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Effect of Fading Correlation on Adaptive 
Arrays In Digital Mobile Radio 
Jack Salz, Member, IEEE, and Jack H. Winters, Senior Member, IEEE 

Abstract-In this paper, we investigate the effect of correlations 
among the fading signals at the antenna elements of an adaptive 
array in a digital wireless communication system. With an adap
tive array, the signals received by multiple antennas are optimally 
weighted and combined to suppress interference and combat 
desired signal fading. Previous results for flat and frequency
selective fading assumed independent fading at each antenna. 
Here, we present a model of local scattering around a mobile 
where the received multipath signals arrive at the base station 
within a given beamwidth, and derive a closed-form expression 
for the correlation as a function of antenna spacing. Results 
show that the degradation in performance with correlation in an 
adaptive array that combats fading and suppresses interference 
is only slightly larger than that for combating fading alone, i.e., 
with maximal ratio combining. This degradation is small even 
with correlation as high as 0.5. 

I. INTRODUCTION 

A NTENNA arrays with optimum combining combat multi
path fading of the desired signal and suppress interfering 

signals, thereby increasing both the performance and capacity 
of wireless systems. This increase is reduced, however, by 
correlation of the fading signals between the received antennas. 

Previous theoretical and computer simulation studies of 
optimum combining (e.g., [1]-[6]) assumed independent fad
ing of the desired and interfering signals at each receive 
antenna. Such independence occurs if multipath reflections 
are uniformly distributed around receive antennas that are 
spaced at least a half wavelength apart. However, the signals 
often arrive at the receive antennas mainly from a given 
direction. For example, in rural or suburban mobile radio, a 
high base station antenna typically has a line-of-sight to within 
the vicinity of the mobile, with local scattering around the 
mobile generating signals that arrive mainly within a given 
range of angles or beamwidth. This problem was studied 
in [7], where theoretical and experimental results showed 
the relationship of angle of arrival and beamwidth with the 
correlation of fading between antennas. Specifically, as the 
angle of arrival approaches end-fire (parallel to the array) 
and the beamwidth decreases, the antenna spacing must be 
increased to reduce correlation. When this correlation is high 
(>0.8), because the signals at the antennas tend to fade at 
the same time, the diversity benefit of antenna arrays against 
fading (i.e., with maximal ratio combining) is significantly 
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reduced (8]. On the other hand, because independent fading is 
not required for interference suppression, antenna arrays can 
suppress interference even with complete correlation (=I), 
i.e., in line-of-sight systems without multipath. In partic
ular, theoretical and computer simulation results (!], [3], 
[4], [9], [10] have shown that with M antennas, M - 1 
interferers can be completely suppressed in both fading (with 
zero correlation) and nonfading (with complete correlation) 
environments. Thus, we need to understand the antenna array 
performance with joint fading reduction and interference sup
pression. In addition, the effect of correlation with frequency
selective fading, when equalization is also used, must be 
evaluated. 

This paper considers the effect of correlation of the signal 
fading at the antennas of an adaptive array with optimum 
combining to combat desired signal fading and suppress inter
ference, and optimum linear equalization to combat frequency
selective fading. We first present a model of local scattering 
where the received multipath signals arrive within a given 
beamwidth. We derive a closed-form expression for the fading 
correlation with this model as a function of the angle of arrival, 
beamwidth, and antenna spacing. Using these theoretical re
sults with Monte Carlo simulation, we then generate results for 
the effect of beamwidth (i.e., correlation) on the adaptive array 
performance with given antenna spacing and random angles 
of arrival. Results are presented for optimum combining with 
Hat fading, as well as for frequency-selective fading, using a 
two-path delay spread model with joint optimum combining 
and linear equalization. Computer simulation results show 
that the degradation in performance with correlation in an 
adaptive array that combats fading and suppresses interference 
is slightly larger than that for combating fading alone, i.e., 
with maximal ratio combining. This degradation is small 
even with correlation as high as 0.5. Results for an adaptive 
array with either flat Rayleigh fading or frequency-selective 
fading show that with an antenna spacing of four wave
lengths, there is little performance degradation as long as the 
beamwidth of the received signals is greater than 20°. Further 
increases in antenna spacing would reduce this beamwidth 
even more. 

