[Stevens 1990].

1.16 Test Network

Figure 1.11 shows the test network that is used for all the examples in the text, This fig-
ure is also duplicated on the inside front cover for easy reference while reading the
book.

Internet

AIX 3.2.2 Solaris 2.2 SunOS 4.1.1 .104.1

aix solaris gemini gateway
Cisco
router

.1.92

•

.1.4 .1.32

.1.183
Ethernet

netb
Telebit
Netfflazer

modem

SUP (dialup)

modem

Figure 1.11 Test network used for all the examples in the text. All IP addresses begin with 140.252.

Most of the examples are run on the lower four systems in this figure (the author's sub-
net). All the IP addresses in this figure belong to the class B network ID 14(1252. All the
hostnames belong to the . tuc noao edu domain. (noao stands for "National Optical
Astronomy Observatories" and tuc stands for Tucson.) For example, the lower right
system has a complete hostname of svr4 . tuc . noao • edu and an IP address of
140.252.1334. The notation at the top of each box is the operating system running on
that system. This collection of systems and networks provides hosts and routers run-
ning a variety of TCP/IP implementations.

Apple Inc.
Ex. 1015 - Page 21

kw38200
StrikeOut

Chapter 1 Exercises 19

It should be noted that there are many more networks and hosts in the noao edu
domain than we show in Figure 1.11. All we show here are the systems that we'll
encounter throughout the text.

In Section 3.4 we describe the form of subnettirig used on this network, and in Sec-
tion 4.6 we'll provide more details on the dialup SLIP connection between sun and
netb. Section 2.4 describes SLIP in detail.

1.17 Summary

This chapter has been a whirlwind tour of the TCP/IP protocol suite, introducing many
of the terms and protocols that we discuss in detail in later chapters.

The four layers in the TCP/IP protocol suite are the link layer, network layer, trans-
port layer, and application layer, and we mentioned the different responsibilities of
each. In TCP/IP the distinction between the network layer and the transport layer is
critical: the network layer (IP) provides a hop-by-hop service while the transport layers
(TCP and UDP) provide an end-to-end service.

An Internet is a collection of networks. The common building block for an internet
is a router that connects the networks at the IP layer. The capital-I Internet is an Internet
that spans the globe and consists of more than 10,000 networks and more than one mil-
lion computers.

On an internet each interface is identified by a unique IP address, although users
tend to use hostnames instead of IP addresses, The Domain Name System provides a
dynamic mapping between hostnames and IP addresses. Port numbers are used to
identify the applications communicating with each other and we said that servers use
well-known ports while clients use ephemeral ports.

Exercises

1.1 Calculate the maximum number of class A, B, and C network IDs.

1.2 Fetch the file nsfnet/statistics/history .netcount using anonymous FTP (Sec-
tion 27.3) from the host nic . merit . edu. This file contains the number of domestic and
foreign networks announced to the NSFNET infrastructure. Plot these values with the year
on the x-axis and a logarithmic y-axis with the total number of networks. The maximum
value for the y-axis should be the value calculated in the previous exercise. If the data
shows a visual trend, extrapolate the values to estimate when the current addressing
scheme will run out of network IDs. (Section 3.10 talks about proposals to correct this
problem.)

1.3 Obtain a copy of the Host Requirements RFC [Braden 1989a1 and look up the robustness
principle that applies to every layer of the TCP/IP protocol suite. What is the reference for
this principle?

1.4 Obtain a copy of the latest Assigned Numbers RFC. What is the well-known port for the
"quote of the day" protocol? Which RFC defines the protocol?

Apple Inc.
Ex. 1015 - Page 22

20 Introduction Chapter 1

1.5 If you have an account on a host that is connected to a TCP/IP internet, what is its primary
IP address? Is the host connected to the worldwide Internet? Is it multihomed?

1.6 Obtain a copy of RFC 1000 to learn where the term RFC originated,

1.7 Contact the Internet Society, isoc gisoc . org or +1 703 648 9888, to find out about joining.

1.8 Fetch the file about-internic/ information-about-the-internic using anony-
mous F EP from the host is . int ern.ic . net .

Apple Inc.
Ex. 1015 - Page 23

IP: Internet Protocol

3.1 Introduction

IP is the workhorse protocol of the TCP/IP protocol suite. All TCP, UDP, ICMP, and
IGMP data gets transmitted as IP datagrams (Figure 1.4). A fact that amazes many
newcomers to TCP/IP, especially those from an X.25 or SNA background, is that IP pro-
vides an unreliable, connectionless datagram delivery service.

By unreliable we mean there are no guarantees that an IP datagram successfully gets
to its destination. IP provides a best effort service. When something goes wrong, such
as a router temporarily running out of buffers, IP has a simple error handling algorithm:
throw away the datagram and try to send an ICMP message back to the source. Any
required reliability must be provided by the upper layers (e.g., TCP).

The term connectionless means that IP does not maintain any state information about
successive datagrams. Each datagram is handled independently from all other data-
grams. This also means that IP datagrams can get delivered out of order. If a source
sends two consecutive datagrams (first A, then B) to the same destination, each is
routed independently and can take different routes, with B arriving before A.

In this chapter we take a brief look at the fields in the IP header, describe IP routing,
and cover subnetting. We also look at two useful commands: i f conf ig and net st at.
We leave a detailed discussion of some of the fields in the IP header for later when we
can see exactly how the fields are used. RFC 791 [Poste' 1981a] is the official specifica-
tion of IP.

Apple Inc.
Ex. 1015 - Page 24

32 Link Layer Chapter 2

datagrams to one of the host's own IP addresses. Loopback data has been completely
processed by the transport layer and by IP when it loops around to go up the protocol
stack.

We described an important feature of many link layers, the MTU, and the related
concept of a path MTU. Using the typical MTUs for serial lines, we calculated the
latency involved in SLIP and CSLIP

This chapter has covered only a few of the common data-link technologies used
with TCP/IP today. One reason for the success of TCP/IP is its ability to work on top of
almost any data-link technology.

Exercises

2.1 If your system supports the net stat(1) command (see Section 3.9 also), use it to determine
the interfaces on your system and their MTUs.

Apple Inc.
Ex. 1015 - Page 25

4-bit
version

4-bit header
length

8-bit type of service
(TOS)

,16-bit total length (in bytes)

16-bit identification
3-bit
flags

13-bit fragment offset

8-bit time to live
(TEL)

8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

options (if any) /

A

20 bytes

34 IP: Internet Protocol Chapter 3

3.2 IP . Header

Figure 3.1 shows the format of an IP datagram. The normal size of the IP header is 20
bytes, unless options are present.

0 15 16 31

data

Figure 3.1 IP datagram, showing the fields in the IP header.

We will show the pictures of protocol headers in TCP/IP as in Figure 3.1. The most sig-
nificant bit is numbered 0 at the left, and the least significant bit of a 32-bit value is num-
bered 31 on the right.

The 4 bytes in the 32-bit value are transmitted in the order: bits 0-7 first, then bits
8-15, then 16-23, and bits 24-31 last. This is called big endian byte ordering, which is
the byte ordering required for all binary integers in the TCP/IP headers as they traverse
a network. This is called the network byte order. Machines that store binary integers in
other formats, such as the little endian format, must convert the header values into the
network byte order before transmitting the data.

The current protocol version is 4, so IP is sometimes called IPv4. Section 3.10 dis-
cusses some proposals for a new version of IP.

The header length is the number of 32-bit words in the header, including any options.
Since this is a 4-bit field, it limits the header to 60 bytes. In Chapter 8 we'll see that this
limitation makes some of the options, such as the record route option, useless today.
The normal value of this field (when no options are present) is 5.

The type-of-service field (TOS) is composed of a 3-bit precedence field (which is
ignored today), 4 TOS bits, and an unused bit that must be 0. The 4 TOS bits are: mini-
mize delay, maximize throughput, maximize reliability, and minimize monetary cost.

Apple Inc.
Ex. 1015 - Page 26

Section 3.2 IP Header 35

Only 1 of these 4 bits can be turned on. If all 4 bits are 0 it implies normal service.
RFC 1340 [Reynolds and Postel 19921 specifies how these bits should be set by all the
standard applications. RFC 1349 [Almquist 19921 contains some corrections to this RFC,
and a more detailed description of the TOS feature.

Figure 3.2 shows the recommended values of the TOS field for various applications.
In the final column we show the hexadecimal value, since that's what we'll see in the
t cpdurap output later in the text.

Application
Minimize

delay
Maximize

throughput
Maximize
reliability

Minimize
monetary cost

Hex
value

Telnet/Rlogin 1 0 0 0 Ox10
FTP

control 1 0 0 0 Ox10
data 0 1 0 0 0x08

any bulk data 0 1 0 0 Ox08
TFTP 1 0 0 0 0x1.0
SMTP

command phase' 1 0 14 0 0 Ox10
data phase 0 1 0 0 0x08

DNS
UDP query 1 0 0 0 Ox10
TCP query 0 0 0 0 Ox00
zone transfer 0 1 0 0 0x08

ICMP
error 0 0 0 0 0 x 00
query 0 0 0 0 Ox00

any IGP 0 0 1 0 0x04
SNMP 0 0 1 0 0x04
BOOTP 0 0 0 0 Ox00
NNTP 0 0 0 1 0x02

Figure 3.2 Recommended values for type-of-service field.

The interactive login applications, Telnet and Rlogin, want a minimum delay since
they're used interactively by a human for small amounts of data transfer. File transfer
by FTP, on the other hand, wants maximum throughput. Maximum reliability is speci-
fied for network management (SNMP) and the routing protocols. Usenet news (NNTP)
is the only one shown that wants to minimize monetary cost. •

The TOS feature is not supported by most TCP/IP implementations today, though
newer systems starting with 4.3BSD Reno are setting it. Additionally, new routing pro-
tocols such as OSPF and IS-IS are capable of making routing decisions based on this
field.

In Section 2.10 we mentioned that SLIP drivers normally provide type-of-service queueing,
allowing interactive traffic to be handled before bulk data. Since most implementations don't
use the TOS field, this queueing is done ad hoc by SLIP, with the driver looking a the protocol
field (to determine whether it's a TCP segment or not) and then checking the source and desti-
nation TCP port numbers to see if the port number corresponds to an interactive service. One
driver comments that this "disgusting hack" is required since most implementations don't
allow the application to set the TOS field.

Apple Inc.
Ex. 1015 - Page 27

36 IP: Internet Protocol Chapter 3

. The total length field is the total length of the IP datagram in bytes. Using this field
and the header length field, we know where the data portion of the IP datagram starts,
and its length. Since this is a 16-bit field, the maximum size of an IP datagram is 65535
bytes. (Recall from Figure 2.5 [p. 301 that a Hyperchannel has an MTU of 65535. This
means there really isn't an MTU—it uses the largest IP datagram possible.) This field
also changes when a datagram is fragmented, which we describe in Section 11.5.

Although it's possible to send a 65535-byte IP datagram, most link layers will frag-
ment this. Furthermore, a host is not required to receive a datagram larger than 576
bytes. TCP divides the .user's data into pieces, so this limit normally doesn't affect TCP.
With UDP we'll encounter numerous applications in later chapters (RIP, TFTP, BOOTP,
the DNS, and SNMP) that limit themselves to 512 bytes of user data, to stay below this
576-byte limit. Realistically, however, most implementations today (especially those
that support the Network File System, NFS) allow for just over 8192-byte IP datagrams.

The total length field is required in the IP header since some data links (e.g., Ether-
net) pad small frames to be a minimum length. Even though the minimum Ethernet
frame size is 46 bytes (Figure 2.1), an IP datagram can be smaller. If the total length
field wasn't provided, the IP layer wouldn't know how much of a 46-byte Ethernet
frame was really an IP datagram.

The identification field uniquely identifies each datagram sent by a host. It no .1 tally
increments by one each time a datagram is sent. We return to this field when we look at
fragmentation and reassembly in Section 11.5. Similarly, we'll also look at the flags field
and the fragmentation offset field when we talk about fragmentation.

RFC 791 [Postel 1981a] says that the identification field should be chosen by the upper layer
that is having IP send the datagram. This implies that two consecutive IP datagrams, one gen-
erated by TCP and one generated by LOP, can have the same identification field. While this is
OK (the reassembly algorithm handles this), most Berkeley-derived implementations have the
IP layer increment a kernel variable each time an IP datagram is sent, regardless of which layer
passed the data to IP to send. This kernel variable is initialized to a value based on the time-of-
day when the system is bootstrapped.

The time-to-live field, or TTL, sets an upper limit on the number of routers through
which a datagram can pass. It limits the lifetime of the datagram. it is initialized by the
sender to some value (often 32 or 64) and decremented by one by every router that han-
dles the datagram. When this field reaches 0, the datagram is thrown away, and the
sender is notified with an ICMP message. This prevents packets from getting caught in
routing loops forever. We return to this field in Chapter 8 when we look at the Trace-
route program.

We talked about the protocol field in Chapter 1 and showed how it is used by IP to
demultiplex incoming datagrams in Figure 1.8. It identifies which protocol gave the
data for IP to send.

The header checksum is calculated over the IP header only. It does not cover any data
that follows the header. ICMP, IGMP, UDP, and TCP all have a checksum in their own
headers to cover their header and data.

To compute the IP checksum for an outgoing datagram, the value of the checksum
field is first set to O. Then the 16-bit one's complement sum of the header is calculated
(Le., the entire header is considered a sequence of 16-bit words). The 16-bit one's

Apple Inc.
Ex. 1015 - Page 28

Section 3.3 IP Routing 37

complement of this sum is stored in the checksum field. When an IP datagram is
received, the 16-bit one's complement sum of the header is calculated. Since the
receiver's calculated checksum contains the checksum stored by the sender, the
receiver's checksum is all one bits if nothing in the header was modified. If the result is
not all one bits (a checksum error), IP discards the received datagram. No error mes-
sage is generated. It is up to the higher layers to somehow detect the missing datagram
and retransmit.

ICMP, IGMP, UDP, and TCP all use the same checksum algorithm, although TCP
and UDP include various fields from the IP header, in addition to their own header and
data. RFC 1071 [Braden, Borman, and Partridge 1988] contains implementation tech-
niques for computing the Internet checksum. Since a router often changes only the TTL
field (decrementing it by 1), a router can incrementally update the checksum when it
forwards a received datagram, instead of calculating the checksum over the entire IP
header again. RFC 1141 [Mallory and Knllberg 1990] describes an efficient way to do
this.

The standard BSD implementation, however, dyes not use this incremental update feature
when forwarding a datagram.

Every IP datagram contains the source IP address and the destination IP address.
These are the 32-bit values that we described in Section 1.4.

The final field, the options, is a variable-length list of optional information for the
datagram. The options currently defined are:

• security and handling restrictions (for military applications, refer to RFC 1108
[Kent 1991] for details),

• record route (have each router record its IP address, Section 7.3),

• timestamp (have each router record its IP address and time, Section 7.4),

• loose source routing (specifying a list of IP addresses that must be traversed by
the datagram, Section 8.5), and

• strict source routing (similar to loose source routing but here only the addresses
in the list can be traversed, Section 8.5).

These options are rarely used and not all host and routers support all the options.
The options field always ends on a 32-bit boundary. Pad bytes with a value of 0 are

added if necessary. This assures that the IP header is always a multiple of 32 bits (as
required for the header length field).

3.3 IP Routing

Conceptually, IP routing is simple, especially for a host. If the destination is directly
connected to the host (e.g., a point-to-point link) or on a shared network (e.g., Ethernet
or token ring), then the IP datagram is sent directly to the destination. Otherwise the

Apple Inc.
Ex. 1015 - Page 29

38 IP: Internet Protocol Chapter 3

host sends the datagram to a default router, and lets the router deliver the datagram to
its destination. This simple scheme handles most host configurations.

In this section and in Chapter 9 we'll look at the more general case where the IP
layer can be configured to ad as a router in addition to acting as a host. Most multiuser
systems today, including almost every Unix system, can be configured to act as a router.
We can then specify a single routing algorithm that both hosts and routers can use. The
fundamental difference is that a host never forwards datagrams from one of its inter-
faces to another, while a router forwards datagrams. A host that contains embedded
router functionality should never forward a datagram unless it has been specifically
configured to do so. We say more about this configuration option in Section 9.4.

In our general scheme, IP can receive a datagram from TCP, UDP, ICMP, or IGMP
(that is, a locally generated datagram) to send, or one that has been received from a net-
work interface (a datagram to forward). The IP layer has a routing table in memory that
it searches each time it receives a datagram to send. When a datagram is received from
a network interface, IP first checks if the destination IP address is one of its own IP
addresses or an IP broadcast address. If so, the datagram is delivered to the protocol
module specified by the protocol field in the IP header. If the datagram is not destined
for this IP layer, then (1) if the IP layer was configured to act as a router the packet is for-
warded (that is, handled as an outgoing datagram as described below), else (2) the data-
gram is silently discarded.

Each entry in the routing table contains the following information:

• Destination IP address. This can be either a complete host address or a network
address, as specified by the flag field (described below) for this entry. A host
address has a nonzero host ID (Figure 1.5) and identifies one particular host,
while a network address has a host ID of 0 and identifies all the hosts on that
network (e.g., Ethernet, token ring).

• IP address of a next-hop router, or the IP address of a directly connected network.
A next-hop router is one that is on a directly connected network to which we can
send datagrams for delivery The next-hop router is not the final destination, but
it takes the datagrams we send it and forwards them to the final destination.

• Flags. One flag specifies whether the destination IP address is the address of a
network or the address of a host. Another flag says whether the next-hop router
field is really a next-hop router or a directly connected interface. (We describe
each of these flags in Section 9.2.)

• Specification of which network interface the datagram should be passed to for
transmission.

IP routing is done on a hop-by-hop basis. As we can see from this routing table
information, IP does not know the complete route to any destination (except, of course,
those destinations that are directly connected to the sending host). All that IP routing
provides is the IP address of the next-hop router to which the datagram is sent. It is
assumed that the next-hop router is really "closer" to the destination than the sending
host is, and that the next-hop router is directly connected to the sending host.

Apple Inc.
Ex. 1015 - Page 30

Section 3.3 IP Routing 39

IP routing performs the following actions:

1. Search the routing table for an entry that matches the complete destination IP
address (matching network ID and host ID). If found, send the packet to the
indicated next-hop router or to the directly connected interface (depending on
the flags field). Point-to-point links are found here, for example, since the other
end of such a link is the other host's complete IP address.

2. Search the routing table for an entry that matches just the destination network
ID. If found, send the packet to the indicated next-hop router or to the directly
connected interface (depending on the flags field). All the hosts on the destina-
tion network can be handled with this single routing table entry. All the hosts
on a local Ethernet, for example, are handled with a routing table entry of this
type.

This check for a network match must take into account a possible subnet mask,
which we describe in the next section.

3. Search the routing table for an entry labeled "tdefault." If found, send the packet
to the indicated next-hop router.

If none of the steps works, the datagram is undeliverable. If the undeliverable data-
gram was generated on this host, a "host unreachable" or "network unreachable" error
is normally returned to the application that generated the datagram.

A complete matching host address is searched for before a matching network ID.
Only if both of these fail is a default route used. Default routes, along with the ICMP
redirect message sent by a next-hop router (if we chose the wrong default for a data-
gram), are powerful features of IP routing that we'll come back to in Chapter 9.

The ability to specify a route to a network, and not have to specify a route to every
host, is another fundamental feature of IP routing. Doing this allows the routers on the
Internet, for example, to have a routing table with thousands of entries, instead of a
routing table with more than one million entries.

Examples

First consider a simple example: our host bsdi has an IP datagram to send to our host
sun. Both hosts axe on the same Ethernet (see inside front cover). Figure 3.3 shows the
delivery of the datagram.

When IP receives the datagram from one of the upper layers it searches its routing
table and finds that the destination IP address (140.252.13.33) is on a directly connected
network (the Ethernet 140.252.13.0). A matching network address is found in the rout-
ing table. (In the next section we'll see that because of subnetting the network address
of this Ethernet is really 140.252.13.32, but that doesn't affect this discussion of routing.)

The datagram is passed to the Ethernet device driver, and sent to sun as an Ether-
net frame (Figure 2.1). The destination address in the IP datagram is Sun's IP address
(140.252.13.33) and the destination address in the link-layer header is the 48-bit Ethernet
address of sun's Ethernet interface. This 48-bit Ethernet address is obtained using ARP,
as we describe in the next chapter.

Apple Inc.
Ex. 1015 - Page 31

destination network --
140.252.13.0

bsdi

.13.35

Ethernet, 140.252.13

link IP
hdr hdr

sun

.13.33

r
j

40 IP: Internet Protocol Chapter 3

dest IP = 140.252.1333
dest Enet = Enet of 140.252.13.33

Figure 3.3 Delivery of IP datagram from bsdi to sun.

Now consider another example: bsdi has an IP datagram to send to the host
ftp.uu. net, whose IP address is 192.48.96.9. Figure 3.4 shows the path of the data-
gram through the first three routers. First bsdi searches its routing table but doesn't
find a matching host entry or a matching network entry. It uses its default entry, which
tells it to send datagrams to sun, the next-hop router. When the datagram travels from
bsdi to sun the destination IP address is the final destination (192.48.96.9) but the link-
layer address is the 48-bit Ethernet address of sun's Ethernet interface. Compare this
datagram with the one in Figure 3.3, where the destination IP address and the destina-
tion link-layer address specified the same host (sun).

When sun receives the datagram it realizes that the datagram's destination IP
address is not one of its own, and sun is configured to act as a router, so it forwards the
datagram. Its routing table is searched and the default entry is used. The default entry
on sun tells it to send datagrams to the next-hop router netb, whose IP address is
140.252.1.183. The datagram is sent across the point-to-point SLIP link, using the mini-
mal encapsulation we showed in Figure 2.2. We don't show a link-layer header, as we
do on the Etherrtets, because there isn't one on a SLIP link.

When netb receives the datagram it goes through the same steps that sun just did:
the datagram is not destined for one of its own IP addresses, and netb is configured to
act as a router, so the datagram is forwarded. The default routing table entry is used,
sending the datagram to the next-hop router gateway (140.252.1.4). ARP is used by
netb on the Ethernet 140.252.1 to obtain the 48-bit Ethernet address corresponding to
140.252.1.4, and that Ethernet address is the destination address in the Mk-layer header.

gateway goes through the same steps as the previous two routers and its default
routing table entry specifies 140.252.104.2 as the next-hop router. (We'll verify that this
is the next-hop router for gateway using Traceroute in Figure 8.4.)

A few key points come out in this example.

1. All the hosts and routers in this example used a default route. Indeed, most
hosts and some routers can use a default route for everything other than desti-
nations on local networks.

Apple Inc.
Ex. 1015 - Page 32

Internet

t

Best Enet = Enet of 140.252.1.4
r--* dest IP = 192A8.96.9

.1.18318

netb

Ethernet, 140.252.1

next hop --
140.252.104.2

(default)
gateway

.1.4

link IP
hdr hdr

modem

next hop =
140.252.1.4
(default)

4
SLIP

modem ► dest IP = 192.48.96.9

IP
hdr

13.33 .13.35

next hop =
140.252.13.33

(default)

.1.29

j
next hop =
140.252.1.183
(default)

bsdi

Ethernet, 140.252.13

L-* dest IP = 192.48.96.9
dest Enet = Enet of 140.252.13.33

sun

link
hdr

IP
hdr

Section 3.3 IP Routing 41

Figure 3.4 Initial path of datagram from bsdi to ftp. uu . net (192.48.96.9).

