Declaration of Harold Ogle Regarding JSR-000120
“Wireless Messaging API (WMA) for Java™ 2 Micro Edition Version 1.0”

1, Harold Ogle, based on my personal knowledge and information, hereby declare as follows:

I am an employee of Oracle America, Inc., successor-in-interest to Sun Microsystems, Inc., and
hold the position of Program Manager in the Program Management Office (“PMO”), which I have held
since 15 February 2010. Prior to 15 February 2010, 1 was an employee of Sun Microsystems, Inc. and
held the office of Program Manager in the PMO from May 2000.

Oracle America, Inc. operates the Java Community Process (“JCP”) website (www.jcp.org),
which serves as the repository for documents relating to the Community Development of Java
Technology Specifications.

Java Specifications are developed and approved through the Java Specification Request (“JSR”)
process. The PMO publishes in an online repository drafts, releases and other documents throughout
the JSR process. The PMO establishes a dedicated public JSR webpage on the JCP website for each
Specification approved for development or revision that contains a history of the passage of the
Specification, including a record of the decisions, actions, and votes taken by the Executive Committee
with respect to the Specification’s development through the JSR process.

Among my responsibilities as Program Manager, 1 act as a custodian of records relating to the
JSR process, and 1 am familiar with the record keeping practices relating to that process, including the
creation and mainfenance of each Specification’s dedicated public JSR webpage.

I make this declaration based on my personal knowledge and information contained in the
business records of the JCP and PMO as they are published on www.jcp.org, or on my confirmation
with other responsible PMO personnel with such knowledge.

‘When a new draft, release, or other document is published, an announcement of its publication,
with information on how to access the draft, release, or other document, is typically sent out to JCP

members within 24 hours of the publication.

Apple Inc.
Ex. 1018 - Page 1

Any draft, release or other document published on the JCP website was reasonably accessible to
the public and was disseminated or otherwise available to the extent that persons interested and
ordinarily skilled in the subject matter or art exercising reasonable diligence could have located it
easily. In particular, the title and description of each JSR are indexed (for example, by platform,
technology, stage, and committee) and placed in a public online repository with descriptive links to the
documents published on the applicable JSR webpage. There is also a search feature that allows the
fields of JSR Title and JSR Description to be searched using user-inputted, free-form text.

The drafts, releases, and other documents are published and kept in an online repository in the
course of the PMO’s regularly conducted activity and ordinary course of business. The records are made
pursuant to established JCP procedures and are relied upon by the PMO and other JCP personnel and
members in the performance of their functions.

It is the regular practice of the PMO to make, keep, and publish the JCP records.

Based on the business records of the JCP and the PMO’s course of conduct in publishing drafts,
releases and other documents relating to JSRs, I have determined that the publication date of the
Specification associated with JSR-000120, entitled “Wireless Messaging APT (WMA) for Java™ 2
Micro Edition Version 1.0,” was no later than August 21, 2002, at which time it was reasonably
accessible to the public on the JCP website. A copy of that Specification is attached to this declaration as
Exhibit A,

Pursuant to Section 1746 of Title 28 of United States Code, I declare under penalty of perjury
under the laws of the United States of America that the foregoing is true and correct and that the
foregoing is based upon personal knowledge and iﬁformation and is believed to be true,

Signed:

7 Movewh, lo/z

HaroIé‘O/gI@ Date

Apple Inc.
Ex. 1018 - Page 2

Exhibit A

" Apple Inc.
Ex. 1018 - Page 3

Apple Inc.
Ex. 1018 - Page 4

Wireless Messaging
AP (WMA)

for Java™ 2 Micro Edition

Version 1.0

JSR 120 Expert Group
JSR-120-EG@JCP.ORG

Java Community Process (JCP)

Apple Inc.
Ex. 1018 - Page 5

Copyright @ 2002 Sun Micresystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A Al
rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is
described in this document. In particular, and without limitation, these intellectual property rights may include
one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or
pending patent applications i the U.S, and in other countries,

This document and the product to which it pertains are distributed under licenses resiricting their use, copying,
distribution, and decompilation. No part of the product or of this document may be reproduced in any form by
any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun supphers.

Sun, Sun Microsystems, the Sun logo and Java are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and
Conditions.

DOCUMENTATION IS PROVIDED "AS [S" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright © 2002 Sun Microsystems, Inc,, 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis,
Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants a la fechnologie incorporée dans le
produit qui est décrit dans ce document, En particulier, et sans la limitation, ces droits de propriété inteflectuels
peuvent inclure un ou plus des brevets ameéricains énumeérés a http://’www.sun.com/patents et un ou les brevets
plus supplémentaires ou les applications de brevet en aftente dans les Etats - Unis et dans les autres pays,

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
Putilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut étre
reproduite sous aucune forme, parquelque moyen que ce soit, sans I"autorisation préalable et écrite de Sun et de
ses bailleurs de licence, 5’11y ena. '

Le logiciel détenu par des {iers, et qui comprend la technologie relative aux polices de caractéres, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsysters, le logo Sun et Java sont des margues de fabrique ou des margues déposées de Sun
Microsystems, Inc. aux Etats-Unis ef dans d’autres pays.

LA DOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS,
DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A I’ABSENCE DE CONTREFACON.

Apple Inc.
Ex. 1018 - Page 6

Contents

PHEIACE oovvreeeeeeereeieereeneeeeiteressssresirsassansassaasasassanrsassensestensarterensernseraenanestssnsisninss \%
IVERIVICW oooeeiieeeiseereeessssrassseessnnsasraaesaer e sesseeas s s asseteabenraserasaraaentnbrannrarauranss 1
Javax.microedition.io ... 5
CLONTIECTOT 1evarissseeervassessserasssensessrnesaetsotsrstessansserassnsesossesones 8 sssussbaserass snssste sornssessaeusssbentsetnetsrersrnnsssbsaerasssinss 6
JAVAX. WIreless. MesSAZING ...covvvieriric e 11
BinaryMessage OSSOSO OOV OU OV PUO S UTOPUNPTTUV O SUOPIVSPTSITOTY

Message
IMESSAZECOMMECHON 1uvemverestertsssieeesseresrase s nss s sbss son sy s e E P LT 2SR RO L SRR S 20 17
TVIESSAEEIASIEIEL ¢ v1euesrearsreceresssessiasasimses s areaoa e s s ea et st ner S84SR RS SaES T n b 0 22
TEXIVIESSAES .veecuureerecsrsrerserssecscoessiatsossosseresrsasrrsssasss g2 ereastssscesbubrs 1H4S 1P RH 41058 SR TR e 25
Appendix A. GSM SMS Adapterovviii 27
Appendix B. GSM Cell Broadecast Adapter ... 37
Appendix C. CDMA IS-637 SMS Adapter ... 39
ATIATIAC oooeieeeriieeeiieirireeriittressessreeseasasnreeeassbtsessbastsennceassaabtsasssassntseassborassansns 43
Indexoovreveinnnn. e eterehbe s e es e st e s e ran s feeeevree st s e e 45
i
Apple Inc.

Ex. 1018 - Page 7

Contents

iv

Apple Inc.
Ex. 1018 - Page 8

Preface

This book provides information on the messaging AP which is included in the JSR 120 Wireless Messaging
API (WMA) specification. 1t also describes Sun Microsystem’s reference implementation (RI) of the APL

Who Should Use This Book

This book is intended primarily for those individuals and companies who want to implement WMA, or to pott
the WMA RI to a new platform,

Before You Read This Book

This book assumes that you have experience progranmming in the C and Java™ languages, and that you have
experience with the platforms to which you are porting the RI. It also assumes that you are familiar with the
Mobile Information Device Profile (MIDP), the Coimected, Limited Device Configuration (CLDC), and the
Connected Device Configuration (CDC).

Familiarity with multimedia processing recommended, but not required.

References

GSM 03.40 v7.4.0 Digital cellular telecommunications system (Phase 2-t}; Technical realization of the Short
Message Service (SMS). ETSI 2000

TS 100 900 v7.2.0 (GSM 03.38} Digital cellular telecommunications system (Phase 2+); Alphabets and
language-specific mforimation. ETSI 1999

Mobile Information Device Profile (MIDP) Specification, Version 1.0, Sun Microsystems, 2000

GSM 03.41, ETSI Digital Cellular Telecommunication Systems (phase 2+); Technical realization of Short
Message Service Cell Broadeast (SMSCB) {(GSM 03.41)

Wireless Datagram Protocol , Version 14-Jun-2001, Wireless Application Protocol WAP-239-WDP-20010614-
aWAP (WDP}

TIA/EIA-637-A: Short Message Service for Spread Spectrum Systems (15637)

Connecled Device Configuration (CDC) and the Foundation Prafile, a white paper, (Sun Microsystems, Inc,,
2002)

JZME™ CDC Specification, v1.0, {(Sun Microsystems, lnc., 2002)

Porting Guide for the Connected Device Configuration, Version 1.0, and the Foundation Profile, Version 1.0,
(Sun Microsysteins, Inc., 2001)

Related Documentation
The Java™ Language Specification by James Gosling, Bill Joy, and Guy L. Steele (Addison-Wesley, 1996),
ISBN 0-201-63451-1

v

Apple Inc.
Ex. 1018 - Page 9

Preface

The Java™ Virfual Machine Specification (Java Series), Second Edition by Tim Lindholm and Frank Yellin

{Addison-Wesley, 1999), ISBN (-201-43294-3

Terms, Acronyms, and Abbreviations Used in this Book
SMS - Short Message Service

URL - Uniform Resource Locator

Typographic Conventions

Typeface | Meaning

Examples

AaBbCcl23 § The names of commands, files, and directories; on-screen computer
ouiput

Edityour .logiun file.
Use 1s -ato list all files.
% You have mail.,

AaBbCci23 | What you fype, when contrasted wilh on-screen computer ouiput

% su

Password:

AaBhCcl23 Book titles, new words or terms, words to be emphasized
Command-iine variable; replace with a real name or value

Read Chapter 6 inthe User’s Guide,
These are called class options.