In Section II, we describe optimum combining and equal
ization with antenna arrays and discuss how fading correlation 
can occur. The model and theoretical analysis of wireless 
systems with fading correlation is presented in Section III. 
In Section IV, we describe the computer simulation technique 
and present results on the performance degradation with corre
lation. A summary and conclusions are presented in Section V. 
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Fig. l. Wireless communication system employing adaptive arrays, where a 
base with "U antennas receives signals from :V users. 

II. BACKGROUND 

Fig. 1 shows a digital wireless communication system em
ploying adaptive arrays where a base with M antennas receives 
signals from N users. These N users operate in the same 
bandwidth simultaneously and include signals destined to the 
base, as well as those destined to other bases, but interfering 
with the desired signals, as in cellular systems. 

Let the complex channel transfer function from user "i" 
to antenna "j" be denoted as c;i ( w). Then, the channel 
vector from user "i" to the base antennas is Ci(w) = 

T . 
[c; 1 (w) ... ciM(w)], where the superscript T denotes 
transpose, and the M x N channel matrix between the N 
users and the base is given by 

C(w) = [C1(w) ... CN(w)]. (I) 

In this paper, we are interested in linear processing at the 
base station of the M received signals to generate an output 
signal that corresponds to the data from one desired signal 
(user 1). Specifically, we consider ideal optimum combining 
and linear equalization, where the M received signals are 
combined to minimize the mean-square error (MSE) in the 
output. For ideal optimum combining, we assume perfect 
tracking of the desired and interfering signals by the combining 
algorithm at the base station. For ideal linear equalization, 
we consider a synchronous tapped delay line with an infinite 
number of taps, as shown in Fig. I. This equalizer is the 
optimum linear equalizer under the assumption that the desired 
signal spectrum is bandwidth-limited to the data rate (1/T). 
As shown before [I], with ideal optimum combining and linear 
equalization, the minimum MSE for user "I" for given C(w) 
is given by 

T 11r/T 1 MSE[C] = (]~- [I+ pCt(w)C(w)] ~1 dw, 
271" -1r/T 

(2) 

where I is an N x N identity matrix, p is the signal-to-noise 
ratio, and O"~ = E [I an 12), where the an's are the complex 
data symbols. The superscript denotes complex conjugate 
transpose, and [ ] ~1

1 stands for the "II" component of the 
inverse of a matrix. For coherent detection of binary phase shift 

D ·--· 1 2 
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Fig. 2. Wireless environment where all signals from a mobile arrive at the 
base station within ±.:}. of angle Q. 

keyed (BPSK) or quadrature amplitude modulated (QAM) 
signals, the error rate can then be upper bounded by 

[ [ 
1-MSE[C]/O"~]] 

Fe :S: Ec exp MSE[C] , (3) 

where Ec[] is the expected value with respect to the channel 
matrices. 

With multipath, the Cij(w)'s are modeled as complex Gauss
ian random variables at each frequency w. The variation of 
ci1(w) with w depends on the delay spread model of the 
channel. In this paper, we examine numerically two such 
models: 1) flat fading, i.e., Cij(w) = Cij for all w, where 
equalization is not needed, and 2) a two-path delay spread 
model, 

(4) 

where Ti is the time delay between the two paths for the i-th 
user and c}i and c;i are complex Gaussian random variables, 
and the fading in the two paths with different time delays is 
independent, i.e., cL is independent of cTj (but the c;j's are 
not necessarily independent). 

