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Abstrac t  - In this paper we present the results of our 
investigation- concerning the performance of block turbo 
codes associated with high spectral efficiency QAM 
modulations. By using a pragmatic approach, simulation 
results show that all the block turbo coded QAM 
modulations we have tested are at 2.9 f 0.2 dB of their 
Shannon‘s limit. The block turbo coded QAM modulations 
also outperform TCM schemes by at least 1 dB at a BER 
(Bit Error Rate) of Concerning convolutional turbo 
coded QAM modulations, the block turbo coded QAM 
modulations exhibit slightly better performance for spectral 
efficiencies greater than 4 bits/s/Hz. 

I. INTRODUCTION 

In 1993, C. Berrou [ I ]  showed for the first time that it was 
possible to realize a digital transmission with a signal to 
noise ratio (EbINo) close to Shannon‘s theoretical limit. The 
transmission scheme proposed by Berrou relies on a 
concatenated recursive convolutional code associated with an 
iterative decoding algorithm to protect the binary 
informations against transmission errors. Although 
concatenated codes are relatively powerful in terms of 
minimum distance, one must be very careful when decoding 
concatenated codes. To obtain near optimum decoding 
performance, C. Berrou proposed an iterative decoding 
algorithm based on soft decoding of the component codes and 
soft decision of the decoded bits. In  the case of convolutional 
codes, soft decoding of the component codes is obtained with 
the Viterbi [2] algorithm. For the soft decision or reliability 
of the decoded bits, C. Berrou and P. Adde [3] proposed an 
efficient and low complexity algorithm based on the work of 
G. Battail [4]. The correct combination of the reliability 
information from the demodulator and from the decoder was 
the key to the success of the “turbo codes.” 

The success of convolutional turbo codes encouraged us 
to investigate an equivalent block turbo code. To concatenate 
the block codes, we used the concept of product codes [SI 
which was introduced by Elias in 1954. Various iterative 
decoding algorithms have previously been proposed [6] [7] for 
decoding product codes but the coding gains obtained using 
these decoding algorithms are well below what one would 
expect from such powerful codes. The main drawback of 
these algorithms is that they use algebraic decoders or hard 
decoders for decoding the component codes. To achieve near 
optimum decoding of product codes, we must use an iterative 
decoding algorithm based on soft decoding of the component 
codes and soft decision of the decoded bits. In 1994 we 
proposed a new iterative decoding algorithm [8] based on soft 
decoding of the component codes and soft decision of the 
decoded bits. We obtained results similar to convolutional 

turbo codes and the coding gains were close to the thoretical 
coding gain expected from product codes when using 
Maximum Likelihood Sequence Decoding. 

In our first paper [8], we tested the performance of block 
turbo codes associateld with a QPSK modulation over a 
gaussian channel. We showed that for a BER (Bit Error Rate) 
of the signal to noise ratio (EbINo) was at 2.5 dB of 
Shannon‘s theoretical llimit for block turbo codes with any 
code rate less or equal to 0.9. Although it is well known that 
block codes exhibit high code rates, the spectral efficiency of 
the block turbo coded QPSK modulations will never exceed 
2 bits/s/Hz. As modern applications require high spectral 
efficiency transmissioin systems, we have investigated the 
performance of block turbo coded 16-QAM and 64-QAM 
modulations over a gaussian channel. 

This paper describels a method for associating block turbo 
codes with 16-QAM and 64-QAM modulations and presents 
the simulation results we have obtained. In section I1 we 
recall the properties of product codes and we describe the 
method we used to associate product codes with QAM 
modulations. In section 111, we give a brief description of the 
soft decoding algorithm and the soft decision algorithm and 
also the iterative decoding procedure for decoding block turbo 
coded QAM modulations. Section IV is dedicated to the 
performance of block turbo coded QAM modulations. We 
compare our results with the best known coding schemes 
which are TCM (Treillis Coded Modulations) and high 
spectral efficiency coinvolutional turbo codes. Finally we 
draw some conclusions in section V. 