2. The destination IP address in the datagram never changes. (In Section 8,5 we'll
see that this is not true only if source routing is used, which is rare.) All the
routing decisions are based on this destination address.

3. A different link-layer header can be used on each link, and the link-layer desti-
nation address (if present) always contains the link-layer address of the next
hop. In our example both Ethernets encapsulated a link-layer header containing
the next-hop's Ethernet address, but the SLIP link did not. The Ethernet
addresses are normally obtained using ARE

In Chapter 9 we'll look at IP routing again, after describing ICMP. We'll also look at
some sample routing tables and how they're used for routing decisions.

Apple Inc.
Ex. 1015 - Page 33

42 IP: Internet Protocol Chapter 3

3.4 Subnet Addressing

All hosts are now required to support subnet addressing (RFC 950 [Mogul and Postel
1985]). Instead of considering an IP address as just a network ID and host 11), the host
ID portion is divided into a subnet ID and a host ID.

This makes sense because class A and class B addresses have too many bits allo-
cated for the host ID: 224 2 and 216 — 2, respectively. People don't attach that many
hosts to a single network. (Figure 1.5 [p. 8] shows the format of the different classes of
IP addresses.) We subtract 2 in these expressions because host IDs of all zero bits or all

one bits are invalid.
After obtaining an IP network ID of a certain class from the TnterNlC, it is up to the

local system administrator whether to subnet or not, and if so, how many bits to allo-
cate to the subnet ID and host ID. For example, the internet used in this text has a
class B network address (140.252) and of the remaining 16 bits, 8 are for the subnet ID
and 8 for the host ID. This is shown in Figure 3.5.

16 bits 8 bits 8 bits
Class B netid. = 140.252 subnetid hostid

Figure 3.5 Subnetting a class B address.

This division allows 254 subnets, with 254 hosts per subnet.
Many administrators use the natural 8-bit boundary in the 16 bits of a class B host

ID as the subnet boundary. This makes it easier to determine the subnet ID frOm a dot-
ted-decimal number, but there is no requirement that the subnet boundary for a class A
or class B address be on a byte boundary.

Most examples of subnetting describe it using a class B address. Subnetting is also
allowed for a class C address, but there are fewer bits to work with. Subnetting is rarely
shown with a class A address because there are so few class A addresses. (Most class A
addresses are, however, subnetted.)

Subnetting hides the details of internal network organization (within a company or
campus) to external routers. Using our example network, all IP addresses have the
class B network ID of 140.252. But there are more than 30 subnets and more than 400
hosts distributed over those subnets. A single router provides the connection to the
Internet, as shown in Figure 3.6.

In this figure we have labeled most of the routers as Rn, where n is the subnet num-
ber. We show the routers that connect these subnets, along with the nine systems from
the figure on the inside front cover. The Ethernets are shown as thicker lines, and the
point-to-point links as dashed lines. We do not show all the hosts on the various sub-
nets. For example, there are more than 50 hosts on the 140.252.3 subnet, and more than
100 on the 140.252.1 subnet.

The advantage to using a single class B address with 30 subnets, compared to 30
class C addresses, is that subnetting reduces the size of the Internet's routing tables.
The fact that the class B address 140.252 is 56nel-iced is transparent to all Internet
rniiters other than the ones within the 140.252 subnet. To reach any host whose IP

Apple Inc.
Ex. 1015 - Page 34

.81.0 .51.0

.57.0

192.68.189.0 .82.0

Internet -at-140.252.104.1

.2.0 .3.0 .4.0 .6.0 .7.0

.1335 .13.34 .13.33

.13.0 .12.0

Section 3.5 Subnet Mask 43

Figure 3.6 Arrangement of most of the noao . edu 140.252 subnets.

address begins with 140.252, the external routers only need to know the path to the IP
address 140.252.104.1. This means that only one routing table entry is needed for all the
140.252 networks, instead of 30 entries if 30 class C addresses were used. Subnetting,
therefore, reduces the size of routing tables. (In Section 10.8 we'll look at a new tech-
nique that helps reduce the size of routing tables even if class C addresses are used.)

To show that subnetting is not transparent to routers within the subnet, assume in
Figure 3.6 that a datagram arrives at gateway from the Internet with a destination
address of 140.252.57.1. The router gateway needs to know that the subnet number is
57, and that datagrams for this subnet are sent to kpno. Similarly kpno must send the
datagram to R55, who then sends it to R57.

5 Subnet Mask

Part of the configuration of any host that takes place at bootstrap time is the specifica-
tion of the host's IP address. Most systems have this stored in a disk file that's read at
bootstrap time, and we'll see in Chapter 5 how a diskless system can also find out its IP
address when it's bootstrapped.

Apple Inc.
Ex. 1015 - Page 35

Chapter 3 44 IP: Internet Protocol

8 bits 8 bits 16 bits

hostid subnetid netid

Subnet mask: 1 1 1 1 1 1 1 1 1 1'1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 =Oxfffiff00

= 255.255.255.0

6 bits 16 bits 10 bits

hostid netid subnetid

Subnet mask: 1 0 0 0 0 0 0 =Oxffifftc0

=255.255.255.192

In addition to the IP address, a host also needs to know how many bits are to be
used for the subnet ID and how many bits are for the host ID. This is also specified at
bootstrap time using a subnet mask. This mask is a 32-bit value containing one bits for
the network ID and subnet ID, and zero bits for the host ID. Figure 3.7 shows the for-
mation of the subnet mask for two different partitions of a class B address. The top
example is the partitioning used at noao . edu, shown in Figure 3.5, where the subnet
ID and host ID are both 8 bits wide. The lower example shows a class B address parti-
tioned for a 10-bit subnet ID and a 6-bit host ID.

Class B

Class B

Figure 3.7 Example subnet masks for two different class B subnet arrangements.

Although IP addresses are normally written in dotted-decimal notation, subnet masks
are often written in hexadecimal, especially if the boundary is not a byte boundary,
since the subnet mask is a bit mask.

Given its own IP address and its subnet mask, a host can determine if an IP data-
gram is destined for (1) a host on its own subnet, (2) a host on a different subnet on its
own network, or (3) a host on a different network. Knowing your own IP address tells
you whether you have a class A, B, or C address (from the high-order bits), which tells
you where the boundary is between the network ID and the subnet ID. The subnet
mask then tells you where the boundary is between the subnet ID and the host ID.

Example

Assume our host address is 140.252.1.1 (a class B address) and our subnet mask is
255.255.255.0 (8 bits for the subnet ID and 8 bits for the host ID).

• If a destination IP address is 140.252.4.5, we know that the class B network IDs
are the same (140.252), but the subnet IDs are different (1 and 4). Figure 3.8
shows how this comparison of two IP addresses is done, using the subnet mask.

• If the destination IP address is 140,252.1.22, the class B network IDs are the same
(140.252), and the subnet IDs are the same (1). The host IDs, however, are differ-
ent.

• If the destination IP address is 192.43.235.6 (a class C address), the network IDs
are different. No further comparisons can be made against this address.

Apple Inc.
Ex. 1015 - Page 36

140 252 Class B

Subnet mask: 1 1 1 1 1 1 1 1 1 1 1 1 1

network IDs equal I ■

1 1

140 Class B 252
[4 1

5

Section 3.6 Special Case IP Addresses 45

end of
class B

network ID

16 bits 8 bits

end of
specified
subnet ID

8 bits

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 = 255.255.255.0

rim
subnet IDs 0.1
not equal

Figure 3.8 Comparison of two class B addresses using a subnet mask.

The IP routing function makes comparisons like this all the time, given two IP addresses
and a subnet mask.

6 Special Case IP Addresses

Having described subnetting we now show the seven special case IP addresses in Fig-
ure 3.9. In this figure, 0 means a field of all zero bits, —1 means a field of all one bits, and
netid, subnetid, and hostid mean the corresponding field that is neither all zero bits nor all
one bits. A blank subnet ID column means the address is not subnetted.

II' address Can appear as
Description

 net ID subnet ID host ID source? destination?

0
0

0
hostid

OK
OK

never
never

this host on this net (see restrictions below)
specified host on this net (see restrictions below)

127 anything OK OK loopback address (Section 2.7)

—1
netid
netid
netid

subnetid
—1

—1
—1
—1
--1

never
never
never
never

OK
OK
OK
OK

limited broadcast (never forwarded)
net-directed broadcast to netid
subnet-directed broadcast to netid, subnetid
all-subnets-directed broadcast to netid

Figure 3.9 Special case LP addresses.

We have divided this table into three sections. The first two entries are special case
source addresses, the next one is the special loopback address, and the final four are the
broadcast addresses.

The first two entries in the table, with a network Ill of 0, can only appear as the
source address as part of an initialization procedure when a host is determining its own
IP address, for example, when the BOOTP protocol is being used (Chapter 16).

In Section 12.2 we'll examine the four types of broadcast addresses in more detail.

Apple Inc.
Ex. 1015 - Page 37

kw38200
StrikeOut

46 LP: Internet Protocol Chapter 3

3.7 A Subnet Example

This example shows the subnet used in the text, and how two different subnet masks
are used. Figure 3.10 shows the arrangement.

Internet

1140.252.104.1

gateway

Ethernet, subnet 140.252.1

140.252.1.29

SLIP slip '65 bsdi subnet .66
140.252.13.64

svr4

35

sun

.33 .34

Ethernet, subnet 140.252.13.32
t.

author's subnet: 140.252.13

Figure 3.10 Arrangement of hosts and networks for author's subnet.

If you compare this figure with the one on the inside front cover, you'll notice that
we've omitted the detail that the connection from the router sun to the top Ethernet in
Figure 3.10 is really a dialup SLIP connection. This detail doesn't affect our description
of subnetting in this section. We'll return to this detail in Section 4.6 when we describe
proxy ARP.

The problem is that we have two separate networks within subnet 13: an Ethernet
and a point-to-point link (the hardwired SLIP link). (Point-to-point links always cause
problems since each end normally requires an IP address.) There could be more hosts
and networks in the future, but not enough hosts across the different networks to justify
using another subnet number. Our solution is to extend the subnet ID from 8 to 11 bits,
and decrease the host ID from 8 to 5 bits. This is called variable-length subnets since most
networks within the 140.252 network use an 8-bit subnet mask while our network uses
an 11-bit subnet mask.

RFC 1009 [Braden and Postel 1987] allows a subnetted network to use more than one subnet
mask. The new Router Requirements RFC [Almquist 1993] requires support for this.

The problem, however, is that not all routing protocols exchange the subnet mask along with
the destination network ID. We'll see in Chapter 10 that RIP does not support variable-length
subnets, while RIP Version 2 and OSPF do. We don't have a problem with our example, since
RIP isn't required on the author's subnet.

Figure 3.11 shows the IP address structure used within the author's subnet. The
first 8 bits of the 11-bit subnet ID are always 13 within the author's subnet. For the
remaining 3 bits of the subnet ID, we use binary 001 for the Ethernet, and binary 010 for

Apple Inc.
Ex. 1015 - Page 38

Section 3.8 ifconfigCommand 47

16 bits ■ 11 bits T 5 bits
Class B host ID subnet ID net ID = 140.252

128 64 32 16 8 4 2 1
8 bits = 13

Subnet mask: 1 0 0 0 0 0= Oxfffiefe0

= 255,255255.224

Figure 3.11 Using variable-length subnets.

the point-to-point SLIP link. This variable-length subnet mask does not cause a prob-
lem for other hosts and routers in the 140.252 network—as long as all datagrams des-
tined for the subnet 140.252.13 are sent to the router sun (IP address 140.252.1.29) in
Figure 3.10, and if sun knows about the 11-bit subnet ID for the hosts on its subnet 13,
everything is fine.

The subnet mask for all the interfaces on the 140.252.13 subnet is 255.255.255.224, or
Oxffffffe0. This indicates that the rightmost 5 bits are for the host ID, and the 27 bits
to the left are the network ID and subnet ID.

Figure 3.12 shows the allocation of IP addresses and subnet masks for the interfaces
shown in Figure 3.10.

Host IP address Subnet mask Net ID/Subnet ID Host ID Comment

sun 140.252.1.29 255.255.255.0 140.252.1 29 on subnet 1
140.252.1333 255.255.255.224 140.252.13.32 1 on author's Ethernet

svr4 140.252.13.34 255.255.255.224 140.252.13.32 2
bsdi 140.252.13.35 255.255.255224 140.252.13.32 3 on Ethernet

140.252.13.66 255.255.255.224 140.252.13.64 2 point-to-point
slip 140.252.13.65 255.255.255.224 140.252.13.64 1 point-to-point

140.252.13.63 255.255.255.224 140.25213.32 31 broadcast addr on Ethernet

Figure 3.12 IP addresses on author's subnet.

The first column is labeled "Host," but both sun and bsdi also act as routers, since
they are multihomed and route packets from one interface to another.

The final row in this table notes that the broadcast address for the bottom Ethernet
in Figure 3.10 is 140.252.13.63: it is formed from the subnet ID of the Ethernet
(140.252.13.32) and the low-order 5 bits in Figure 3.11 set to 1 (16 + 8 + 4 + 2 + 1 = 31).
(We'll see in Chapter 12 that this address is called the subnet-directed broadcast
address.)

ifconfig Command

Now that we've described the link layer and the IP layer we can show the command
used to configure or query a network interface for use by TCP/IP. The i f conf ig(8)
command is normally run at bootstrap time to configure each interface on a host.

Apple Inc.
Ex. 1015 - Page 39

kw38200
StrikeOut

48 IP: Internet Protocol Chapter 3

For dialup interfaces that may go up and down (such as SLIP links), i fconfig
must be run (somehow) each time the line is brought up or down. How this is done
each time the SLIP link is brought up or down depends on the SLIP software being
used.

The following output shows the values for the author's subnet. Compare these val-
ues with the values in Figure 3.12.

sun % /usr/atc/ifconfig —a SunOS -a option says report on all interfaces
le0: flags=63<UP,BROADCAST,NOTRAILERS,RUNNING>

inet 140.252.13.33 netmask ffffffe0 broadcast 140.252.13.63
s10: flags=1051<UP,POINTOPOINT,RUNNING,LINKO>

inet 140.252.1.29 --> 140.252.1.183 netmask ffffff00
leO: flags=49<UP,LOOPBACK,RUNNING>

inet 127.0.0.1 netmask ff000000

The loopback interface (Section 2.7) is considered a network interface. Its class A
address is not subnetted.

Other things to notice are that trailer encapsulation (Section 2.3) is not used on the
Ethernet, and that the Ethernet is capable of broadcasting, while the SLIP link is a point-
to-p oint link.

The flag LINKO for the SLIP interface is the configuration option that enables com-
pressed slip (CSLIP, Section 2.5). Other possible options are LINK1, which enables
CSLIP if a compressed packet is received from the other end, and LINK2, which causes
all outgoing ICMP packets to be thrown away. We'll look at the destination address of
this SLIP link in Section 4.6.

A comment in the installation instructions gives the reason for this last option: "This shouldn't
have to be set, but some cretin pinging you can drive your throughput to zero."

bsdi is the other router. Since the -a option is a SunOS feature, we have to execute
ifconfig multiple times, specifying the interface name as an argument:

bsdi % /sbin/ifconfig we0
we0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX>

inet 140.252.13.35 netmask ffffffe0 broadcast 140.252.13.63
bsdi % /sbin/ifconfig slO
310: flags--1011<UP,POINTOPOINT,LINKO>

inet 140.252.13:66 ---> 140.252.13.65 netmask ffffffe0

Here we see a new option for the Ethernet interface (we0): SIMPLEX. This 4.4BSD flag
specifies that the interface can't hear its own transmissions. It is set in BSD/386 for all
the Ethernet interfaces. When set, if the interface is sending a frame to the broadcast
address, a copy is made for the local host and sent to the loopback address. (We show
an example of this feature in Section 6.3.)

On the host slip the configuration of the SLIP interface is nearly identical to the
output shown above on bsdi, with the exception that the IP addresses of the two ends
are swapped:

slip % /sbin/ifconfig s10
s10: flags=1013.<UP,POINTOPOINT,LINKO>

inet 140.252.13.65 --> 140.252.13.66 netmask ffffffe0

Apple Inc.
Ex. 1015 - Page 40

Section 3.10 IP Futures 49

The final interface is the Ethernet interface on the host svr4. It is similar to the
Ethernet output shown earlier, except that SVR4's version of ifconfig doesn't print
the RUNNING flag:

svr4 % /usr/sbin/ifconfig emd0
emd0: flags-,23<UP,BROADCAST,NOTRAILERS>

inet 140.252.13.34 netmask ffffffe0 broadcast 140.252.13.63

The ifconfig command normally supports other protocol families (other than
TCP/IP) and has numerous. additional options. Check your system's manual for these
details.

3.9 net stat Command

The net st at(1) command also provides information about the interfaces on a system.
The -i flag prints the interface information, and the -n flag prints IP addresses instead
of hostnames.

sun % netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
la 1500 140.252.13.32 140.252.13.33 67719 0 92133 0 1 0
slO 552 140.252.1.183 140.252.1.29 48035 0 54963 0 0 0
100 1536 127.0.0.0 127.0.0.1 15548 0 15548 0 0 0

This command prints the MTU of each interface, the number of input packets, input
errors, output packets, output errors, collisions, and the current size of the output
queue.

We'll return to the net stat command in Chapter 9 when we use it to examine the
routing table, and in Chapter 13 when we use a modified version to see active multicast
groups.

3.10 IP Futures

There are three problems with IP. They are a result of the phenomenal growth of the
Internet over the past few years. (See Exercise 1.2 also.)

1. Over half of all class B addresses have already been allocated. Current estimates
predict exhaustion of the class B address space around 1995, if they continue to
be allocated as they have been in the past.

2. 32-bit IP addresses in general are inadequate for the predicted long-term growth
of the Internet.

3. The current routing structure is not hierarchical, but flat, requiring one routing
table entry per network. As the number of networks grows, amplified by the
allocation of multiple class C addresses to a site with multiple networks, instead
of a single class B address, the size of the routing tables grows.

Apple Inc.
Ex. 1015 - Page 41

50 IP: Internet Protocol Chapter 3

CIDR (Classless Interdomain Routing) proposes a fix to the third problem that will
extend the usefulness of the current version of IP (IP version 4) into the next century
We discuss it in more detail in Section 10.8.

Four proposals have been made for a new version of IP, often called IPng, for the
next generation of IP. The May 1993 issue of IEEE Network (vol. 7, no. 3) contains
overviews of the first three proposals, along with an article on CIDR. RFC 1454 [Dixon
1993] also compares the first three proposals.

1. SIP, the Simple-Internet Protocol. It proposes a minimal set of changes to IP that
uses 64-bit addresses and a different header format. (The first 4 bits of the
header still contain the version number, with a value other than 4.)

2. PIP. This proposal also uses larger, variable-length, hierarchical addresses with
a different header format.

3. TUBA, which stands for "TCP and UDP with Bigger Addresses," is based on the
OSI CLNP (Connectionless Network Protocol), an OSI protocol similar to IP. It
provides much larger addresses: variable length, up to 20 bytes. Since CLNP is
an existing protocol, whereas SIP and PIP are just proposals, documentation
already exists on CLNP. RFC 1347 [Callon 1992] provides details on TUBA.
Chapter 7 of [Perlman 1992] contains a comparison of IPv4 and CLNP. Many
routers already support CLNP, but few hosts do.

4. TP/IX, which is described in RFC 1475 [Ullmann 1993]. As with SIP, it uses
64 bits for IP addresses, but it also changes the TCP and UDP headers: 32-bit
port number for both protocols, along with 64-bit sequence numbers, 64-bit
acknowledgment numbers, and 32-bit windows for TCP.

The first three proposals use basically the same versions of TCP and UDP as the trans-
port layers.

Since only one of these four proposals will be chosen as the successor to IPv4, and
since the decision may have been made by the time you read this, we won't say any
more about them. With the forthcoming implementation of CIDR to handle the short-
term problem►, it will take many years to implement the successor to IPv4.

3.11 Summary

We started this chapter with a description of the IP header and briefly described all the
fields in this header. We also gave an introduction to IP routing, and saw that host rout-
ing can be simple: the destination is either on a directly connected network, in which
case the datagram is sent directly to the destination, or a default router is chosen.

Hosts and routers have a routing table that is used for all routing decisions. There
are three types of routes in the table: host specific, network specific, and optional default
routes. There is a priority to the entries in a routing table. A host route will be chosen
over a network router, and a default route is used only when no other route exists to the
destination.

Apple Inc.
Ex. 1015 - Page 42

Chapter 3 Exercises 51

IP routing is done on a hop-by-hop basis. The destination IP address never changes
as the datagram proceeds through all the hops, but the encapsulation and destination
link-layer address can change on each hop. Most hosts and many routers use a default
next-hop router for all nonlocal traffic.

Class A and B addresses are normally subnetted. The number of bits used for the
subnet ID is specified by the subnet mask. We gave a detailed example of this, using the
author's subnet, and introduced variable-length subnets. The use of subnetting reduces
the size of the Internet routing tables, since many networks can often be accessed
through a single point. Information on the interfaces and networks is available through
the if conf ig and net st at commands. This includes the IP address of the interface,
its subnet mask, broadcast address, and MTU.

We finished the chapter with a discussion of potential changes to the Internet proto-
col suite—the next generation of IP.

Exercises

3.1 Must the loopback address be 127.0.0.1?

3.2 Identify the routers in Figure 3.6 with more than two network interfaces.

3.3 What's the difference in the subnet mask for a class A address with 16 bits for the subnet ID
and a class B address with 8 bits for the subnet ID?

3.4 Read RFC 1219 [Tsuchiya 1991] for a recommended technique for assigning subnet IDs and
host IDs.

3.5 Is the subnet mask 255.255.0.255 valid for a class A address?

3.6 Why do you think the MTU of the loopback interface printed in Section 3.9 is set to 1536?

3.7 The TCP/IP protocol suite is built on a datagram network technology, the IP layer. Other
protocol suites are built on a connection-oriented network technology. Read [Clark 1988] to
discover the three advantages the datagram network layer provides.

Apple Inc.
Ex. 1015 - Page 43

UDP: User Datagram Protocol

Introduction

UDP is a simple, datagram-oriented, transport layer protocol: each output operation by
a process produces exactly one UDP datagram, which causes one IP datagram to be
sent. This is different from a stream-oriented protocol such as TCP where the amount of
data written by an application may have little relationship to what actually gets sent in
a single IP datagram.

Figure 11.1 shows the encapsulation of a UDP datagram as an IP datagram.

IP datagram

UDP datagram

IP
header

UDP
header

UDP data

20 bytes 8 bytes

Figure 11.1 UDP encapsulation.