Previous papers have assumed that the Cij 's are independent. 
Such independence occurs if multipath reflections are uni
formly distributed around the receive antennas that are spaced 
at least a half wavelength apart (this situation is examined 
in detail below). However, the signals often arrive at the 
receive antennas mainly from a given direction. For example, 
in rural or suburban mobile radio, a high base station antenna 
typically has a line-of-sight to within the vicinity of the mobile, 
with local scattering around the mobile generating signals that 
arrive mainly within a given range of angles or beamwidth. 
Fig. 2 shows a typical scenario where all signals from a mobile 
arrive at the base station within ±~ at angle ¢. This problem 
was studied in [7], where theoretical and experimental results 
showed the relationship of angle of arrival and beamwidth 
with the correlation of fading between antennas. Specifically, 
[7] assumed that the probability density function for the angle 
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of arrival of the 'i-th ray is given by 

7r 7r 
- 2 + ¢ ~ ¢; ~ 2 + ¢ (S) 

where n is an even integer chosen to determine the beam width 
and Q is a normalizing constant chosen to make p( ¢;) a 
density function. The correlation of the fading between two 
antennas spaced D apart is then [7] 

1
r./2+<P 

Rxx = cos(27rDIAsin(¢;- ¢))p(¢;)d¢.; 
-11"/2+¢ 

(6) 

and 

1
11"/2+<1> 

Rxy = . sin (27r D I A sin ( ¢; - ¢) )p( ¢;)d¢; 
-7r/2+cp 

(7) 

where A = wl(27rc), c is the speed of light, Rxx is the 
correlation between the real parts of c;j and c;ko and Rxy is 
the correlation between the real part of c;j and the imaginary 
part of Cik· Unfortunately, (6) and (7) must be evaluated 
numerically. Therefore, in the next section, we present a 
generic model, where the probability density function of ¢; 
is assumed to be uniform, 
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The overall channel matrix C can now be expressed in terms 
of the M-column vectors (see (!)), 

(9) 

where the column vector Ck(w) represents the transmission 
characteristics from user "k" to all the antenna elements. Since 
each user is characterized by its own surroundings, and if the 
users are not on top of one another to within wavelengths, it is 
reasonable to assume that the columns in (9) are statistically 
independent. Consequently, we need only to characterize the 
correlation properties of a typical user, which we have already 
accomplished. 

Expressing the complex column vector Ck(w) = xk(w) + 
iyk(w) where Xk and Yk are the real and imaginary M-column 
vectors associated with user "k," we define the 2M augmented 
column vector as 

Xk1 
Yk1 
Xk2 
Yk2 

XkM 

(10) 

p(¢;) = { 6~ - 6. + ¢ ~ ¢; ~ 6. + ¢ 
elsewhere 

(8) YkM 

This allows for the derivation of a closed-form expression 
for the correlation coefficient, with results that agree with 
the results obtained numerically using the model of [7) (see 
Section IV). 

III. CHANNEL MODEL 

We develop a mathematical model for multipath media ap
plicable in wireless digital communications employing antenna 
array processors. The model is useful for the evaluation of 
signal correlations among the antenna array elements which 
are critically important in determining ultimate system per
formance. The degree of correlation depends on the element 
spacings and signal scattering angles resulting from the phys
ical surroundings. 

Using the model of a uniform probability density function 
of¢; (8), in the Appendix we derive closed-form expressions 
for the correlation of the fading between the j-th and k-th 
antennas (as compared to (6) and (7)). 

Note that using these expressions, (A-19) and (A-20), when 
6. = 71", 

Rxx(k- j) = Ryy(k- j) = la(z(k- j)) 

and 

Rxy(k- j) = Ryx(k- j) = 0, 

where z = 21r £t. The implication of these results is that when 
reflections are allowed to arrive at the antenna array from all 
directions, the correlation of signals at adjacent antenna array 
elements is determined from J0 ( z) = 0 which implies that 
z = 21r£t ::::::: 2.4 or £t ::::::: ;; ::::::: .382. This sets the minimum 
spacings between antenna elements yielding zero correlation. 

and seek to evaluate the 2M x 2M correlation matrix 

Rk = E[AkAt] ,k = 1, ... N. (ll) 