You must be superuser to do this.
To defete a file, type rm filename .

Accessing Sun Documentation Online

The docs.sun. com web site enables you to access Sun technical documentation on the Web. You can

browse the docs.sun.comn archive or search for a specific book title or subject at:

http://docs. sun.com

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments and suggestions. You can

email your comments to us at:

wma - comuent sa@sun, con

vi

Apple Inc.
Ex. 1018 - Page 10

CHAPTER

Overview

Description

The messaging API is based on the Generic Connection Framework (GCF), which is defined in the Connected
Limited Device Configuration (CLDC) 1.0 specification, The package javax.microedition. io defines

the framework and supports input/output and networking functionality in J2ME profiles. It provides a coherent
way to access and organize data in a resource-constrained environment.

The design of the messaging functionality is similar fo the datagram functionality that is used for UDP in the
Generic Connection Framework. Like the datagram functionality, messaging provides the notion of opening a
connection based on a string address and that the connection can be opened in either client or server mode.
However, there are differences between messages and datagrams, so messaging interfaces do not inherit from
datagram. It might also be confusing to use the same interfaces for messages and datagrams.

The interfaces for the messaging APl have been defined in the 1avax. wirelegs . messaging package.

Representation of a message

A message can be thought of as having an address part and a data part. A message is represented by a class that
implements the interface defined for messages in the APL This inierface provides methods that are common for
all messages. In the javax .wireless .messaging package, the base interface that is implemented by ali
messages is named Message. It provides methods for addresses and timestamps.

For the data part of the message, the AP is designed to handle both text and binary messages. These are
represented by two subinterfaces of Message: TextMessage and BinaryMessage. These subinterfaces
provide ways to manipulate the payload of the message as Strings and byte arrays, respectively.

Other subinterfaces of Message can be defined for message payloads which are neither pure text nor pure
binary. It is also possible to create further subinterfaces of TextMessage and BinaryMessage for possible
protocol-specific features.

Sending and receiving messages

As defined by the Generic Connection Framework, the message sending and receiving functionality is
implemented by a Connection interface, in this case, MessageConnection. To make a connection, the
application obtains an object implementing the MegsageConnection from the Connector class by
providing a URI. connection string that identifies the address.

If the application specifies a full destination address that defines a recipient to the Connector, it gets a
MessageConnection that works in a “client” mode. This kind of Connection can only be used for
sending messages to the address specified when creating it.

The application can create a “server” mode MessageConnection by providing a URL connection string
that mcludes only an identifier that specifies the messages intended to be received by this application. Then it
can use this MessageConnection object for receiving and sending messages.

The format of the URL connection string that identifies the address is specific to the messaging protocol used.
For sending messages, the MessageConnection object provides factory methods for creating Message
objects. For receiving messages, the MessageConnect ion supports an event listener-based receive
mechanism, in addition to a synchronous blocking receive () method. The methods for sending and

1

Apple Inc.
Ex. 1018 - Page 11

Overview

receiving messages can throw a SecurityException if the application does nof have the permission to
perform these operations.

The generic connection framework includes convenience methods for geffing InputStream and
OutputStream handles for connections which are StreamConnections. The MesgageConnection
does not support stream based operations, H an application calls the Connector . open*Stream methods,
they will receive an IT1legalArgumentException.

Bearer-specific Adapter

The basic MessageConnection and Message framework provides a general mechanism with establishing
a messaging application. The appendices describe the specific adapter requirements for URL connection string
formatting and bearer-specific message handling requirements.

+ JavaDoc AP} Documentation

+ Appendix A - GSM SMS Adapter

« Appendix B - GSM CBS Adapter

+ Appendix C - CDMA 18-637 SMS Adapter

The appendices of this specification include the definition of SMS and CBS URL connection strings. These
connection schemes MAY be reused in other adapter specifications, as long as the specified syntax is not
modified and the usage does not overlap with these specified adapters (that is, no platform can be expected to
tmplement two protocols for which the URI scheme would be the same, making it impossible for the platform to
distinguish which is desired by the application). Other adapter specifications MAY define new connection
schemes, as long as these do not conflict with any other connection scheme in use with the Generic Connection
Framework.

The appendices describe how the SMS and CBS adpaters MUST be implemented to conform to the
requirements of their specific wireless network environments and how these adapters supply the functionality
defined in the javax. wireless. messaging package.

When a GSM SMS miessage connection is established, the platform MUST use the rules in Appendix A for the
syntax of the URL connection string and for treatment of the message contents.

When a GSM CBS message connection is established, the platform MUST use the rules in Appendix B for the
syntax of the URL connection string and for treatment of the message contents.

When a CDMA SMS message connection is established, the platform MUST use the rules in Appendix C for
the synfax of the URL conmiection string and for treatment of the message contents.

Security
To send and receive messages using this AP, applications MUST be granted a permission to perform the
requested operation. The mechanisms for granting a permission are implementation dependent,

The permissions for sending and receiving MAY depend on the type of messages and addresses being used. An
implementation MAY restrict an application’s ability to send some types of messages and/or sending messages
to certain recipient addresses, These addresses can include device addresses and/or identifiers, such as port
numbers, within a device.

An implementation MAY restrict certain types of messages or connection addresses, such that the permission
would never be available to an application on that device.

The applications MUST NOT assume that successfilly sending one message implies that they have the
permission to send all kinds of messages to all addresses.

Apple Inc.
Ex. 1018 - Page 12

Overview

An application should handle SecurityExceptions when a connection handle is provided from
Connectoer. open {url) and for any message receive {) or send () operation that potentially engages
with the network or the privileged message storage on the device,

Permissions for MIDP 1.0 Platform

When the JSR120 interfaces are deployed on a MIDP 1.0 device, there is no formal mechanism to identify how
a permission to use a specific feature can be granted to a running application. On some systems, the decision to
permit a particular operation is left in the hands of the end user. If the user decides to deny the required
peimission, then a SecurityException can be thrown from the Connector . open{), the
MesgsageComnmection, send (}, orthe MessageConnection,receive () method.

How to Use the Messaging AP1
This section provides some examples of how the messaging API can be used.

Sending a text message to an end user
The following sample code sends the string “Iello World!” to an end user as a nonmal SMS message.

try {
String addr = “sms://+3584012345677;
MessageConnection conn = {MessageConnection) Connector.cpen{addr);

TextMassage meg =
{TextMessage) conn.newMegsage {MessageConnection,. TEXT MESSAGE);
nsyg.getPayloadText {*Hello Worid!”);
conn.send {(msg) ;
} catch (Exception e) {

A server that responds to received messages
The following sample code illustrates a server application that waits for messages sent to port 5432 and
responds to thein.

3

Apple Inc.
Ex. 1018 - Page 13

Overview

try {
String addr = “agms://:54327;
MesgageConnection conn = {MessageConnection) Connector.open{addr);

Message msg = null;

while (someExitCondition) {
// wait for incoming messages

msg = conn.receivel();

// received a message

if (msg instancecf TextMessage} |
TextMessage tmsg = (TextMegsage)mag;

String receivedText = tmgg.getPayloadText();

// respond with the same text with “Received:”

// inserted in the beginning

tmsg . setPayloadText ("Received:” + receivedText);

// Hote that the recipient address in the message is
// already correct as we are reusing the same object

conn. send (tmsg) ;

} else {
// Received message was not a text message, but e.g. binary

}

} catch (Exception e} {

}

Messaging Interfaces

javax.wireless.messagi This package defines an API which allows applications o send and receive wireless
ng HICSSAES,

Networking Package

javax.microediticon.io This pacakge includes the platform networking interfaces modified for use on platforms
supporting the message connections.

Apple Inc.
Ex. 1018 - Page 14

CHAPTER

Package

javax.microedition.10

Description :
This pacakge includes the platform networking interfaces modified for use on platforms supporting the message
connections.

This package includes the Connector class from MIDP 2.0 which includes SecurityException asan
expected return from calls to open {) which may require explicit authorization.

When the message connection is implemented on a MIDP 1.0 platform the SecurityException MAY be

provided by a a platform dependent authorization mechanism. e.g. the user MAY be prompted to ask if the
application may send a message and the user’s denial interpretted as a SecurityException.

Interfaces

Classes

Comector This class is factory for creating new Connection objects.

Exceptions

5

Apple Inc.
Ex. 1018 - Page 15

Connector javax.microedition.io

javax.microedition.io

Connector

Declaration
public class Connector

java.lang.Object

l

+--javax.microedition, io.Connectoxr

Description
This class is factory for creating new Connection objects.