.RFC 768 [Pastel 1980] is the official specification of UDP.
UDP provides no reliability: it sends the datagrams that the application writes to

the IP layer, but there is no guarantee that they ever reach their destination. Given this
lack of reliability, we are tempted to think we should avoid UDP and always use a reli-

. able protocol such as TCP. After we describe TCP in Chapter 17 we'll return to this
9pic and see what types of applications can utilize UDP.

Apple Inc.
Ex. 1015 - Page 44

142 Dynamic Routing Protocols Chapter 10

10.3 The OSPF packet format has a checksum field, but the RIP packet does not. Why?

10.4 What effect does load balancing, as done by OSPF, have on a transport layer?

10.5 Read RFC 1058 for additional details on the implementation of RIP. In Figure 10.8 each
router advertises only the routes that it provides, and none of the other routes that it
learned about through the other router's broadcasts on the 140.252.1 network. What is this
technique called?

10.6 In Section 3.4 we said there are more than 100 hosts on the 140.252.1 subnet in addition to
the eight routers we show in Figure 10.7. What do these 100 hosts do with the eight broad.
casts that arrive every 30 seconds (Figure 10.8)?

Apple Inc.
Ex. 1015 - Page 45

144 UDP: User Datagram Protocol Chapter ll

The application needs to worry about the size of the resulting IP datagram. If it
exceeds the network's MTU (Section 2.8), the IP datagram is fragmented. This applies
to each network that the datagram traverses from the source to the destination, not just
the first network connected to the sending host. (We defined this as the path MTU in
Section 2.9.) We examine IP fragmentation in Section 11.5.

11.2 UDP Header

Figure 11.2 shows the fields in the UDP header.

0 15 16 31

16-bit source port number 16-bit destination port number

16-bit UDP length 1b bit UDP checksum

data (if any)

I
8 bytes

I

Figure 11.2 UDP header.

The port numbers identify the sending process and the receiving process. In Figure 1.8
we showed that TCP and UDP use the destination port number to demultiplex incom-
ing data from IP. Since IP has already demultiplexed the incoming IP datagram to
either TCP or UDP (based on the protocol value in the IP header), this means the TCP
port numbers are looked at by TCP, and the UDP port numbers by UDP. The TCP port
numbers are independent of the UDP port numbers.

Despite this independence, if a well-known service is provided by both TCP and UDP, the port
number is normally chosen to be the same for both transport layers. This is purely for conve-
nience and is not required by the protocols.

The LOP length field is the length of the UDP header and the UDP data in bytes.
The minimum value for this field is 8 bytes. (Sending a UDP datagram with 0 bytes of
data is OK.) This UDP length is redundant. The IP datagram contains its total length in
bytes (Figure 3.1), so the length of the UDP datagram is this total length minus the
length of the IP header (which is specified by the header length field in Figure 3.1).

11.3 UDP Checksum

The LOP checksum covers the UDP header and the UDP data. Recall that the checksum
in the IP header only covers the IP header—it does not cover any data in the IP

Apple Inc.
Ex. 1015 - Page 46

ection 11.3 UDP Checksum 145

datagram. Both UDP and TCP have checksums in their headers to cover their header
and their data. With UDP the checksum is optional, while with TCP it is mandatory

Although the basics for calculating the UDP checksum are similar to what we
described in Section 3.2 for the IP header checksum (the ones complement sum of 16-bit
words), there are differences. First, the length of the UDP datagram can be an odd num-
ber of bytes, while the checksum algorithm adds 16-bit words. The solution is to
append a pad byte of 0 to the end, if necessary, just for the checksum computation.
(That is, this possible pad byte is not transmitted.)

Next, both UDP and TCP include- a 12-byte pseudo-header with the UDP datagram
(or TCP segment) just for the checksum computation. This pseudo-header includes cer-
tain fields from the IP header. The purpose is to let UDP double-check that the data has
arrived at the correct destination (i.e., that IP has not accepted a datagram that is not
addressed to this host, and that IP has not given UDP a datagram that is for another
upper layer). Figure 11.3 shows the pseudo-header along with a UDP datagram.

0 15 16 31
-,-

32-bit source IP address

32-bit destination IP address

zero 8-bit protocol (17) 16-bit UDP length

16-bit source port number 16-bit destination port number

16-bit UDP length 16-bit UDP checksum

data I

pad byte (0)

Figure 11.3 Fields used for computation of UDP checksum.

UDP
pseudo
header

UDP
header

In this figure we explicitly show a datagram with an odd length, requiring a pad byte
for the checksum computation. Notice that the length of the UDP datagram appears
twice in the checksum computation.

If the calculated checksum is 0, it is stored as all one bits (65535), which is equiva-
lent in ones-complement arithmetic. If the transmitted checksum is 0, it indicates that
the sender did not compute the checksum.

Apple Inc.
Ex. 1015 - Page 47

146 UDP: User Datagram Protocol Chapter 11

If the sender did compute a checksum and the receiver detects a checksum error, the
UDP datagram is silently discarded. No error message is generated. (This is what hap-
pens if an IP header checksum error is detected by IP.)

This UDP checksum is an end-to-end checksum. It is calculated by the sender, and
then verified by the receiver. It is designed to catch any modification of the UDP header
or data anywhere between the sender and receiver.

Despite UDP checksums being optional, they should always be enabled. During the
1980s some computer vendors turned off UDP checksums by default, to speed up their
implementation of Sun's Network File System (NFS), which uses UDP. While this might
be acceptable on a single LAN, where the cyclic redundancy check on the data-link
frame (e.g., Ethernet or token ring frame) can detect most corruption of the frame, when
the datagrams pass through routers, all bets are off. Believe it or not, there have been
routers with software and hardware bugs that have modified -bits in the datagrams
being routed. These errors are undetectable in a UDP datagram if the end-to-end UDP
checksum is disabled. Also realize that some data-link protocols. (e.g., SLIP) don't have
any form of data-link checksum.

The Host Requirements RFC requires that UDP checksums be enabled by default. It also states
that an implementation must verify a received checksum if the sender calculated one (i.e., the
received checksum is nonzero). Many implementations violate this, however, and only verify
a received checksum if outgoing checksums are enabled.

tcpdump Output

It is hard to detect whether a particular system has UDP checksums enabled. It is nor-
mally impossible for an application to obtain the checksum field in a received UDP
header. To get around this, the author added another option to the tcpdump program
that prints the received UDP checksum. If this printed value is 0, it means the sending
host did not calculate the checksum.

Figure 11.4 shows the output to and from three different systems on our test net-
work (see the figure on the inside front cover). We ran our sock program (Appen-
dix C), sending a single UDP datagram with 9 bytes of data to the standard echo server.

1 0.0 sun.1900 > gemini.echo: udp 9 (UDP cksum=6e90)
2 0.303755 (0.3038) gemini.echo > sun.1900: udp 9 (UDP cksum=0)

3 17.392480 (17.0887) sun.1904 > aix.echo: udp 9 (UDP cksum=6e3b)
4 17.614371 (0.2219) aix.echo > sun.1904: udp 9 (UDP cksum=6e3b)

5 32.092454 (14.4781) sun.1907 > solaris.echo: udp 9 (UDP cksum=6e74)
6 32.314378 (0.2219) solaris.echo > sun.1907: udp 9 (UDP cksum=6e74)

Figure 11.4 tcpdump output to see whether other hosts enable UDP checksum.

We can see from this that two of the three systems have UDP checksums enabled.
Also notice that for this simple example the outgoing datagram has the same check-

sum as the incoming datagram (lines 3 and 4, 5 and 6). Looking at Figure 11.3 we see

that the two IP addresses are swapped, as are the two port numbers. The other fields in

the pseudo-header and the UDP header are the same, as is the data being echoed. This

Apple Inc.
Ex. 1015 - Page 48

Section 11.4 A Simple Example 147

reiterates that the UDP checksums (indeed, all the checksums in the TCP/IP protocol
suite) are simple 16-bit sums. They cannot detect an error that swaps two of the 16-bit
values.

The author also directed a DNS query at each of the eight root name servers described in Sec-
tion 14.2. The DNS uses UDP primarily, and only two of the eight had UDP checksums
enabled!

ome Statistics

[Mogul 1992] provides counts of various checksum errors on a busy NFS (Network File
System) server that had been up for 40 days. Figure 11.5 summarizes these numbers.

Layer
Number of

checksum errors
Approximate total
number of packets

Ethernet 446 170,000,000
1P 14 170,000,000
UDP 5 140,000,000
TCP 350 30,000,000

Figure 11.5 Counts of corrupted packets detected by various checksums.

The final column is only the approximate total for each row, since other protocols are in
use at the Ethernet and IP layers. For example, not all the Ethernet frames are IP data-
grams, since minimally ARP is also used on an Ethernet. Not all IP datagrams are UDP
or TCP, since ICMP also uses fP.

Note the much higher percentage of TCP checksum errors compared to UDP check-
sum errors. This is probably because the TCP connections on this system tended to be
"long distance" (traversing many routers, bridges, etc.) while the UDP traffic was local.

The bottom line is not to trust the data-link (e.g., Ethernet, token ring, etc.) CRC
completely. You should enable the end-to-end checksums all the time. Also, if your
data is valuable, you might not want to trust either the UDP or the TCP checksum com-
pletely, since these are simple checksums and were not meant to catch all possible
errors.

A Simple Example

We'll use our sock program to generate some UDP datagrams that we can watch with
t cpdump:

bsdi % sock -v -u -i -n4 svr4 discard
connected on 140.252.13.35.1108 to 140.252.13.34.9

bsdi % sock -v -u -i -n4 -w0 svr4 discard
connected on 140.252.13.35.1110 to 140.252.13.34.9

The first time we execute the program we specify the verbose mode (-v) to see the
ephemeral port numbers, specify UDP (-u) instead of the default TCP, and use the

Apple Inc.
Ex. 1015 - Page 49

148 UDP: User Datagram Protocol Chapter 11

source mode (-1) to send data instead of trying to read and write standard input and
output. The -n4 option says to output 4 datagrams (instead of the default 1024) and the
destination host is svr4. We described the discard service in Section 1.12. We use the
default output size of 1024 bytes per write.

The second time we run the program we specify -w0, causing 0-length datagrams
to be written. Figure 1.6 shows the tcpdump output for both commands.

1 0.0 bsdi.1108 > svr4.discard: udp 1024
2 0.002424 (0.0024) bsdi.1108 > svr4.discard: udp 1024
3 0.006210 (0.0038) bsdi.1108 > svr4.discard: udp 1024
4 0.010276 (0.0041) bsdi.1108 > svr4.discard: udp 1024

5 41.720114 (41.7098) bsdi.1110 > svr4.discard: udp 0
6 41.721072 (0.0010) bsdi.1110 > svr4.discard: udp 0
7 41.722094 (0.0010) bsdi.1110 > svr4.discard: udp 0
8 41.723070 (0.0010) bsdi.1110 > svr4.discard: udp 0

Figure 11.6 tcpdump output when UDP datagrams are sent in one direction.

This output shows the four 1024-byte datagrams, followed by the four 0-length data-
grams. Each datagram followed the previous by a few milliseconds. (It took 41 seconds
to type in the second command.)

There is no communication between the sender and receiver before the first data-
gram is sent. (We'll see in Chapter 17 that TCP must establish a connection with the
other end before the first byte of data can be sent.) Also, there are no acknowledgments
by the receiver when the data is received. The sender, in this example, has no idea
whether the other end receives the datagrams,

Finally note that the source UDP port number changes each time the program is
run. First it is 1108 and then it is 1110. We mentioned in Section 1.9 that the ephemeral
port numbers used by clients are typically in the range 1024 through 5000, as we see
here.

11.5 IP Fragmentation

As we described in Section 2.8, the physical network layer normally imposes an upper
limit on the size of the frame that can be transmitted. Whenever the IP layer receives an
IP datagram to send, it determines which local interface the datagram is being sent on
(routing), and queries that interface to obtain its MTh. IP compares the MTU with the
datagram size and performs fragmentation, if necessary. Fragmentation can take place
either at the original sending host or at an intermediate router.

When an IP datagram is fragmented, it is not reassembled until it reaches its final
destination. (This handling of reassembly differs from some other networking protocols
that require reassembly to take place at the next hop, not at the final destination.) The
IP layer at the destination performs the reassembly. The goal is to make fragmentation
and reassembly transparent to the transport layer (TCP and UDP), which it is, except for
possible performance degradation, It is also possible for the fragment of a datagram to

Apple Inc.
Ex. 1015 - Page 50

Potion 11.5 IP Fragmentation 149

again be fragmented (possibly more than once). The information maintained in the IP
header for fragmentation and reassembly provides enough information to do this.

Recalling the IP header (Figure 3.1, p. 34), the following fields are used in fragmen-
tation. The identification field contains a unique value for each IP datagram that the
sender transmits. This number is copied into each fragment of a particular datagram.
(We now see the use for this field.) The flags field uses one bit as the "more fragments"
bit. This bit is turned on for each fragment 'comprising a datagram except the final frag-
ment. The fragment offset field contains the offset (in 8-byte units) of this fragment from
the beginning of the original datagram. Also, when a datagram is fragmented the total
length field of each fragment is changed to be the size of that fragment.

Finally, one of the bits in the flags field is called the "don't fragment" bit. If this is
turned on, IP will not fragment the datagram. Instead the datagram is thrown away
and an ICMP error ("fragmentation needed but don't fragment bit set," Figure 6.3) is
sent to the originator. We'll see an example of this error in the next section.

When an IP datagram is fragmented, each fragment becomes its own packet, with
its own IP header, and is routed independently of any other packets. This makes it pos-
sible for the fragments of a datagram to arrive at thd final destination out of order, but
there is enough information in the IP header to allow the receiver to reassemble the
fragments correctly.

Although IP fragmentation looks transparent, there is one feature that makes it less
than desirable: if one fragment is lost the entire datagram must be retransmitted. To
understand why this happens, realize that IP itself has no timeout and
retransmission—that is the responsibility of the higher layers. (TCP performs timeout
and retransmission, UDP doesn't. Some UDP applications perform timeout and
retransmission themselves.) When a fragment is lost that came from a TCP segment,
TCP will time out and retransmit the entire TCP segment, which corresponds to an IP
datagram. There is no way to resend only one fragment of a datagram. Indeed, if the
fragmentation was done by an intermediate router, and not the originating system,
there is no way for the originating system to know how the datagram was fragmented.
For this reason alone, fragmentation is often avoided. [Kent and Mogul 1987] provide
arguments for avoiding fragmentation.

Using UDP it is easy to generate IP fragmentation. (We'll see later that TCP tries to
avoid fragmentation and that it is nearly impossible for an application to force TCP to
send segments large enough to require fragmentation.) We can use our sock program
and increase the size of the datagram until fragmentation occurs. On an Ethernet the
maximum amount of data in a frame is 1500 bytes (Figure 2.1), which leaves 1472 bytes
for our data, assuming 20 bytes for the IP header and 8 bytes for the UDP header. We'll
run our sock program, with data sizes of 1471, 1472, 1473, and 1474 bytes. We expect
the last two to cause fragmentation:

bsdi % sock -u -i -n1 -w1471 svr4 discard
bsdi % sock -u -n1 -w1472 svr4 discard
bsdi % sock -u -i -n1 -w1473 svr4 discard
bsdi % sock -u -i -n1 -w1474 svr4 discard

Figure 11.7 shows the corresponding tcpdurnp output.

Apple Inc.
Ex. 1015 - Page 51

150 ---UDP: User Datagram Protocol Chapter 11

1 0.0 bsdi.1112 > svr4.discard: udp 1471

2 21.008303 (21.0083) bsdi.1114 > svr4.discard: udp 1472

3 50.449704 (29.4414) bsdi.1116 > svr4.discard: udp 1473 (frag 26304:148000+)
4 50.450040 (0.0003) bsdi > svr4: (frag 26304:1@1480)

5 75.328650 (24.8786) bsdi.1118 > svr4.discard: udp 1474 (frag 26313:14.8000+)
6 75.328982 (0.0003) bsdi > svr4: (frag 26313:201480)

Figure 11.7 Watching fragmentation of UDP datagrams.

The first two UDP datagrams (lines 1 and 2) fit into Ethernet frames, and are not frag-
mented. But the length of the IP datagram corresponding to the write of 1473 bytes is
1501, which must be fragmented (lines 3 and 4). Similarly the datagram generated by
the write of 1474 bytes is 1502, and is also fragmented (lines 5 and 6).

When the IP datagram is fragmented, t cpdump prints additional information.
First, the output frag 2 63 04 (lines 3 and 4) and f rag 26313 (lines 5 and 6) specify the
value of the identification field in the IP header.

The next number in the fragmentation information, the 1480 between the colon and
the at sign in line 3, is the size, excluding the IP header. The first fragment of both data-
grams contains 1480 bytes of data: 8 bytes for the UDP header and 1472 bytes of user
data. (The 20-byte IP header makes the packet exactly 1500 bytes.) The second frag-
ment of the first datagram (line 4) contains 1 byte of data—the remaining byte of user
data. The second fragment of the second datagram (line 6) contains the remaining 2

bytes of user data.
Fragmentation requires that the data portion of the generated fragments (that is,

everything excluding the [P header) be a multiple of 8 bytes for all fragments other than
the final one. In this example, 1480 is a multiple of 8.

The number following the at sign is the offset of the data in the fragment, from the
start of the datagram. The first fragment of both datagrams starts at 0 (lines 3 and 5)
and the second fragment of both datagrams starts at byte offset 1480 (lines 4 and 6). The
plus sign following this offset that is printed for the first fragment of both datagrams
means there are more fragments comprising this datagram. This plus sign corresponds
to the "more fragments" bit in the 3-bit flags in the IP header. The purpose of this bit is
to let the receiver know when it has completed the reassembly of all the fragments for a
datagram.

Finally, notice that lines 4 and 6 (fragments other than the first) omit the protocol
(UDP) and the source and destination ports. The protocol could be printed, since it's in
the IP header that's copied into the fragments. The port numbers, however, are in the

UDP header, which only occurs in the first fragment.
Figure 11.8 shows what's happening with the third datagram that is sent (with 1473

bytes of user data). It reiterates that any transport layer header appears only in the first
fragment.

Also note the terminology: an IP datagram is the unit of end-to-end transmission at

the IP layer (before fragmentation and after reassembly), and a packet is the unit of data

passed between the IP layer and the link layer. A packet can be a complete IP datagram

or a fragment of an IP datagram.
Apple Inc.

Ex. 1015 - Page 52

cition. 11.6 ICMP Unreachable Error (Fragmentation Required) 151

IP datagram

IP
header

UDP
header

UDP data (1473 bytes)

20 bytes 8 bytes_ \

\ \
\ \
\ `‘,
\ \

\
\ \

IP UDP IP
header header header

20 bytes 8 bytes 1472 bytes 20 bytes 1 byte

14

packet

Figure 11.8 Example of UDP fragmentation.

packet

6 ICMP Unreachable Error (Fragmentation Required)

Another variation of the ICMP unreachable error occurs when a router receives a data-
gram that requires fragmentation, but the don't fragment (DF) flag is turned on in the IP
header. This error can be used by a program that needs to determine the smallest MTU
in the path to a destination—called the path MTU discovery mechanism (Section 2.9).

Figure 11.9 shows the format of the ICMP unreachable error for this case. This dif-
fers from Figure 6.10 because bits 16-31 of the second 32-bit word can provide the MTU
of the next hop, instead of being 0.

7 8 15 16 31

I
8 bytes

I
code (4) checksum

Unused (must be 0) MTU of next-hop network

IP header (including options) + first 8 bytes of original IP datagram data

type (3)

Figure 11.9 ICMP unreachable error when fragmentation required but don't fragment bit set.

If a router doesn't provide this newer format ICMP error, the next-hop MTU is set to 0..

The new Router Requirements RFC [Almquist 19931 states that a router must generate this
newer form when originating this ICMP unreachable error.

Apple Inc.
Ex. 1015 - Page 53

kw38200
StrikeOut

kw38200
StrikeOut

152 UDP: User Datagram Protocol Chapter 11

SLIP
solaris netb sun bsdi

MTU=1500 MTU=1500 MTU=1500 1011J=1500

114:111.-552 1VE111=‘?

ICMP echo
request fragment ping

Example

A problem encountered by the author involving fragmentation and this ICMP error is
trying to determine the MTU on the dialup SLIP link from the router netb to the host
sun. We know the MTU of this link from sun to netb: it's part of the SLIP configura_
tion process when SLIP was installed in the host sun, plus we saw it with the net st at
command in Section 3.9. We want to determine the MTU in the other direction also. (In
Chapter 25 we'll see how to determine this using SNMP.) On a point-to-point link, it is
not required that the MTU be the same in both directions.

The technique used was to run ping on the host solaris, to the host bsdi,
increasing the size of the data packets until fragmentation was seen on the incoming
packets. This is shown in Figure 11.10.

fragment

watch with fragmentation
tcpdump

Figure 11.10 Systems being used to determine MTU of SLIP link from netb to sun.

tcpdump was run on the host sun, watching the SLIP link, to see when fragmentation
occurred. No fragmentation was observed and everything was fine until the size of the
data portion of the ping packet was increased from 500 to 600 bytes. The incoming
echo requests were seen (there was still no fragmentation), but the echo replies disap-
peared.

To track this down, tcpdump was also run on bsdi, to see what it was receiving
and sending. Figure 11.11 shows the output.

0.0 solaris > bsdi: icmp: echo request (DF)

2 0.000000 (0.0000) bsdi > solaris: icmp: echo reply (DF)

3 0 . 000000 (0.0000) sun > bsdi icmp: solaris unreachable —

need to frag, mtu = 0 (DF)

4 0.738400 (0.7384) solaris > bsdi: icmp: echo request (DF)

5 0.748800 (0.0104) bsdi > solaris: icmp: echo reply (DF)

6 0.748800 (0.0000) sun > bsdi: icmp: solaris unreachable —
need to frag, mtu = 0 (DF)

Figure 11.11 tcpdump output for ping of bsdi from solaris with 600-byte IP datagram.

First, the notation (DF) in each line means the don't fragment bit is turned on in the

IP header. It turns out that Solaris 2.2 normally turns this bit on, as part of its imple-

mentation of the path MTU discovery mechanism.
Apple Inc.

Ex. 1015 - Page 54

solaris
SLIP

netb sun bsdi

MTU-1500 NITU-,1500 MTU=1500 MT 1=1500

MTU=552 MTU=?

Section 11.7 Determining the Path MTU Using Traceroute 153

Line 1 shows that the echo request got through the router netb to sun without
being fragmented, and with the DF bit set, so we know that the SLIP MTU of netb has
not been reached yet.

Next, notice in line 2 that the DF flag is copied into the echo reply. This is what
causes the problem. The echo reply is the same size as the echo request (just over 600
bytes), but the MTU on sun's outgoing SLIP interface is 552. The echo reply needs to be
fragmented, but the DF flag is set. This causes sun to generate the ICMP unreachable
error back to bsdi (where it's discarded).

This is why we never saw any echo replies on solaris. The replies never got past
sun. Figure 11.12 shows the path of the packets.

ICMP echo
request

ICMP IC1VLP echo
reply

ICMP unreachable:
.

fragmentation required
and DF set

ICMP echo
ICMP echo

request
request

Figure 11.12 Packets exchanged in example.