Defining the 2 x 2 matrix 

D _ [Rxx(i- j) Rxy(li- ji)] M 
li-jl- -Rxy(li- jl) Ryy(i- j) i,j = 1, ... , 

(12) 
where the entries are given in (A-19) and (A-20), it is easy to 
see that Rk can be represented in terms of these block 2 x 2 
matrices as follows: 

rlw D1 D2 

DM 1 A DT l2x2 D1 DM-1 
Rk _ D} DT l2x2 ~M-2 (13) 2 - 2 1 
(Jk . 

nr1 DI[-1 Dtt-2 lzx2 

where CJ~ is the received signal power for the k-th user (see 
(A-16), with a subscript '~k" denoting the eh user-(A-16) 
applies to a typical user). Clearly, Rk is a Toeplitz matrix. 

IV. RESULTS 

A. Correlation 

Let us first consider the correlation as a function 
of the antenna spacing D I A, angle of arrival ¢, and 
beamwidth 6.. When the signal arrives from broadside 
( ¢ = 0° ), Rxy = 0 for all D I A. Thus, the envelope 

correlation, R (1Rxxl 2 + IRxyl2) 
112 

is just IRxx I· 
Rxx versus antenna spacing is shown in Fig. 3 for 
6. = 180°, 90°, 40°, 20°, 10°, and 3°. These results agree with 
results using the model of [7] with 6. equivalent to the 3 dB 
beamwidth of [7]. The figure shows that, as 6. decreases, the 
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Fig. 3. Correlation of the real portion of the fading versus antenna spacing 
for <f> = 0°. 

first zero in the correlation occurs at larger antenna spacing. 
Specifically, the first zero-crossing occurs at D I>. ::::; 301 .6., 
with .6. in degrees. Thus, these results depend mainly on 
D I >.I .6., and show that independent fading occurs when the 
antenna beamwidth from two elements of the array is about 
the same as the beamwidth of the arriving signal. 

When the signal arrives from other than broadside, ¢ =/:- 0°, 
the antenna spacing for low correlation increases and the 
envelope correlation is never zero for almost all values of 
¢ =f:. 0° and .6. < 180° (since zero envelope correlation 
requires that Rxx (A-27) and Rxy (A-28) have zero crossings 
at exactly the same spacing). Fig. 4 shows Rxx versus antenna 
spacing for the worst case of ¢ = goo. For Rxy• the peak 
value of the oscillations is similar to that shown in Fig. 4. 
Note that the correlation decreases much more slowly with 
antenna spacing at ¢ = 90° than at ¢ = 0°. 

Fig. 5 shows the antenna spacing required for the envelope 
correlation to remain below 0.5 as a function of ¢ and .6.. The 
required spacing is only a few wavelengths up to very small 
beam widths, unless ¢ is close to 90°. 

Experimental measurements of the beamwidth in mobile 
radio are presented and discussed in [7], [12]. These results 
show that, as expected, the beamwidth decreases with the 
antenna height. Fortunately, in most cases, antenna spacings on 
the order of only 10>. (several feet at 900 MHz) are required 
to obtain low correlation. 

The effect of correlation on reducing the effectiveness of 
antenna diversity against desired signal fading is shown in 
[8]. With maximal ratio combining and two antennas, small 
correlation ( < 0.3) has a negligible effect on performance, and 
the degradation is small unless the correlation is large (> 0.8). 

The effect of correlation on reducing the effectiveness of 
antenna arrays against interference suppression is as follows. 
With M antenna elements, the array has M - 1 degrees 
of freedom. Thus, as shown by theoretical and computer 
simulation results [1], [3], [4], [9], [10], an M antenna element 

,=90' 

D!>.. 

