Linkoping Studies in Science and Technology. Dissertations.
No. 319

Smart Image Sensors

Anders Astrom

.-;ﬂ‘ﬂ Er Ly, {

S
o
S

Department of Electrical Engineering
Linkoping University, S-581 83 Linkdping, Sweden

Linkoping 1993

PAGE 1 OF 241 TETRA TECH CANADA EXHIBIT 1024

1

Anders Astrom: SMART IMAGE SENSORS Linkoping 1993 j

PAGE 2 OF 241

s

Linkoping Studies in Science and Technology. Dissertations.
No. 319

Smart Image Sensors

Anders Astrom

Department of Electrical Engineering
Linkoping University, S-581 83 Linkoping, Sweden

Link6ping 1993

PAGE 3 OF 241

Abstract

Today, modern VLSI technology makes it possible to integrate image input and low-
level operations into one single chip. Such a chip can take in an image and apply fairly com-
plex algorithms on the image and also extract features to be sent to higher levels of process-
ing. These chips are known as Smart Image Sensors. All devices described in this thesis
employ CMOS technology for the sensors as well as for other circuitry.

The first part of this thesis describes a smart image sensor called PASIC (Processor,
A/D-converter, and Sensor Integrated Circuit). It is a two-dimensional sensor with a linear
array of processing elements working in SIMD mode. The aim is to verify the performance
by cycle counting a number of low-level algorithms such as shading correction, histogram
based thresholding, edge detection, and segmentation. The studies show that the PASIC
architecture is surprisingly effective.

The second part of the thesis describes MAPP2200 which is a commercial available
smart image sensor. It has the same basic structure as PASIC (2D sensor array and 1D pro-
cessor array). The exposure control is performed in a very different manner compared to
normal CCD-cameras. In MAPP2200 the sensor array is accessed much like a memory,
row-wis= in any sequence. The simple ALU-functions in each of the 256 processing ele-
ments is enhanced with a global logic for feature extraction. One group of algorithms which
seams to suit MAPP2200 very well is moment calculations and we give three application
examples with different demands on speed and segmentation. Finally, we show that range
data from sheet-of-light can be obtained at very high speed by using a combination of analog
and digital computation.

The third part introduces the concept of Near-Sensor Image Processing. It is shown
that the analogue-temporal behavior of photodiodes as detected by thresholding amplifiers
can be integrated with low-level algorithms such as median filtering, grayscale morphology,
convolution, and adaption to different light levels. The quantity to be measured in NSIP is
the time from the pre-charge of the photodiode until the voltage passes the reference volt-
age. This time is inversely proportional to the incoming light intensity. Various mapping
strategies to modify this relation are discussed, and it is shown that histogram equalization
comes naturally in this concept. For the sake of simplicity, most examples of operations and
algorithms are given for the 1D-array LAPP1100. Suggestions for a 2D NSIP architecture
are also provided. Finally, an application is described where NSIP is used in an architecture
for sheet-of-light range imaging.

ISBN 91-7871-171-1
ISSN 0345-7524
Printed in Sweden by LJ Foto & Montage/Sambhall Klintland, Linkoping 1993

PAGE 4 OF 241

To my parents

iii

PAGE 5 OF 241

Acknowledgements

There are a number of people without whom this thesis would never have existed. This is my
opportunity to thank at least some of them.

First of all I would like to thank my supervisor Professor Per-Erik Danielsson for many valu-
able suggestions to this thesis, and for making it more readable and understandable.

Invaluable inspiration to this thesis, especially for the parts on MAPP and NSIP has been
given by Dr. Robert Forchheimer.

Further thanks goes to
All people involved in the PASIC-, VIP-, MAPP-, and NSIP projects, especially, to Per
Ingelhag and Mattias Johannesson.
People at IVP for the opportunity to work with MAPP2200.
All members of the Image Processing Group.

Finally, I would like to thank the Swedish National Board for Technical Development
(NUTEK) and Center for Industrial Information Technology (CENIIT) for financial sup-
port.

PAGE 6 OF 241

CONTENTS

Acknowledgementsoovviiirnitiiiiiinnrrtiriaatanetiaincennaes v
Smart Image Sensors N N cens xi
Thesis OVEIVIEW ...ttt i e e e xi
Similar Projectst e xii
References ...ovuiininiin i iiiiiiiticnenonesroseonaacsosonananns XV

Part I PASIC

1 Introductioncieiiiiniiiiiieernniissnrnnesrsessnnnnas 1
1.1 Background 1
12 Bit-serial paralle]l processorsttt 3
1.2.1 AN OVEIVIEW ..ottt it ittt et naeeens 3
122 LUCAS L e 3
123 GAPP e e 4
124 AIS-5000 . ..o 5
125 LAPP . e 7
2 The PASIC Architecturecoieeiinniiinninnnnneeennas, 9
2.1 OVEIVIEW .« ittt e e e 9
2.2 The photosensorso 9
23 The A/D CONVEILEIS\ et aaans 10
24 The processing elements, PE o L 11
25 VST e 14
2.6 The programmingmodel oo il 15
3 Basicinstructionset iiiiiiiiiiiiiiiii i 18
31 Boolean functions o i i il i i, 18
32 Addition and subtraction 23
33 Multiplication of two variableso oL 24
34 Multiplication with a constant o . 26
35 Processor communicationoiiiiiiiiii it e 27
3.6 Interprocessor Operationsoouiiiiiiii it 28
3.7 The Global-OR communicationcoiiviiiiieann. 30
38 Summary of PASIC 32
4 Basicroutinesceeiiiiiiiiiiiiiiiiiiiiiiiaiiiiiiieaas 33
4.1 ConvolutionS e 33
4.2 Sparse filter kernels. Averaging i .. 34
43 Maximum value finding and distribution 36
4.4 CountingbitsinaPE 37

vi

PAGE 7 OF 241

4.5 Counting bitsonaline.......... f e ettt

4.6 Labeling objectsonalineo il
47 Histogram collectionot
5 General comments about applicationsooovviiiiiiiine.
5.1 Definitions ... PR
52 Row parallel pipeliningttt
53 Combining different algorithms
6 Shading correctionccoiiviiiiinennrreeanesneasonseasaas
6.1 The need for shading correction oot
6.2 Calibration i e
6.3 COITECHION . . .ttt
7 Histogram based thresholdingcciiiiiiiiiiiiineinenns
71 On thresholding and histograms e
72 Implementation and performance on PASIC
7.3 Results from experimentsot
8 Edgedetection..........cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaieaa,
8.1 On edge detection algorithms i,
8.2 Median - Sobel - Thinning ool
83 Second derivative Zero-Crossingc.c.c.iiiiiiiiiieeenn
8.4 Extended second derivative zero-crossing
85 Contrast amplification il
9 Segmentationc00000000. Ceeesraiaes s Ceeeiaeees
9.1 Segmentation on parallel machines ool
9.2 Limitations for PASIC o o
93 Implementation of the multi-scan procedure
9.4 Implementation of the one scan procedure
9.5 Results from experimentso i i
10 Improvements of PASICccoiiiiiiiiiiiiiiniinnnnn,
10.1 Architecture extension, different approaches
102 Extended ALU i .
103 Global—=OR feedback e
104 External Mmemorycovuiiiitiiiiiit i iien i
105 Look—uptablet e
106 An application driven extension design for PASIC................
11 Conclusionsovviiiiiiiiniiinnnns i eeeeeseaiaararaanens
12 Referencesc.iiiieiiiiiiirireninssisreesarivesenns

Part II MAPP2200

1 Architectlre . o v nr i ineiinenenenneeonsaseossosasarosasnasnsan
1.1 OV VI W o ittt et e e e e e e

PAGE 8 OF 241

38
40
41
45
45
45
46
49
49
49
51
53
53
56
59

61

61

62
66
68
70

73
73
77
77
79
80
82
82
82
85
86
87
89
92
94

1.2
13
14
2

2.1
22
23
24
2.5

3

4
4.1
5

5.1
52
53
5.4
6

6.1
6.2
6.3
7

8

Programming MAPP2200 ereeasencesaieananes
Environment and Syntaxcoiiiiiiiir ...
TEETationSttt e e e

Adaptive eXxposure cOntrolcovviiiiiiieirerrrrrrrieiianans
A model for optimal exposure ool
Computation of MOmMeENtscoveivieennierrrnniererironnons
2D diSCrete MOMEILS .+« oo\t vttt ittt eeaaieeeenaneneeanns
Moment calculation in MAPP2200 el
A MAPP application. Tracking movement in a rat muscle
Segmentation and moment calculation, the general case
Sheet-of-light range imagingcciiiiiiieriiinsseninrenaas
General e e
Implementation on MAPP2200ccoiiiiiiiiiinnn,
Filtering during computation oottt

Conclusions et aesertaeannene Chirreeeeanan

Referencesovvvevvnnnns e eseessnsenseannas Creessaresataans

Part III NSIP

2.1
2.2

31
32
33
3.4
35
3.6

4.1

Introduction Ceriresaaeaes Ceraeas

A Near-Sensor Image Processorcoivviiiiiiiiiinnnns. v

The photodiode sensor ittt
LAPP1100- a 1D architecture e

Near-Sensor Image Processing algorithmsc000n0s
General ... e e
Finding the position of maximum intensity

- Detecting positive gradients i,
Median and rank order filteringo L
Histogrammingttt i i e
Combining Operationscouiiiiiiiiiiiiinneiiinnns

Adaptive thresholding
Using the maximum intensity i iiiii ..

PAGE 9 OF 241

10

12
12
14
16
17
17
20

23
23

28
28
30
32
36

40
40
41
45
47

49

N AR -

10
10
10
13
14
17
18

20
20

4.2 Pattern oriented thresholding i i it

43 Histogram based thresholding
5 Variablesamplingtimec.. ittt
5.1 General e
52 Linear mappingoooiinii i i
53 Non-linear mappingooo vttt ittt
54 Datadependentmappingo i,
6 Variable threshold Ceeeeriiiasaseeataaanaes
6.1 General ... e e
6.2 Linear mappingiiiiiiiiiiii i
6.3 Non-linear mapping e
7 Erroranalysiscovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeaas
7.1 Errormodelo i e
72 Variable sampling time i i i oiiin
73 Time variable threshold e
8 Grayscalemorphologyccoiviiiiiiiiiiiiiiiiiiieiiinae,
9 Linearconvolutioncovviiiiiiiiiiiiiiiiiiiniernnnnns
10 2DNSIPmodeltiiiiiiiiiiereeiiiiiiinennsessenennnnnnns
10.1 Programmingmodelttt e
10.2 Generation of coordinatesciiiiiiiii i,
11 Global operations eesareasaeresaan esesassseseesans ces
111 MARKandFILLo i i e
112 Safe and unsafe propagation............ ool
12 Feature extractionoviveniiiiiieennnneennnnosoncanns
121 Finding a positioncoiiiiiiiii it
122 MOMENTS ..ot v ittt i i e e
123 Shapefactor ...t e
13 VLSIrealization of 2D NSIPcoiiiiiiiiiiiiiiiiinnnnennnas
14 NSIP Sheet-of-light range imagesoviiiiiinnnninersens
141 Implementation in NSIP it it
142 Special NSIP architecture for sheet-of-light
15 Conclusion.......coiiiiiiiiiiiiiiniiieiiiiesessesssanssnennns
16 Referencescoviniininennnnnnns o ieeeeiaieeareaes

PAGE 10 OF 241

20
21
23
23
24
26
27
31
31
31
34

35
35
36
37

40

48
48
50
53
53
59
62
62
63
65
67

72
72
73

75
76

Smart Image Sensors

Thesis overview

The expression ”Smart image sensor” has no official definition and different authors tend to
have different meanings of the concept. However, a common characteristic seams to be that
the sensor should contain some processing power and/or programmable access to the image
data. Hence, ordinary CCD-cameras are not regarded as smart, not even if they have some
flexibility in terms of programmable integration time.

We feel that all Smart image sensors (proposed or implemented) can be categorized as fol-
lows.

1. Random access of sensor array, no processing capability

2. Integrated sensor and one single processor

3. Integrated sensor and linear processor array

4. Integrated sensor and 2D array of processors (one processor per pixel)

The smart image sensors to be presented in this thesis belong to categories 3 and 4.

Research within the field of smart image sensors has been an ongoing activity at the Univer-
sity of Linkdping for a long time. At the beginning of the 1980s, Dr. Robert Forchheimer
came forward with an idea to combine sensors and processors on the same chip. He was
partly inspired by the optical mouse [19]. In cooperation with Anders Odmark at the Physics
Department, the sensor/processor LAPP [13], Linear Array Picture Processor, was born. A
series of prototype chips were designed and manufactured in 1983—84. The project was
then moved from the university to the spin-off company IVP Integrated Vision Products,
which was founded to commercialize this product. The name of the chip was now changed to
LAPP1100 where the first ”1” stands for the dimension and the ”100” stands for the magni-
tude of the number of sensor elements, which was 128. The marketing of the LAPP1100 chip
began in 1987.

Atthe same time as the LAPP1100 chip was developed at IVP, several new ideas were inves-
tigated at the university as a joint venture between the LSI design group, Dept. of Physics,
and the Image processing group, Dept. of Electrical Engineering. One of these was the
PASIC architecture, first proposed by Dr. Keping Chen in 1988. At that time, PASIC was
assumed to consist of a 128x128 array of photo-sensors and a 128 array of processors, [6][7].
Given the architecture of PASIC several algorithms were simulated and cycle counted.
Sometimes the simulations showed that the design should be modified. After a number of
architecture and algorithm iterations the architecture converged to a rather complete and
powerful smart image sensor. Two different test chips were made and tested in 1991. One
contained a 256x256 sensor array and 256 A/D-converters and the other contained a proces-
sing array of size 256. This work was published as a licentiate thesis [1] in december 1990 and
forms Part I of this thesis.

During the work with PASIC, its processor part was discovered to be very powerful on its
own. This resulted in a new chip design called VIP, Video Image Processor [4][5][8], which is

PAGE 11 OF 241

not covered in this thesis. This architecture has proved tobe highly effective for radar signal
processing [14][18]. A modified VIP chip, now called RVIP (Radar VIP), is going tobe com-
mercialized by Ericsson Radar Electronics, Mélndal, Sweden.

In 1990, the demand for a two-dimensional sensor persuaded IVP to develop MAPP2200,
Matrix Array Picture Processor [12]. MAPP2200 is mainly an outgrowth of LAPP1100
although some of the ideas behind PASIC were also incorporated in the design. Especially,
the software environment of MAPP2200 [3] has been influenced by PASIC. MAPP2200 has
also been used for research at some universities. One of the applications is to serve as the
key component in a sheet-of-light range camera [17]. The MAPP2200 architecture, algo-
rithm implementations, and some applications form Part II of this thesis.

The idea of Near-Sensor Image Processing, NSIP, originates from LAPP1100 [13]. In the
early 80’s, VLSI constraints prevented the LAPP-designers from incorporating A/D-con-
verters for the 128 sensor array. To obtain gray level data the threshold voltage had to be
changed step by step and a number of binary image had to be taken care of. It was then dis-
covered that many image processing problems could indeed be solved not by storing a
sequence of binary images but by intelligent processing each time the sensor array delivers
binary data. The final result is influenced by the full sequence of input data and the proces-
sing utilizes certain characteristics in these sequences, e.g. the fact if a sensor input has
passed the threshold it will continue to do so. In effect, the A/D-conversion and the digital
processing is interwoven in the innermost program loop where the sensor is repeatedly
interrogated. Thisis the NSIP idea, "Near-Sensor Image Processing”. Part III of this thesis,
discusses NSIP both on the algorithmic level [10][11] and on the architectural/VLSI level

(2l
Similar projects

The litterature on smart image sensors is not large which is somewhat surprising. For any-
one who is familiar with image processing and its applications, the smart image sensor
would seam to be an obvious and natural development. Possible reasons why so little has
been reported might be a certain conservatsim, feeling that the art of VLS is still not ready
for it, and the fact that the dominating sensor type, the CCD-chip does not lend itself so
easily to add-on digital circuitry. In contrast, all smart image sensor reported in this thesis
are CMOS for sensors as well as the digital parts.

We will will mention four other smart image sensor projects below; Two of them very breifly.

Carver Mead at Caltech [20] set as his goal to construct a silicon retina to emulate certain
functions of the human eye. His strategy is to design a number of functional units in VLSI
where each unit has a special neural-like function (axons, dendrites, etc.). He then config-
ures these units according to demand. A motion detector which detects any kind of motion
in the scene in the same way as a human eye has been demonstrated as well as a sensor with
the same impulse response as the human retina.

Another approach has been reported from Laval University, Canada. This is the Multi-port
Access photo-Receptor, MAR [22]. The main smartness of this sensor is that pixels in a hex-
agonal grid can be randomly accessed and for each pixel position, the whole 16 pixels neigh-
borhood will be available at the analog output from the chip. In of the applications men-

xii

PAGE 12 OF 241

tioned in [22] the 16 pixel output is transfered to several different lowpass/gradient filters
concurrently.

Smart image sensor projects at the University of Edinburgh [21) hasbeen going on for quite
some time. The results have been successfully commercialized by the company VVL, VLSI
Vision Limited. The idea behind the project and the company is to use a CMOS sensor array
and on the same silicon chip implement an image processing system as a full-custom VLSI
design dedicated to a certain application [9]. For example, if the application is just a com-
pact video camera a special unit is implemented on the chip which takes the output from the
photo-sensors and delivers a standard video signal output. If the application is a system for
fingerprint capture and verification [21], the image processing part is totally different. In the
latter case the chip consists of

258x258 photo-sensor array

Unit for image preprocessing and quantization
64-cell 2000 Mops/s correlator array

16k bits RAM cache

16k bits ROM look-up table

Together with a 64k bit off-chip RAM and a 8051 micro-controller, this device can capture
and compare a fingerprint against a stored reference print within one second.

The photo-sensor array which is used in most of the applications is shown in Figure 1. The
size of the array depends on the application. For the fingerprint application it is 258x258 and
for the video output chip it is 312x287.

Contral

Horizontal shift register

|l T Output amplifier
l D
[:I 1T |

Image array

Vertical
‘ shift
] 7 register
Control —_

Common column
read-out

Figure 1. The sensor array in the VVL smart sensor

Each photo-sensing element consists of a photodiode and a CMOS transistor. It is pre-
charged and after a certain time it is read-out via the column bus. The pre-charge and read-
out is done row-wise in parallel. The row address is controlled by the vertical shift register.

xiii

PAGE 13 OF 241

For each column, there is a sense amplifier, which is responsible for both the reset and the
read-out of the photodiodes. The charge is moved from the pixel element to the hold posi-
tion by activating the Sample switch and deactivating the Reset switch. The row can now be
read-out, sequentially over the output bus, by addressing one column at a time. This addres-
sing is controlled by the horizontal shift register.

The VLSI Retina [23], has been developed at ETCA, France. This design has one processor
per pixel. Each processor is based on a three-bit semi-static shift register, shown in Figure 2.
Each of the memory cell E, G, and H is controlled by the two clock signals M1 and M2. Using
the clock signal X the data can be shifted to the right and with Y, data can be moved to the
north (with Y and M2) and to the south-east (Y and M1). These three shift possibilities,
West, North, SouthEast, are sufficient to perform arbitrary 2D shifting in the array.

ToN

L_{ LI ToE
T
X

-

Figure 2. Semi-static shift register

With a control signal T and some extra transistors, not shown in Figure 2, it is possible to

perform Boolean operations. The bit F or its complemented version in the first cell, may be

copied or and’ed with the G bit in'the second cell. It is also possible to take the value from

the photo-sensor and latch that binary value into the second cell with the control signal Z.
. Table 1 shows the content in the three cells F, G, and H, after different operations.

The idea behind the design is to use what is called Neighborhood Combinatorial Processing
[15], NCP. It is a concept to define edge detection, dithered halftoning, and other binary
operations, in terms of iterated Boolean operations. It is well known that conjunction and
complementation are sufficient to perform any computation. Since these are included in
Table 1, the claim is that the VLSI Retina sensor/processing element can perform any
operation. An edge detection is performed by using classical mathematical morphology
technique, where the edge image is the difference between the initial image and the eroded
version. This operation takes 30 instruction cycles.

Xiv

PAGE 14 OF 241

Operation F G H
shift up Fo,-1 G H
shift down & left F G Hi1
shift right Ho1,0 F G
Circular permutation and inversion Hg, 1 F G
Copy F F H
Inverting copy F F Hi,1
Conjunction F F&G H
Conjunction on inversion F F&G Hy,1
Read from photodiode F G+ (p>@p) H

Table 1. Some operations on the VLSI Retina

There are at least two major differences between the VLSI Retina and the Near-Sensor
Image Processing concept, described in part IITin this thesis. Gray-level information in the
VLSI retina is obtained by imaging the scene several times with decreasing exposure time,
while in the Near-Sensor Image Processing concept, the photodiode is interrogated repeat-
edly during one single discharge event. The other difference is that feature extraction on a
global level is not dealt with at all in the VLSI Retina. :

References

(1]

(2]

(3]

(4]

(6]

(7}

(8]

]

Astrém A., A Smart Image Sensor. Evaluation and Description of PASIC., Lic Thesis,
Linko6pings University 1990. . ,
Astrém A, Forchheimer R., Ingelhag P, An Integrated Sensor/Processor Architec-
ture Based on Near-Sensor Image Processing, To appear in Proc of CAMP93, New
Orleans, USA.

Astrém A, Forchheimer R., MAPP2200 Smart Vision Sensor: Programmability and
Adaptivity, Proc of IAPR Workshop of Machine Vision Applications, Japan, 1992.

Astrém A., Danielsson PE., ChenK., Ingelhag P, Svensson C., Videorate signal pro-
cessing with PASIC and VIP, Proc 2nd Int Specialist Seminar on the Design and
Application of Parallel Digital Processors, Lissabon, Portugal 1991.

ChenK., Svensson C.,A 512-processor array chip forvideo/image processing, Proc. of
”From Pixels to Features II,” Bonas, France, Aug. 27 — Sept. 1, 1990, pp 349—361.

Chen K., Astrém A., Danielsson PE., PASIC a smart Sensor for Computer Vision,
Proc of Pattern Recognition, Atlantic City, June 1990, pp. 286—291.

ChenK., Danielsson PE., Astrém A., PASIC a Sensor/Processor Array for Computer
Vision, Proc of Application Specific Array Processors, Princeton, September 1990,
pp. 352-366.

Danielsson PE., Emanuelsson P, Chen K., Ingelhag P, Svensson C.. Single-Chip
High-Speed Computation of Optical Flow, Proc IAPR International Workshop on
Machine Vision Applications, November 1990, Tokyo, Japan

Findlay K. Personal Communication 1992. Kevin Findlay, <kevin@ee.edin-
burgh.ac.uk>.

PAGE 15 OF 241

[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
[18]
[19]

(20]
(21]

(22]

[23]

Forchheimer R., Astrom A., Near-Sensor Image Processi'ng. A new approach to low
level image processing, Proc of ICIP, Singapore 1992

Forchheimer R., Astrom A., Near-Sensor Image Processing. A New Paradigm,
accepted for publication in IEEE trans on Image Processing.

Forchheimer R., Ingelhag P, Jansson C., MAPP2200, a second generation smart op-
tical sensor, SPIE Vol 1659, 1992.

Forchheimer R., Odmark A., Single chip linear array processor, in Applications of
digital image processing, SPIE, Vol. 397, (1983).

IngelhagP, Astrém A., Chen K., Svensson C.,Ehlersson T., R4DAR Signal Process-
ing Using A 512-Processor Array Chip. ICDP91, Florence, Italy 1991.

Garda P, Reichart A., Rodriguez H., Devos E, Zavidovique B, Yet Another Mesh
Array Smart Sensor, Proc of ICPR88, Rome, Italy.

Johanneson M., Astrém A, Danielsson P-E. , A4 Range Image Architecture Using
Sheet of Light, Proc of IAPR Workshop of Machine Vision Applications, Japan,
1992.

Johanneson M., Astrém A, Sheet-of-light Range Imaging with MAPP2200, Proc of
SCIA8-93, Tromsg, Norway.

Johanneson M., Astrém A, Ingelhag P, The RVIP Image Processor Array, To appear
in Proc of CAMP93, New Orleans, USA.

Lyon R.E, The optical Mouse, and an Architectural Methodology for Smart Digital
Sensors. Palo Alto Research Center.

Mead C., Analog VLSI and Neural Systems, Addison-Wesley, 1989

Renshaw D., Denyer P. B., Lu M., Wang G., On-chip CMOS Sensors for VL.SI Imag-
ing Systems, Proc VLSI-91, 1991.

Tremblay M., Larendeau D., Poussart D., Multi Module Focal Plane Processing Sen-
sor with Parullel Analog Support for Computer Vision, Proc of Symposium on Inte-
grated Systems, Seatle, 1993.

Bernard T, Zavidovique B, Devos F., 4 Programmable Artificial Retina, IEEE Jour-
nal of Solid-State Circuits, vol 28, no 7, July 1993.

PAGE 16 OF 241

Part I PASIC

PAGE 17 OF 241

1 Introduction

1.1 Background

Over the last 15 years image processing has established itself as a respectable scientific dis-
cipline. However, the great breakthrough in industrial applications has not yet been seen.
The reason seems to be that the industry wants small, well defined and inexpensive systems
that are easy to maintain, while the hardware developers often come up with big, general
purpose and, due to that, expensive systems that require a continuous professional mainte-
nance. This situation will force the vendors of image processing system to change their
policy. They will probably have to make more compact systems that are less all-purpose but
has the advantage of being cheap. The enormous development that has taken place within
the field of VLSI the last 20 years, seems to be the key to the solution. Today we have effi-
cient tools to produce compact, inexpensive, specialized, but yet powerful systems.

A typical machine vision system is shown in Figure 1.1. First, we have to get an image of the
real world into some appropriate digital form. This is accomplished by using a number of
photo-sensors followed by an A/D-converter. Secondly, we apply a number of low level op-
erations on our image, such as convolutions, morphological operation and so on. These op-
eration are often performed with a high degree of locality, i.e. they are mostly neighborhood
operations. Finally, the output from the system could be either a preprocessed image, in
which case we are finished, or used to produce a feedback in form of a control signal to the
machine that the system is supervising. In the later case we will have to perform some higher
level operations such as classification or decision to produce the control signal. Both type of
systems are shown in Figure 1.1.

TV monitor

Scene/Machine Input Low level operations E

y

1
Y

Higher level operations

- -
Results

Control signals

Figure 1.1, A typical image processing system

Today, modern VLSI technology makes it possible to integrate the input and the low level
operations into one single chip. Such a chip can take in an image and apply fairly complex
algorithms on the image and also extract features to be sent to higher level of processing.
This type of chips are known as smart sensors.

This thesis will describe one such smart sensor called PASIC. PASIC stands for Processor,
A/D-converter and Sensor Integrated Circuit. The project started in 1988 as a joint venture

I-1

PAGE 18 OF 241

between the Department of Electrical Engineering and the LSI Design center at the depart-
ment of Physics and Measurement Technology, both at the University of Linképing.

The architecture in a typical smart sensor is very VLSI driven. The design strategy is bot-
tom-up meaning that the VLSI implementation sets the constraints for the architecture,
which inits turn sets the constraints for the algorithms and the application. This strategy and
the common top-down strategy are both illustrated in Figure 1.2. In both strategies the uni-
directional influence has to be moderated and interleaved by verification loops. In fact, the
main body of this thesis is part of such a procedure which verifies that PASIC efficiently can
execute basic image processing algorithms. In several cases, the outcome of this verification
has been fed back to a redesign at the VLSI level.

Applications
Algorithms
Bottom-up design ‘ V Top-down design
Architecture
VLSI
Implementation

Figure 1.2, Bottom-up and top-down design

Most 2D image sensors are adapted to the standards of broadcast TV, see Figure 1.3(a). In .
CCD-cameras this means that every pixel first have to be shifted downwards and then, in a
high speed, be shifted horizontally. Both shift paths carry data in analog representation. Ev-
ery pixel then has to pass one common A/D-converter before it can be processed. The de-
mands on the A/D-converter and the analog shift register are very high since we are dealing
with pixel frequencies above 10 MHz.

In PASIC we have a 2D sensor, the A/D-conversion and the processing power integrated on
a single chip. An immediate consequence is the possibility of a sensor layout as in Figure
1.3(b). To reduce the pixel frequency we insert more A/D-converters, ideally we would like
to have one A/D-converter for each vertical column. If we could accomplish this we would
avoid the high speed horizontal analog shift as well as the high speed A/D converter.

1-2

PAGE 19 OF 241

TV standard

Very high speed Parallel A/D conversion
(a) A/D converter (b)

Figure 1.3, TV standard versus PASIC

The parallel A/D-conversion will become worthless unless we could process the data in a
parallel fashion. This implies that beneath the A/D-converters there should be some form
of linear processor array. The main character of the PASIC architecture took shape in this
manner as will be shown in the next chapter of this thesis.

1.2 Bit-serial parallel processors

1.2.1 An overview

Bit-serial processors have been used for quit a number of parallel computers most of them
of type SIMD, (Single Instruction stream, Multiple Data stream). Many, but not all have
been targeted for image processing. Some have been organized to communicate in a 2D
mesh, for instance CLIP4 [10], DAP [14], MPP 1], CM1 and CM2 {17], and GAPP [11].
Others have a linear organization in form of a 1D array, for instance LUCAS [16] and
AIS-5000[18]. In the following sections we will take a brief look at the processor element in
three of them, namely LUCAS, GAPP, and AIS-5000. Finally we will make a short presenta-
tion of LAPP, see [9], which is both a bit-serial machine, a smart sensor, and in many ways a
predecessor of PASIC.

1.2.2 LUCAS

LUCAS was designed at Lund University, Sweden in the late 70’s and is also a linear proces-
sor array. Each PE has an ALU using 5 inputs and 4 output functions. It also has its own

I-3

PAGE 20 OF 241

memory of 4096 bits, a special communication network called Select first network, and a
communication multiplexer into the ALU, see Figure 1.4.

, Function Select
Common register s\ first ' | Select
* chain
Select | in
Memory 4 Direscl TO first
S+E 1M RO"‘@ Select
Above________| U ALU chain
Below X co out
-9
— e
Xreg —] g.. X0

Figure 1.4, The processing element in LUCAS

The ALU has 5 input variables. Three of them are from the output registers, T(ag),
R(esult), and C(arry). One is a common bit to all PEs to generate constants and one comes
from the multiplexer. The multiplexer can select data from the PE’s own memory or the
auXilary register, called Direct and X. It can take data from its nearest neighbors, called
Above and Below. Finally, it can take data from a perfect shuffle/exchange pattern, called S
and S+E. This exchange pattern is used in for instance FFT computation.

The functions from the ALU to the output registers can be chosen from a set of 32 different
functions. This means that we can perform both arithmetics and logic operations. An addi-
tion of two bit vectors consists of three steps. First load one bit from the first vector into the
R register, then add the bit from the second vector with the R and C, and finally store the
content of R in the memory. These three phases are repeated b times, where b is the number
of bits. Thus, an addition is performed in 3b cycles.

With the Select first network, all the T-bit except the one in first PE is reset. The select fea-
ture is part of LUCAS’ ambition to do associative processing.

1.2.3 GAPP

GAPP was developed at NCR in United States and presented as a product in 1984. The pro-
cessor element, the PE, in GAPP contains four 1-bit registers, 128 bits of static RAM, 5 mul-
tiplexers to feed the input registers and the memory, one ALU, and connections to the four
nearest neighbors, north, east, west, and south. This is shown in Figure 1.5.

The data input to the PEs are carried out by the CM registers. By opening the CMS-input,
data is shifted in without interfering with the logical and arithmetic computation within the
PE. The ALU unit is a full adder/subtracter which enables us to perform arithmetic as well
as logic. A normal addition is setup by loading the NS and the EW registers with the two bits
that we want to add. For each pair of input bits we store the result in the memory and at the
same time feed the Carry from the previous result back to the Cregister. This means that an
addition is done in 3b cycles, where b stands for the number of bits.

I-4

PAGE 21 OF 241

cM —] f CMN
EQ'S._“—P‘ cgf = M
o —]
Ns —1
RAM—
N —
= ——
EW —
c — L .
0 — to Global-OR
EW — e
RAM— FULL
E — ,,:’L ADD ——: SUM
w EW / cy
NS — FULL——® BW
c — SUB
0 D— /J
C >
RAM— EW
NS —
EW — -
P _—>‘ C IL c
BW —
0 —
-

Write
M - > RAM
SM —1 Read

128x1 bit RAM

Figure 1.5, The processing element in GAPP

GAPP is equipped with a Global-OR function. This is an output pin on the chip that delivers
a Jogical-OR of all NS registers in the array, which means that if any NS register holds the
value 1, the Global-OR will be 1. This function can be used to terminate loops and to check
for unwanted conditions.

GAPP has been used in a number of test design and experiments on parallel architecture
but was never a great success.

1.2.4 AIS-5000

AIS-5000 is a commercially successful linear array of processors from Applied Intelligence,
Ann Arbour, USA. The PE of AIS-5000 has four input registers. These can be arranged in
different configurations depending on what task we want to perform. To perform a Boolean
operation the registers are connected as in Figure 1.6. The truth table is pre-loaded with a
arbitrary 16-bit value, which is common to the whole array. We can now load the S1 to S4
register with values and then read out the result from the truth table back into the memory.

1-5

PAGE 22 OF 241

The registers S1 to S4 are connected as a shift register which means that if we only want to
change the value of for instance S2, we will have to shift in S1, S3, and S4 again.

Truth table

Memory

Figure 1.6, AIS-5000 configurations for boolean operations

The arithmetic configuration is shown in Figure 1.7. The two input registers are loaded with
the bit vectors from the memory. For each bit pair the result is written back to the memory
and the Carry output is stored in the carry register, which means that it takes 3b cycles to
perform an addition.

ALU

Memory

Figure 1.7, AIS-5000 configurations for arithmetic operations

Finally AIS-5000 has the possibility to compute neighborhood binary templets in one cycle.
The north, south, and center pixels are fetched from each PE. The east and west pixels are
taken directly from the neighboring PEs, see Figure 1.8. The data paths makes it possible to
perform erosion, dilation, and any other Boolean function on the neighborhood data in one
cycle, by programing the truth table and the logic block in the appropriate way.

I-6

PAGE 23 OF 241

.« Control function
Truth 8

table .
Control function
-

Logic 2

>
- J

Memory

Figure 1.8, AIS-5000 configurations for neighborhood operations
1.2.5 LAPP

LAPP differs from the other processors that we have described, since it is has both input
capability and processing power. It even contains these two features on one single chip. In
many aspects LAPP has been an inspiration for PASIC, which can be thought of as a second
generation of LAPP.

LAPP consists of a linear photo sensor array, 14 registers, one accumulator, and an ALU
complex consisting of GLU, NLU, and PLU, see Figure 1.9.

Photo diode

Status

Register 0

Register 13

N

/]
128 PLU

| |
I |
| | g
| |
| I
| I
| |
| I
| I
| |
: |
| ool
: GLU {
i |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I |
| |
' s

Figure 1.9, The LAPP architecture

The image that we get from the photo sensor array is binary. However, as it is possible to
adjust the thresholding level of the input line by an external reference voltage, it is possible

1-7

PAGE 24 OF 241

to some extent to work with gray scale images. The size of the photo diode array, the regis-
ters, the accumulator, and the logic is all 128 units.

Aspecial hardware logic, the status output, detects and reports the number of 1sin the accu-
mulator and, in the case there is a single 1, the position.

The ALU consists of three parts, the GLU, the NLU, and the PLU. The GLU, Global Log-
ical Unit, performs global operation on the line, such as fill hole and mark object. Figure
1.10 shows the instruction MARK. All following instructions examples is taken from [13].
Anobject is considered to be a group of connected 1’s, represented as black in the following
Figures. MARK R0 means that all 1’s in RO which are within the same object as a pixel that
has a 1 in the accumulator, is set to 1.

Ro: NN TN

Acc: | B | 1

\
Acc: N W)

Figure 1.10, Global operation, mark objects

The NLU, Neighborhood Logical Unit, performs operation in a 3 by 1 neighborhood, like
Erosion and Dilation. Each PE match its neighborhood with a common pattern containing
three symbols, 0,1, and X don’t care. To extract the left edges of the objects we use the
LEDGE function, see Figure 1.11. This corresponds to the 01X pattern, which means that
all 1 pixels remain set if they have a 0 neighbor to the left.

Ro:C N N TN)
\

Acc: Q B | -]
Figure 1.11, Neighborhood operation, find left edges

Finally, we have the PLU, Point Logical Unit, which performs logical and command instruc-
tions, such-as AND, EXCLUSIVE-OR, and Load accumulator. Figure 1.12 shows an ex-
ample of an OR operation, where the content of RO and the accumulator are logically Ored.

Ro: NN TN
Acc: [N . |

\
Acc: N W W W

Figure 1.12, Point logic operation, OR between R0 and the accumulator

LAPP has been a commercially successful product and a number of systems has been deliv-
ered. One common application for LAPP in industry is to measure length and width of mov-
ing objects. :

I-8

PAGE 25 OF 241

2 The PASIC Architecture

2.1 Overview

PASIC consists of three major parts: Sensors, A/D-converters, and Processors. The sensors
form a two-dimensional array of photo sensors. Each column of the sensor area has its own
A/D-converter and Processing Element. Thus, if we include the sensor column and the
A/D-converter in the PE concept it makes perfectly sense to claim that the whole PASIC
chip is organized as a 1D array of PEs. Each PE consists of a column of sensors, an A/D-con-
verter, aregister,an ALU, and a RAM. An out-line of the floor-plan of PASIC will then look
like Figure 2.1.

Sensor

A/D-converters

Processor array with
registers, ALUs, and RAMs

Figure 2.1, PASIC
2.2 The photo sensors

The sensor array consists of a matrix of photo diodes. Each sensor column is connected toits
A/D-converter over a single bit bus, see Figure 2.2. The readout from the sensors is done
line-by-line controlled by a vertical address decoder. The readout is non-destructive and the
sensor array may be addressed randomly as well as scanned in any ordered manner. The
reset of the elements is performed over a pre-charge line common to all photo sensorsin a
row. Each photo diode is guarded against blooming. In the present version of PASIC the size
of the photo diodes is 48x48um2, with a pitch of 60um in both dimensions.

Vad

m
L Pre-charge

Analog bus

Address

Figure 2.2, An image sensing element

-9

PAGE 26 OF 241

Control and addressing of the sensor array requires 8 bits as shown in Table 2.1. The leading
bit selects between pre-charge and read-out.

P/R Address Operation

0000000 Connect row 0 to A/D converter
0000001 Connect row 1 to A/D converter
1111111 Connect row 127 to A/D converter
0000000 Pre-charge row 0

0000001 Pre-charge row 1

1111111 Pre-charge row 127

H RO O 00

Table 2.1, Sensor array operations
2.3 The A/D converters

As was indicated in chapter 1, PASIC contains one A/D-converter for each column, which
greatly reduces the requirement for high speed transfer of analog data over the chip. The
Parallel A/D converter array consists of one counter, one D/A-converter, 128 comparators,
and 128 8-bit registers, see Figure 2.3. The Counter is controlled by one control signal Start
and one control field which specifies Precision. The Start signal activates the A/D-convert-
ers to perform an A/D-conversion with the precision specified by Precision field.

D/A | | Ramp signal |
converter
I N7 N\ %

Start conversion R R R

t E E LR N E

G G G

Precision 8-bit
specification Counter 3/

Figure 2.3, The parallel A/D-converter

Each bit in the register is a three transistor RAM cell. The value of the counter is broad-
casted and written into the register as long as the ramp signal is less than the analog input.
When an input analog signal in one channel is equal to the ramp value, the output of the
comparator prohibits further writing. The 128 A/D-conversions are completed after a full
ramp generation. The system clock of PASIC is 20 MHz. However, the A/D converter is
stepped in 10 MHz rate to allow for the comparators to stabilize. One 8-bit A/D-conversion
is therefore done in 256 * 0.1 us = 25.6 ps. Since the resolution in the conversion is program-
mable it is possible to trade speed for precision. For instance, if we settle for 7 bits we may
double the speed, for 6 bits quadruple it and so on. In many vision tasks such a programma-
bility seems to come in handy. Since we have full control over the read out from the sensor,
including the frame rate, it is possible to increase or decrease the signal-to-noise level.

I-10

PAGE 27 OF 241

The registers in Figure 2.3 are actually designed as RAM cells in a 8 x 128 bits memory. The
read out to the memory bus is controlled by a 3-to-8 decoder, see Figure 2.4. Altogether the
A/D-conversion needs 5 bits in the control word shown in Table 2.2. The first bit is to start
the A/D-conversion. The second bit changes the effect of the three last bits, CDg to CD3,
from the indicating the bit to be read out from the A/D to selecting the precision in the A/D-
conversion. If the two first bits are 00 or 11 the A/D-converter is either in data latch (quies-
cent) mode or in progress with an A/D-conversion.

Start Control CDjyy9 Operation

0 0 X X X Data latch

0 1 000 Write bit position 0 to bus

0 1 001 Write bit position 1 to bus

0 1 e e e

0 1 i1 1 Write bit position 7 to bus

1 0 000 Start A/D-conversion with 1-bit precision
1 0 00 1 Start A/D-conversion with 2-bit precision
1 0 C e e e e .

1 0 111 Start A/D-conversion with 8-bit precision
1 1 Data latch

Table 2.2, A/D-conversion operations
2.4 The processing elements, PE

Each processing element consists of three parts, one bi-directional parallel shift register,
one ALU-unit, and a memory. Figure 2.4 illustrates that all these units plus the A/D-con-
verter are connected to the same bus. This is a 1-bit bus architecture, meaning that all oper-
ations can be seen as transfers over the 1-bit bus. As we will see later on there are a few
exceptions from this. This architecture was first proposed by dr Keping Chen, former proj-
ect leader of the PASIC project.

The parallel shift register contains 8 bits and is a bi-directional shift register, see Figure 2.5.
Thus, we can shift a pixel value one step to the left or the right in one clock cycle. 8-bit paral-
lel communication seems a reasonable choice since image processing often deals with 8-bit
pixels. This shift register has 7 modes of operation, and it uses 3 control bits, PSCy, PSC;,
and PSCy, listed in table 2.3. In 000 and 001 the register communicates with the bus. For 011
and 100 the register content is shifted one step in the desired direction. For a left shift data
will be shifted one step to the left leaving the leftmost PE’s data to the left I/O-pins, and at
the same time input data are accepted from the right I/O-pins. Operations 101 and 110 are
identical to 011 and 100 except that end around shift takes place and no I/O operation is
performed.

PAGE 28 OF 241

From 8-bit counter

A/D converter

Parallel shift register

Bit serial ALU '
127 bits RAM ‘.
1-bit bus

Figure 2.4, The digital architecture of PASIC

PSCa10 Operation

000 Write into specified bit position in register from the bus
001 Read from specified bit position in register to the bus
010 Latch

011 shift left

100 Shift right

101 Rotate left

110 Rotate right

Table 2.3, Parallel shift register operations

8/ | | < 8 .

A

A/ / |

Shift registers

—y
-

Figure 2.5, Possible data path in the parallel shift register

I-12

PAGE 29 OF 241

The ALU is capable of evaluating 1-, 2-, and 3-input Boolean functions. It has 3 input regis-
ters and 8 output functions. The three input registers are called A, B, and C. The output
functions are listed in Table 2.4. It is possible to load A and B with inverted data.

Name Boolean function
Carry AB+AC+BC

Sum ADBDC
Multiplexc CA+CB

Multiplexe CA+CB

NAND AB

NOR A+B

XOR AB+AB = AGDB

Not B

Table 2.4, Boolean functions in PASIC

The ALU is designed in such a way that it is not possible to take data from one output to the
bus and load it into an input register in a single clock cycle. Therefore, the input and output
selection of the ALU can use the same decoder. The control signals are called PCy, PC;,
PC;,, and PC;3, see Table 2.5.

A very common operation in all types of algorithms is addition and when we perform an
addition the carry is to be fed back to one of the input registers. To speed up the addition we
have provided an extra data path from the carry output to the C register. This extra path is
called Carry-feedback and it is controlled by a single bit. It enables us to perform various
arithmetics with the same efficiency as other bit-serial processors.

PC35190 Function

0000 " A NOR B to bus
0001 A NAND B to bus
0010 Carry to bus
0011 Bus to C
0100 Mux A to bus
0101 Mux A to bus
0110 Bus to B
0111 B to bus
1000 Bus to B
1001 A XOR B to bus
1010 Bus to A
1011 Bus to A
1100 Sum to bus
1111 Idle

Table 2.5, ALU operations
The memory consists of 127 bits of dynamic RAM and one bit of ROM. The latter is set to

zero and located at address zero. With this bit we can produce constants. The memory is
controlled with.8 bits, listed in Table 2.6.

PAGE 30 OF 241

Read/Write Address Operation

0000000 Read a constant zero from memory
0000001 Read from memory cell 1

1111111 Read from memory cell 127
0000000 No operation

0000001 Write to memory cell 1

1111111 Write to memory cell 127

H PR PR oo oo

Table 2.6, Memory operations

The 127 bits of RAM are a dynamic non-refreshed memory. This means that the user must
make sure that all memory cells are rewritten with a frequency of at least 1 kHz, either as a
natural course of events in the program execution or by means of extra rewriting cycles. A
refresh cycle takes two clock cycles per bit as we have to read from the memory to the ALU
or the shift register, and then write that bit back to the memory. In the worst case the refresh
of the memory, where Ny=127, fiefresh=1 kHz, and fsystemn=20 MHz, will take 1.3 % of the
execution time, see Equation (2.1).