Finally, the notation mtu=0 in lines 3 and 6 of Figure 11.11 indicates that sun does
not return the MTU of the outgoing interface in the ICMP unreachable message, as
shown in Figure 11.9. (In Section 25.9 we return to this problem and use SNMP to deter-
mine that the MTU of the SLIP interface on netb is 1500.)

1.7 Determining the Path MTU Using Traceroute

Although most systems don't support the path MTU discovery feature, we can easily
modify a version of t race route (Chapter 8) to let us determine the path MTU. What
we'll do is send packets with the "don't fragment" bit set. The size of the first packet
we send will equal the MTU of the outgoing interface, and whenever we receive an
ICMP "can't fragment" error (which we described in the previous section) we'll reduce
the size of the packet. If the router sending the ICMP error sends the newer version that
includes the MTU of the outgoing interface, we'll use that value; otherwise we'll try the
next smallest MTU. As RFC 1191 [Mogul and Deering 1990} states, there are a limited
number of MTUs, so our program has a table of the likely values and moves to the next
smallest value.

Let's first try it from our host sun to the host slip, knowing that the SLIP link has
an MTU of 296:

Apple Inc.
Ex. 1015 - Page 55

154 UDP: User Datagram Protocol Chapter 11.

sun % traceroute.pmtu slip
traceroute to slip (140.252.13.65), 30 hops max

outgoing MTU = 1500
1 bsdi (140.252.13.35) 15 ms 6 ms 6 ms

2 bsdi (140.252.13.35) 6 ms
fragmentation required and DF set, trying new MTU = 1492

fragmentation required and DF set, trying new MTU = 1006

fragmentation required and DF set, trying new MTU = 576

fragmentation required and DF set, trying new MTU = 552

fragmentation required and DF set, trying new MTU = 544

fragmentation required and DF set, trying new MTU = 512

fragmentation required and DF set, trying new MTU = 508

fragmentation required and DF set, trying new MTU = 296

2 slip (140 252.13.65) 377 ms 377 ms 377 ms

In this example the router bsdi does not return the MTU of the outgoing interface in
the ICMP error, so we step through the likely values for the MTU. The first line of out-
put for a TTL of 2 prints a hostname of bsdi, but that's because it's the router returning
the ICMP error. The final line of output for a 1IL of 2 is what we're looking for.

It's not hard to modify the ICMP code on bsdi to return the MTU of the outgoing
interface, and if we do that and rerun our program, we get the following output:

sun % traceroute.pmtu slip
traceroute to slip (140.252.13.65), 30 hops max

outgoing MTU = 1500
1 bsdi (140.252.13.35) 53 ms 6 ms 6 ms
2 bsdi (140.252.13.35) 6 ms

fragmentation required and DF set, next hop MTU = 296

2 slip (140.252.13.65) 377 ms 378 ms 377 ms

Here we don't have to try eight different values for the MTU before finding the right
one—the router returns the correct value.

The Worldwide Internet

As an experiment, this modified version of traceroute was run numerous times to
various hosts around the world. Fifteen countries (including Antarctica) were reached
and various transatlantic and transpacific links were used. Before doing this, however,
the MTU of the dialup SLIP link between the author's subnet and the router netb (Fig-

ure 11.12) was increased to 1500, the same as an Ethernet.
Out of 18 runs, only 2 had a path MTU of less than 1500. One of the transatlantic

links had an MTU of 572 (a value not even listed as a likely value in RFC 1191) and the
router did return the newer format ICMP error. Another link, between two routers in

Japan, wouldn't handle a 1500-byte frame, and the router did not return the newer for-
mat ICMP error. Setting the MTU down to 1006 did work.

The conclusion we can make from this experiment is that many, but not all, WANs
today can handle packets larger than 512 bytes. Using the path MTU discovery feature
will allow applications to take advantage of these larger MTUs.

Apple Inc.
Ex. 1015 - Page 56

ectiort its Path MTU Discovery with UDP 155

8 Path MTU Discovery with UDP

Let's examine the interaction between an application using UDP and the path MTU dis-
covery mechanism. We want to see what happens when the application writes data-
grams that are too big for some intermediate link.

Example

Since the only system that we've been using that supports the path MTU discovery
mechanism is Solaris 2.x, we'll use it as the source host to send 650-byte datagrams to
slip. Since our host slip sits behind a SLIP link with an MTU of 296, any UDP data-
gram greater than 268 bytes (296 — 20 — 8) with the "don't fragment" bit set should cause
the router bsdi to generate the ICMP "can't fragment" error. Figure 11.13 shows the
topology and the MT-Us.

nin

t cp dump
here

MTU=1500 MTU=1500 MT15-1500 MT-U=1500

slip

SLIP

SLIP
netb sun bs di es olaris

MTU=552 MTU=1500 MTU=296 M1 U=296

-221-
650-byte UDP datagram with DF bit set

ICMP can't fragment error

Figure 11.13 Systems used for path MTU discovery using UDP.

The following command generates ten 650-byte UDP datagrams, with a 5-second pause
between each datagram:

solaris % sock —u —n10 —w650 —p5 slip discard

Figure 11.14 shows the tcpdurap output. When this example was run, the router bsdi
was set to not return the next-hop MTU as part of the ICMP "can't fragment" error.

The first datagram is sent with the DF bit set (line 1) and generates the expected
error from the router bsdi (line 2). What's puzzling is that the next datagram is also
sent with the DF bit set (line 3) and generates the same ICMP error (line 4). We would
expect this datagram to be sent with the DF bit off.

On line 5 it appears IP has finally learned that datagrams to this destination should
not be sent with the DF bit set, so IP goes ahead and fragments the datagrams at the
source host. This is different from earlier examples where IP sends the datagram that is
passed to it by UDP and allows the router with the smaller MTU (bsdi in this case) to

Apple Inc.
Ex. 1015 - Page 57

kw38200
StrikeOut

156 --14-DP#-User Datagram Protocol Chapter 11

1 0.0 solaris.38196 > slip.discard: udp 650 (DF)

2 0.004218 (0.0042) bsdi > solaris: icmp:
slip unreachable - need to frag, mtu =, 0 (DF)

3 4.980528 (4.9763) solaris.38196 > slip.discard: udp 650 (DF)

4 4.984503 (0.0040) bsdi > solaris: icmp:
slip unreachable - need to frag, mtu = 0 (DF)

5 9.870407 (4.8859) solaris.38196 > slip.discard: udp 650 (frag 47942:552@0+)
6 9.960056 (0.0896) solaris > slip: (frag 47942:106@552)

7 14.940338 (4.9803) solaris.38196 > slip.discard: udp 650 (DF)

8 14.944466 (0.0041) bsdi > solaris: icmp:
slip unreachable - need to frag, mtu = 0 (DF)

9 19.890015 (4.9455) solaris.38196 > slip.discard: udp 650 (frag 47944:552@0+)

10 19.950463 (0.0604) solaris > slip: (frag 47944:106@552)

1/ 24.870401 (4.9199) solaris.38196 > slip.discard: udp 650 (frag 47945:552@0+)
12 24.960038 (0.0896) solaris > slip: (frag 47945:106@552)

13 29.880182 (4.9201) solaris.38196 > slip.discard: udp 650 (frag 47946:552@0+)
14 29.940498 (0.0603) solaris > slip: (frag 47946:106@552)

15 34.860607 (4.9201) solaris.38196 > slip.discard: udp 650 (frag 47947:552@0+)

16 34.950051 (0.0894) solaris > slip: (frag 47947:106@552)

17 39.870216 (4.9202) solaris.38196 > slip.discard: udp 650 (frag 47948:552@0+)
18 39.930443 (0.0602) solaris > slip: (frag 47948:106@552)

19 44.940485 (5.0100) solaris.38196 > slip.discard: udp 650 (DF)

20 44.944432 (0.0039) bsdi > solaris: icmp:
slip unreachable - need to frag, mtu = 0 (DF)

Figure 11.14 Path MTU discovery using UDR

do the fragmentation. Since the ICMP "can't fragment" message didn't specify the
next-hop MTU, it appears that IP guesses that an MTU of 576 is OK. The first fragment
(line 5) contains 544 bytes of UDP data, the 8-byte UDP header, and the 20-byte IP
header, for a total IP datagram size of 572 bytes. The second fragment (line 6) contains
theremaining106bytesofUDPdataanda20-byteIPheader.

Unfortunately the next datagram, line 7, has its DF bit set, so it's discarded by bsdi
and the ICMP error returned. What has happened here is that an IP timer has expired
telling IP to see if the path MTU has increased by setting the DF bit again. We see this
happen again on lines 19 and 20. Comparing the times on lines 7 and 19 it appears that
IP turns on the DFbitto see if the path MTU has increased, every 30 seconds.

This 30-second timer value is way too small. RFC 1191 recommends a value of 10 minutes. It
can be changed by modifying the parameter ip_ire_pathmtu_interval (Section E.4).
Also there is no way in Solaris 2.2 to turn off this path MTU discovery for a single UDP appli-
cation or for all UDP applications. It can only be enabled or disabled on a systemwide basis by
changing the parameter ip_path_mtu_discovery. As we can see from this example,
enabling path MTU discovery when UDP applications write datagrams that will probably be
fragmented can cause datagrams to be discarded.

Apple Inc.
Ex. 1015 - Page 58

Section 11.9 Interaction Between UDP and ARP 157

The maximum datagram size assumed by the IP layer on solaris (576 bytes) is
not right. In Figure 11.13 we see that the real MTU is 296 bytes. This means the frag-
ments generated by solaris will be fragmented again by bsdi. Figure 11.15 shows
the t cpdump output collected on the destination host (slip) for the first datagram that
arrives (lines 5 and 6 from Figure 11.14).

1 0.0 solaris.38196 > slip.discard: udp 650 (frag 47942:272@0+)
2 0.304513 (0.3045) solaris > slip: (frag 47942:272@272+)
3 0.334651 (0.0301) solaris > slip: (frag 47942:8@544+)
4 0.466642 (0.1320) solaris > slip: (frag 47942:106@552)

Figure 11.15 First datagram arriving at host slip from solaris.

In this example the host solaris should not fragment the outgoing datagrams but
should turn off the DF bit and let the router with the smaller MTU do the fragmenta-
tion.

Now we'll run the same example but modify the router bsdi to return the next-hop
MTU in the ICMP "can't fragment" error. Figure 11.16 shows the first six lines of the
t cpdump output.

1
2

0.0
0.004199 (0.0042)

solaris.37974 > slip.discard: udp 650 (DF)
bsdi > solaris: icmp:

slip unreachable - need to frag, mtu = 296 (DF)

3 4.950193 (4.9460) solaris.37974 > slip.discard: udp 650 (DF)
4 4.954325 (0.0041) bsdi > solaris: icmp:

slip unreachable - need to frag, mtu = 296 (DF)

5 9.779855 (4.8255) solaris.37974 > slip.discard: udp 650 (frag 35278:272@0+)
6 9.930018 (0.1502) solaris > slip: (frag 35278:272@272+)
7 9.990170 (0.0602) solaris > slip: (frag 35278:114@544)

Figure 11.16 Path MITT discovery using UDP.

Again, the first two datagrams are sent with the DF bit set, and both elicit the ICMP
error. The ICMP error now specifies the next-hop MTU of 296.

In lines 5, 6, and 7 we see the source host perform fragmentation, similar to Fig-
ure 11.14. But knowing the next-hop MTU, only three fragments are generated, com-
pared to the four fragments generated by the router bsdi in Figure 11.15.

1.9 interaction Between UDP and ARP

Using UDP we can see an interesting (and often unmentioned) interaction with UDP
and typical implementations of ARP.

We use our sock program to generate a single UDP datagram with 8192 bytes of
data. We expect this to generate six fragments on an Ethernet (see Exercise 11.3). We
also assure that the ARP cache is empty before running the program, so that an ARP
request and reply must be exchanged before the first fragment is sent.

Apple Inc.
Ex. 1015 - Page 59

158 UDP: User Datagram Protocol Chapter 11 -41

bsdi % arp -a verify ARP cache is empty
bsdi % sock -u -i -n1 -w8192 svr4 discard

We expect the first fragment to cause an ARP request to be sent. Five more fragments
are generated by IP and this presents two timing questions that we'll need to use
tcpdump to answer: are the remaining fragments ready to be sent before the ARP reply
is received, and if so, what does ARP do with multiple packets to a given destination
when it's waiting for an ARP reply? Figure 11.17 shows the tcpdump output.

arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi.
arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi
arp reply svr4 is-at 0:0:c0:c2:9b:26
arp reply svr4 is-at 0:0:c0:c2:9b:26
bsdi > svr4: (frag 10863:800@7400)
arp reply svr4 is-at 0:0:c0:c2:9b:26
arp reply svr4 is-at 0:0:c0:c2:9b:26
arp reply svr4 is-at 0:0:c0:c2:9b:26
arp reply svr4 is-at 0:0:c0:c2:9b:26
arp reply svr4 is-at 0:0:c0:c2:9b:26

Figure 11.17 Packet exchange when an81.92-byteUDP datagram is sent on an Ethernet.

There are a few surprises in this output. First, six ARP requests are generated
before the first ARP reply is returned. What we guess is happening is that IP generates
the six fragments rapidly, and each one causes an ARP request.

Next, when the first ARP reply is received (line 7) only the last fragment is sent (line
9)! It appears that the first five fragments have been discarded. Indeed, this is the nor-
mal operation of ARP. Most implementations keep only the last packet sent to a given
destination while waiting for an ARP reply.

The Host Requirements RFC requires an implementation to prevent this type of ARP flooding
(repeatedly sending an ARP request fox the same IP address at a high rate). The recommended
maximum rate is one per second. Here we see six ARP requests in 43 ms.

The Host Requirements RFC states that ARP should save at least one packet, and this should
be the latest packet. That's what we see here.

Another unexplained anomaly in this output is that svr4 sends back seven ARP
replies, not six.

The final point worth mentioning is that tcpdump was left to run for 5 minutes
after the final ARP reply was returned, waiting to see if svr4 sent back an ICMP "time
exceeded during reassembly" error. The ICMP error was never sent. (We showed the
foiniat of this message in Figure 8.2. A code of 1 indicates that the time was exceeded
during the reassembly of a datagram.)

The IP layer must start a timer when the first fragment of a datagram appears. Here
"first" means the first arrival of any fragment for a given datagram., not the first frag-
ment (with a fragment offset of 0). A normal timeout value is 30 or 60 seconds. If all the

1 0.0
2 0.001234 (0.0012)
3 0.001941 (0.0007)
4 0.002775 (0.0008)
5 0.003495 (0.0007)
6 0.004319 (0.0008)
7 0.008772 (0.0045)
8 0.009911 (0.0011)
9 0.011127 (0.0012)

10 0.011255 (0.0001)
11 0.012562 (0.0013)
12 0.013458 (0.0009)
13 0.014526 (0.0011)
14 0.015583 (0.0011)

Apple Inc.
Ex. 1015 - Page 60

'Section 11,10 Maximum UDP Datagram Size 159

fragments for this datagram have not arrived when the timer expires, all these frag-
ments are discarded. If this were not done, fragments that never arrive (as we see in
this example) could eventually cause the receiver to run out of buffers.

There are two reasons we don't see the ICMP message here. First, most Berkeley-
derived implementations never generate this error! These implementations do set a
timer, and do discard all fragments when the timer expires, but the ICMP error is never
generated. Second, the first fragment—the one with an offset of 0 containing the UDP
header—was never received. (It was the first of the five packets discarded by ARP.) An
implementation is not required to generate the ICMP error unless this first fragment has
been received. The reason is that the receiver of the ICMP error couldn't tell which user
process sent the datagram that was discarded, because the transport layer header is not
available. It's assumed that the upper layer (either TCP or the application using UDP)
will eventually time out and retransmit.

In this section we've used IP fragmentation to see this interaction between UDP and
ARP. We can also see'this interaction if the sender quickly transmits multiple UDP data-
grams. We chose to use fragmentation because the packets get generated quickly by IP,
faster than multiple datagrams can be generated by a user process.

As unlikely as this example might seem, it occurs regularly. NFS sends UDP data-
grams whose length just exceeds 8192 bytes. On an Ethernet these are fragmented as
we've indicated, and if the appropriate ARP cache entry times out, you can see what
we've shown here. NFS will time out and retransmit, but the first IP datagram can still
be discarded because of ARP's limited queue.

0 Maximum UDP Datagram Size

Theoretically, the maximum size of an IP datagram is 65535 bytes, imposed by the 16-bit
total length field in the IP header (Figure 3.1). With an IP header of 20 bytes and a UDP
header of 8 bytes, this leaves a maximum of 65507 bytes of user data in a UDP data-
gram. Most implementations, however, provide less than this maximum.

There are two limits we can encounter. First the application program may be lim-
ited by its programming interface. The sockets API (Section 1.15) provides a function
that the application can call to set the size of the receive buffer and the send buffer. For
a UDP socket, this size is directly related to the maximum size UDP datagram the appli-
cation can read or write. Most systems today provide a default of just over 8192 bytes
for the maximum size of a UDP datagram that can be read or written. (This default is
because 8192 is the amount of user data that NFS reads and writes by default.)

The next limitation comes from the kernel's implementation of TCP/1P. There may
be implementation features (or bugs) that limit the size of an IP datagram to less than
65535 bytes.

The author experimented with various UDP datagram sizes, using the sock program. Using
the loopback interface under SunOS 4.1.3, the maximum size IP datagram was 32767 bytes.
All higher values failed. But going across an Ethernet from BSD/386 to SunOS 4.1.3, the maxi-
mum size FP datagram the Sun could accept was 32786 (that is, 32758 bytes of user data).
Using the loopback interface under Solaris 2.2, the maximum 65535-byte IP datagram could be
sent and received. From Solaris 2.2 to AIX 3.2.2, the maximum 65535-byte IP datagram could
be transferred. Obviously this limit depends on the source and destination implementations.

Apple Inc.
Ex. 1015 - Page 61

160 UDP: User Datagram Protocol Chapter ii

We mentioned in Section 3.2 that a host is required to receive at least a 576-byte 11-1
datagram. Many UDP applications are designed to restrict their application data to 512
bytes or less, to stay below this limit. We saw this in Section 10.4, for example, where
the Routing Information Protocol always sent less than 512 bytes of data per datagram.
We'll encounter this same limit with other UDP applications: the DNS (Chapter 14),
TFTP (Chapter 15), BOOTP (Chapter 16), and SNMP (Chapter 25).

Datagram Truncation

Just because IP is capable of sending and receiving a datagram of a given size doesn't
mean the receiving application is prepared to read that size. UDP programming inter-
faces allow the application to specify the maximum number of bytes to return each
time. What happens if the received datagram exceeds the size the application is pre-
pared to deal with?

Unfortunately the answer depends on the programming interface and the imple-
mentation.

The traditional Berkeley version of the sockets API truncates the datagram, discarding any
excess data. Whether the application is notified depends on the version. (4.3BSD Reno and
later can notify the application that the datagram was truncated.)

The sockets API under SVR4 (including Solaris 2.x) does not truncate the datagram. Any
excess data is returned in subsequent reads. The application is not notified that multiple reads
are being fulfilled from a single UDP datagram.

The TLI API does not discard the data. Instead a flag is returned indicating that more data is
available, and subsequent reads by the application return the rest of the datagram.

When we discuss TCP we'll see that it provides a continuous stream of bytes to the
application, without any message boundaries. TCP passes the data to the application in
whatever size reads the application asks for—there is never any data loss across this
interface.

11.11 ICMP Source Querich Error

Using UDP we are also able to generate the ICMP "source quench" error. This is art
error that may be generated by a system (router or host) when it receives datagrams at a
rate that is too fast to be processed. Note the qualifier "may." A system is not required
to send a source quench, even if it runs out of buffers and throws datagrams away.

Figure 11.18 shows the format of the ICMP source quench error. We have a perfect
scenario with our test network for generating this error. We can send datagrams from
bsdi to the router sun across the Ethernet that must be routed across the dialup SLIP
link. Since the SLIP link is about 1000 times slower than the Ethernet, we should easily
be able to overrun its buffer space. The following command sends 100 1024-byte data-
grams from the host bsdi through the router sun to soiari s. We send the datagrams
to the standard discard service, where they'll be ignored:

bsdi % sock -u -w1024 -n100 solaria discard

Apple Inc.
Ex. 1015 - Page 62

type (4) code (0) checks=

Unused (must be 0)

IP header (including options) + first 8 bytes of original. IP datagram data

section 11.11 ICMP Source Quench Error 161

0 7 8 15 16 31

I
8 bytes

Figure 11.18 ICMP source quench error.

Figure 11.19 shows the tcpdump output corresponding to this command.

1 0.0 bsdi.1403 > solaris.discard: udp 1024
26 lines that we don't show

27 0.10 (0.00) bsdi.1403 > solaris.discard: udp 1024
28 0.11 (0.01) sun > bsdi: icmp: source quench

29 0.11 (0.00) bsdi.1403 > solaris.discard: udp 1024
30 0.11 (0.00) sun > bsdi: icmp: source quench

142 lines that we don't show
173 0.71 (0.06) bsdi.1403 > solaris.discard: udp 1024
174 0.71 (0.00) sun > bsdi: icmp: source quench

Figure 11.19 ICMP source quench from the router sun.

We have removed lots of lines from this output; there is a pattern. The first 26 data-
grams are received without an error; we show the output only for the first. Starting
with our 27th datagram, however, every time we send a datagram, we receive a source
quench in return. There are a total of 26 + (74 x 2) = 174 lines of output.

From our serial line throughput calculations in Section 2.10, it takes just over 1 sec-
ond to transfer a 1024-byte datagram at 9600 bits/sec. (In our example it should take
longer than this since the 20 + 8 + 1024 byte datagram will be fragmented because the
MTU of the SLIP link from sun to netb is 552 bytes.) But we can see from the timing in
Figure 11.19 that the router sun receives all 100 datagrams in less than 1 second, before
the first one is through the SLIP link. It's not surprising that we used up many of its
buffers.

Although RFC 1009 [Braden and Postel 1987] requires a router to generate source quenches
when it runs out of buffers, the new Router Requirements RFC [Ahnquist 1993] changes this
and says that a router must not originate source quench errors. The current feeling is to depre-
cate the source quench error, since it consumes network bandwidth and is an ineffective and
unfair fix for congestion.

Another point to make regarding this example is that our sock program either
never received a notification that the source quenches were being received, or if it did, it

Apple Inc.
Ex. 1015 - Page 63

162 UDP: User Datagram Protocol Chapter ii

appears to have ignored them. It turns out that BSD implementations normally ignore
received source quenches if the protocol is UDP. (TCP is notified, and slows down the
data transfer on the connection that generated the source quench, as we discuss in Sec-
tion 21.10.) Part of the problem is that the process that generated the data that caused
the source quench may have already terminated when the source quench is received.
Indeed, if we use the Unix time program to measure how long our sock program takes
to run, it only executes for about 0.5 seconds. But from Figure 11.19 we see that some of
the source quenches are received 0.71 seconds after the first datagram was sent, after the
process has terminated. What is happening is that our program writes 100 datagrams
and terminates, But not all 100 datagrams have been sent—some are queued for
output.