Fig. 4. Correlation of the real portion of the fading versus antenna spacing 
for d> = 90°. 
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Fig. 5. Antenna spacing required for the envelope correlation to remain 
below 0.5 as a function of o and ~. 

array can null out M - 1 interfering signals independent 
of the fading correlation (i.e., with or without fading). The 
only factor that changes with the environment is the required 
spatial separation of the interfering signals: without fading, 
the signals must be separated from the desired signal by the 
antenna beamwidth, while with fading (with .6. = 180°), the 
signals need only be separated by about half a wavelength. 
For .6. < 180°. we note the following. Spacing the receive 
antennas at greater than A/2 decreases the beamwidth of the 
array but also creates grating lobes, i.e., the antenna pattern 
repeats every goo I ( D I>.). Because of these grating lobes, with 
large antenna spacing to reduce fading correlation, interfering 
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signals outside of the antenna beamwidth can not always be 
suppressed. However, because of the multipath fading, most 
interfering signals within the beamwidth but separated by 
at least half a wavelength, can be suppressed. Therefore, as 
before, only the required spatial separation of the interfering 
signals changes with the environment. Thus, as the signal 
beamwidth decreases (i.e., as the correlation increases), the 
effectiveness of adaptive arrays to suppress interference alone 
does not change, but the effectiveness against fading does. 

B. Performance with Fading and Interference 

The effect of correlation on an adaptive array that jointly 
suppresses interference and reduces fading effects was de
termined in the following manner. For fixed D I A and the 
same fixed D. for the desired and interfering signals, we use 
Monte Carlo simulation to derive 10,000 channel matrices C 
with random ¢ and fading and then calculate the performance 
averaged over these matrices (i.e., ¢ and fading). We assume 
that the users are randomly located (separated by at least half 
a wavelength) and thus ¢ is an independent random variable 
for each user with a uniform probability density function, i.e., 

p(¢) = { trr -7r<cp':5_7r 
elsewhere. 

(14) 

The performance measures we consider are the average error 
rate, as well as the outage probability, i.e., the probability that 
the error rate exceeds a given value. 

The error rate for a given ¢ and fading was calculated 
as follows. For given ¢ for each user, D., and D I A, the 
correlation matrix Rk I aZ for each user was calculated using 
(13). To generate C, we first generate a 2M vector Ak for each 
user with each element aki being an independent, zero-mean 
Gaussian random variable with a variance of 1/2. Thus, 

for the k-th user. The k-th column of c. ck. is then 

• 1/2 
Rk 

Ck = - 2-Ak. (16) 
ak 

fll/2 
Note that ~ is given by 

(j k 

[
~ 0 

flt/2 = X 0 vx;-
a2 . . 

k 
0 0 

(17) 

where x = [x1 ... x 2M f, and x; and A; are the eigenvectors 

and eigenvalues of §., respectively. For frequency-selective a, 
fading with two-path delay-spread (4), the above procedure 
was repeated twice to obtain the c}/s and c;/s. The MSE is 
then given by (2) and the error rate by (3). 

We first consider the effect of correlation with flat fading, 
two receive antennas, and one interferer with the same power 
as the desired signal. Fig. 6 exhibits the average error rate 
versus D. with p = 18 dB and 27 dB, and D = 0.382A 
and 3.82A. Note that D = 0.382-\ corresponds to zero 
correlation when the signal arrives uniformly from all angles 

10'1 ,..-----,.-----,-..,..----,....------, 

ffi 10'2 
al 

10'3 L_ _ _L ____ ...J.._.L_ __ _j ____ __J 

180 100 90 50 0 

A (Degrees) 
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Flat Fading 
M=N=2 

Fig. 6. Average error rate versus 2. with flat fading and ,\1 = :V = 2. 

(.6. = 180°). At D = 0.382A, the performance is degraded 
slightly at D. = goo and becomes much worse with smaller 
D.. However, at D = 3.82A, there is little degradation until D. 
is 10°-20°. Thus, increasing the antenna spacing by a factor 
of 10 decreases the tolerable D.. by about a factor of I 0 as 
well (corresponding to the decrease in antenna beamwidth as 
discussed in Section IV -A). As shown in Fig. 5, at 20°, the 
correlation is about 0.5 in the worst case of ¢ = goo. Fig. 6 
also shows that the degradation with D. is larger with higher p, 
but the above conclusions are the same. Similar results were 
obtained for the outage probability. 