The creation of connections is petformed dynamically by looking up a protocol implementation class whose
name is formed from the platform name {read from a system property) and the protocol name of the requested
connection (extracted from the parameter string supplied by the application programmer), The parameter string
that describes the target should conform fo the URL format as described in REC 2396, This takes the general
form;

{scheme}: [{target}] [{parms}]
where:
+ scheme is the name of a protocol such as HTTP.

» target is normally some kind of network address.
» parms are formed as a series of equates of the form ; x=y. For example: ; type=a.

An optional second parameter may be specified to the open function. This is a mode flag that indicates to the
protocol handler the intentions of the calling code. The options here specify if the connection is going to be read
(READ), written (WRI'TE), or both (READ WRITE). The validity of these flag settings is protocol dependent.
For example, a connection for a printer would not allow read access, and would throw an
IllegalArgqumentException. If the mode parameter is not specified, READ WRITE is used by default.

An optional third parameter is a boolean flag that indicates if the calling code can handle timeout exceptions. If
this flag is set, the protocol implementation may throw an Interrupt:edIOException when it detects a
timeout condition. This flag is only a hint to the protocol handler, and it does not guarantee that such exceptions
will actually be thrown. If this parameter is not set, no timeout exceptions will be thrown,

Because connections are frequently opened just to gain access to a specific input or output stream, convenience
functions are provided for this purpose. See also: DatagramConnection for information relating to
datagram addressing

Since: CLDC 1.0

gtatic int READ

static int READ WRITE
static int WRITE

Apple Inc.
Ex. 1018 - Page 16

Jjavax.nicroedition.io Connector
READ

Methods
static Connection open{java.lang.String name}
static Connection open(iava.lang.sString name, int mode)
gtatic Connection open(java.lang.String name, int mode, boolean timeouts)
static openDatainputStream(java.lang.String name)
java.lo.DataInputStrea
™
static openDatalutputStreamijava.lang.String name)
java.io.DataCutputStre
=3l
atatic openlnputStream(java.lang.String name}
java.io.InputStream
static openQutputStream{java.lang.String name)
java.lo.CutputStream

Methods inherited from class Object

equals (Object), getClass(), hashCode(}, notify(), notifyall(), toString(}, wait (),
wait (), wait()

Fields

READ

Declaration:
public static final int READ

Description:
Access mode READ,

READ_ WRITE

Declaration:
publi¢ static final int READ_WRITE

Description:
Access mode READ WRITE.

WRITE

Declaration;
publi¢ static final int WRITE

Description:
- Access mode WRITE.

7

Apple Inc.
Ex. 1018 - Page 17

Connector Javax.microedition.io

open{ String)

Methods

open(String)

Breclaration:
public static javax.microedition.ioc.Connection open{java.lang.String name)
throws IOException

Description:
Creates and opens a Connection.

Parameters;
name - the URL for the connection

Returns: a new Connection object

Throws:
Hiegal ArgumentException - if a parameter is invalid

ConnecticnNot FoundException - if the requested connection cannot be made, or the protocol
type does not exist

java.ic.I0Exception - if some other kind of T/O error oceurs

SecurityException - if a requested protocol handler is not permitted

open(String, int)

Declaration:
public static javax.wicroedition.io.Connection open(java.lang.String name, int mode)}
throws IOException

Deseription:
Creates and opens a Connection.

Parameters:
name - the URL for the connection

mode - the access mode
Returns: a new Connection object

Throws:
HiegalArpumentException - if a parameter is invalid

ConnectionNotFoundException - if the requested connection cannoet be made, or the protocol
type does not exist

java.io.I0Exception - if some other kind of I/O error occurs

SecurityException - if a requested protocol handler is not permitted

open(String, int, boolean)

Declaration:

public static javax.microedition.io.Connection open(java.lang.String name, int mode,
boolean timeocuts)
throws IOException

Description:
Creates and opens a Connection.

Apple Inc.
Ex. 1018 - Page 18

javax.microedition.io Counector

openDatainputStream(Siring)

Parameters:
name - the URL for the connection

mode - the access mode
timeouts - aflag to indicate that the caller wants timeout exceptions
Returns: a new Connection object

Throws:
Tilegal ArgumentException - if a parameter is invalid

ConnectionNotFoundException - if the requested connection cannot be made, or the protocol
type does not exist

java.io.I0Exception - if some other kind of I/O error occurs

SecurityException - if a requested protocol handler is not permitted

openDatalnputStream(String)

Declaration:
public static java.io.DatalnputStream openbataInputStream(java.lang,String name}
throws IOException

Deseription:
Creates and opens a connection input stream.

Paramefers:
name - the URL for the connection

Returus: a DatalnputStream

Throws:
IHegal ArgumentException - if a parameter is invalid

ConnectionNotFoundException - if the connection cannot be found
java.io.I0Exception - if soine other kind of /O error occurs

SecurityException - if access to the requested stream is not permiited

openDataOutputStream(String)

Declaration:
public static java.io.DataOutputStiream openDataOutputStream({java.lang.String name)
throws ICException

Description:
Creates and opens a connection output stream,

Parameters:
name - the URL for the connection

Returns: a DataQutputStream

Throws:
llegalArgumentException - if a parameter is invalid

ConnectionNotFoundException - if the connection cannot be found
java.io.IOException - if some other kind of I/O etror occurs

SecurityException - if access to the requested stream is not permitted

9

Apple Inc.
Ex. 1018 - Page 19

Connector Jjavax.microedition.io
openlnputStream(String)

openInputStream({String)

Declaration:
public static java.io.InputStream openlInputStream({java.lang.String name)
throws IOException

Description:
Creates and opens a connection input stream.

Parameters:
name - the URL for the connection

Returns: an InputStream

Throws:
illegalArgumentException - if a parameter is invalid

ConnectionNotFoundException - if the connection cannot be found
java.io.IOException -if some other kind of FO error occurs

SecurityException - if access to the requested stream is not permitted

openQutputStream(String)

Declaration:
public statie java.io.OutputStream openQutputStream{java.lang.String name)
throws IQException

Description:
Creates and opens a connection output stream.

Parameters:
name - the URL for the connection

Returns: an OQutputStream

Throws:
llegalArgumentException - if' a parameter fs invalid

ConnectionNot FoundException - if the connection cannot be found
java.io.IOException - if some other kind of I/0 error occurs

SecurityException - if access to the requested stream is not permitted

10

Apple Inc.
Ex. 1018 - Page 20

CHAPTER

Package

javax.wireless.messaging

Description

This package defines an API which allows applications to send and receive wireless messages. The APl is
generic and independent of the underlying messaging protocol. The underlying protocol can be, for example,
GSM Short Message Service, CDMA SMS, and so on.

Overview

This package is designed to work with Message objects that may contain different eleinents depending on the
underiying messaging protocol. This is different from Datagrams that are assumed always to be blocks of
binary data,

An adapter specification for a given messaging protocol may define further interfaces derived from the
Message interfaces included in this generic specification.

Unlike network layer datagrams, the wireless messaging protocols that are accessed by using this APl are
typically of store-and-forward nature. Messages will usually reach the recipient, even if the recipient is not
connecied at the time of sending. This may happen significantly later if the recipient is disconnected for a long
period of time. Sending and possibly alse receiving these wireless messages typically involves a financial cost
to the end user that cannot be neglected. Therefore, applications should not send unnecessary messages.

The MessageConnection and Message Interfaces

The MessageConnect 1on interface represents a Connect ion that can be used for sending and receiving
messages. The application opens a MegsageConnection with the Generic Connection Framework by
providing a URL connection string,

The Mes sageConnect ion can be opened either in “server” or in “client” mode. A “server” mode connection
is opened by providing a URL that specifies an identifier for an application on the local device for incoming
messages. A porf number is an example of an identifier. Messages received with this identifier will then be
delivered to the application by using this connection. A “server” mode connection can be used both for sending
and for receiving messages.

A “client” mode connection is opened by providing a URL that points to another device. A “client” mode
connection can only be used for sending messages.

The messages are represented by the Megsage interface and interfaces derived from it, The Meszage
interface has the very basic functions that are common to all messages. Derived interfaces represent messages of
different types and provide methods for accessing type-specific features. The kinds of derived interfaces that are
supported depends on the underlying messaging protocol. 1f necessary, interfaces derived from Message can
be defined in the adapter definitions for mapping the API to an underlying protocol.

The mechanism to derive new interfaces from the Message is intended as an extensibility mechanism allowing
new protocols to be supported in platforms, Applications are not expected to create their own classes that
iinplement the Message interface. The only correct way for apphications to create object instances
implementing the Message interface is to use the MessageConnection. newMesgzage factory method.

11

Apple Inc.
Ex. 1018 - Page 21

javax.wireless.messaging

Since: WMA 1.0

Interfaces

BinaryMessage : An interface representing a binary message.

Message This is the base interface for derived intcrfaces that represent various types of
Inessages.

MegsageConnection The MessageConnection interface defines the basic functionality for sending and
receiving messages.

Messagelistener The MessagelLdstener interface provides a mechanism for the application to be
notified of incoming messages.

TextMessage An interface representing a text message,

12

Apple Inc.
Ex. 1018 - Page 22

Javax.wireless.messaging BinaryMessage
getPayloadData()

javax.wireless.messaging

BinaryMessage

Declaration

public interface BinaryMessage extends Message

All Superinterfaces: Mesgage

Deseription

An interface representing a binary message. This is a subinterface of Message which contains methods to get
and set the binary data payload. The setPayloadData {} method sets the value of the payioad in the data
container without any checking whether the value is valid in any way. Methods for manipulating the address
portion of the message are inherited from Message,

Object instances implementing this interface are just containers for the data that is passed in.