Frefes
n = 2Nz @1)
system
In most cases the algorithm uses the memory cells in such a way that we do not need any
extra refresh cycles.

2.5 VLSI

The physical VLSI layout of PASIC is shown in Figure 2.6. The boxes to the left of the array
is control logic for decoding. Further reading about the VLSI design can be found in [3}. The
vertical size of each block is shown in Table 2.7. The horizontal size of PASIC is 7.7 mm.

Region Size (mm)
Sensor 7.7
A/D-converter 0.3
PE 2.0
PSR 0.5
ALU 0.5
Memory 1.0
10.0

Table 2.7, The size of the building block of PASIC

PAGE 31 OF 241

Sensor array

7772777 ~owere

Parallel shift register

ALU array

Memory 128 x 128 bits

Y

seie

638858 adatnds
Sebubedusacasebese

Figure 2.6, The VLSI layout
2.6 The programming model

The control word for PASIC consists of 32 bits, as shown in Figure 2.7. Each unit in Figure
2.6 hasits own field in the micro word. Due to the decoding, timing, and delay effects, we are
limited in the way that the units can interact with each other. For instance, it is not normally
possible to take the content of a boolean function and feed it back to some register, nor to
read data from the parallel shift register while it is shifting.

8 bits 5 bits 6 bits | svits | sbits |
Sensor address A/D control Parallel shift register =~ ALU Memory
Figure 2.7, The micro word

The execution flow consists of two parallel processes, one part to control the sensor and the
A/D-conversion, and the other to do the digital computation. These two parts are inte-
grated into one single program.

The addressing of the sensor array and the control of the A/D-conversion is typically done
once every 256 cycles, while the computation is done both during and between the conver-
sions. A typical example is a low pass filtering of the image, shown in pseudo code in Table
2.8.In this example the result image is obtained by adding the value of the pixel to the left, its
own value, and the pixel value to the right.

1-15

PAGE 32 OF 241

Loop over all rows
Loop over all bits ! Read from A/D registers

Read_A/D
End-loop
Reset (R-1) Pre-charge row R-1

Sensor_to_AD(R),Start_AD(P) Connect row R to sensor and perform an
! A/D conversion with P bit precision.
Get left and right pixel

Add them together

Loop over a neighborhood

Loop over all bits
ADD
End-1loop
End-loop
Output_pixel ! Output the pixels
End-loop

Table 2.8, A program example for low pass filtering

The outer loop starts by taking the data from the A/D register, resetting corresponding row
in the sensor and starting the conversion of the next row. The time window for light exposure
in the sensor is therefore skewed from one line to the next. :

Next follows a loop over the neighborhood, in this case the left and right neighbors. We get
their values and add them together with the PE’s own value. The adding is done in the inner-
most loop, the bit loop. The row-loop ends with a transfer of bits to the shift register and
shift-out of data.

Typically, as in the above example, the computation in PASIC consists of three nested loops.
The overall loop is the loop over all rows and is normally done 128 time per frame. However,
as we have the possibility to address the row of the sensor randomly, we can reduce the reso-
lution and thereby the number of rows to 64, 32 or less. The size of the neighborhood loop
depends on what algorithm we are using, in our case this was 3 x 1. If we use an algorithm
that does not use any neighborhood processing, this loop is omitted. Embedded in the other
loops are the bit loops, where the number of bits depends on the precision and word length.
For the case of simplicity we will hereafter omit all addressing of the sensor and the control
of the A/D-converter, and presume that the pixel values are presented in the A/D register
when we want them.

As mentioned earlier there are some data moves that seem possible from just looking at
Figure 2.4 but which are prohibited in PASIC. The following rules must be obeyed.

(1) Due to self-imposed decoding and addressing limitation, data cannot be taken di-
rectly from an ALU output and loaded into an ALU input register in one cycle. Thus,
if we want to load an input register with an ALU function we will have to use the
memory or the shift register as a temporary storage and execute the procedure in two
cycles.

(2) Two input registers cannot receive the same data from the bus in one clock cycle. For
instance, we cannot zero two registers in the same cycle. This s also due to the decod-
ing limitation.

(3) We cannot load a bit in its inverted form to the C register, only to the A and B regis-
ters.

PAGE 33 OF 241

In some cases the Carry-feedback path helps us to overcome the problem of (1) and (2), as
we can retrieve the Carry from the ALU back to the Cregister without interfering with the
bus. An attempt to illustrate the limitations and the data paths is shown in Figure 2.8(a)
where each mux-symbol represents a switch, see Figure 2.8(b).

Shift register

L To Globa]i)R
Carry Feedback
<¢—————»| Memory N = \
(a) (b)

Figure 2.8, A different programming model of PASIC

We can now clearly see that we cannot break the three rules mentioned carlier. For in-
stance, if we use an output function, the only data we can load in the input registers is the
Carry to the Cregister using the CarryFeedback path. Similarly, if we connect the bus to the
A register, the output functions and the B input are disabled. However, C can again be
loaded from the CarryFeedback.

PAGE 34 OF 241

3 Basic instruction set

»3.1 Boolean functions

The ALU in PASIC generates 8 different 3-input Boolean functions. They are all combina-
torial functions of the 3 input registers A, B, and C and listed in Table 3.1.

Name Boolean function
Carry AB+AC+BC

Sum APBPHC
Multiplexc CA+CB

Multiplexc CA+CB

NAND 2B

NOR A+B

XOR AB+AB = ADB

Not B

Table 3.1, Boolean functions in PASIC

As was shown in chapter 2, the A and B registers can be loaded from the bus with inverted
values, (X and Y respectively). Hereby, all non-trivial 2-input functions can directly be re-
trieved at the outputs as shown in Table 3.2.

X : 0 0 1 1 Boolean Input PASIC
Y : 0 1 0 1 function operation function
0 0 0 0 0
o 0o o0 1 XY A:=X,B:=Y A+B
0 0o 1 o0 XY A:=X,B:=Y A+B
o o0 1 1 X
0 1 0 o0 XY A:=X,B:=Y A+B
0 1 o0 .1 Y
0 1 1 o0 XPY A:=X,B:=Y ADB
0 1 1 1 X+Y A:=X,B:=Y iB
1 0 0 0 X+Y A:=X,B:=Y A+B
1 0 0 1 XBY A:=X,B:=Y ADB
1 0 1 o0 Y B:=Y B
1 0 1 1 X+Y A:=X,B:=Y AB
1 1 0 0 X B:=X B
1 1 0 1 X+Y A:=X,B:=Y AB
1 1 1 o XY A:=X,B:=Y AB
1 1 1 1 1

Table 3.2, All possible two input Boolean functions

The actual execution of a 2-input function is illustrated in Figure 3.1 by an AND operation
between the memory cell X and memory cell Y. The result is going to be stored in memory
cell Z. First we place an inverted version of the memory content of X in register A. In the
next cycle we put an inverted version of Y in register B. Finally we take the content of the
output register A+B and place that in memory cell Z.

I-18

PAGE 35 OF 241

ﬂ,[l Z=BCT=XY

Y:

x:D—»O
[F—=a

ol wl»

Figure 3.1,Z:= XANDY

3-input functions are performed in the same manner. For instance, a very useful operation is
to select one of two b-bit vectors, in X and Y respectively, depending on the value of bit T,
and store this vector in Z. This is called multiplexing. (We will often work with multi-bit
words, for example a byte = 8 bits. Therefore, we will hereafter refer to the number of bits
by the constant b). First we place T in the C register. Then we move the first bitin X and Y
over the bus to registers A and B. We then read out the output CA+CB and store in Z. This
process is than repeated b times. The whole operation takes 3b+1 clock cycles and is de-
scribed in Figure 3.2.

x| -
" | -
[

T:

CA+Cﬂ z

o w]»

Figure 3.2, Multiplexing

There are 256 possible 3-input functions. To see exhaustively how many of these functions
we can realize in PASIC we would have to build a large table in the same manner as table 3.2.
However, the 256 entry table can be reduced on the following grounds.

a) If one function f(x,y,z) can be implemented so can f(y,x,z) or any other permutation
of the variables, since we are free to permute the inputs to (A,B,C).

b) Ifafunction f(x,y,z) = f(x,y,q) where q is a don’t care, this function is really a 2-input
function which we proved in Table 3.2 can be implemented directly.

¢) Ifafunction f(xy,z) can be implemented so can f(x,y,z), f(x,y,z), and so on, since we
have the possibility to invert the inputs to the A and B register.

When we use these three rules to find functions which are equivalently or trivially executed
in PASIC, the number of different 3-input functions is reduced to 24, see Table 3.3.

I-19

PAGE 36 OF 241

01010121201 X
00110011} Y
00001111}t 2
Function Name/equivalent function
0f 0001011 1| xy+xz+yz Carry
1] 0101001 1| xzt+yz Mux
2] 0110100 1} xPyPz Sum
3101101111] (xPy)z Compl
410000100 1| xPpy+z Comp?2
5] 0000000 1| xyz 3-AND
6] 00 000111| xz+yz
7] 000101 10| xyzexyz+xyz x(yPz) +xyz
8] 0001100 0| xyz+xyz
9 0001100 1| xyz+xyz+xyz xyz+ (XDy) 2
101 0001111 0] xyz+yz+xz (xy) Dz
111 00 011111 xy+z
12/ 0011110 1| xy+xz+xz xy+x@Pz
13] 011010 11| xPyDz+xyz
14 011111 10| xy+xz+yz
151 01 11111 1| x+y+z 3-0OR
161 0110100 0 xyz+xyz+xyz
171 011010 10| xy+xyz+yz v (xPz)
18] 1000000 0] Xxyz 3-NOR
19/ 1001100 0| xyz+xy
200 1010100 0] Xy+yz
211 1011110 0| xz+xz+yz x@Dz+y-z
22l 1110100 0| Xxy+xz+y-z
231 11101010 xz+y
24 11111110 x+v+z 3-NAND

Table 3.3, All unique three-input boolean functions

The first three functions in table 3.3, functions number 0 to 2, are the only one which are
implemented in the original version of PASIC. In fact we have function number 1 in 2 ver-
sions, both CA+CB and CA + CB since we do not have the possibility to invert the C input.
Number 3 and 4 are suggested in section 10.1 as an extension to the PASIC functions. Possi-
bility to invert the input to the Cregister would reduce Table 3.3 to just 16 unique functions.

In some architectures, e.g. the Connection Machine, all 256 functions have been implem-
ented. Consequently, in the Connection Machine any 3-input Boolean function is executed
in four clock cycles. The first three are used to initialize the registers and the fourth to read
out the output. One way to realize a 256-function machine is shown in Figure 3.3. The func-
tion is loaded into the 8-bit memory common to all the processors on the chip. Each proces-
sor generates its function output via a decoder followed by an AND/OR-network.

1-20

PAGE 37 OF 241

To say that a 3-input function takes 4 cycles to compute is of course not entirely true since the
loading of the 8 bits into the memory takes at least one cycle. However, if we use the same
function more than once or if the loading could take place in parallel with some other opera-
tion, 4 cycles per output bit is close to the true number.

8-bit common look-up table

L1 1 1T T T T []

Figure 3.3, A 256-function table look-up implementation

In PASIC the ALU only produce the three first 3-input functions in Table 3.3. The question
then is: in how many clock cycles can we realize all 3-input functions. This is shown in Table
3.4, where we have compared PASIC with 256-M, a fictitious machine, that has the capabili-
ty to realize all 256 function.

Table 3.4 shows that PASIC realizes most of the functions losing only one or two clock cycles
compared to the optimum. Also, one should bear in mind that ail functions do not have the
same usage frequency. In general, Sum, Carry, and multiplexing, which we have implem-
ented in PASIC, are far more common than other operations.

1-21

PAGE 38 OF 241

Boolean function| 256-M| PASIC| Diff
0 XY+XZ+Y2Z 4 4 0
1 Xz+Y2 4 4 0
2 xPyPz 4 4 0
3 (xPy) z 4 6 2
4 x@Py+z 4 6 2
5 XYz 4 5 1
6 XZ+YZ 4 5 1
7 XY Z+XY Z+XY Z 4 8 4
8 XYZ+XYZ 4 10 6
9 XYZ+XY Z+XYZ 4 8 4
10 XYZ+YZ+X2Z 4 6 2
11 XY+2Z 4 6 2
12 XY +XZ+XZ 4 8 4
13 xPyPz+xyz 4 9 5
14 XY+X2Z+YZ 4 8 4
15 X+Y+2 4 5 1
16 XY Z+XYZ+XYZ 4 9 5
17 XY +XY Z+Y Z 4 6 1
18 Xyz 4 5 3
19 XY Z+XY 4 8 4
20 Xy+Y-2 4 6 2
21 XZ+XZ+YZ 4 8 4
22 XY+XZ+Y 2 4 6 2
23 X-z+y 4 6 2
24 X4y+2 4 5 1

Table 3.4, Performance of PASIC in three-input functions

PASIC does not have a specially dedicated accumulator. However, by using the Carry-feed-
back we can in some cases emulate an accumulator with the C-register. Depending on the
value of A, the Carry function (3.1) can be interpreted as (3.2) or (3.3).

Cy = AB+AC+BC
Cya-0 = BC
Cya-1 = B+C

Figure 3.4 illustrates this in a logic-diagram of Equation (3.1).

PAGE 39 OF 241

(3.1)

(3.2)

(3.3)

Figure 3.4, Carry feedback used as an accumulator

As another example how to use the Carry-feedback data path, we show in pseudo code in
Table 3.5 how to implement XZ+YZ, function 6 in Table 3.4.

Mem(X)->A

Mem(Z)->B

Mem(“0”)~>C

Mem(Y)->A, Carry-Feedback A=Y, B=Z, C=XZ
Carry—->M(Result) Carry=YZ+XYZ+X2Z2=XZ+YZ

Table 3.5, Implementation of XZ+YZ

The operation takes 5 clock cycles, which is just one cycle more than the minimum, and that
is used to initialize the C register with a 0.

3.2 Addition and subtraction

Basic arithmetic is supported in PASIC by two Boolean functions:

Carry = AB + AC + BC
=A@ BGC.

Sum

‘When performing an addition the object is to add the b-bit vectors of X and Y and place the
sum in the b+1 long vector Z, see Figure 3.5. First we place a0’ in the Cregister, the LSB of
X in A and the LSB of Y in B. We are now able to read out the result from the Sum output
into LSB of Z. At the same time we use the carry-feedback facility and place the Carry in C
without interfering with the bus. We repeat this process until we has processed the MSB of X
and Y. Finally we copy the Carry output into the b+1 location in Z, i.e. the MSB. Hence, we
have extended the output word-length from b to b+ 1. The whole addition takes 3b+2 clock
cycles.

PAGE 40 OF 241

/ First b bits

—
| I—’ ﬂ"l_.l J Z=X+Y

Ca
AN
/ Following bits

First bit except last

A

o] w]»

Last bit

Figure 3.5, Addition of unsigned positive numbers

Addition of numbers in two-complement representation is shown in Table 3.6. The same
sub cycles are carried out for the first b bit positions. To generate bit b+1, i.e. the sign bit
Sb+1, we let the MSB of X and Y remain in A and B, while we perform a Carry-feedback into
C. We now have X},_1 in A, Yp-1 in B and C;, in C. Finally, we place the sum in the b+1
position in Z, see Table 3.6. The number of clock cycles is 3b+2 the same as in Figure 3.5.

Cp Cp-1 Cp-2 .. E A
Xy Xp Xp-1 .- X B
+ Yp Yp Yp-1 . Y3 Cc D=A@PBBHBC
S==Ss==========SS=SSSSS5F =zz= E = AB + AC + BC
Spe1 Sp Sp-1 $1 D

Table 3.6, Two-complement addition

Two-complement subtraction is performed almost in the same manner as a two-comple-
ment addition. The difference is that the number in the Y-vector is now inverted when
loaded into the B register and the C register is set to 1, see Figure 3.6. Hence, we use the
identity X—Y = X+Y+1, where Y is the bit vector Y with all bits inverted. The number of
clock cycles are 3b+2, which is the same result as for the addition.

X: [I——>
v [g
[1] >

Following bits
First bit -

Figure 3.6, Subtraction, in two-complement representation

ﬁlﬂ—ﬂ Z=Y-X

Carry

o| w|»

3.3 Multiplication of two variables

The following description and analysis is adapted from [8]. We assume that we have two
b-bit vectors in two-complement representation, in memory location X and Y. The result,
this time 2b bits long, will be placed in memory location Z, see Figure 3.7.

I-24

PAGE 41 OF 241

A x*yo

O — x1h
x*y2
/) —X* Y1
| x*y]

Figure 3.7, Multiplication with bit vectors

For each Y-bit = 1, we add a shifted version of X, and for Y-bit = 0 we add zero. The proper
vector (P:=X or 0) to be added is obtained by using the multiplexing function, CA+CB, see
Figure 3.10. Thus we feed the A register with the X vector, B with zero and C, the multiplex-
er controller, with the appropriate Y bit. This operation, taking 2b+2 clock cycles, is re-
peated b times. Thus, the number of clock cycles so far is 2b2+2b. The first b—1 P-vectors
are added together and the last one is subtracted from the resulting sum. The very first
P-vectorisjust stored in the place of the final product as shown in Figure 3.10. The first addi-
tion consists of 3b+1 clock cycles. That is because the LSB in the upper operand in Figure
3.8isleft unchanged, i.e. no operation in a bit serial machine, and that the MSB in this oper-
and is left unchanged and copied to itself in the two last bit additions.

MSB

Py

I l“LSB
+ Iy
l » |

Figure 3.8, First addition step in multiplication

The next b—3 additions consists of 3b+2 clock cycles. The LSB in the upper operand is left
unchanged, which is the same as in the first addition. The final operation is a subtraction,
which is carried out in the normal way. We do not have to consider the fact that the last vec-
tor has a number of invisible zeroes to the left, see Figure 3.9. The reason is that we will
invert this vector which means that all these 0’s will become 1s, and the C register will be
initialized to 1. This will have the effect that b—1 bits in the previous result will just be co-
pied. Thus, the subtraction works just like the other addition and requires 3b+2 clock
cycles.

_ 0 ..) 0] - b-1 zeroes

vl - Final result

Figure 3.9, Last addition step in multiplication

The whole multiplication procedure is illustrated in Figure 3.10. Thus, the complete process
will take (2b+2)b+ (b—2) (3b+2) +3b+1=5b2+b—3 clock cycles.

1-25

PAGE 42 OF 241

X: I I-—> A
: — | CA+CBj
|: |—> B |
Y: | }—> C
First subcycle
Following subcycles -
Last subcycle gl A
—
| » B Sum»
E c Carry
naj

-

Figure 3.10, Multiplication with two variables
3.4 Multiplication with a constant

In many cases one of the factors in a multiplication is a constant, i.e. common for all the PE’s
and known at compilation time. For instance, in standard convolution the coefficients are
determined before the execution starts. In those cases we can reduce the number of clock
cycles by embedding the constant in the micro-program. The reductions of micro code in-
structions and clock cycles amounts to the following.

(a) The multiplexing phase of the ordinary multiplication procedure can be omitted as
the control unit knows whether to add zero or a shifted version of the vector.

(b) All additions with a zero vector can be omitted on the same premisses as in (a).

Figure 3.11 illustrate a multiplication with the constant y=—19.

S — —PEP
: xXn=
S —
X J3=X
E— 0 ool
* —x¥ys = —x

[x*y J
Figure 3.11, Multiplication with a constant

We transform Figure 3.10 into Figure 3.12 where the multiplexing is left out and the addi-
tion/subtraction is only carried out fory; = 1.

1-26

PAGE 43 OF 241

X: I E
Last sub cycle

= -

I 0 ! >
-
—
Figure 3.12, Multiplication with a constant

Sum

al w]»

In an arbitrary case, we can expect to find roughly 50% 1’s and 50% 0’s in the constant vec-
tor. Hence, we reduce the number of additions from b—1to b/2—1 and as we do not perform
any multiplexing, the multiplication only needs (3b+2) (b/2—1) =3b2/2—2b-2 clock cycles.
This is a speed-up with a factor of 3.3 compared to the two-variable case.

Further reduction can be made by using the Signed Digit Code, SDC. In the SDC each bit
represents a value of 0, +1, or —1. In the micro-program this corresponds to no operation,
add, and subtract. By using the SDC we are able to increase the number of 0 in representa-
tion of the constant, and thereby reducing the number of additions, see Table 3.7.

Number 2-comp code sSpC

[3 00110 0 0+1+1 0
7 00111 0+1 0 0-1
15 01111 +1 0 0 0-1
-5 11011 0-1 0+1+1

Table 3.7, Conversion to SDC

We see that the execution speed benefits from this code if we have three or more consecu-
tive 1’s, otherwise we do not gain anything. On the average we could expect to reduce the
number of addition/subtraction by 25%, i.e. from b/2—1 to 3b/8~1. The number of clock
cycles would then be (3b+2)(3b/§—1) =9b%/8—9b/4—2. Compared to the two variable case
we have then reduced the number of cycles by a factor of 4.4.

3.5 Processor communication

In PASIC interprocessor communication takes place over the 8-bit bi-directional parallel
shift register. A transfer of data from one processor to another, consists of three phases:
Transfer of data into the shift register, Shifting the data N steps in the desired direction,
Moving the data from the shift register to the memory or the ALU. These three steps are
shown in Figure 3.13(a)—(c).

PAGE 44 OF 241

PSR PSR

R

(@ (b) ©
Figure 3.13, The three shift phases

If the data size b is less or equal to 8 this operation will take b+k+b=2b+k cycles. Howev-
er, in some cases data size is larger and we will have to do the transfer process more than
once. In the general case the number of clock cycles needed is shown in Equation (3.4).

2% +k b <8
= . 2 (34)
t (16 + k)* int (@) +2* (b mod 8) +k b>8)

3.6 Interprocessor operations

The communication between the processors is often a part of the computation. We will illus-
trate this fact by describing the following three binary image operations: Dilation, Erosion,
and Connectivity preserving shrinking, followed by some multi-bit communications and op-
erations.

Dilation expands the regions in the image that contain 1’s. It can be implemented by an OR-
function that delivers a 1 if there are at least one 1 in the predefined region, see Figure 3.14.

- (= OO0
- OEE== 1—8E0
j=0gg‘g——— DDD

Figure 3.14, Dilation

If we denote each pixel pj;, where i and j are the position in the 3 by 3 neighborhood in Figure
3.14, we get Equation (3.5). This expression can be separated into one horizontal and one
vertical OR operation, see Equation (3.6).

faitation®Pig) = Poo + Poy + Poz + P1o + P11 + P12 + P2 + Po1 + P2 (3.5)

aitation®5) = Poo + Por + Pop) + (P10 + Py +P1p) + (oo + Par + P0) (3.6)

The pixels within one parenthesis in Equation (3.6), belongs to the one and same PE. Thus,
the parenthesis are computed in parallel and taken S cycles according to Table 3.4. Each
processor then takes the results from its nearest neighbors and compute the final result.

1-28

PAGE 45 OF 241

These steps are graphically shown in Figure 3.15. For each line of the image the 3x3 dilation
takes 10 cycles.

———= To right neighbor

P10 — ™ From right neighbor —m
P11 —>1 > 11—
P12 ™ From left neighbor ——

——— To left neighbor
Figure 3.15, Two-step computation of dilation

Erosionis performed in the same way as the dilation. The difference is that we use logic-And
instead of logic-OR, see Equation (3.7) and (3.8). An erosion therefore also takes 10 cycles
to perform.

ferosionPij) = Poo * Por * Poz * P10 * P11 * P12 * P20 * P21 ° P (3.7)

ferosion®Pij) = oo * Por * Po2) * (P10 * P11 P12) - Pao " P21 * P2) (3.8)
If we perform an erosion, objects like in Figure 3.16(a) will be destroyed in the sense that
they will be separated into two pieces, as in Figure 3.16(b).

Q

(@) ®)

©

Figure 3.16, Erosion effects

In some algorithms these effects should be replaced by Connectivity preserving erosion.
One implementation employs an operator from four different directions, north, south, west,
and east. For each direction we use a set of three different templates. Figure 3.17(a) shows a
set of west direction templates. If any of the templates matches a region in the image, the
center pixel in the region will be set to 0. A template is matching a region in the image, if the
positions in the template where we have 1’s correspond to 1’s in that region and 0’s in the
templates correspond to 0°s. The - means don’t care.

| < |
| b=
| © |
| © |
| =
_ =
18|
(SR~
R,

1

O = |
—

(a) (b)
Figure 3.17, West directions templates

The template definition of Figure 3.17(a) and the notation in Figure 3.17(b), corresponds to
the Boolean function (3.9), which can be reduced to (3.10).

1-29

PAGE 46 OF 241

s = x (axecd + axedf + axebf) 3.9)

x(@+e+db+H+ch (3.10)
The computation of Equation (3.10) takes 22 cycles. However, this has to be done for all

four directions. Thus, one step of Connectivity preserving shrinking will take 4*22=88
cycles.

|

§

In section 3.5 we transferred-data from one processor to another. A more typical use of the
shift register in neighborhood communication, is shown in Figure 3.18. The procedure im-
plements the convolution with the kernel 1 2 1 which can be decomposedto1 1 * 1 1.
Convolutions are more fully discussed in section 4.1.

Shlft reglstcr
O O [] D []

Memory

i

Figure 3.18, Parallel shift register

In phase (a) we transfer the data from the memory to the shift register, which takes b cycles.
Then we shift the PSR one step to the right, which takes one clock cycle. In (c) we compute
the 1 1 convolution by adding the memory with the PSR in 3b+2 clock cycles. Phase (d)
means a shift to the right in 1 cycle. Finally, in phase (e), we compute the complete convolu-
tion when we add the PSR with the temporary result in the memory. This takes 3(b+1)+2
clock cycles and altogether this convolution takes 7b+9 cycles.

3.7 The Global-OR communication

In many cases the control unit, hitherto invisible, has to have some information on what is
going on in the chip. For instance, if we are doing a multiplication we would like to know if
we had had overflow, underflow or neither. The means to implement such a link to the con-
trol unit in PASIC is Global-OR. Physically, the Global-OR is a wired OR-gate which con-
nects all the C register in the processor array, see Figure 3.19.

1-30

PAGE 47 OF 241

Global-OR
-

To control
unit

Figure 3.19, Global-OR

One somewhat more sophisticated utilization of the Global-OR function is to find the larg-
cstvalue in the array. We assume that all the values are positive and unsigned. Initially, each
PE sets a status bit in the C register which is to stay 1 aslong as the PE has a value that might
be the largest.

We first perform an AND between the status bit and the MSB of the value, called D7, and
place the result in the C register so that it is connected to the Global-OR, see Equation
(3.11).

C (Global-OR) <- Status & D7 (3.11)

If the control unit, CU, finds that Global-OR is 1, all PEs with D7=0 will have there status
bit reset to 0, since we know that there is at least one PE with a value D7=1. Thus, we ex-
ecute Equation (3.12). This means that we keep the status bit set as long as the D; bit is 1. If
D; is 0 and no other PE with the status bit = 1 has a 1 in its Dj, the status bit also remains set.

Status <- Status & Global-OR + Status & Dy (3.12)
This operation takes 4*(2logN) +2 cycles which is 30 cycles for N=128. In Table 3.8 we can

see how this is done on the programming level, where the computation and content of the
registers can be seen step by step.

A:=0;
C:=M(Stat) ; [B o]
FOR i:=7 TO 0 DO ! mmmzzzss=s========sz=======
B :=M(Dy); 0 Dy Stat
B :=M(Stat); CarryFeedback; ro sStat Stat & Dy
iA:=Gor (From CU via constant) ! Gor Stat Stat & Dy
A :=0; CarryFeedback; [Stat Stat & Dy + Stat & Gor
ROF

Table 3.8, Pseudo code for Max finding

‘We here assumed that the Global-OR test only took 1 clock cycle. However, we have to con-
sider that the test consists of two parts, computation of Global-OR and depending on that
result, computation of the next address to be executed in the micro-sequence. The opera-
tion speed is only 20 MHz which presents no time critical problem for the computation of
Global-OR, even though the signals have to travel over the entire chip. The address compu-
tation is on the other hand very time critical. A normal micro-sequencer first take the input
signal, then compute the next address, which can take alot of time. However, in this case we,

1-31

PAGE 48 OF 241

where the only data dependent operation is to load the A register with a 1 or a 0, we only
need to multiplex the next address rather than an arithmetic computation. If we have a mul-
tiplexing system with the possibility to pipeline the code, the Global-OR check will only take
two cycles. One, to store the multiplexed value in the memory address and one to load the
next instruction. In that case the max finding will take 5b+2 cycles, where b=2logN.

The Global-OR can not only be used for maximum finding, but for more general opera-
tions. For instance, if we invert the D;j bit to the B register we change the operation from
max- to min-finding. As another variation, if only some PEs have their status bit set initially
due to some previous intermediate result of processing, and we use the position number of
each PE in the array as the D value, we select the rightmost PE which had the status bit set
from the beginning. Table 3.9 lists some possibilities of the Global-OR operation.

Input to Dj Invert Dj Result Name
Bin number No Rightmost pixel Pright
Bin numbexr Yes Leftmost pixel Pleft
PE value No Maximum value Prax
PE valus Yes Minimum value Pnin

Table 3.9, Possible Global operations

These operations can also be extended to cover a the most of the Global operations in
LAPP, see[9]. For instance in the operation RFILL, where we want to set every status bit to 1
to the right of the leftmost status bit that is 1. This is done by storing the position of the left-
most 1, called pjegr. This number comes for free in the Leftmost algorithm, since we just have
to store the Stat & Dj result in the memory. Then by taking the difference between the PE’s
position and pyes, and only saving the sign bit, each PE has a bit that indicates if it is to the left
or to the right of pje. This will take one extra cycle within the loop plus 2* (2logN) +1 cycles
for the sign detection. This makes a total of 7*(2logN)+3 cycles.

3.8 Summary of PASIC

Table 3.10 summarizes the basic instructions set of PASIC. In spite of its simplicity PASIC
for the most parts executes basic instructions with the same speed as its competitors.

Operation Number of clock cycles ~
2-input logic 3 3
3-inputs logic (typical) 4 4
Multiplexing 3b+1 3b
Additiecn/Subtraction 3b+2 3b
Multiplication Unsigned 5b2+b-2 5b2
Multiplication signed 5b2+2b-3 35
Multiplication with constant 3b2/2-3b/2-2 1.5b2
Multiplication with SDC 9b2/8-9b/4-2 1.1b2
Dilation/Erosion) 10 10
Connectivity preserving shrink 22 22
Convolution 1 2 1 7b+9 7b
Max finding with Global-OR Sb

Table 3.10, Summary of PASIC execution

1-32

PAGE 49 OF 241

4 Basic routines

4.1 Convolutions

One of the most common operations in image processing is convolution. A convolution con-
sists of multiplications with constants followed by accumulations. Figure 4.1 shows some ex-
amples of convolution kernels.

u a |d|g
o folefn| [e]o]
c ¢ |t [i A
(@) (b) © (@)
10 |-1
2 [0 | -2
1 (0 |-1
(€) ®

Figure 4.1, Some convolutions kernels

Figures 4.1(a) and (b) are 1D kernels, oriented in horizontal and vertical direction respec-
tively, and (c) is a 2D kernel. In cases where we do not have an odd filter size or when the
result is to be placed somewhere else than in the middle, the position where the result will be
stored in the output image is indicated with an arrow, as in Figure 4.1(d). Figures (¢) and (f)
are two edge detection kernels, called Roberts cross and Sobel respectively.

To compute an arbitrary kernel, for instance a 3 by 3, requires 9 multiplications with con-
stants and 8 additions. The transportation time is normally negligible and transparent since
we place the pixel in the parallel shift register at the same time as we compute the multipli-
cation. If we use the SDC described earlier we obtain the cycle count in Table 4.1. For b=8
this will be 856 clock cycles.

Operation No of cycles

Multiplicaticn 9 * (9b2/8 - 9/4b - 2) 81b2/8 - 81b/4 - 18

Addition 8 * (3(2 * b) + 2) 48b + 16

Total 81b2/8 + 111b/4 - 2
~ 10b2+27b

Table 4.1, A general 3 by 3 convolution

In many cases we have the possibility to separate a large kernel into a sequence of smaller
ones. Figure 4.2 shows the decomposition of the Sobel operator.

1-33

PAGE 50 OF 241

110 }|-1
2 (0 |-
1 (0 |-1

[\

1'|-1| . “
) |-

Figure 4.2, Decomposition of the Sobel operator

- [-
)

This decomposition shows that this 3 by 3 convolution can be reduced to 3 additions and 1
subtraction, see [7]. Thereby, we will only need 4*(3b+2)=12b+8 cycles. For b=8§ this
means a reduction from 856 to 104 cycles. An other advantage of using separable kernels is
that we can use the temporary results in other kernels, see Figure 4.3.

1] 0| -1
2 -2

**‘ _ Gl
‘ ! 1|1 0| -1
—1] -2 -1

ol of o
* 1 1 *
‘ 1] 2| 1

Figure 4.3, Decomposition of the Sobel operators

The computation of the two Sobel kernels in Figure 4.3 now only requires 6 operations com-
pared to 8 operations if we did not use the temporary results.

4.2 Sparse filter kernels. Averaging

Averaging over a neighborhood of N pixels seems to require N—1 additions. However, by
using so called sparse filters we are able to reduce the number of additions to O(2logN).
Averaging could be described as a convolution with decomposable filter kernels. For in-
stance 8*1 convolution with 1’s could be decomposed as in Figure 4.4. The *-sign means a
convolution and we notice that each convolution on the right side is a simple addition.

Lfrfufafafujafef =[afa]*[1]oftj+[1]ojojof1]

Figure 4.4, Decomposition with sparse filter

Obviously, if N is a power of 2we can perform averaging with 2logN additions. When N is not
apower of 2 things are less obvious. The general strategy is that when we create a filter with
a size of N=2", we also, as an intermediate result, create the filter of sizes 2n—1,2n-2 21
see Figure 4.5. The original value, which by the same notation is called 27, is also available.

PAGE 51 OF 241

[1T1] * (1071 * [A0[0T0[1] * (A[0[0[0 0[0 0] 0]1] =
(T[] * [L0010]1] * (A[oo[e o e 0]0]1] -
(LT[* (I oTo]o o o e]1] =
A A A A [1]1]

Figure 4.5, Intermediate results in sparse filtering

Now, if the averaging filter size is N where N is not the power of 2 we have to arrange the
procedure with some extra operations, see Figure 4.6. Here, a filter of size 11 is computed as
a size 8 filter the result of which is added to a shifted version of a size 2 filter and a shifted
original pixel. The arrows indicate where the result is placed after the convolution. The
0 0 0 0 1 1kernelisanormalintermediateresult1 1 shifted an appropriate number
of steps. Altogether, the size 11 filter requires 3 additions for the 8 filter, 1 addition to add
the intermediate size 2 filter, and 1 addition to add the original pixel. This makes a total of 5
additions.

(A -

BENBBNDD .
)
QUL
[oToToIeToT)

Figure 4.6, Combining intermediate results for the final result

Thus, if we have a size N filter, it can be constructed as a size 2° filter to which we add some
of its intermediate result. Here n=[2logN] where [x] stand for the integer part of x.

In the worst case, when N+1 is 2 power of 2, all the intermediate results have to be added to
get the final result. For instance to get a size 15 filter we need to add the original pixel, a size
2, a size 4, and a size 8 filter together. This means that in the worst case a general averaging
needs n+n=2n additions, where n=[2logN]. However, it is possible to use the same strategy
as for the Sign Digit Code, which means that we use subtraction instead of addition in some
cases. For example in the case where N+1 is a the power of 2, we subtract the original pixel
from the N+1 filter, see Figure 4.7. The number of additions in the worst case is now re-
duced to n+ (n—1)*2/3=(5n-2)/3. :

PAGE 52 OF 241

Lefefefufefejafafafufafafu]afn]

Lifrfefujefafafafafujufefufafeji] -

[L[o]ofofojoJofo]0]

Figure 4.7, Filter size not being a power of 2 using plus and/or minus

When we use even filter sizes, we will have aslight problem. After a convolution the result is
shifted half a pixel to the right or to the left depending on where we put the result. However,
in most routines this is not a problem because we perform alot of convolutions, and by plac-
ing the first result to the left, the next to the right and so on we minimize this problem. How-
ever, we have to ensure that the result is stored in the middle, i.e.half a step away. Thus, all
shifts in the first ZlogN—1 steps should be shifted in one direction and the last step in the
other direction. Figure 4.8 shows how this is done and we can see how the dark pixel in the
lowest row, the result pixel, is shifted half a step from the center of the 8*1 kernel at the top.

LIT T LTI T T LT T 1 1] Procesoraray

11

101 NN

[]

\\'m

| ||
10001] O
| |

i l | [1]

Figure 4.8, Shifting during a 8*1 convolution

[]
zz
]

With a fixed precision of b bits throughout the operation and truncation after each step, an
N-points averaging takes ((1ogN)*(3b+2) +N clock cycles. The first term is the number of \
additions and the second is the total number of shifts. However, the number of bits in the
result increases for each addition.To maintain a high accuracy throughout the convolution,
we have to increase the number of bits in each step. The first addition takes 3b+2 clock
cycles, the next 3(b+1)+2 cycles and so on. The number of extra clock cycles will be
3*(2logN-1)%2. Thus, if we avoid all truncation, we will need
(logN)*(3b+2) +N+3*(ZlogN—1)2/2 cycles altogether.

4.3 Maximum value finding and distribution

Insome algorithms, for instance thresholding, an intermediate result in one PE must be dis-
tributed to all the other PEs-in the array. In the thresholding case we want each PE to have
the position number of the PE that has the largest value. Each PE holds two numbers, the
position number and a corresponding value. If we use the Global-OR algorithm in section
3.7, to find the maximum value and then distribute the position number that corresponds to

I-36

PAGE 53 OF 241

the largest value in the array, we could end up with two or more equally large values which is
not acceptable. To break the tie we extend the Max finding operation in section 3.7, to in-
clude some other global operations.

First we find the maximum value using Global-OR, which takes 5b+2 clock cycles, in the
present case b=2logN and N=128. To break a potential tic we choose the leftmost PE with a
maximum value. The leftmost value is selected using the global operation in section 3.7,
which takes 5b+2 cycles. This value is broadcasted all PEs, by loading the status bit into A
and a zero into B. Then, bit by bit, we place the value in C, perform a CarryFeedback. De-
pending on the result of Global-OR we write a 0 or al into the shift register, see Figure 4.9,
which takes 4b+2 cycles. As it is only one PE with the status bit set and the value from each
PE is ANDed with the status bit, the output from Global-OR represents the max-value in
the array.

Parallel shift register

Status: D > 4
Lo}J—=

Cycles 1,5,9,.. !

Cycles 3,4,7,8,11,12,..
Carry

o] w|»

Cycles 2,6,10,.. From the memory

Number to - depending on the
be broadcast Global-OR bit

Figure 4.9, Broadcasting from one PE

Thus, the whole procedure will take 14b+6 cycles, see Table 4.2. When b=2logN=7 this will
be 104 cycles.

Procedure Time

Set all sStatus = 1

Find Maximum value Sh+2

Find Leftmost maximum Sb+2

Propagate maximum 4b+2
14b+6

Table 4.2, Summary of max finding and propagation
4.4 Counting bits in a PE

Counting bits is a common operation in many algorithms. Within a PE, i.e. in the vertical
direction of the image, we can proceed as follows. The top vector in Figure 4.10 represents a
bit vector in the memory in each PE. This is the vector that we want to compress into a binary
count number. We first compress the first three bits into 2 bits, which takes 5 cycles, one for
each arrow in Figure 4.10. Having done one pair of such compressions we can compress the
first 7 bits into 3 as is described in [8].

PAGE 54 OF 241

HEEEEEEERRE
Yy '
I +Hﬁi+i|ti+tii+_i YYYVYYVYYYY

| ; H

+
+

Figure 4.10, Compression of the bit count

The number of clock cycles needed is given by the recursive Equation (4.1) which can be
checked against Figure 4.10. It takes C(n) cycles to count/compress n bit:

{ c() =0

C(n +1) = 2C(n) + 3log(n + 1) + 2 “1)

To obtain an explicit analytic expression for C(n) we first make the variable substitution
in (4.2).
n=221-1 (42)
Substituting (4.2) into (4.1) gives us after some manipulations Equation (4.3).
CP-1) =20 1-1D+3p-1-=
2-2C2P2-D)+3p-1D-D+3p-1=... =
P2 P2
>UEBp-i)-1) = G -D@1-1)-3> 2 =
i=0 i=0
G -DEF1-1)-32p-3)+2) =22-3p-5 (43)
We rewrite Equation (4.2) into (4.4)
p = 1+1logln + 1) (4.9)
Substituting (4.4) into (4.1) gives us (4.5) which we rewrite into (4.6).
C@n+1) = [n=2"1-1] = 81— 3log(n + 1) (4.5)

C(n) = 4n —3logn +1) -1 ' (4.6)
For larger n, C(n)—4n and when n is small, n<31, n~3n. Thus, in general, n>32, a bit com-
pression within a PE takes 4n cycles.

4.5 Counting bits on a line

In the horizontal direction, along the array, a bit summation is equal to a convolution with a
128-point kernel 1 1 1..1, see section 4.2. This would require sparse filter of sizes

1-38

PAGE 55 OF 241

2,4,8,16,32, and 64. Depending on the type of result we want, the shift register should be set
in different modes, see Figure 4.11. If we want each PE to have the total sum of all bits in the
array, the shift register should be set in rotation mode. If we want each PE to have the sum of
all bits to the left of the PE, we should disable the rotation mode, shifting in Os from the left,
and store the result after cach convolution in the rightmost PE. These two operations are
described in Figure 4.11. Figure 4.11(a) shows the original bit vector, (b) shows the result
when all PEs obtain the total count, and (c) shows the result when each PE receives the
count corresponding to the number of bits to the left of and including its own position.

Lololiftfofofsfofof1]ofof1]o]1]o] @
Lol el o] efsfsfefelsfefclofe]osfo]e]
Colo ool o oo oo s] s] ©

Figure 4.11, Different summation results

The formula for the time consumption in the general case is shown in Equation 4.7. For
N=128 and b=1 this take 217 cycles.

t = 1ogN@b +2) + N +3(logN - 1)° =

N+3 4 (3 - 1)logN + 3(logN)’ 7

Various conditions could be imposed on the counting procedure. One condition is that dur-
ing the summation of the bits to the left of each PE, the summation is restarted at various
predefined positions along the array. In other words, each PE receives the number of bit to
the left since the last restart point, which isillustrated in Figure 4.12. The upper vector in (a)
is the original bit vector and the lower one indicates where the summation is restarted.

Figure 4.12(b)—(d) show the temporary results from the input vector (a) and the final result
isshowed in (€). The idea behind the algorithm is to perform an ordinary horizontal summa-
tion and at the same time propagate the restart bits. These bits are propagated and ORed in
each PE. The point is now that if a PE receives a pixel tagged with a restart bit the PE will
add zero. Thus, we will get the result in Figure 4.12.

This algorithm is described in pseudo code in Table 4.3 and the number of clock cycles it
takes is shown in Equation (4.8).

-1
t =2+nZ(2b+1+2b+1+3b+4) =
b=0

n-1

- b - 1,.572

_2+b2)(2 +6+Sb)—1+-2-n+2n +2n 4.8)
In our case, when n=2logN="2log128="7, Equation (4.8) will give us 276 cycles.

1-39

PAGE 56 OF 241

Lofolilsfofofa]ofof]ofof1]o]sfo
Lol ol ol of ol ol o] 1] o] o] o] o] s o] o] o]

Lolof o] efof i afofsfi]ofsfof]]
Lofofofafof o] llll of of of 1 1] of o]

Lofol tfafelafafifofaffefa]of]
Lofofolofofofofsfafufafofsfu]sfn]
'

Lolofilzf2f2fs]s[of i]afsf2fo]sfi]
Lofofofofolofofafsfufafafsfsfs]s]

. \
Lolol]2 el 2] s sfof s u]sfafof]

Figure 4.12, Counting objects with restart

M(C)->PS(C)
M(0)->PS(0)
for b:=0 to n-1
shift_right (2F steps)
M(C)}->A
for i:=0 to b
PS{i)->B
AB->PS{1i)
rof
M('0’)->C
for i:=0 to b
PS(i)->a
M(i)=->B
Sum->PS (i), M(1)
rof
Carry->PS(i),M(1)
M(C)->A
PS(C)->B
A+B->PS(C),M(C)
rof

Table 4.3, Pseudo program for bit count with restart

4.6 Labeling objects on a line

This algorithm labels 1D connected components, called objects, on a horizontal line. Thus,
an object is defined as a sequence of consecutive 1s. For example, the sequence 010010 con-

tains two objects whilst 011110 contains one object.

1-40

PAGE 57 OF 241

(é)

(b)

(©

@

(e)

To label the object we start by detecting the right edge of all objects. Each PE sets a control
bit to 1 if the pixel to the left was an object pixel and its own pixel is a background pixel,
otherwise the control bit is set to 0, see Figure 4.13(a) and (b).

By using the routine in 4.5, Figure 4.11(c), we sum the bits to the left of each PE, and obtains
labels for each object. The intermediate result in Figure 4.13(c) is masked with the original
4.13(a) to get the final result 4.13(d).