Fig. 7 shows the outage probability versus D. with flat 
fading, N - 1 equal-power interferers, and M = N + 1. 
Results are shown for the probability of exceeding a 10-2 

error rate, with p = 17 dB, and D = 0.382A and 3.82A 
as in Fig. 6. As compared to Fig. 6, these results show that 
for D = 0.382-\ correlation degrades the performance more 
when there is an additional antenna. Additional results we 
obtained for M = N + 2 and M = N + 3 show that the 
degradation with correlation grows even larger with more 
antennas. In Fig. 7, the M = 2 results are without interference 
and thus correspond to the performance with maximal ratio 
combining. The performance with D = 0.382A is seen to 
be degraded somewhat more by correlation when interference 
must also be suppressed (i.e., M = 3 and 4 versus M = 2 
results). However, in all cases when the spacing is increased 
to D = 3.82A, the performance remains constant1 as long as 
D. is greater than about 20°, i.e., the correlation is below 0.5. 

Finally, we consider the effect of correlation with frequency
selective fading when joint optimum combining and equaliza
tion is used. Fig. 8 shows the average error rate versus D. 
with two-path delay spread and M = N = 2. Results are 
for p = 17 dB, D = 0.382A and 3.82-\, and delay T = 0, 
0.7 T, and T for the desired and interfering signals. Note that 

1 The outage probability is seen in Fig. 7 to increase slightly with increasing 
2. at one point for both ,u = 3 and 4 with D /.\ = 3.82. but this is just 
a numerical aberration due to using only I 0,000 channel matrices in the 
simulations. 
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Fig. 8. Average error rate versus __:-.. with two-path delay spread and 
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the error rate decreases with T, due to the diversity benefit 
of frequency-selective fading with equalization, as shown in 
[1]. This improvement increases with T until T = T and then 
remains constant since the two paths are resolvable for T :::: T. 
The figure also shows that there is some improvement even 
if only the interference has frequency-selective fading, but the 
best improvement occurs when both the desired and interfering 
signals have frequency-selective fading. A large portion of 
the maximum possible improvement is obtained when T = 
0.7T. Fig. 8 shows that for D = 0.382,\, the degradation 
with correlation increases with frequency-selective fading. As 
before, however, with D = 3.82,\, the performance is not 
degraded until D. is less than about 20°. 

Thus, correlation degrades the performance of an adap
tive array that combats fading, suppresses interference, and 
equalizes frequency-selective fading somewhat more than an 
array that only combats fading. Correlation up to 0.5 causes 

little degradation, but higher correlation significantly decreases 
performance. Although our results show that this degradation 
increases with the number of antennas, these results are for a 
linear array, which causes all fading to be highly correlated 
when signals arrive from endfire, i.e., as ¢ --+ 90°. Since 
this problem can be reduced when M > 2 by not arranging 
the antennas linearly, we may be able to avoid this increase 
in degradation with the number of antennas. However, in 
all cases, increased antenna spacing reduces the D. at which 
degradation occurs. 

V. CONCLUSIONS 

In this paper, we have investigated the effect that fading 
correlation has on the performance of an adaptive array in 
a digital mobile radio system. We described a mathematical 
model of local scattering around the mobile where the received 
multipath signals arrive at the base station within a given 
beamwidth and derived a closed-form expression for the 
correlation as a function of antenna spacing. Monte Carlo 
simulation results show that the degradation in performance 
with correlation in an adaptive array that combats fading, 
suppresses interference, and equalizes frequency-selective fad
ing is only slightly larger than that for combating fading 
alone, i.e., with maximal ratio combining. This degradation 
is small even with correlation as high as 0.5. Our results 
show that, with an antenna spacing of four wavelengths, there 
is little performance degradation as long as the beamwidth 
of the received signals is greater than 20°. This tolerable 
beamwidth can be reduced even further by larger antenna 
spacing since this beamwidth is inversely proportional to the 
antenna spacing. 