11. BLOCK TURBO CODED QAM MODULATIONS 

The concept of product code is a simple and relatively 
efficient method to construct powerful codes (that is having 
large minimum Hamming distance 6) by using classic linear 
block codes [5] .  Let us consider two systematic linear block 
codes t1 having parameters (nl ,k1,61) and t2  having 
parameters (n2?k2,62) where ni, ki and Si (i =1,2) stand for 
code length, number of information bits and minimum 
Hamming distance respectively. The product code 
T=t1@t2 is obtained by : 

1) placing (k1x:kz) information bits in a matrix, 
2) coding the k l  rows using code t2, 
3) coding the n2 columns using code %? l ,  

as illustrated in Fig. 1. 
It is shown [ 5 ]  that all the nl  rows of the matrix in 

Fig. 1 are code words of (e2 exactly as the n2 columns are 
code words of (e I by construction. Furthermore the 
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parameters of the resulting product code 9 is given by 
n=nixn2,  k=klxk2 and 6 =61x62 and the code rate R is 

1 k2 - 
k, Information symbols 

Checks on columns 

given t 

Checks 
on 

rows 

Checks 
on 

P=RlxR2 where Ri is the code rate of code fz 

Figure 1 : Construction of product code 9 = t1 0 f 2  

In the case of block turbo coded QPSK modulations, the 
association of a product code with a QPSK modulation was 
straightforward. Each binary element of the product code was 
used to select a symbol from the in-phase channel (or from 
the quadrature channel) of the QPSK constellation. This is 
not the case for a 16-QAM modulation since each symbol of 
the in-phase (or quadrature) channel is selected by two binary 
elements. We used the pragmatic approach proposed by 
Viterbi [9] to associate the block turbo codes with the QAM 
modulations which is a very good compromise between 
decoding complexity and performance. We begin by grouping 
the binary elements of the coded matrix by two and we shall 
denote the two binary elements x and y respectively. The 
binary couple (x ,y )  then selects a symbol a from the in-phase 
channel (or quadrature channel) of the 16-QAM constellation 
as illustrated in Fig. 2. 

I 
a = -3 - 1  +1 

A - - - 
+ 1  +' I I. Y = +1 -1 -1 

x = -1 -1 + I  

Figure 2 : Binary elements associated to the symbols of the 
in-phase channel of the 16-QAM modulation. 

Symbol a is then transmitted to the receiver. The sample r a t  
the output of the coherent demodulator corresponding to the 
transmission of symbol a over a gaussian channel is given 
by relation r = a + b where b is additive white gaussian noise 
(AWGN). In our previous paper [8] we showed that we 
require the Log-Likelihood-Ratio (LLR) associated to each 
binary element of the coded matrix to perform near optimum 
decoding of product codes. For a 16-QAM modulation, the 
LLR of x is defined by the following relation : 

/ n  r . * ,  i \  r r i x  = t i  I r j  
Pr{x = -1 / r} 

( L L R ~ )  = in( 

By using Bayes rule and assuming that the transmitted 
symbols a are identically distributed over the four values 
{ +1, +3 }, relation (1) yields the following expression : 

p{r/  a = +I}+ p{r / a = +3} 
p{r / a = -I} + p{r / a = -3) 

(LLRx)  = In 

where p{r la}  is the probability density function of r 
conditionally to transmitted symbol a .  At high signal to 
noise ratio, it is easily shown that relation (2) can be 
approximated by : 

1 2(r+1)  i f r < - 2  
where the LLR has been normalized with respect to the 
standard deviation of r. By using a similar demonstration we 
can show that at high signal to noise ratio, the normalized 
LLR of y can be approximated by : 

r if Irl< 2 

(LLRx)= 2 ( r - 1 ) i f r > + 2  (3)  

+ ( r - 2 )  if Irl>O 
-(r + 2) if Irl< O 

(LLRy) = (4) 

On receiving samples [RI corresponding to a coded 
matrix, we compute the LLR of the binary elements of the 
matrix according to relations (3) and (4). (LLRx) and (LLRy) 
are two random variables with probability density functions 
which have a gaussian distribution. However the parameters 
of the two gaussian distributions are different. In order to 
reduce the complexity of the decoder, we distributed the 
binary elements x and y in the coded matrix so as to prevent 
the accumulation of binary elements x or y along the 
columns or rows of the coded matrix. Having derived the 
LLR of the binary elements of the coded matrix we shall 
now describe the iterative decoding algorithm. 