Lo IolololololllololllolollloroloJ ®)
Trmers]
lololololololllllllﬂzlszlslzlsl ©
LD LT ool [afaf Jefof [T[] @

Figure 4.13, Labeling steps

This routine will take 21b+146 cycles which is the same as in 4.5.

The rightmost PE in Figure 4.13(d), now contains the number of objects plus 1. This could
be used as a feature when we want to label the next line. In the later case, we just rotate the
shift register and shift in this value instead of 0’s. Figure 4.14 shows an example where the
input is the value of the rightmost pixel’s label, in this case a 3. The two object on the line
therefore get the labels 3 and 4.

IolololﬁolIToloﬂolololllololol ®)
B

HE !elslal4l4|4l4i4|4l4lslslslsl ©

LD T Tsfsl T lll el 1] w

Figure 4.14, Labeling row number two

4.7 Histogram collection

In traditional sequential computers histogram collection is performed as follows, see Figure
4.15. First every entry in the histogram table is set to zero, then for each pixel in the image
the table is incremented at the address corresponding to the pixel value.

I-41

PAGE 58 OF 241

Histo-
Address| gram

[J—+—»— table

Data

+1

\ ADD/

Figure 4.15, Sequential histogram collection

In bit-serial SIMD machines we have to do it in a different way, for instance as suggested in
[8]. This method adopted for PASIC is shown in Figure 4.16.

Sensor area

vy

Shift register l—" [] |—'

Bin # U |

"

Comparison | [| |

R

Histogram

Figure 4.16, Parallel histogram collection

Every PE is assigned a unique bin number between 0 and 127. This number, which is stored
in the memory, correspond to the pixel value the instance of which the PE will count. Each
line that is read out from the sensor area is stored in the parallel shift register and at the
same time compared with the bin number in the PE. The result is 1 if there is a match. We
now shift the shift register one step, and make a second comparison, with the next bin num-
ber. We repeat this 127 times which results in a 128 bit response vector in each PE. This
vector is replaced by the bit count, see section 4.4, and the result is accumulated to the histo-
grambin in each PE. After 128 lines we have the final histogram. Thus, the histogram collec-
tion consists of the following three steps.

1. Make comparisons

2. Compute the sum of all 1's in the response vector

3. Accumulate this result to the histogram

Each comparison consists of the Boolean expression in Equation (4.9), where (X1,X3,..,Xp)
and (Y1,Y2,..,Yp) are the two input vectors and C is the result of the comparison.

1-42

PAGE 59 OF 241

C = (XigYa1)+ (X2@Y2)+. . + (Xpg¥Yn) (4.9)

The execution of Equation (4.9) in PASIC is a two-phase procedure described in Table 4.4,
and is illustrated in Figure 4.17.

For i:= 1 to b
M{Xi)=->A
M{Y;)->B
Ag@B->M(Z3)

End

1->B

0->C

M(Z1)->A

For i:=2 to b
M(Zy)->A, CarryFeedback

End

Carry->M(C)

Table 4.4, Pseudo code for two phase comparison

Phase 1 E}:@H:I

Phase 2:

Figure 4.17, An Exclusive-or comparison without special feedback

The algorithm executes in 3b+b+2=4b+3 cycles. The intermediate bit vector Z and the
two phases are needed because the PASIC’s ALU cannot directly produce the 3-input Bool-
ean function in Equation (4.10), which also must be feed back to the C register.

C := C+AB+AB (4.10)

Asshown in Figure 4.18, with the function feedback in Equation (4.10), the the task could be
accomplished in 2b+2 cycles. This indicate very strongly that the PASIC ALU should be
extended with the feedback function in Equation (4.10), as histograming is an extremely
common operation in image processing.

Figure 4.18, An Exclusive-or comparison with feedback

However, we will now show a variation of the previous strategy for histogram collection
which makes a comparison in 2b+3 cycles using the existing ALU-functions only. In this
version, for each line, we start the histogram collection by subtracting the pixel values p(x)
from the bin number h(x) having the line in its original position. Each difference d(x) is now
a pointer to the bin where the pixel belongs, see Table 4.5.

1-43

PAGE 60 OF 241

Bin number h(x) 01 2 3 4 5 &6 17
Incoming pixel p{x) 21 6 6 5 2 7 2
Difference d(x) ~2 0-4-3~-1 3-1 5
[A(x) Ipoa 8 c(x) 6 0 4 5 7 3 7 5

Table 4.5, Creating pointers by subtraction

The algorithm proceeds as follows. The line of differences (pointers) are decremented and
shifted one step at atime to the left. When the difference is zero a bit-contribution to the bin
isrecorded in form of a 1-bit, otherwise a 0-bitis recorded. At each step, the decrementation
and the test for zero is performed in PASIC as shown in Figure 4.19.

Pointer in PSR I-—»{

Hras N

Last time

First time

Figure 4.19, Decrementation and test for zero

Since ¢(x)=[d(x)]mod 8 values are all positive, the test for zero in this case is equivalent to
detect when the 8-bit value of c(x) changes from 00000000 to 11111111. This and only this
case gives a remaining Carry = 1 after the complete decrementation. The c(x)-value
changes at same time from 0t0 [—1]y0d8 = 255. The cycle count for the operation is 2b+3
clock cycles.

The second phase of the histogram collection is the bit vector compression, described in 4.4.
For large bit vectors a compression takes 4N cycles, where N is the length of the vector, in
this case 128. This value is added to the value that up to now has been collected in the bin. It
is an n bit addition which takes 3n+2 clock cycles, where n=14 to cover the worst case,
where all pixels in the image have the same value.

Table 4.6 summarizes the different comparison method for histogram collection. In our case
N=128 and b=7. :

Type of comparison No cycle per line Whole image, b=7 ~
Exclusive~or without feedback 4b+3)N+4N+3n+2 35N2 573440
Exclusive-or with feedback {2b+2)N+4N+3n+2 21N2 344064
Decrementation (2b+3) N+4N+3n+2 21N2 344064

Table 4.6, Different comparison methods

Thus, a histogram collection the decrementation method takes 344 keycles per frame which
means 58 frames per second in a 20 MHz system.

1-44

PAGE 61 OF 241

5 General comments about applications

5.1 Definitions

Figure 5.1 illustrates the dependency between application, algorithm, subroutine, and in-
struction. For instance, an industrial application of robot vision might consist of the three
algorithms, Shading correction, Edge detection, and Segmentation. Each of these three al-
gorithms then has its own set of subroutines and instructions.

Application

Algorithm #L

I Algorithm #1 I |:Algon'thm #2 |

Subroutine #11 Subroutine #12 Subroutine #1N

Instruction #llil rInslmction #114 Instruction #11

Figure 5.1, Definition of an application

For case of simplicity, we will hereafter omit the application level, as it can be seen as one
algorithm with subroutines grouped after each other, see Figure 5.2. This way of looking at
the problem makes it easier to implement in a row pipelined form which will be discussed in
the next section.

Combined algorithm #1,2,L

Subroutine #21 I Subroutine #2M]

Subroutine #11] [ﬂ)routine #IIN l

Instruction #113

I Instruction #111 I ' Instruction #1 IZJ

Figure 5.2, Several algorithms combined into one

5.2 Row parallel pipelining

An image processing algorithm can normally be executed in three separate stages: input,
computation, and output. However, this way of processing does not apply to PASIC, since
we do not have sufficient memory to harbor an entire image. Therefore, the algorithms have
to be rearranged in order to have a concurrent input processing and output stream, which

1-45

PAGE 62 OF 241

we call row-pipelining. A typical algorithm might consist of a computation that requires
data from a number of consecutive lines. For instance, in a 3*3 convolution, each step needs
the values of the previous and the next line, see Figure 5.3. This means that we have to have
three input pixels at the same time in each PE, one in the A/D-converter and two in the
RAM. After the computation the pixel in the A/D register is stored in the memory in the
position for the m—2 pixel.

Input neighborhood Result pixel
m-2
=] ’—\
—
m—1 a
Line #
m

n—-1 n n+1
Processor #

Figure 5.3, Retrieving pixels in a 3*3 neighborhood

Another way to look at this example is shown in Figure 5.4, where we need three line delays.
Each line is processed with the following three operations.

(1) Line n+1 is fetched which makes a new 3x3 neighborhood accessible for each PE.
(2) The result at line n is computed.
(3) This result is shifted out and delivered to the output image.

Temporary line delays

Input image Result image

Figure 5.4, Row parallel pipelining
5.3 Combining different algorithms

A typical algorithm consists of many subroutines. To make full use of the PEs and to avoid
unnecessary work we have to arrange the flow of computation into on single row-parallel
pipeline. For example, assume we have an algorithm that consists of three steps, a 3*3 me-
dian, a 5*5 low pass filter, and finally a 3*3 maximum finder operation. Figure 5.5 shows a
dependency graph that describes this problem. Each rectangle represents an pixel, an inter-
mediate result pixel, or an output pixel, and the lines between the layers represent data de-

1-46

PAGE 63 OF 241

pendent between layers. This picture can be seen as a memory map for each PE in PASIC.
The other PEs should be visualized as placed perpendicular to the plane of the Figure 5.5.
‘We only need to store the rectangles that are lightly shaded. Thus, we only need to do three
operations to compute a new pixel. These computations corresponds to the pixels (a), (b),
and (c) in Figure 5.5.

Previous result pixel, row i—1 Present result pixel, row i
~ v (©)

Maximum finder

(®)

Low pass filter
(a)

Median

4] L]] A

Rowi—5 Rowi—4 Rowi—-3 Rowi-2 Rowi—1 Rowi Rowi+1 Rowi+2 Rowi+3 Rowi+4
Input pixels
Temporary results that need to be stored
IR Present input pixel
Figure 5.5, Result dependency graph

The most common bottle-neck in a PASIC application is the lack of memory. It very often
limits which and how many operations that can be pipelined. We therefore have to be able to
compute which operations that can be combined using the available memory. The memory
requirement for an operation varies during execution time. The minimum requirement oc-
curs when the operation is non-active, i.e. idle, where only the intermediate results is stored
which will be used during the next time the operation is active. These intermediate results
corresponds to the shaded rectangles in the two middle layers in Figure 5.5.

The total amount of memory needed in a complete system is the sum of all minimum re-
quirement plus the run-time memory in the application that uses most memory, see Equa-
tion (5.1).

Memory,, = > Idle; + Max [Active; — Idle;) (5.1)
i

Figure 5.6(a) shows an algorithm that consists of routines with different memory require-
ment. The total memory needed, according to Equation (5.1), is shown in Figure 5.6(b).

PAGE 64 OF 241

=

Memory Active Total

requirement memory

d - Idle needed .
A
B
D
A B C D Application
@) ®)

Figure 5.6, Memory requirement

We notice in Figure 5.5, that if we only store the original pixels, corresponding to the rectan-
gles at the bottom level, we will have to store 8 previous pixels in each PE. In the proposed
scheme we also have to store 8 pixel values. Thus, we do not gain any memory reduction.
However, we do save clock cycles, which of course is very important.

PAGE 65 OF 241

6 Shading correction

6.1 The need for shading correction

The image that we get from the system input, i.e. the photo sensors, is far from ideal. For
various reasons and causes a shading function syy, unique for each (x,y) position, has oper-
ated on the original image I, giving the detected image 4, see Equation (6.1).

Ia(x,y) = sxy(Io(xX,¥)) (6.1)

This unwanted effect is called shading. Examples of shading causes are

(1) non-uniform illumination of the scene

(2) optical effects (cosé-law)

(3) non-uniform gain in the photo sensors

(4) non-linearity in the A/D-converter system

As long as these effects do not totally corrupt the signal and, which is very important, do not
vary in time, they are quite possible to correct for. With the following notation

r(x,y) = true reflectivity at the point (x,y)
p(x,y) = actual detected value at (x,y)
q(x,y) = corrected pixel value at (x,y)

it has been showed that we in most cases can do a satisfying correction using Equation (6.2).

g(x,y) = C1(x,y) [p(x,y) + Ca(x,¥})] ~r(x,v) (6.2)

If we omit the position (x,y) we will get (6.3).

q = Ci(p + C3p) (6.3)

The two constants C; and C; have to be computed in a special calibration procedure. Nor-
mally, the shading effects vary slowly over the image, at least for the examples (1) and (2)
presented above. The case (4) is constant for all pixels in the same column while (3) does not
have any of these nice properties. Normally, the effects is not dominating. Presuming that
all effects in general are varying slowly, we are able to reduce the number of constants need-
ed by letting neighboring pixels use the same constants. However, without precautions this
may cause artefacts in the form of a false edge-pattern. For example, if we use an 8 by 8
neighborhood with the same C values, we will see the contour of a square grid, 8 by 8, super-
imposed over the picture. Most of these artefacts can be avoided by interpolations, aswillbe
explained in section 6.3.

6.2 Calibration

To estimate the two constants Cj and Cp, we have to use two reference images, ra(x,y) and
rg(x,y) for which we know or rather have decided a priori the exact values. For the calibra-
tion procedure the two constants C1(x,y) and Cy(x,y) are all set to 1 and O respectively. When'

I-49

PAGE 66 OF 241

the two reference image are applied we get two uncorrected results, see Equation (6.4) and
(6.5).

94 = P4 (64)

dp = Pp (6.5)
With the proper correction coefficients we should rather have the outputsin Equations (6.6)
and (6.7).

gy =14 = Cilpg+Cy) (6.6)
qg = rg = Cilpg + Cy) (6.7)
The C; and C; can therefore be computed with (6.8) and (6.9).
=B~ 74
C = Ps =Py, (6.8)
PB4~ PAB
C, = i (6.9)

To reduce the memory requirement we must minimize the number of bits for the constants
Cjand Cy, which means that we should find the lowest number of bits that produces a’good’
picture. Figure 6.1 shows the three worst linear functions syy, (), (b), and (c), which are still
possible to correct for. Curve (d) is a non-linear function where pyxy=0 for 15, <255.

ny ‘
255

- Ty

255
Figure 6.1, Four extreme curves that can be corrected

The four curves in Figure 6.1 corresponds to the following constant pairs.
(@ Ci=1256 C=0

(b) C;=256 Cy = =255

(c) Cy=25 | C=0

(d Ci=1/256 Cy=+255

Thus, the constant C; has a range from —255 to +255 and C; a range from 1/256 to 256. We
therefore assign 9 bits to each C; value, and 16 bits to each C; value, 8 bits for the integer
part and 8 bits for the fractional part, see Figure 6.2.

1-50

PAGE 67 OF 241

ci: [TITTTITI[IITIITT] o<ciszss
G [T LI IIIT] 0<Cy<255

Figure 6.2, Memory size of C; and C;

The spatial resolution of the correction image Cy(x,y) and Cy(x,y) was discussed in the pre-
vious section. Ideally, every pixel should have its own Cq and C; values. In the horizontal
direction, thisis not a problem, since there is one PE for each column. However, in the verti-
cal direction we are limited by the size of the memory. The size that the memory requiresisa
function of the number of pixels sharing the same pair of C:s, see Equation (6.10).

Np = Number of pixels in a column

N¢ = Number of pixels with the same constants
Ny = Number of memory cells required

by, = Number of bits in C,

b, = Number of bits in C,

N
Ny = (by + bz)*N—z (6.10)

This means that in a 128-bit memory we are only able to store 4 Cy and C; constants, which
then occupies 4*(9+16) =100 bits. Thus, all pixels in a vertical neighborhood of 128/4=32,
will have the same C values, see Figure 6.3.

1

Figure 6.3, Regions with the same C; and C; values

Thus, we have a rather course resolution for the Cy(x,y) and Cy(x,y) in the vertical direc-
tion.If we assume that the artifacts are varying slowly over the image we can still get good
results using interpolation as will be shown in section 6.3.

We will here omit all detailed descriptions and cycle counts for the calibration phase as it
could very well be computed off the chip and therefore presents no time-critical problem.

6.3 Correction

The correction phase consists of two-steps. The first step is interpolation to compute the
values of C; and Cy, the second is to do.the correction by using Equation (6.3). The latter

I-51

PAGE 68 OF 241

step consists of one 8-bit add and one 8/16-bit multiplication, which will take
3*8+2+3%8%16+2*8—2%16—2=392 cycles per row.

In the interpolation step we want to compute a C value for a pixel in row i. This pixel is lo-
cated between two defined values in row A and A+N, called Ca and Ca 4N, where N=270
and n is the number of constants in the column. Figure 6.4 shows section through one col-
umn of C values.

Ca-N Ca G Ca+n Ca+an
Figure 6.4, Expected value of C between known values

To compute the Ci value we use Equation (6.11), where i=A+k, and the formula for the C
value in pixel A+k+1 is in Equation (6.12).

Cp - C
Cpsop = C4 + k7 _BN—A (6.11)

Co —
Caiksr = Co+(k+ 1)*—13-1\,— = (6.12)

If we multiply (6.12) with N=2"we get (6.13). This means that the next C value is obtained
by adding Cg and subtracting Ca.
Caanat ™2 = Cy"2"+ Cp—Cy (6.13)

The interpolation steps are described in Table 6.1, where the C; are the corrections values
and the C* are corresponding temporary values shifted n steps.

Cy = Cy

CH =Cy - 20
'C;‘=C0++CB—CA
¢, =cf-2m
Cf =Cl+Cp—-Cy
c; =¢Cy-2™"

Table 6.1, Computation steps for interpolation

The interpolation requires one addition and one subtraction, whereas shifting takes no time
since PASIC is a bit-serial machine. Further reductions can be made since Cg—~Cp only
need to be computed once for each vertical neighborhood. The interpolation consists of one
addition and one Nth of a subtraction, which means that to perform one 8-bit and one 16-bit
interpolation takes 3*16+2+ (3*16+2)/N+3*8+2+ (3*8+2)/N=76+76/N clock cycles.

Thus, to compute the shoding correction for a system where N=4 takes 95+392=487 cycles
per row. A fullimage needs 62336 cycles and takes 3.12 ms to compute on a 20 MHz system.

I-52

PAGE 69 OF 241

7 Histogram based thresholding

7.1 On thresholding and histograms

In order to produce a binary picture from a gray level picture we have to perform a thresh-
olding operation. In the most general case each pixel value p(x,y) is compared with a thresh-
olding function T(x,y,t), which varies in time and space, and generates a binary image b(x,y)
as in Equation (7.1).

_ |1 I ply) = Txy,0)
blry) = {0 Otherwise 7.1
Such a thresholding is of course both time and memory consuming. We therefore often
settle with one common thresholding function for all (x,y), see Equation (7.2).

1 p.y) = T()
bx,y) = [0 Otherwise ' (72)
In a well defined environment, where the objects and the background are well separated in
intensity the thresholding value could easily be set to a single fixed value, T, constant in time
as in Equation (7.3).

_Jrpey) =T
bex.y) = {0 Otherwise v (73)

If we use the thresholding (7.3), we must be certain that the light conditions are kept con-
stant. In some cases this is sufficient. However, in other cases we have to be more careful
and produce the threshold repeatedly in run-time, as in (7.2). This means that we have to get
anew thresholding value T for every frame, depending on the data in this frame. One tradi-
tional way to do that is to use a histogram.

A histogram is a vector with N elements, where N represents the number of gray scale val-
ues. Each element contains the number of pixels in the picture that has that specific pixel
value that correspond to the element position. In section 4.7 the histogram collection was
described.

Figure 7.1(a) shows a typical histogram. Ideally, the histogram contains two different gaus-
sian distributions which corresponds to the background and the object, see Figure 7.1(b).

Hist(n)T/\/\ Hist(n)‘ ii j
@ - ®)

Figure 7.1, Histogram containing two different distributions

The object in thresholding is to find the optimal thresholding point T that best separates the
two distribution from each other, see Figure 7.2. ’ o

1-53

PAGE 70 OF 241

Hist(n)

T
Figure 7.2, Optimal thresholding

There are a number of rather sophisticated algorithms to find an optimal T. One fairly
straight forward algorithm is called Mid-point method, see [6]. It starts by guessing an initial
value of T which we call T. A good estimate of T is the center of mass, called y, of the histo-
gram, see Equation 7.4. Hist(n) will hereafter be called p(n).

127 127

u = A—lzngon *p(n) where M = nZOP(”) 74)

This T divides the histogram into two parts and for each of those parts we compute the cen-
ter of mass, called pg and p1, see Equations (7.5) and (7.6).

#o(To) = ulp()|n < T (1.5)

#1(To) = ulp@)|n = Ty | (7.6)

The new thresholding value is achieved by taking the mean value of pg and 3, i.e. the point
in the middle between yg and pl, see Equation (7.7).

1
Ty = Ly (1) - uo(Ty) (77)
We now compute new values of pg and ul, which will give us a new T value, and so on. This
will iterate until we reach the termination condition in Equation (7.8).
[T =T, (| <& (1.8)
In most cases this method converges. However, in same cases it diverges or converges to a

wrong value.

Another approach is to use the zero-crossing of the first derivative. In a well-behaved bimo-
dal histogram we can compute the first derivative of the histogram, Hist’(p), which tells us
that the point T is located where the sign of the derivative has a positive zero crossing, i.e.
where the sign changes from minus to plus, see Figure 7.3(a) and (b).

. d ...
Hist(n) an Hist(n)

T T
@ (®)

Figure 7.3, Zero-crossing of the first derivatives

The problem with this method is that a normal histogram is not ideal, which means that in-
stead of two smooth well-defined distributions as in Figure 7.4(a), we have a noisy discrete
histogram, as in Figure 7.4(b). A noisy histogram will cause a lot of false zero-crossing.

I-54

PAGE 71 OF 241

Hist(n)I ij C Hist(n)’ || | | ||
T

(a) ()
Figure 7.4, An ideal and a normal histogram

We will now describe an iterative algorithm which iteratively smooths the histogram until
only the true zero-crossing is left. The input to the algorithm is a histogram, see Figure 7.5.

.l)'llll | L

Figure 7.5, Input histogram

We start by computing the first derivative of the histogram. This is approximated with a dif-
ference, which is a —1+1 kernel, see Figure 7.6.

111
®)

+ 0+ + + o+ \l[+

Figure 7.6, Difference kernel applied to input histogram

Then each PE sets a flag if it has a positive value and the neighbor to the left has a negative
value, which means that it occupies a positive zero-crossing. This is indicated with a + in
Figure 7.6.

The number of flags in the array is counted with the use of Global-OR. If the flag number is
zero, there is no possible threshold. If the flag number is one, we have found the threshold,
and if the flag number is greater than one we will have to perform a smoothing on the differ-
entiated histogram.

We will continue with the flag counting and smoothing until we find a threshold or until we
reach zero flags. This is illustrated in Figure 7.7(a)—(c), where smoothing is performed
three times.

PAGE 72 OF 241

1]

Figure 7.7, Different stage of smoothed histogram

Table 7.1 shows a pseudo program for the algorithm.

Compute the difference between two neighboring bins
Loop
Count the number of zero-crossings
Case
Flag_number=0 : No threshold; Exit loop
Flag_number=1 : Distribute threshold; Exit loop
Flag_number>1 : Smooth the histogram; Go tc Loop

Table 7.1, Pseudo code for zero-crossing detection
7.2 Implementation and performance on PASIC

We will begin with the mid-point method. First we compute the center of mass, called p,
using Equation (7.4). The computation of M is very simple since we use sparse filters, de-
scribed in section 4.2, which will take (2logN)*(3b+2)+N cycles. To compute p we have to
multiply each histogram value with its bin number, which takes approximately 5bob; cycles,
where by=7 corresponds the bin number and b;=14 to the number of pixels in the bin. The
summation of each bin contribution is again done with sparse filter.

Finally, to compute Ty we have to perform a division. This is preferably done outside
PASIC. However, it can be done inside, if every processor does the same division. In that

case it will take approximately 8b2 cycles, where b in this case is 14, which means 1568 cycles.

Assuming that we are able to drop bits to preserve the length of the word, which is the nor-
mal case, we will get Table 7.2.

PAGE 73 OF 241

Operation Time

Compute M 310
Compute n*p(n) 490
Compute sum 310
Division 1568

2678

Table 7.2, Cycles needed to compute p

To estimate the two mean values pg and y; we use the two summations (7.9) and (7.10).

T,
uoTo) = 5—— > n*p(n) (79)
Y O
n=0 127
uiTy) = —— > n*pn) (7.10)
Z P(n)n=Tﬂ+1 -
i=Ty+1

During the first summation every PE with a bin number greater than Ty, contributes with
zero and during the other summation the other half of the processor array is idle. Thus, this
takes twice the time to compute compared to the computation of u. However, we do not
have to do the multiplication with the bin number since the result was obtained in the first
computation. Thus, this will take 1240 cycles. The divisions is performed in 1568*2=3136
cycles.

The new T value is computed as a subtraction of the two sums followed by a shift to the right,
see Equation (7.11) and the test is on one subtraction, sec Equation (7.12). This takes 80
cycles altogether.

1
Ty = 5y(To) — #o(Ty)] (711
|Tn —T,_,| <¢ (7.12)
Table 7.3 summarize the computation. '
Operation Time
Compute W 2678
Compute g and py 4476
Subtraction and test 80
7234

Table 7.3, Total number of cycles needed for the Mid-point method

Thus the Mid-point method takes 7234 cycles per iteration. In the normal case we need be-
tween 3 and 10 iteration, providing that it converge. This means between 25000 and 75000
cycles.)

The first step in the algorithm for the detection of zero-crossing of the first derivative, is to

compute the difference between two neighbors. This takes 3b+2 cycles, where b=14. The

1-57

PAGE 74 OF 241

next step is to see if there is a zero-crossing within the PE. We define the zero-crossing range
for the PE to be between the left PE and itself, see Figure 7.8.

Zero—crossing region: i i+l i+2
l | |
PE: i-1 i i+1 i+2

Figure 7.8, Zero-crossing range for each PE

Each PE now checks if it has a positive value and the neighbor to the left has a negative val-
ue, which if it is true means that we have a zero-crossing within the pixel. In the test for a
negative value of the neighbor we just use the sign bit. To see if we have a positive value in
the PE we use Equation (7.13), where b7 is MSB and bg is LSB. It gives us a 1 only if we have
a positive number greater than 0.

Pos? = by« (bg+ .. + by +by) (7.13)
Altogether, the time to produce the flag for the zero-crossing is b+2+2=b+4.

To see how many flags there are in the array, we load the flag bit into the shift register and at
the same time into the Cregister. We now look at Global-OR to see if there is any flag set in
the array. If not we quit the routine. If we have at least one flag, we shift one step to the right,
and perform an OR between the shift bit and the original bit in the processor. We then per-
form a logic-And between the two bits and place the result in the C register and perform a
Global-OR check. This is shown in pseudo code in Table 7.4. If Global-OR is 1, we have at
least two candidates and the test is stopped. Otherwise we repeat the procedure now shifting
2steps, then 4, then 8, and so on. If we do not get a Global-OR response until we have done a
full 128 shift, the test will take N+ 7*2logN +3 cycles. In our case when N=128 this takes 180
cycles.

M(Flag)->PS(Flag),C
Global-OR-check
IF Global-OR = 0 Then Quit
FOR b:=0 TO n-1
Shift_right (2P steps)
M(Flag)->iA
PS(Flag)->iB
AB->M(Flag) ! M(Flag)
A+B->PS (Flag) ! PS(Flag)
PS(Flag)->C
Global-OR-check

A+B
AB

ROF
Table 7.4, Pseudo code for Two-or-more check with Global-OR

If we during the flag-test phase have a 1-response from the Global-OR, we will perform an
averaging, and then go back to flag-set and flag-test again. This averaging is a convolution
with a filter that contains 1s, see section 4.2. If we keep the size of the b value it will take
Z;-(MlogN)*(3b+2)+N clock cycles, and if we let b increase it will take
Z=(ClogN)*(3b+2) + N+3*(2logN—1)%/2 cycles.

I-58

PAGE 75 OF 241

If the test shows that we only have one flag we propagate the corresponding bin number to
all PE, which is done with Global-OR. Table 7.5 shows pseudo code for the distribution,
which takes 4b+2 cycles, where b=7.

0->A
M(Flag)->B
FOR b:=0 TO b-1
M(bj)=>C
CarryFeedback
Global-OR-test
CASE Global-OR of
1: 1 -> PS(b:)
0 : 0 -> PS(b:)
ROF

Table 7.5, Pseudo code for distribution

The cycle count for the whole algorithm are listed in Table 7.6.

Operation Time

Compute difference 44
Detect zero-crossing 18Ng
Count flags 180Ng
Smooth the histogram Zy{Ng-1)
Distribute bin number 30

T4+188Ne+2y (Na—1)

Table 7.6, Total number of cycles needed for the Zero-crossing method
7.3 Results from experiments

To estimate the value of N and the size and the precision needed in the smoothing, i.e. N
and Zy, we have done some experiments. To test these parameters we used 10 different 128
x128 images, where the object was to find a true thresholding value. A true thresholding
point was define as an interval Ty <T< Ty where all point in this interval according to the
human eye, could be considered as correct thresholding values, see Figure 7.9.

Hist(n)

T Ty
Figure 7.9, Histogram with a thresholding interval
The program tried to threshold all the images with every possible parameter set and regis-
tered when the algorithm succeeded in finding a true thresholding point. The program also
registered how many time, at the average, we had to loop through the algorithm, i.e. how

many passes of smoothing we had to do to produce a correct value. The result is shown in
Table 7.7, where the following notation is used.

1-59

PAGE 76 OF 241

A Size of the average filter

b+ Number of extra bits used, b=14

S Number of successfully thresholds

A# Average number of smoothing for the successful thresholds
A b+=0 b+=1 b+=2 b+=4 b+=8 b+=16

H A#{ H A#| H A#| H A#| H A#| H A#

2 1| 19.00 1] 19.00 1] 22.00 0 -] 4] 56.75}10} 99.10
4 1 5.00 1 7.00 1 7.00 1] 18.00 9] 19.78] 10| 20.20
8 1 4.00 1 4.00 1 5.00 6 5.00] 10 6.20] 10 6.30
16 0 - 0 - 1 3.00 8 3.12 9 3.11 9 3.11
32 0 - 0 - 2 3.00 6 2.67 7 2.71 7 2.71

Table 7.7, Test result from thresholding

Table 7.7 shows that unless we use 4 extra bits, i.e. b+ =4, we will not get any reasonable
results. We can also see that with the smallest kernel size, A=2, we can get very good results
providing that we use a large number of extra bits. However, A=2 require a very large num-
ber of iteration to converge, which takes a lot of time. According to Table 7.7 should the
optimal value be A=8 and b+ =8, which will result in a N value of 6.

Thus, a typical Zero-crossing algorithm takes 74+188%6+285*5=2627 cycles. However,
the time to collect a histogram is 344064 cycles which means that the histogram collection is
the bottleneck and that efforts should be made to reduce that figure. Comparatively, the
thresholding calculation is done very quickly.

We have assumed above in the thresholding analysis that we have a 16-bit parallel shift reg-
ister. The present version of PASIC do not have that, which means that we will have to in-
crease the cycle count somewhat, at the worst with a factor of 2. In section 10.6 an extension
is described which includes a 16 bits parallel shift register and some other features which
will speed up this algorithm.

PAGE 77 OF 241

8 Edge detection
8.1 On edge detection algorithms

In the literature on image processing, edge detection is probably covered more intensely
than any other subject. The most sophisticated algorithms are often locally data dependent
and are virtually impossible to implement in PASIC. Many of those algorithms which may be
possible to execute in PASIC can be described by the three-step procedure of Figure 8.1.

. . Thresholding
Input | Noise-suppressior Thinning Qutput

| Edge-preserving | —pm—| Differentiation | _gm—1 Post-processing fpm
b-bit Binary

Non-linear Linear Non-linear

Figure 8.1, Three-phase edge detection

A typical first operator in Figure 8.1 is median filtering. It is especially effective for salt- and
pepper noise. Aswe will see in the next section, median filters of limited size can be implem-
ented efficiently in PASIC. A more sophisticated operator is the Nagao-Ye filter which data-
dependently selects a certain subregion of the neighborhood for averaging, see [19]. This
operator produces excellent noise suppression and edge preserving result. However, it is
almost impossible to implement this operator in PASIC due to the memory requirement
and the awkwardness of doing data-dependent processing and addressing in PASIC.

The second step in Figure 8.1 is gradient detection which estimates the gradient in the x- and
y-direction. This is mainly a linear type of filtering, implemented as two convolutions. The
most common kernels are the well known Sobel pair, described in section 4.1. However, it is
worth noticing that these operators can be designed so that they give more or less attention
to higher frequencies and that high computation efficiency can be obtained even from larg-
er kernels, see [7]. Figure 8.2 shows an example where we can obtain results from two 5x5
kernels after only 10 additions and subtractions. '

1|2]0[-2[-1

2[8]0]-8-2
~E'|1|—1]=6—1zo 12| -4
2|80 [-¢-2

/ 1]2]0[--1

l 1‘: tt
DoRSEnD

\‘ —1[-2]-¢[-2[-1

—2| —g]-14-g| -2

* -= ofolofo]fo
1] 8

Figure 8.2, 5 by 5 separated Sobel pair

The last step of Figure 8.1 contains thresholding, thinning, and other post-processing. A fix
data-independent threshold can sometimes be sufficient providing that the environment of

1-61

PAGE 78 OF 241

the system is known. However, in some cases we have to have a more adaptive threshold, for
example generated from a histogram as described in chapter 7. To get an edge image where
the edge lines are only 1 pixel wide lines we use thinning. Finally, the post-processing tries to
enhance the edge image for instance by joining broken edge lines.

In the literature we can find a lot of more or less sophisticated edge detection algorithms.
However since we are going to implement these algorithms into PASICwe have a number of
constraints. For example,

(a) We do not have floating point capability, at least not anything that runs in normal
speed.

(b) We do not have enough storage to harbor an entire image.

(c) We can only use row pipelined algorithms.

This implies that we should use algorithms that use integers and only small regions of the
image per pixel. The integer should use as low b value as possible and the locality of the pixel
makes it possible to implement the algorithms in a row-pipelined fashion, see chapter 5.
This constraints will of course limit the possibility to produce a correct edge image. Howev-
er, since PASIC itself often is used as a preprocessor we will therefore trade speed to preci-

sion. The goal will therefore be to have an almost correct edge image in a reasonably
amount of time.

8.2 Median - Sobel - Thinning

Figure 8.3 shows a specific example of an edge detection procedure described in [5].

L;i_x|
mERE 4+ [T [
5

Median filtering Low pass Gradient Magnitude Thresholding Thinning
filtering

—C oz~
—
w
HCwHCO

Figure 8.3, Median-Sobel-Thinning algorithm

The first step is a median filtering, which is separated into two steps, one vertical and one
horizontal. The vertical filtering is done within each processor and the horizontal filtering is
done with each PE’s nearest neighbor. Each separated filtering consists of three max/min-
tests with multiplexing shown in Figure 8.4(a), where each vertical line stands for a max and
min test followed by a multiplexing, see Figure 8.4(b).

1-62

PAGE 79 OF 241

£\ E—— Max{Iny,Inz}

» Median{A,B,C}
Inp — | Min{Iny,Iny}

() (®)
Figure 8.4, 3-input median filter

The operation in Figure 8.5 subtracts Iny from Iny without saving the result vector, only
propagating the Carry-bit. After the input of the MSBs in Inj and Iny, the Carry output is 1 if
Inz>In;. Itis then fed back to the C register and can be used to perform a one- or a two-way
multiplexing using the standard functions as the control bit now is in the C register.

i | =
fog =g

) —

L / Following bits
First bit -

-

Carry

al w]»

Figure 8.5, Comparison

The time consumed for the different comparison steps are shown in Table 8.1.

Operations Time
Max-and-Min-test 2b+1+4b = 6b+1
Max-test 2b+1l+3b = Sb+1
Min-test 2b+1+3b = Sh+1
16b+3

Table 8.1, Cycle count for one 3-input median filtering

The reason for doing a separated median filtering rather than a full 3x3 median filtering
speed. Figure 8.6 shows that it takes 19 comparisons to do a full 9-input median filtering.
However, it is possible to reduce that number to 13 as the three boxes with dotted lines are
identical and can be done in parallel in three neighboring PEs.

1-63

PAGE 80 OF 241

l : —» Median{A,B,C,D,E,EG,H,I}

THOO® R

G
H
P

Figure 8.6, 9-input median filter

Table 8.2 shows the cycle count for the separated- and the true median filter. We notice that
the shift of data does not add any cycles as it can be done in parallel with other actions.

Operation # 2-way mux # l-way mux # cycles
True median 5 8 T0b+13
Separated median 2 4 32b+6

Table 8.2, Difference in time between true and separated median

With 8-bit precision a true median filtering takes 573 cycles and a separate 262 cycles. Since
the results from the two filters are very much the same, the true median filtering is hardly
worth the effort.

The low-pass filtering and the gradient computation is combined into one step using the So-
bel operator described in section 4.1. This takes 237 cycles and is shown in Figure 8.7.

] 11 0} -1

1
06 Rl - 20l
11 0] -1

1 |-
t -1| -2/ -1
*

._"_1‘ = |o|o|lo

| 1] 1] 2] 1

Figure 8.7, Separated Sobel pair

The formula to compute the absolute value of a 2-complement number X is shown in Equa-
tion (8.1).

[X| = (X®x,_y) +x,_, (8.1)
Thisis done in two steps in PASIC. First, we perform an exclusive-OR between each bit and
the MSB, which takes 2b+1 cycles.Then we add the MSB to that result value, which takes
2b+2 cycles. The data flow in the two steps are illustrated in Figure 8.8. We have to compute
the absolute value for the gradient in both X- and Y-direction, i.e. two times which means
8b+6 cycles altogether.

PAGE 81 OF 241

X:r j—»

ol w]»
>

Jﬁe

ve)

L]

Xb-1 > :::]

Figure 8.8, Absolute value computation

[o] >

0O

The magnitude of the gradient is approximated as the sum of the absolute value of the gradi-
ents, which is an addition and takes 3b+2 cycles.

The thresholding is performed with a fixed thresholding value and is done in the same way as
the max/min-test, with a subtraction and only saving the last Carry-bit. This takes 2b+2
cycles.

The thinning phase is the connectivity preserving shrinking described in section 3.6. The
only difference is that we have added an extra template that removes single 1’s. The tem-
plates are shown in Figure 8.9, and as we will apply a two step thinning this will take
2%88=172 cycles.

| mo

- 1 - - —
0 1 01 0

(=R |
e
|
| < |
o= o
I < |

Figure 8.9, Special thinning templates

Table 8.3 contains a time consumption summary of the algorithm.

Operation Time

Separate median filtering 262

Low-pass filtering/ 237

Gradient computation

Magnitude 96

Thresholding 18

Thinning 176
789

Table 8.3, Summary of Median-Sobel-Thinning algorithm

In a 20 MHz system each line will take 39.5 us to process and a whole image is completed in
5.0 ms.

I-65

PAGE 82 OF 241

8.3 Second derivative zero-crossing

As can be seen from Figure 8.10, it seems reasonable to locate an edge at the zero-crossing
of the 2nd derivative. This is the main idea behind Canny’s edge detection method, see [2].

Signal I
1st derivative A__/Lv

2nd derivative ‘__/\/_—

Figure 8.10, Second derivative zero-crossing in 1D

As animage is two-dimensional and discrete, the implementation of Figure 8.10 will include
the following three steps, see [8].

(1) Find the maximum |gradient| in at least four directions.
(2) Inthe direction of the max |gradient| compute the 2nd derivatives.

(3) If the 2nd derivative has a zero-crossing inside the pixel area and if the maximum
| gradient| is greater than a specified thresholding value = > the pixel is an edge pixel

Since the algorithm will run on a SIMD machine, we to rearrange these three steps as fol-
lows.

(1) Compute the |gradient| in all four directions.
(2) Compute the 2nd derivatives in all four directions to see if there are any zero-cross-
ings.

(3) Select the maximum |gradient| and at the same time the corresponding 2nd deriva-
tive response. The result is ANDed with the result from the thresholding comparison
and a 1 is obtained if we have an edge pixel.

The kernels for computing the gradients are shown in Figure 8.11. By using the coefficient S
and 7, the error between the ideal and the approximately gradient is only 1% see Equation
(8.2).

I -14~n=~144 = 14101 (82)
5 7 5
-7 0 7 0 0 0
-5 -7 -5
(a) (b) (c) (d)

Figure 8.11, Gradient Kernels

1-66

PAGE 83 OF 241

We begin by using the kernel (c). After shifts to the left and to the right, we compute the
results from kernels (b) and (d), and store both these results and the original pixel values in
the memory.

The constants 5 and 7, have the binary codes 101 and 111. Thus, a multiplication with 5
means that we take the result and add it with a 2 step shifted version of the result, which
takes 2*(3b+2)=6b+4 clock cycles. Similarly, a multiplication with 7 needs 3 additions.
However, if we use the SDC-code in section 3.4, 111 could be rewritten into 100—1, which
means one addition and one subtraction. This means that the kernels (a) and (c) also take
6b+4 cycles each. In the kernel (a), (b), and (c) we will need 3b cycles to load the data into
the shift register. This makes a total of 27b+16 cycles for all kernels.

The next step is to compute the absolute values of the gradients. As described in section 8.2,
this computation takes 4b+3 cycles. For all kernels this makes 16b+12 cycles.

Altogether the gradient computation takes 43b+28 cycles.

To compute the 2nd derivatives of the image we use the kernels in Figure 8.12.

1 2 1
2 -4 2 -2 -4 -2
1 2 1
(e) () (g) (h)

Figure 8.12, Second derivatives kernels

As the constants 2 and 4 in the kernels are performed as shifts, each kernel only takes one
addition and one subtraction, which means 4*2%(3b+2)=24b+16 cycles.

R Pixel border

BN - Pixel center
P_q Py Py
Figure 8.13, Zero-crossing region for each pixel/PE

To determine if we have a zero-crossing within a pixel area we inspect the nearest neighbors.
Figure 8.13 shows an example in 1D. The rule is defined as follows, where sign(A) means
the sign of the value A.

(@) Ifsign(Pg) # sign(P_1 + Pg) then there is a zero-crossing.
(b) If sign(Pg) # sign(Py + P;) then there is a zero-crossing.

This means that we have to compute the sign of the result from two additions in four direc-
tions. The sign calculation for each addition takes 2b+2 cycles. After each pair of additions

1-67

PAGE 84 OF 241

the results are ORed which takes 3 cyc]es This means 4*(2*(2b+2) +3) =16b+ 28 cycles al-
together.

Each pixel now has 4 bits, one for each direction, which are 1 if there is a zero-crossing in
that direction. We will now perform step (3) in the computation which means that we will
select the maximum gradient and at the same time get the corresponding zero-crossing re-
sult followed by a threshold of the gradient. Table 8.4 shows the value that each PE/pixel
contains.

Go Gy Gy G3 Gi = Absolute gradient in i:th direction
Zo Z1 Z9 Z3 Z; = 1 if zero-crossing in i:th direction

Table 8.4, Contents in each PE

We start by subtracting Gg from G and only saving the final sign bit. This takes 2b+2 cycles.
This bit is used to multiplex the largest G value and its corresponding Z value. This takes
3b+3 cycles and is done three time which makes a total of 15b+15 cycles. We can now com-
pare the outside thresholding value with the greatest G value in 2b+2 cycles, and after that
compute AND between the Z value and the sign-bit in the comparison, which takes 3 cycles.
‘We now have a 1 if the pixel is an edge pixel.

The whole algorithm is shown in Table 8.5. In an 8 bits system this means 900 cycles per row
and 115200 cycles per frame which gives us one frame each 5.8 ms.

Phase Operation Time
(1) Input pixel b
Gradient 27b+16

|Gradient| | = 16b+12

(2) 2nd derivatives 24b+16
Zero-crossing test 16b+28

(3) Select the max |gradient| 15b+15
Final edge test 2b+5

101b+92

Table 8.5, Summary of the second derivative zero-crossing algorithm
8.4 Extended second derivative zero-crossing

One possible extension of the previous algorithm is to try to connect broken lines by condi-
tional expansion, see [15]. This algorithm makes use of two thresholds, Tiow and Thgn. The
idea is to set a pixel to 1, i.e. an edge pixel, even if they do not have a |gradient | >Th;gp,
providing that all the following conditions are met.

(1) The value of |gradient| is greater than a thresholding level called Tjoy.
(2) The direction of the gradient is the same as for an edge pixel in the neighborhood.
(3) The direction to this edge pixel is orthogonal to the gradient.

This means that if a pixel has a N-S gradient greater than Tjow but smaller than Thgp, there
must be an edge pixel to the east or to the west, with the same gradient direction, for this
pixel to become an edge pixel.

PAGE 85 OF 241

Figure 8.14 shows an edge segment where two presumed edge pixels have not been set. In
case (a) the pixel becomes an edge pixels as it has the same direction as one neighbor. In
case (b) the direction of the gradient is wrong and the pixel remains unset. The pixels (c) are
not set as the propagation is only done orthogonal to the gradient direction. This means that
the (c) pixels do not get set even though they have the right direction.

Magnitude > Thgh

Tiow < Magnitude < Thigh

b @

A A o
|

Figure 8.14, Examples of edge propagations

fﬁ

i

b ©

To connect a broken edge line we might need an arbitrary number of propagation steps.
However, in this section we will limit this to one step.

This extended algorithm is identical to the first two phases of the zero-crossing algorithm in
the previous section. The last phase is almost identical, the only difference is that we save
the direction of the gradient for the maximum gradient. This direction is coded with two bits,
see Table 8.6. The code is designed so that two directions are orthogonal if and only if we get
a 1 from Equation (8.3).