This example reiterates that UDP is an unreliable protocol and illustrates the value
of end-to-end flow control. Even though our sock program successfully wrote 100
datagrams to its network, only 26 were really sent to the destination. The other 74 were
probably discarded by the intermediate router. Unless we build some form of acknowl-
edgment into the application, the sender has no idea whether the receiver really got the
data.

11.12 UDP Server Design

There are some implications in using UDP that affect the design and implementation of
a server. The design and implementation of clients is usually easier than that of servers,
which is why we talk about server design and not client design. Servers -typically inter-
act with the operating system and most servers need a way to handle multiple clients at
the same time.

Normally a client starts, immediately communicates with a single server, and is
done. Servers, on the other hand, start and then go to sleep, waiting for a client's
request to arrive. In the case of UDP, the server wakes up when a client's datagram
arrives, probably containing a request message of some form from the client.

Our interest here is not in the programming aspects of clients and servers ([Stevens
1990] covers all those details), but in the protocol features of UDP that affect the design
and implementation of a server using UDR (We examine the details of TCP server
design in Section 18.11.) Although some of the features we describe depend on the
implementation of UDP being used, the features are common to most implementations.

Client IP Address and Port Number

What arrives from the client is a UDP datagram. The IP header contains the source and
destination IP addresses, and the UDP header contains the source and destination UDP
port numbers. When an application receives a UDP datagram, it must be told by the
operating system who sent the message—the source IP address and port number.

This feature allows an iterative UDP server to handle multiple clients. Each reply is
sent back to the client that sent the request.

Apple Inc.
Ex. 1015 - Page 64

Section 11.12 UDP Server Design 163

Destination IP Address

Some applications need to know who the datagram was sent to, that is, the destination
IP address. For example, the Host Requirements RFC states that a TFTP server should
ignore received datagrams that are sent to a broadcast address, (We describe broadcast-
ing in Chapter 12 and TFTP in Chapter 15.)

This requires the operating system to' pass the destination IP address from the
received UDP datagram to the application. Unfortunately, not all implementations pro-
vide this capability.

The sockets API provides this capability with the IP_RECVDSTADDR socket option. Of the sys-
tems used in the text, only BSD/386, 4.4BSD, and AIX 3.2.2 support this option. SVR4, SunOS
4.x, and Solaris 2.x don't support it.

UDP Input Queue

We said in Section 1.8 that most UDP servers are iterative servers. This means a single
server process handles all the client requests on a single UDP port (the server's well-
known port).

Normally there is a limited size input queue associated with each UDP port that an
application is using. This means that requests that arrive at about the same time from
different clients are automatically queued by UDP. The received UDP datagrams are
passed to the application (when it asks for the next one) in the order they were received.

It is possible, however, for this queue to overflow, causing the kernel's UDP module
to discard incoming datagrams. We can see this with the following experiment. We
start our sock program on the host bsdi running as a UDP server:

bsdi % sock -s -u -v -E -R256 -r256 -P30 6666
from 140.252.13.33, to 140.252.13.63: 1111111111 from sun, to broadcast address
from 140.252.13.34, to 140.252.13.35: 4444444444444 from svr4, to unicast address

We specify the following flags: - s to run as a server, -u for UDP, -v to print the client's
IP address, and —E to print the destination IP address (which is supported by this sys-
tem). Additionally we set the UDP receive buffer for this port to 256 bytes (-R), along
with the size of each application read (-r). The flag —P3 0 tells it to pause for 30 seconds
after creating the UDP port, before reading the first datagram. This gives us time to
start the clients on two other hosts, send some datagrams, and see how the receive
queueing works.

Once the server is started, and is in its 30-second pause, we start one client on the
host sun and send three datagrams:

sun % sock -u -v 140.252.13.63 6666 to Ethernet broadcast address
connected on 140.252 .13.33.1252 to 140.252.13.63.6666
1111111111 11 bytes of data (with newline)
222222222 10 bytes of data (with newline)
33333333333 12 bytes of data (with newline)

The destination address is the broadcast address (140.252.13,63). We also start a second
client on the host svr4 and send another three datagrams:

Apple Inc.
Ex. 1015 - Page 65

222 BOOTP: Bootstrap Protocol Chapter 16

The gateway item is an example of a variable-length item. The length is always a
multiple of 4, and the values are the 32-bit IP addresses of one or more gateways
(routers) for the client to use. The first one returned must be the preferred gateway.

There are 14 other items defined in RFC 1533. Probably the most important is the IP
address of a DNS name server, with a tag value of 6. Other items return the IP address
of a printer server, the IP address of a time server, and so on. Refer to the RFC for all the
details.

Returning to our example in Figure 16.3, we never saw an ICMP address mask
request (Section 6.3) that would have been broadcast by the client to find its subnet
mask. Although it wasn't output by tcpdump, we can probably assume that the client's
subnet mask was returned in the vendor-specific area of the BOOTP reply.

The Host Requirements RFC recommends that a system using BOOTP obtain its subnet mask
using BOOTP, not ICMP

The size of the vendor-specific area is limited to 64 bytes. This is a constraint for
some applications. A new protocol named DHCP (Dynamic Host Configuration
Protocol) is built on, but replaces, BOOTP. DHCP extends this area to 312 bytes and is
defined in RFC 1541 [Droms 1993].

16.7 Summary

BOOTP uses UDP and is intended as an alternative to RARP for bootstrapping a disk-
less system to find its IP address. BOO1P can also return additional information, such
as the IP address of a router, the client's subnet mask, and the IP address of a name
server.

Since BOOTP is used in the bootstrap process, a diskless system needs the following
protocols implemented in read-only memory: BOOTP, TFTP, UDP, IP, and a device
driver for the local network.

The implementation of a BOOTP server is easier than an RARP server, since BOOTP
requests and replies are in UDP datagrams, not special link-layer frames. A router can
also serve as a proxy agent for a real BOOTP server, forwarding client requests to the
real server on a different network.

Exercises

16.1 We've said that one advantage of BOOTP over RARP is that BOO IP can work through
routers, whereas RARP, which is a link-layer broadcast, cannot. Yet in Section 16.5 we had

to define special ways for BOO IP to work through a router. What would happen if a capa-
bility were added to routers allowing them to forward RARP requests?

16.2 We said that a BOOTP client must use the transaction ID to match responses with requests,

in case there are multiple clients bootstrapping at the same time from a server that broad-
casts replies. But in Figure 16.3 the transaction ID is 0, implying that this client ignores the

transact-ion ID. How do you think this client matches the responses with its requests?

Apple Inc.
Ex. 1015 - Page 66

77

TCP: Transmission Control

Protocol

17.1 Introduction

In this chapter we provide a description of the services provided by TCP for the applica-
tion layer. We also look at the fields in the TCP header. In the chapters that follow we
examine all of these header fields in more detail, as we see how TCP operates.

Our description of TCP starts in this chapter and continues in the next seven chap-
ters. Chapter 18 describes how a TCP connection is established and terminated, and
Chapters 19 and 20 look at the normal transfer of data, both for interactive use (remote
login) and bulk data (file transfer). Chapter 21 provides the details of TCP's timeout
and retransmission, followed by two other TCP timers in Chapters 22 and 23. Finally
Chapter 24 takes a look at newer TCP features and TCP performance.

The original specification for TCP is RFC 793 [Poste11981c], although some errors in
that RFC are corrected in the Host Requirements RFC.

7.2 TCP Services

Even though TCP and UDP use the same network layer (IP), TCP provides a totally dif-
ferent service to the application layer than UDP does. TCP provides a connection-
oriented, reliable, byte stream service.

The term connection-oriented means the two applications using TCP (normally con-
sidered a client and a server) must establish a TCP connection with each other before
they can exchange data. The typical analogy is dialing a telephone number, waiting for
the other party to answer the phone and say "hello," and then saying who's calling. In
Chapter 18 we look at how a connection is established, and disconnected some time
later when either end is done. Apple Inc.

Ex. 1015 - Page 67

224 TCP: Transmission Control Protocol Chapter 17

There are exactly two end points communicating with each other on a TCP connec-
tion: Concepts that we talked about in Chapter 12, broadcasting and multicasting,
aren't applicable to TCP.

TCP provides reliability by doing the following:

• The application data is broken into what TCP considers the best sized chunks to
send. This is totally different from UDP, where each write by the application
generates a UDP datagram of that size. The unit of information passed by TCP
to IP is called a segment. (See Figure 1.7, p. 10.) In Section 18.4 we'll see how
TCP decides what this segment size is.

• When TCP sends a segment it maintains a timer, waiting for the other end to
acknowledge reception of the segment. If an acknowledgment isn't received in
time, the segment is retransmitted. In Chapter 21 we'll look at TCP's adaptive
timeout and retransmission strategy.

• When TCP receives data from the other end of the connection, it sends an
acknowledgment. This acknowledgment is not sent immediately, but normally
delayed a fraction of a second, as we discuss in Section 19.3.

• TCP maintains a checksum on its header and data. This is an end-to-end check-
sum whose purpose is to detect any modification of the data in transit. If a seg-
ment arrives with an invalid checksum, TCP discards it and doesn't
acknowledge receiving it. (It expects the sender to time out and retransmit.)

• Since TCP segments are transmitted as IP datagrams, and since IP datagrams
can arrive out of order, TCP segments can arrive out of order. A receiving TCP
resequences the data if necessary, passing the received data in the correct order
to the application.

• Since IP datagrams can get duplicated, a receiving TCP must discard duplicate
data.

• TCP also provides flow control. Each end of a TCP connection has a finite
amount of buffer space. A receiving TCP only allows the other end to send as
much data as the receiver has buffers for. This prevents a fast host from taking
all the buffers on a slower host.

A stream of 8-bit bytes is exchanged across the TCP connection between the two
applications. There are no record markers automatically inserted by TCP. This is what
we called a byte stream service. If the application on one end writes 10 bytes, followed by
a write of 20 bytes, followed by a write of 50 bytes, the application at the other end of
the connection cannot tell what size the individual writes were. The other end may
read the 80 bytes in four reads of 20 bytes at a time. One end puts a stream of bytes into
TCP and the same, identical stream of bytes appears at the other end.

Also, TCP does not interpret the contents of the bytes at all. TCP has no idea if the
data bytes being exchanged are binary data, ASCII characters, EBCDIC characters, or
whatever. The interpretation of this byte stream is up to the applications on each end of
the connection.

Apple Inc.
Ex. 1015 - Page 68

edion 17.3 TCP Header 225

This treatment of the byte stream by TCP is similar to the treatment of a file by the Unix oper-
ating system. The Unix kernel does no interpretation whatsoever of the bytes that an applica-
tion reads or write—that is up to the applications. There is no distinction to the Unix kernel
between a binary file or a file containing lines of text.

7.3 TCP Header

Recall that TCP data is encapsulated in an IP datagram, as shown in Figure 17.1.

IP datagram

TCP segment

IP
header

TCP
header

TCP data

20 bytes 20 bytes

Figure 17.1 Encapsulation of TCP data in an IP datagram.

Figure 17.2 shows the format of the TCP header. Its normal size is 20 bytes, unless
options are present.

0 15 16 31

16-bit source port number 16-bit destination port number

32-bit sequence number

32-bit acknowledgment number

4-bit header
length

reserved
(6 bits) R

UAPR
C S

SF

GKHTNN
S Y I 16-bit window size

16-bit TCP checksum 16-bit urgent pointer

options (if any) i

20 bytes

data (if any)

Figure 17.2 TCP header.

Apple Inc.
Ex. 1015 - Page 69

226 TCP: Transmission Control Protocol Chapter 17

Each TCP segment contains the source and destination port number to identify the
sending and receiving application. These two values, along with the source and desti-
nation IP addresses in the IP header, uniquely identify each connection.

The combination of an IP address and a port number is sometimes called a socket.
This term appeared in the original TCP specification (RFC 793), and later it also became
used as the name of the Berkeley-derived programming interface (Section 1.15). It is the
socket pair (the 4-tuple consisting of the client IP address, client port number, server IP
address, and server port number) that specifies the two end points that uniquely identi-
fies each TCP connection in an Internet.

The sequence number identifies the byte in the stream of data from the sending TCP
to the receiving TCP that the first byte of data in this segment represents. If we consider
,the stream of bytes flowing in one direction between two applications, TCP numbers
each byte with a sequence number. This sequence number is a 32-bit unsigned number
that wraps back around to 0 after reaching 232 --1.

When a new connection is being established, the SYN flag is turned on. The
sequence number field contains the initial sequence number (ISN) chosen by this host for this
connection. The sequence number of the first byte of data sent by this host will be the
ISN plus one because the SYN flag consumes a sequence number (We describe addi-
tional details on exactly how a connection is established and terminated in the next
chapter where we'll see that the FIN flag consumes a sequence number also.)

Since every byte that is exchanged is numbered, the acknowledgment number contains
the next sequence number that the sender of the acknowledgment expects to receive.
This is therefore the sequence number plus 1 of the last successfully received byte of
data. This field is valid only if the ACK flag (described below) is on.

Sending an ACK costs nothing because the 32-bit acknowledgment number field is
always part of the header, as is the ACK flag. Therefore we'll see that once a connection
is established, this field is always set and the ACK flag is always on.

TCP provides a full-duplex service to the application layer. This means that data cart
be flowing in each direction, independent of the other direction. Therefore, each end of
a connection must maintain a sequence number of the data flowing in each direction.

TCP can be described as a sliding-window protocol without selective or negative
acknowledgments. (The sliding window protocol used for data transmission is
described in Section 20.3.) We say that TCP lacks selective acknowledgments because
the acknowledgment number in the TCP header means that the sender has successfully
received up through but not including that byte. There is currently no way to acknowl-
edge selected pieces of the data stream. For example, if bytes 1-1024 are received OK,
and the next segment contains bytes 2049-3072, the receiver cannot acknowledge this
new segment. All it can send is an ACK with 1025 as the acknowledgment number.
There is no means for negatively acknowledging a segment. For example, if the seg-
ment with bytes 1025-2048 did arrive, but had a checksum error, all the receiving TCP
can send is an ACK with 1025 as the acknowledgment number. In Section 21.7 we'll see
how duplicate acknowledgments can help determine that packets have been lost.

The header length gives the length of the header in 32-bit words. This is required
because the length of the options field is variable. With a 4-bit field, TCP is limited to a
60-byte header. Without options, however, the normal size is 20 bytes.

Apple Inc.
Ex. 1015 - Page 70

Summary 227

There are six flag bits in the TCP header. One or more of them can be turned on at
the same time. We briefly mention their use here and discuss each flag in more detail in
later chapters.

URG The urgent pointer is valid (Section 20.8).

ACK The acknowledgment number is valid.

PSH The receiver should pass this data to the application as soon as possible (Sec-
tion 20.5).

RST Reset the connection (Section 18.7).

SYN Synchronize sequence numbers to initiate a connection. This flag and the
next are described in Chapter 18.

FIN The sender is finished sending data.

TCP's flow control is provided by each end advertising a window size. This is the
number of bytes, starting with the one specified by the acknowledgment number field,
that the receiver is willing to accept. This is a 16-bit field, limiting the window to 65535
bytes. In Section 24A we'll look at the new window scale option that allows this value
to be scaled, providing larger windows.

The checksum covers the TCP segment: the TCP header and the TCP data. This is a
mandatory field that must be calculated and stored by the sender, and then verified by
the receiver. The TCP checksum is calculated similar to the UDP checksum, using a
pseudo-header as described in Section 11.3.

The urgent pointer is valid only if the URG flag is set. This pointer is a positive offset
that must be added to the sequence number field of the segment to yield the sequence
number of the last byte of urgent data. TCP's urgent mode is a way for the sender to
transmit emergency data to the other end. We'll look at this feature in Section 20.8.

The most common option field is the maximum segment size option, called the MSS.
Each end of a connection noimally specifies this option on the first segment exchanged
(the one with the SYN flag set to establish the connection). It specifies the maximum
sized segment that the sender wants to receive. We describe the MSS option in more
detail in Section 18.4, and some of the other TCP options in Chapter 24.

In Figure 17.2 we note that the data portion of the TCP segment is optional. We'll
see in Chapter 18 that when a connection is established, and when a connection is termi-
nated, segments are exchanged that contain only the TCP header with possible options.
A header without any data is also used to acknowledge received data, if there is no data
to be transmitted in that direction. There are also some cases dealing with timeouts
when a segment can. be sent without any data.

TCP provides a reliable, connection-oriented, byte stream, transport layer service. We
looked briefly at all the fields in the TCP header and will examine them in detail in the
following chapters.

Apple Inc.
Ex. 1015 - Page 71

228 TCP: Transmission Control Protocol Chapter 17

TCP packetizes the user data into segments, sets a timeout any time it sends data,
acknowledges data received by the other end, reorders out-of-order data, discards
duplicate data, provides end-to-end flow control, and calculates and verifies a manda-
tory end-to-end checksum.

TCP is used by many of the popular applications, such as Telnet, Rlogin, FTP, and
electronic mail (SMTP).

Exercises

17.1 We've covered the following packet formats, each of which has a checksum in its corre-
sponding header: IP, ICMP, IGMP, UDP, and TCP. For each one, describe what portion of
an IP datagram the checksum covers and whether the checksum is mandatory or optional.

17.2 Why do all the Internet protocols that we've discussed (IP, ICMP, IGMP, UDP, TCP) quietly
discard a packet that arrives with a checksum error?

17.3 TCP provides a byte-stream service where record boundaries are not maintained between
the sender and receiver. How can applications provide their own record markers?

17.4 Why are the source and destination port numbers at the beginning of the TCP header?

17.5 Why does the TCP header have a header length field while the UDP header (Figure 11.2,
p. 144) does not?

Apple Inc.
Ex. 1015 - Page 72

18

TCP Connection Establishment

and Termination

181 introduction

TCP is a connection-oriented protocol. Before either end can send data to the other, a
connection must be established between them. In this chapter we take a detailed look at
how a TCP connection is established and later terminated.

This establishment of a connection between the two ends differs from a
connectionless protocol such as UDP. We saw in Chapter 11 that with UDP one end just
sends a datagram to the other end, without any preliminary handshaking.

Connection Establishment and Termination

To see what happens when a TCP connection is established and then terminated, we
type the following command on the system svr4:

svr4 % telnet bsdi discard
Trying 140.252.13.35
Connected to bsdi.
Escape character is '-]',

telnet> quit
Connection closed.

type Control, right bracket to talk to the Telnet client
terminate the connection

The telnet command establishes a TCP connection with the host bsdi on the port
corresponding to the discard service (Section 1.12). This is exactly the type of service we
need to see what happens when a connection is established and terminated, without
having the server initiate any data exchange. Apple Inc.

Ex. 1015 - Page 73

230 TCP Connection Establishment and Termination Chapter 18

tcpdump Output

Figure 18.1 shows the tcpdump output for the segments generated by this command.

0.0

2 0.002402 (0.0024)

3 0.007224 (0.0048)

4 4.155441 (4.1482)

5 4.156747 (0.0013)

6 4.158144 (0.0014)

7 4.180662 (0.0225)

svr4.1037 > bsdi.discard: S 1415531521:1415531521(0)
win 4096 <mss 1024>

bsdi.discard > svr4.1037: S 1823083521:1823083521(0)
ack 1415531522 win 4096
<mss 1024>

svr4.1037 > bsdi.discard: ack 1823083522 win 4096

svr4.1037 > bsdi.discard: F 1415531522:1415531522(0)
ack 1823083522 win 4096

bsdi.discard > svr4.1037: ack 1415531523 win 4096

bsdi.discard > svr4.1037: F 1823083522:1823083522(0)
ack 1415531523 win 4096

svr4.1037 > bsdi.discard: ack 1823083523 win 4096

Figure 18.1 t cpdump output for TCP connection establishment and termination.

These seven TCP segments contain TCP headers only. No data is exchanged.
For TCP segments, each output line begins with

source > destination: flags

where flags represents four of the six flag bits in the TCP header (Figure 17.2). Fig-
ure 18.2 shows the five different characters that can appear in the flags output.

flag
3-character

abbreviation
Description

S
F
R
P

SYN
FIN
RST
PSH

synchronize sequence numbers
sender is finished sending data
reset connection
push data to receiving process as soon as possible
none of above four flags is on

Figure 18.2 flag characters output by tcpdump for flag bits in TCP header.

In this example we see the S, F, and period. We'll see the other two flags (R and P) later.

The other two TCP header flag bits—ACK and URG—are printed specially by
tcpdump.

It's possible for more than one of the four flag bits in Figure 18.2 to be on in a single
segment, but we normally see only one on at a time.

RFC 1025 [Poste! 19871, the TCP and IP Bake Off, calls a segment with the maximum combina-
tion of allowable flag bits turned on at once (SYN, URG, PSH, FIN, and 1 byte of data) a
Kamikaze packet. It's also known as a nastygram, Christmas tree packet, and lamp test

segment.

Apple Inc.
Ex. 1015 - Page 74

Section 18.2 Connection Establishment and Termination 231

In line 1, the field 1415531521 : 1415531521 (0) means the sequence number of
the packet was 1415531521 and the number of data bytes in the segment was 0.
tcpdump displays this by printing the starting sequence number, a colon, the implied
ending sequence number, and the number of data bytes in parentheses. The advantage
of displaying both the sequence number and the implied ending sequence number is to
see what the implied ending sequence number is, when the number of bytes is greater
than 0. This field is output only if (1) the segment contains one or more bytes of data or
(2) the SYN, FIN, or RST flag was on. Lines 1, 2, 4, and 6 in Figure 18.1 display this field
because of the flag bits—we never exchange any data in this example.

In line 2 the field ack 1415531522 shows the acknowledgment number. This is
printed only if the ACK flag in the header is on.

The field win 4096 in every line of output shows the window size being advertised
by the sender. In these examples, where we are not exchanging any data, the window
size never changes from its default of 4096. (We examine TCP's window size in Sec-
tion 20,4.)

The final field that is output in Figure 18.1, <mss„1024> shows the maximum seg-
ment size (MSS) option specified by the sender. The sender does not want to receive TCP
segments larger than this value. This is normally to avoid fragmentation (Section 11.5).
We discuss the maximum segment size in Section 18.4, and show the format of the vari-
ous TCP options in Section 18.10.

Time Line

Figure 18.3 shows the time line for this sequence of packets. (We described some gen-
eral features of these time lines when we showed the first one in Figure 6.11, p. 80.) This
figure shows which end is sending packets. We also expand some of the tcpdump out-
put (e.g., printing SYN instead of s). In this time line we have also removed the win-
dow size values, since they add nothing to the discussion.

Connection Establishment Protocol

Now let's return to the details of the TCP protocol that are shown in Figure 18.3. To
establish a TCP connection:

1. The requesting end (normally called the client) sends a SYN segment specifying
the port number of the server that the client wants to connect to, and the client's
initial sequence number (ISN, 1415531521 in this example). This is segment 1.

2. The server responds with its own SYN segment containing the server's initial
sequence number (segment 2). The server also acknowledges the client's SYN
by ACKing the client's ISN plus one. A SYN consumes one sequence number.