111. OPTIMUM DECODING OF PRODUCT CODES 

To simplify our notations, the LLR of the binary elements 
corresponding to a row or column of the coded matrix will be 
noted R=(r l ,  .., rj , .., rn). Optimum maximum likelihood 
sequence decoding of R is given by : 

c i )  is the i th  code word of the 

component code f with parameters (n,k,@. Decision D= 
(dl  , . . , d j  , . . , d, corresponds to the maximum likelihood 
transmitted sequence conditionally to R and : 

is the squared Euclidean distance bztween R and Ci. For 
block codes with a high code rate R ,  the number of code 
words 2k is relatively large and maximum likelihood 
sequence decoding is too complex for implementation. To 
reduce the complexity of the soft decoder we used the Chase 
algorithm [ I O ]  which approximates maximum likelihood 
sequence decoding of block codes with a low computation 
complexity and a small performance degradation. Instead of 
reviewing all the code words 1 = 1..2k, the Chase algorithm 
searches for the code words at Hamming distance within a 
sphere of radius ( 6 1 )  centered on Y = (y1,. . , y;, . . , y n )  where 
j j  is the sign of r; (kl) .  To further reduce the number of 
reviewed code words, only the most probable code words 
within the sphere are selected by using channel information 
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R. This search procedure can be decomposed in three steps : 

1) determine the position of the [6/2] least reliable binary 
elements of Y using R ,  

2) form test patterns T4 defined as all the n-dimensional 
binary vectors with a "1" in the [6/2] least reliable 
positions and "0" in the other positions, two "1" in 
the [8/2] least reliable positions and "0" in the other 
positions, ...,[ 8/21 "1" in the [6/2] least reliable 
positions and "0" in the other positions, 

3) decode Z4=YOT4 using an algebraic decoder and 
memorize the code words C4 . 

Maximum likelihood transmitted sequence D is then given 
by decision rule (5) with the reviewed code words restricted 
to those found at step 3 above. The Chase algorithm yields 
the maximum likelihood sequence D for a given soft input 
R. We must now compute the reliability of the decoded bits 
corresponding to the maximum likelihood sequence D. This 
reliability function is given by the Log Likelihood Ratio 
(LLR) of the decision dj which is defined by : 

/ r  . \  
(7) 

where ej is the binary element in position j of transmitted 
code word E. By considering the different authorized code 
words, the numerator of (7) can be expressed as : 

P r { e j = + l / R } =  , E  P r { E = C i / R }  (8) 
C l q  

where Sj" is the set of code words such that e'. = +1 and 

the denominator of (7) can be expressed as : 
J 

Pr{e; = - I / R  } = ic l P r { E = C i / R }  (9) 
c €Sj7 

where ST1 is the set of code words such that e'. = -1. By 

applying BAYES rule to (8) and (9) and assuming that the 
different code words are uniformly distributed, we obtain for 
the LLR of dj the following expression : 

J J 

where p{ } is the probability density function of R 
conditionally to E. As shown in [SI, relation (10) can be 
approximated by : 

where C + ' ( j )  is the code word in S+l at minimum distance 

from R and C-'(j) is the code word in ST* at minimum 

distance from R .  o is the standard deviation of the 
components in vector R.  By expanding relation (11) using 
(6) we finally obtain the following expression : 

J 

J 

0 if ,itl(;) = -'(.A 

1 if c;l(j) , j l i j )  
(13) where: pl = 

The normalization of the approximated LLR of dj with 
respect to 2/02 yields the new variable r'; = rj + w j  where : 

W J  = - & p p l  (14) 
l=l, l#j  

The estimated normalized LLR of decision dj, r'j is given by 
rj plus wj which is a function of the code words at minimum 
Euclidean distance friom R and { r i }  with l#j. The term wj is 
the additional inforination given by the decoder to the 
reliability of the decoded bit. Since wj is a combination of 
random variables rl, it is also a random variable with a 
gaussian distribution. The approximated normalized LLR of 
dj  (r'j ) is an estimation of the soft decision of the block 
decoder. It has the same sign as dj  and its absolute value 
indicates the reliability of the decision. 