Code Gradient direction Corresponding kernel (Figure 8.11)
00 E-W (a)
01 NE-SW (b)
11 N-S (c)
10 NW-SE {a)

Table 8.6, Direction code

Orthogonal? = Codel; @ Code2, + Codely @ Code2, (83)

Each pixel now receives direction data and corresponding edge data from each of the possi-
ble 8 directions. The pixel is an edge pixel if either of the two following conditions are met.

(a) The pixel is already an edge.

b There is a direction match between the pixel and the incoming pixel, and that this
P g P
pixel is already an edge pixel. (A direction match means that the gradient direction is
the same and that the data is fetched from a pixel orthogonal to that direction.)

The object is now to compute equation (8.4).

I-69

PAGE 86 OF 241

NewEdge = OldEdge + z PixDir, @ Dir - PixDir, ® direct(i) - OldEdge; - PossibleEdge;
all dir
(8.4)

NewEdge : Edge pixel after one iteration
OldEdge : Edge pixel after original algorithm
PixDir : Coded direction of neighbor pixel
Dir : Coded direction of pixel
direct(i) : Coded orthogonal direction i
OldEdge; : Neighbor edge pixel after original algorithm
PossibleEdge : Edge pixel after original algorithm when T, is used
To compute PossibleEdge; requires 4*(2b+2)=8b+8 cycles. The expression within the 2
sign in equation (8.4) consists of 4 exclusive-OR and 8 logic-AND. The exclusive-OR takes
10 cycles and the logic-AND takes 12 cycles if we use the Carry-Feedback. To compute the
final NewEdge requires 8 logic-OR which takes 10 cycles. The transport between the PE’s
takes 9+2 cycles as all the directions and corresponding OldEdge values are stored in the

shift register and shifted at the same time. This is summarized in Table 8.7.

Operation # of cycles
Computation of PossibleEdge; 8b+8
Multiplex the direction 12
Transport data 11
Compute eguation (8.4) 32

8b+63

Table 8.7, Summation of conditional expansion

This means that it will take a total of 1178 cycles to compute one line. This is only 10% slow-
er than the original routine. However, a more realistic number of expansion steps will be
between 10 and 20, which would result in memory problem. Nevertheless, the architecture
in PASIC is powerful enough to compute a few steps of expansion.

8.5 Contrast amplification

One task for an image processing system is to enhance the input image so that it becomes
more readable to the human eye. Medical studies have shown that the eye is very sensitive to
high spatial frequencies and less sensitive to low frequencies including the DC component,
see [12]. The goal is therefore to amplify the high frequencies and to preserve the level of the
low frequencies. In a 1D case, the filter response looks like Figure 8.15.

2O

1_/—7
- U

Figure 8.15, Filter response for contrast amplification

One way to obtain this filter response is illustrated in Figure 8.16. We first low-pass filter the
image, then we create a high pass filtered image by subtracting the original image from the

I-70

PAGE 87 OF 241

low-pass filtered image. The output image is obtained by adding the low-pass filtered image
with an amplified version of the high pass filtered image.

LP

A

*2/(

Original image Enhanced image

Figure 8.16, Contrast amplification scheme

All these steps are linear and correspond to a convolution shown in Figure 8.17.

oo 1 1 1
Cox Clofelol = [2[4]2]|) & [2la]2| ? /16 =
olofo 1 1
-2 -1
Cox [Sal= * (20402) 116
12 -1

Figure 8.17, Contrast amplification convolution

Depending on the value we assign to k, we get different kernels which corresponds to more
or less contrast amplification. Three of the kernels are shown in Figure 8.18.

ofofo —1]-2-1 -3 -6/ -3 71 =7

o[16]0} 16 —2|28] -2}/ 16 —6| 52| -6/ 16 - 14100[-14f 16

olofo I -3[—6[-3 —7-14 =7
k=0 k=1 k=2 k=3

Figure 8.18, Contrast amplification kernels

The low-pass filtering is theoretically accomplished as a separable convolution as in Figure
8.19, which is much the same as the Sobel operator described in section 4.1.

2 1
2

Figure 8.19, Separated low-pass filter

However, practically it is realized as in Figure 8.20, which is the row pipelining method de-
scribed in chapter 5.

PAGE 88 OF 241

2| 1 New pixel
2| 4] 2| = i Neighboring pixels* Latest temp result
2| 1 Latest pixel .
: 1[2]1
(@) () & (<) @

Figure 8.20, Separated row-pipelined low-pass filter

Figure 8.20(a) shows the first operation, which is an 8-bit addition. The next step (b) is also
an 8-bit addition as we have truncated the result with a factor of two. Step (¢) is once again
an 8-bit addition and at the same time a store of the temporary resultin the memory. Finally
(d) performs a 8-bit addition with previous result, we have a low pass filtered image.

The output image is then computed as in Equation (8.5), where LP() stands for Low pass
filtering.

out = LP(In) + 2k * (LP{In) - In) (8.5)

Equation (8.5) is computed with one subtraction and one addition since the multiplication
takes no time as it is performed as a shift. Thus, the total number of cycles required is
(3*8+1)*4+ (3*8+1)*2=150.

This type of algorithm is very well suited for PASIC. The reason is it contains neighborhood
operations, it can be pipelined in a line wise fashion, and the multiplication with 2 takes no
time since it is just a question where to take the data in a bit serial machine. The amount of
memory needed is also very low. In a 20 MHz system it takes 7.5 ps per line and 0.96 ms per
frame.

PAGE 89 OF 241

9 Segmentation

9.1 Segmentation on parallel machines

An object in a binary image is defined as a group of connected pixels. Under the 4-connec-
tivity rule each pixel has four connected neighbors, north, west, south, and east. Thus, the
binary image in Figure 9.1,is considered to contain two different objects.

Figure 9.1, Two different objects

A segmentation has been performed when every object in a binary image is marked with an
unique label. In Figure 9.2 we have labeled the three objects with the arbitrary labels 1, 2,
and 3.

Figure 9.2, Segmentation of a binary image

It is obvious that to label an object, this label has to be distributed to all pixels in the object
from some originating points. This means that the time to perform a segmentation is data
dependent. To propagate a label through an object requires O(N) steps, where N is the larg-
est distance between two points. In Figure 9.3 the distance between A and B is 8.

A

B

Figure 9.3, The distance between A and B is 8

The worst case of segmentation is a Meander curve, see Figure 9.4. The length of this curve
is N/4*8*N/4=N2%/2, where N is the size of the image.

1-73

PAGE 90 OF 241

Figure 9.4, The Meander curve

One parallel algorithm that segments an image with objects containing holes is called
PLPA, Pure Label Propagation, see [8]. Initially, each pixel is assigned a unique label num-
ber, coming from the X and Y coordinates of the pixel. One of the LSB in the X or Y coordi-
nates can be dropped as two adjacent pixels, in either the X- or the Y must be in the same
object. This gives us (n—1) +n=2n~1 bits per label, where n=2logN and N is the size of the
image. The basic operation step in the algorithm is the following.

- If a pixel has a label that is larger than the label of its nearest neighbor, and both pix-
els are object pixels, then the label is replaced by its nearest neighbors label.

The propagation may takes place in all four directions, north, east, west, and south, or in one
direction at the time. The propagation then continues until no changes occur in any of the
four propagations.

The PLPA algorithm is designed for a 2D processor array. However, it is possible to adopt
this type of algorithm to a 1D processor array, i.e. PASIC. In a 1D array the image is pro-
cessed from the top to the bottom. This means that we have a natural propagation flow from
top tobottom, i.e. the south propagation. In the top-down scan we ignore the north propaga-
tion, which leads us to the question if we should propagate in both east and west directions
or just in one of the directions. Figure 9.5 shows these types of propagation, (a) is a south-
east propagation and (b) is a south-east-west propagation. The * indicates the position of
the origin PE which means that we first perform a horizontal propagation followed by a ver-
tical.

—

CTT +H - @

. _ (b)

[T

Figure 9.5, South-east- and south-east-west propagation

l *

1-74

PAGE 91 OF 241

These two operations resultin two different propagation patterns, which are showed in Fig-
ure 9.6.

(a) (b)
Figure 9.6, Propagation pattern

Both procedures are fast when labeling a long vertical object and slow when the object is
horizontal. For instance, the object in Figure 9.7(a) will be correctly labeled after one verti-
cal scan, while the object in Figure 9.7(b) will need L vertical scans in the East-West case and
2L in the East-case.

I
L

(a) (b)
Figure 9.7, Different orientation of object

Alabeling routine more suited for a 1D array is called Run-Track, i.e. R-T. This algorithm is
illustrated in Figure 9.8, and it operates on one line at a time. It start be assigning each left
edge a unique label and after that propagate this label to the nearest right edge, see Figure
9.8(a). Next step is to propagate the labels to the next line, see Figure 9.8(b). The labels are
propagated inboth direction and if we have two labels, we choose the lowest one, see Figure
9.8(c). We finally label the pixels that have not received a label yet, see Figure 9.8(d).

If all the objects in the images were convex our job would be finished. However, since this is
not normal the case we have two choice. Either, repeat this procedure until there is no
change of labels, or to make a list of which labels that belong to the same object. If we choose
to repeat the procedure we will have to work from the bottom to the top of the image, from
the top to the bottom, and so on until there is no label change. This will result in Figure
9.8(e). The list procedure stops with the result in Figure 9.8(d) plus the list (1,2) which tells
us that label 1 and 2 belongs to the same object.

PAGE 92 OF 241

@ |1 1 2 2| ls 3
®) Ll 1 2 zl |3 3
1 2 [3]
© |1 1 2 2| La 3
1| 1|1 | 3]
@ |1 1 2 z] ls 3
11 1] 1 | 3]
© l1 1 1 1[ls 3
1| 1|1 | 3]

L O O O

]

Figure 9.8, Different phase of the R-T algorithm

So far we have mention three algorithms, two types of start labels, and two types of scanning
methods. Table 9.1 shows all possible combinations of the methods.

scans Start label PLPA S-E PLPA S-E-W |R-T
1 Coordinates (a) (a) (b)
Limited (c) (c) (d)
2 or more Coordinates (e) (e) (£)
Limited (g) (g) (h)

Table 9.1, Different segmentation combinations

We will hereafter omit the cases (a) and (e) from further examination since it is possible just
to use a limited number of label. This will speed up the process and limit the memory re-
quirement which will be explained in the following sections. Cases (b) and (f) will also be
omitted on the same ground. The (c) cases can be omitted since the one scan and list proce-
dure is only meaningful together with the R-T algorithm. The reason is that the other two
algorithms we will have unlabeled pixels after one scan. Figure 9.9 shows an image segment
after one PLPA S-E-W scan where we have unlabeled pixels.

.

Labeled due to
propagation

A

'8

New label

. Labeled

D Unlabeled

Figure 9.9, Unlabeled pixels after one scan

This leaves us with the (b), (g), and (h) cases which will be investigated in the following sec-

tions.

PAGE 93 OF 241

9.2 Limitations for PASIC

The memory needed in each PE to harbor an entire label image is Nb where N is the image
size and b is the number of bits in each label. The maximum number of different labels oc-
curs when we have a chess-board image. In that case we have N2 different labels which
means gives us a b value of 2log(N2/2)=2*2logN~1. Thus, for a N=128 image each PE
needs 1664 bits.

This means that if we want to use a iterating procedure where the image is processed back
and forth, we need at least 1664 bits per PE. Even if we could reduce the number of different
labels by a factor of 128=27, we still would need 768 bits per PE which seems to be to large
even for a next generation of PASIC. The only way to overcome this problem is to use some
external memory. One example of that is described in section 10.4.

We will therefore, present the algorithm both as if we had had external memory, i.e. cases
(g) and (h) in Table 9.1, and if we did not have external memory, i.e. case (b).

Whether or not we have external memory we want to reduce the maximum number of la-
bels. The reason is to suit the shift register and to reduce the computation time. In the fol-
lowing algorithms the number of bits per label is set 6, i.e. 64 unique labels. One advantage
of using 6 bits is that it fits into our parallel shift register, as the algorithm uses two bits. How-
ever, we are forced to household with the labels. The optimal way is be to use one labels per
object, which the algorithms do not reach. However, we will show that we can get very close
to this optimum with the simple strategy for labeling: wait to use a new labels on a row until
we are sure that a pixel is not connected to any labeled pixel on this row or any row above.

9.3 Implementation of the multi-scan procedure

We are now going to describe the implementation and cycle count for the R-T algorithm,
which result we will use to compare the two variants of PLPA algorithms. All three algo-
rithms will be adopted to the 1D array of PASIC.

In the R-T algorithm each pixel gets the following set of data.

(1) One bit to indicate object or background called p.

(2) One control bit to indicate if the pixel has been labeled called 1.

(3) Six bits for the label called L.

The first step of the algorithm, step (a) in Figure 9.8, is to label the first row. This is accom-
plished by first setting a 1 in all PEs which has a background pixel and has a PE to the right
that has an object pixel. The labels are calculated for all pixels in the first row by simply add

all 1 bits to the left of each pixel; see Figure 9.10. This labeling procedure is described in
section 4.6, and takes 21b+146 cycles, which is 272 cycles for b=6.

I-77

PAGE 94 OF 241

B

ol el oo oLl el o alol o] i o] o] o]
S
Colelo ool s a el o]

Figure 9.10, Labeling of the first row

-

‘We now copy the labels to the next row, see Figure 9.8(b), under the following condition.

= If the above pixel, py, and the present, pj, are object pixels then copy the label num-
ber and set the labeled bit, 1.

In PASIC this is one multiplexing with pg as the control bit followed by one assignment of 11
to po, which takes 3b+3 cycles.

The labels are propagated to the right and to the left, using the shift register. This horizontal
propagation is done as follows.

- If the neighbor pixel is an object which is labeled, and
- the pixel is labeled with a higher label or not labeled,
- Then propagate the new label and set the 1 bit.

This corresponds to the following expression

IF polo(ly(Lo<Li)+1;) = 1 THEN Ly
ELSE L3
1, =11 + 1

During the propagation both the memory and the shift register obtain data of the label and
the 1 bit. This operation takes 2b+2+8+3b+3=5b+13 cycles per shift. We continuously
check Global-OR to see if any pixel has an expression in the IF statement which is 1,i.e. we
have a change of label. As long as Global-OR is 1 we continue to propagate. When Glob-
al-OR becomes 0 we reverse the propagate direction and when Global-OR becomes 0
again we stop the horizontal propagation. This will take (Sb+13)*(N;+N,)=43*(N;+N;)
cycles, where Ny and N; stands for the average number of propagation steps in the left and
right direction.

Therest of the line is labeled in the same way as the first line. The difference is that we only
create a 1 if the pixel to the right is an object which has not been labeled, i.e. its label bit 1 is 0.
On the first row zeroes were shifted in from the left. This time we will shift in from the left
what was shifted out from the right on the last row to get unique labels. This method is de-
scribed in section 4.6, and takes 272 cycles as before.

1-78

PAGE 95 OF 241

We continue the downwards propagation until the whole image is scanned. The process is
then reversed to work upwards. However, we do not create any new labels as all the pixels
now are labeled. Instead, the nextrow propagation is performed as the left-and-right propa-
gation, which means 43 cycles per row.

We continue to process the image up-down, down-up, and so on, until one scan is completed
with no exchange of labels. The total number of cycles is shown in Table 9.2, where N is the
number of scans.

Operation # of cycles =

New labels to each row 272*128 34816
Propagate new labels to each row 21*127 2667

Left and right propagation 43*% (N7+Ny) *127*Ng 5461* (N1 +Ny) *Ng
Propagation up and downwards 43*127* (Ng-1) 5461*Ng-5461

32022+5461*Ng* (1+Ny+Ny

Table 9.2, Summation of segmentation

To estimate the performance of the algorithm we have to assign some typical values to Nj,
N, and N§, which is done in the next section. However, we can compute the cycle count for
the worst case, the meander curve. In that case Ng=2*N2/16 and N+ N;= (4+2+4+2)/4=3,
which means 44.8 Mcycles. ’

9.4 Implementation of the one scan procedure

If we do not have external memory we have to use the one scan and list procedure, which
means that every time we have a label change we must report this to the control unit. The
means to do this is to check Global-OR to see if we have any change of labels and if that is
the case use the sclect-leftmost-PE routine in section 3.7 and Global-OR to read out the
label pairs from one PE at the time.

The change of labels check is done in the same way as for the iterating procedure. However,
we new have to read out the label pair(s). We first selects the leftmost PE with the Glob-
al-OR function, which takes 5*%8+2=42 cycles. Then the two labels are read out from this
PE via the Global-OR, which takes 2*6+1=13 cycles. However, in order to reduce the
number of duplicates in the connection list we must be sure that each propagation front only
contributes with one list entry for each direction on each row. This is done by using an extra
bit which is reset after each direction in the horizontal scan. If we did not use this facility the
propagation front in Figure 9.11 would result in a number of (1,2) entries in the connection
table.)

:Label 1
: Label 2
-4

Figure 9.11, Propagation of label 1

I-79

PAGE 96 OF 241

Thus, it take 32022+ 5461* (14N +N;)+127#N*55 cycles to complete one image, where
N is the average number of label changes on each row. This figure is in most cases very low
which means that we can neglect it. This gives us 32022+5461*(1+N;+N;) cycles.

9.5 Results from experiments

To get a better estimation of the N values, the algorithm has been tested on a number of
pictures. The images that we used is the same image as in chapter 7, and we used the thresh-
olding values we received from that routine.

The implementation of the two PLPA algorithms within the R-T algorithm is easy since we
only limit the propagation in the horizontal direction. This means that in the PLPA S-E, we
only propagate one step to the east on the down scan and one step to the west at the up scan.
The PLPA S-E-W propagates one step at both directions.

The following data were collected.

No Image number

Scans Number of scans of the picture, Ng

Left,Right Total number of propagation steps to the right and to the left
' and the average number of propagation steps, N, and N

Labels Total number of labels that were assigned

Objects Total number of different objects in the picture

Tables 9.3,9.4, and 9.5 shows data from one direction PLPA, two directions PLPA, and RT
scan respectively. The bottom row in each Table contains the average value.

Table 9.6 shows the result if we insert the average values from Tables 9.3, 9.4, and 9.5 into the
formula in Table 9.2. The R-T algorithm is 2.6 times faster than the PLPA S-E-W and 3.5
times faster than PLPA S-E. Tables 9.3, 9.4, and 9.5 also show that R-T only need half the
number of labels compared to the PLPA algorithms.

No Scans | . . Left * . Right Labels | Objects

Total .Avérage Total |Average

steps |steps steps |steps
0 17 1008 0.46 1143 0.53 6 2
1 36| 2268 0.49} 2286 0.50 26 7
2 26] 1638 0.49| 1651 0.50 39 15
3 8 504 0.49 508 0.50 S 17 3
4 - 13 756 0.45 889 0.53 14 5
5 19 1134 0.47 1270 0.52 25 15
6 26| 1638 0.49| 1651 0.50 25 2
7 13 756 0.45 889 0.53 7 1
8 15 882 0.46| 1016 0.53 16 2
9 43| 2646 0.48| 2794 0.51 7 1
Mean 21 0.47 0.51 18.2 . 5.3

Table 9.3, Experiment data from PLPA S-E

1-80

PAGE 97 OF 241

No Scans Left Right Labels | Objects
Total |Average |Total |Average
steps |steps steps |steps
0 10| 1265 0.99 1265 0.99 6 2
1 18| 2277 0.99] 2277 0.99 26 7
2 12 1518 0.99} 1518 0.99 39 15
3 4 506 0.99 506 0.99 17 3
4 6 759 0.99 759 0.99 14 S
5 10| 1265 0.99| 1265 0.99 25 15
6 13 1645 0.99| 1645 0.99 25 2
7 7 886 0.99 886 0.99 7 1
8 8| 1012 0.99| 1012 0.99 16 2
9 13 1645 0.99| 1645 0.99 7 1
Mean 10 0.99 0.99 18.2 5.3
Table 9.4, Experiment data from PLPA S-E-W
No Scans Left Right Labels | Objects
Total |Average |Total |Average
steps |steps steps |steps
0 3 452 1.18 477 1.24 5 2
1 3 644 1.68 550 1.43 17 7
2 3 546 1.42 488 1.27 21 15
3 3 475 1.24 439 1.14 6 3
4 3 492 1.28 483 1.26 7 5
5 3 507 1.32 474 1.23 19 15
6 3 502 1.31 550 1.43 6 2
7 3 450 1.17 452 1.18 4 1
8 3 513 1.34 477 1.24 9 2
9 3 509 1.33 469 1.22 5 1
Mean 3 1.33 1.27 9.9 5.3
Table 9.5, Experiment data from Run-Track propagation
scans Start label PLPA S-E| PLPA S-E-W R-T
1 Coordinates - - -
Limited - - 51681
2 or more Coordinates - - -
Limited 259090 194760 74618

Thus, a normal picture with Ng=3 and N +Nj=2.6, is processed in 74618 cycles or 3.7 ms on-
a 20 MHz system using the multi-scan algorithm and the list algorithm takes 51681 cycles on
the same system.

Table 9.6, Total number of cycles for each algorithm

PAGE 98 OF 241

10 Improvements of PASIC

10.1 Axrchitecture extension, different approaches

The processing part of PASIC is built around a 1-bit bus, which makes it easy to add and
subtract different building blocks. In Figure 10.1 we show two examples of different im-
provements. In (a) we have added two extra units. From the VLSI point of view, they have
been placed below the other units. However, this is of course not necessary as the position
on the bus is arbitrary. It is also possible to add units that connect directly to other units, see
Figure 10.1(b). In that case the wire connection will be more difficult. A proposed extension
of PASIC, where both extra units and direct communication between units are used, can be
found in [5].

— A/D converter - A/D converter
m— p—

— Parallel shift register — Parallel shift register #1
— —

— ALU] Additional unit #1
— ——

1 Memory] Parallel shift register #2
; : pom—

— Additional unit #1 T ALU

{ Additional unit #2 ﬂ Memory

(a) (®)

. Figure 10.1, Different extension approaches

Another way to enhance the performance is to increase the processing power in the existing
units, e.g. more Boolean functions in the ALU, larger memory, and wider shift register. Yet
another way is to create more data paths within the units. All these types of enhancements
will be discussed in the following sections.

10.2 Extended ALU

The ALU could be extended in the following ways.

(1) More 3~input functions

(2) More feedback functions

(3) Four or more input registers

(4) Two or more feedback register functions

We showed in section 3.1 that we can implement most of the possible 3—input functions in

the optimal 4 cycles. We also showed that those 3—~input functions that we cannot compute

1-82

PAGE 99 OF 241

in 4 cycles can be computed in S to 10 cycles. This means that the improvement of the per-
formance is small in case (1) since other 3—input functions are seldom used compared to
the add/sub/mux functions.

A more important feature in the ALU is case (2), when we have a data path from an output
function, back to an input register without interfering with the bus, similar to the Carry-
Feedback case. One such example is feedback for comparisons, see section 4.7, where we
had two bit—vectors and compared them bit by bit and if any two bits were not equal the
result was 1. Figure 10.2 shows two input vectors which are bit—wise Exclusive— ORed with
cach other and the result is then ORed with the previous results. '

Figure 10.2, Comparison with feedback

If we want to have more feedback signals to the C register than the CarryFeedback, we must
have a multiplexing unit for the feedback signals. Figure 10.3 shows one realization of such a
feedback control.

CiCo—
s I CARRY
- COMPARE
- FUNC3

Figure 10.3, Extended feedback

The multiplexer is controlled by two bits, described in Table 10.1. The Compare performs
the Boolean function A@B+C and the third function Func3 is a feedback function that we
can have almost for free as we have a coding position left.

Cy Co Function

0 0 Disable

0 1 Carry feedback

1 0 Compare feedback
1 1 Func3 feedback

Table 10.1, Code to the extended feedback

Another possible way to enhance the ALU would be to add an extra input register, case (3).
However, by inspecting described algorithms we find that we almost never used a 4—input
functions and in those cases where we did use 4—input functions, the Carry feedback was
used to overcome the problem.

1-83

PAGE 100 OF 241

In case (4) we use a fourth register to obtain more than two states in the state diagram. Fig-
ure 10.4 shows the 2—state Carry function where we go—to/stay~in C=1 if we have a Carry.
The output from the function is determined by the input vectors and the current state at the
C register.

AB+AC+BC
=0

AB+AC+ BC ‘@ @ AB+AC+BC
=1

AB+AC+BC
=1

Figure 10.4, State diagram for the Carry feedback

Figure 10.5 shows a 3—state function which requires two registers, C and D. This is used in
an operation that in 3b cycles outputs the largest of to input variables x,y, i.e. z=max(x,y).
We initiate the two state registers, CD := 00. Then the two input vectors are loaded, into the
A and B registers respectively, one bit at the time starting with the MSB. As long as X;=Y;
the output will be X;, i.e. the largest vector. If at any time X; 7 Y; the output will be the
largest value and we will jump to a state where only the bits from that largest vector is se-
lected. This process takes 3b+2 cycles.

Figure 10.5, Maximum select state diagram

In the present PASIC design this task takes 5b+1 cycles. The two types of median filtering in
section 8.2 will with this new feedback take 44b+26 and 20b+12 cycles, true and separated
median respectively. The architecture needed for a two—function feedback is shown in Fig-
ure 10.6.

PAGE 101 OF 241

i H(*H

Bit serial extended ALU

ololw >
O—=Qor

1 P
_ |

1-bitbus [+
Figure 10.6, Two—function feedback ALU
10.3 Global—OR feedback

Insection 3.7 and 4.3 we described the Global—OR function and gave examples of how this
function could be used in maximum selection and distribution. However, we also noted that
the response time and the complexity of the control unit might become a problem and slow
down the execution. - '

To reduce the burden of the control unit and gain speed, the Global—OR output can be fed
back directly to each PE’sbus, see Figure 10.7 and [5]. In Figure 10.7 the Global —OR signal
is fed back to special memory position which means that one cycle after we put some data
into C, each PE can use the result of the Global—OR.

Global-OR

Control
unit

CI. n

Global—OR position in the memory

Figure 10.7, Global—OR connected to memory

For the control unit this means that it can run its data—independent micro—program flow
uninterruptedly in the algorithm in section 4.3. As another example, Table 10.2 shows the
distribution routine in section 7.2 without a Global— OR feedback. This takes4b+2 cyclesif
we have a powerful control unit, or maybe 5b+2, 6b+2, or worse in a more realistic situa-
tion. :

PAGE 102 OF 241

0->A

M(Flag)->B

FOR b:=0 TO b-1
M(b;)~->C
CarryFeedback

Global~OR~-test
CASE Global-OR of
1 :1 -> PS(bj)
0 : 0 -> PS(b;)
ROF

Table 10.2, Distribution without internal feedback -

If we have a Global— OR feedback the program could most certainly run in 3b+2 cycles, see
Table 10.3. Equally important is that we do not need any conditional branching in the micro
program for these cases, which simplifies the micro—programming and the design of the
control unit.

0-—>A

M(Flag)->B

FOR b:=0 TO b-1
M(bj)->C
CarryFeedback
Global-OR -> PS(bj)

ROF

Table 10.3, Distribution with internal feedback

10.4 External memory

The memory size is a major problem in many routines. PASIC only contains 127 bits of RAM
per PE, which is not enough for many algorithms. By using row—parallel pipelining, the
problems can sometimes be overcome. For some other algorithms though, the lack of
memory makes them impossible to implement. Those cases can only be handled with exter-
nal memory.

The ideal solution would be to have each PE’s bus connected to one output pin of the chip
which in turn is connected to an external memory. However, this solution is not feasible
since it requires too many pins. One way to overcome this problem is to let a number of PEs
use the same pin, via a multiplexer. The necessary data buffer is a special 1 bit RAM cell in
each PE, see Figure 10.8.

1-bit bus
- To/from external memory

Figure 10.8, The external memory’s connection with the PE’s bus

The data is transferred to the external memory over the multiplexers, as shown by Figure
10.9. After 8 write cycles, the data from all PEs have been written into the external memory.
Read is performed in a similar way.

PAGE 103 OF 241

|:| =1PE

8tol 8tol 8tol
multiplexing multiplexing multiplexing

Figure 10.9, The interface to the external memory

One advantage of this solution is that the communication with the external memory can be
carried out at the same time as the PE is doing something else. We only loose clock cycles
when we store or fetch data into or from the PEs memories. In a general case, the time loss is
1/16 of the total computation time which occurs when data has to be transferred from the
external memory cell to the on—chip memory, if we assume a 10 MHz external memory.

External memory is alarge bonus for instance in the shading correction algorithm, see chap-
ter 6. For slowly varying shading function we could solve the sparse coefficient problem by
interpolation. Fast, random variations can only be compensated for by one set of coefficient
for each pixel in the image. -

Another obvious application for the external memory is to harbor entire images and thus,
make it possible to perform temporal filtering, i.e. a filter that uses two or more time frames.

10.5 Look—up table

In many applications there is a need of a fast table look—up function, LUT, for instance in
pseudo—coloring, histogram equalization, or computation of Sin, Cos, Exp etc. In the pres-
ent version of PASIC this is not supported. Figure 10.10 shows one implementation of a
LUT which is built around the original PASIC. The operation code is shown in Table 10.4.

| PSR ! ! PSR, I
Y : -
i : : |
Port A | ' : | PortB
: © Shift register in present PASIC | {
| |
: |
|
: D Address| |
| Two— a 256x8 | |
I WO Way mux t bits |
: a RAM :
| Extended PASIC ' |

Figure 10.10, Modification for Table look—up

1-87

PAGE 104 OF 241

S

Operation

0 Write into specified bit position in register from the bus
1 Read from specified bit position in register to the bus
2 Latch

3 Shift left

4 Shift right

5 Rotate left

6 Rotate right

7 Write Port A into address Port B

8 Read Port A from address Port B

9 Write PSR) into address Port B, shift left

10 Read PSR; from address Port B, shift right

11 Write PSR) into address PSR,, shift left

12 Read PSR; from address PSR,, shift right

Table 10.4, Extended parallel shift register operations

To cdmputc the Sin function for each PE’s value, we load the LUT with a Sin function table.
Then load the value from each PE to the shift register. We then shift 128 time using function
codel2 in Table 10.4. After 128 shifts, each PE holds the Sin value in its shift register.

To perform a histogram equalization we do the following steps.

(1) Collect a histogram, h(n).

(2) Compute Inthist, H(n).

(3) Map H(n) to 0..255, H’(n).

(4) Store H’(n) in positions 0 to 255 in the LUT.

(5) Shift out original pixel and receive histogram equalized pixels.

Step (1), the histogram collection is described in section 4.7, and takes 344064 cycles with a
result that may look like the one in Figure 10.11.

h(n)
Max : 214=16384

0 n
0 255

Figure 10.11, After histogram collection
Step (2) is to compute the H(n) which is defined by Equation (10.1).
N-1 '
H(n) = > h() (10.1)
i=0
This is done by using sparse filter and storing the result in the rightmost PE, see section 4.2,

which takes 436 cycles. The result after this operation on h(n) in Figure 10.11, is shown in
Figure 10.12.

PAGE 105 OF 241

h(n)

Max : 214=16384

0 -
0 255
Figure 10.12, After inthist computing

To map H(n) into 0..255, step (3), we use Equation (10.2), which contains only one subtrac-
tion.

H'(n) = H(n)% = (H@m)2® - H(n))zl—N (10.2)

This takes 3* (N +8) +2=3N+26 cycles, which is 68 cycles for N=14, and the result after this
is shown in Figure 10.13.

h(n)

Max : 255

0

0 255
Figure 10.13, After normalization

We can now load the LUT with the values in the shift register, step (4), which takes 128
cycles. We shift in those values to the data input and the address is fed by the values 0 to 255
from the control unit.

Thus, we can now read out a histogram equalized image from either the non—destructive
sensor area or from an external memory. We see that it is the histogram collection is by far
the most time consuming procedure, which will be the bottle —neck of the system. However,
it is often possible to use the same histogram for a number of images taken with small time
and spatial differences to each other.

10.6 An application driven extension design for PASIC

One example of an extension package for PASIC is shown in Figure 10.14. This design was
proposed in [4] and it consists of 5 extensions compared to the present PASIC, Together,
these extensions are used to speed up the thresholding using zero —crossing algorithm from
section 7.1. They are:

(1) One extra 8—bit shift register.

(2) Acomparison network between the two shift registers which deliversa 1 if both regis-
ter are equal.

PAGE 106 OF 241

(3) The Global—OR feedback described in section 10.3.

(4) 9 bits of ROM, containing one bit for the generation of constants and 8 bits for the
position number of the PE.

(5) External memory, described in section 10.4.

The extra shift register serves two purposes. The first one is to have a sufficient number of
bits in the thresholding calculation, as was pointed out in section 7.3. The other is to speed
up the pixel comparison in the histogram collection, which is described in section 4.7. The
ordinary comparison routine, which implements Equation (10.3) iteratively, takes 2b+2
cycles while parallel comparison of the two shift registers only takes 2 cycles. Thus, we have
a speed—up factor of 2logN=b for introducing a parallel comparator.

C = (Xag¥a)+ (Xo@¥2) +. .+ (Xp@¥b) (10.3)

The advantages of a Global—OR feedback is discussed in section 10.3, and the extra ROM
cells are used to load the shift register with the position number for the PE.

Finally, the external memory is capable of storing the whole image so that the thresholding
is performed on the same image as the histogram was collected from.

The total gain for these improvements are the following:
(1) Areduction from 344064 to 98304 cycles for the histogram collection.
(2) Higher accuracy in the thresholding computation due to the 8 extra bits.

(3) Simpler micro—code and control unit as we have Global—OR feedback and extra
ROM cells.

(4) Theexternal memory gives us the mean to use the threshold on the same image as the
threshold was computed for.

Similar substantial gains occur in other applications and algorithms. Above all, the external
memory enlarges the set of applicable algorithms immensely.

PAGE 107 OF 241

Parallel shift register # 1

o ' '
-— " '

8—Dbit parallel comparison

Parallel shift register # 2

Bit serial ALU

128—bit RAM

9-bit ROM

Extended memory

'y
\

§-to-1MUX /

t External memory
Figure 10.14, Extended PASIC

I-91

PAGE 108 OF 241

11 Conclusions

This thesis has described the architecture and the performance of PASIC. It has compared
the architecture and the processing capability of PASIC to other processors. It has also de-
scribed the performance of previously described algorithms on PASIC as well as some new
that are special designed for the architecture of PASIC. The thesis has given a few sugges-
tion of improvements for PASIC and described the improved performance each such exten-
sion will produce.

A number of unique features in PASIC simplify the programing and reduce the execution
time. Some of these are: ’

- The parallel shift register which is very efficient for neighborhood communications.
- The 1-bit bus architecture which makes the design flexible and VLSI friendly.

- The ALU which is small in size yet indeed competitive with other designs. This
means that the performance/mm? factor is very high on PASIC.

- The integration of Sensors, A/D—converters, and Processors onto a single chip
which reduces the data flow out from the chip.

PASIC should be considered as a prototype for a more full—fledged smart image sensor
with higher resolution. By employing sub—micron technology, it seems quite realistic that
the next generation of PASIC contains a sensor area of 512x512 and 512 processors. Howev-
er, since the sensor area grows quadratically while the processing rate only grows linear, the
frame rate is subject to a linear decrease for an upscaled version of PASIC. This problem
indicates that future large scale smart sensor system must be programmable at the sensor
level. The sensor should be able to deliver an image of the scene at a variable resolution
and/or deliver just a smaller window of the full scene, so called foveation.

Another goal for the next generation of PASIC is to integrate the control unit on the same
chip as the sensor, A/D—converters, and processor array, which is shown in Figure 11.1.

Micro program
Photo sensor 512x512

Control Unit
A/D—converters 512
Shift register 512
ALUs 512 <4— Control signals

» Status signals
Memory 512 x 512 bits
®— Tmage data

Figure 11.1, Next generation of PASIC

1-92

PAGE 109 OF 241

In this thesis, the control unit has been covered only briefly. However, if we want to have a
compact system, we are forced to integrate at least some of the control unit functions on the
chip. Functions that could be included in this integrated control unit in Figure 11.1, are the
following:

(a) Storage of the micro program.

(b) Loop control that can handle nested loops.

(¢) Conditional— and unconditional branches.

(d) Output of the image.

(e) Controlling of the external memory.

(f) Reporting status of the program flow via the status output to the external control.

By integrating the the control unit we take the burden off the host computer and reduces the
data flow out from the chip. This means that we can use an inexpensive host computer, for
instance a PC, remotely positioned relative to the smart camera. We feel that this is what
most industrial applications require.

Hopefully, this thesis has convinced the reader that the PASIC or PASIC like designs pro-
vides new and promising means for low—level image processing. Very likely, smart sensors
of this type is needed to give the field of image processing and computer vision a real break-
through. '

PAGE 110 OF 241

12
(1

(2]
(3]

(4]

5]
[6]
Ul
[8]
[9]
[10]
[11]

[12]
[13]
[14]

(5]

References

Batcher K.E., Design of a Massively Parallel Processor, IEEE Computer, Vol C29,
1980, pp. 836—840.

Canny J., A Computational Approch to Edge Detection, IEEE PAMI, November
1986, pp. 679—698. ‘

Chen K., Afghani M., Danielsson PE., Svensson C., PASIC a Processor-A/D-con-
verter-Sensor Integrated Circuit, Proc of ISCA90, pp. 1705—1708.

Chen K., Danielsson PE., AstrémA. , PASIC a Sensor/Processor Array for Computer
Vision, Proc of Application Specific Array Processors, Princeton, September 1990,
pp. 352—366.

Chen K., Astrém A., Danielsson PE., PASIC a smart Sensor for Computer Vision,
Proc of Pattern Recognition, Atlantic City, June 1990, pp. 286—291.

Danielsson PE., Bildbehandling 1990 kapitel 5—~7, Lecture Notes, Dept of EE,
Linkdping University.

Danielsson PE., Generalized and Separable Sobel Operator, Internal Report LiTH-
ISY-1-0975, Linkoping, Sweden, 1989.

Danielsson PE., SIMD-arrays. A GAPP-exercise,1986. Lecture notes, Dept of EE,
Link&ping University.

Forcheimer R., Odmark A., Single chip linear array processor, Proc. of 3rd Scandina-
vian Conference on Image Analysis, Copenhagen, July 1983, pp 320—-325.

Fountain TJ., Processor Arrays Architecture and Applications, Academic Press,
London, 1987, pp.49-60.

Geometric Arithmetic Parallel Processor, Data sheet NCR45CG72, NCR corpora-
tion, (1984).

Hubel D.H,, Eye, Brain, and Vision, Scientific American Library series #22, 1988.
LAPP 1100 Picture processor, Instruction Set, Integrated Vision Products AB.

Reddaway S.F., DAP - a Distributed Processor Array, First annual symposium on
computer architecture, Florida 1973, pp 61—65.

Ruff B.PD., A pipelined architecture for a video rate Canny operator used at the inita-
tial stage of a stero image analysis system. Parallel Architecture and Computer Vi-
sion, I. Page, Ed, Clarendon Press, Oxford, pp 171—-185.

PAGE 111 OF 241

[16]

[17]

(18]

(19]

Svenson B., LUCAS Processor array - Design and Applications, PhD thesis, Depart-
ment of Computer Engineering, University of Lund 1983.

Tucker LW, Robertson G.G., Architecture and Application of the Connection Ma-
chine, IEEE Computer, August 1988, pp 26—38.

Wilson S.S., One dimensional SIMD architectures - the AIS-5000, Multicomputer Vi-
sion, S. Levaldi, Ed, Academic Press, London, pp. 131—149.

Ye Q.Z., Contributions to the Development of Machine Vision Algorithms, PhD the-
sis, Linkdping University 1989.

PAGE 112 OF 241

PartII MAPP2200

PAGE 113 OF 241

1 Architecture

1.1 Overview

MAPP2200, Matrix Array Picture Processor, is an image sensor which includes a digital
image processor array. It is a commercial product, developed at IVP Integrated Vision
Products in Linkoping, and samples of this component have been available since August-91.
Its predecessor, the 1D sensor/processor LAPP1100 [9] has been available since 1987.
MAPP2200 has also a lot in common with PASIC [1], 2 design which came about in a
research project at the University of Linképing in 1989—1992. The MAPP2200 chip is
designed in 1.6 um CMOS and contains approximately 500,000 transistors on an area of
10x15mm?.

256 x 256 ,
Sensor Row address —~—— Control
PD D/A and ADC

A0—-A7 control

I/O—channel

w
T
w
~
~Noo

(Image data)
R0-R95
instr—d 4—-— 1
lms e /ﬁ Image data/
' Instructions/
STATUS E Status

Figure 1.1. Block diagram of the MAPP2200 chip

A block diagram of MAPP is shown in Figure 1.1. At the top is a photodiode matrix which
consists of 256x256 sensor elements. The sensor data are read row-wise, in parallel, to an
analog register PD and converted to digital values using an internal A/D-converter. The
pixel values are digitized, one row at a time, with a precision of 1 to 8 bits. The result is stored
in special register positions AO—A7. For each column there is a processing element, PE,
consisting of a number of 1-bit registers for storing image data (S0-S7, R0-R95), and an
ALU unit (GLU/NLU/PLU) dedicated to low-level image processing. The processors are
working in an SIMD mode. The ALU unit operates on the two 1-bit registers A (accumula-
tor) and C (carry), and/or the bus, depending on the instruction. The Point Logic Unit, PLU,
performs operations on operands within the PE, the Neighborhood Logic Unit, NLU, per-
forms operations on operand in a 3x1 neighborhood along the PE array, and the Global
Logic Unit, GLU, performs global operations involving the whole PE array.

II-1

PAGE 114 OF 241

In this section the architecture of MAPP2200 will be described from the programmer’s
point of view. A more detailed description of the sensor parts of MAPP2200 can be found in
[15] and more information about the processor part of MAPP2200 can be found in [14] and
[20].

1.2 The sensor

The sensor array occupies about half of the silicon area and consists of 256 rows with 256
photodiodes per row. Figure 1.2 shows one of the 256 photodiode columns and its read-out
unit. The image data are read out row-wise in parallel to an analog register (PD). The row
number which we want to access is selected by a sensor row address counter which is set with
the SETR <row_no> instruction. The transfer of a row analog data is accomplished by
manipulating the switches S3, Sz, and S3, using the operations listed in Table 1.1.

St

|
I

Photodiode column

PDy;as

|2

I
-

Ustart

Read-out unit e

S2 S3 /

Analog register
PD

Figure 1.2, Photodiode and read-out circuit

To read data from the photodiode to the PD register, we first reset PD by closing the two
switches Sy and opening Sy and S3. Thus, the PD register will obtain the same potential as
PDyi3s while the capacitor Cis charged to a pre-defined value. This is the operation RESET
in Table 1.1. We can now transfer the data from the photodiode to PD by closing S; and S3
and opening S;. The charge at the photodiode capacitor will now be transferred to the
capacitor C at the same time as the photodiode will be precharged. This is the instruction

II-2

PAGE 115 OF 241

INTEG and the read-out is destructive. To prevent further discharge of the photodiode
from affecting PD, we close Sy, which correspond to HOLD. If we only want to precharge
the photodiode, i.e. not read out its value, we close S; and S; and open Sz, with RESETP.

S1 Sy Sa Name Operation
OFF ON OFF RESET Reset PD
OFF OFF ON HOLD Hold charge in PD
ON ON OFF RESETP Reset PD and photodiode
ON OFF ON INTEG Transfer charge from photodiode to PD

Table 1.1. Read-out circuit function

If an operation in Table 1.1 is accompanied by a ”,+”, the row address counter is increm-
ented by 1 after the switches are set. For instance, RESET, + initiates the PD register and
then increments the row address counter.

To simplify the programming, four special macros have been defined, shown in Table 1.2.
The readout macro is called READPD, which we have described above, and the initializa-
tion macro INITPD. The CONNECT and INITCONNECT macros connect the photo-
diodes to the PD registers so that the current produced by the light on the photodiode dis-
charge the capacitor C at in the read-out circuit instead of the internal capacitor. This is
used for non-destructive read-out in Near-Sensor Image Processing (NSIP) where the PD
output is interrogated repeatedly, see [7][8] and Part III of this thesis. The CONNECT
macro makes it possible to start the interrogation after a certain exposure time, while the
INITCONNECT resets the photodiodes before the interrogation.

Macro Instruction sequence
READPD RESET : INTEG : HOLD
INITPD RESETP : RESET
CONNECT RESET : INTEG
INITCONNECT RESETP : INTEG

Table 1.2. Sensor macros

If the macros in Table 1.2 are accompanied by a ”,+7, this will apply to the last operation.
For instance, INITPD,+ means RESETP : RESET +.

The switches S1, Sy, and S3 in Figure 1.2 are not limited to the combinations in Table 1.1 but
can be arbitrarily controlled by the instruction SETPD <bit pattern>, where the <bit pat-
tern> is to be defined as in Figure 1.3. However, a protection circuit guaranties that the S
and S3 switches are not both switched at the same time. The Inc bit is set when the row
address counter should be incremented, i.e. when the instruction in assembler code nota-
tion is accompanied with ”,+”. The operations in Table 1.1 are defined in SETP instruc-
tions.

6 3 4. 3 210 00 : no change
e
Inc- S35 . S Sq 11 : illegal

Figure 1.3. Bit pattern for SETPD

II-3

PAGE 116 OF 241

The analog value in the PD register can be converted into a digital value in two ways. One
way is to produce a binary value using a fixed threshold voltage Uyy. This value is hereafter
referred to as the (digital) PD register value. Another alternative is to produce a grayscale
value using the internal A/D-converter. The A/D-converter is of the ramp-generator/
counter type, and can be programmed for 1 to 8 bits precision, depending on speed and pre-
cision requirements. Figure 1.4 shows how the 8-bit digital counter value and its corre-
sponding analog value are broadcasted to all PEs. Aslong as an analog register PD contains
alarger value than the analog ramp, the digital value will be latched into the corresponding
ADC-register (A0—A7). Thus, all 256 analog values will be converted in 2P cycles given a
selected precision of b bits. Note that the dashed square in Figure 1.4 is identical to the
dashed square in Figure 1.2.