Methods
byte[]l getPayloadData({)
void setPayloadData{bytel] data)

Methods inherited from interface Meszage

getAddiress (), cetTimestamp (}, setAddress(String)

Methods

getPayloadData()

Declaration:
publiic byte[] getPayloadbData()

Description:
Returns the message payload data as an array of bytes.

Returns null, if the payload for the message is not set,

The returned byte array is a reference to the byle array of this message and the same reference is returned
for all calls to this method made before the next call to setPayloadbata.

Returns: the payload data of this message or null if the data has not been set

See Also: gsetPayloadbata{bytell)

13

Apple Inc.
Ex. 1018 - Page 23

BinaryMessage Jjavax.wireless.messaging

setPayloadData(byte[])

setPayloadData(byte{])

Declaration:

public void setPayloadData(byte[] data)

Description:

Sets the payload data of this message. The payload may be set to null,

Setting the payload using this method only sets the reference to the byte array. Changes made to the
contents of the byte array subsequently affect the contents of this BinaryMezsage object. Therefore,

applications should not reuse this byte array before the message is sent and the
MessageCommection. send method returns.

Parameters: _
data - payload data as a byte array

See Also: getPayloadbData ()

Apple Inc.
Ex. 1018 - Page 24

Jjavax.wireless.messaging Message
getAddress()

javax.wireless.messaging

Message

Declaration
public interface Message

All Known Subinterfaces: BinaryMessage, TextMessage

Description

This is the base interface for derived interfaces that represent various types of messages. This package is
designed to work with Message objects that may contain different elements depending on the underlying
messaging protocol. This is different from Datagrams that are assumed always to be just blocks of binary
data. An adapter specification for a given messaging protocol may define further interfaces derived from the
Message interfaces included in this generic specification.

‘The wireless messaging protocols that are accessed via this API are typically of store-and-forward nature,
unlike network layer datagrams. Thus, the messages will usually reach the recipient, even if the recipient is not
connected at the time of sending the message, This may happen significantly later if the recipient is
disconnected for a long time. Sending, and possibly also receiving, these wireless messages typically involves a
financial cost to the end user that cannot be neglected. Therefore, applications should not send many messages
unnecessarily.

This interface contains the functionality common to all messages. Concrete object instances representing a

message will typically implement other (sub}interfaces providing access to the content and other information in
.the message which is dependent on the type of the message.

Object instances implementing this interface are just containers for the data that is passed in. The

setAddress () method just sets the value of the address in the data container without any checking whether

the value is valid in any way.

Methods

java.lang.String getAddress{)
java.util.Date getTimestamp ()
void setAddress(java.lang.String addr)

Methods

getAddress()

Declaration:
public java.lang.String getAddress()

Description:
Returns the address associated with this message.

If this is a message to be sent, then this address is the recipient’s address.

15

Apple Inc.
Ex. 1018 - Page 25

Message Javax.wireless.messaging

getTimestamp()

If this is a message that has been received, then this address is the sender’s address.
Returns nul 1, if the address for the message is nof set,

Note: This design allows responses to be sent to a received message by reusing the same Message object
and just replacing the payload. The address field can normally be kept untouched (unless the messaging
protocol requires some special handling of the address).

Returns: the address of this message, or null if the address is not set

See Also: setAddress (String)

gelTimestamp()

Declaration:
public java.util.Date getTimestamp ()

Description:
Returns the timestanip indicating when this message has been sent.

Returns: Date indicating the timestamyp in the message or nul 1 if the timestamp is not set or if the time
information is not available in the underlying protocol message

setAddress(String)

Declaration:
public void setAddress(java.lang.String addr)

Description:
Sets the address associated with this inessage, that is, the address returned by the getAddress method.
The address may be set to null.

Parameters:
addr - address for the message

See Also: getAddress ()

I6
Apple Inc.
Ex. 1018 - Page 26

javax.wireless.messaging MessageConnection
setAddress(String)

javax.wireless.messaging

MessageConnection

Peclaration

public¢ interface MessageConnection extends javax.mlcroedition,.ioc.Connection

All Superinterfaces: javax.microedition.io.Connection

Description

The Message Connection interface defines the basic functionality for sending and receiving messages. 1t
contains methods for sending and receiving messages, factory methods to create a new Message object, and a
method that calculates the number of segments of the underlying protocol that are needed to send a specified
Message object.

This class is instantiated by a call to Connector.open (). An application SHOULD call close () whenit
is finished with the connection, An IOException is thrown when any methods are called on the
MessageConnection after the connection has been closed.

Messages are sent on a connection. A connection can be defined as server mode or client mode.

In a client mode connection, messages can only be sent. A client mode connection is created by passing a string
identifying a destination address to the Connector . open () method. This method returns a
MessageConnect ion object.

In a server mode connection, messages can be sent or received. A server mode connection is created by passing
a string that identifies an end point (protocol dependent identifier, for example, a port number) on the focal host
to the Connector .open {) method. If the requested end point identifier is already reserved, either by some
system application or by another Java application, Connector . open () throws an IOException, Java
applications can open MessageConnections for any unreserved end point identifier, although security

permissions might not allow it to send or receive messages using that end point identifier.

The scheme that identifies which protocol is used is specific to the given protocol. This interface does not
assume any specific protocol and is intended for all wireless messaging protocols.

An application can have several MessageConnect ion instances open simultaneously; these connections can
be both client and server mode.

The application can create a class that implements the MessageListener interface and register an instance
of that class with the MessageConnection(s) to be notified of incoming messages. With this technique, a
thread does not have to be blocked, waiting to receive messages.

Fields

static BINARY MESSAGE
java.lang.String
static TEXT MESSAGE
java.lang.String
Methods
Message newMessage(java.lang.String type}
Message newMessage (java.lang.String type, java.lang.String address)

17

Apple Inc.
Ex. 1018 - Page 27

MessageConnection javax.wireless.messapging

BINARY MESSAGE

int numberOfSegments (Message msag)

Message receivel()
void send{Message msg)
void setMessagelistener (MeggageListener 1)

Methods inberited from interface Connection

close ()

Fields

BINARY MESSAGE

Declaration:
public static final java.lang.String BINARY MESSAGE

Description:

Constant for a message type for binary messages (value = “binary™). If this constant is used for the type
parameter in the newMessage () methods, then the newly created Message will be an instance
implementing the BinaryMessage interface,

TEXT_MESSAGE

Declaration:
public gtatic final java.lang.String TEXT MESSAGE

Description:
Constant for a message type for text messages (value = “text”). If this constant {s used for the type

parameter in the newMessage () methods, then the newly created Message will be an instance
implementing the TextMessage interface.

Methods

newMessage{String)

18

Deciaration:
public javax,wireless.messaging.Message newMessage (java.lang.String type)

Description:

Constructs a new message object of a given type. When the string text is passed in, the created object
tmplements the TextMessage inferface. When the binary constant is passed in, the created object
implements the BinaryMessage interface. Adapter definitions for messaging protocols can define new
constants and new subinterfaces for the Messages. The type strings are case-sensitive.

Apple Inc.
Ex. 1018 - Page 28

javax.wireless.messaging MessageConnection
newMessage(String, String)

For adapter definitions that are not defined within the JCP process, the strings used MUST begin with an
inverted domain name controlled by the defining organization, as is used for Java package names. Strings
that do not contain a full stop character . are reserved for specifications done within the JCP process and
MUST NOT be used by other organizations defining adapter specification,

When this method is called from a clienf mode connection, the newly created Message has the destination
address set to the address identified when this Connection was created.

When this method is called from a server mode connection, the newly created Message does not have the
destination address set. It must be set by the application before trying to send the message.

Parameters:
type - the type of message to be created. There are constants for basic types defined in this interface.

Returns: Message object for a given type of message

Throws:
Java.lang.{llegal ArgumentException - if the message type is not TEXT MESSAGE or
BINARY MESSAGE

newMessage(String, String)

Declaration:
public javax.wireless.megsaging.Message newMessage (java.lang.String Eype,
java.lang.String address)

Description:

Constructs a new Message object of a given type and initializes it with the given destination address. The
semantics related to the parameter type are the same as for the method signature with just the type
parameter,

Parameters:
type - the type of message to be created. There are constants for basic types defined in this interface.

address - destination address for the new message
Returns: Message object for a given type of message

Throws;
java lang.Illegal ArgumentException - if the message type is not TEXT MESSAGE or
BINARY MESSAGE

Sce Also: newMesgsgage (String)

numberOfSegments(Message)

Declaration:

publi¢ int numberOfSegments{javax.wirecless.messaging.Message mag)

Description:

Returns the number of segments in the underlying protocol that would be needed for sending the specified
Message.

Note that this method does not actually send the message. 1t will only calculate the nuinber of protocol
segments needed for sending the message.

This method will calculate the number of segments needed when this message is split info the protocol
segments using the appropriate features of the underlying protocol. This method does not take into account
possible limitations of the implementation that may limit the number of segiments that can be sent using this

19

Apple Inc.
Ex. 1018 - Page 29

MessageConnection Jjavax.wireless.messaging

receive()
feature. These limitations are protocol-specific and are documented with the adapter definition for that
protocol.