3. The client must acknowledge this SYN from the server by ACKing the server's
ISN plus one (segment 3).

These three segments complete the connection establishment. This is often called the
three-way handshake.

Apple Inc.
Ex. 1015 - Page 75

ack 1823083522

FIN 1415531522:1415531522(0) ack 1823083522

ack. 1415531523

FIN
182308352211823083522(0) ack 1415531523

ack 1823083523

232 TCP Connection Establishment and Termination Chapter 18

bsdi.discard svr4.1037

0.0 segment 1

0.002402 (0.0024)

 SYN
1415531521:1415531521(0)

<rnss 1024>

SYN
1823083521:1823083521(0)

ack 1415531522, <mss 1024>

0.007224 (0.0048) segment 3

4.155441 (4.1482) segment 4

4.156747 (0.0013)

4.158144 (0.0014)

4.180662 (0.0225) segment 7

segment 2

segment 5

segment 6

Figure 18.3 Time line of connection establishment and connection termination.

The side that sends the first SYN is said to perform an active open. The other side,
which receives this SYN and sends the next SYN, performs a passive open. (In Sec-
tion 18.8 we describe a simultaneous open where both sides can do an active open.)

When each end sends its SYN to establish the connection, it chooses an initial
sequence number for that connection. The ISN should change over time, so that each
connection has a different ISN. RFC 793 [Postel 1981c] specifies that the ISN should be
viewed as a 32-bit counter that increments by one every 4 microseconds. The purpose
in these sequence numbers is to prevent packets that get delayed in the network from
being delivered later and then misinterpreted as part of an existing connection.

How are the sequence numbers chosen? In 4.4BSD (and most Berkeley-derived implementa-
tions) when the system is initialized the initial send sequence number is initialized to 1. This
practice violates the Host Requirements RFC. (A comment in the code acknowledges that this
is wrong.) This variable is then incremented by 64,000 every half-second, and will cycle back
to 0 about every 9.5 hours. (This corresponds to a counter that is incremented every 8

Apple Inc.
Ex. 1015 - Page 76

kw38200
StrikeOut

kw38200
StrikeOut

kw38200
StrikeOut

Section 18.2 Connection Establihment and Termination 233

microseconds, not every 4 microseconds.) Additionally, each time a connection is established,
this variable is incremented by 64,000.

The 4.1-second gap between segments 3 and 4 is the time between establishing the
connection and typing the quit command to telnet to terminate the connection,

Connection Termination Protocol

While it takes three segments to establish a connection, it takes four to terminate a con-
nection. This is caused by TCP`s half-close. Since a TCP connection is full-duplex (that
is, data can be flowing in each direction independently of the other direction), each
direction must be shut down independently. The rule is that either end can send a FIN
when it is done sending data. When a TCP receives a FIN, it must notify the application
that the other end has terminated that direction of data flow. The sending of a FIN is
normally the result of the application issuing a close.

The receipt of a FIN only means there will be no more data flowing in that direction.
A TCP can still send data after receiving a FIN. While it's possible for an application to
take advantage of this half-close, in practice few TCP applications use it. The normal
scenario is what we show in Figure 18.3. We describe the half-close in more detail in
Section 18.5.

We say that the end that first issues the close (e.g., sends the first FIN) performs the
active close and the other end (that receives this FIN) performs the passive close. Nor-
mally one end does the active close and the other does the passive dose, but we'll see in
Section 18.9 how both ends can do an active close.

Segment 4 in Figure 18.3 initiates the termination of the connection and is sent when
the Telnet client closes its connection. This happens when we type quit. This causes
the client TCP to send a II1N, closing the flow of data from the client to the server.

When the server receives the FIN it sends back an ACK of the received sequence
number plus one (segment 5). A FIN consumes a sequence number, just like a SYN. At
this point the server's TCP also delivers an end-of-file to the application (the discard
server). The server then closes its connection, causing its TCP to send a FIN (segment
6), which the client TCP must ACK by incrementing the received sequence number by
one (segment 7).

Figure 18.4 shows the typical sequence of segments that we've described for the ter-
mination of a connection. We omit the sequence numbers. In this figure sending the
FINs is caused by the applications closing their end of the connection, whereas the
ACKs of these FINs are automatically generated by the TCP software.

Connections are normally initiated by the client, with the first SYN going from the
client to the server. Either end can actively close the connection (i.e., send the first FIN).
Often, however, it is the client that determines when the connection should be termi-
nated, since client processes are often driven by an interactive user, who enters some-
thing like "quit" to terminate. In Figure 18.4 we can switch the labels at the top, calling
the left side the server and the right side the client, and everything still works fine as
shown. (The first example in Section 14.4, for example, shows the daytime server dos-
ing the connection.)

Apple Inc.
Ex. 1015 - Page 77

234 TCP Connection Establishment and Teimination Chapter 18

client server

application close

deliver EOF to application

application close

Figure 18.4 Normal exchange of segments during connection termination.

Normal tcpdump Output

Having to sort through all the huge sequence numbers is cumbersome, so the default
tcpdump output shows the complete sequence numbers only on the SYN segments,
and shows all following sequence numbers as relative offsets from the original sequence
numbers. (To generate the output for Figure 18.1 we had to specify the -s option.) The
normal tcpdump output corresponding to Figure 18.1 is shown in Figure 18.5.

svr4.1037 > bsdi.discard: S 1415531521:1415531521(0)
win 4096 <mss 1024>

bsdi.discard > svr4.1037: S 1823083521:1823083521(0)
ack 1415531522
win 4096 <mss 1024>

svr4.1037 > bsdi.discard: ack 1 win 4096

svr4.1037 > bsdi.discard: F 1:1(0) ack 1 win 4096

bsdi.discard > svr4.1037: ack 2 win 4096

bsdi.discard > svr4.1037: F 1:1(0) ack 2 win 4096

svr4.1037 > bsdi.discard: ack 2 win 4096

Figure 18.5 Normal tcpdump output for connection establishment and termination.

Unless we need to show the complete sequence numbers, we'll use this form of output
in all following examples.

1 0.0

2 0.002402 (0.0024)

3 0.007224 (0.0048)

4 4.155441 (4.1482)

5 4.156747 (0.0013)

6 4.158144 (0.0014)

7 4.180662 (0.0225)

Apple Inc.
Ex. 1015 - Page 78

ection 18.3 Timeout of Connection Establishment 235

18.3 Timeout of Connection Establishment

There are several instances when the connection cannot be established. In one example
the server host is down. To simulate this scenario we issue our telnet command after
disconnecting the Ethernet cable from the server's host. Figure 18.6 shows the
t cpdurap output.

1 0.0 bsdi.1024 > svr4.discard: S 291008001:291008001(0)
win 4096 <mss 1024>
[tos 0x10]

2 5.814791 (5.8148), bsdi.1024 > svr4.discard: S 291008001:291008001(0)
win 4096 <mss 1024>
[tos 0x10]

3 29.815436 (24.0006) bsdi.1024 > svr4.discard: S 291008001:291008001(0)
win 4096 <mss 1024>
[tos Ox10]

Figure 18.6 tcpdump output for Connection establishment that times out.

The interesting point in this output is how frequently the client's TCP sends a SYN
to try to establish the connection. The second segment is sent 5.8 seconds after the first,
and the third is sent 24 seconds after the second.

As a side note, this example was run about 38 minutes after the client was rebooted. This cor-
responds with the initial sequence number of 291,008,001 (approximately 38 x 60 x 64000 x 2).
Recall earlier in this chapter we said that typical Berkeley-derived systems initialize the initial
sequence number to 1 and then increment it by 64,000 every half-second.

Also, this is the first TCP connection since the system was bootstrapped, which is why the
client's port number is 1024.

What isn't shown in Figure 18.6 is how long the client's TCP keeps retransmitting
before giving up. To see this we have to time the telnet command:

bsdi % date ; telnet svr4 discard ; date
Thu Sep 24 16:24:11 MST 1992
Trying 140.252.13.34...
telnet: Unable to connect to remote host: Connection timed out
Thu Sep 24 16:25:27 MST 1992

The time difference is 76 seconds. Most Berkeley-derived systems set a time limit of 75
seconds on the establishment of a new connection. We'll see in Section 21.4 that the
third packet sent by the client would have timed out around 16:25:29, 48 seconds after it
was sent, had the client not given up after 75 seconds.

irst Timeout Period

One puzzling item in Figure 18.6 is that the first timeout period, 5.8 seconds, is close to 6
seconds, but not exact, while the second period is almost exactly 24 seconds. Ten more

Apple Inc.
Ex. 1015 - Page 79

0 1 8 7 6 5 4 2 11 10

t somewhere in here
application causes TCP
to set timeout for 6 sec.
(12 ticks) in the future

500 ms
per tick TCP reschedules

timeout for 24 sec.
in the future

236 TCP Connection Establishment and Termination Chapter 18

of these tests were run and the first timeout period took on various values between 5.59
seconds and 5.93 seconds. The second timeout period, however, was always 24.00 (to
two decimal places).

What's happening here is that BSD implementations of TCP run a timer that goes
off every 500 ms. This 500-ms timer is used for various TCP timeouts, all of which we
cover in later chapters. When we type in the telnet command, an initial 6-second
timer is established (12 clock ticks), but it may expire anywhere between 5.5 and 6 sec-
onds in the future. Figure 18.7 shows what's happening.

11 clock ticks x 500 ms/tick = 5.5 seconds

Figure 18,7 TCP 500-ms timer.

Although the timer is initialized to 12 ticks, the first decrement of the timer can occur
between 0 and 500 ms after it is set. From that point on the timer is decremented about
every 500 ins, but the first period can be variable. (We use the qualifier "about" because
the time when TCP gets control every 500 ins can be preempted by other interrupts
being handled by the kernel.)

When that 6-second timer expires at the tick labeled 0 in Figure 181, the timer is
reset for 24 seconds (48 ticks) in the future. This next timer will be close to 24 seconds,
since it was set at a time when the TCP's 500-ms timer handler was called by the kernel.

Type-of-Service Field

In Figure 18.6, the notation [tos 0x101 appears. This is the type-of-service (TOS) field
in the IP datagram (Figure 3.2). The BSD/386 Telnet client sets the field for minimum
delay.

18A Maximum Segment Size

The maximum segment size (MSS) is the largest "chunk" of data that TCP will send to
the other end. When a connection is established, each end can announce its MSS. The
values we've seen have all been 1024. The resulting IP datagram is normally 40 bytes
larger: 20 bytes for the TCP header and 20 bytes for the IP header.

Some texts refer to this as a "negotiated" option. It is not negotiated in any way.
When a connection is established, each end has the option of announcing the MSS it

Apple Inc.
Ex. 1015 - Page 80

Maximum Segment Size 237

expects to receive. (An MSS option can only appear in a SYN segment.) If one end does
not receive an MSS option from the other end, a default of 536 bytes is assumed. (This
default allows for a 20-byte IP header and a 20-byte TCP header to fit into a 576-byte IF
datagram.)

In general, the larger the MSS the better, until fragmentation occurs. (This may not
always be true. See Figures 24.3 and 24.4 for a counterexample.) A larger segment size
allows more data to be sent in each segment, amortizing the cost of the IP and TCP
headers. When TCP sends a SYN segment, either because a local application wants to
initiate a connection, or when a connection request is received from another host, it can
send an MSS value up to the outgoing interface's MTU, minus the size of the fixed TCP
and IP headers. For an Ethernet this implies an MSS of up to 1460 bytes. Using IEEE
802.3 encapsulation (Section 2.2), the MSS could go up to 1452 bytes.

The values of 1024 that we've seen in this chapter, for connections involving
BSD/386 and SVR4, are because many BSD implementations require the MSS to be a
multiple of 512. Other systems, such as SunOS 4.1.3, Solaris 2.2, and AIX 3.2.2, all
announce an MSS of 1460 when both ends are on a local Ethernet. Measurements in
[Mogul 19931 show how an MSS of 1460 provides better performance on an Ethernet
than an MSS of 1024.

If the destination IP address is "nonlocal," the MSS normally defaults to 536. While
it's easy to say that a destination whose IP address has the same network ID and the
same subnet ID as ours is local, and a destination whose IP address has a totally differ-
ent network ID from ours is nonlocal, a destination with the same network ID but a dif-
ferent subnet ID could be either local or nonlocal. Most implementations provide a
configuration option (Appendix E and Figure E.1) that lets the system administrator
specify whether different subnets are local or nonlocal. The setting of this option deter-
mines whether the announced MSS is as large as possible (up to the outgoing interface's
MTU) or the default of 536.

The MSS lets a host limit the size of datagrams that the other end sends it. When
combined with the fact that a host can also limit the size of the datagrams that it sends,
this lets a host avoid fragmentation when the host is connected to a network with a
small MTU.

Consider our host slip, which has a SLIP link with an MTU of 296 to the router
bsdi. Figure 18.8 shows these systems and the host sun.

MTU=1500 MTU--1500

sun bsdi.
SLIP

slip

MTLI=296 MTU-296

SYN <mss 1460>

SYN <mss 256>

Figure 18.8 TCP connection from sun to slip showing MSS values.

Apple Inc.
Ex. 1015 - Page 81

238 TCP Connection Establishment and Termination Chapter 18

We initiate a TCP connection from sun to s 1. ip and watch the segments using
tcpdump. Figure 18.9 shows only the connection establishment (with the window size
advertisements removed).

/ 0.0 sun.1093 > slip.discard: S 517312000:517312000(0)
<mss 1460>

2 0.10 (0.00) slip.discard > sun.1093: S 509556225:509556225(0)
ack 517312001 <mss 256>

3 0.10 (0.00) sun.1093 > slip.discard: ack 1

Figure 18.9 tcpdump output for connection establishment from sun to slip.

The important fact here is that sun cannot send a segment with more than 256 bytes of
data, since it received an MSS option of 256 (line 2). Furthermore, since sl ip knows
that the outgoing interface's MTU is 296, even though sun announced an MSS of 1460,
it will never send more than 256 bytes of data, to avoid fragmentation. It's OK for a sys-
tem to send less than the MSS announced by the other end.

This avoidance of fragmentation works only if either host is directly connected to a
network with an MTU of less than 576. If both hosts are connected to Ethernets, and
both announce an MSS of 536, but an intermediate network has an MTU of 296, frag-
mentation will occur. The only way around this is to use the path MTU discovery
mechanism (Section 24.2).

18.5 TCP Half-Close

TCP provides the ability for one end of a connection to terminate its output, while still
receiving data from the other end. This is called a half-close. Few applications take
advantage of this capability, as we mentioned earlier.

To use this feature the programming interface must provide a way for the applica
tion to say "I am done sending data, so send an end-of-file (FIN) to the other end, but I
still want to receive data from the other end, until it sends me an end-of-file (FIN)."

The sockets API supports the half-close, if the application calls shutdown with a second argu-
ment of 1, instead of calling close. Most applications, however, terminate both directions of
the connection by calling close.

Figure 18.10 shows a typical scenario for a half-close. We show the client on the left
side initiating the half-close, but either end can do this. The first two segments are the
same: a FIN by the initiator, followed by an ACK of the FIN by the recipient. But it then
changes from Figure 18.4, because the side that receives the half-close can still send
data. We show only one data segment, followed by an ACK, but any number of data
segments can be sent. (We talk more about the exchange of data segments and

acknowledgments in Chapter 19.) When the end that received the half-close is done
sending data, it closes its end of the connection, causing a FIN to be sent, and this deliv-
ers an end-of-file to the application that initiated the half-close. When this second FIN
is acknowledged, the connection is completely closed.

Apple Inc.
Ex. 1015 - Page 82

application shut down —)

application read

deliver HOF to application

application write

client server

application close

deliver EOF to application

TCP Half-Close 239

Figure 18.10 Example of TCP's half-dose,

Why is there a half-close? One example is the Unix rsh(1) command, which exe-
cutes a command on another system. The command

sun % rsh bsdi sort < datafile

executes the sort command on the host bsdi with standard input for the rsh com-
mand being read from the file named datafile. A TCP connection is created by rsh
between itself and the program being executed on the other host. The operation of rsh
is then simple: it copies standard input (datafile) to the connection, and copies from
the connection to standard output (our terminal). Figure 18,11 shows the setup.
(Remember that a TCP connection is full-duplex.)

standard host sun host bsdi
dataflie

input
sort

Figure 18.11 The command: rsh bsdi sort < datafile,

On the remote host bsdi the rshd server executes the sort program so that its stan-
dard input and standard output are both the TCP connection. Chapter 14 of [Stevens
1990] details the Unix process structure involved, but what concerns us here is the use
of the TCP connection and the required use of TCP's half-close.

rsh- 1:16

terminal
 standard

output

TCP connection

Apple Inc.
Ex. 1015 - Page 83

kw38200
StrikeOut

240 TCP Connection Establishment and Termination Chapter 18

The sort program cannot generate any output until all of its input has been read.
All the initial data across the connection is from the rsh client to the sort server, send-
ing the file to be sorted. When the end-of-file is reached on the input (datafile), the
rsh client performs a half-close on the TCP connection. The sort server then receives
an end-of-file on its standard input (the TCP connection), sorts the file, and writes the
result to its standard output (the TCP connection). The rsh client continues reading its
end of the TCP connection, copying the sorted file to its standard output

Without a half-close, some other technique is needed to let the client tell the server
that the client is finished sending data, but still let the client receive data from the
server. Two connections could be used as an alternative, but a single connection with a
half-close is better.

18.6 TCP State Transition Diagram

We've described numerous rules regarding the initiation and termination of a TCP con-
nection. These rules can be summarized in a state transition diagram, which we show
in Figure 18.12.

The first thing to note in this diagram is that a subset of the state transitions is "typi-
cal." We've marked the normal client transitions with a darker solid arrow, and the nor-
mal server transitions with a darker dashed arrow.

Next, the two transitions leading to the ESTABLISHED state correspond to opening
a connection, and the two transitions leading from the ESTABLISHED state are for the
termination of a connection. The ESTABLISHED state is where data transfer can occur
between the two ends in both directions. Later chapters describe what happens in this
state.

We've collected the four boxes in the lower left of this diagram within a dashed box
and labeled it "active close." Two other boxes (CLOSE_WAIT and LAST ACK) are col-
lected in a dashed box with the label "passive close."

The names of the 11 states (CLOSED, LISTEN, SYN_SENT, etc.) in this figure were
purposely chosen to be identical to the states output by the netstat command. The
netstat names, in turn, are almost identical to the names originally described in
RFC 793. The state CLOSED is not really a state, but is the imaginary starting point and
ending point for the diagram.

The state transition from LISTEN to SYN_SENT is legal but is not supported in
Berkeley-derived implementations.

The transition from SYN_RCVD back to LISTEN is valid only if the SYN_RCVD
state was entered from the LISTEN state (the normal scenario), not from the SYN_SENT
state (a simultaneous open). This means if we perform a passive open (enter LISTEN),
receive a SYN, send a SYN with an ACK (enter SYN_RCVD), and then receive a reset
instead of an ACK, the end point returns to the LISTEN state and waits for another con-
nection request to arrive.

Apple Inc.
Ex. 1015 - Page 84

ecv: ACK r-- -
I send: <nothing>

passive close

TCP State Transition Diagram. 241

64 •

lAr
SYN_RCVD

starting point

(CLOSED

app!: passive open
send: <nothing>

passive open

send: SYN, ACK
simultaneous open

recv: SYN app!: close
Or timeout

SYN_SENT
active open

7
1 I recv:

ESTABLISHED
FIN I

-to(CLOSE_WATI)1
 - send:- ICI- t t

1 1 i 1
C.\.9 appl: i close 1

X44 .6-' send: !FIN
e'Cs. i

7
V

(Fll\r_wArr_i

r Pet. „..
ACK sP
<nothing> ' Ci -/C (--4.,

app!:
send:

close
FIN

data transfer state

recv:
send:

recv: FIN
send: ACK

simultaneous close
(—CLOSING

recv:
send:

ACK
<nothing>

TIME WAIT
w

FIN WAIF 2)
recv: FIN

send: ACK

2MSL timeout
active close

® indicate normal transitions for client
indicate normal transitions or server

app!: indicate state transitions taken when application issues operation
recv: indicate state transitions taken when segment received
send: indicate what is sent for this transition

Figure 18.12 TCP state transition diagram.

Apple Inc.
Ex. 1015 - Page 85

kw38200
StrikeOut

kw38200
StrikeOut

kw38200
StrikeOut

kw38200
StrikeOut

kw38200
StrikeOut

242 TCP Connection Establishment and Termination Chapter 18

Figure 18.13 shows the normal TCP connection establishment and termination,
detailing the different states through which the client and server pass. It is a redo of
Figure 18.3 showing only the states.

client

(active open) SYN_SENT

ESTABLISHED

(active close) PIN WAIT

FIN_WAIT_2

server

LISTEN (passive open)

SYN_RCVD

ESTABT .TRHED

CLOSE_WAIT (passive close)

LAST ACK

CLOSED

Figure 18.13 TCP states corresponding to normal connection establishment and termination.

We assume in Figure 18.13 that the client on the left side does an active open, and the
server on the right side does a passive open. Although we show the client doing the
active close, as we mentioned earlier, either side can do the active close.

You should follow through the state changes in Figure 18,13 using the state transi-
tion diagram in Figure 18.12, making certain you understand why each state change
takes place.

2MSL Wait State

The TIME_WAIT state is also called the 2MSL wait state. Every implementation must
choose a value for the maximum segment lifetime (MSL). It is the maximum amount of

Apple Inc.
Ex. 1015 - Page 86

chop 18.6 TCP State Transition Diagram 243

time any segment can exist in the network before being discarded. We know this time
limit is bounded, since TCP segments are transmitted as IP datagrams, and the IP data-
gram has the TTL field that limits its lifetime.

RFC 793 [Postel 1981c] specifies the MSL as 2 minutes. Common implementation values, how-
ever, are 30 seconds, 1 minute, or 2 minutes.

Recall from Chapter 8 that the real-world limit on the lifetime of the IP datagram is
based on the number of hops, not a timer.

Given the MSL value for an implementation, the rule is: when TCP performs an
active close, and sends the final ACK, that connection must stay in the TIME_WAIT
state for twice the MSL. This lets TCP reseed the final ACK in case this ACK is lost (in
which case the other end will time out and retransmit its final FIN).

Another effect of this 2MSL wait is that while the TCP connection is in the 2MSL
wait, the socket pair defining that connection (client IP address, client port number,
server IP address, and server port number) cannot be reused. That connection can only
be reused when the 2MSL wait is over.

Unfortunately most implementations (i.e., thel'Berkeley-derived ones) impose a
more stringent constraint. By default a local port number cannot be reused while that
port number is the local port number of a socket pair that is in the 2MSL wait. We'll see
examples of this common constraint below.

Some implementations and APIs provide a way to bypass this restriction. With the sockets
API, the sO_REUSEADDR socket option can be specified. It lets the caller assign itself a local
port number that's in the 2MSL wait, but we'll see that the rules of TCP still prevent this port
number from being part of a connection that is in the 2MSL wait.