Analog ramp
Uref

I' |
: |
! i
' |
' r
! |

| S

D/A- A0
converter

A

YYVVVVVY

8 A7

Figure 1.4. The parallel ADC in MAPP2200 from [14]

1.3 Processor architecture and instruction set

Figure 1.5 shows the bus system and all the attached components for one processor slice, i.e.
one PE. At the top of each PE, we have the ADC registers, where the A/D-converted values
are stored, and the (digital) PD register. They are referred to as AO—A7 and PD. Below
them are the registers SO—S7 which constitute an 8-bit bi-directional shift register. This reg-
ister can be used both for external communication and for communication between proces-
sors. The internal memory in each PE consists of 96 bits, RO—R95.

-4

PAGE 117 OF 241

Photodiode
column

1 bit *_DL

— Read-
. ADC out
8 bit | A0—A7 unit

8 bit Shift register
S0—-S7

:
:

Register

96 bit RO-R95

L]

Figure 1.5. One PE

As shown in Figure 1.6, the arithmetic logic unit consists of three major parts: the Global
Logical Unit, GLU, the Neighborhood Logic Unit, NLU, and the Point Logic unit, PLU.
The GLU performs global operations on the whole PE array, i.e. 256 bits of data, and the
execution is split into two cycles. During the first cycle, the bus operand is loaded into the
GLU, and at the next cycle, the result is written back into the accumulator via the NLU and
the PLU. This means that the assembler instruction

LD MARK RO
is expanded into

MARK RO
LD G

This expansion is taken care of by the assembler. The GLU register G is invisible to the pro-
grammer.

PAGE 118 OF 241

To left From right

a
propagation ___| GLU | propagation
From left — — To right
propagation propagation

PLU

b
From left * }
neighbor

From right
neighbor

NLU

!

“BE

Figure 1.6. The ALU consists of one GLU, one NLU, and one PLU

The fundamental GLU operation in MAPP2200 is the MARK operation. MARK has two
operands (a,b). Hence, for our description here we use the notation MARK(a,b) rather
than the above assembler notation. Operand a is either the accumulator content A or an
instruction-specific constant. Operand b is the content of one of the other registers explicitly
designated in the code and brought in via the bus. For the MARK operation as well as the
other GLU-operations, it is convenient to visualize the operands as 256-bit binary vectors as
shown in Figure 1.7. In this case the operand b is register R0. The effect of the MARK
operation is a kind of masking. The result, which is stored in the GLU register (G in Figure
1.6), consists of those connected runs of operand b (R0 in Figure 1.7) which at least in one
position overlap a position which is set in operand a (the accumulator). In a final operation
cycle the G-values are always loaded to the accumulator.

Acc T e —

RO o w— ——]
MARK RO

Acc C - mm — —
Figure 1.7

The eight different GLU operations in MAPP2200 are shown in Table 1.3. As seen from the
Table, the instructions of type fill are complementary to the ”pure” mark instruction.

II-6

PAGE 119 OF 241

Assembler

instruction Result . MARK (a, b)

MARK Objects in bus connected MARK (A, bus)
toal in A

LMARK Objects in bus connected MARK (LCONST, bus)
to left border '

RMARK Objects in bus connected MARK (RCONST, bus)
to right border

LRMARK Objects in bus connected MARK (LRCONST, bus)
to left or right border

FILL Holes in b connected MARK (A, bus)
to a 1 in A are kept

LFILL Hole in b connected MARK (LCONST, bus)
to left border is kept

RFILL Hole in b connected MARK (RCONST, bus)
to right is kept

FILL Holes in b connected MARK (LRCONST, bus)
to left or right border
are kept

LCONST = (1,0,0,....,0,0)

RCONST = (0,0,0,....,0,1)

LRCONST = (1,0,0,....,0,1)

Table 1.3. GLU instructions

The NLU operations employ 3x1 binary masks where the input operands come from the
PE’s own bus and its two neighbor’s buses as shown in Figure 1.6. The mask bits can be
either 1,0 or X (don’t care). A 1 means that the corresponding input bit must be 1, a 0 that it
must be 0, and a X that the input bit can be either 1 or 0. The output from the NLU is 1 if all
the input bits matches the mask bits in this sense. For instance, the NLU mask (X1X) means
that the output is 1 if the center bit is 1 which reduces the NLU operation to a mere data
transfer. The mask (01X) means that the NLU output is 1 if the center bit is 1 and the left
neighbor is 0. The NLU accepts all 27 possible masks, although, some of the more fre-
quently used masks have got their own names, shown in Table 1.4.

The Boolean function of the NLU output is

NLUpue 2 = ((BUSc&N;) + (BUSC&N;)) & ((BUSLEN:)+ (BUS[&N,)) & ((BUSk&Ns) + (BUSR&Ng)) (1.1)

The inputsignals BUS¢, BUS|,, and BUSR are the values of this PE’s own bus, its left neigh-
bor’s bus, and its right neighbor’s bus, respectively. This is shown in Figure 1.6. The signals
N; to Ng define the mask. Ny is set to 1, if the mask is ”1” for the center pixel, Np isset to 1 if
the maskis ”0”, and both Nj and Ny isset to 1, if the mask is ”X”. The same coding is used for
N3 & Ny (left neighbor) and Ns & Ng (right neighbor).

PAGE 120 OF 241

Name Mask Operation
DOT (010) Detect isolated 1's
HOLE (101) Detect isolated 0's
INV (X0X) Invert input data
LEDGE (01X) Detect left edges
REDGE (X10) Detect right edges
LSHIFT (XX1) Shift left
RSHIFT (1XX) Shift right

Table 1.4. NLU instructions

The SETB <boundary> instruction controls the NLU input to the two edge PEs. Table 1.5
shows the four possible settings.

Border setting Argument
Border is always 0 0
Border takes on the inverted value of the edge pixel 1
Border takes on the value of the edge pixel 2
Border is always 1 3

Table 1.5. The set boundary operation

The Point Logic Unit, PLU, has three inputs which are shown in Figure 1.6. They are the
output of the NLU, the accumulator (A), and the carry (C). The PLU operates locally within
each PE and it performs Boolean operations on its three inputs. Table 1.6 is a list of all PLU
instructions. The eight first instructions operate only on the NLU output and the accumula-
tor. Instructions 9 to 11 are used for bit-serial arithmetic and will be described in more detail
in section 2.3. Instructions 12 to 14 operate on the NLU and the carry, and instruction 15
computes a two-level logic function which is equivalent to multiplexing the A and NLU con-
tent using C as the direction bit. The C-register will be affected only by operations 9, 10, and

11.

No Name Operation

1 LD A := NLU

2 AND A := A AND NLU

3 OR A := A OR NLU

4 XOR A := A XOR NLU

5 LDI A := NLU

6 ANDI A := A AND NLU

7 ORI A := A OR NLU

8 XORI A := A XOR NLU

9 ADD A := A XOR NLU ; C := A AND NLU
10 ADC A := C XOR NLU ; C := C AND NLU
11 ADA A := A XOR NLU ; C := C OR (A AND NLU)
12 ANDC A := C AND NLU

13 ORC A := C OR NLU

14 XORC A := C XOR NLU

15 MUXC A := (A AND C) OR (NLU AND C)

Table 1.6. PLU operations

-8

PAGE 121 OF 241

The operationsload (LD), in Table 1.6, and store (ST), in Table 1.7, are used to transfer data
between the units within the PE, using the 1-bit bus shown in Figure 1.5. LD transfers data
from all units to the accumulator register via the NLU. Unless a mask is appended to the
operation the neighbors do not affect the operation. The instruction ST transfers data to the
shift registers (Sx) or the memory (Rx) from the other units as well as between Sx and Rx.
Table 1.7 shows all legal transfer operations using ST. Note that the shift register and the
memory can take data from the accumulator, the carry, the ADC register, and the PD. The
shift register can take data from the memory, and both the shift register and the memory can
take data from the shift register. This means that we can transfer data within the shift regis-
ter in one cycle.

ST {A,C,Ax,PD}, {Sx,Rx} {Sx,Rx} := (A,C,Ax,PD}
ST Rx,Sx Sx := Rx
ST Sx, {Sx,Rx} {8Sx,Rx} := Sx

Table 1.7. Transfer instructions

The 5 different SET instructions which are shown in Table 1.8. SETR set the sensor row we
want to address and SETPD controls the switches shown in Figure 1.3. The SETV instruc-
tion sets the Uyt voltage in Figure 1.2 and SETAD determines the resolution of the A/D-
conversion, which can be set to 1 — 8 bits. SETB sets the border values of the NLU units at
the border PEs, shown in Table 1.5.

SETR <row_no> Set row

SETPD <bit pattern> Set sensor switches
SETV <voltage> Set voltage

SETAD <precision> Set ADC resolution
SETB <boundary> Set boundary bits

Table 1.8. Set instructions

Finally, there are miscellaneous instructions, collected in Table 1.9, which control the shift-
ing of the shift register and the initialization of the A/D-conversion. The ROL and ROR
perform rotations of the shift register to the left and to the right respectively. The LOAD
and SAVE instructions trigger an external unit to take control over the shift register, which
then can shift data in and out using the 8-bit port in Figure 1.1. Such data transfer is per-
formed concurrently with the normal MAPP execution. The SRES instruction restores the
control over the shift register back to the MAPP2200. This instruction is only used the
MAPP2200 is initialized. The shift register data can also be obtained via the 16-bit port
shown in Figure 1.1. In this case concurrent MAPP execution is prohibited. The INITAD
instruction initiates the A/D—conversion.

ROL Rotate shift register to the left one step
ROR Rotate shift register to the right one step
SAVE Store shift register in the external memory
LOAD Load shift register from the external memory.
SRES Reset shift register

INITAD Initialize A/D-conversion
Table 1.9. Miscellaneous instructions

To execute a MAPP instruction the host computer or the designated control unit transfers a
16-bit instruction code to the MAPP chip which decodes and executes the instruction

II-9

PAGE 122 OF 241

immediately. The status register in Figure 1.1 is accessible from the host via the same 16-bit
channel. This 16-bit output is the feed-back from the ALU part of MAPP to its control unit.
As such it can be used to influence the subsequent program execution. As shown in Fig-
ure 1.8, the 9 least significant bits of the status word contain a COUNT value which corre-
sponds to the number of 1’s in the 256-bit accumulator vector. The three most significant
bits of the status word are called Gy, Ag, and S respectively. The Gg-bit is a Global-OR
which is set if the there is at least one 1 in the accumulator. The Ag-bit is a busy-bit which is
set while the A/D-conversion is in progress and the S¢-bit is a busy-bit which is set when an
external unit has control over the shift register. These three status flags, GOR, ABUSY, and
SBUSY are also available at separate pins on the MAPP chip.

15 8 0
|as |As lss I COUNT
Figure 1.8. The status register

The MAPP-chip occupies two addresses in the address space of the host. One of these, the
low adderess, is used for issuing instructions and reading status information. The other, the
high address, makes it possible to access the shift register from the control unit as shown in
Figure 1.1. By reading from this address, we obtain the 8-bit shift register data (S0—S7)
from the rightmost PE. A subsequent ROR instruction is automatically performed so that
the 8 bits of the next PE is made ready to be accessed. When writing to this address, the 8
least significant bits in the control word is written into the rightmost PE after which a ROL
instruction is performed automatically.

1.4 MAPP2200 system configurations

The MAPP chip itself does not contain a control unit. Instead, it is designed to work
together with an external controller. In the basic system this controller is a standard micro-
computer, where the instruction to the MAPP2200 is furnished via a conventional I/O port.
The same port may be used to access the status register in MAPP. This configuration is
shown in Figure 1.9. The Ctr] arrow symbolizes address pointer, enable signal, and read/
write signals.

- Status

Micro- Image MAPP2200
computer} o datag,
Instr g
_CL>

Figure 1.9. Standard configuration

In many applications, e.g. in time sequence analysis, we need to have access to previous
images, possibly both in processed and unprocessed versions. For this purpose, the minimal
configuration in Figure 1.9 has been augmented in Figure 1.10 with a fast data channel to an
external memory. A similar configuration is also needed to produce a video signal simulta-
neously as we process the image from the MAPP sensor. In this case the external memory
could be a dual-ported video ram. To determine which image and what row to access, we use

I1-10

PAGE 123 OF 241

the same instruction channel as for the MAPP chip and some new instructions codes which
are treated as no operation by MAPP.

Stat Image
. ~_Status gdata o Vi
Micro (= MAPP2200 A External E,uide(t’)
controller <« Cil Imemory) 2]
Ctrl
Ctrl e |controller
Instr

-
-
Memory instr |

Figure 1.10. External memory configuration

Few, if any microprocessors can deliver instructions as fast as MAPP can execute them
(4 MHz). If we want to utilize the MAPP at maximum speed a microprocessor cannot func-
tion alone but requires a micro-sequencer between itself and the MAPP-chip as shown in
Figure 1.11. This is the configuration used in the sheet-of-light application described in sec-
tion 6.2 and [17]. In some applications the sequencer can be stand alone. In other applica-
tions it has to be supported by a microprocessor. With a microprocessor and a sequencer
there are several possibilities to optimize the programming/processing effort. For instance,
the normal background mode could be to feed MAPP with a low-speed instruction stream
from the microprocessor. However, for highly speed-demanding and time-critical tasks,
”the inner loops”, the sequencer may take over and feed MAPP with predefined and opti-
mized instruction streams.

. tat
chro: ;S atus | Sequencer =Status MAPP2200
computer
Start Instr
instr
- _Clﬂ_’.

Figure 1.11. A speed-up sequencer configuration

n-11

PAGE 124 OF 241

2 Programming MAPP2200

2.1 Environment and syntax

The control unit feeding the MAPP chip with instructions could either be some sort of PC
system, a microprocessor, or a dedicated hardware as was explained in the previous section.
In this section we will describe a programming environment which assumes a PC system
where the MAPP chip receives instructions from and delivers status to a specific port.

Typically, a MAPP application program consists of one outer loop and one inner loop. This
program structure is caused by the line-based architecture in MAPP where the same in-
struction flow (the inner loop) will occur for each line (=row) of the image. The outer loop
continues to execute until some termination condition is fulfilled. Within this outer loop we
adjust the global parameters, for instance the exposure time, depending on the status
acquired in the inner loop. Thus, the program normally has the following structure where
the italic text are MAPP instructions and the rest belongs to the control structure.

REPEAT
MAPP initialization
DO 256 TIMES
MAPP instructions for one line
END-DO
Update global parameters
UNTIL Termination condition

Accordingly, a MAPP program is divided into two parts. The MAPP2200 instructions are
written in a special MAPP2200 assembler language and the control program is written in C.
The MAPP code is first run through a macro-expander to be described in section 2.4. The
assembler, called MAPPASM, then translates the MAPP instructions into 16-bit words
which are stored as integer arrays, one for each procedure. The MAPPASM generates a file
which is included in the controlling C program. This C program also includes special func-
tions which at run-time will output the instructions arrays to the MAPP chip as fast as pos-
sible. Compilation of the C program will generate an executable file. The entire process is
illustrated in Figure 2.1.

MAPP | | Macro | | \pAPPASM

program expansion

C program Ccompiler | {Executable
program

Figure 2.1. The process from source code to an executable program

Apart form the MAPP instructions the MAPPASM accepts three directives: ”.FILE”,
” PROC”, and ”.ITER”. The ”.FILE” directive should be the first statement in a file. It
names the output file which is the file containing the arrays of 16-bit instruction words. If
there is no name after ” FILE” the file receives the same name as the input file to MAP-
PASM, except that the file extension is changed from .MAP to .H. At the end of the file there
should be a ”. ENDF” which terminates MAPPASM. The . PROC” directive, in combina-

1I-12

PAGE 125 OF 241

tion with ”.ENDP”, divides the MAPP instructions into MAPP procedures. The procedure
name must begin with ”M_”. This restriction is to avoid name collisions when included in
the control program. The iteration directive ”.ITER” will be discussed in the next section.
To simplify the programming, the possibility to include macros has been added and will be
described in section 2.4. Table 2.1 shows the complete syntax of a MAPP program.

MAPP_PROGRAM =
{INCLUDE_MACRO_FILE}+
{DEFINE_MACRO}+
.FILE

{PROCEDURES} +
.ENDF

{PROCEDURE} =
.PROC M_<procedure name>
{INSTRUCTIONS}+
.ENDP

{INSTRUCTIONS} = {ITERATION} | MAPPINSTRUCTION

{ITERATION} =
.ITER (<no of iterations> <iteration name>)
{INSTRUCTIONS}
.ENDI

{INCLUDE_MACRO_FILE} =
#include <filename>

{DEFINE_MACRO} =
#define <macro name> {INSTRUCTIONS}+

Table 2.1. MAPPASM syntax description

To illustrate MAPPASM, we will use the following program, named TESTMAP, which out-
puts a continuous flow of 256x256 images of 4-bit gray levels to an external device, for
instance a TV monitor.

.FILE test.h
.PROC M_init
SETAD S
SETR 0

.ENDP

.PROC M_run
ST A4,S4 ; From A/D-reg to S-reg. Bit 4 to 7
ST AS5,S5
ST A6,S6
ST A7,S7
READPD, + Read/reset this line, address next line
INITAD ; Initiate the ADC of this line

.ENDP

.ENDF

ADC with 4 bits precision
Start at the top of the image

The MAPP program contains one injtialization procedure and one procedure which, for
every row, will transfer the data from the A/D-register to the shift register, read a new line,

1I-13

PAGE 126 OF 241

and initialize a new A/D-conversion. When this source code is run through the assembler
the instructions are converted into arrays of unsigned integers, i.e. 16 bits codes. The assem-
bler outputs the number of instructions for each procedure.

% MAPPASM test

Procedure (number of instructions)
M_init (2)
M_run (9)

15 input rows read.

Each procedure generates its own array and the first element in each array is the length of
the array. For example, the output file in the above example would contain the following two
arrays of short integers called M_init and M_run.

short int M_init[] = {2,0x0385,0x0100 };

short int M_run[] = {(9,0x0a64,0x0ae5,0x0b66, 0x0be7,0x0319,
0x0326,0x0365,0x031a,0x0319 };

This file is then included in the final C program with the include “test.h” statement.

#include “test.h”
#include “"mapp2200.def”
main()
{
int i;
while (TRUE) ({
writecode(M_init);
for (i=0;1i<256;i++) {
writecode (M_run);
Store(0,1); /* Output device */
}

}

The include file mapp2200.def contains the definitions of writecode, Store, and other MAPP
driver routines. The function writecode takes the MAPP instruction array and outputs its
content to MAPP.

2.2 Iterations

The PEs in MAPP2200 work in a bit-serial fashion. Thus, moving an 8-bit data operand
from register positions 0—7 to positions 10—17 has to be done one bit at a time. To reduce
trivial and tedious work for the MAPP programmer and, even more importantly, to reduce
the possibility of errors in the code, an iteration function has been added to the assembler.
The following 16 lines of MAPP code perform the above-mentioned task.

I-14

PAGE 127 OF 241

LD RO
ST A,R10
LD R1
ST A,R11
LD R2
ST A,R12
LD R3
ST A,R13
LD R4
ST A,R14
LD RS
ST A,R15
LD R6
ST A,R16
LD R7
ST A,R17

Using the iteration directive this task can be reduced to

.ITER (8 i)
LD R(0 i)
ST A,R(10 i)

.ENDI

The MAPPASM assembler will unroll this iteration loop and output a final instruction
stream identical to the previous one.

The general syntax of the iteration directive is:

.ITER({value_1} .. {value_N} {iteration_name})
{code}
.ENDI

This will replicate the instructions in {code}, ({value_1} + .. + {value_N} — 1) times, and
for each time the value of {iteration_name} is incremented. To make use of the .ITER’
directive there must be a possibility to modify the statements for each operation. This is
done by indexing. By writing the register number and the {iteration_name} within (), for
instance R(3 i), the assembler will first use R3, then R4, and so on. Indexing also works for
the shift register and the A/D register.For instance .

.ITER(2 5 -4 i)
AND A(0 i)
.ENDI

will be equivalent to

AND AO
AND Al
AND A2

Up to 10 iteration loops can be nested which makes it possible to write

II-15

PAGE 128 OF 241

JITER(2 i)
LITER(2 3§)
OR R(0 i)
AND R(10 j)
.ENDI
XOR R(20 1)
.ENDI

which is equivalent to

OR RO
AND R10
OR RO
AND R11
XOR R20
OR R1
AND R10
OR R1
AND R11
XOR R21

2.3 Bit-serial arithmetic

MAPP performs all arithmetic in a bit-serial fashion. A full-adder operation appears in the
instructions ADD, ADC, and ADA in Table 1.6. Here is a MAPP2200 routine for adding
two b-bit operands giving a b+1 bits result.

LD RO JA = X0
ADD R10 iA := A xor Y0 <=> X0 xor YO0
;C := A and Y0 <=> X0 and YO
ST A,R20 ;20 := A <=> sum(X0,YO0)
JITER (7 1)
ADC R(1 i) ;A = X1 xor Ci-1
;Ci := Xi and Ci-1
ADA R(11 i) iA := A xor Yi <=> Yi xor Xi xor Ci-1
;Ci := Ci or A and Yi <=> carry(Xi,Yi,Ci-1)
ST A,R(21 i) ;21 := A <=> sum(Xi,Yi,Ci-1)
.ENDI
ST C,R28 ;28 := C8

A subtraction in 2-complement representation is performed by setting the carry to 1 at the
beginning and inverting the second operand.

XORI A ; A :=1
ADD RO
ADA (x0x) R10 ; (x0x) = inverted value
ST A,R20
ITER (7 1)
ADC R(1 i)
ADA (x0x) R(11 1) ; (x0x) = inverted value
ST A,R(21 1)
.ENDI
ADC R7
ADA (x0x) R17 ; (x0x) = inverted value
ST A,R28 ;28 := sum(X7,Y7,C8)

II-16

PAGE 129 OF 241

2.4 Macros

In order to help the MAPP2200 programmer, a macro library containing a number of bit-se-
rial arithmetics- and filter functions have been developed. Some of the arithmetic macros
are shown in Table 2.2. These macros are expanded by the C pre-processor before the pro-
gram is run through the assembler. The macros must be defined within the program itself or
in a file attached to the MAPP program, see Table 2.1. For example, the move macro,
described earlier is defined in the following way:

#define MOVE(X,Z,b) JITER (b i) =\
LD R(X 1i):\
ST A,R(Z 1):\
.ENDI

The ”:” symbol separates MAPP instructions and the *\” symbol allows the macro to be mul-
ti-lined.

Name Operation ~cycles
ADD_D Z(b) = (X(b) + Y(b)) / 2 . 3b
ADD_X Z{b+1) = X(b) + Y(b) 3b
ADD_DIFF Z{bl+b2) = X(bl) + Y(bl+b2) 3b
SUB_D Z2 (b) = (X(b) - Y(b)) / 2 3b
SUB_X Z2 (b+1) 1= X(b) - Y(b) 3b
ABS Z(b) 1= X2(b) 4b
INC_A Z(b) := X(b) + acc 2k
MUX_C Z(b) := IF C==1 THEN X(b) ELSE Y(b) 3b
MOVE Z(b) = X(b) 2b
ZERO Z(b) = 0 b
MULT Z(bl+b2) = X{(bl) * Y(b2) 5b2
MULT2 Z2 (b1l+b2) = X2(bl) * Y2(b2) 5b2

Table 2.2. Some arithmetic macros
2.5 2D filtering

As MAPP is a linear array of processors, it is only possible to process one line of pixels at a
time. To implement 2D filters temporary storage for neighboring rows are needed. More
specifically, we have to save a number of previous input rows from the sensor in registers to
obtain one result row. This type of processing is called Row-parallel pipe-lining, see [1]. Fig-
ure 2.2 shows an example where PE number n in the array needs to access a 3x3 neighbor-
hood to compute the result. This is accomplished by storing the two previous rows m—2 and
m-—1 along with the incoming row m in registers. After the computation the two last rows
are transferred to new locations as shown in Figure 2.3.

I-17

PAGE 130 OF 241

Input neighborhood Result pixel

m=—2
| A /\

n-1 n n+1
Processor #

Figure 2.2, Retrieving pixels in a 3*3 neighborhood

_
]

Two previous [E% :$:§£_§ | — | R1 rowm=—1
TOWS / R2 rowm
Ll

New input row
[R3 _rowm

R3 row m+1

]

from sensor

Outputrow L outputrowm-1] L oupufrowm]

Figure 2.3. Data moves in row parallel pipe-lining

An alternative way to implement (separable) filter functions s to limit the input data to one
row but use these data to compute their contributions to three (in the Figure 2.2 case) con-
secutive output rows. Thus, in this case the two extra registers, besides the one for the input
row in Figure 2.3, arc used for partial intermediate results which have to be saved for the

subsequent input rows.

A number of different filters have been implemented using the row parallel pipe-lining

scheme. Some of the filters in the macro library are listed in Table 2.3 and Table 2.4.

Name Size Cycles/row Time/frame (8 bit, 256x256)
Lowpass 3x3 16b 8 ms
Sobel 3x3 22b 11 ms
Laplace 3x3 22b 11 ms
Median 3x3 40b 21 ms
Table 2.3. Gray scale filters
Name Connectivity Cycles/row Time/frame
Expand 4 or 8 9 0.6 ms
Shrink 4 or 8 8 0.5 ms
Thin 8 25 1.6 ms
Open 4 or 8 17 1.1 ms
Close 4 or 8 17 1.1 ns
Median 8 11 0.7 ms
Table 2.4. Binary filters

A typical macro call from the standard filter library in MAPP looks like

LOWPASS (IN, PREV, PPREV, OUT, TMP, b)

II-18

PAGE 131 OF 241

Here, IN is the location of the input register group to-the routine. PREV and PPREV are
two previous results which must be stored between each run. OUT is the location where the
result is put. TMP is the location of a temporary memory. b is the number of bits used in the
routine. The macro implements a separable 3x3 lowpass filter which can be executed in 4
additions, see {4].

It is very simple to combine macros which enables the user both to perform different opera-
tions and to use larger kernels. For instance in the program

LOWPASS (IN, PREV1, PPREV1, TMP1, TMP2)
LAPLACE2 (TMP1, PREV2, PPREV2, OUT, TMP2)

the output from the macro LOWPASS is passed directly to macro LAPLACE?2. Note that we
can use the same temporary register in both routines. The effect of this combined filteris a
large Laplacian operator as seen from the kernels involved.

14 6 ¢ 1
121 1 21 4 0 -8 0 4
242 * 2-12 2 = 6 -8 -28 -8 6
121 121 4 0 -8 0 4
1 4 6 4.1

A compact C program with these specific filter coefficients has the operational structure
described in section 2.1. As before, the include file test.h contains two MAPP code se-
quences, M_init and M_run. The M_init resets the registers used and sets up the ADC etc.
The M_run contains the code for the filter and can be written as:

.PROC M_run
.ITER(8 1) ; Transfer data from ADC to RO-R7
ST A(0 1),R(0 i)
.ENDI
READPD, + ; Read/reset this line, address next line
INITAD ; Initiate the ADC of this line

LOWPASS(0,8,16,24,32,8)
LAPLACE2 (24,40,48,0,32,8)

.ITER(8 i) ; Transfer data from RO-R7 to S0-87
ST R(0 i),8(0 1)
.ENDI
.ENDP
. ENDF
I-19

PAGE 132 OF 241

3 Exposure control

In conventional image sensors, e.g. CCD-sensors, the exposure time, or rather the integra-
tion time of the array, is controlled by a global signal which initiates the exposure. After a
certain time, the exposure is interrupted by transferring all the charges in the array in paral-
lel to a set of readout registers. In MAPP we do not initialize the entire image simulta-
neously but rather one line at a time. Therefore, the exposure time will be the time from the
initialization of the line until it is read into the PD register. Suppose that the desired expo-
sure time is Te, the number of rows is N, and the processing time per row is t,. We distinguish
between two cases Te=N*t, and T, <N*t,,.

Case I: T.=N*t,
Obviously, an extra delay time Ty,

T, = Te — Nt (3.1)

can be inserted in the outer loop of the program. The sequence of events is illustrated in
Figure 3.1. The read-out (R) and initialization (I) of each row follow immediately after one
another along the diagonals in the diagram.

row# |
N-1 (R)I) (R’I)
0 > t
- Nt, Td>
-t
Te

Figure 3.1. Time delays between frame

A pseudo C-program for this operation:

while (TRUE) (
for (row=0;row<=255;row++)
SETR row
READPD
INITPD

}
WAIT(Tg)
)

An alternative would be to insert a delay tg,

T, T,
ty = 3

= ﬁe — [p (32)

I1-20

PAGE 133 OF 241

in the inner loop which would stretch out the exposure-time diagram of Figure 3.1 as shown
in Figure 3.2. For simplicity, we have chosen to consider the row number as an (almost) con-
tinuous variable in both Figure 3.1 and Figure 3.2. In reality, the discreteness will cause the
diagonal lines to be jagged.

row# 4\
N—1 [:8)) (R,I)

- =
Te

Figure 3.2. Time delays during frames

A pseudo C-program for this operation is

while (TRUE) ({
for (row=0;row<=255;row++) {
SETR row
READPD
INITPD

WAIT(tg)
}
}

Case II: T.<N*t,

In this case we have to separate the read-out and the initialization operations in time so that
after the read-out of each row, the initialization is postponed for time Tj,

T.

1]

= N, = T, (33)

The effect is illustrated in Figure 3.3 where we note that the read-out of row n, should take
place at the same time as the initialization of row n;

T, _ T

I

-]\Tp = n, — 7, 34

= n,
Since T is the prime target parameter it is natural to use (3.3) and write n; in (3.4) as

n; (335)

T,
=n-N+3 = (n,+%)
14 14
modulo N

The parameter t, might not be known in all cases to the application programmer. In some
cases tp might even be data dependent or vary over time for some reasons. In any case we

assume the existence of a real-time clock that facilitates measurements of t, by running the
program with Tq=T;=0.

II-21

PAGE 134 OF 241

row# A
N-1 R I R I
n. /
Offset
n 7
n, = r = ?-
P
0 / » !
- >— -
- L T
Ntp

Figure 3.3. Exposure control using a row offset
A pseudo C-program with offset=(Te/tp)

while (TRUE) ({
for (row=0;row<=255;row++)
SETR row
READPD
SETR (row + offset) % 256
INITPD

}
)

For an arbitrary exposure time T, the row offset is set to T/t or actually, the nearest integer
of Te/tp. Thus, we experience a maximum error in exposure time ATe when the fraction part

of Te/tp=Roffset is 1/2.

R o = Ropreldlp R = (Rogoe — D 1
AT. = R 1 = I3 = R @.6)
offset P offset offset

This means that the smaller offset we have, the more difficult it becomes to realize the exact
exposure time. For instance, an offset of 100 means that the exposure time can be set with an
accuracy of 0.5 %, while an offset of 2 means that the exposure time only can be set with an
accuracy of 25%. The remedy to this problem s to insert a delay in the main loop as in Figure
3.2

PAGE 135 OF 241

4 Adaptive exposure control

4.1 A model for optimal exposure

Adaptive exposure control means varying the exposure with respect to the actual light con-
ditions. One method suitable for MAPP2200 is based on the histogram of the scene. The
motivation is that a two-bin histogram comes almost for free during the normal execution
and that the histogram approach is robust and insensitive to small regions with high intensi-
ties, such as sun reflexes.

If the acquired image is under-exposed it will result in an Inthist diagram (the integrated
histogram) which might look like curve (a) in Figure 4.1. On the other hand, if the image is
over-exposed, the Inthist might look like curve (b). The idea behind the adaptivity routine is
to measure the number of pixels above threshold P, and to change the exposure time, itera-
tively, until a certain number n pixels have the pixel value Pt or higher, corresponding to
curve (c) in Figure 4.1. Thus, if there are too many pixels which are lower then the P value,
we will prolong the exposure time. This is the case for curve () in Figure 4.1. Correspond-
ingly, we will decrease the exposure time if there are too few pixels below Py as for curve (b).

A
100% Under-exposed
(2)
(c
n
/ / (b)

Over-exposed

0 Pr X

Figure 4.1. Inthists of the same scene but with different exposure times

To create an update rule to change the exposure time T, when we have discovered that n
pixels are below the threshold at level Pp; we need a model of the Inthist diagram. Let us
assume that intensity of the pixels are equally distributed between 0 and the highest inten-
sity Pg. This gives us an Inthist as in Figure 4.2 (thick line) and we set the voltage P to half of
the maximum detectable intensity Ppax and the ideal number of pixels @ below the thresh-
old to N/2. One reason to choose this linear Inthist and the point (PN/2) is that in some
important respects it matches other typical Inthist curves, for instance the one that is the
integrated histogram of a Gaussian histogram and also shown in Figure 4.2.

1I-23

PAGE 136 OF 241

Inthist(i) &
N

=}
I
~Z

»l
Pr=127 Py=Pnax=255
Figure 4.2. The ideal Inthist

The thick line in Figure 4.3 shows the Inthist of ascene exposed during a time T, which is too
short. We notice that the maximum intensity in the scene, Py, is twice the maximum detect-
able intensity Ppay so that half of the pixels in the scene are mapped to Ppay. The objective is
now to change the exposure so that the maximum intensity Py is equal to the maximum
detectable intensity Ppax. This is achieved by changing the exposure time T, according to

T£i+1) - TS:)PII;mx (4.1)
0

which in this case means that the exposure time will be halved.

(a) (b)
Inthist(i) #
) \ \
n
n
i
-
PT l)max PO

Figure 4.3. An over-exposed Inthist

To compute (4.1) we use the following relation for the desired Inthist curve (a) in Figure 4.3,

n N
no_ N 42
Pr~ Pux (42)

For the measured Inthist curve (b) we have

n N

P = P, (4.3)
This gives us the update factor

I max n ’
—max - - 4.4
PO ()

I1-24

PAGE 137 OF 241

We can now rewrite (4.1) in the following way

76+ = 7(:)% - 7@(‘ + 'l;ﬁ) (4.5)

n

and where i normally is set to N/2. The formula (4.5) holds for all Py values. However, when
Py<Pr the measured entity n will always be equal to N, shown in Figure 4.4. This will limit
the update factor in (4.4) and (4.5) to be equal or less than 2. This actually turns out to be
very practical as the control loop which uses more than one iteration step will become more
stable. Therefore, to obtain the same stability in the previous case when Py> Py, as in Fig-
ure 4.3, we change (4.5) to

7—?‘+1) - Tgi):l_’i = Tgi)(l +"ﬁ") (4.6)

The penalty for the stability of (4.6) compared to the formula (4.5) is a longer convergence
time. For instance, given an exposure time error of a factor 100, it will take 7 iteration to
converge to the ideal exposure time. However, for a frame ratc of 50 Hz the adaptation is
still finished in 0.15 s.

Inthist(i) A
n=N

=

Py Pr Prmax
Figure 4.4. An under-exposed Inthist

The update factor as a function of n is shown in Figure 4.5. This curve is y=1+p where p is
defined as

o ; n nzn
N T R “n
2n
A more general function, still simple to implement, is
Tﬁ‘“’ =1+ pa)]'(;) (4.8)

where a.is an integer. Curve (b) in Figure 4.5 shows the update function for an a>1. Experi-
ments have shown that a robust update function is achieved for a=2.

I1-25

PAGE 138 OF 241

Update
factor

\

|

Figure 4.5. The update factor as a function of n

In MAPP2200, the two-bin histogram collcction is done by an analog comparison of the
pixel values with the global threshold voltage set to Y, followed by reading the COUNT sta-
tus. This is done row-wise, before the normal A/D-conversion is started. The values for each
line are accumulated in the host. After the whole image is read-out, the histogram is com-
plete and we can adjust the exposure time accordingly.

To set a new exposure time, we adjust the row offset within the main loop, described in sec-
tion 3. The exposure time is the time from the precharge until the photo diode isread out. In
the following program, the update function performs the calculations according to (4.7) and
(4.8).

Program for adaptive exposure control:

while (TRUE) ({

sum = 0

for (row=0;row<=255;row++) (
SETR row
READPD
SETV 128 /* Set i=N/2 */
LDI PD
sum += COUNT /* accumulate Inthist(N/2) */
SETV 0
INITAD /* ADC */

SETR (row + offset) % 256
INITPD
}
offset = update(offset,sum);
)

Alternatively, we can use one of the true exposure time program, in section 3, by inserting
the collection of the Inthist and the update rule into these programs.

Another automatic exposure control method is described in [5]. In this case the pixels are
collected into three histogram bins: very white, average, and very black. The exposure is
increased or decreased according to whether the image is judged to be too bright or too
dark. This is done using a decision diagram shown in Figure 4.6. The update rule is not pres-
ented, but it is said to be implemented in hardware using 1000 gates in a CMOS process.

I1-26

PAGE 139 OF 241

%0 Very A

black Too dark

Good exposure

Too bright

% Very
»-Vhite

Figure 4.6. Decision diagram, from [5]
The three-bin approach should be quite possible to realize in a MAPP2200 system.

Itis also possible to adapt the exposure with respect to the histogram of a limited part of the
image as shown in Figure 4.7. Here, the region-of-interest is 'defined vertically from
first_row to last_row, and horizontally as shown in the mask register R95. By applying the
mask before the COUNT read-out, only the pixel within the region-of-interest will contrib-
ute to the final summation.

Program for histogramming a predefined area.

SETV 128 /* Set i=N/2 */
LDI PD
if (row >= first_row && row <= last_row)
AND R95 /* AND with mask */
else
XOR A /* Set acc to zero */
sum += COUNT /* collect Inthist */
.SETV 0
INITAD

row = first_row

row = last_row

R95 (— s

Figure 4.7. Region-of-interest

1I-27

PAGE 140 OF 241

5 Computation of moments

5.1 2D discrete moments

Moments are features for object recognition and image classification, see for instance [6]
and [19]. One of the reasons for their popularity is that they are invariant under translation,
scaling, and rotation. In one-dimension the k-th order moment for a function is computed as

N-1

me = > #() 1)

i=0
For two-dimensions the k-th and I-th order moment is computed as

N-1N-1
my = > >) (52)

i=0 j=0

For a binary object such as the one shown in Figure 5.1, the area is the zero order moment
mgg. The center of gravity (x,y) is given by (5.3) and (5.4). The slope of the principle axis @ is
computed using the zero, the first, and the second order moments (5.5).

- _ My

X = g (5.3)

- _ Mo

Y T g (5.4)
2 —

tan20 = (mymoo — mygmey) (5.5)

mgo(mag — mey) + m3y — md,

Figure 5.1. Center of gravity and principal axis of an object

The routines for MAPP2200 to be described below, are based on the ideas from Chen [3]
and Hatamian [11] which describe moment calculation performed on SIMD arrays.

We observe that the general formula (5.2) is separable so that
N=1 N-1 N-1

mlf@n] = 3 & 3 G = 3 tm) (5.6)
i=0 j=0 =0

Here m(i) is the one-dimensional I-th order moment of f(i,j) while my, is the one-dimen-
sional k-th order moment of my(i).

PAGE 141 OF 241

Another type of separation consists of expressing higher order moments in terms of lower
ordersin an iterative formula. Such aformula is translated into a pipe-line (systolicarray) in
Figure 5.2 which might be helpful to consider together with the derivation below. Note that
the input data stream £(i,j) arrives with higher index first. The following expansions are pos-

sible from (5.1) and (5.2):

N-1 N-1
mo@) = > = fG0) + . +flm)+ D f))
j=0 j=m+1

Thus, the first adding operation in Figure 5.2 is

N-1 N-1
D FGD) = fam)y+ Y fG)

] j=m+1

For the first order moment we notice that
N-1 N-=1 N-1
my@) = D ifG) = D @)+ Y G~ DGl
j=0 j=0 j=1
So that, the second adding operation in Figure 5.2 is performed as

N-1 N1 Nl
SG-mH DG = > fGN+ Y, G = mfe.)

j=m j=m j=m+1
To understand the third addition in Figure 5.2, let us first note that

PEiti-D+G-1)?

A first expansion step of the second order moment formula is
N-1 N-1 N-1 N-1
my) = > G = D if@N+ D G- DfGN) + DG = DG
j=0 j=0 j=1 j=1)
Therefore, the iteration reflected in the third adder node is

N-1 :
> G -m+DFG6)) =

j=m

N-1 N-1 ‘
DG=mA DG+ Y G- mfG)+ Y G- m)¥G)

j=m j=m+1 j=m+1

1I-29

PAGE 142 OF 241

67

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

Y

fi -2
fi-1
)

N-1 N=1 . N-t N-)
m@) = Y[om@ = D jf6) mdd = Y RLGH m) = D fGD

j=0 j=0 j=0 j=0

Figure 5.2. Computation flow for the vertical summation for PE number i=x [3]

For higher order moments which correspond to subsequent nodes we notice that (5.11) for
arbitrary value of p can be written '

. p-l p— 1
Po=jr s Z(P)(}'- 1Pk (5.14)
k=0
since

-1
1 +'pZ(p ,: 1)(i 1k =l =) -1)+ ' =
k=0
P+ -1t = (5.15)

Thus, the general recursive formula for the p-th order moment is

N-1

DG —m+1PfG)) =

j=m N-1 Py~ 1) M=l
Z(j —m+ PG) + Z(B) 2 G — mpP X)) (5.16)

j=m k=0 j=m+1

5.2 Moment calculation in MAPP2200

Obviously, a MAPP2200 system would be able to perform the computation above for each
column. A/D-conversion to eight bits per pixel would then in the worst case accumulate to
16 bits for the 1D 0-th order moments, 23 bits for the 1st order moments, and 31 bits for the
2nd order moments. Together with the temporary variable of the 1st order moments of 23
bits, this totals 93 bits which can be implemented in the 96-register MAPP2200. However, in
most applications, the input image is binary which reduces the number of registers needed
to 64.

Once the vertical computation in each PE is done, the horizontal computation represents a
minor computational load and could possibly be taken care of by the host. However, we will
show now that the COUNT feature can be used to great advantage also in this stage. In the
MAPP2200 implementation, the vertical computation is performed by a series of addition
for each row, which was shown in Figure 5.2.

11-30

PAGE 143 OF 241

The MAPP2200 procedure for moment calculation, to be repeated 255 times, using some
MAPPLIB function (some of which were described in section 2.4) runs as follows.

.PROC M_loop

READPD, +
LD PD
INC_A(0,0,8) /* mg(i) = mp(i) + P */
ADD_DIFF(0,8,8,8,8) /* mp(i) = my(i) + mg(i) */
ADD(8,24,24,16,8) /* Mg = mi(i) + megp ¥/
ADD_DIFF(48,24,24,16,8) /* mp(i) = mp(i) + memp */
MOVE (8, 48,16) /* Mepp = my (i) */

. ENDP

Here, my(i) is in registers r0~17, my(i) in R8—R23, my(i) in R24—R39, and mey, in
R40—R63. This procedure requires 222 cycles per loop, which totals 56832 cycles per
frame.

When the vertical scan is completed, each PE contains a contribution to the final moments
in form of mg(i), m1(i), and my(i). We now have to perform a horizontal merge of these data
to obtain the moments mgy, mg, mgy, myg, mi1, and myg. The first three of these moments,
mgg, Mgy, and mgp, can be obtained as a horizontal summation of each PE’s values of mg(i),
m; (i), and my(i). We then use the powerful COUNT feature for summing one bit plane at a
time weighted with the factor 2J as showed for my(i) in (5.17). Here, my(i,b) represents bit
number b in PE number i.

255 255 17 7255

mog = > mo(i) = > > mgi,b)2" = > 20 m(i,b) (5.17)
i=0 i=0b=0 b=0 i=0 v

We can interpret this as

myy = COUNTgy + COUNTR *2 + ... + COUNTR;* 128 (5.18)

A pseudo-C program to compute mgy).
m00 = 0;
for (b=0;b<N;b++) {
LD R(b)
m00 += COUNT<<b;
}

To compute the other three moments, mjg, mp1, and mpg, we have to perform a multiplica-
tion with a constant vector before the global summation described above. This vector is a
constant ranging from 0 to 255, corresponding to PE 0 to 255. We- assume this vector is
stored in the memory for each PE. To obtain my(, mg(i) is multiplied by the constant vector
and then globally summed. If we multiply mg(i) once again by the constant vector we will get
myg after summation. Finally, my; is obtained by multiplying m;(i) by the constant vector.
This execution takes approximately

Main loop 57000 cycles
3 multiplications (1000 cycles/mult) 3000 cycles

6 read-out (Host and MAPP operations) 5000 cycles

65000 cycles

PAGE 144 OF 241

For a 4 MHz system the 65,000 MAPP-instructions corresponds to a maximal frame rate of
60 images/s.

5.3 A MAPP application. Tracking movement in a rat muscle

The instruments shown in Figure 5.3 are used to register the relationships between nerve
activation level, muscle contraction velocity and force, and muscle/tendon stress and strain
in a wide variety of experiments. The rat is heavily anesthetized, and placed in the box in
front of the camera. The skin is removed from one leg and six dots are painted along the
muscle. Tests are done inisometric mode with a lever arm holding a constant position against
the muscle force, and in isotonic mode with the lever arm moving to maintain a constant
force load to the muscle. By taking images of the six dots at a high frequency (200 frames/s),
the relations between the impulse and the reaction of the muscle can be determined. Today,
the image are captured by a high speed video camera and the processing is done off-line,
after the experiment. In the future, a MAPP2200-camera will do the job in real time on-line.