Parameters:
msq - the imessage to be used for the calculation

Returns: number of protocol segnients needed for sending the message. Returng 0 if the Message object
cannot be sent using the underlying protocol.

receive()

Declaration:
public javax.wireless.mesgsaging.Meggage receive()
throws IOException, InterruptedIOException

Description:
Receives a message.

H'there are no Messages for this MegsageConnection waiting, this inethod will block until either a
message for this Connection is received or the MessageConnection is closed.

Returns: a Megsage object representing the information in the received message

Throws:
java.io.IOException - if an error occurs while receiving a message

java.io.InterruptedIOException - if this MessageConnection object is closed during
this receive method call

Jjava.lang.SecurityException - if the application does not have permission to receive messages using the
given port number

See Also: send (Message)

send(Message)

Declaration:
publi¢ void send(javaxz.wireless.messaging.Message mag)
throws IOException, InterruptedlOException

Description:
Sends a message.

Parameters;
msq - the message to be sent

Throws:
java.io.IOException - if the message could not be sent or because of network failure

java,lang Hlegal ArpumentException - if the message is incomplete or contains invalid information.
This exception is also thrown if the payload of the message exceeds the maximum length for the given
messaging protocol.

java.io.InterruptedIOException - if a timeout occurs while either trying to send the
message or if this Connection object is closed during this send operation

java.lang NullPointerException - if the parameter is null
java.lang. SecurityException - if the application does not have permission to send the message

See Also: receive ()

20
Apple Inc.

Ex. 1018 - Page 30

javax.wireless, messaging MessageConnection

setMessagel istener(MessageListener)

setMessageListener(MessageListener)

Declaration:
public veid setMessagelListener (javax.wireless.messaging. MessageListener 1)
throws IOExcepticn

Description:
Registers a MessageListener object that the platform can notify when a message has been received on
this MessageConnection.

If there are incoming messages in the queue of this MessageConnection that have not been retrieved
by the application prior to calling this method, the newly registered listener object will be notified
immediately once for each such incoming message in the queue.

There can be at most one listener object registered for a MessageConnection object at any given point
in time. Setting a new listener will de-register any previously set listener. :

Passing null as the parameter will de-register any currenly registered listener.

Parameters:]
1 - MessageListener object to be registered. If null, any currently registered listener will be de- |
registered and will not receive notifications.

Throws: . ‘
java.lang.SecurityException - if the application does not have permission o receive messages using the |
given port number
java.io.I0Exception - if the connection has been closed, or if an attempt is made to register a
listener on a client connection

21

Apple Inc.
Ex. 1018 - Page 31

MessageListener Jjavax.wireless.messaging

sefMessageListener(Messagel.istener)
javax.wireless.messaging

MessageListener

Declaration
public interface MessagelListener

Deseription
The MessageListener interface provides a mechanism for the application to be notified of incoming
niessages.

When an incoming message arrives, the not i fyIncomingMessage () method is called. The application
MUST retrieve the message using the receive () method of the MessageConnection.
MessageListener should nof call receive () directly. Instead, it can start a new thread which will
receive the message or cali another method of the application (which is outside of the Histener) that will call
receive (). Foran example of how to use MessageListener, see A Sample MessageListener Iimplementation.

- The listener mechanism allows applications to receive incoming messages without needing to have a thread
blocked in the receive () method call,

H multiple messages arrive very closely together in time, the implementation has the option of calling this
listener from multiple threads in parallel. Applications MUST be prepared to handle this and mplement any
necessary synchronization as part of the application code, while obeying the requirements set for the listener
method,

A Sample MessageListener Implementation

The following sample code illustrates how lightweight and resource-friendly a MessageListener can be. In
the sainple, a separate thread is spawned to handle message reading. The MIDlet life cycle is respected by
releasing connections and signalling threads to terminate when the MIDlet is paused or destroyed,

22
Apple Inc.
Ex. 1018 - Page 32

javax.wireless.messaging MessageListener
setMessagelistener(MessageListener)

// Sample message listener program.
import java.io.ICException;
import javax.wmicroedition.midlet.=;
import javax.microedition.io.*;
import javax.wireless.mezsaging.*;
public class Example extends MIibDlet implements MessageListener |
MessageConnection messconn;
int total = 0;
boolean done;
// Initial tests setup and execution.
public void startApp() {

try [
// Get our receiving port conection,
mesgsconn = {MessageConnection)

Connector.open(®sms: //:162227);
// Register a listener for inbound messages.
mesaconn. setMeagsagelListener (this) ;
// Start a message-reading thread.
done = false:
new Thread(new Reader()).atart();

} ecateh (IOException e) {

// Handle startup errors

}

// Asynchronous callback for inbound message.
public void notifyIncomingMessage (MessageConnection conn) {
if (conn == messconn) {
total ++;
!

// Required MIDlet method - release the connection and
// signal the reader thread to terminate.
public void pausedpp() {
done = true;
try {
megssconn, ¢loge () ;
} catch (I0Exception e) |
// Handle errors

// Regquired MIDlet method - shutdown,
// @param unconditicnal forced shutdown flag
public void destroyApp(boolean unconditional) {
done = true;
try {
messconn. setMesgageListener (nuil} ;
megaconn, ¢loge () ;
} catch (IOException e) {
// Handle shutdown errors.
}

// Isolate blocking I/0 on a separate thread, so callback
// can return immediately.
c¢lass Reader implements Runnable {
// The run method performs the actual message reading,
public void run() {
while (ldone) {
try |
Message mess = megscoun.receivel();
} cateh (IOException ioce) {
// Handle reading errors

23

Apple Inc.
Ex. 1018 - Page 33

Messagel.istener Jjavax.wireless.messaging

notifyIncomingMessage(MessageConnection)

void notifyIncomingMessage {MessageConnection conmn)

Methods

notifyIncomingMessage(MessageConnection)

Declaration:
public void notifyIncomingMessage{javax.wireleas . messaging.MessageConnection conn)

Description:
Called by the platforin when an incoming message arrives to a MessageConnection where the
application has registered this listener object.

This method is called once for each incoming message to the MegsageConnection.

NOTE: The implementation of this method MUST return quickly and MUST NOT perform any extensive
operations. The application SHOULD NOT receive and handle the message during this method eall.
Instead, it should act only as a trigger to start the activity in the application’s own thread.

Parameters:
conn - the MesgageConnection where the incoming message has arrived

24
Apple Inc.
Ex. 1018 - Page 34

javax.wireless.messaging TextMessage
getPayloadText()

javax.wireless.messaging

TextMessage

Declaration
public interface TextMessage extends Massage

All Superinterfaces: Message

Description

An interface representing a text message. This is a subinterface of Message which contains methods to get
and set the text payload. The setPayloadText method sets the value of the payload in the data container
without any checking whether the value is valid in any way. Methods for manipulating the address portion of the
message are inherited from Message. '

Object instances implementing this interface are just containers for the data that is passed in.

Character Encoding Considerations

Text messages using this interface deal with St rings encoded in Java, The underlying implementation will
convert the Strings into a suitable encoding for the messaging protocol in question. Different protocols
recognize different character sets, To ensure that characters are transmitted correctly across the network, an
application should use the character set(s) recognized by the protocol. If an application is unaware of the
protocol, or uses a character set that the protocol does not recognize, then some characters might be transmitted
incorrectly.

Methods ‘
java.lang.String getPayiocadText (}
void setPayloadText {java.lang.String data)

Methods inherited from interface Message

getAddress (), getTimestamp(), setAddress(String}

Methods

getPayloadText()

Declaration:
public java.lang.String getPayloadText ()

‘ 25

Apple Inc.
Ex. 1018 - Page 35

TextMessage Jjavax.wireless.messaging

setPayload Text(String)

Description:
Returns the message payload data as 2 String.

Returns: the payload of this message, or null if the payload for the message is not set

See Also: setPayloadText (String)

setPayload Text(String)

Declaration:
public void setPayloadText {java.lang.String data}

Description:
Sets the payload data of this message. The payload data may be null.

Parameters:
data - payload data as a String

See Also: getPayloadText ()

26,

Apple Inc.
Ex. 1018 - Page 36

Appendix A. GSM SMS
Adapter

This appendix describes an adapter that uses the messaging API with the GSM Short Message Service.

Al1.0 GSM SMS Message Structure

The GSM SMS messages are defined in the GSM 03.40 standard [1]. The message consists of a fixed header
and a field called TP-User-Data. The TP-User-Data field carries the payload of the short message and
optional header information that is not part of the fixed header, This optional header information is contained in
a field called User-Data-Header. The presence of optional header information in fhe TP-User-Data
field is indicated by a separate field that is part of the fixed header.

The TP-User-Data can use different encodings depending on the type of the payload content. Possible
encodings are a 7-bit alphabet defined in the GSM 03.33 standard, 8-bit binary data, or 16-bit UCS-2 alphabet.

A 1.1 Message Payload Length

The maximum length of the SMS protocol message payload depends on the encoding and whether there are
optional headers present in the TP -Usexr-Data field. If the optional header inforination specifies a port
number, then the payload which fits into the SMS protocol message will be sinaller. Typically, the message is
displayed to the end user. However, this Java API supports the use of port numbers to specify a Java application
as the message target.