APPENDIX 

DERIVATION OF CLOSED-FORM 

EXPRESSIONS FOR Rxx AND Rxy 

The most fundamental description of a linear, quasistation
ary, multi path medium in wireless systems employing antenna 
arrays is the impulse response from user "i" to array element 
output "j." Such a typical impulse response can be represented 
as the superposition of a large number of impulses, 

h(t) = 2.::g11 8(t- tn) (A-1) 

where the Yn 's and the t 11 's are the strengths and delays of 
the possible paths. Clearly, in a time varying situation, these 
parameters will depend on time. In a system of N users and fl.;[ 
antenna elements, we must describe N x J\.1 such responses. 
Thus, if the input to the medium of a typical user is s(t)eiwot, 
where w0 is the angular carrier frequency, the output of a 
typical antenna element becomes, 

(A-2) 
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Following the seminal work of Turin [ 11], the set of all tn 's is 
partitioned into L disjoint sets Ae,E = 1 ... L. With each set 
Ae, we associate a representative delay Te such that tn~:Ae if 
s(t- tn) ~ s(t- T£). In other words, the differences Te- tn 
are much smaller than the reciprocal bandwidth of s(t). 

With these approximations in mind, we rewrite (A-2) in the 
form 

L 

sa(t) = eiwot l::>(t- Tf) L gne-iwotn (A-3) 

f=l "' 

where nt is the set of integers such that tn~:At. Denoting 
Lnt gne-iwotn = be and taking Fourier transforms of both 
sides of (A-3), we obtain the standard L-ray, or frequency
selective multipath description of fading channels, 

L 

Sa(w) = S(wo + w) L beei(wo+w)rt. (A-4) 

Thus, a typical baseband-equivalent, frequency transfer 
characteristic from user "k" to antenna element "j" can be 
represented in the form 

L 

( ) "'bkj iwrki k 1 N · 1 M Ckj w = L......t t e t , = , . . . ,J = . . . . (A-5) 
f=l 

For this model to be useful, a statistical characterization of 
the set of M x N frequency functions Ckj ( w) must be provided. 
In our application, we shall assume that the terms in the 
various sums defining bt 's are random quantities and so it is 
reasonable to assert that the bt 's are complex random variables. 
Furthermore, we assume that there are large number of terms in 
each sum and that each sum includes different random terms 
and, consequently, from the central-limit theorem, the bt's, 
£ = 1 ... L, may be regarded as i.i.d. complex, zero-mean, 
Gaussian random variables. If we let W 0 tn = Bn in the sums 
defining be, we write the real and imaginary parts as 

(A-6) 
Now, it is reasonable to regard Bnmodulo27r as i.i.d. uni

formly distributed random variables with the consequence 
that :r:e and Yt are now independent and so lbel is Rayleigh 
distributed and /be is uniform. This is then the rationale for 
regarding Ckj(w )in (A-5) as a complex Gaussian process in the 
frequency domain. For our application, the correlation among 
the elements of Ckj 's is of paramount importance. 

In order to facilitate the evaluation of these parameters, 
we must return to the basic definition of the be's in (A-6). 
We begin by considering the following geometrical model. 
This entails placing the users and the antenna array in a 
reasonable geometrical relationship. Without loss of generality 
assume that the antenna array is linear with M elements with 
identical spacing, D, between elements. We label the elements 
in ascending order. Users are located at arbitrary angles and 
distances with respect to the antenna array as depicted in 
Fig. 2. With each user, we associate a scattering angle of size 
2~. This implies that all subpaths from the user to the antenna 
array are restricted to emanate from within this angle. 
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We now derive the correlations among array elements for 
a single user by assuming plane waves at the array. This is 
a reasonable assumption when users and antenna array are 
separated by many wavelengths. 