Cambridge FRYTY | [——1
oy H 5 Ly tep ————————
"/ A
Waver, ==
Mogey s | e t=TCE 7
\ [3
== - \ <)
eﬁ-—'-:—r'ﬂijﬁ
\——j:.,.-——“
5 23
§ = 5.
WA —v'“}.."v‘ '
power s L
supply
"Iac

temperature
controller ’ 4 -~

4
high speed ‘ /
VCR

Figure 5.3. The experimental set-up, used today, for the rat muscle registration

Figure 5.4 shows an image from the experiment where we can see the rat, its muscle, and the
lever arm which controls the force. The region to be monitored is marked with a small frame
in Figure 5.4. In the totally controllable situation it is relatively easy to make the background
of the muscle very white and the six dots very black, shown in Figure 5.5. A single predeter-
mined threshold is then sufficient to segment the six dots, see Figure 5.6.

11-32

PAGE 145 OF 241

Figure 5.4. The rat and its muscle, and the region-of-interest

Figure 5.5. Unfiltered image

PAGE 146 OF 241

Figure 5.6. Thresholded image

By manipulating the background even more, for instance using a white frame mask, the
scene is reduced to contain six 2 mm black markers (dots) of somewhat various size in a
10 cm by 2 cm field. The dots move somewhat irregularly within the scene as illustrated by
Figure 5.7.

10 cm
) R . Muscle
cm . . . expanded
5 ", L Muscle
cm . contracted

Figure 5.7. The six dots on expanded and contracted muscle

The diameters of the marker objects are in the order of 2 mm. Given the size of the MAPP
sensor the resolution will be 0.39 mm/pixel which means that the typical diameter of an
object is 5.1 pixels. To cover the area of 10cm x 2 cm, the active part of the sensor is 256 by 52
pixels.

The dot-tracking task was solved as follows. Using the previous moment computation we
first retrieve moments of the whole image as if it contained only one object. To compute the
moments (in this case only the first order which is the center of gravity) for each of the six
objects, we must perform some sort of segmentation. This is possible because the objects are
horizontally separated. Two object are considered to be horizontally separated if the verti-
cal projection results in two objects, shown in Figure 5.8 where we have four horizontally
separated objects.

PAGE 147 OF 241

0 | | '

Figure 5.8. Horizontally separated objects

We now recall that the vertical computation of moments in the previous section resulted in
three contributions for each column, my(i), m1 (i), and my(i). To obtain the moments for the
whole image we use the same read-out technique as in (5.18). However, the read-out is
repeated six times, and by manipulating the read-out bit-vector only those PEs which belong
to the same 1D projection, i.e. to one object, is allowed to contribute to each read-out.

In MAPP2200 the vertical summation is carried out in the same way as in the previous sec-
tion. However, as we only need the position, which corresponds to the 0-th and 1-th order
moments given by (5.3) and (5.4), the MAPP2200 program can be reduced to:

.PROC M_loop

READPD, +

LD PD

INC_A(0,0,6) /* moox = moox + P */

ADD_DIFF(8,0,8,8,8) /* Mo1x = Mpix + Moox */
.ENDP

The next step is to create the projection of the image to make the segmentation possible.
This is done by ORing the bits in mg(i) for each PE, i.e. to see if my(i) >0, which gives us the
projection vector shown in Figure 5.8(b). We now perform a loop, selecting one object at a
time which we place in the C register. Before the horizontal summation, shown in the pre-
vious section, we AND my(i,b) in (5.17) with the Cregister. Thus, only PEs belonging to the
latest marked object, contributes to this moment.

A program for selecting object in a 1D image:

create mygy, Mgix etc

for (i=0;i<no_object;i++) {

LSCAN R64 /* Get leftmost pixel in projection vector */
MARK R64 /* Mark leftmost object */
ADD A /* Place object in Carry reg */

Compute mpo and mgy in the same way as in the previous section

XORC R64 /* Remove this object from projection vector */
ST A,R64) :
}

The number of clock cycles for the vertical computation is in the geheral case

1I-35

PAGE 148 OF 241

N(Sby + 2b, + 6) = N(7|21ogN| + 6) (5.19)

Here, N denotes the number of lines to process (in our case 52), by denotes the number of
bits need in mgy, and by denotes the extra number of bits needed in mjg and mg;. These two
numbers can in our case be set to |2logN | =6, which gives us 2500 clock cycles using (5.19).
‘We must also add to this number roughly 1000 clock cycles, which is the time it takes to per-
form the horizontal summation. With an instruction frequency of 4 MHz, this means a
frame rate of 1100 frames/s, which is well above the required 200 frames/s.

5.4 Segmentation and moment calculation, the general case

If the objects in the image are located in a way which makes it impossible to separate them
with the simple method described in the previous section, we have to perform a more
sophisticated segmentation procedure. Such a procedure is needed for the image in Figure
5.9.

Figure 5.9. Objects which are difficult to separate in a simple way

Compared to the two previous routines the MAPP2200 procedure to be described below is a
totally different approach to the segmentation-moment calculation problem. It is based on
Run-Length coding where the MAPP2200 is used for fast generation of R-L code while the
host computer is responsible for the actual segmentation and moment calculation. Thus, we
rely heavily on the host but even so we will show that thanks to the R-L code representation
we can achieve frame rates in the order of 20—50 frames/s for typical images.

Given a line segment starting at position P, with a length of L, and at row j=R, its contribu-
tion to moments myj is

P+L-1
my = my+RE Yk (5.20)
i=P
Knowing the summation formulas for

n 2 +
Zi = % (5.21)
i=0
3 2
Zl 2n3 + 3" +n (5.22)
i=0 .
11-36

PAGE 149 OF 241

the 6 moment contributions to mgy, mgj, mgy, myg, Mi1, and myy can be computed as

= mgy +

+

=my +

= myy +

3
[
(=1

+

+

L3, y26P =3 [6P2—6P—1

L
LR
LR?
2P+ L —1
L 2
3 6
2

6

(5.23)

The segmentation is performed by the host and is based on three lists of data, see Table 5.1,
5.2, and 5.3. The first list, Table 5.1, contains all the object, so far encountered. Each object
is represented by a label and for each label we have the present values of moments, mgg,
myg1, Mgy, etc. The other two lists, Tables 5.2 and 5.3, contains the R-L codes for the previous
and the new line and a label associated with each segment. In the previous row list, the labels
are known for all segments. Thus, the goal for the host computer is to label the objects in the

new line.

Label mgg mg; my
1 XX XX XX
2 XX

3 XX

23 XX XX

Table 5.1. Example of label and moment list

RL start RL length Label

10 15 2

50 15 7

160 55 11

Table 5.2. Example of previous line list

RL start RL length Label

15 40 ?

60 15 ?

100 24 ?

150 22 ?

200 23 ?

Table 5.3. Example of new line list

The image is read-out line-wise and for each line, we first generate the R-L codes for-the
new line. We then have the R-L codes for both the previous and the new line, shown in Fig-

PAGE 150 OF 241

11-37

ure 5.10 and in more detail in Figure 5.11. We now process one line segment at a time from
the new line list and work from left to right. The following rules should be obeyed.

e Ifweencounter an object which has no support in the previous row, for instance (f) in
Figure 5.11, we create a new entry in the label list and compute this segment’s con-
tributions to the moments according to (5.23).

e Ifthe object has support from the previous row, for instance (g), the contributions to
the moments from this segment are added to the supporting label’s moments.

e Iftheobject hassupport from two or more segments, as in case (d), we choose the label
belonging to the leftmost support.

e If the supporting objects have different labels, as in case (d), the labels of the other
objects, in this case (b), are changed to the leftmost label, in this case (a), and the
moment contribution of (b) are merged into (a).

During the processing of a line, the labels in the previous line might change which is the case
for object (b) in Figure 5.11. But this can be achieved through horizontal propagation of the
label, which means that we only have to do one vertical scan regardless of the structure of
the image. A final unification of the different labels in the same object can be made in the
host if necessary. It is not needed if the segmented moments are the only and final result to
be extracted.

Previous
i r=
line =
New line

Figure 5.10. Segmentation process at a certain time

\ . ; ; . ;
\\ // / \\ //
\ (@ ® /

\ ! ©
Tt = T

\ \ A \ \
/ d /o \(e) \ / / / N (h) \
, @ y \() \ (f)/ / (e / \\() \
/ / \ v / / N \

Figure 5.11. Enlargement of the interesting area in Figure 5.10

—

The execution time for this algorithm is very data dependent. If there are many objects on
one line, there will be more tests of the connectivity and more moment calculations. Howev-
er, tests have shown that for a segmentation program written in C which run on a PC system
(which can feed the MAPP2200 chip with instructions at a frequency of 0.5 MHz), we can
obtain a frame rate of up to 15 segmented images per second, with six moments for each

I1-38

PAGE 151 OF 241

object. This hold for a “normal” image, for instance like Figure 5.10. If we have more "diffi-
cult” objects, the frame rate may go down to 3—5 images/s. Using a "smart camera” (dedi-
cated controller for the MAPP2200 chip) and an assembler program, we can expect to
achieve frame rates 20 to 50 image/s.

The R-L codes from one line are obtained very easily in MAPP using the GLU instructions,
shown in Figure 5.12.
Program for generating R-L codes:

ledge r0 ; How many objects?
n = COUNT
for (i=0;i<n;i++) {
lscan r0 ; Select leftmost pixel in leftmost object
rfill a ;
p = COUNT ; Start position
mark r0 ; Mark leftmost cbject
1 = COUNT ; Length of object
xor r0 ; Remove this object in line
st a,x0 ; Store line in r0
)
o —— T s B N
—= , LSCANRO
A] RFILL A
R-L position = COUNT .
(— |) MARK RO
R-L length = COUNT
l XOR RO

“I—)
Figure 5.12. R-L coding in MAPP

II-39

PAGE 152 OF 241

6 Sheet-of-light range imaging
6.1 General

Range imaging is important in many machine vision applications. If the scene is moving (the
conveyer belt case) or if the camera system is moving over the scene (the camera mounted
on a robot arm or on a vehicle) a rather attractive range method based on sheet-of-light can
be used. In this method, by means of rather simple optics, a laser pencil beam is diverged
into a sheet-of-light, a curtain that cuts through the 3D scene as shown in Figure 6.1. Tt
should be noted that the only additional feature needed to image a static scene with a static
camera is a rotating mirror that makes the sheet-of-light sweep the scene over time.

Sheet-of-light Laser

Camera

Computer

Figure 6.1. A Sheet-of-light camera set-up

The other major optical component in the system is an ordinary camera with an image sen-
sor. the reflected light from the sheet that cuts the scene will be mapped onto the sensor asa
jagged line as shown in Figure 6.2. The topography, or rather the depth, will correspond to
the vertical position of the points on the line in Figure 6.2(b). This relation is not difficult to
express in mathematical terms once the geometrical and optical parameters are known for
the laser illuminator and the camera sensor. However, to do this is outside the scope of our
treatise.

Laser

(a) ()

Figure 6.2. A topological view and a corresponding sensor registration

The image processing problem in a sheet-of-light camera system is to establish the true ver-
tical position of the line in Figure 6.2. This should be done in the presence of several non-
ideal conditions like low reflectance of the scene, missing parts of the line due to occlusion,

II-40

PAGE 153 OF 241

thickness in the sheet-of-light which causes a multi-pixel wide line, noise, false reflections,
and ambient light, just to mention a few. Even so, if the position of the points on the line can
be established with a reasonable accuracy, the 2D sensor data can be reduced to a 1D vec-
tor. In this respect, the image sensor in a sheet-of-light camera is an ideal target for a smart
sensor approach which reduces the 2D image input to a refined 1D feature vector.

Sheet-of-light camera design is treated by many authors. For a recent survey, see Johannes-
son [16].

6.2 Implementation on MAPP2200

MAPP2200 can be used in two ways as a sensor for sheet-of-light. One of these is illustrated
in Figure 6.3(a) where the orientation of the jagged line is the same as in Figure 6.2(b). For
the input pattern in Figure 6.3(a) the task would be to read out the sensor row by row, and in
each PE-position in some way take a note of on which row address the line appears. Another
way illustrated in Figure 6.3(b) is to turn the camera 90° so that the jagged line appears ver-
tically on the chip. Here, the task would be to read out row by row and for each row detect
the PE position where the line segment appears.

- Y

N k)

Figure 6.3. Horizontal a vertical placement of the laser line

An range data feature, not mentioned so far, is the intensity of the light at the jagged line in
the sensor. In some applications, such intensity retrieved in parallel to the range is of great
value. In the programs to be presented below we attempt to capture both range (position)
and intensity.

For the horizontal case, shown in Figure 6.3(a), we first allocate 8-bits registers to the inten-
sity and the position, both of which are set to zero. Then, for each row, the difference
between the maximum intensity so far and the new intensity is computed. If the new inten-
sity is larger than the current maximum value, we adopt the new maximum intensity and
record the position of the maximum. This is described in Table 6.1 together with the time
consumption in cycles/row. We see that it takes 9b*256 =2304b cycles which equals 18,400
cycles for b=8. :

I1-41

PAGE 154 OF 241

Operation’ - . #cycles

Load Pi, from ADC) b
Compute Pip - Ppax : V 2b
Multiplex Ppax := max(Pip, Ppax) 3b
Multiplex Pospay := Current row if Pijn > Ppax 3b

9b

Table 6.1. Horizontal computation (a)

For each row, we have to perform an A/D-conversion which takes 1/2*2P cycles (an ADC
cycle is half as long as a normal processor cycle). Full time overlap between A/D-conversion
and processing requires

26 <2*%9 = 18b 6.1)

which holds for b~#7. This means that we can use 7-bit precision from the ADC when we
apply the operations described in Table 6.1. If we want 8-bit precision the processors will be
idle half of the time for each row. However, good use could possible be made of this extra
time to achieve a better (sub pixel) resolution of the final maximum.

After the whole frame has been processed, the range and intensity data are shifted out with
the shift register.

For the case illustrated in Figure 6.3(b) the sensor array is read one row at the time and the
position of the maximum is determined by a successive approximation using all row data
simultaneously. Initially, at time t=0, an approximation register in the sequencer or the
host, the reference voltage (I1,12,..,18), is set to 10000000,=1281. If there is at least one
position with a voltage above 128, the Global-OR will go high. If the Global-OR is high, the
next reference voltage will be set to 11000000,=1961¢, otherwise the voltage will be set to
01000000, =641(. Thus, for each step we perform I;=G; and I;+1:=1. Table 6.2 shows these
steps for each t, where Gi represents the value of Global-OR at time i—1. The full intensity
value (G1,G2,G3,G4,G5,G6,G7,G8) is found as the I vector after t=8.

Intensity/Reference voltage bit #
t I1 12 I3 14 15 16 1I7 18

0 1 0 0 0 0 0 0 0
1 61 1 0 0 0 0 0 0
2 61 62 1 0 0 0 0 0
3 61 G2 63 1 0 0 0 ©
4 Gl G2 G3 G4 1 0 0 0
5 Gl G2 G3 G4 G5 1 0 0
6 Gl G2 G3 G4 G5 G6 1 O
7 Gl G2 G3 G4 G5 Gé6 G7 1
8 Gl G2 G3 G4 G5 G6 G7 G8

Table 6.2. The value of the threshold voltage at different times

This procedure takes 3b cycles for a b bit digital output if we augment the standard Glob-
al-OR as shown below. When we have found the brightest spot, we perform an LFILL

11-42

PAGE 155 OF 241

operation on the thresholded line data which gives us the x-position of the brightest pixel.
This operation also serves as a tie-breaker in case that two or more pixels have the same
maximum intensity so that the leftmost position is chosen. The following program shows the
complete procedure.

for (i=0;i<255;i++) (

SETR 1
READPD, +
volt:=128;
SETV volt
LDI PD
for (j=7;3>=1;3-~) (/* From Figure 6.2 */
volt = volt + /* 01d value + */
(GOR-1) *2"9 + /* remove if not G-OR */
27 (3-1); /* add next level */
SETV volt
LDI PD
}
volt = volt + (GOR-1); /* Remove LSB if not GOR*/
SETV volt
LFILL PD

pos = COUNT;
intensity = volt;
}

Some selected MAPP2200 chips have been found to work well up to 8 MHz, which is twice
the normal frequency. Given such a selected chip and a dedicated sequencer implemented
as in Figure 6.4, it seems possible to execute up to 700 frames a second. Since each frame
produces 256 positions and each position produces one range value (rangel) this MAPP sys-
tem produces 180,000 rangels/s.

The main point of Figure 6.4 is to show how a fast sequencer and the host can share the
responsibility to generate instructions to MAPP. It also emphasizes that fast feed-back is
wanted for the Global-OR signal in the above program.

1
____{:>_____
>
Host 3<l-|-i\@ MAPP2200
> Sequencer [
5 GOR

Figure 6.4. A fast transparent control for sheet-of-light system

During normal execution, switches 1 and 2, in Figure 6.4, are used for write to and read from
MAPP. When a special trigger instruction from the host is detected by the sequencer at 5,
switch 4 is used for issuing instructions from the sequencer. When all bit planes shown in
Table 6.2 have been processed, the intensity is sent from the sequencer to the host via switch

11-43

PAGE 156 OF 241

3and therange, i.e. the position of the maximum intensity, is sent to the host computer from
the MAPP chip via switch 2.

Anumber of scenes have been processed using method (b) in Figure 6.3. They are presented
in much greater detail in [17] along with suggested post-processing operations to reduce
noise in the images.

The scene in the example shown in Figure 6.5 contains a toy car which has been moved
through the sheet-of-light. Here, the range mapped onto grayscale isshown in Figure 6.5(a)
and the corresponding intensity image in Figure 6.5(b). A combination c of range r and
intensity I pixel by pixel is shown in Figure 6.6. The mapping from 6.5 to 6.6 is

c(xy):=I[xy=r(xy)].

()

Figure 6.5. A range image and an intensity image

Figure 6.6. A 3D plot using both range and intensity data

II-44

PAGE 157 OF 241

6.3 Filtering during computation

Ideally, a cross-section of the image that falls upon the sensor in Figure 6.3(b) contains a
single sharp pulse. In practice it may look like Figure 6.7. Even so, in this case the intensity
peak where the sheet-of-light hits the object stands out as a well-defined maximum.

255 1

X

Figure 6.7. The intensity values along the array at a certain time

A more difficult situation is shown in Figure 6.8 which could appear in an outdoor applica-
tion where uncontrolled reflexes are abundant. The thin high peak in Figure 6.8 is likely to
be such a false unwanted response. .

255 I

0 X
Figure 6.8. A bright spdt which might affect the result

Various post-processing techniques to combat this problem have been described, see for
instance, Johannesson [17]. Another possibility is to filter the signal (i.e. row data) before the
successive approximation when the image data is in analog form.

The method we suggest is based on grayscale morphology [22] and it has also a lot in com-
mon with Part IT of this thesis, Near-Sensor Image processing. We notice that both the thin
and the thick peak in Figure 6.8 grows wider, or at least not thinner towards their bases. This
is self-evident since the picture of these peaks represents a part of the function p(x,y). Nev-
ertheless, this feature is vital to the success of our method.

1I-45

PAGE 158 OF 241

The inner loop of the program for the image in Figure 6.3(b) uses successive approximation
to find the maximum value. In the case of Figure 6.8 it would pick the wrong one. However,
the Global-OR that signals the status in the linear processor array to the sequencer could
very well be applied to a processed result of row data instead of the thresholded row sensor
data. For instance, using simple morphology operations we should be able to discriminate
between various peak widths as they appear in the thresholded row data. We can filter out
binary 1D objects in these data which we determine unsuitable to our max-finding goal and
we can suppress their influence on the Global-OR result. It can be seen that this filter prin-
ciple must be consistent for all gray-levels along the row. Hence, the above condition on
peaks with widening bases. -

The program below is the previous successive approximation augmented with median fil-
tering of the sensor data before Global-OR. A similar augmentation is possible to erode to a
single point before the final position read-out. A multi-pixel wide peak will then be regis-
tered in position by its mid-point.

for (j=7;3j>=1;j--) { /* From Figure 6.2 */
volt = volt + /* 01d value + */
(GOR-1)*2"j + /* remove if not G-OR */
27 (3-1); /* add next level */
SETV volt
1d (00x) pd

and (0x0) pd
and (x00) pd

The _abdve way of filtering the 1D image is identical to grayscale morphology filtering. Table
6.3 shows how to implement various other grayscale morphology operations on the image
line by adding one or a few instructions in each cycle.

Filter name Instruction sequence

Normal 1d (x0x) pd (= 1di pd)

Erosion 1@ (000) pd

Dilation 1di (111) pd

Closing 1di (111) pd : 1d (111) a

Opening 1d (000) pd : 1di (000) a

Median 1d (00x) pd : or (0x0) pd : or (x00) pd

Table 6.3. Some grayscale morphology filters and their corresponding instructions

I1-46

PAGE 159 OF 241

7 Conclusions

The MAPP2200 has been designed to be a general purpose smart image sensor. This means
that it should efficient for various types of image processing operations. Thus, these opera-
tions must be easy to map onto the architecture, to implement and program in the system,
and to verify. We believe that the above six sections have shown that MAPP2200 in thcse
respects is a general purpose system.

As was mentioned in section 1 the MAPP2200 inherited much of its basic operations from
LAPP1100 but important novelties were brought in from PASIC, for instance, program-
mable resolution in the ADC, the shift register, and some of the new ALU-operations. The
most obvious difference to LAPP1100 is of course the two-dimensional sensor. As we will
show in part I in this thesis this will create a more principle difference between the one-di-
mensional LAPP1100 and the two-dimensional MAPP2200. LAPP1100 is able to imple-
ment what will be defined as Near-Sensor Image Processing (NSIP) where the sensor data
are interrogated and processed repeatedly during one ongoing exposure. In MAPP2200,
this is not possible because of the much higher volume of sensor data which has to be han-
dled by just a linear array of processors. More importantly, the NSIP idea demands that all
sensor data are interrogated at the same time. Finally, the present column amplifier in
MAPP2200 prohibits non-destructive read-out from the individual sensor. However, it is
possible to perform 1D NSIP in MAPP2200.

For an industrial product, like MAPP2200, it is fundamental that the program development
environment is simple to use, yet powerful to utilize the computational capacity of the
product. For this purpose, a special assembler has been developed which makes it possible
for the user tomake fulluse of the the system. To reduce the complexity of the programming,
aspecial function library has been developed. It contains both bit-serial logic and arithmetic
operations as well as two-dimensional binary and grayscale filters.

The exposure control in MAPP2200 is different to conventional CCD-cameras. In
MAPP2200 we may use both a timer function and/or arow offset control. The present adap-
tive exposure scheme is based on a two-bin histogram of the image. This approach was cho-
sen because of its robustness and the fact that the collection of the histogram was done with
little extra execution time. For instance, the programmability of MAPP2200 makes it pos-
sible to use a limited window (region-of-interest) for the exposure control.

For both industrial and robot vision applications, moment calculations have proved tobe a
powerful tool. We implemented a computation scheme targeted for SIMD processors on
MAPP2200 and made some modification to utilize the global features of the chip. For single
objects we achieved very high frame rates. With a smaller modification of the computation,
we showed that we could use the same scheme in a medical experiment where the speed
requirement was 200 frames/s. The goal was to monitor the position of six blobs and the
MAPP2200 implementation achieved frame rates of up to 1000 frames/s. In the general
case, when we need full segmentation and moment calculation, we can still use MAPP2200
in a powerful way. In this case the MAPP2200 chip delivers run-length codes of the image to
simplify the segmentation process and the moment calculation, so that they can be per-
formed by the host computer.

11-47

PAGE 160 OF 241

Finally, we described a MAPP implementation of a sheet-of-light range camera. In this
application we made use of the global operations to achieve the high frame rates. We also
showed how advanced filtering during computation can be included with little extra com-
putational effort.

The computational strength of MAPP2200 comes forward in applications where the output
data from the chip are highly reduced in quantity compared to input data. The moment cal-
culations is a good example in case. Here, MAPP2200 delivers moments or contributions to
moments which are then converted in to size, position, and slope in the host. Another exam-
ple is the sheet-of-light range camera application where: MAPP2200 together with a
sequencer delivers range and intensity but only one pair per row.

In many cases, the performance of MAPP2200 is very competitive compared to conven-
tional image processing systems. However, in certain types of image processing applications
the MAPP2200 looses its edge. Among the trouble-spots are large convolution kernels with
arbitrary coefficients, histogramming, and floating point operations (FFT etc.). In these
cases a MAPP2200 system would be slower than many other image processing systems, and
some functions, for instance FFT, would be more ot less impossible to realize in MAPP2200.

An important feature of MAPP2200 is compactness and small size which makes it very suit-
able for air-borne and space-borne applications and in surveillance cameras. An unbeat-
able feature of MAPP2200.

I11-48

PAGE 161 OF 241

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

[l

(10]

(1]

[12]
[13]

(14]

[15]

[16]

[17]

References

Astrém A., A Smart Image Sensor. Evaluation and Description of PASIC., Lic Thesis,
Linképings University 1990.

Astrom A., Forchheimer R., MAPP2200 Smart Vision Sensor. Programmability and
Adaptivity., Proc MVA92, Tokyo, Japan, 1992.

Chen K., Fast Algorithm for the Calculation of Image Moments in a Linear Processor
Array, Internal Report, Linkoping, Sweden, 1988.

Danielsson PE., Generalized and Separable Sobel Operator, Internal Report LITH~
ISY~-1-0975, Link6ping, Sweden, 1989.

Denyer P. B, Renshaw D., Gouyu W.,, Lu M., Anderson S., On—chip CMOS Sensor
For VLSI Imaging Systems, Proc of VLSI91, 1991.

Dudani S. A., Breeding K. J., McGhee R.B., Aircraft identification by moment
invariants, IEEE trans Computer, vol C—26, pp 39—45, Jan 1977.

Forchheimer R., Astrém A., Near—Sensor Image Processing. A new approach to low
level image processing, In Proc of ICIP, Singapore 1992

Forchheimer R., Astrom A., Near-Sensor Image Processing. A New Paradigm,
accepted for publication in IEEE trans Image Processing.

Forchheimer R., Odmark A., Single chip linear array processor, in Applications of
digital image processing, SPIE, Vol. 397, (1983).

Forchheimer R., Ingelhag P., Jansson C., MAPP2200, a second generation smart op-
tical sensor, SPIE Vol 1659, 1992.

Hatamian M., 4 Real—time Two—Dimensional Moment Generating Algorithm and
Its Single Chip Implementation, IEEE trans ASSP, Vol 3, June 1986.

Horii A., Depth from Defocusing, Internal report, Stockholm University, Sweden.

Krotkov E. P, Active Computer Vision by Cooperative Focus and Stereo, Springer—
Verlag, 1989.

IngelhagP., 4 Contribution to High Performance CMOS Circuit Techniques, Lic The-
sis, Link6pings University 1992.

Jansson C., Image Sensing Using Standard CMOS Techniques, Lic Thesis,
Linképings University 1993.

Johanneson M., Sheet-of-light Range Imaging, Lic Thesis, Linkopings University
1993.

Johanneson M., Astrém A, Sheet—of — light Range Imaging with MAPP2200, Proc of
SCIA8~-93, Tromsg, Norway.

11-49

PAGE 162 OF 241

(18]

(19]

[20]

(21]

(22)

Kittler J., Illingworth J, Minimum Error Thresholding, Pattern Recognition, Vol 19,
No 1, 1986.

Lucas P, Moment Techniques in Picture Analysis, Proc IEEE conf Computer Vision
Pattern Recognition, pp 178—187, June 1983.

MAPP2200 Technical Description, IVP Integrated Vision Products AB,
Linkoping, Sweden, September 1991.

Renshaw D., Denyer P. B., Lu M., Wang G., A4 Single —chip Video Camera with On—
chip Automatic Exposure Control, Proc ISIC—91, 1991.

Sternberg S. R., Grayscale Morphology, Computer Vision, Graphics, and Image
Processing, Vol 35, 1986.

II-50

PAGE 163 OF 241

Part III NSIP

PAGE 164 OF 241

1 Introduction

Most image processing applications are burdened with high volumes of data that have tobe
funnelled though the image processing system. This is especially true in the early part of the
system where individual pixels are represented by full gray scale or color. Therefore, all ef-
forts which lead to a reduction of the pictorial data without too much loss of information are
of interest. The processing task column of Figure 1.1 shows a typical image processing se-
quence consisting of image acquisition, noise reduction and filtering, segmentation, feature
extraction, and classification. The next two columns show examples of operations for each
task, and the amount of input/output data for each operation. Here, N stands for the image
size and b for the number of bits in the input image. This type of image processing sequence
is very common in robot vision applications as well as in industrial inspection tasks.

No Processing task Example Amount of data
* b*N?
1 Image Light collection
acquisition and sensing
+ b*N2
: Lowpass filtering
2 Noise O LD
reduction Median filtering,
etc.
L b*N2
Ed
3 Segmentation| d et%ition
+ N2
4 Feature Quantitative
extraction measurements
L N
5 Classification Answering the
question:
* ”What is it?” 1

Figure 1.1. Image processing sequence

The amount of input data to the four first processing tasks are of order N2, as shown in the
rightmost column in Figure 1.1. The first three stages consists of local operations while the
fourth stage is a global feature measuring operation. As the input data for local neighbor-
hood data operations are of similar type, this suggests that a physically integrated computer
architecture is feasible and since it all starts with an optical sensor, the ideal system for the
four first stages would be a single solid-state component. The output from such a system
would then be afeature vector to be forwarded to a classification system. Thus, what we are

II-1

PAGE 165 OF 241

looking for is a system which accepts a time sequence of images, f(x,y,t), and for each image
output a feature vector, g(t), as shown in Figure 1.2.

The chip
Reduction to 81 ®
fxy0 - P limage features | ™ 1
gn(0)

Figure 1.2. The goal for the image information reduction on a chip

The architectures to be presented are derivations of the classical idea of the massively paral-
lel SIMD processor [3][9](16]. However, when implemented on a single chip it will be seen
that new constraints as well as new possibilities appear, to the extent that also the most basic
image processing algorithms are affected. To decide what type of basic operations one
would like to have available within such a component, it is necessary to look at the cost, i.e.
the VLSI area occupied by the hardware supporting each operation. For the individual cell
in a 2D-array of Sensor-Processing Elements, SPE, a minimal configuration would consist
of a photodiode, an Analogue-to Digital-Converter ADC, a bit serial ALU, and some
memory for each pixel position. An importantbenchmark is the transistor count within each
such SPE. Table 1.1 shows the transistor count for three different cases (A)—(C) containing
sensor and processing units and with a memory of 16 bits per SPE.

Module Transistors (A) Transistors (B} Transistors (C)
Sensor 1 1 1

ADC 110 90 10

ALU 100 60 60

Memory 110 50 30

Total 320 200 100

Table 1.1. Transistor count

Inthe case (A) we use ”standard cell” technology. One possible realization of such a SPE is
shown in Figure 1.3. This design has a lot in common with PASIC [1] as it consists of one
photo sensor, one ADC, and a 1-bit bus connecting the ADC with three registers and a
memory. Attached to the registers is a full adder logic which enables us to perform all types
of Boolean operations. Gates for 2D mesh connection are included. A 256x256 SPE array of
this type would require 21,000,000 transistors which is far too much for present day technol-

ogy.
The case (B) in Table 1.1 assumes an optimized VLSI design for this SPE, where dynamic

circuitry has been used where appropriate. A 256x256 SPE array still requires 13,000,000
transistors.

The last case (C) corresponds to the new concept of this treatise where the ADC has been
removed and the memory per SPE has been reduced to 10 bits which leaves us with only
6,500,000 transistors for the 256x256 array of SPEs. We believe that this is a feasible number
for a chip design in a foreseeable future.

III-2

PAGE 166 OF 241

Photo
sensor

Full
adder

Neighborhood N
connections -+

B b

-
-

Memory

Figure 1.3. Logic scheme of a minimum configuration SPE
based on traditional thinking

Actually, in the sequel we will show that conventional A/D conversion is neither necessary
nor particularly efficient. Also, by using non-conventional digital representation we will be
able to save on memory registers. The concept that makes this possible is hereby coined
Near Sensor Image Processing (NSIP).

To fully understand the NSIP concept it is essential to have a working model of the opto-
electronic process that takes place within each SPE. For the discussion to be meaningful itis
also necessary to define the way in which the analog sensor signal is converted into a mea-
surable entity. These two topics are treated in section 2. For the sake of simplicity we will
start to describe NSIP for a one-dimensional SPE-array that has been used in practice, the
LAPP1100 [8]. Section 3 describes a number of simple NSIP operations and how they are
implemented. It also describes how the special NSIP data representationis used throughout
the system. Sections 4, 5, 6, and 7 describes adaptive thresholding, linear- and non-linear
grayscale mapping, and error modelling, respectively. Grayscale operations are discussed
in sections 8 and 9 for grayscale morphology and linear convolutions, respectively. In sec-
tion 10 we present a 2D SPE model and describe the consequences for the architecture and
programming. Section 11 describes how global operations on the array are performed in 2D
and section 12 how features are extracted in 2D using the COUNT net. Section 13 describes
a possible VLSI implementation of a 2D NSIP architecture. Section 14 describes an NSIP
application which produces range data using sheet-of-light technique.

IIn-3

PAGE 167 OF 241

2 A Near-Sensor Image Processor

2.1 The photodiode sensor

The photo-electric effect is the basic physical principle used in all light sensors. Under cer-
tain conditions it is possible for a photon which hits a material to leave its energy to an elec-
tron. This causes a charge to build up in the sensor material. In a CCD photo element used
in many TV cameras, the charge is collected in a well created by applying suitable voltages
to a system of electrodes. During exposure the charge will grow until the well is full (overex-
posure) or until the charge is forced to move away.

The photodiode sensor utilizes the photo-clectric effect differently, see Figure 2.1. Here, the
photo-current is used to discharge a small capacitor which initially has been charged to a
nominal level. Thus, the remaining voltage over the capacitor will be an indicator of the ac-
cumulated light over the exposure time. It is essential to sample this voltage level before the
capacitor is completely discharged, or over-exposure (saturation) will result. Typically, the
capacitor is obtained for free as a byproduct of the inversely biased diode (p/n-junction) in a
semiconductor material. For silicon based material the spectral response of a photodiode is
rather broad; from infrared (1100nm) to ultra violet (300 nm). ’

There are several reasons to choose a photodiode element as the sensing device in machine
vision applications. This sensor takes up morespace than a CCD element but it is character-
ized by low noise, good uniformity and somewhat higher sensitivity in the blue region. The
most important property, however, is the possibility to read out information non-destruc-
tively through the use of a high-impedance amplifier/comparator. As will be seen later, this
property is essential for several of the things we want to accomplish.

precharge Uo
transistor
———’ |: threshold
circuit
U
Photon N
- Output
photo—
diode Uret

Figure 2.1. The photodiode element and sense amplifier

Figure 2.1 shows schematically the photodiode sensor and its thresholding amplifier. By us-
ing a high gain differential amplifier, the output of the sensor will be a binary signal suitable
for further digital processing. At first sight it may seem a considerable restriction to forward
only binary values from the sensor. Disregarding this for the time being, however, let us note
that the “infinite gain” operation taking place directly at the output of the sensor device is
very robust to component variations and ensures that good response uniformity is main-
tained throughout an array of SPE’s.

-4

PAGE 168 OF 241

|

Uo o ___ photodiode

SN voltage U(t)

\\\ output
Uref — T~
\\
~N
~
~
S

L

”1,) tref)’0”
Figure 2.2. The voltage over the photodiode and the output from the comparator

The relationship between the light intensity I and the voltage U over the photodiode during
exposure, can be approximated by the linear function:

t

U = Uy - J KI(z)dv 2.1)

0
In the case the intensity I(t) is constant over time t, we have
U@) = Uy — kit 2.2)

which is shown in Figure 2.2. Here, t is the time interval from the precharging of the photo-
diode to the sampling moment. k is a constant which describes the light sensitivity of the
photodiode. Uy is the precharge voltage. The relationship is valid as long as U > 0.

The time it takes for the voltage U to discharge to U,.s with a given intensity I is

U,-U,

ey = %‘f (2.3)
It is obvious that we can use the device in Figure 2.1 to measure the light intensity in at least
two ways. We may keep the exposure time constant and, after a complete integration time
we may change the threshold level U¢. The binary output reveals when an U csequal to the
photodiode voltage is found. This corresponds to the action of an ordinary (CCD- or photo-
diode) sensor system in which a fixed exposure time is used after which the analog output is
subjected to an A/D-converter. The maximum dynamic range will be about 1000:1.

Alternatively we may keep the threshold at a constant value and measure the time interval
tres; Shown in Figure 2.2. This is the NSIP approach. It yields a dynamic range in the order of
105:1 since valid exposure times may well range from 1us to 100ms.

AII'NSIP algorithms are based on the observation of when the change of the binary output
takes place. However, the output from a single photodiode such as the one in Figure 2.1, is
not tested individually. Rather, all output data from an array of photodiodes are broughtin
for processing in parallel. In fact, the sensors are interrogated at even or uneven time inter-
vals in the main NSIP loop during ongoing exposure. Hence, non-destructive read-out from
the photodiode is essential to the whole idea.

Assume that the interrogation interval At are constant. Then, interrogation event number i
where

II-5

PAGE 169 OF 241

i=1,2,.,N

yields a linear relation to the interrogation points in time ty, ta, .. ty
o=t + (= 1At

which is shown in Figure 2.3,

IN

ta

51

v - i
1 2 N
Figure 2.3. The relation between interrogation index and time

Suppose that a sensor element output changes its output at time trer, where

G S b <ligg
If the time interval At; is small we assume

g = 1; = 1(i)
For this sensor element we then have that

' Up-U
1) = t, + (i — 1)4r =°T"f

This gives us the intensity I as a function of the index, i,

o~ UO - Urtf
1 = K{t, + (i — 1)41)

(2.4)

(2.5)

(2.6)

27

(2.8)

Note that although the intensity is constant in time t for each sensor in (2.8) which is the
I-value which causes switching at time tre, I is now a function of tref and hereby also of the
index i as indicated in Figure 2.4. As a consequence, the output quantity i, which is the only
one the system can make use of, has an inverse linear dependence on the pixel intensity I

according to (2.8).

PAGE 170 OF 241

Z v'--———""""‘"

I I In 1 2
Figure 2.4. The relation between index, time, and intensity

2.2 LAPP1100 - a 1D architecture

The LAPP1100 [8] architecture is based on the traditional bit-serial SIMD architecture
found in a number of different machines, [3], [9], [4], [10], [14], [16], and [18]. As shown in
Figure 2.5, LAPP1100 is a 1D SIMD processor array with some extensions to handle image
operations of global nature. The processor is register-accumulator oriented and typical op-
erations use one of the registers as the first operand and the accumulator as the second oper-
and. The result is stored into the accumulator destroying its previous value. Multi-level
(gray-scale) operations are performed bitwise using the registers for intermediate storage
(bit-serial operations). The size of the array is 128 and the memory consists of 13 1-bit regis-
ters per SPE. To be slightly more general in the description below, we set the array size toN
and the number of registers to M.

] | photodiode array (pd)

register (10 — rM)

------- Instruction | g
decoder

Micro-
controller

-

Status L
register

N N D NS
NN \ALU / > e]

—
| H accumulator (a)
and carry (c)

Figure 2.5. The LAPP processor (p_rogramming m'odel)
In Figure 2.5 there are N 1-bit busses connecting the photodiode array, the registers, the
ALU, and the accumulator. For conceptual reasons, the N busses are bundled together. In

-7

PAGE 171 OF 241

the floor plan of the chip each individual SPE and its 1-bit bus forms a vertical slice, which is
shown in Figure 2.6.

Uy

Propagation to/from GLU Propagation to/from
left neighbor right neighbor
To/from left To/from right
neighbor 11] neighbor
NLU
PLU
A C

Figure 2.6. The SPE in LAPP

The ALU is purely combinational and permits point operations (PLU), neighborhood
operations of type 3x1 template matching (NLU), and global operations (GLU to be
explained). Operations belonging to different classes can be combined into one instruction.
As an example, the instruction ‘

and (010) rS

will accessregister 5 and will then apply local template matching with (010) to each position.
Allmatching positions are set to 1 and then AND-ed with the previous value of the accumu-
lator. The result is that only those 1’s in the accumulator which correspond to isolated 1’s in
register 5 will remain as 1’s in the accumulator. This instruction is performed in one clock
cycle (currently 1 ps). In place of r5 one could write pd for the photodiode, a for the accumu-
lator, or c for the carry register. The local templet can be omitted which is equivalent to
using the template (x1x).

A typical GLU instruction is
Ifill a

1II-8

PAGE 172 OF 241

which sets all the accumulator bits to 1 if they are to the right of the leftmost 1. The architec-
ture of the GLU part will be discussed more in section 11.

One instruction is particular to the photodiode array. This instruction is
initpd

which pre-charges the photodiode as described in the previous section. Sampling (read-out)
of the binarized photodiode output is done whenever pd is used as an operand. Thus

1d pd

will store the current value in the accumulator. The accumulator content will then depend
on the exposure time which is given by the time elapsed between the “initpd” and the ”1d pd”
instructions. As was mentioned earlier the readout is non-destructive which makes it possi-
ble to do several ”1d pd” instructions during the exposure.

The LAPP chip is equipped with two 8-bit output status registers for global data. The first,
POS is only valid when there is a single position set to 1 in the accumulator. The content of
the POS isthenindicating this position. The second register, COUNT delivers a count of the
number of PEs which has a 1 in its accumulator registers.

The current LAPP chip implementation uses an external 16-bit wide bus to communicate
with a controlling micro-processor (not shown in Figure 2.5). The micro-processor issues
instructions to the LAPP processor and uses the status registers to read out the result. A list
of the instructions used in this thesis follows below. A Pascal-like notation will also be used
throughout this part of the thesis.

Id pd Load accumulator with comparator output

1di pd Load accumulator with inverse value of comparator output

initpd Precharge (initialize) the photodiode

Ifill a Set all accumulator bits to 1 which are to the right of the leftmost 1

str0 Store the content of the accumulator in register 0
cra Set the accumulator to 0
or r0 Or the accumulator with reg 0 and put the result in the accumulator

xor 10 Exclusive-Or the accumulator with reg 0 and put the result in the accumulator
andr0 And the accumulator with reg 0 and put the result in the accumulator

We like to make the following final comments. The length of the programming examples to
follow are deliberately kept to a minimum. Even so, NSIP programs in general often turn
out to be very compact. It should be noted that the LAPP architecture is just one out of many
possible architectures where the NSIP concept is applicable. We have chosen LAPP be-
cause of its simplicity and because it has been tested and found to work well in practice. In
the sequel most of the operations and algorithms will be described and exemplified using a
linear array. However, one should bear in mind that the principal results are applicable also
to 2D NSIP systems which will be dealt with in section 10 and forward.

PAGE 173 OF 241

3 Near-Sensor Image Processing algorithms
3.1 General

Practically all NSIP algorithms have the structure illustrated by the flow chart in Figure 3.1.
First, the photodiode in each SPE is initialized (=precharged). Then, a program loop is
executed and for each pass the outputs from the comparators are interrogated and some
logical operations are performed. When a certain condition is met the loop is terminated
and a final feature extraction is performed.

Initiate photodiode

Y

Read comparator
output

Perform logical 'y
operations

Repeat until
Condition is

Perform feature
extraction

Figure 3.1. The flow chart for NSIP algorithms

In pseudo PASCAL Figure 3.1 correspond to:

Initialize photodiode
REPEAT
Interrogate the output and perform operations
UNTIL Condition is met
Perform feature extraction

The interrogation/execution loop is the foundation of the NSIP concept and easy to recog-
nize in the routines which we will describe below.

3.2 Finding the position of maximum intensity

Thisis an extremely simple example of NSIP. After precharge which takes place at time t=0,
we interrogate the array of the photodiodes repeatedly. For a one-dimensional row of SPE’s
the initial status is shown in Figure 3.2(a). Then, the photodiodes will be discharged at a rate
which is proportional to the incoming light. At a certain point in time t>0 the voltage over
the photodiode array may look like Figure 3.2(b). During the discharge process we continu-

1I1-10

PAGE 174 OF 241

ously interrogate the output from all comparators to sce if the threshold has been crossed
somewhere. When this occurs, the loop is terminated and we obtain the position of the pixel
with the highest intensity by performing an LFILL operation on the accumulator followed
by a COUNT, see Figure 3.2(c).

Up
Ul’cl
X
Figure 3.2(a). Photodiode array status at t=0
Uy
Urel
X
>
Figure 3.2(b). Photodiode array status at t>0
[T
Uref =
X
acc: ¢ =
After « ——
Ifill COUNT

Figure 3.2(c). Photodiode array status when brightest intensity reaches Upep

Im-11

PAGE 175 OF 241

Using NSIP syntax this procedure can be described as:

initpd ; Initialize the photodiode
REPEAT
Idi pd ; Load accumulator with inverse value of output
UNTIL COUNT <> 0
Ifill a ; Fill to the right

answer:=COUNT

The ”initpd” statement precharges the voltage over the photodiodes in the array to Uy. The
”1di pd” instruction loads the inverted values of the photodiode comparator into the accu-
mulator. Thus, zeroes will be loaded as long as none of the diodes have reached the thresh-
old level. The ”"UNTIL COUNT< >0 is the conditional branching operation which makes
use of the global operation ’"COUNT?”. The "Ifill” is a global instruction which sets all bits to
the right of the leftmost ”1”. This will work as a tie-breaker in case several ”1”s occur during
the same sampling period but also, as a means to obtain the position of the leftmost ”1” by
reading the status variable COUNT. The status of the array after the termination of the loop
is illustrated in Figure 3.2(c). At the bottom the accumulator content is shown at the in-
stance of the first threshold passage and after the "Ifill” operation.