The messages that the Java application sends can be too long to fit in a single SMS protocol message. In this
case, the implementation MUST use the concatenation feature specified in sections 9.2.3.24.1 and 9.2.3.24.8 of
the GSM 03,40 standard [1]. This feature can be used to split the message payload given to the Java API into
muitiple SMS protocol messages, Similarly, when receiving messages, the implementation MUST
automatically concatenate the received SMS protocol messages and pass the fully reassembled payload to the
application via the APL

A.1.2 Message Payload Concatenation

The GSM 03.40 standard [1] specifies two mechanisms for the concatenation, specified in sections 9.2.3.24.1
and 9.2.3.24.8. They differ in the length of the reference munber, For messages that are sent, the implementation
can use either mechanism. For received inessages, implementations MUST accept messages with both
mechanisms,

Note; Depending on which mechanism is used for sending messages, the maximum length of the payload of a
single SMS proiocol message differs by one character/byte. For concatenation to work, regardless of which
mnechanism is used by the itnpletnentation, applications are recominended to assume the 16-bit reference
number length when estimating how many SMS protocol messages it will take to send a given message. The
lengths in Table 1 below are calculated assuming the 16-bit reference number length.

27

Apple Inc.
Ex. 1018 - Page 37

Appendix A. GSM SMS Adapfter

Implementations of this APL MUST support at least 3 SMS protocol messages to be received and concatenated
together, Similarly, for sending, messages that can be sent with up to 3 SMS protocol messages MUST be
supported, Depending on the implementation, these limits may be higher. However, applications are advised not
to send messages that will take up more than 3 SMS protocol messages, unless they have reason to assume that
the recipient will be able to handle a larger number. The MessageConnection. nunberOfSegments
method allows the application to check how many SMS protocol messages a given message will use when sent,

Table 1: Number of SMS protocof messages needed for different payload lengths

Optionat No port number present Port number present ‘
headers (message fo be displayed to the end user} | (message targeted at an application)
Encoding

Length SMS messages Length SMS messages
GSM 7-bit alphabet | 0-160 chars 1 0-152 chars 1

161-304 chars 2 -153-290 chars 2

305-456 chars 3 291435 chars | 3
8-bit binary data (-140 bytes I 0-133 bytes ;

141-206 byles 2 134-254 bytes 2

267-399 bytes 3 255-381 bytes 1 3
UCS-2 alphabet 0-70 chars i 0-66 chars 1

71-132 chars 2 67-126 chars

£33-198 chars 3 127-189 chars 3

Table 1 assumes for the GSM 7-bit alphabet that only characters that can be encoded with a single septet are
used. If a character that encodes into two septets (using the escape code to the extension table) is used, it counts
as two characters in this length calculation.

Note: {he values in Table 1 include a concatenation header in all messages, when the message can not be sent in
a single SMS protocol message.

Character Mapping Table

28

GSM 7-bit | UCS-2 | Character name

0x00 0x0040 | COMMERCIAL AT

0t 0x00a3 | POUND SIGN

0x02 0x0024 | BOLLAR SIGN

0x03 x00a5 | YEN SIGN

Ox04 0x00e8 | LATIN SMALL LETTER E WiTH GRAVE
05 Ox00e9 | LATIN SMALL LETTER E WITH ACUTE
0x06 0x0019 | LATIN SMALL LETTER U WITH GRAVE
0x07 0x00cc | LATIN SMALL LETTER 1 WITH GRAVE

Apple Inc.
Ex. 1018 - Page 38

Appendix A. GSM SMS Adapter

0x08 0x00£2 | LATIN SMALL LETTER O WITH GRAVE
0x09 0x00¢7 | LATIN CAPITAL LETTER C WITH CEDILLA
0x0a 0x000a | control: line feed

0x0b 0x00d8 | LATIN CAPITAL LETTER O WITH STROKE
Oxlc 0x00f8 | LATIN SMALL LETTER O WITH STROKE
0x0d 0x000d | control: carriage return

0x0e 0x0005 | LATIN CAPITAL LETTER A WITH RING ABOVE
0x0f 0x00e5 | LATIN SMALL LETTER A WITH RING ABOVE
0x10 0x0394 | GREEK CAPITAL LETTER DELTA

Ox11 0x005f | LOW LINE

0x12 0x03a6 | GREEK CAPITAL LETTER PHI

0x13 0x0393 | GREEK CAPITAL LETTER GAMMA

0x14 0x039b | GREEK CAPITAL LETTER LAMDA

0x15 0x03a% | GREEK CAPITAL LETTER OMEGA

Ox16 0x03a0 | GREEK CAPITAL LETTER PI

0x17 0x03a8 | GREEK CAPITAL LETTER PSI

0x18 0x03a3 | GREEK CAPITAL LETTER SIGMA

0x19 0x0398 | GREEK CAPITAL LETTER THETA

Ox1a 0x03%¢ | GREEK CAPITAL LETTER XI

Ox1b cscape to extension table

Oxic 0x00c6 | LATIN CAPITAL LETTER AE

0x1d 0x00e6 | LATIN SMALL LETTER AE

Oxle 0x00df | LATIN SMALL LETTER SHARP S

Ox1f 0x0009 | LATIN CAPITAL LETTER E WITH ACUTE
0x20 0x0020 | SPACE

0x21 0x0021 | EXCLAMATION MARK

0x22 0x0022 | QUOTATION MARK

0x23 0x0023 | NUMBER SIGN

0x24 0x00a4 | CURRENCY SIGN

0x25 0x0025 | PERCENT SIGN

0x26 0x0026 | AMPERSAND

0x27 0x0027 | APOSTROPHE

0x28 0x0028 | LEFT PARENTHESIS

0x29 0x0029 | RIGHT PARENTHESIS

0x2a 0x002a | ASTERISK

0x2b 0x002b | PLUS SIGN

0x2c 0x0002¢ | COMMA

29

Apple Inc.
Ex. 1018 - Page 39

Appendix A, GSM SMS Adapter

30

0x2d 0x002d | HYPHEN-MINUS

Ox2e 0x002¢ | FULL STOP

Ox2f 0x002f | SOLIDUS

0x30 0x0030 | DIGIT ZERO

0x31 0x0031 } DIGIT ONE

0x32 0x0032 | DIGIT TWO

0x33 0x0033 | DIGIT THREE

0x34 0x0034 | DIGIT FOUR

0x35 0x0035 | DIGITFIVE

0x36 0x0036 | DIGIT 81X

037 0x0037 { DIGIT SEVEN

0x38 0x0038 | DIGIT EIGHT

0x39 0x0039 § DIGIT NINE

0x3a 0x003a | COLON

0x3b 0x003b | SEMICOLON

0x3c 0x003¢c | LESS-TI1AN SIGN

0x3d 0x003d | EQUALS SIGN

0x3e 0x003e | GREATER-THAN SIGN
0x3r 0x003f | QUESTION MARK

0x40 0x00al | INVERTED EXCLAMATION MARK
Ux41 0x0041 | LATIN CAPITAL LETTER A
Ox42 0x0042 | LATIN CAPITAL LETTER B
0x43 0x0043 | LATIN CAPITAL LETTER C
Ox44 0x0044 | LATIN CAPITAL LETTER D
Ox45 0x0045 | LATIN CAPITAL LETTER E
0x46 0x0046 | LATIN CAPITAL LETTERF
Ox47 0x0047 { LATIN CAPITAL LETTER G
0x48 0x0048 | LATIN CAPITAL LETTER I
Ox49 0x0049 [LATIN CAPITAL LETTER |
Oxda 0x004a | LATIN CAPITAL LETTER T
Oxdb 0x004b | LATIN CAPITAL LETTER K
Oxdc 0x004c | LATIN CAPITAL LETTER L
Oxdd 0x004d | LATIN CAPITAL LETTER M
Oxde 0x004e | TATIN CAPITAL LETTER N
Oxdrl 0x004f | LATIN CAPITAL LETTER O
0x50 0x0050 | LATIN CAPITAL LETTER P
0x51 0x0051 | LATIN CAPITAL LETTER Q

Apple Inc.
Ex. 1018 - Page 40

Appendix A. GSM SMS Adapter

0x52 0x0052 | LATIN CAPITAL LETTER R

0x53 0x0053 | LATIN CAPITAL LEITER S

0x54 0x0054 | LATIN CAPITAL LETTER T

0x55 0x0055 | LATIN CAPITAL LETTER U

0x56 %0056 | LATIN CAPITAL LETTER V

0x57 0x0057 | LATIN CAPITAL LETTER W

0x58 0x0058 { LATIN CAPITAL LETTER X

0x59 0x0059 | LATIN CAPITAL LETTER Y

OxSa 0x0052 | LATIN CAPITAL LETTER Z

0x5b 0x00c4 | LATIN CAPITAL LETTER A WITH DIARLSIS
0x5¢ 0x00d6 | LATIN CAPITAL LETITR O WITH DIARESIS
0x5d 0x00d1 | LATIN CAPITAL LETTER N WITH TILDE
OxSe 0x00dc | LATIN CAPITAL LETTER U WITH DIARESIS
x5t 0x00a7 | SECTION SIGN