Suppose the reference wavefront plane coincides with el
ement l (see Fig. 2). Then, the wave arriving at element 2 
suffers a delay relative to the first element, 

D. 
T = -sm¢, 1¢1 ~ 1r 

c 
(A-7) 

and (n- 1)T at element "n." 
Thus, if we denote the output signals at antenna elements 

"k" and "j" by sak(t) and S 0 j(t), respectively, due to the 
transmission of a signal of the form, s( t )eiwo t, located at an 
angle ¢, we can write 

L 

(t) _ iw0 t"' (t )b(k,j) Sok,j - e L......t s - Tf f (A-8) 

f=l 

where 

b(a) = "'g eien-iwo(a-1J%sin¢n = 1 M 
£ L....t n ~a : ... , 

n, 

where ¢n is the angle of arrival of the n-th ray. 
As we have already argued, the b ~") 's are complex i.i.d. 

Gaussian random variables associated with array numbers a, 
and therefore the sought-after correlations are determined by 
each b~a) and different a's. Thus, we seek the correlation 
coefficients between the following random variables: 

b(k) = x·(k) + ;y(k) k = 1 M f f • f , , ... 

and 

where 

(A-9) 

and 

(a) I b(a) Ye = m e , a= 1, 2, ... M. 

We note that since the Bn 's are i.i.d. uniform, the real and 
imaginary parts of b~a) ·are independent for any a. We now 
calculate for any a 

E[x~a)r = E[y~a)r = ~ l::E[g?,J. (A-10) 
nt 

It is now straightforward to calculate the four correlation 
coefficients 

E [x~k) x~1 )] = E [y~k)Yi1 >] 

= ~ L E [g?, cos [(k- j)27r~ sin ¢n]] 
n, 

(A-ll) 



1056 IEEE TRANSACfiONS ON VEHICULAR TECHNOLOGY, VOL. 43, NO.4, NOVEMBER 1994 

and 

E ['I.(k)1,U)] = - E [x(J)y(k)] 
"f d{ ~e.£ 

= ~ L E [g~ sin [(k- j)27r~ sin¢n]] 
nr 

(A-12) 

where 

According to our hypothesis, there are a large number of 
terms in the sums indicated in (A-10) and (A-ll) and if we 
make the additional physically reasonable assumption that the 
¢n 's are dense in the range (¢-fl.,¢+ fl.), the sums can be 
expressed as integrals of the form, independent of f, 

Rxx(k- j) = Ryy(k- j) = E[x~k)x~j)] = E[y~k)y~j)] 
(A-13) 

and 

(A-14) 

where the density function of the returned strengths u2 
( ¢) 

must satisfy 

(A-15) 

Making the reasonable assumption that this density function 
is a constant over the angle segments, we then obtain the 
relationship 

u
2 

= ~ L E[g~J = ~E[Ibtl 2 ], for all f (A-16) 
ne 

which is consistent with the definitions in (A-8). Now, by 
making use of the well-known series representations, 

cos(zcos8) = .la(z) + 2 L hm(z)cos(2m8) 
m=l 

sin(zsin8) = 2 L .l2rn+I(z)sin[(2m+ 1)8] 
m=O 

(A-17) 

where the .lm 's are Bessel Functions of integer order and 

D 
z = 27r-:\' (A-18) 

we can integrate (A-13) and (A-14) and obtain the following 
convenient formulas for the desired correlation coefficients: 

Ryy(k- j) = Rxx(k- j) 

~ sin (2m fl.) 
= .la(z(k- j)) + 2 L.., .lzm(z(k- j)) cos (2m¢) 

2
mfl. 

m=l 
(A-19) 

and 

Rxy(k- j) = -Ryx(k- j) 

~ sin ((2m+ l)fl.) 
= 2 ~0 .lzm+I(z(k- j)) sin [(2m+ 1)¢] (2m+ l)fl. 

(A-20) 
where the normalized R's are defined as R = R/u2. It can 
be readily checked that 

and 

as they must be for "physically consistent" considerations. 
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