This technique of finding the position of the maximum intensity is used in the range from
sheet-of-light application to be described in section 14 below.

Finding the position of the minimum intensity requires the following changes of the max
finding program:

initpd ; Initialize the photodiode
REPEAT
st 10 ; Store previous value of output
1d pd ; Load accumulator with nen-inverse value
UNTIL COUNT =0 ; Until all have passed
Ifill 10 ; Fill previous readout to the right

answer:=COUNT

For comparison, in a conventional image processing system, the position of the maximum
intensity is found in the following way. First, we will acquire the image by exposing the
photo-sensitive sensor (CCD/photodiode/..) a given time. This exposure time should be set
to ensure that the maximal value is not over- or underexposed. The analog values which we
get from the sensor are then A/D-converted with an appropriate precision to ensure that we
can distinguish between the largest and the second largest intensity. We then scan the sensor
values, comparing each value with the maximum value found so far and exchange that value
and its corresponding position when we find a larger value.

Note that in the traditional method we have to pre-decide an exposure time. In NSIP the
exposure time depends on the light condition as it is exposed until at least one position accu-
mulates enough light energy. Thus, tolerance to various light conditions has been traded for
data-dependent non-fixed exposure time. To obtain such adaptation in traditional systems
an outer control loop is needed to modify the exposure time and maintain a reasonable sig-
nal-to-noise ratio. All this comes for free in with NSIP.

III1-12

PAGE 176 OF 241

In the NSIP max finding example, the self-adaptivity to various light conditions is not limit-
less, however. Extremely low intensity levels would require extremely long and data-depen-
dent operation times which might be prohibited in a real-time application. To a certain
extent long operation times can be shortened by decreasing Uy—Uryeg but only at the cost of
lower signal-to-noise ratio and reduced possibility to distinguish between high intensities.
In fact, for any NSIP-application the global controllable system parameter Up—Urershould
be optimized in a trade-off between speed and noise sensitivity. A more complete error and
parameter optimization will be presented below in Section 7.

3.3 Detecting positive gradients

This operation is equivalent to computation of the gradient (1D gradient = derivative) fol-
lowed by thresholding with the threshold set to 0. The gradient kernel to be used is (Ed,

The photodiodes are precharged at time t=0and then exposed to the image. Then, the pro-
cessor array executes a program which interrogates each pixel position to see if the voltage
has passed the threshold and if its left neighbor has not. If this is the case a register flag is set
in that particular SPE. Figure 3.3(a) shows the status at a time t>0 when there is one posi-
tive gradient which has just barely passed the threshold Uyes. Figure 3.3(b) shows the final
result when all the voltages have passed the threshold and all the positive gradient pixels
have been ORed together.

[0

)

Uret H i
atiiy
} x
.t >
1d (10x) pd: »
acc:
Figure 3.3(a). A positive gradient is detected
Uy
Uref gz (]
— = ' 1 L : -_L —‘—J_-' L = -1: 1
A {1111 S
Lo C W oo | x
T " : = .] T >
r0: : x . l e

Figure 3.3(b). The result when all pixels are below the threshold voltage

This operation is insensitive to various light intensities since it only measures the differ-
ences, and not the absolute value, of neighboring pixels. However, for very dark pixels the

II-13

PAGE 177 OF 241

time-out for the total operation might prevent recording of their gradients. Also, if two
neighbors have almost the same intensity they might switch their binary outputs so close in
time that their gradient escapes detection.

The following NSIP program will perform detection of positive gradients:

clra
st 10
initpd
REPEAT
1d (10x) a
or 10
st r0
1d pd
UNTIL COUNT =0

The first two instructions clear the content of the accumulator and register 0. In the loop a
”1” is accumulated in register 0 for all those pixels which have passed the threshold while
their left neighbor has not. The ”x” used in the templet field in the Id instruction means
”don’t care”. The loop continues until all photodiodes have passed the threshold
(COUNT=0).

3.4 Median and rank order filtering

Traditionally, median filtering is performed as a series of comparisons and multiplexing of
grayscale values. Figure 3.4(a) shows how a three-way median operation can be performed
with one max/min-, one max-, and one min-operation, where the max/min-operation is
shown in Figure 3.4(b).

A
In; — 1 Max{Iny,In;}
B » Median{A,B,C})
In, ——# Min{Iny,In;}
c ——
(a) (b)

Figure 3.4. Three-input median operation

In NSIP we use the fact that for each neighborhood of three, the second pixel to cross the
threshold is the median pixel. To keep track of the events we use three binary registersrs, 4,
and rs, which are set to 1 if the center-, the left-, or the right pixel is the median. The incom-
ing value of the comparator output will be stored in r; and the result of the previous
interrogation in 7.

Equations (3.1), (3.2), (3.3), and (3.4) are used to compute the median. As they are carried
out sequentially we will favor the center pixel to the neighbor pixels, and the left pixel before
the right pixel as a tie-breaking rule. Equation (3.1), indicates that the center pixel is the
median if the center pixel has passed the threshold since the last interrogation (r2&r;=1)
and at least one of the neighbors has passed ((1xx)r1&(xx1)r1=(0x0)r; =0) and no median
pixel has yet been determined (r4 & 15). Equations (3.2) and (3.3) perform corresponding
operations for the left and the right neighbor respectively.

II1-14

PAGE 178 OF 241

r3 := 2 & rl & (0x0)rl & (rd & r5)) + r3 (3.1)
r4 := (IxX)r2 & (lxx)rl & (x00)rl & (r3 & r5)) + rd (3.2)
r5 := (xx1)r2 & (xx1)rl & (00x)rl & (r3 & rd)) + r5 (3.3)
r2 := rl (3.4)

The program starts by first resetting a number of registers. The loop is then performed ac-
cording to (3.1), (3.2), (3.3), and (3.4).

cra
strl.5
REPEAT
ldrl
str2
1di pd
strl
1di r2
andrl
andi (0x0) r1
andi r4
andi r5
or 13
str3 ; Store center pixel pointer
1di (1xx) r2
and (1xx) r1
andi (x00) r1
andi 13
andi r5
orr4
st r4 ; Store left pixel pointer
Idi (xx1) 12
and (xx1) rl
andi (00x) r1
andi 13
andi r4
orr5
st 15 ; Store right pixel pointer
Idrl
UNTIL COUNT=N

This NSIP-operation results in a neighborhood pointer to the position of the median. A dif-
ferent problem is to generate the median value in the neighborhood in the same representa-
tion as the input, i.e. a signal which is 0 before the median pixel has passed the Ures, and 1
thereafter. Again, assume that we use a 1x3 neighborhood. The Boolean function which sets
the output (=r3) to one when the median pixel in the neighborhood passes is

r2 = (lxx) rl & rl + rl & (xx1) rl + (Ixx) rl & (xx1) rl =
(11x) rl + (x11) rl + (1x1l) rl (3.5)

II-15

PAGE 179 OF 241

Figure 3.5 shows the function of Equation (3.5) graphically. The t-value when r; switches
represents the median for the neighborhood over the equation

U,-U, . .
2 _ (3.6)

median

Imedian = kt

b GRS

tmedian
Figure 3.5. The median as a logic function of the three inputs
The NSIP program for this procedure is as follows:
initpd
1di pd
REPEAT
strl
Id (11x) r1 ;
or (1x1) r1 ; from Equation (3.5)
or (x11) r1 ;
str2

Idi pd
UNTIL COUNT=N

Here, r0 holds the comparator output and r1 the median. As willbe shown in section 3.6 this
median signal can be used as input to other NSIP operations interwoven in the same pro-
gram.

In the same manner we can obtain any rank order function. For instance, a max function is
implemented by

r2 = (1xx) rl + rl + (xx1) rl = (000) rl (3.7)
and a corresponding min function by
r2 = (Ixx) rl & rl & (xx1) rl = (111) rl (3.8)

The right hand side of (3.5), (3.7), and (3.8) are all positive Boolean functions. (A positive
Boolean function may always be expressed with non-inverted input variables.) Evaluation
of such functions can be done with so called stack filters [17] which require the input vari-

III-16

PAGE 180 OF 241

ables to be monotonously growing during evaluation. Thus, a binary variable may not switch
back from value 1 to value 0 once it has been set. Obviously, this condition is fulfilled in our
case as illustrated in Figure 3.5 and therefore, the NSIP implementation may be called stack
filter. However, the signal representation illustrated in Figure 3.5 is also equivalent with the
Umbra transform [15] which will be discussed in section 8 of this treatise.

3.5 Histogramming

The number of SPE’s where the voltage has dropped below U,s varies over time, for
instance as in Figure 3.6. This is the integral of the histogram of the image t ¢f(x) which will
be referred to as Inthist. To obtain the histogram we should differentiate the Inthist data.

COUNT

0

t
Figure 3.6. The content of COUNT as a function of time = Inthist

Program for differentiating the inthist:

Old_Count:=0
initpd
FOR i:=1TOn DO
1di pd
hist[i]:=COUNT — Old_Count
Old_Count:=COUNT
END-FOR

An alternative is to count only those SPE’s for which the voltage passed the Uy since the
last interrogation. Obviously, this will give us the histogram directly.
Program for histogramming:

clra
st r0
initpd
FOR :=1TOn DO
1di pd
xor 10 ; accumulator is 1 only when passing threshold
hist[i]:=COUNT
orr0
st 10
END-FOR

I-17

PAGE 181 OF 241

The variable n corresponds to the number of bins, and hist[i] is the resulting histogram. In
each SPE 1y is used to signify that this SPE has already contributed to the histogram. The
”xor r0)” instruction will set those pixels which contribute to the most recent bin.

It should be observed that histograms created by the above programs are non-linear in light
intensity. This is due to the non-linear relation (2.3) between the light intensity, I, and the
time, tres. Different schemes to obtain linear and non-linear relations are discussed in sec-
tions 5 and 6. It should also be noted that storage of the histogram data takes place in the
control unit (host computer), not in the NSIP array.

3.6 Combining operations

Image processing tasks often require a combination of several image operations. As an ex-
ample, Figure 3.7 shows a sequence of operations which measures the area occupied by pos-
itive gradients. The image is first subjected to median filtering to suppress noise. We then
detect where we have positive gradients. Finally, we count the number of these pixels to get
the total area.

Median _ | Detecting . | Area
» filtering o positive " | measuring »
gradients

Figure 3.7. A three stage image processing operation

The median filter routine is obtained from section 3.4, Equation (3.5), which delivers an
output set to one as soon as the median pixel has passed. This is used by the positive gradient
detector in section 3.3. The output from the combined NSIP routine is a count which repre-
sents the total area of positive gradients.

clra
strl
initpd
REPEAT
1di pd ' ; Input
st 10
1d (11x) 10
or (1x1) 10
or (x11) 10 ; Median = ab+ac+bc
st r0

1d (01x) 10 ; Positive gradient ?
orrl
strl

1d r0
UNTIL COUNT=n

Idrl
C:= COUNT ; Area/length '

II1-18

PAGE 182 OF 241

The above example underscores some of the principles of NSIP. The first processing stage is
the sensor and comparator which delivers an information about the t;e¢-value in its special
“thermometer” representation. This is input to the median filter which has the same repre-
sentation as output which is fed to the positive gradient detector. The output from the gradi-
entdetector is not delivered in thermometer representation, however. Instead, the output is
accumulated over time and when the interrogation loop is finished we take a global count of
the result.

The general structure of a composite NSIP program is as follows:

Initializations
initpd
REPEAT
1di pd ; Input
st 10
rl := Operation_I1(r0)
12 := Operation_2(r1)

rm ;= Operation_m(rm—1)

Idri ; Termination control operand
UNTIL COUNT=n
Id rm
C:= COUNT ; Feature extraction

All the operations in the inner loop are Boolean and the data transfers between the opera-
tions are implicit inside the loop.

II1-19

PAGE 183 OF 241

4 Adaptive thresholding

4.1 Using the maximum intensity

Adaptive thresholding means that with a given threshold we want to find an exposure time
so that the binarized image is optimal with respect to some parameter or quality. In the first
case to be presented here, optimal thresholding is defined by the following procedure, see
Figure 4.1. Initially Ut is set to 10% of Uy. When the first pixel in the image passes this
threshold Uyt is changed to 55% of Uy. The binary image is then red out.

55% Uy = =
L {H
10% U, o X
acc — — —

Figure 4.1. The result from the adaptive exposure

A generalization of the same idea would be to set the initial threshold to A % of Up and the
read-out threshold to (50+A/2) %. In an ideal noise free situation the binarized result will
not depend on A. Higher thresholds will automatically bring about shorter integration
times. The advantages and disadvantages for high and low thresholds were discussed in Sec-
tion 3.2.

Program for performing the operation in Figure 4.1:

ref:=0.1*Up
initpd
REPEAT
1di pd
UNTIL COUNT<>0
ref:=0.55 * Up
Idi pd

The variable "ref” holds the value of the reference voltage. First, a low value is used to en-
sure that the highest intensity pixel exposes the photodiode array up to 90 % of the satura-
tion level. When this has happened the reference is set to the middle of the amplitude range
and a new sample of the image line is read into the accumulator.

4.2 Pattern oriented thresholding

Another variation of adaptive thresholding is to interrogate the photodiode array until the
pixels of an expected object or a specific pattern has passed the threshold and comes for-
ward as a binary output. For example, if we want to detect the position of the object with the
size S of connected pixels in a single-object image, we can use the following simple bina-
rizer.

II1-20

PAGE 184 OF 241

initpd
REPEAT
1di pd
UNTIL COUNT>S
Id pd
Ifilla ; Fill to the right
answer:=COUNT

In a more complex case we have noise or unwanted light flashes in the image. Then several
smaller objects (noise spikes) are to be expected. To avoid these we interrogate until an
object larger than a predefined size shows up. The size of an object is obtained with the
operations I/d (01x) Ifill and mark which together reset all pixels except for the pixels in the
leftmost object. The net effect of screening out small objects is a kind of median filtering.

initpd
REPEAT
1di pd
st 10
ledge 10 ; Get no of objects
Max_size:=0
WHILE COUNT > 0
1d (01x) Ifill 10 ; Set leftmost pixel
mark r0 ; Mark leftmost object

Max_size := max(Max_size, COUNT)

xor 10 ; Remove leftmost object from image
st10
ledge 10 ; Get no of objects
END-WHILE
UNTIL Max_size > constant

1d pd

Several other types of assumption and a priori information about the object can be utilized
in the NSIP concept. It is interesting to note that a device which exploits a similar technique
to achieve robust thresholding was described by Lyon [13] in his Optical mouse. Here, a
hard-wired logic network interacts with the photodiodes to achieve a particular sensitivity
to the periodic pattern which is printed of a highly reflective board.

4.3 Histogram based thresholding

Inimage processing it is very common to assume a bimodal histogram and set the threshold
at the min-point between the two maxima. Figure 4.2 shows a typical bimodal histogram and
ideally; the histogram contains two different gaussian distributions which correspond to the

background and the object. The min-point has a positive zero-crossing of the first derivative
of the histogram [1].

21

PAGE 185 OF 241

Hist(T)

Intensity
I - 1

T
Figure 4.2. A histogram and its optimal thresholding

In awell-behaved bimodal histogram we can easily compute the first derivative of the histo-
gram by approximating the derivation with some differentiating operator. In the result
Hist’(I) the point T is located where the sign has its positive zero crossing, i.e. where the sign
changes from minus to plus, see Figure 4.3.

Hist’(I)

Intensity

AN
ZAnad

Figure 4.3. Zero-crossing of the first derivatives

In the case of a discrete histogram the choice of the derivative estimator is critical. For the
very noisy histogram shown in Figure 4.4, the corresponding convolution kernel must be
wide and large, suppressing high frequencies to avoid false zero-crossings.

Hist(I) ‘
AL

Figure 4.4, A noisy histogram

N
| I - Incnsxy

Large convolution kernels may create an excessive amount of computation. To avoid this we
propose the following differentiating kernel gq(I)

g =11l =1-lo—1=1=1*11o1*-1-1u—-1 (0

n n n n

We also propose to use the Inthist instead of Hist as input to the thresholding function. As
was shown in section 3.5 the Inthist is as easy as Hist to compute. We then propose to com-

pute
Hist'(I) = g,*Hist(x) = [1 — 1] * g, * Inthis«l) = 4.2)
[100..0—=200..01]%* Inthist(x)

n n

where we allow ourselves to employ the simple [1 —1] kernel to estimate the second deriva-
tive in (4.2). To compute Hist’(I) in this manner in the host computer is trivial.

111-22

PAGE 186 OF 241

S Variable sampling time

5.1 General

The result from the comparator in the SPE as a function of time is the thick line in Figure
5.1.If we interrogate the comparator output we will first get a number of 1°s followed by 0s,
where the number of leading 1's is a measure of the intensity. This is how we made use of the
intensity in the previous sections.

Precharge Discharge
mode mod .
Uy ~ ¢ ———. photo-diode
~o voltage U(t)
»p» ~ ~
SN output
~
\\
Ures >
~
~
~
\\
~
N \ t
"0” ~
tret

Figure 5.1. Output from an NSIP element

In the analog domain we observe the following. The voltage U(t) over the photo-diode as a
function of time is a linear function shown as a dotted line in Figure 5.1 and can be written as

Uty = Uy — kit (.1)

As was explained in section 2.1 above, the time t,.; from the precharge of the photodiode

until the voltage reaches the threshold level and thereby changes the sign of the comparator

is inversely proportional to the illumination, so that
Uy-Uy i Uy — Uy

= — = = where K =

bef = TR 1 % -2)

In the digital domain, the time variable t is mapped by the interrogating program onto a new
quantity i, the interrogation cycle number. Obviously, by introducing a variable interroga-
tion cycle time we will obtain a relation between I and i quite different from the relation tye¢
and Iin (5.2).

An NSIP program contains a loop with a sequence of instructions which are repeated until a
certain termination condition is meet. As pointed out before, a typical NSIP program has
the following structure:

REPEAT
compute
UNTIL condition

Assume that the compute loop cycle time is tg and that the discrete mapping betweeniand t
is given by the time sampling set (t1, ta, .., i, ,.. , tN). Given a fixed threshold level Ureg, to

II1-23

PAGE 187 OF 241

obtain a specific linear or a non-linear relation between time t and the interrogation cycle i,
we insert a variable extra delay in the loop. These delays are called 8t; and may be stored ina
Look-Up Table (LUT). They are defined as

8, =t —ti—t, = A, —1, (5.3)

This will give us the following program structure:

wait(t)

FOR i=1 TON-1
compute ; execution time = tg
wait(dt;)

END-FOR

Thus, to realize a certain relation between i and I in a NSIP system we need to know the time
it takes to process one compute tq, determine the number of quantization levels N which is
also the number of times the interrogation loop will be executed, and, most importantly,
determine the mapping functions I=g(i) and i=g~1(I). These functions are given by the
parameters N, tq, t1, and a set (8ty, dty, .., 8t;j, .., 8tny—1) stored in a LUT.

5.2 Linear mapping

Figure 5.2 and Equation (5.2) show the intensity as a function of the time it takes toreach the
threshold. A linear mapping between time t and loop index i is to interrogate at N points in
time which are equidistant in intensity from Iy to I; so that with

Loy
al = (5:4)

The intensity I; which changes the sign of its comparator at interrogation event i is given by
the following linear function.

I =gl) =1 fG) =L —G—-1al =1, - (i - 1)%1_1—{“ (-3).
For the case N=5, Figure 5.2 illustrates that we want to find the sampling points t; to ts.
g
I j =%
L T
In

> ¢
tit2 ts

Figure 5.2. Equidistant sampling of I prolongs the time between two samples

If the photo-diode is precharged to Uy at t=0, the illumination intensity Iy will cause the
voltage to have discharged to the threshold voltage Upes at t=t; so that

II1-24

PAGE 188 OF 241

U,-U
e B | {_f (5.6)

I = {_< , (5.7)
Using (5.5) and (5.7) we get
G = (N - iy (5.8)

1)tl(i = 1)+ (N —1i)
In the special case where In=Al, which means that I;=N*Iy, (5.8) simplifies to

N
L EUNT L= 9

Comparing (5.9) with (5.7) we see that a positive change in the variable i maps on t; as a
negative change in Ij. This is illustrated graphically in Figure 5.3.

),

faq

13
() —
1 11

] — |] -
L b Iz I 1 2 3 4
Figure 5.3. The relation between index, time, and intensity

In this case, according to (5.3), the difference between two time instances At;, to be stored in
a LUT as §; is

at; =t —t; = tl(N— ; +Nl)(N—i) (5.10)

The iteration number that requires the fastest loop (shortest delay) is the first which is evi-

dent from Figures 5.2 and 5.3. This means that the value of At; to be selected must be equal
to or larger than tg which is the time to complete the loop without any delays.

= __u
ay =t =g_7 2l (5.11)

For the case (5.9), the time ty, which is the time for the lowest detectable intensity Iy to
reach the threshold voltage, is

II1-25

PAGE 189 OF 241

ty = 4yN (5.12)
If the first sample should be able to detect the intensity I at time t;, the number of possible

levels N according to (5.11) is bounded by

t t
N=di1=NN411aNoN<N (5.13)
The quantity ty might be a natural parameter to use since it may correspond to the maximal

time to be allowed for the task.

To conclude, by making the rather natural choice, In=AI, we have only two adjustable
parameters, N and tn. Another one is tg given by the actual NSIP algorithm. If either tyor N
is decided the other one is constrained according to (5.13).

As an example, if we have a system with a minimum loop delay of tg=10 ps it is possible to
make one of the following choices. We may set N to 100 for which (5.13) will give ust;=>1ms
and (5.12) ty=>100 ms. Alternatively, we may decide to make room for N<C200 which gives
us t;=2 ms and tN=>400 ms.

5.3 Non-linear mapping
We define a more general mapping from interrogation index i to intensity I; as

I = I, f() (5.14)

i
In the special case of linear mapping (5.5), (i) is
—i+1

fi) = N IES 1_% (5.15)

The constraints for f(i) is that f(1)=1 and f(i+1) <f(i), because I decreases and i increases
over time. In the same manner as (5.5) and (5.7) gave us (5.8), (5.14) will give us

_K _1
l‘-—Ti—lei) (5'16)

Assume that we would like to map I; logarithmically onto i, i.c.

I, = I, f(i) = Le 41 (5.17)

From (5.16) we get -

t, = 1,160 (5.18)
and
ty = 1D (5.19)

which gives us an N value of

I11-26

PAGE 190 OF 241

B 5.20
N = gindl+1 (5.20)
Again, the constraint is that the time difference between any two sampling events must be
cqual to or greater than tq.

o1 =t = et — 1D = il — ey =y, (5.21)
We notice that the difference is smallest for i=1, due to the factor eAl. This means that
net -1 =4, (5.22)
which can be viewed both as a constraint for t; and for A:

1y
SR (5.23)

ty ty
Az n(+g =4 , (5.24)

5.4 Data dependent mapping

The interrogation program in the section 5.2 has the following structure
initpd
initiate(time)
FOR i:=1TO N DO BEGIN
REPEAT
UNTIL time > 1 * N/ (N—=i+1)
compute_operation
END

Thus, in section 5.2 the delay in the REPEAT-loop is variable but predetermined and data-
independent. In this section we will see some cases where the delay is made dependent on
the incoming sensor data.

Histogram equalization is a procedure which quantizes the pixel intensities so that the same
number of pixels ends up in each gray-level bin. Using conventional methods this is a rather
complex operation. As was shown in Figure 3.6 in section 3.5 the count of the output from
the comparators over time is the Inthist of the image. This means that we should be able to
obtain equalization by just observing when the appropriate number of pixels have passed
the threshold. Given an image size of M and a bin number of N, this is an NSIP program for
positive gradient detection, as described section 3.3, performed on a histogram equalized
image.

FORi=1TON
REPEAT
1di pd
UNTIL COUNT>i*MIN
1d (01x) a ;1di pd : 1d (01x) a = 1d (10x) pd
END-FOR

I1-27

PAGE 191 OF 241

Note that the complete equalized image never exists in the NSIP program. Instead, the
outer loop uses one quantization leve] at a time of the equalized image to execute (in this
example) positive gradient detection.

Figure 5.4 shows graphically an equalization procedure with N=7. The count bins on the
vertical axis will all contain the same number of pixels. This is accomplished by sampling
(read-out) at times (11, .., t7) when the appropriate number of pixels have passed the thresh-
old.

Count

256

t1 ty t3 tg ts t6 t7
Figure 5.4. Histogram equalization

By changing the UNTIL condition in the REPEAT-loop of the previous program we can
modify the implicit flat equalized histogram to something of our own choice. In Figure 5.5 is
shown the Inthist for a perfect equalized case (a) and a case which allocates more dynamic
range to lower intensities.

Inthist(i)
M

Ny N
Figure 5.5. Different specifications of the Inthist

An NSIP program for this modified equalization without the gradient detection can be writ-
ten as '

I11-28

PAGE 192 OF 241

FOR i=1TO N;
REPEAT
1di pd
UNTIL COUNT>i*M;/N;
compute
END-FOR
FOR i=N;+1 TON
REPEAT
1di pd
UNTIL COUNT>M; +(i—Np)*(M—M)/(N—Ny)
compute
END-FOR

The graphic description of this operation, is shown in Figure 5.6.

Count

256

ty thtaty ts te t7

Figure 5.6. Modified histogram equalization

In fact, the Inthist could be modified to any monotonously growing function f(i) using the
following program.

FORi=1TON
REPEAT
Idi pd
UNTIL COUNT>{(i)
compute
END-FOR

A even more general approach to use the COUNT operation for data dependent mapping
of the grayscale of the input image is to wait, within each iteration, until a certain condition
to be satisfied. In the case of the histogram equalization, this condition is simply that the
right amount of pixels have passed the threshold. An example of a more sophisticated but
totally arbitrary case is to leave the inner REPEAT-loop when 5 new left edge pixels have
passed the threshold. This can be written as

1I1-29

PAGE 193 OF 241

FOR i:=1TO N DO BEGIN
sum:=0
REPEAT
st pd,r0
1d (01x) r0
sum:=sum+COUNT
UNTIL sum>5
1d 10
compute_operation
END

In a general case, the number which must satisfy the condition is a function f(i). In this case
the program may look like:

FOR i:=1TO N DO BEGIN
sum:=0
REPEAT
st pd,r0
compute_condition
sum:=f(sum, COUNT)
UNTIL sum>f{(i)
1d 10
compute_operation
END

II1-30

PAGE 194 OF 241

6 Variable threshold
6.1 General

In the basic NSIP formula, which defines the intensity I for which the output switches at time
t,

1) = H% (6.1)

the reference voltage Upes has so far been considered to be constant. However, in reality this
global parameter can easily be put under global control by the program executed in the host
computer. The Equation (6.1) should then be written

() = _Uo_k—f]"ff(t) (6.2)

Assume that we want to achieve a pre-specified I(t). Then, the function Uref(t) which deliv-
ers this effect is

Ueft) = Uy — k1 1(z) 6.3)
where the reference voltage is physically constrained as
0=V =V, - _ (6.4)

Now, the time t will also be mapped to the interrogation index i by a function t(i) and the
NSIP program can be written as:
wait(ty)
FORi=1TON
Set voltage to l},ef(i)
Idi pd
compute
END-FOR

where Uref(t(1))= Uset(i).

As in (5.14), the specified intensity function I(t) can be written as a function f(t) multiplied
with the intensity at the starting time, I(t1)=1;, as

I(6) = If(® (6.5)
Inserted in (6.3) (6.5) gives us
U f) = Uy—kt If(t) = Uy~ %(UO - U)F() (6.6)

As mentioned above, the executable NSIP program needs the function ﬁref(i) rather than
Upes(t). However, if we assume that t(i) is linear (constant At;) this mapping is trivial and for
the time being we may consider Ut¢(t) as our main target.

6.2 Linear mapping

Afunction f(t) which delivers a general linear mapping between the intensity and the time t
can be written as

III-31

PAGE 195 OF 241

_ _ t_tl II_IN .
@ = 1-7—F - (6.7)

and illustrated in Figure 6.1.

W L Iy ()

Figure 6.1. A mapping between time and intensity and its corresponding f(t)

From (6.7) we get

Ug - Uy 5L -1y
Upft) = Up = =4 (: + (1t -) =T (6.8)

which is a second order polynomial with a parabola shape as shown in Figure 6.2.
There are several degrees of freedom in (6.8) but we have at least (6.4) as a limiting condi-

tion. It would seem optimal to place the min-point at U=0 which means that the derivative
of Uref(t) should be zero when Upe(t) is zero. The derivative of (6.6) is

U,-U
GUA) = === + 11 @) (69)
which is zero when
fO +1f@) =0 (6.10)

From (6.7) we find that minimum occurs at

=4 L -t
I A M @11

and using Uper(tm)=0 we get

U, = U0(1 ———'1—) (6.12)

Assume that we use the linear mapping of time onto the index i so that
iy =t + (@ -1, (6.13)
Substituting ty, Iy, and Iy using (6.13), in (6.8) gives us

U = Uy - (M"_“),(fi; DDty gy (6.14)

PAGE 196 OF 241

The formula for the first threshold, (6.12), is now

2
-y [Nyt
U, = Uo(m) (6.15)

We also know that Uy=Ug—kI1t; which gives us
2 U,
(Nty+1) = 4Ntdk—]—° = 4Nty 1, (6.16)
1

where ty is defined as the time it takes for the highest detectable intensity, I3, to reach the
zero level, which is equal to t; if U1 =0. ’

Uy Uo

ty = d, ST - Ulll (6.17)

Thus, using (6.16), t; can now be written as

ty = [f4Nt, t; - Nt, (6.18)

which yields

22—t + 2 /2 — 1t :
N = - d =4 for 4>y (6.19)

Hence, the maximum number of levels N is four times the quotient between the time it takes
for the highest intensity to completely discharge the photodiode, ty, and the loop time, tq.

Figure 6.2 shows a case with N=8. The intensities Ij, %I, ¥2I;, and %I, are marked in the
Figure and one can easily see that if tq is doubled then N is halved, as in Equation (6.19).

\\\\\
\\\\\
~
\\%11 t
a ‘n >
ts t7 tg=IN

Figure 6.2. Illustration of where the samples are taken

II1-33

PAGE 197 OF 241

6.3 Non-linear mapping

The general formula (6.6) for U,¢(t) will now be used to obtain a pre-specified non-linear
function I(t). We notice that Uj still must satisfy (6.4) and to make sure that we have a ther-
mometer output from the comparators, i.e. that once the comparator have changed from 1
to 0 it will stay there, we must also satisfy the requirement of being monotonically which
means that

iy = 41, 0] <0 = zl‘i L) < 0 (6.20)
As an example let us prescribe the following exponential relation between I and t.

I0) = I, e 41 = [f(1) (6.21)
In order to use the maximum dynamic we use relation (6.10) which gives us

e Mn — Aty e M) = 0 = gy = + (6:22)

When inserted into (6.6) we get

1, _ _ Up-U; n-1 _—
Uelz) = Up A el =0 (6.23)
and
Uy = Ug(1 — 14! ~41) (6.24)

By combining (6.6), (6.21), and (6.24), we finally get the reference voltage

U L) = Uy(1 = tde 141 (6.25)

1134

PAGE 198 OF 241

7 Error analysis

7.1 Error model

The basicNSIP sensor element is shown again in Figure 7.1. For the present purpose we will
model its function slightly more detailed as follows. The incoming light intensity I creates a
photodiode current Ig, where g is the photoelectric gain. This current discharges the capaci-
tor C so that the voltage U varies over time as

Uiy = U, —g—CI,t (7.1)

precharge Yo
transistor

_‘{ l: threshold

circuit
U
+
I - Output
C
g(I+Ip) Uret

Figure 7.1. An NSIP sense element

The photodiode has a dark current which we prefer to model as an (unwanted) extra light
intensity contribution I,

U = Uy — ?(I%I")x (12)

Thus, the time it takes to reach a certain voltage U for a certain intensity is

- _C . _C
W = m(uo - U) = MU,, (1.3)

where Uy is the discharge voltage. Due to imperfectness of the manufacturing process the
photodiodes will have different characteristics. To map these effects on the time axis we dif-
ferentiate (7.3) with respect to the five parameters C, g, I, Iy, and Uy, and take the absolute
value of each term.

_ . (4c 48 au, a1, A%
At_t(C+8+Ud+I+Io+I+IO (7.4)

II-35

PAGE 199 OF 241

We interpret the differentials in (7.4) as follows.

AC deviation in uniform capacitance C

AU deviaticon in comparator offset plus voltage drop over the precharge
transistor

Ag deviation in photoelectric gain

AT deviation in incoming light

ALy deviation in dark current

The deviation in incoming light will hereafter be omitted since we are only modeling the
measuring system and not unwanted noise in the image itself. The fourth term in (7.4) may
therefore be omitted. Also, we replace I+I using (7.3) which gives us

= [4c 48 au | Al) L AU
At—t(c+g+ud+CUdgt —tUd (7.5)

where At is the uncertainty in time and AUy, is the total uncertainty in voltage at the
comparator input at time t. The uncertainty in time At increases linearly with time, except
for the contribution of the dark current which grows quadratically. Normally, it is possible to
reduce the uncertainty by using a low threshold voltage Uy, which in (7.5) means a large
Ug. Very long exposure times will be prohibited by the variation in the dark current, which
grows quadratically with t.

7.2 Variable sampling time

To avoid ambiguity, we will now change the notation for the interrogation loop index from i
to n. Also, for the time being we will allow ourselves to treat n as a continuos variable.

No assume that the loop index n is a monotonous function n(t) so that

- andt
4t = anZ (7.6)
Let us now identify the quantity At in (7.6) with the uncertainty At in (7.5). The combination
yields

_dn,[4C 48 4aUu, 4Ly
An—d[z(c+g+ud+CUdg1 7.7

Equation (7.7) expresses the amount of uncertainty, i.e. error liability in the loop index as a
function of time t, the mapping function n(t), the physical parameters C and g of the sensor
model, the dark current Iy, and the globally controlled parameter Uy. The latter is assumed
constant over time.

For best performance it seems reasonable to require that An is constant over time. This is
not withstanding the obvious fact that An is decreasing with increasing Ug=U(—Uy,s. Let
Utes be constant over time. To simplify the formulas, let

_4C 48 AU
= ErerY (7.8)

II1-36

PAGE 200 OF 241

al,

so that

Adn = Et(a + bt) (7.10)
which is constant if

an _ __1 =1_b 1

dt t(a + br) at g21 4 by (7.11)
The differential equation (7.11) has the solution

_1 b b
n@) = %o - L1+) (1.12)

For the case with no dark current (b=0), n(t) is a simple logarithmic function as illustrated
by curve (b) in Figure 7.2. With the dark current, the mapping function will be like curve (a).
The curve (c) illustrates the linear mapping, described in section 5.

A,

(2) (b) ©

[= - n

Figure 7.2. The relation between index, time, and intensity for different variations
7.3 Time variable threshold

For a fixed threshold voltage Uy.f, we have an uncertainty in time of At given by (7.5) and
(7.7). With a variable Uy, let the derivative of Upe(t) in Figure 7.3 be Upef(t). As before
the slope of U(t) is

U = -2 = -4 (7.13)

Let the differential AU be defined as in (7.5), i.e.
-y (4C 48 au | Ao
AU,y = Ud(C + z T U, +CUdgt (7.14)

11-37

PAGE 201 OF 241

Then, from Figure 7.3, in the vicinity where t=tyef, U=Ui,s, and Ug=Uy— Uy, we have

AUy AUy

At =t Unf’ = = tt Um/' TU, = Umf (7.15)
which is a generalization of (7.5). Combining (7.14) and (7.15) yields
t(%c - i:35)(U0 = Uyp) + 14U + 2412
At = U, +0,- T, (7.16)
U
A

Ug
Uret(t) +AUtor . = Uref(t)
Uret(t)

U()

>t
tref tref+At

Figure 7.3. The effect on the uncertainty in time when moving Up¢

It would be tempting to find a function Ur,(t) which would make At constant in (7.16). This
is equivalent to find a solution to the following differential equation

(¢ Upf + U = Upy) - const = r(%c + %)(UO — Uy +1aU + 2418 (117)

Lacking a closed form solution to this problem, we will evaluate some particular viable
cases. The case of constant Ut is already treated above and is a special case of (7.17). The
second simplest form of Ueg(t) function is a straight line.

t—1

as illustrated in Figure 7.4. From (7.18) we have

' 1
Urc[= l_,:,-:_Il'UO (719)

and inserted in (7.16) we obtain

_fac _4g\tn—t . AUt —t | Alhgin—1 :
At t(c+g) iy +tU0 I +tU0C o (7.20)

1I1-38

PAGE 202 OF 241

|
Up .
U E'
Uret(t) E :
' —
t1 tref tN
Figure 7.4.
The uncertainty for t=t; is
_in—t [ac 48 au 4Alpg
a4t = Ty (C+ +U0+1U0C (7.21)
and for t=ty
Alyg
ty —t +t 7.22
- (-4 + 0 gE) (7.2
At(ty) is equal to At(ty) for
AC A8 _tn—tau %~ BAlg
cT® T4 U, T T,C 2)
For ty=N*t; we have
ac 48 AU | 2 Alyg
Tt = W-1g +(N —1)le (7.24)

which gives us a relation between the different uncertainty contributions. Another relation
is obtained in the case when ty=t1+(N—1)tg.

c,dg _ WN-Dyy, W% —2N- 14l
¢ 8 no U o U, C

(7.25)

Thus, from (7.24) we see that the relative uncertainty in the photoelectric gain Ag and the
capacitor AC should be in the order of N times greater than the uncertainty in the compara-
tor AU and a factor N? time greater than the uncertainty in the dark current Al in order to
have a constant tota] uncertainty in read-out time At. Equation (7.25) can be interpret in the
same manner, given the quotient tg/t;.

-39

PAGE 203 OF 241

8 Grayscale morphology

Grayscale morphology is an extension of binary morphology [15]. In binary morphology var-
ious operators are applied to a binary image. Typical operators are expansion, erosion, and
thinning. In grayscale morphology these operators are generalized to operate on grayscale
images where the image is viewed as a terrain map and the pixel value is interpreted as
height. Such representation of the pixel value is called the Umbra transform. An umbra
transform AU of a function f(x) is defined as

I yE W
V) = ulxy) = [O N @®.1)

which is illustrated in Figure 8.1 where (a) represents the original function and (b) the u(x,y)
function. Note that u(x,y) is a binary 2D function. In a similar fashion, the Umbra transform
of a 2D function f(x,y) defines a binary 3D function u(xy,z).

A A

f(x) \/\/ y

» X

(2) (®)

Figure 8.1. The Umbra transform

Y

NSIP is particularly well adapted for grayscale morphology. The reason is that the output
from the individual pixel comparators as a function of time corresponds to the Umbra re-
presentation of an image. Figure 8.2(a) shows a coarsely digitized 1D grayscale signal,
where the Y-axis represents light intensity. The Umbra representation of this signal is
shown in Figure 8.2(b). At time t=0, no pixels have passed the threshold. When t=1 the
comparator with the pixel corresponding to the highest intensity in Figure 8.2(a) is set. At
t=2 another comparator is set, and at t=3 three new comparators are set, etc. As pointed
out in section 3.4 this is the same as the stack or thermometer representation [17].

] t=0

t=1

] t=2

t=3

t=4

t=5

m =6

(@) (b)

Figure 8.2. The comparator output viewed as an Umbra transform

II1-40

PAGE 204 OF 241

Inthe following sections we will present some grayscale morphological operations and show
how they are implemented in a NSIP system.

As described in section 3.4 we can perform any type of rank order filtering, for instance max
or min, using NSIP techniques. These operations applied on an umbra transformed image is
grayscale dilation and erosion respectively.

x (a) X (®)

Figure 8.3. Dilation and erosion

Figures 8.3(a)&(b) show the result after dilation and erosion, using the image input of Fig-
ure 8.2(a) and the structure element shown in Figure 8.4. The structure element works in the
following way. For dilation, the structure element will set the pixel to 1 if the center pixel is
already set (white circle) or if either one or both of the two neighbors is set (black circles).
For erosion, the structure element will keep the pixels set (in the white circle position) if
both the two neighbors also is set (black circles), otherwise it will be changed to 0.

Figure 8.4. A structure element
Program for grayscale dilation:

REPEAT
1di pd ; invert pd-value
st 10
1di (000) r0 ; dilation operation
strl

1d r0
UNTIL COUNT=N

The operation Idi (000) r0 performs a dilation since
a+b+c = akb&e (8.2)

In the same way as for binary images closing and opening are combinations of erosion and
dilation. Figures 8.5(a)&(b) show the result of closing and opening applied to the signal in
Figure 8.2(a).

I11-41

PAGE 205 OF 241

x (a) Closing X (b) Opening
Figure 8.5. Closing and opening

Program for grayscale closing:

REPEAT

1di pd

st r0 '
1di (000) 10 ; dilation
Id (111) a ; erosion
strl

1d 10
UNTIL COUNT=N

The input data to be operated upon by the structuring element of Figure 8.4 are all coming
from the same interrogation event. Figure 8.6 illustrates three different structuring ele-
ments which utilizes input data from three successive cycles i, i+1, and i+2.

i+2 O i+2 i+2 |
i+1 | @ i+1 O i+1 | @
i L i @ [i O
(@) (b) ©

Figure 8.6. Structure elements both in the x and time dimension

If we erode the image of Figﬁre 8.2 with the three operators in Figure 8.6, the result is as
shown in Figure 8.7, where the dark area represents the result and the shaded pixels the
eroded area.

I1-42

PAGE 206 OF 241

(@) (b)

Figure 8.7. The effect of dilation and erosion using the structure elements in Figure 8.6

An approximation of the Rolling ball operator (Sternberg [15]) is shown in Figure 8.8. The
following NSIP program using this element for dilation consists of two parts as shown below.
The first part computes the output, the second part rearranges register data for the next
interrogation and computation cycle. The vertical size of the operator determines the num-
ber of registers to be employed since this size indicates how many cycles back in time the
output is depending on.

Register / \
M |@ ®

r3 \ K

2 [\[e] |e]/

N V

rl 0L~

/7

Figure 8.8. A ”Rolling ball” operator

clear register r2..r4
REPEAT
Idi pd
strl
or (1xx) r4 ; Compute dilation
or (xx1) r4
ori (0x0) r2
st r0 ; Dilation output

Id r3 ; Shift rows
str4

Id r2

str3

Id r1

str2

Id r1 ; Load input

UNTIL COUNT=N

1I1-43

PAGE 207 OF 241

9 Linear convolution

In this section we will utilize grayscale pixels where the grayscale is represented by the
interrogation index i. As described in section 2.1 we do not automatically get a linear rela-
tion between the time t and the intensity I, but using the strategies described in sections 5 &
6 we can make the relation linear. For the sake of simplicity, however, we omit the mapping
procedures here and assume that they can be introduced wherever wanted.

The time, or rather the interrogation index, elapsed from the precharging of a photodiode
till the diode passes the threshold is measured as follows (also shown in the program below).
A stack of registers is used as a counter and the incrementing bit from the photodiode, is
placed in the accumulator. If the counter is incremented more than 256 times the counter
would normally wrap around back to zero. This is prevented by a few extra lines of code and
an overflow bit r8 which is set when the counter reaches 256. The number of instructions will
average to about 3 per intensity level if Gray-code representation is used.

Program for obtaining gray level pixels in natural binary code:

clear register r0..r8
initpd
1d pd
REPEAT
increment(r0..r7)
Idc ; Generate overflow ...
or 8
st r8 ~; stored in 8
Id pd :
UNTIL COUNT =0

The result in r0..r7 will have an inverted gray-scale since a high intensity corresponds to a
low interrogation index and vice versa. To produce a non-inverted result, we can either
decrement a fixed value (in this case 255 with underflow check), or we can change /d pd to
Idi pd which means that the counter counts from passing the threshold until exit from the
loop.

In section 3.3 we described a positive gradient detection routine where the left edges in the
input image were marked. We will now modify this routine to measure the steepness of the
gradient. As long as the center pixel has not passed the threshold the counter is idle, which
correspond to the situation in Figure 9.1(a). When the pixel passes the threshold, corre-
sponding to (b), we continue to increment as long as the left neighbor has not passed the
threshold, (c).

11144

PAGE 208 OF 241

Uy

Uref

() (®) (© (d)
t<t; t=ty t1<t<tp t>tp
Figure 9.1. Four different time instances during discharge of the photodiode

Program for computation of positive gradients.

clear register r0..r4
initpd
Id pd
REPEAT
Id (10x) a
increment(r0..r3)
r4 = overflow check(carry,r4)
1d pd
UNTIL COUNT =0

Compared to the previous program we use a smaller number of bits in the counter (rg—r4)
since the dynamic range is expected to be less for the gradient than for the absolute values.
An overflow check is inserted.

By adding the instruction
or (01x) pd

before increment(r0..r3) the counter will be incremented as long as there is a left or a right
edge. Hence, this modified routine computes the absolute value of the gradient.

Figure 9.2 shows a 1D example of an Laplacian convolution kernel.