0x60 0x00bf |{ INVERTED QUESTION MARK

0x61 0x0061 | LATIN SMALL LETTER A

0x62 0x0062 | LATIN SMALL LETTER B

0x63 0x0063 | LATIN SMALL LETTER C

0x64 0x0064 | LATIN SMALL LETTER D

0x65 0x0065 | LATIN SMALL LETTER E

0x66 0x0066 | LATIN SMALL LETTER F

0x67 0x0067 | LATIN SMALL LETTER G

0x68 0x0068 | LATIN SMALL LETTER H

0x69 0x0069 | LATIN SMALL LETTER I

Ox6a 0x006a | LATIN SMALL LETTER J

0x6b 0x006b | LATIN SMALL LETTER K

Ox6c 0x006¢ | LATIN SMALL LETTERL

Ox6d 0x006d | LATIN SMALL LETTER M

Ox6e 0x006e | LATIN SMALL LETTER N

OxGF 0x006f | LATIN SMALL LETTER O

0x70 0x0070 | LATIN SMALL LETTER P

0x71 0x0071 { LATIN SMALL LETTER Q

0x72 0x0072 | LATIN SMALL LETTER R

0x73 0x0073 | LATIN SMALL LETTER §

0x74 0x0074 | LATIN SMALL LETTER T

0x75 0x0075 | LATIN SMALL LETTER U

0x76 0x0076 | LATIN SMALL LETTER V

3t

Apple Inc.
Ex. 1018 - Page 41

Appendix A, GSM SMS Adapter

0x77 0x0077 | LATIN SMALL LETTER W

0x78 0x0078 | LATIN SMALL LETTER X

0x79 0x0079 | LATIN SMALL LETTER Y

Ox7a 0x007a | LATIN SMALL LETTER Z

0x7b Ox00e4 | LATIN SMALL LETTER A WIiTH DIARESIS
Ox7c 0x00t6 | LATIN SMALL LETTER O WITH DIARESIS
0x7d 0x00f1 | LATIN SMALL LETTER N WITH TILDE
O0x7e Ox00fc | LATIN SMALL LETTER U WITH DIARESIS
Ox7f 0x00e0 | LATIN SMALL LETTER A WITH GRAVE
Ox1b Ox14 | 0x005e | CIRCUMFLEX ACCENT

Oxlb 0x28 | 0x007b | LEFT CURLY BRACKET

Ox1b 0x29 | 0x007d | RIGHT CURLY BRACKET

Ox1b Ox2f | Ox005¢c | REVERSE SOLIDUS

Oxlb Ox3c | Ox005b | LEFT SQUARE BRACKET

Ox1b O0x3d | 0x007e | TILDE

Ox1b 0x3e | 0x005d | RIGHT SQUARE BRACKET

Oxlb 0x40 | 0x007c | VERTICAL LINE

OxIbOx65 | O0x20ac | EURO SIIGN

The GSM 7-bit characters that use the cscape code for a two septet combination are represented in this table
with the hexadecimal representations of the two septets separately. In the encoded messages, the septets are
encoded together with no extra alignment to octet boundaries,

A.2.0 Message Addressing
The syntax of the URL connection strings that specify the address are described in Table 2.

Table 2: Connection Strings for Message Addresses

32

String Definition
smswd == "sms://” address_part
address_part n== foreign_host_address [local_host address

local_host address

== port_number_part

port_number_part =" digits
foreign_host_address | :==msisdn | msisdn port_number part
msisdn == digits | digits
digit semmim “0” | “1!1 ! ii2$.~ | s-.3:,

i «411 ! “5” i ;.‘6” i “7” ; “8”

l “9”
digits == digit | digit digits

g

Apple Inc.
Ex. 1018 - Page 42

Appendix A, GSM SMS Adapter

Examples of valid URL connection strings are:
s sms://+358401234567
* smg://+358401234567:6578
s sms://:3381

When this adapter is used and the Connector . open {) method is passed a URL with this syntax, it MUST
retutn an instance implementing the javax.wirelegs.messaging. MessageConnection interface.

A.2.1 Specifying Recipient Addresses

In this URL connection siring, the MSISDN part identifies the recipient phone number and the port number part
of the application port number address as specified in the GSM 3.40 SMS specification [] (sections 9.2.3.24.3
and 9.2.3.24.4). The same mechanism is used, for example, for the WAP WDP messages.

When the port number is present in the address, the TP-User-Data of the SMS MUST contain a User-
Data-Header with the Application port addressing scheme information element.

When the recipient address does not contain a port number, the TP-User-Data MUST NOT contain the
Application port addressing header, Java applications cannot receive this kind of message, but it will be handled
as usual in the recipient device; for example, text messages will be displayed to the end user.

A.2.2 Client Mode and Server Mode Connections

Messages can be sent using this AP} via client or server type MessageConnect ions, When a message
identifying a port number is sent from a server type MessageConnection, the originating port number in,
the message is set to the port number of the MesgageConnection, This allows the recipient to send a
response to the message that will be received by this MessageConnection.

However, when a client type MessageConnection is used for sending a message with a port number, the
originating port number is set to an implementation-specific value and any possible messages received to this
port number are not delivered to the MessageConnection.

Thus, only the server mode MessageConnect 1ons can be used for receiving messages. Any messages to
which the other party is expecied to respond should be sent using the appropriate server-mode
MessageConnection.

A.2.3 Handling Received Messages

When SMS messages are received by an application, they are removed from the SIM/ME memory where they
may have been stored. If the message information MUST be stored more persistently, then the application is
responsible for saving it. For example, the application could could save the message information by using the
RMS facility of the MIDP API or any other available mechanism.

A.3.0 Short Message Service Center Address

Applications might need to obtain the Short Message Service Center (SMSC) address to decide which recipient
number to use. For example, the application might need to do this because it is using service numbers for
application servers which might not be consistent in all networls and SMSCs.

The SMSC address used for sending the messages MUST be made available using System.getProperty
with the property nane described in Table 3.

Table 3: Property Name and Description for SMSC Addresses

Property name Description

i3

Apple Inc.
Ex. 1018 - Page 43

Appendix A. GSM SMS Adapter

wireless.messaging,.ams. | The address of the SMS expressed using the syntax expressed by the

smsc msisdn item of the following BNF definition:
msigdn ::== "4+ digits | digits
digit PP i wow l wow | w | wan | Wi |
wgw | wrpn | wgw I ngr
digits ::== digit | digit digits

A.4.0 Using Port Numbers

The receiving application in a device is identified with the port number included in the message. When opening
the server mode MessageConnection, the application specifies the port number that it will use for
receiving messages.

The first application to allocate a given port nuinber will get it. If other applications try to allocate the same port
number while it is being used by the first application, an I0Except ion will be thrown when they attempt to
open the MessageConnect ion. The same rule applies if a port munber is being used by a system application
in the device. In this case, the Java applications will not be able to use that port number.

As specified in the GSM 03.40 standard 1], the port numbers are split into ranges. The TANA (Internet
Assigned Numbers Authority) controls one of the ranges. If an application author wants to ensure that an
application can always use a specific port number value, then it can be registered with IANA. Otherwise, the
author can pick a number at random from the fieely usable range and hope that the same number is not used by
another application that might be installed in the same device. This is exactly the same way that port numbers
are currently used with TCP and UDP in the Internet.

A.5.0 Message Types

SMS messages can be sent using the TextMessage or the BinaryMessage message type of the API, The
encodings used in the SMS protocol are defined in the GSM 03.38 standard (Part 4 SMS Data Coding Scheme)
2]

When the application uses the TextMessage type, the TP-Data-Coding-Scheme in the SMS MUST
indicate the GSM default 7-bit alphabet or UCS-2. The TP-User-Data MUST be encoded appropriately
using the chosen alphabet. The 7-bit alphabet MUST be used for encoding if the String that is given by the
application only contains characters that are present in the GSM 7-bit alphabet. If the String given by the
application contains at least one character that is not present in the GSM 7-bit alphabet, the UCS-2 encoding
MUST be used.

When the application uses the BinaryMessage, the TP-Data-Coding-Scheme in the SMS MUST
indicate 8-bit data.

The application is responsible for ensuring that the message payload fits in an SMS message when encoded as
defined in this specification. If the application tries to send a message with a payload that is too long, the
MessageConnection. send ()} method will throw an I1legalArgumentException and the message
will not be sent. This specification contains the information that applications need to determine the maximum
payload for the message type they are trying to send.

Allnessages sent via this APTMUST be sent as Class | messages GSM 3.40 SMS specification [1], Section
9.2.3.9 “TP-Protocol-Identifier”.

Apple Inc.
Ex. 1018 - Page 44

Appendix A. GSM SMS Adapter

A.6.0 Restrictions on Port Numbers for SMS Messages

For security reasons, Java applications are not allowed to send SMS messages to the port numbers listed in
Table 4. Implementations MUST throw a SecurityException in the MessageConnection. send ()
method if an application tries to send a message to any of these port numbers.

Table 4: Port Numbers Restricted to SMS Messages

Port number

Description

2805

WAP WTA sccure connection-loss session service

2923

WAP WTA secure session scrvice

2943

WAT Push connectionless session service (client side)

2949

WADP Push secure connectionless session setvice (client side)

5502

Setvice Card veader

5503

Internet access configuration reader

5508

Dynamic Menu Control Protocol

5511

Message Access Protocol

5512

Simple Email Notification

9200

WAP connectionless session service

9201

WAP session service

9202

WAP secure connectionless session service

9203

WAP secure session service

9207

WAP vCal Secure

49996

SyncML OTA configuration

49999

WAT OTA configuration

33

Apple Inc.
Ex. 1018 - Page 45

Appendix A, GSM SMS Adapter

Apple Inc.
Ex. 1018 - Page 46

Appendix B. GSM Cell
Broadcast Adapter

This appendix describes an adapter that uses the messaging API with the GSM Cell Broadcast short message
Service (CBS).
The Cell Broadcast service is a unidirectional data service where messages are broadcast by a base station and

received by every mobile station listening to that base station, The Wireless Messaging APT is used for receiving
these messages,

B.1.0 GSM CBS message structure
The GSM CBS messages are defined in the GSM 03.41 standard [4].