Any delayed segments that arrive for a connection while it is in the 2MSL wait are
discarded. Since the connection defined by the socket pair in the 2MSL wait cannot be
reused during this time period, when we do establish a valid connection we know that
delayed segments from an earlier incarnation of this connection cannot be misinter-
preted as being part of the new connection. (A connection is defined by a socket pair.
New instances of a connection are called incarnations of that connection.)

As we said with Figure 18.13, it is normally the client that does the active close and
enters the TIME_WAIT state. The server usually does the passive close, and does not go
through the TIME_WAIT state. The implication is that if we terminate a client, and
restart the same client immediately, that new client cannot reuse the same local port
number. This isn't a problem, since clients normally use ephemeral ports, and don't
care what the local ephemeral port number is.

With servers, however, this changes, since servers use well-known ports. If we ter-
minate a server that has a connection established, and immediately try to restart the
server, the server cannot assign its well-known port number to its end point, since that
port number is part of a connection that is in a 2MSL wait. It may take from 1 to 4 min-
utes before the server can be restarted.

We can see this scenario using our sock program. We start the server, connect to it
from a client, and then terminate the server:

Apple Inc.
Ex. 1015 - Page 87

244 TCP Connection Establishment and Termination Chapter 18

sun % sock —v —s 6666 start as server, listening oii)port 6666
(execute client on bsdi that connects to this port)

connection on 140.252.13.33.6666 from 140.252.13.35.1081
"? then type interrupt key to terminate server

sun % sock — s 6666 and immediately try to restart server on same port
can't bind local address: Address already in use

sun % netstat let's check the state of the connection
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 sun.6666 bsdi.1081 TIME_WAIT

many more lines that are deleted

When we try to restart the server, the program outputs an error message indicating it
cannot bind its well-known port number, because it's already in use (i.e., it's in a 2MSL
wait).

We then immediately execute net stat to see the state of the connection, and verify
that it is indeed in the TIME_WAIT state.

If we continually try to restart the server, and measure the time until it succeeds, we can mea-
sure the 2MSL value. On SunOS 4.1.3, SVR4, BSD/386, and AIX 3.2.2, it takes 1 minute to
restart the server, meaning the MSL is 30 seconds. Under Solaris 2.2 it takes 4 minutes to
restart the server, implying an MSL of 2 minutes.

We can see the same error from a client, if the client tries to allocate a port that is
part of a connection in the 2MSL wait (something clients normally don't do):

sun % sock —v bsdi echo start as client, connect to echo server
connected on 140.252.13.33.1162 to 140.252.13.35.7
hello there type this line
hello there and it's echoed by the server
"D type end-of-file character to terminate client

sun % sock -b1162 bsdi echo
can't bind local address: Address already in use

The first time we execute the client we specify the -v option to see what the local port
number is (1162). The second time we execute the client we specify the —b option,
telling the client to assign itself 1162 as its local port number. As we expect, the client
can't do this, since that port number is part of a connection that is in a 2MSL wait.

We need to reemphasize one effect of the 2MSL wait because we'll encounter it in
Chapter 27 with PIP, the File Transfer Protocol. As we said earlier, it is a socket pair
(that is, the 4-tuple consisting of a local IP address, local port, remote IP address and
remote port) that remains in the 2MSL wait. Although many implementations allow a
process to reuse a port number that is part of a connection that is in the 2MSL wait (nor-
mally with an option named SO_REUSEADDR), TCP cannot allow a new connection to be
created with the same socket pair. We can see this with the following experiment:

sun % sock —v —s 6666 start as server, listening on port 6666
(execute client on bsdi that connects to this port)

Apple Inc.
Ex. 1015 - Page 88

section 18.6 TCP State Transition Diagram 245

connection on 140.252.13.33.6666 from 140.252.13,35.1098
then type interrupt key to terminate server

sun % sock —b6666 bsdi 1098 try to start as client with local port 6666
can't bind local address: Address already in use

sun % sock —A —b6666 bsdi 1098 try again, this time with -A option
active open error: Address already in use

The first time we run our sock program, we rim it as a server on port 6666 and connect
to it from a client on the host bsdi. The client's ephemeral port number is 1098. We
terminate the server so it does the active close. This causes the 4-tuple of 140.252.13.33
(local IP address), 6666 (local port number), 140.252.13.35 (foreign IP address), and 1098
(foreign port number) to enter the 2MSL wait on the server host.

The second time we run the program, we run it as a client and try to specify the
local port number as 6666 and connect to host bsdi on port 1098. But the program gets
an error when it tries to assign itself the local port number of 6666, because that port
number is part of the 4-tuple that is in the 2MSL wait state.

To try and get around this error we run the-lprograrn again, specifying the —A
option, which enables the SO_REUSEADDR option that we mentioned. This lets the pro-
gram assign itself the port number 6666, but we then get an error when it tries to issue
the active open. Even though it can assign itself the port number 6666, it cannot create a
connection to port 1098 on the host bsdi, because the socket pair defining that connec-
tion is in the 2MSL wait state.

What if we try to establish the connection from the other host? First we must restart
the server on sun with the —A flag, since the local port it needs (6666) is part of a con-
nection that is in the 2MSL wait:

sun % sock —A —s 6666 start as server, listening on port 6666

Then, before the 2MSL wait is over on sun, we start the client on bsdi:

bsdi % sock -b1098 sun 6666
connected on 140.252.13.35.1098 to 140.252.13.33.6666

Unfortunately it works! This is a violation of the TCP specification, but is supported by
most Berkeley-derived implementations. These implementations allow a new connec-
tion request to arrive for a connection that is in the TIME_WAIT state, if the new
sequence number is greater than the final sequence number from the previous incarna-
tion of this connection. In this case the ISN for the new incarnation is set to the final
sequence number from the previous incarnation plus 128,000. The appendix of
RFC 1185 [Jacobson, Braden, and Zhang 1990] shows the pitfalls still possible with this
technique.

This implementation feature lets a client and server continually reuse the same port
number at each end for successive incarnations of the same connection, but only if the
server does the active close. We'll see another example of this 2MSL wait condition in
Figure 27.8, with FTP. See Exercise 18.5 also.

Apple Inc.
Ex. 1015 - Page 89

246 TCP Connection Establishment and Termination Chapter 18

Quiet Time Concept

The 2MSL wait provides protection against delayed segments from an earlier incarna-
tion of a connection from being interpreted as part of a new connection that uses the
same local and foreign IF addresses and port numbers. But this works only if a host
with connections in the 2MSL wait does not crash.

What if a host with ports in the 2MSL wait crashes, reboots within MSL seconds,
and immediately establishes new connections using the same local and foreign IP
addresses and port numbers corresponding to the local ports that were in the 2MSL
wait before the crash? in this scenario, delayed segments from the connections that
existed before the crash can be misinterpreted as belonging to the new connections cre-
ated after the reboot. This can happen regardless of how the initial sequence number is
chosen after the reboot.

To protect against this scenario, RFC 793 states that TCP should not create any con-
nections for MSL seconds after rebooting. This is called the quiet time.

Few implementations abide by this since most hosts take longer than MSL seconds to reboot
after a crash.

FIN_WAIT_2 State

In the FIN_WAT112 state we have sent our FIN and the other end has acknowledged it.
Unless we have done a half-close, we are waiting for the application on the other end to
recognize that it has received an end-of-file notification and close its end of the connec-
tion, which sends us a FIN. Only when the process at the other end does this close will
our end move from the FIN_WAIT_2 to the TIME_WAIT state.

This means our end of the connection can remain in this state forever. The other
end is still in the CLOSE_WAIT state, and can remain there forever, until the application
decides to issue its close.

Many Berkeley-derived implementations prevent this infinite wait in the FIN_WAIT_2 state as
follows. If the application that does the active close does a complete close, not a half-close
indicating that it expects to receive data, then a timer is set. If the connection is idle for 10 min-
utes plus 75 seconds, TCP moves the connection into the CLOSED state. A comment in the
code acknowledges that this implementation feature violates the protocol specification.

18.7 Reset Segments

We've mentioned a bit in the TCP header named RST for "reset." In general, a reset is
sent by TCP whenever a segment arrives that doesn't appear correct for the referenced
connection. (We use the term "referenced connection" to mean the connection specified
by the destination IP address and port number, and the source IP address and port
number. This is what RFC 793 calls a socket.)

Apple Inc.
Ex. 1015 - Page 90

ction 18.7 Reset Segments 247

Connection Request to Nonexistent Port

A common case for generating a reset is when a connection request arrives and no pro-
cess is listening on the destination port. In the case of UDP, we saw in Section 6.5 that
an ICMP port unreachable was generated when a datagram arrived for a destination
port that was not in use. TCP uses a reset instead.

This example is trivial to generate--:-we use the Telnet client and specify a port
number that's not in use on the destination:

bsdi % telnet svr4 20000 port 20000 should not be in use
Trying 140.252.13.34...
telnet: Unable to connect to remote host: Connection refused

This error message is output by the Telnet client immediately. Figure 18.14 shows the
packet exchange corresponding to this command.

1 0.0 bsdi.1087 > svr4.20000: S 297416193:297416193(0)
win 4096 <mss 1024>
[tos 0x10]

2 0.003771 (0.0038) svr4.20000 > bsdi.1087: R 0:0(0) ack 297416194 win 0

Figure 18.14 Reset generated by attempt to open connection to nonexistent port.

The values we need to examine in this figure are the sequence number field and
acknowledgment number field in the reset. Because the ACK bit was not on in the
arriving segment, the sequence number of the reset is set to 0 and the acknowledgment
number is set to the incoming ISN plus the number of data bytes in the segment.
Although there is no real data in the arriving segment, the SYN bit logically occupies 1
byte of sequence number space; therefore, in this example the acknowledgment number
in the reset is set to the ISN, plus the data length (0), plus one for the SYN bit.

Aborting a Connection

We saw in Section 18.2 that the normal way to terminate a connection is for one side to
send a FIN. This is sometimes called an orderly release since the FIN is sent after all pre-
viously queued data has been sent, and there is normally no loss of data. But it's also
possible to abort a connection by sending a reset instead of a FIN. This is sometimes
called an abortive release.

Aborting a connection provides two features to the application: (1) any queued data
is thrown away and the reset is sent immediately, and (2) the receiver of the RST can tell
that the other end did an abort instead of a normal close. The API being used by the
application must provide a way to generate the abort instead of a normal close.

We can watch this abort sequence happen using our sock program. The sockets
API provides this capability by using the "linger on close" socket option (SO_LINGER).
We specify the -L option with a linger time of 0. This causes the abort to be sent when
the connection is closed, instead of the nointal FIN. We'll connect to a server version of
our sock program on svr4 and type one line of input:

Apple Inc.
Ex. 1015 - Page 91

248 TCP Connection Establishment and Termination Chapter 18

bsdi % sock -IX svr4 8888 this is the client; server shown later
hello, world type one line of input that's sent to other end
'D type end-of-file character to terminate client

Figure 18.15 shows the t cpdump output for this example. (We have deleted all the win-
dow advertisements in this figure, since they add nothing to the discussion.)

1 0.0 bsdi.1099 > svr4.8888: S 671112193:671112193(0)
<mss 1024>

2 0.004975 (0.0050) svr4.8888 > bsdi.1099: S 3224959489:3224959489(0)
ack 671112194 <mss 1024>

3 0.006656 (0.0017) bsdi.1099 > svr4.8888: . ack 1

4 4.833073 (4.8264) bsdi.1099 > svr4.8888: P 1:14(13) ack 1
5 5.026224 (0.1932) svr4.8888 > bsdi.1099: ack 14

6 9.527634 (4.5014) bsdi.1099 > svr4.8888: R 14:14(0) ack 1

Figure 18.15 Aborting a connection with a reset (RST) instead of a FIN.

Lines 1-3 show the normal connection establishment. Line 4 sends the data line
that we typed (12 characters plus the Unix newline character), and line 5 is the acknowl-
edgment of the received data.

Line 6 corresponds to our typing the end-of-file character (Control-D) to terminate
the client. Since we specified an abort instead of a normal close (the —LO command-line
option), the TCP on bsdi sends an RST instead of the normal FIN. The RST segment
contains a sequence number and acknowledgment number. Also notice that the RST
segment elicits no response from the other end—it is not acknowledged at all. The
receiver of the reset aborts the connection and advises the application that the connec-
tion was reset.

We get the following error on the server for this exchange:

svr4 % sock -s 8888 run as server, listen on port 8888
hello, world thisiswhatthedientumtomr
read error: Connection reset by peer

This server reads from the network and copies whatever it receives to standard output
It normally ends by receiving an end-of-file notification from its TCP, but here we see
that it receives an error when the RST arrives. The error is what we expect: the connec-
tion was reset by the peer.

Detecting Half-Open Connections

A TCP connection is said to be half-open if one end has closed or aborted the connection
without the knowledge of the other end. This can happen any time one of the two hosts
crashes. As long as there is no attempt to transfer data across a half-open connection,
the end that's still up won't detect that the other end has crashed.

Another common cause of a half-open connection is when a client host is powered
off, instead of terminating the client application and then shutting down the client host.
This happens when PCs are being used to run Telnet clients, for example, and the users

Apple Inc.
Ex. 1015 - Page 92

eficirt 18.7 Reset Segments 249

power off the PC at the end of the day. If there was no data transfer going on when the
PC was powered off, the server will never know that the client disappeared. When the
user comes in the next morning, powers on the PC, and starts a new Telnet client, a new
occurrence of the server is started on the server host This can lead to many half-open
TCP connections on the server host. (In Chapter 23 we'll see a way for one end of a TCP
connection to discover that the other end has disappeared using TCP's keepalive
option.)

We can easily create a half-open connection. We'll execute the Telnet client on
bsdi, connecting to the discard server on svr4. We type one line of input, and watch it
go across with tcpdump, and then disconnect the Ethernet cable on the server's host,
and reboot the server host. This simulates the server host crashing. (We disconnect the
Ethernet cable before rebooting the server to prevent it from sending a FIN out the open
connections, which some TCPs do when they are shut down.) After the server has
rebooted, we reconnect the cable, and try to send another line from the client to the
server. Since the server's TCP has rebooted, and lost all memory of the connections that
existed before it was rebooted, it knows nothing about the connection that the data seg-
ment references. The rule of TCP is that the receiver responds with a reset.

bsdi % telnet svr4 discard
Trying 140.252.13.34...
Connected to svr4.
Escape character is "]'
hi there

another line
Connection closed by foreign host.

start the client

this line is sent OK
here is where we reboot the server host
and this one elicits a reset

Figure 18.16 shows the tcpdump output for this example. (We have removed from this
output the window advertisements, the type-of-service information, and the MSS
announcements, since they add nothing to the discussion.)

1 0.0 bsdi.1102 > svr4.discard: 5 1591752193:1591752193(0)
2 0.004811 (0.0048) svr4.discard > bsdi.1102: S 26368001:26368001(0)

ack 1591752194
3 0.006516 (0.0017) bsdi.1102 > svr4.discard: . ack 1

4 5.167679 (5.1612) bsdi.1102 > svr4.discard: P 1:11(10) ack 1
5 5.201662 (0.0340) svr4.discard > bsdi.1102: . ack 11

6 194.909929 (189.7083) bsdi.1102 > svr4.discard: P 11:25(14) ack 1
7 194.914957 (0.0050) arp who-has bsdi tell svr4
8 194.915678 (0.0007) arp reply bsdi is-at 0:0:c0:6f:2d:40
9 194.918225 (0.0025) svr4.discard > bsdi.1102: R 26368002:26368002(0)

Figure 18.16 Reset in response to data segment on a half-open connection.

Lines 1-3 are the normal connection establishment. Line 4 sends the line "hi there"
to the discard server, and line 5 is the acknowledgment.

At this point we disconnect the Ethernet cable from svr4, reboot it, and reconnect
the cable. This takes almost 190 seconds. We then type the next line of input to the
client ("another line") and when we type the return key the line is sent to the server

Apple Inc.
Ex. 1015 - Page 93

250 TCP Connection Establishment and Termination Chapter 18

(line 6 in Figure 18.16). This elicits a response from the server, but note that since the
server was rebooted, its ARP cache is empty, so an ARP request and reply are required
(lines 7 and 8). Then the reset is sent in line 9. The client receives the reset and outputs
that the connection was terminated by the foreign host (The final message output by
the Telnet client is not as informative as it could be.)

18.8 Simultaneous Open

It is possible, although improbable, for two applications to both perform an active open
to each other at the same time. Each end must transmit a SYN, and the SYNs must pass
each other on the network. It also requires each end to have a local port number that is
well known to the other end. This is called a simultaneous open.

For example, one application on host A could have a local port of 7777 and perform
an active open to port 8888 on host B. The application on host B would have a local port
of 8888 and perform an active open to port 7777 on host A.

This is not the same as connecting a Telnet client on host A to the Telnet server on
host B, at the same time that a Telnet client on host B is connecting to the Telnet server
on host A. In this Telnet scenario, both Telnet servers perform passive opens, not active
opens, and the Telnet clients assign themselves an ephemeral port number, not a port
number that is well known to the other Telnet server.

TCP was purposely designed to handle simultaneous opens and the rule is that
only one connection results from this, not two connections. (Other protocol suites,
notably the OS1 transport layer, create two connections in this scenario, not one.)

When a simultaneous open occurs the state transitions differ from those shown in
Figure 181.3. Both ends send a SYN at about the same time, entering the SYN_SENT
state, When each end receives the SYN, the state changes to SYN_RCVD (Figure 18.12),
and each end resends the SYN and acknowledges the received SYN. When each end
receives the SYN plus the ACK, the state changes to ESTABLISHED. These state
changes are summarized in Figure 18.17.

(active open) SYN_SENT

SYN_RCVD

ESTABLISHED

SYN_SENT (active open)

SYN_RCVD

ESTABLISHED

Figure 18.17 Segments exchanged during simultaneous open.

Apple Inc.
Ex. 1015 - Page 94

ection 18.8 Simultaneous Open 251

A simultaneous open requires the exchange of four segments, one more than the
normal three-way handshake. Also notice that we don't call either end a client or a
server, because both ends act as client and server.

Example

It is possible, though hard, to generate a simultaneous open. The two ends must be
started at about the same time, so that the SYNs cross each other. Having a long round-
trip time between the two ends helps, to let the SYNs cross. To do this we'll execute one
end on our host bsdi, and the other end on the host vangogh cs berke ley . edu.
Since there is a dialup SLIP link between them, the round-trip time should be long
enough (a few hundred milliseconds) to let the SYNs cross.

One end (bsdi) assigns itself a local port of 8888 (the -b command-line option) and
performs an active open to port 7777 on the other host:

bsdi % sock -v -1)8888 vangogh.cs.berkeley.edu 7777
connected on 140.252.13.35.8888 to 128.32.130.2.7777
TCP_MAXSEG = 512
hello, world we type this line
and hi there this line was typed on other end
connection closed by peer this is output when FIN received

The other end is started at about the same time, assigns itself a local port of 7777, and
performs an active open to port 8888:

vangogh % sock -v -b7777 bsdi.tuc.noao.edu 8888
connected on 128.32.130.2.7777 to 140.252.13.35.8888
TCP_MAXSEG = 512
hello, world this is typed on the other end
and hi there we type this line
"D and then type our EOF character

We specify the -v flag to our sock program to verify the IP address and port numbers
on each end of the connection. This flag also prints the MSS used by each end of the
connection. We also type in one line on each end, which is sent to the other end and
printed, to verify that both ends are indeed talking to each other.

Figure 18.18 shows the exchange of segments across the connection. (We have
deleted some new TCP options that appear in the original SYN from vangogh, a
4.4BSD system. We describe these newer options in Section 18.10.) Notice the two
SYNs (lines 1 and 2) followed by the two SYNs with ACKs (lines 3 and 4). These per-
form the simultaneous open.

Line 5 shows the input line "hello, world" going from bsdi to vangogh, with the
acknowledgment in line 6. Lines 7 and 8 correspond to the line "and hi there" going in
the other direction. Lines 9-12 show the normal connection termination.

Many Berkeley-derived implementations do not support the simultaneous open correctly. On
these systems, if you can get the SYNs to cross, you end up with an infinite exchange of seg-
ments, each with a SYN and an ACK, in each direction. The transition from the SYN SENT
state to the SYN_RCVD state in Figure 18.12 is not always tested in many implementations.

Apple Inc.
Ex. 1015 - Page 95

252 TCP Connection Establishment and Termination Chapter 18

1 0.0

2 0.213782 (0.2138)

3 0.215399 (0.0016)

4 0.340405 (0.1250)

5 5.633142 (5.2927)
6 6.100366 (0.4672)

7 9.640214 (3.5398)
8 9.796417 (0.1562)

9 13.060395 (3.2640)
10 13.061828 (0.0014)
11 13.079769 (0.0179)
12 13.299940 (0.2202)

bsdi.8888 > vangogh.7777:

vangogh.7777 > bsdi.8888:

bsdi.8888 > vangogh.7777:

vangogh.7777 > bsdi.8888:

bsdi.8888 > vangogh.7777:
vangogh.7777 > bsdi.8888:

vangogh.7777 > bsdi.8888:
bsdi.8888 > vangogh.7777:

vangogh.7777 > bsdi.8888:
bsdi.8888 > vangogh.7777:
bsdi.8888 > vangogh.7777:
vangogh.7777 > bsdi.8888:

S 91904001:91904001(0)
win 4096 <mss 512>

S 1058199041:1058199041(0)
win 8192 <mss 512>

S 91904001:91904001(0)
ack 1058199042 win 4096
<mss 512>

S 1058199041:1058199041(0)
ack 91904002 win 8192
<mss 512>

P 1:14(13) ack 1 win 4096
ack 14 win 8192

P 1:14(13) ack 14 win 8192
ack 14 win 4096

F 14:14(0) ack 14 win 8192
. ack 15 win 4096
F 14:14(0) ack 15 win 4096
. ack 15 win 8192

Figure 18.18 Exchange of segments during simultaneous open.

18.9 Simultaneous Close
a

We said earlier that one side (often, but not always, the client) performs the active close,
causing the first FIN to be sent. It's also possible for both sides to perform an active
close, and the TCP protocol allows for this simultaneous close.

In terms of Figure 18,12, both ends go from ESTABLISHED to FIN_WAITi when
the application issues the close. This causes both FINs to be sent, and they probably
pass each other somewhere in the network. When the FIN is received, each end transi-
tions from FIN_WAIT_1 to the CLOSING state, and each state sends its final ACK.
When each end receives the final ACK, the state changes to TIME_WAIT. Figure 18.19
summarizes these state changes.

(active close) FIN_WAIT_I.

CLOSING

TIME WAIT

FINWAIT_I. (active close)

CLOSING

TIME_WAIT

Figure 18.19 Segments exchanged during simultaneous close.

With a simultaneous close the same number of segments are exchanged as in the
nolinal close,

Apple Inc.
Ex. 1015 - Page 96

ASection 18.10 TCP Options 253

8 10 TCP Options

The TCP header can contain. options (Figure 17.2). The only options defined in the orig-
inal TCP specification are the end of option list, no operation, and the maximum seg-
ment size option. We have seen the MSS option in almost every SYN segment in our
examples.