1) =2 1

Figure 9.2. A 1D Laplacian operator

The straight-forward way to compute this convolution is to do the following in the interroga-
tion loop. Increment the stack of registers by 1 if the left neighbor has passed the threshold.
Increment this value by 1 if the right neighbor has passed the threshold. Decrement this val-
ue by 2 if the center pixel has passed the threshold.

Program for Laplacian.

II1-45

PAGE 209 OF 241

clear register r0..r7

initpd

1d pd

REPEAT
Idi (1xx) pd
increment(r0..r7)
1di (xx1) pd
increment(r0..r7)
Idi pd
decrement(rl..r7) ; —2 = —1 shifted one step
1d pd

UNTIL COUNT =0

In most cases it is faster to do the convolution by performing a delta computation ahead of
the incrementation. As long as none of the pixels in a neighborhood has passed the thresh-
old no increment should take place, i.e. A:=0.If one of the neighbors has passed the thresh-
old but not the center pixel or the other pixel, then A:=1. For the similar obviousreasons it is
understood that the total incrementation to be done in the loop can take the values A:=—2,
-1,0,1, 2. Thus, the delta value can be represented by 3 bits. Figure 9.3 shows four different
time instances and the corresponding delta values.

Uy

Utet] 1

(@) (®) (© (d)
A=0

A=0 A=-2 A=-1

Figure 9.3. An illustration of the delta-increment method
Program for Laplacian using A-increment.

initpd
1di pd
REPEAT
str0
generate delta value in rl..r3 given the comparator value in r0
add(rl..r3,r4..r11)
1di pd
UNTIL COUNT = 256

III-46

PAGE 210 OF 241

The word-length of the final value has been set to 8 bits. The input data is stored in 10, the
delta value in rl..r3, and the final value in r4..r11.

The number of bits by for the delta value is determined from the coefficients in the kernel.
Given the arbitrary n-sized convolution kernel

c €1 {c2 Ci—1(C [Ci+1 Cn—2(Cn—-1

Figure 9.4, An arbitrary 1D convolution kernel

the formula for the number of bits by is

bl = [Zlog[zchH +1 (9.1)

To see when the delta-increment method is more efficient than the straight-forward
method, we assume the following parameters.

i) An addition takes 3b cycles.

ii) Each of the coefficient can be described by b, blts

iii) There are n coefficients.

iv) The final result contains bj bits.

Then, with the straight-forward method, the cycle count is

Sgp = 3nb, (82
For the delta-increment method the count yields
S, = 3(n — 1)(logn + by) + 3b, (9:3)
The difference
Sgp— 84 = 3(n = 1)bs — 3(n — 1)(logn + by) (9.4)
is equal to or greater than zero when

9.5)

by = logn + b,

From (9.1) we know that by =by+logn. Thus, as the word-length of the final result must be
larger than the A-value, the delta-increment method is always faster.

11147

PAGE 211 OF 241

10 2D NSIP model

10.1 Programming model

The 2D NSIP system to be described below is largely a generalization of the LAPP1100. A
floorplan for a possible 2D NSIP chip is shown in Figure 10.1. The SPE’s are distributed
along the 2D array in a square grid. As in the 1D case the 2D NSIP SPE consists of a photo
sensor, a analog comparator, a digital processor, and memory in the form of binary regis-
ters.

The photo sensor (photodiode) and the comparator work in the same way as in the 1D sys-
tem. However, the rest of the VLSI implementation is different as the area available for
each SPE has to be smaller. Therefore, the processing power is likely to be smaller and we
may have to accept that some of the single cycle instructions in LAPP 1100 have to be per-
formed in a number of cycles in the 2D case.

L Control unit

. Sensor Processing Element (SPE) array

Photo sensor
Comparator |
—1— Processing unit

ce. ———— Memory

— Single chip

Figure 10.1. A floor plan of a 2D NSIP architecture

Figure 10.2 shows the logic function of the SPE which is a 2D generalization of Figure 2.6.
With a few exceptions, the instructions for the PLU (Point Logic Unit) will be the same. The
NLU (Neighborhood Logic Unit) in receives data from its four nearest neighbors and the
output from the GLU. Therefore, the NLU mask which controls the operation has five posi-
tions. An NLU-mask in an instruction like

1d (abcde) pd

corresponds to the neighborhood shown in Figure 10.2. Each parameter (a,b,c,d,c) takes
one of the values (0, 1, X (=don’t care)).

This means that the instruction
1d (x10xx) pd

will perform the same operation as
1d (10x)

in the 1D case.

II1-48

PAGE 212 OF 241

e
.

= N* E*, W+, 8*
T —

]

L
U L

CN,CE, —
CwW,Cs —

|

N,E, W, S GLU

From neighbors
GLU

— To neighbors
= NLU

Neighborhood ctrl NLU
]]

Lbcdl

)

PLU

To COUNT

] &

Figure 10.2. The programmers model of one SPE

The 2D GLU (Global Logic Unit), shown in Figure 10.2, performs global operation with the
bus and the accumulator as input operands. The output is the result after the global opera-
tion, the bus, or the accumulator. Unlike in the 1D LAPP1100, the GLU neighbor connec-
tions are controlled in a way which makes it possible to select certain propagation directions
across the array. The architecture differs a great deal from the 1D case and is described in
more detail in section 11.

The memory size will will not be decided here although it is reasonable to assume a maxi-
mum number of bits between 16 and 32. The memory includes two special registers Rx and
Ry, which are connected to a horizontal bus and a vertical bus respectively.

It should be emphasized that the diagram of Figure 10.2 is strictly a programmers model.
What the programmer sees as one single-step operation will often be executed as a multi-

11149

PAGE 213 OF 241

step sequence in a vastly different manner. Several of the connections and functional units
in Figure 10.2 will actually be implemented by the same piece of hardware as will be shown
in section 13 below.

10.2 Generation of coordinates

As shown by Figure 10.2, each SPE is connected to one vertical and one horizontal bus. A
similar two-dimensional data broadcasting network exist in the DAP array processor [14]. It
would be quite feasible to connect the bus-connections available at the array edge to a
broad-bandwidth data channel for all types of communications to and from the array. Note
that if we want to load data into a specific row of the array we can use the vertical buses and
do the selection with a proper control word on the horizontal bus.

‘We propose a somewhat more limited use of the buses and the Rx, Ry registers. In Figure
10.3 is shown a 16x16 array with 16 horizontal and 16 vertical buses. At the left and upper
edge of the array are two Read-Only-Memories (ROM), four bits wide, which contain noth-
ing but the row and column number in ordinary binary code. Clearly, if these numbers were
transported into the array, the combined resultis that each SPE would have access to its own
coordinates. Thus, as soon as our application contains instructions or algorithms which
depend on the position inside the array, we may expect to be able to make use of this feature.
Actually, as will be shown below, in many cases it is not necessary to make the full (x,y)-coor-
dinate available to the SPE’s.

0000 1

0000 . 1

X 0011 1

y 0101 1

0000 __llJIlll L
0001
0010 —
0011 =

— (] sPE

1111 —

Figure 10.3. Position constants

In the following programs, the bit-planes in the ROMs to be connected to the horizontal and
vertical buses, are set with the instructions

setrx <bit-plane x>
setry <bit-plane y>

The content of the buses will be available in memory cells rx and ry in the SPE.

In the first example we want to select a region-of-interest which consists of the lower right
hand corner, shown in Figure 10.4. Assuming that (x,y) =(0,0) in the upper left hand corner,
this isequivalent to say that only SPE’s which have the MSB set in boethx and y should be set.
The following program produces such a mask array.

III-50

PAGE 214 OF 241

setrxn—1 . ; MSB in x

setryn—1 ; MSBiny

1d rx

and ry

st a,r0 ; Store mask in r0

Figure 10.4. Region of interest. SPE’s in shaded area are selected

By using more sophisticated formulas than the previous, it is possible to achieve regions-of-
interests as shown in Figure 10.5.

(a) (®) (©)
Figure 10.5. Different regions of interest patterns

The vertical line in Figure 10.5(a) is achieved with the following program.

clra
FOR i=0TOn-1
setrx i
IF Pattern[i] = 1 THEN
and rx
ELSE
andi rx
END-IF
END-FOR
st a,r0 ; Store mask in r0

Here, the Pattern[i] is a bit vector which defines the position of the column. For instance, if
we want to use column 34, the vector Pattern will look like [O, 16,0,1,0,0,0].

Figure 10.5(b) shows a region where the y-position is greater than the x-position each SPE.
This is achieved in the following program by subtracting the y-position from the x-position.

If the final carry bit (=borrow) is set, the result x—y is negatnve and the SPE belongs to the
region-of-interest. .

II-51

PAGE 215 OF 241

clra
strl
Xori a ; Carry = 1
strl
FOR i=0 TO n-1

setrx i

setry i

10=rx&ry+rx&rl+ry&rl ; Carry

rl=r0 ; New carry
END-FOR

; Mask in 10

Figure 10.5(c) is aunion (=OR) between two regions. The following program computes the
mask for each individual region and then OR them together.

setrx n—1 ; MSB in x

setry n—1 ; MSBiny

1d rx

and ry

st a,r0 ; lower right hand corner in 10
setrxn—1 ; MSB in x

setry n—1 ;MSBiny

Idi rx

andi ry ; upper left-hand corner in accumulator
or 10 ; upper left-hand OR lower right hand
st a,r0 ; Store mask in 10

In the same manner, the region in Figure 10.6 is obtained by ANDing a series of simple
regions.

Figure 10.6. Constructing a region-of-interest as an arbitrary rectangle

Obviously, the more irregular the region-of-interest is, the longer is the program to produce
it. In the worst case, we might have to define and generate the region as a set of individual
1-pixel regions that are ORed together. The complexity of such a program is O(N22logN)
since there are O(N2) pixels each of which requires 2logN accesses from the ROMs. Fortu-
nately, mask to be used in practice are much simpler to produce.

III-52.

PAGE 216 OF 241

11 Global operations
11.1 MARK and FILL

Before we discuss two-dimensional global operations, let us reconsider the one-dimen-
sional case as it was presented for MAPP2200 in section 1 in part II of this thesis.

The instructions performed by the Global Logic Unit, the GLU-instructions, have proved
to be a very powerful tool both in real applications for LAPP and MAPP, and in our NSIP
studies. For instance, the pattern adaptive thresholding in section 4.2 used the GLU instruc-
tions mark and fill to compute the size of the object in the image, and the max detector in
section 3.2 used the instruction /fill to determine the position of the maximum intensity
before the feature extraction.

The basic GLU-instruction in both MAPP and LAPP is mark. Other GLU instructions can
be derived from mark. The mark operation keeps those objects in the operand which over-
lap in any position any object in the accumulator. The result is placed in the accumulator.
For example, given an accumulator and r0 content as in Figure 11.1(a), the instruction
mark r0 will result in an accumulator content as in (b).

Acc ¢ T —]
(@)
RO o O —]
MARK RO
(b) Result T —]

Figure 11.1. The MARK operation

The net that performs these operations is shown in Figure 11.2. Here, Mask and Image rep-
resent two register, which in the LAPP1100 case is the accumulator and the operand bus,
respectively. First the Mask (accumulator) is applied and then the Image (bus). Positions,
i.e. those SPEs, where both the Mask and Image are set will give a ”1” at the Result output.
This combination will also generate a propagation to the left and to the right, thus setting all
the Result bits in those SPEs which are connected to a set Result bit. The Result bit is loaded
to the accumulator but not until the next clock cycle.

From Acc, "Mask”
1

L

From bus
)’Image’l

Figure 11.2. The GLU~net in LAPP1100

I-53

PAGE 217 OF 241

It might seem possible to reducethe logic of Figure 11.2 to Figure 11.3. However, with a
common wire for left and right propagation, latches and oscillations may appear. These
effects should also be avoided in the 2D-case.

Acc
L R
>1
From bus
u ”image”
| R+ L+
Result

Figure 11.3. Reduced GLU-net in LAPP1100

This reduced GLU-model of Figure 11.3 can be generalized to two dimensions, see Figure
11.4. The four nearest neighbors are connected. The connections are controlled by four
control signals (CN,CE,CW,CS). Thus, while we distribute data to neighbors from one point
as in Figure 11.3 we safeguard ourselves with extra gating. The potential problems with two-
dimensional bi-directional propagation across the array will be discussed below in section
11.2.

(CN,CE,CW,CS) Acc From bus

| N
N &
E+
L
5 = ———— W+
v
S+

Figure 11.4. A 2D MARK:-net with input controls

The gates for direction control can either be placed at the input, as in Figure 11.4, or at the
output, as in Figure 11.5. Actually, these two nets are the same. This is illustrated in Fig-
ure 11.6 where Figure 11.6(a) corresponds to the net in Figure 11.4 and Figure 11.6(b) to
the net in Figure 11.5. As the control bits are addressed individually (represented by the
small boxes on the arrows) it does not matter if the direction control is performed on the
incoming or the outgoing signal.

1I1-54

PAGE 218 OF 241

Acc . Frombus (CN,CE CWCS)

== | S Y

ty 1§ :H by

> -t > S R -
- e - <~B— -t] -
-
A
By @y 5 15
(a) (b)

Figure 11.6. The equivalence of input and output control

To perform the 2D operation mark, all the bits in the direction control vector
(CN,CE,CW,CS) are set to 1, the mask bit is placed in the Mask register (which we will as-
sume to be the accumulator) and the image bit is taken from the bus (which is typically a
register). This will initiate a 2D-propagation equivalent to Figure 11.1 and when it is fin-
ished, the Result bit can be stored in the accumulator.

In the same manner we can obtain fill by just bringing in the inverted value from the bus. As
in LAPP and MAPP (see section 1 in part II of this thesis) a fill operation preserves holes
rather than objects as determined by the mask, see Figure 11.7.

Acc [- — : —

RO [— - -]

RO N S
MARK RO

Result —

Result T— - Se—

Figure 11.7. The FILL operation

III-55

PAGE 219 OF 241

Both MARK and FILL operations may use instruction specific mask rather than the accu-
mulator content. In the 1D-case we had three choices (Ifill, rfill, and Irfill) for these fill
operations. Conceptually, it is convenient to think of the fourth choice as the one which was
defined by the image in the accumulator. In the 2D-case we have 15 border fill alternative as
listed in Table 11.1. They are all controlled by the vector (CN,CS,CE,CW) and they turn out
to have some non-trivial effects compared to the 1D-case.

no CN CS CE CW Name
0 0 0 0 0

1 0 0 0 1 rfill

2 0 0 1 0 1£i11

30 0 1 1 1rfill

¢ 0 1 0 0 t£ill

5 0 1 0 1 trfill

6 0 1 1 0 t1fill

70 1 1 1 tlrfill

8 1 0 0 0 “pfill

9 1 0 0 1 brfill

101 0 1 0 blfill

11 1 0 1 1 blrfill

12 1.1 0 0 tbfill

13 1 1 0 1 thrfill

14 1 1 1 0 tblfill

15 1 1 1 1 tblrfill (hole_fill)

Table 11.1. Border FILL

Two rather powerful operations can be carried out using the functions in Table 11.1 and will
be described below. The first one expands each object to the smallest possible rectangle
which fully covers the object. The second one removes such holes which are enclosed by an
object and do not touch the image border.

Figure 11.8 shows the operation steps required to expand an object into a circumscribing
rectangle. Here, (a) is the original image. First we perform the operation 9 in Table 11.1
which is a brfill and set the shaded area in (b). Similarly, the shaded areas in (c), (d), and (e)
in Figure 11.8 are set by operations 6, 10, and 5 in Table 11.1. Each of these operations will

_produce a corner of the final rectangle. When these images are ORed together we obtain
the final result in Figure 11.8(f) which is the smallest possible rectangle which covers the
object. ' o

II1-56

PAGE 220 OF 241

(2)

(d) (¢) ®)

Figure 11.8. Smallest possible rectangle

Normally, this operation works regardless of the number of objects in the image. However,
in some cases the rectangles of two objects are overlapping, see Figure 11.9(a), and in yet
other cases one rectangle might cover another rectangle completely, see Figure 11.9(b). In
the worst case, two objects are connected in a way that they will be regarded as one object by
the operator, see Figure 11.9(c).

(2) (b) ©

Figure 11.9. Objects which intersects each others rectangles

To remove holes in objects we first use the tblrfill operation. As shown in Figure 11.10 this
operation sets the background pixels which are connected to the image border.

oG- G

Image Image Result Result
Figure 11.10. Hole filling

A very useful operation is thresholding with hysteresis. A 2D NSIP system with the GLU-
function MARK is extremely well suited for this task. Two binary images are produced for
the same scene using two different threshold. The first one is set so low (i.e. high Uref) so

I-57

PAGE 221 OF 241

that all parts of the object come through plus some unwanted noise as illustrated by Figure
11.11(a). The second image image is taken with a high threshold (i.e. a low U,s) that only
the brightest parts the intensity objects will come through. This is the binary image of Figure
11.11(b). The final result is obtained with the operation MARK.

S

B
(b) MARK(a,b)
Figure 11.11. Thresholding with hysteresis

Program for thresholding with hysteresis.

ref:=0.5* Uy ; High Upet
1di pd

sta, 0

ref:=0.1 *Up ; Low Uper
1di pd

mark 10

Pure unmasked propagation is of course also possible with the GLU. It isimplemented as a
special case of the MARK-operation by simply setting all accumulator bits to 1 along the
array. In Figure , once a ”seed” has been injected into the global net it will continue to prop-
agate according to what is allowed by the control vector (CN,CE,CW,CS). The possibilities
are given by Table 11.2 and the case when the input image contains asingle 1-pixel is shown
in Figure 11.12.

no CN CS CE CW Direction Name

0 0 0 0 0 Ne propagaticn

1 0 0 0 1 w wprop

2 0 0 1 0 E eprop

3 0 0 1 1 E-W (Horizontal) hprop

4 0 1 0 © s sprop

5 ¢ 1 0 1 sw swprop
6 o 1 1 0 SE seprop
7 ¢ 1 1 1 ~N hsprop
8 1 0 0 0 N nprop

9 1 0 0 1 NW nwprop
0 1 0 1 0 NE neprop
11 1 0 1 1 ~S hnprop
12 1 1 0 0 N-S (Vertical) vprop

13 1 1 0 1 ~E VWprop
14 1 1 1 0 ~W veprop
5 1 1 1 1 All vhprop

Table 11.2. PROP operations

III-58

PAGE 222 OF 241

In Figure 11.12, the numbers below each square corresponds to an entry in Table 11.2. The
single initially 1, the seed, is placed as in plot number 0.

4
8 9 10
12 13 14 15

Figure 11.12. PROP propagations
11.2 Safe and unsafe propagation

Consider the one-dimensional GLU-net shown in Figure 11.13. The operation to be per-
form is LRPROP. The two processors shown which receive nothing but zeroes from left and
right and from the mask, should therefore deliver zero at their outputs. However, because
of clock-signals and external noise sources we can never rule out the possibility of short false
spikes, say, at point (a). Because of the double directed propagation this spike may perpetu-
ate to (b), (c), and (d). Then, the two SPE’s latch into a false stable state with both outputs
equal to one. Even worse, this false condition will be propagated throughout the array.

Mask=0 Mask=0

Figure 11.13. Stable error

The underlying physical reason for this effect is the positive feed-back between the two
SPEs. No such feed-back can be allowed. For the 2D-case the implication is that we allow
the propagation directions for MARK and FILL as shown in Table 11.3.

III-59

PAGE 223 OF 241

no CN CsS CE CW MARK FILL

rnark rfill
Imark 1£ill
tmark tfill
trmark trfill
tlmark tlfill
bmark bfill
brmark brfill
blmark blfill

2 W o U N
o

P PP oOoOoO OO
© O O mmE oo
H O O R O O R o
OB OO RO O

Table 11.3. Safe GLU operations

It should be noted that the propagation operations in Table 11.2 are different in purpose
and function. Here, all Mask bits in Figure 11.13 are set to 1 and the result is not dependent
on this operand at all. Instead, these propagations just expand the object unconstrained up
to the image border. Clearly, the propagation distance in this case islimited to 2N SPEs, the
worst case being propagation from one image corner to the diagonally opposite one.

The propagation that take place in mark- and fill-operations is constrained to the input
image. For a given image size of N*N pixels, the longest and most difficult object to propa-
gate though is the Meander curve shown in Figure 11.14.. The length of this single one-pixel
wide object is N%/2. Thus, even if we could allow the propagation to take place asynchro-
nously within one single instruction as in the pure propagation instructions, we would have
to allow this instruction an execution time of O(N2), But since we can only use the restricted
directions for mark and fill we also have to.divide the total procedure into an iterative
sequence of mark/fill steps as shown by the following program.

REPEAT
1d r0
strl ; Store previous row
Idr2 ; Mask bit
trmark r0
st 10
Idr2 ; Mask bit
tlmark r0
st r0
1d r2 ; Mask bit
brmark r0
str0 .
1dr2 ; Mask bit
‘blmark r0 ‘
str”
xor rl

UNTIL COUNT=0

III-60

PAGE 224 OF 241

Mask=1, Image=1
Mask=0, Image=1
Mask=0, Image=0

Figure 11.14. The Meander curve

Suppose that the control bits (CN,CE,CW,CS) are stored in register positions within each
SPE. Since we may also bring in the SPE-position number, we would then be able to confi-
gurate arbitrary propagation paths across the array. For instance, by using the last bit in the
row (y) and column (x) number and take and XOR on these bits, we get a checker board
pattern image C as shown in Figure 11.15.

m Original pixel
@ Propagation E
0 Propagation ~W

Figure 11.15. NE propagation tilted 45 degrees

Then, if CN:=C, CE:=1, CW:=0, and CS:=C, the result will be a propagation within a 90°
cone directed eastwards. The global propagation goes both north and south but is still safe
because the latch condition of Figure 11.13 do not exist.

Diagonal propagation only is even simpler to obtain from the checker board pattern by
CN:=C, CE:=C, CW:=0, and CS:=0, shown in Figure 11.16.

BOGE (m}

0 o W Original pixel
| O 5] Propagation E
OB 0 O Propagation N

Figure 11.16. Diagonal line propagation

As a final example, let the LSB position in row number be the image B as in Figure 11.17.
then, an almost 180° propagation cone angle can be obtained by CN: =0, CE:=B, CW:=B,
and CS:=1.

a Original pixel

(u] 0
&} a
/ o a|
= @ pmww|—— 8 Propagation ES
u} o
a

O Propagation WS

Figure 11.17. Almost 180 degrees of propagation

TII-61

PAGE 225 OF 241

12 Feature extraction

12.1 Finding a position

In NSIP acquiring and processing of an image is performed at the same time. To perform a
certain processing task may then require global data from the array at two stages in the pro-
cess. The first case is when global data is used for termination of the interrogation loop. The
second case is for delivering features of the final result.

In the 2D-NSIP chip which we have proposed here, the only available global data is
COUNT which is constantly available and delivered to the host and its program control
after every instruction. COUNT is a number which tells how many SPEs which have a value
of 1 in their accumulators. As we have seen in numerous examples above, this is a typical
termination parameter for a NSIP loop. However, as will be shown below, the COUNT
operation is also extremely useful for feature extraction. In the examples to follow, we
assume that the NSIP loop has been terminated and left a result in form of one or several
images where each one occupies one bit-plane of memory in the SPE array.

Many of the features to be extracted from an image are answers to questions "How many?”
or ”Where?”. Obviously, features that answers the question How many is to be extracted by
the COUNT operation. As was shown above, the Where question in the 1D LAPP was
answered by a combination of PROP and COUNT operations. In the proposed 2D-archi-
tecture the global propagation operations in four possible directions serve the same pur-
pose.

To extract the position of a single 1-pixel is fairly simple. As can be understood from Figure
12.1 we may extract values for areas Aj and A with the following program, where the GLU
operations are taken from Table 11.2 and Figure 11.12.

1d swprop 10
A7 := COUNT
1d seprop r0
Ap := COUNT

N

N
xy)
| Aq Ay

Figure 12.1. Position acquiring using COUNT

In the host computer we may then compute

I1-62

PAGE 226 OF 241

A+ A,
Yy =—N— (12.1)
A _ 4

x =5 =N ,+ 4, (122)
We refer to a situation illustrated in Figure 12.2 with three points of which 1 and 2 have the
same y-coordinate. In the first step, we perform a hsprop which produces the result in Figure
12.2(b). A count gives us the y-coordinate for 1 and 2. A neighborhood condition (0x1xx)
selects the upper edge of this result which is ANDed with the original to obtain 12.2(c). We
may then propagate west and COUNT to obtain the x-coordinate for 2. The result is shown
in Figure 12.2(d). A neighborhood condition (xx10x) selects the rightmost pixel of the line
and by XOR with the original image we may obtain an image without point 2. From here we
may repeat the procedure and bring out the coordinates for the remaining points. This fol-
lowing program performs this procedure.

hsprop r0

y:= COUNT /N
1d (0x1xx) a

and r0

Wprop a

x:= COUNT

Id (xx10x) a

xor r0

(a) (b) © (@
Figure 12.2. Select rightmost uppermost pixel

12.2 Moments

Asmentionedin part Il of this thesis, moments are often used in image processing to charac-
terize and recognize binary objects and shapes.

Let Pyy be the value of pixel at position (x,y). Then, the zero-th order moment is

N-1IN-1

me = > > Py (123)

and it is computed as follows in a 2D NSIP system, where we assume that the binary image is
stored in r0. .

1I1-63

PAGE 227 OF 241

1d 0
mgo ;= COUNT

The first order moments in the x-direction, myg, is computed as

N=1N-1
myg = > > xPy (12.4)
y=0 x=0 '
Since
.n—1. K
x = zxiZ‘ : (12.5)
i=0

(12.4) can be written as

N-1IN- - n=1 N-1IN-1
_ Z Z z 2=SES S ap, (12.6)
y=0 x=0 i=0 i=0 y=0x=0

We identify the inner product as an AND between the image Pyy and a position dependent
binary constant. The two summations is equivalent to a COUNT readout. Finally, the
COUNT values are to be weighted by a factor 2! and summed which takes place in the host.
Program to compute mjq:

myp ;= 0;
FOR i:=0 TO n—1 DO BEGIN

setrx i;

1d 0

and rx :

myg := myg + COUNT*2! ; myq is accumulated and stored in the host
END

The moments of second order, my1, myg, and myy, can be derived in the same manner as for
the first order moments. For instance, the formula for mpg

-1N-1

Z Z Py (12.7)

y=0 x=

can be rewritten using binary weights as

- —IN-1
ZINE:IP,W”ZJCZ’ Zfo = z Z 20+ Z Zx,x}ny (12.8)
y=0x= i=0j= y=0 x=

Again, the inner product and summation can be identified as an AND between the image
and position dependent constants x; and x;, followed by a COUNT readout Thevaluewe get
for each summation is then weighted with a factor 2K+1,

Program to compute myq: :

II1-64

PAGE 228 OF 241

myg :=0;
FOR i:=0TO n—1 DO BEGIN
setrx i;
1d r0
and rx
strl
FOR j:=0 TO n—1 DO BEGIN
setrx i;
Id r1
and rx
myg 1= myy + COUNT#*2i%]
END
END

The second order moment mj; can be derived in almost the same manner.

N-1IN-1 —IN~-1 n—1
my = > > 0Py = Z Znysz ZyZ’ = (12.9)
. y=0 x=0 y=0 x=0 i=0

Py = > Py2* (12.10)

myg can be computed as

—-1N-1 n—1 -1N-1
ZO ZP sz = z 22'“‘ zﬂ prxy, (12.11)
y=0x= y x=

With 8-bit gray-level pixels stored in r0—r7 (MSB in r7), the following program computes
(12.11).

myg ' = 0,‘
FOR i:=0 TO n—1DO BEGIN
setx i;
FOR j:=0 TO 7 DO BEGIN
Idr0 +i
and rx
myp := myp + COUNT*2i+]
END
END

12.3 Shape factor

A shape factor for a binary object very often represents the compactness of the object where
the circle is defined to be the most compact object. One such shape factor can be computed

II1-65

PAGE 229 OF 241

from the distance transform of the object [5]. If the object is defined as in Figure 12.3(a) the
distance transform in city-block metric gives the result shown in Figure 12.3(b).

11111
1)2]2]2[2]1
1]2]3]3]2]1
112]3]3]2]1
1[1]2]2]2]1

1|11
(@ (®)

Figure 12.3. Distance transform of a binary object
The average distance to the edge is obtained as (12.12) and the final shape factor as (12.13).

Dldwn -3 Ydey)
_ A

d=4

1
A A 2

(12.12)

=L
Shape = o~ (12.13)

8L

To implement this shape factor in a 2D NSIP system we do not have to generate a distance
map and then calculate the d. Instead, we calculate the contributions to d iteratively while
the distance map is generated. The iteration starts by setting the object pixels which are con-
nected to the background, i.e. the edge pixels. The number of such pixels are then collected
using COUNT and the sum is weighted by the factor 1 (in the host). All the object pixels
which now have been counted are set to 0, i.e. turn into background pixels. We again select
all pixels belonging to the reduced object which are connected to the background, count
them and add the count to the previous sum weighted by a factor of 2. This procedure is
repeated until we have reached the center of the object, i.e. when the object is annihilated.
The following program shows this procedure. The image is in r0.

A = COUNT ; Area of the object
d=0
dist = 0
REPEAT
1di (11111) r0 ; Select border pixels
and r0 ;
tmp = COUNT
d:=d + dist *tmp ; Add one layer to the total sum
xor 10 ; Remove border pixels
st 0 ;
dist = dist + 1
UNTILtmp =0
d=d/A-05
Shape_factor:= A/ (9 *pi *d *d)

1I1-66

PAGE 230 OF 241

13 VLSI realization of 2D NSIP

The transistor level design in this section has been made by ‘
Per Ingelhag, LSI Design, Dept. of Physics, Linkdping University, Sweden

We will now go beyond the programmers model in Figure 10.2 and propose a VLSI imple-
mentation of the sensor-processor element. As was mentioned earlier, this implementation
may look vastly different from the programmer model. In the first place, we allow this hard-
ware to spend several cycles to perform something which the programmer considers as one
single unbreakable instruction cycle. Secondly, the VLSI design in CMOS presents so many
possibilities to handle logic and storage function that the traditional gate-level synchronous
digital design is no longer the optimal strategy for VLSI.

Nevertheless, Figure 13.1 is such a gate-level design for the SPE. This design should not be
viewed as the final word, but rather as one of many possible solutions. At the top of Figure
13.1 is the sensor circuit which connects to the bus over the PD-register. There are no differ-
ences here between Figure 13.1 and Figure 10.2 here. Also connected to the bus are the reg-
isters RO, R1, .., R9, Rx, and Ry just as in Figure 10.2. The largest differences are in the
implementation of the ALU-functions. In Figure 13.1 the (CN,CE,CW,CS)- controlled
GLU-functions and the NLU-functions are totally integrated and are implemented by the
same net, i.c. the five two-input AND-gates followed by the five-input OR-gate in the center
of Figure 13.1. The only difference between the neighborhood connections for GLU- and
NLU-functions is found below this network. The GLU propagates the neighborhood logic
result to the neighbors of this SPE. The NLU signal gates the data from the bus of this SPE to
the neighbors. The result feeds through the AND/OR network but stops there and stays
intermediately in G before it is forwarded to the final destination. The short term register G
comes for free in CMOS. ‘

An NLU-operation may require several cycles. We use the instruction 1d (11x00) as an
example. The basic logic function to be performed is

G = pdy - pdy - pds - pdg = pdy + pdy + pdg + pdg (13.1)

It is the latter of these expressions that will be implemented. It will be done in four steps.
i) Set G-register to 1 (precharge)

ii) Evaluate pdy+pdw (if any of these terms are 1, G is set to zero)

iii) Evaluate pdg+pdg (if any of these terms are 1, G is set to zero)

iv) Invert and move final G-value to bus

In the second machine cycle the PD-register in Figure 13.1is gated out to the bus and via the
NLU gate this bit is fed in inverted form to the neighbors. Simultaneously, by using control
signals (to be described shortly) the registers RN and RW are set to 1. The first partial evalu-
ation takes place. In the third machine cycle the non-inverted pd-value is propagated to the
neighbors while the RE and RS registers are set to 1. The second partial evaluation takes
place. In the fourth machine cycle the result is inverted and gated to the bus. We notice that
no accumulator is visible. This is due to one of the features of CMOS. The bus itself works
fine as the accumulator.

1-67

PAGE 231 OF 241

- Z

Global-Or S
& COUNT E
[H —
| G| N

GLU

NLU

)

Figure 13.1. One SPE

Aswas described in section 11, when performing a GLU instruction we first load the direc-
tion bits (CN,CE,CW,CS) in the corresponding LUs. The mask bit, called ”acc” in Figure
11.4,is loaded into the lowermost LU in Figure 13.1, and the image bit is placed on the bus.
When the GLU signal is activated, the propagation starts.

The PLU-functions (AND, OR, XOR, ADD, etc.) are implemented by the logic unit LU
which are found between the bus and the direction register RN, RE, RW, RS, and RS.
Hence, PLU, NLU, and GLU functions cannot work concurrently as in LAPP. For each of
the units there are five control signals (C1,C2,C3,C4,C5) which have the following effect on
the register content and the bus, see Table 13.1.

III-68

PAGE 232 OF 241

Control Operation

C1=0 R :=R + B
Cpr=1 R :=R & B
C3=0 R := R + B
Cq=1 R :=R&B

Table 13.1. Some Possible logic function in the LU

Different operations can be performed in different LUs at the same time, which makes it
possible to accomplish more sophisticated operations. The cycle counts for some typical
operations are shown in Table 13.2. The micro-codes to perform these operations can be
found in [11]). The XOR-function can be implemented by employing two LU-functions per-
forming A&B and A&B respectively and exploiting precharge logic for combining the
result. The half adder and the full adder function may be put together in a similar manner.

Operation Cycles
XCR 3
Half adder 2b+1
Full adder 4b+1

Table 13.2. Typical arithmetical performances

A CMOS implementation of an LU and its register is shown in Figure 13.2. The transistor
count for each such unit is 10.

+
Precharge —df
+

e d
p_ G G _d
'_ Cq - G _|

—

GLU/NLU (mask) Cs _|

Figure 13.2. Logical Unit, LU

The CMOS implementation of the NLU/GLU function is shown in Figure 13.3 having the
transistor count of 20. -

1I1-69

PAGE 233 OF 241

GLUj, NLUj,
Signals from

Deighbors : _q b_
R sdL Jb-s

g

A0 GGG T
-
|_

. _‘ ‘I neighbors

Pl B
"l‘;rom mask ‘ —|
—

Figure 13.3. NLU and GLU

The registers R0, .., R9 are implemented as dynamic memory cells with three transistors per
cell as shown in Figure 13.4. The transistor count for this unit is 33.

B

o7
- ﬂ
s

HS . mwg
|
f

Figure 13.4. Dynamic memory

Additional circuitry in Figure 13.1 amount to approximately 6 transistors. The rough total
estimate for the whole SPE is therefore as shown in Table 13.3.

Unit Transistors
Memory 33
LE * 5 50
NLU/GLU 20
Misc 3

109

Table 13.3. Transistor count

II1-70

PAGE 234 OF 241

In section 12 we described the usefulness of COUNT for feature extraction. In LAPP this
operation is carried out by a special net which occupies a substantial part of the chip. In 2D
however, a straight-forward combinatorial one-cycle implementation of this network would
occupy to much space. One way to implement the COUNT operation is to use fast shift reg-
isters, one for each column of the array, shown in Figure 13.5. The data could then be added
together in a combinatorial or a systolic net. Even with a high speed shift register (200MHz)
itwould take some time (for a 256x256 array, 2*256/200=5ps). Fortunately, in most applica-
tion we are not interested in the actual COUNT value when we are inside the NSIP loop, but
rather if none or all pixels have passed the threshold. This question can be answered by a
global-OR signal which can be implemented by a pre-charged wired-OR.

Total)

|Row—wise combinatorial/systolic summation I" summation
) CH[(H|{H{H CH|CH
SPE’s CH|CH|CH|{CH CH| CH
CH[CH | CH|CH CH|CH
(H|H|H|H [CH{H
CH[CH|{CH| CH CH|CH
CH(CH|{CH|CH [H|CH
CH|CH(CH| CH CH{CH
CHICHICHIH JChH.

1-bit shift registers
Figure 13.5. COUNT realized as 1-bit shift registers

1I1-71

PAGE 235 OF 241

14 NSIP Sheet-of-light range images
14.1 Implementation in NSIP

Ascene which is illuminated with a sheet-of-light, may result in an illumination of the sensor
array as shown in Figure 14.1. For each x-coordinate the y-coordinate is a measure of the
distance from the laser to the object. A program which detects the maximum intensities for
each column can be implemented in the general NSIP architecture by the following pro-
gram.

Figure 14.1. A scene illuminated with a sheet-of-light as acquired by the sensor

clra

strl ; inhibit column

st 10

REPEAT
1di pd ; Read from photodiode
xor rl) ;
or 10 ;
st 10 : ; Conditional storage
vprop a ; Has any pixel passed the threshold?
strl

UNTIL COUNT = N

sprop r0

sta,r0

The vertical propagation instruction vprop insures that the first SPE in a column which
passes the intensity threshold blocks the possibility to set r1 in all other SPEs. When the pro-
gram has terminated the image in Figure 14.1 will result in Figure 14.2. Here, shaded area
represents set bits in r0.

I1-72

PAGE 236 OF 241

Figure 14.2. The contents of R0 after the loop has terminated

The result can then be read out, column by column, using COUNT as is shown in the follow-
ing program.

setx 0
1di rx
FOR i=1TOn-1
setx i
andi rx
END-FOR
sta,rl ; set rl in leftmost column to 1
FORi=0TON
1d 10
and rl
Range = COUNT
1d (x1xxx) rl ; shift readout to next column
strl '
END-FOR

The max detection program executes as long as needed, or until a certain time-out arrives
from the host. In any case, this part of the total procedure will not set any limit on speed as
long as the NSIP-loop can be executed fast enough. Very likely, it is the propagation instruc-
tions that will dominate. A conservative estimation is 2us for the whole loop and with N
equal to 100, exposure times as short as 200us could be allowed. The read-out program con-
tains 256 count operation. With Sus per COUNT this takes about 1300us and a maximum
frame rate would then be approximately 670 frames/s or 172,000 rangles/s. If the column
shift register could be controlled by an independent I/O-system the two procedures would
be pipe-lined so that the exposure of one frame takes place while the previous result is
shifted out and counted. The maximum speed would then be 770 frames/s and around
200,000 rangles/s. The duty cycle for exposure is then 100%.

14.2 Special NSIP architecture for sheet-of-light

A full 256x256 2D NSIP chip is not likely to be designed and manufactured in the immediate
future. In the wake of this prospect however, the basic idea of NSIP may be implemented in
some special purpose application where fewer transistors per SPE are needed. One such
application is the sheet-of-light camera sensor.

II1-73

PAGE 237 OF 241

Intensity
register

Sensor area
Intensity

/ output
B\ B

Readout logic

Position
Figure 14.3. Special architecture for sheet-of-light range imaging, using NSIP technique

A proposal for this application is shown in Figure 14.3 and 14.4. A full description is given in
[12]. Note that in Figure 14.3 the jagged line runs in the vertical direction. To understand this
function see Figure 14.4 which shows the design of an individual SPE. In each row all SPEs
have acommon inhibit bus and all the SPE’s are precharged at the same time. As soon as the
first SPE passes the threshold, the inhibit bus goes low because of the (a) transistor. This
inhibits all other SPE’s in the same row and only the inhibiting SPE is able to introduce a
new state at the inverter input (b). The data is transferred to the readout register when the
exposure time is over and then read, one row at a time, to the position unit. This unit per-
forms a 1D Ifill operation followed by a COUNT which gives us the position of the maxi-
mum intensity.

Inhibit bus

Output

Uo bus

— (@)
. > H; Transf Read
h _ ransier ca
e ST o T 1

Figure 14.4. An SPE in the special architecture

The intensity, or rather the time to inhibit, can be registered for each column. Saved in a
shift register these data may be shipped out from the chip together with the position for each
row. Ideally, only one single pixel per row should be set when read out from the array. In
practice, other cases may occur. Various 1D filtering technique were presented in part IT of
this thesis. Several of them are suitable for hardware implementation in Figure 14.4 as
described in [12].

I1-74 -

PAGE 238 OF 241

15 Conclusion

The idea of Near-Sensor Image Processing originates from the development of LAPP1100.
Inthose days, the VLSI constraints prevented the designers from incorporating a traditional
A/D-converter. The solution was to keep the comparator of the potential A/D-converter
and take a number of binary samples for different threshold voltages. Thereby, a limited
form of grayscale processing capacity was obtained. It was then discovered that many image
processing problems could be solved using a constant threshold, and the ideas behind NSIP
was born.

Our motivations for developing the NSIP concept further is that each SPE seems to require
less space than a corresponding SPE with an ADC. And, as we have proved in this thesis,
most of the typical low-level image processing operations can be implemented rather easily
on an NSIP system. In many cases, for instance grayscale morphology, the NSIP imple-
mentation is much simpler to implement than conventional methods. We have also
described how other operations come very natural in the NSIP concept. Among them are
locating the maximum intensity, gradient thresholding, rank order filtering, histogram-
ming, and adaptive thresholding.

The time from the pre-charge of the photodiode until the voltage passes the reference level
is the available intensity measure in NSIP and it is inversely proportional to the light inten-
sity. We have presented in this paper two different approaches to linearize the measure-
ment. In the first approach we use variable sampling time to achieve different mappings
between time and the NSIP loop index. The same idea could be used for histogram equal-
ization. In the other approach we showed that by varying the threshold voltage and keeping
the equidistant sampling, we can effectively perform both linear- and non-linear mappings.

For a given light intensity, the uncertainty in time At of the comparator threshold crossing
depends on several parameters in the photodiode-comparator circuitry. We have modeled
the various error sources and also tried to describe their effects on the uncertainty Atwhena
globally controlled parameter such as the threshold voltage Uys varies over time.

For two-dimensional NSIP the 1D LAPP1100 architecture needs some modification. We
have given a programmers 2D model as well as a gate-level CMOS design of the individual
SPE. We have also shown in a few examples how such important 2D features as moments
and shape factor can be obtained in this architecture.

The (highly preliminary) CMOS design needs 109 transistors per SPE for its digital part. A
256x256 array would then require more than 7 million transistors. This is not possible to
implement today but maybe in a not too distant future. Even so, as was shown by the sheet-
of-light sensor example, the basic NSIP-idea may be viable in other more special purpose
applications.

III-75

PAGE 239 OF 241

16
(1

[4)
5]
[6]
7]
8]
9]
[10]
[11]

(12]

(13]
(14]
[15]

[16]

References

Astréom A.,A Smart Image Sensor. Evaluation and Description of PASIC., Lic Thesis,
Link&pings University 1990.

Astrém A., Forchheimer R., Ingelhag P, An Integrated Sensor/Processor Architec-
ture Based on Near-Sensor Image Processing, To appear in Proc of CAMP93, New
Orleans, USA.

Batcher K.E., Design of a Massively Parallel Processor, IEEE Computer, Vol C29,

1980, pp. 836—840.

Chen K., Astrém A., Danielsson PE., PASIC a smart Sensor for Computer Vision,
Proc of Pattern Recognition, Atlantic City, June 1990, pp. 286—291.

Danielsson PE., A New Shape Factor, Computer Graphics and Image Processing,
Vol 7, No 2, 1978, pp 292—-299.

Danielsson PE., SIMD—arrays. A GAPP—exercise,1986. Lecture notes, Dept of
EE, Linkdping University.

Forchheimer R., Ingelhag P, Jansson C., MAPP2200, a second generation smart op-
tical sensor, SPIE vol 1659 (1992)

Forchheimer R., Odmark A., Single chip linear array processor; in Applications of
digital image processing, SPIE, Vol. 397, (1983).

Fountain T.J., Processor Arrays Architecture and Applications, Academic Press,
London, 1987, pp.49-60.

Geometric Arithmetic Parallel Processor, Data sheet NCR45CG72, NCR corpora-
tion, (1984).

Ingelhag P, Astrém A., A VLSI realization of a 2D Architecture for Near—Sensor
Image Processing, Internal report, to be published.

Johanneson M., Astrém A, Danielsson P— E. ,. 4 Range Image Architecture Using
Sheet of Light, Proc of IAPR Workshop of Machine Vision Applications, Japan,
1992.

Lyon R.E, The optical Mouse, and an Architectural Methodology for Smart Digital
Sensors. Palo Alto Research Center.

Reddaway S.E, DAP — a Distributed Processor Array, First annual symposium on
computer architecture, Florida 1973, pp 61-65.

Sternberg S. R., Grayscale Morphology, Computer Vision, Graphics, and Image
Processing, Vol 35, 1986.

Tucker L.W,, Robertson G.G., Architecture and Application of the Connection Ma-
chine, IEEE Computer, August 1988, pp 26—38.

1I1-76

PAGE 240 OF 241

[17] Wendt P, Coyle E,, Gallagher Jr N., Stack filters, IEEE trans ASSP—34, no 4, pp.
898-911, Aug 1986.

[18] Wilson S.S., One dimensional SIMD architectures — the AIS —35000, Multicomputer
Vision, S. Levaldi, Ed, Academic Press, London, pp. 131—149.

[19] Bernard T., Zavidovique B, Devos F, A Programmable Artificial Retina, IEEE Jour-
nal of Solid-State Circuits, vol 28, no 7, July 1993.

I-77

PAGE 241 OF 241