The source/type of a CBS message is defined by its Message-Identifier field, which is used to choose
topics to subscribe to. Applications can receive messages of a specific topic by opening a
MessageConnection with a URL connection string in the format defined below. In the format, Message-
Identifier is analogous to a port number.

Cell broadcast messages can be encoded using the same data coding schemes as GSM SMS messages (See
Character Mapping Table in Appendix A, GSM SMS Adapter). The implementation of the API will convert
messages encoded with the GSM 7-bit alphabet or UCS-2 into TextMesgzage objects and messages encoded
in 8-bit binary to BinaryMessage objects.

Because the cell broadceast messages do not contain any timestamps, the Message . getTimeStamp method
MUST always return null for received cell broadcast messages.

B.2.0 Addressing
The URL connection strings that specify the address use the following syntax:

String Description
cbsurl == "chgi/f” address_part
address part == message_identifier_part
message_identifier_pavt | o= digits
digit ::= “0}! I “19! I “2‘.‘ | “3”

E 664!! | “5” ? ﬂi65! I (i?”‘ | “g”

; (59’,
digits == digit | digit digits

37

Apple Inc.
Ex. 1018 - Page 47

Appendix B. GSM Cell Broadeast Adapter

Examples of valid URL connection strings are;
s ¢che://:3382
* chs://:3383

In this URL, the message identifier part specifies the message identifier of the cell broadcast messages that the
application wants to receive.

When this adapter is used and the Connector . open () method is passed a URL with this syntax, it MUST
return an instance implementing the javax.wireless.messaging . MessageConnect ion interface.

These Mes sageConnect ion instances can be used only for receiving messages. Attempts to call the send
method on these MessageConnection instances MUST result in an TOException being thrown.

Apple Inc.
Ex. 1018 - Page 48

Appendix C. CDMA IS-637
SMS Adapter

This appendix describes an adapter that uses the messaging APl with the CDMA [S-637 SMS service.

C.1.0 CDMA IS-637 SMS Message Structure
CDMA SMS messages are defined in the CDMA 1S-637 standard [6].

C.2.0 Addressing
The same sms : URL connection string is used as for GSM SMS (See Appendix A).

C.3.0 Port Numbers

The 1S-637 SMS protocol does not include a port number or any other field for differentiating between recipient
applications. For this purpose, the WAP WDP for IS-637 SMS defined in section 6.5 of the WAP Forum WDP
specification[5] MUST be used. Similarly, any rules for segmentation and reassembly will follow the WAP
WDP guidelines for adapting CDMA SMS messages for a common behavior with corresponding GSM SMS
bearer capabilities.

Messages sent without a port number is sent as normal SMS messages targeted for presentation to the end user.
CDMA SMS messages MUST support a minimuin of 3 concatenated messages to be consistent with the GSM
SMS message adapter.

39
Apple Inc.

Ex. 1018 - Page 49

Appendix C. CDMA [S-637 SMS Adapter

40

Apple Inc.
Ex. 1018 - Page 50

41

Apple Inc.
Ex. 1018 - Page 51

ALMANAC LEGEND

The almanac presents classes and intefaces in alphabetic order, regardless of their package. Fields, methods and
constructors are in alphabetic order in a single list,

This almanac is modeled after the style introduced by Patrick Chan in his excellent book Jova Developers

Almanac.
@, 0,

RealtimeThread @ 00 javax.realtime l
€ Object
“ Thread O» Runnable
= RealtimeThread Schedulable

void addToFeasibility{)
RealtimeThread currentRealtimeThread(}
Scheduler getScheduler()
RealtimeThread()
RealtimeThread(SchedulingParameters scheduling)
void sleep({Clock clock, HighResolutionTime time)

0" @W throws InterruptedException

1. Name of the class, interface, nested class or nested interface. Interfaces are italic.

2

. Name of the package containing the class or interface.

. Inheritance hierarchy. In this example, RealtimeThread extends Thread, which extends Object.

I W

. Implemented interfaces. The interface is to the right of, and on the same line as, the class that implements
it. In this example, Thread implements Runnable, and RealtimeThread implements
Schedulable,

5. The first column above is for the value of the @aince comment, which indicates the version in which the
item was introduced,

6. The second column above is for the following icons, If the “protected” synibol does not appear, the
member is public. (Private and package-private modifiers also have no symbols.) One symbol from each
group can appear in this column.

Modifiers Access Modifiers Constructors and Fields
O abstract #protected # consiructor

® final & field

O static

B stafic final

7. Return type of a method or declared type of a field. Blank for constructors.

8. Name of the constructor, field or method, Nested classes are fisted in 1, nof here.

42
Apple Inc.
Ex. 1018 - Page 52

Almanac

javax.wireless.messaging!

BinaryMessage Message
bytel] gyetPayioadData{)
void setPayloadData(byte[] data}

javax.microedition.io

Object
= Connecior
(= : Connection open(String name) throws java.io.lOException

Connecticn open{Siring name, int mode) throws java.io.lOException

Connection open(String name, int mode, boolean timeouis)
throws java.io.lOException

java.io.DatalnputStream openDatainputStream(String name) throws java.iolOException
java.io.DataOutputStream openDataOutputStream({String name) throws java.io.JOException
java.lo.lnputStream openlnputStream(String name) throws java.lo.|OException
java.io.OutputStream openQutputStream(String name) throws java.ic.lOException
int READ '
int READ_WRITE
int WRITE

javax.wireless.messaging

Message

Sting getAddress()
java.util.Date getTimestamp()
void setAddress(String addr)

adeConnectio; javax.wireless.messaging

MessageConnection

javax.microedition.io.Connection
Sking BINARY_MESSAGE

Message newMessage(String type)

Message newMessage(String type, String address)
int numberOfSegments{Message msg)
Message receive() throws java.lo.|OException, java.io.nterruptediOException

43

Apple Inc.
Ex. 1018 - Page 53

Almanace

void send(Message msg) throws java.io [OException,
java.io.interruptediOException

void setMessagol.istener{MessageListener |) throws java.io.lOException
Sting TEXT_MESSAGE '

javax.wireless.messaging[

MessageListener

void notifylncomingMessage(MessageConnection conn}

TxtMessag Gl T javax.wire!ess.messaginé]
TextMessage iMessage
S String getPayload Texi(}

void setPayloadText(String data)

44
Apple Inc.
Ex. 1018 - Page 54

Index

B

BINARY_MESSAGE
of javax.wireless.messaging MessageConnec-
tion 18
BinaryMessage
of javax.wireless.messaging 13

C.

Connector
of javax.microedition.io 6

G

getAddress()

of javax.wireless.messaging. Message 15
getPayloadData()

of javax.wireless.nessaging. BinaryMessage

13

getPayloadText()

of javax.wireless.messaging. TextMessage 25
getTimestamp()

of javax.wireless.messaging. Message 16

J

java.applet - package 41

M

Message

of javax.wireless.messaging 15
MessageConnection

of javax.wireless.messaging 17
MessageListener

of javax.wireless.messaging 22

N

newMessage(String)
of javax.wireless.messaging. MessageConnec-
tion 18
newMessage(String, String)
of javax.wireless.messaging. MessageConnec-
tion 19
notifyIncomingMessage(MessageConnection)
of javax.wireless.messaging MessageListener
24

numberQfSegments(Message)
of javax.wircless.messaging. MessageConnec-
tion 19

O

open(String)

of javax.microedition.io.Connector 8
open(Siring, int)

of javax.microedition.io.Connector 8
open(String, int, boolean)

of javax.microedition.io.Connector 8
openBatalnpuiStream(String)

of javax.microedition.io.Connector 9
openBDataQutputStream(String)

of javax.microedition.io.Connector 9
openlnputStream(String)

of javax.microedition.io,Connector 10
openQOutputStream(String)

of javax.microedition.io.Connector 10

R

READ
of javax.microedition.io.Connector 7
READ WRITE
of javax.microedition.io.Connector 7
receive()
of javax.wireless.messaging. MessageConnec-
tion 20

S

send(Ivlessage)
of javax.wireless.messaging.MessageConmnec-
tion 20
setAddress(String)
of javax.wireless.messaging.Message 16
setMessagelListener(MessageListener)
of javax.wireless.messaging. MessageConnec-
tion 21
setPayloadData(bytef])
of javax.wireless. messaging.BinaryMessage
14
setPayloadText(String)
of javax.wireless.messaging. TextMessage 26

T

TEXT_MESSAGE
of javax.wireless.messaging.MessageConnec-

45
) Apple Inc.
Ex. 1018 - Page 55

Index

tion 18
TextMessage
of javax.wireless.messaging 25

\%%

WRITE
of javax.microedition.io.Connector 7

46
Apple Inc.

Ex. 1018 - Page 56