To compute the normalized LLR using (12) we suppose 
that we have identified the two code words C+l(j) and 
C-'(j). This can be done by increasing the number of least 
reliable bits and test patterns in the Chase algorithm (see 
section 11). For each code word C q  found at step 3, we 
compute its Euclidean distance from R : 

M q  =jR-Cql2  (15) 
As in the Chase algorithm we select the code word I) at 
minimum Euclidean (distance MD from R .  Then we search 
for the code word C at minimum Euclidean distance M c  
from R such that c j  75 d j .  If we find such a code word then 
we compute the soft decision for bit dj using the relation 
given below : 

else we use the relation 

where p is a constanl which is a function of the BER (Bit 
Error Rate) and is optimized by simulation. Equation (17) is 
justified by the fact that wj has the same sign as the LLR of 
dj but we have not been able to compute the amplitude of the 
reliability since we have not found code word C .  We now 
have all the elements to perform the iterative decoding of 
block turbo coded QAlM modulations. 

On receiving the matrix [RI corresponding to the LLR of 
the binary elements in the coded matrix, the first decoder 
performs the soft decoding of the rows (or columns) of the 
matrix, estimates the normalized LLR [R']  using either 
relation (16) or (17) and gives as output [W(l)]. Then the 
next decoder performs the same operations on the columns 
(or rows) using as input data [R(l)]  = [RI + a( l ) [W(I) ] .  
This decoding procedure is then iterated by cascading the 
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elementary decoders illustrated in Fig. 3. The coefficient 
a ( k )  is used to reduce the influence of [ W ( k ) ]  in the first 
iterations when the BER is relatively high and thus [\.Ti(k)] is 
not absolutely reliable. 

J 
I I I 

Figure 3 : Block diagram of elementary decoder. 

MANCE OF BLOCK TURBO CODED 
MODULATIONS 

A closc analysis of the iterative decoder shows that the 
parameters a ( k )  and P(k)  are not independent and that the 
optimum value for these parameters depends on the product 
code used. This implies an optimization of the parameters for 
each product code. To overcome this problem, we normalized 
the average value of the computed wj, which is a random 
variable with a gaussian distribution, to +1 for samples yj > 
0 and -1 for samples wj < 0. By doing so we have noticed 
that the optimum value for parameters 01 and p are practically 
independent and are also independent of the product code. 
This simplified the task in evaluating the performance of the 
different product codes. We used the following values for 01 
and p : 01 = [O, 0.5, 0.7, 0.9, 1, 1, 1, I ]  and p = [0.2, 0.3, 
0.5, 0.7, 0.9, 1, 1,  I ] .  

It is clear that the performance of the turbo decoder 
depends on the number of test patterns. In our investigation, 
we used seventeen test patterns based on the five least 
reliable bits. This is a compromise between performance and 
complexity. 

We shall now prcsent the simulated performance of block 
turbo coded QAM modulations transmitted over a gaussian 
channel. We evaluated the performance of different block 
turbo codes based on extended BCH codes associated with 16- 
QAM and 64-QAM modulations. The BER (Bit Error Rate) 
was evaluated using Monte Carlo simulations for different 
values of the signal to noise ratio (Eb lNo) .  The BER is 
given for one hundred matrices having at least one bit false 
after decoding down to a BER of We used identical 
BCH codes for coding the rows and columns of the product 
codes, that is Y1=E2.  

The simulation results show that after iteration-4. the 
amelioration of the coding gain becomes negligible [8] 
because of the steep slope of the BER curve (see Fig. 4). The 
signal to noise ratio for a BER OP 10-5 at iteration-4 is at 
2.8 dB of Shannon's theoretical limit. In Fig. 5 we have 
plotted the BER versus signal to noise ratio of different 
block turbo coded 16-QAM modulations at iteration-4. As a 
reference, we have also plotted the BER versus signal to 
noise ratio of the 64-state 16-QAM TCM with a spectral 
efficiency of 3 bits/s/Nz. From Fig. 5 we note that the 
slopes of all the BER curves of the block turbo coded 16- 
QAM modulations are steeper than that of the 64-state TCM. 
Furthennore, for a BER lcss than the block turbo coded 
16-QAM modulations outperform the 64-state TCM . 