Newer RFCs, specifically RFC 1323 [Jacobson, Braden, and Borman 1992], define
additional TCP options, most of which are found only in the latest implementations.
(We describe these new options in Chapter 24.) Figure 18.20 shows the format of the
current TCP options—those from RFC 793 and RFC 1323.

End of option list:

No operation:

Maximum segment size:

Window scale factor:

Timestamp:

kind=0

1 byte

kind=1

1 byte

maximum
kind=2 len=4 segment

size (MSS)
1 byte 1 byte 2 bytes

kind=3 len=3 shift
count

1 byte byte 1 byte

kind=8len-1Q timestamp value timestamp echo reply

1 byte 1 byte 4 bytes 4 bytes

Figure 18.20 TCP options.

Every option begins with a 1-byte kind that specifies the type of option. The options
with a kind of 0 and 1 occupy a single byte. The other options have a len byte that fol-
lows the kind byte. The length is the total length, including the kind and len bytes.

The reason for the no operation (NOP) option is to allow the sender to pad fields to
a multiple of 4 bytes. If we initiate a TCP connection from a 4.4BSD system, the follow-
ing TCP options are output by tcpdump on the initial SIN segment:

<mss 512,nop,wscale O,nop,nop,timestamp 146647 0>

The MSS option is set to 512, followed by a NOP, followed by the window scale option.
The reason for the first NOP is to pad the 3-byte window scale option to a 4-byte

Apple Inc.
Ex. 1015 - Page 97

254 TCP Connection Establishment and Termination Chapter 18

boundary. Similarly, the 10-byte timestamp option is preceded by two NOPs, to occupy
12 bytes, placing the two 4-byte timestamps onto 4-byte boundaries.

Four other options have been proposed, with kinds of 4, 5, 6, and 7 called the selective-ACK
and echo options. We don't show them in Figure 18.20 because the echo options have been
replaced with the timestamp option, and selective ACKs, as currently defined, are still under
discussion and were not included in RFC 1323. Also, the T/TCP proposal for TCP transactions
(Section 24.7) specifies three options with kinds of 11, 12, and 13.

18.11 TCP Server Design

We said in Section 1.8 that most TCP servers are concurrent. When a new connection
request arrives at a server, the server accepts the connection and invokes a new process
to handle the new client. Depending on the operating system, various techniques are
used to invoke the new server. Under Unix the common technique is to create a new
process using the fork function. Lightweight processes (threads) can also be used, if
supported.

What we're interested in is the interaction of TCP with concurrent servers. We need
to answer the following questions: how are the port numbers handled when a server
accepts a new connection request from a client, and what happens if multiple connec-
tion requests arrive at about the same time?

TCP Server Port Numbers

We can see how TCP handles the port numbers by watching any TCP server. We'll
watch the Telnet server using the net stat command. The following output is on a
system with no active Telnet connections. (We have deleted all the lines except the one

showing the Telnet server.)
sun % netstat -a -n -f met
Active Internet connections (including servers)
Prato Recv-Q Send-Q Local Address
tcp 0 0 *.23

Foreign Address
.

(state)
LISTEN

The -a flag reports on all network end points, not just those that are ESTABLISHED.
The -n flag prints IP addresses as dotted-decimal numbers, instead of trying to use the

DNS to convert the address to a name, and prints numeric port numbers (e.g., 23)
instead of service names (e.g., Telnet). The —f inet option reports only TCP and UDP
end points.

The local address is output as * . 2 3, where the asterisk is normally called the
wildcard character. This means that an incoming connection request (i.e., a SYN) will be
accepted on any local interface. If the host were multihomed, we could specify a single
IP address for the local IP address (one of the host's IP addresses), and only connections
received on that interface would be accepted. (We'll see an example of this later in this
section.) The local port is 23, the well-known port number for Telnet.

The foreign address is output as * . *, which means the foreign IP address and for-
eign port number are not known yet, because the end point is in the LISTEN state, wait-
ing for a connection to arrive.

Apple Inc.
Ex. 1015 - Page 98

ection 18.11 TCP Server Design 255

We now start a Telnet client on the host slip (140.252.13.65) that connects to this
server. Here are the relevant lines from the net stat output:

Proto Recv-Q
tcp 0
tcp 0

Send-Q Local Address
0 140.252.13.33.23
0 *.23

Foreign Address (state)
140.252.13.65.1029 ESTABLISHED
* * LISTEN

The first line for port 23 is the ESTABLISHED connection. All four elements of the local
and foreign address are filled in for this connection: the local IP address and port num-
ber, and the foreign IF address and port number. The local IP address corresponds to
the interface on which the connection request arrived (the Ethernet interface,
140.252.13.33).

The end point in the LISTEN state is left alone. This is the end point that the con-
current server uses to accept future connection requests. It is the TCP module in the
kernel that creates the new end point in the ESTABLISHED state, when the incoming
connection request arrives and is accepted. Also notice that the port number for the
ESTABLISHED connection doesn't change: it's 23, the same as the LISTEN end point.

We now initiate another Telnet client from thesame client (slip) to this server.
Here is the relevant net stat output:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 140.252.13.33.23 140.252.13.65.1030 ESTABLISHED
tcp 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISHED
tcp 0 0 *.23 * * LISTEN

We now have two ESTABLISHED connections from the same host to the same server.
Both have a local port number of 23. This is not a problem for TCP since the foreign
port numbers are different. They must be different because each of the Telnet clients
uses an ephemeral port, and the definition of an ephemeral port is one that is not cur-
rently in use on that host (s 1 ip).

This example reiterates that TCP demultiplexes incoming segments using all four
values that comprise the local and foreign addresses: destination IP address, destination
port number, source IP address, and source port number. TCP cannot determine which
process gets an incoming segment by looking at the destination port number only. Also,
the only one of the three end points at port 23 that will receive incoming connection
requests is the one in the LISTEN state. The end points in the ESTABLISHED state can-
not receive SYN segments, and the end point in the LISTEN state cannot receive data
segments.

Next we initiate a third Telnet client, from the host solaris that is across the SLIP
link from sun, and not on its Ethernet.

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 140.252.1.29.23 140.252.1.32.34603 ESTABLISHED
tcp 0 0 140.252.13.33.23 140.252.13.65.1030 ESTABLISHED
tcp 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISHED
tcp 0 *.23 * * LISTEN

The local IP address of the first ESTABLISHED connection now corresponds to the inter-
face address of SLIP link on the multihorned host sun (140.252.1.29).

Apple Inc.
Ex. 1015 - Page 99

256 TCP Connection Establishment and Termination Chapter 18

Restricting Local IP Address

We can see what happens when the server does not wildcard its local IP address, setting
it to one particular local interface address instead. If we specify an IP address (or host-
name) to our sock program when we invokeAt as a server, that IP address becomes the
local IP address of the listening end point For example

sun % sock -s 140.252.1.29 8888

restricts this server to connections arriving on the SLIP interface (140.252.1.29). The
net st at output reflects this:

Proto Recv-Q Send-Q Local Address Foreign Address .(state)
tcp 0 0 140.252.1.29.8888 *.* LISTEN

If we connect to this server across the SLIP link, from the host 3 CI 1 ari s, it works.

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 140.252.1.29.8888 140.252.1.32.34614 ESTABLISHED
tcp 0 0 140.252.1.29.8888 *.* LISTEN

But if we try to connect to this server from a host on the Ethernet (140.252.13), the con-
nection request is not accepted by the TCP module. If we watch it with tcpdump the
SYN is responded to with an RST, as we show in Figure 18.21.

1 0.0 bsdi.1026 > sun.8888: S 3657920001:3657920001(0)
win 4096 <mss 1024>

2 0.000859 (0.0009) sun.8888 > bsdi.1026: R 0:0(0) ack 3657920002 win 0

Figure 18.21 Rejection of a connection request based on local IP address of server.

The server application never sees the connection request—the rejection is done by the
kernel's TCP module, based on the local IP address specified by the application.

Restricting Foreign IP Address

In Section 11.12 we saw that a LTDP server can normally specify the foreign IP address
and foreign port, in addition to specifying the local IP address and local port. The inter-
face functions shown in RFC 793 allow a server doing a passive open to have either a
fully specified foreign socket (to wait for a particular client to issue an active open) or a
unspecified foreign socket (to wait for any client).

Unfortunately, most APIs don't provide a way to do this. The server must leave the
foreign socket unspecified, wait for the connection to arrive, and then examine the IP
address and port number of the client.

Figure 18.22 summarizes the three types of address bindings that a TCP server can
establish for itself. In all cases, 1port is the server's well-known port and localIP must be
the IF address of a local interface. The ordering of the three rows in the table is the
order that the TCP module applies when trying to determine which local end point
receives an incoming connection request. The most specific binding (the first row, if
supported) is tried first, and the least specific (the last row with both IP addresses wild-
carded) is tried last.

Apple Inc.
Ex. 1015 - Page 100

TCP Server Design 257 tibn 18.11

Local Address Foreign Address Description

- locallP.Iport
locallP.Iport

* .lport

foreignr.P.fport
* .*
* .*

restricted to one client (normally not supported)
restricted to connections arriving on one local interface: localIP
receives all connections sent to sport

Figure 18.22 Specification of local and foreign lP addresses and port number for TCP server.

Incoming Connection Request Queue

A concurrent server invokes a new process to handle each client, so the listening server
should always be ready to handle the next incoming connection request. That's the
underlying reason for using concurrent servers. But there is still a chance that multiple
connection requests arrive while the listening server is creating a new process, or while
the operating system is busy running other higher priority processes. How does TCP
handle these incoming connection requests while the listening application is busy?

In Berkeley-derived implementations the following rules apply.

1. Each listening end point has a fixed length queue of connections that have been
accepted by TCP (i.e., the three-way handshake is complete), but not yet
accepted by the application.

Be careful to differentiate between TCP accepting a connection and placing it on
this queue, and the application taking the accepted connection off this queue.

2. The application specifies a limit to this queue, commonly called the backlog.
This backlog must be between 0 and 5, inclusive. (Most applications specify the
maximum value of 5.)

3. When a connection request arrives (i.e., the SYN segment), an algorithm is
applied by TCP to the current number of connections already queued for this
listening end point, to see whether to accept the connection or not. We would
expect the backlog value specified by the application to be the maximum num-
ber of queued connections allowed for this end point, but it's not that simple.
Figure 18.23 shows the relationship between the backlog value and the real max-
imum number of queued connections allowed by traditional Berkeley systems
and Solaris 2.2.

Backlog value
Max # of queued connections
Traditional BSD Solaris 2.2

0

2
3
4
5

Figure 18.23 Maximum number of accepted connections allowed for listening endpoint.

0
1
2
3
4
5

2
4
5
7
8

Apple Inc.
Ex. 1015 - Page 101

258 TCP Connection Establishment and Termination Chapter 18

Keep in mind that this backlog value specifies only the maximum number of
queued connections for one listening end point, all of which have already been
accepted by TCP and are waiting to be accepted by the application. This back-
log has no effect whatsoever on the maximum number of established connec-
tions allowed by the system, or on the number of clients that a concurrent server
can handle concurrently.

The Solaris values in this figure are what we expect. The traditional BSD values are (for
some unknown reason) the backlog value times 3, divided by 2, plus 1.

4. If there is room on this listening end point's queue for this new connection
(based on Figure 18.23), the TCP module ACKs the SYN and completes the con-
nection. The server application with the listening end point won't see this new
connection until the third segment of the three-way handshake is received.
Also, the client may think the server is ready to receive data when the client's
active open completes successfully, before the server application has been noti-
fied of the new connection. (If this happens, the server's TCP just queues the
incoming data.)

5. If there is not room on the queue for the new connection, TCP just ignores the
received SYN. Nothing is sent back (i.e., no RST segment). If the listening
server doesn't get around to accepting some of the already accepted connections
that have filled its queue to the limit, the client's active open will eventually
time out.

We can see this scenario take place with our sock program. We invoke it with a
new option (-0) that tells it to pause after creating the listening end point, before
accepting any connection requests. If we then invoke multiple clients during this pause
period, it should cause the server's queue of accepted connections to fill, and we can see
what happens with tcpd-ump.

bsdi % sock -s -v -ql -030 7777

The -q1 option sets the backlog of the listening end point to 1, which for this traditional
BSD system should allow two pending connection requests (Figure 18.23). The -030
option causes the program to sleep for 30 seconds before accepting any client connec-
tions. This gives us 30 seconds to start some clients, to fill the queue. We'll start four
clients on the host sun.

Figure 18.24 shows the tcpdump output, starting with the first SYN from the first
client. (We have removed the window size advertisements and MSS announcements.
We have also marked the client port numbers in bold when the TCP connection is
established—the three-way handshake.)

The first client's connection request from port 1090 is accepted by TCP (segments
1-3). The second client's connection request from port 1091 is also accepted by TCP
(segments 4-6). The server application is still asleep, and has not accepted either con-
nection yet. Everything has been done by the TCP module in the kernel. Also, the two
clients have returned successfully from their active opens, since the three-way hand-
shakes are complete.

Apple Inc.
Ex. 1015 - Page 102

TCP Server Design 259 Section 18.11

1 0.0

2 0.002310 (0.0023)

3 0.003098 (0.0008)

4 4.291007 (4.2879)

5 4.293349 (0.0023)

6 4.294167 (0.0008)

7 7.131981 (2.8378)
8 10.556787 (3.4248)
9 12.695916 (2.1391)

10 16.195772 (3.4999)

11 24.695571 (8.4998)

12 28.195454 (3.4999)
13 28.197810 (0.0024)

14 28.198639 (0.0008)

15 48.694931 (20.4963)

16 48.697292 (0.0024)

17 48.698145 (0.0009)

sun.1090 > bsdi.7777:
bsdi.7777 > sun.1090:

sun.1090 > bsdi.7777:

S 1617152000:1617152000(0)
S 4164096001:4164096001(0)

ack 1617152001
ack 1

bsdi.7777 > sun.1091:
sun.1091 > bsdi.7777:

sun.1091 > bsdi.7777:

S 1617792000:1617792000(0)
S 4164672001:4164672001(0)

ack 1617792001
ack 1

sun.1092 > bsdi.7777: S 1618176000:1618176000(0)
sun.1093 > bsdi.7777: S 1618688000:1618688000(0)
sun.1092 > bsdi.7777: S 1618176000:1618176000(0)
sun.1093 > bsdi.7777: S 1618688000:1618688000(0)
sun.1092 > bsdi.7777: S 1618176000:1618176000(0)

sun.1093 > bsdi.7777: S 1618688000:1618688000(0)
bsdi.7777 > sun.1093: S 4167808001:4167808001(0)

ack 1618688001
sun.1093 > bsdi.7777: ack 1

sun.1092 > bsdi.77'77: S 1618176000:1618176000(0)
bsdi.7777 > sun.1092: S 4170496001:4170496001(0)

ack 1618176001
sun.1092 > bsdi.7777: ack 1

Figure 18.24 tcpdump output for backlog example.

We try to start a third client in segment 7 (port 1092), and a fourth in segment 8
(port 1093). TCP ignores both SYNs since the queue for this listening end point is full.
Both clients retransmit their SYNs in segments 9, 10, 11, 12, and 15. The fourth client's
third retransmission is accepted (segments 12-14) because the server's 30-second pause
is over, causing the server to remove the two connections that were accepted, emptying
its queue. (The reason it appears this connection was accepted by the server at the time
28.19, and not at a time greater than 30, is because it took a few seconds to start the first
client [segment 1, the starting time point in the output] after starting the server.) The
third client's fourth retransmission is then accepted (segments 15-17). The fourth client
connection (port 1093) is accepted by the server before the third client connection (port
1092) because of the timing interactions between the server's 30-second pause and the
client's retransmissions.

We would expect the queue of accepted connections to be passed to the application in FIFO
(first-in, first-out) order. That is, after TCP accepts the connections on ports 1090 and 1091, we
expect the application to receive the connection on port 1090 first, and then the connection on
port 1091. But a bug has existed for years in many Berkeley-derived implementations causing
them to be returned in a LIFO (last-in, first-out) order instead. Vendors have recently started
fixing this bug, but it still exists in systems such as SunOS 4.1.3.

TCP ignores the incoming SYN when the queue is full, and doesn't respond with an
RST, because this is a soft error, not a hard error. Normally the queue is full because the
application or the operating system is busy, preventing the application from servicing
incoming connections. This condition could change in a short while. But if the server's
TCP responded with a reset, the client's active open would abort (which is what we saw

Apple Inc.
Ex. 1015 - Page 103

260 TCP Connection Establishment and Termination Chapter 18

happen if the server wasn't started). By ignoring the SYN, the server forces the client
TCP to retransmit the SYN later, hoping that the queue will then have room for the new
connection.

A subtle point in this example, which is found in most TCP/IP implementations, is
that TCP accepts an incoming connection request (i.e., a SYN) if there is room on the lis-
tener's queue, without giving the application a chance to see who it's from (the source
IP address and source port number). This is not required by TCP, it's just the common
implementation technique (i.e., the way the Berkeley sources have always done it). If an
API such as TLI (Section 1.15) gives the application a way to learn when a connection
request arrives, and then allows the application to choose whether to accept the connec-
tion or not, be aware that with TCP, when the application is supposedly told that the
connection has just arrived, TCP's three-way handshake is over! Other transport layers
may be implemented to provide this separation to the application between arrival and
acceptance (i.e., the OSI transport layer) but not TCP.

Solaris 2.2 provides an op Hon that prevents TCP from accepting an incoming connection
request until the application says so (t cp_eage r_i is t eriers in Section E.4).

This behavior also means that a TCP server has no way to cause a client's active
open to fail. When a new client connection is passed to the server application, TCP's
three-way handshake is over, and the client's active open has completed successfully. If
the server then looks at the client's IP address and port number, and decides it doesn't
want to service this client, all the server can do is either close the connection (causing a
FIN to be sent) or reset the connection (causing an RST to be sent). In either case the
client thought everything was OK when its active open completed, and may have
already sent a request to the server.

18.12 Summary

Before two processes can exchange data using TCP, they must establish a connection
between themselves. When they're done they terminate the connection. This chapter
has provided a detailed look at how connections are established using a three-way
handshake, and terminated using four segments.

We used tcpdurap to show all the fields in the TCP header. We've also seen how a
connection establishment can time out, how resets are sent, what happens with a half-
open connection, and how TCP provides a half-dose, simultaneous opens, and simulta-
neous closes.

Fundamental to understanding the operation of TCP is its state transition diagram.
We've followed through the steps involved in connection establishment and termina-
tion, and the state transitions that take place. We also looked at the implications of
TCP's connection establishment on the design of concurrent TCP servers.

A TCP connection is uniquely defined by a 4-tuple: the local IP address, local port
number, foreign IP address, and foreign port number. Whenever a connection is termi-
nated, one end must maintain knowledge of the connection, and- we saw that the
TIME WAIT state handles this. The rule is that the end that does the active close enters
this state for twice the implementation's MSL.

Apple Inc.
Ex. 1015 - Page 104

Chapter 18 Exercises 261

Exercises

18.1 In Section 18.2 we said that the initial sequence number (ISN) normally starts at 1 and is
incremented by 64,000 every half-second and every time an active open is performed. This
would imply that the low-order three digits of the ISN would always be 001. But in Fig-
ure 18.3 these low-order three digits are 521 in each direction. What's going on?

18.2 In Figure 18.15 we typed 12 characters and saw 13 bytes sent by TCP. In Figure 18.16 we
typed eight characters but TCP sent 10 bytes. Why was 1 byte added in the first case, but 2
bytes in the second case?

18,3 What's the difference between a half-open connection and a half-closed connection?

18.4 If we start our sock program as a server, and then terminate it (without having a client
connect to it), we can immediately restart the server. This implies that it doesn't go
through the 2MSL wait state. Explain this in terms of the state transition diagram.

18.5 In Section 18.6 we showed that a client cannot reuse the same local port number while that
port is part of a connection in the 2MSL wait. But if we run our sock program twice in a
row as a client, connecting to the daytime server, we can reuse the same local port number.
Additionally, we're able to create a new incarnation-,of a connection that should be in the
2MSL wait. What's going on?

sun % sock -v bsdi daytime
connected on 140.252.13.33.1163 to 140.252.13.35.13
Wed Jul 7 07:54:51 1993
connection closed by peer

sun % sock -v -b1163 bsdi daytime reuse same local port number
connected on 140.252.13.33.1163 to 140.252.13.35.13
Wed Jul 7 07:55:01 1993
connection closed by peer

18.6 At the end of Section 18.6 when describing the FIN WAIT, state, we mentioned that
many implementations move a connection from this state into the CLOSED state if the
application did a complete close (not a half-close) after just over 11 minutes. If the other
end (in the CLOSE_WAIT state) waited 12 minutes before issuing its close (i.e., sending its
FIN), what would its TCP get in response to the FIN?

18.7 Which end of a telephone conversation does the active open, and which does the passive
open? Are simultaneous opens allowed? Are simultaneous closes allowed?

18.8 In Figure 18.6 we don't see an ARP request or an ARP reply. Obviously the hardware
address for host svr4 must be in the ARP cache on bsdi. What would change in this fig-
ure if this ARP cache entry was not present?

18.9 Explain the following t cpdump output. Compare it with Figure 18.13.

3 0.419991 (0.4167)
4 0.449852 (0.0299)
5 0.451965 (0.0021)
6 0.464569 (0.0126)
7 0.720031 (0.2555)

solaris.32990 > bsdi.discard:
solaris.32990 > bsdi.discard:
bsdi.discard > solaris.32990:
bsdi.discard > solaris.32990:
solaris.32990 > bsdi.discard:

S 40140288:40140288(0)
win 8760 <mss 1460>
S 4208081409:4208081409(0)
ack 40140289 win 4096
<mss 1024>
P 1:257(256) ack 1 win 9216
F 257:257(0) ack 1 win 9216
▪ ack 258_win 3840
F 1:1(0) ack 258 win 4096
. ack 2 win 9216

1 0:0 solaris.32990 > bsdi.discard:

2 0.003295 (0.0033) bsdi.discard > solaris.32990:

Apple Inc.
Ex. 1015 - Page 105

262 TCP Connection Establishment and Termination Chapter 18

18.10 Why doesn't the server in Figure 18.4 combine the ACK of the client's FIN with its own,
FIN, reducing the number of segments to three?

18.11 In Figure 18.16 why is the sequence number of the RST 26368002?

18.12 Does TCP's querying the link layer for the MTU violate the spirit of layering?

18.13 Assume in Figure 14.16 that each DNS query is issued using TCP instead of UDI). How
many packets are exchanged?

18.14 With an MSL of 120 seconds, what is the maximum at which a system can initiate new con-
nections and then do an active dose?

18.15 Read RFC 793 to see what happens when an end point that is in the TIME_WAIT state
receives a duplicate of the FIN that placed it into this state.

18.16 Read RFC 793 to see what happens when an end point that is in the TIME_WAIT state
receives an RST.

18.17 Read the Host Requirements RFC to obtain the definition of a half-duplex TCP close.

18.18 In Figure 1.8 (p. 11) we said that incoming TCP segments are demultiplexed based on the
destination TCP port number. Is that correct?

Apple Inc.
Ex. 1015 - Page 106