BCH(1!8,113,6) x BCH(128,113,6) 
B ER 

6 8 10 12 14 I6  

Eb/No (dB) 

Figure 4 : Bit Error Rate versus SNR (EbINo) for the first four 
iterations when using a 16-QAM modulation. 

BER 

- BCH(64,51,6) - t BCH(64.57,4) 
-A- BCH(256.247,4) 
-x- 64-stare TCM 
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Figure 5 : BER versus signal to noise ratio at iteration-4 for 
different block turbo coded 16-QAM modulations. 
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Figure 6 : BER versus signal to noise ratio at iteration-4 for 
different block turbo coded 64-QAM modulations. 
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In Fig. 6 we have plotted the BER versus signal to noise 
ratio of two block turbo coded 64-QAM modulations at 
iteration-4. As mentioned in our previous paper [8], we 
observe from Fig. 5 and Fig. 6 that the slope of the BER 
curve increases with the size of the matrix and with the 
minimum Hamming distance of the product code. We also 
notice that all the block turbo coded QAM modulations we 
have tested are at 2.9 k 0.2 dB of Shannon‘s theoretical 
limit. This is slightly greater than what we obtained 
previously [8] with block turbo coded QPSK modulations. 

In order to compare the different coding schemes, we have 
plotted in Fig. 7 the signal to noise ratio of different coding 
schemes at a BER of as a function of their spectral 
efficiency. Concerning convolutional and block turbo-codes, 
results at the third iteration are presented. This comparison 
clearly shows that block turbo codes outperform the 64-state 
TCM schemes by at least 1 dB. We also noticc a slight 
advantage for block turbo codes over convolutional turbo 
codes [l 11 for spectral efficiencies greater than 4 bitsls1Hz. 
This is due to the fact that there is a degradation of the 
performance of convolutional turbo codes when the code is 
punctured so as to increase its code rate [ l  11. 

Eb/No (dB) 

1 2 3 4 5 6 

Spectral cllicicncy (hitsisfi 1 4  

Figure 7 : (&/No) at a BER of lo-’ versus spectral efficiency 
for different coding schemes. 

V. CONCLUSION 

In this paper we have presented a new coding scheme which 
is based on block turbo codes associated with QAM 
modulations. By using a pragmatic approach, we have 
derived a very simple method to perform the iterative 
decoding of block turbo coded QAM modulations and we 
have simulated the performance of different block turbo coded 
QAM modulations. We have noticed that, for all the block 
turbo coded QAM modulations we have tested, the signal to 
noise ratio at a BER of 10-5 is at 2.9 * 0.2 dB of their 
respective Shannon’s limit. These block turbo coded QAM 
modulations exhibit much better performance than the 64- 
states TCM coding schemes. Furthermore, for spectral 
efficiencies greater than 4 bitsIslHz, the block turbo coded 
QAM modulations show better performance than 
convolutional turbo coded QAM modulations. This clearly 

shows that block turbo codes are actually the most efficient 
coding schemes for digital transmission systems requiring a 
high spectral efficiency. 

However, the main drawback of turbo codes in general is 
the delay introduced by the iterative decoder which can be 
critical for some applications. In the case of block turbo 
codes, this delay can be reduced by using parallel decoding of 
the rows and columns of the coded matrix and also by 
reducing the complexity of the iterative decoding process. 
Furthermore, preliminary results show that block turbo codes 
exhibit no performance degradation when using a 4-bit 
quantization of the input data while convolutional turbo 
codes exhibit a minimum degradation of 0.5 dB. In our 
opinion, although simulation results show a slight advantage 
of convolutional turbo codes for code rates less than 0.75, we 
believe that tlhis threshold will be much smaller when 
comparing circuit performance. 
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