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Preface

A robot must perceive the three-dimensional world if it is to be effective
there. Yet recovering 3-D information from projected images is difficult,
and still remains the subject of basic research. Alternatively, one can use
sensors that can provide three-dimensional range information directly. The
technique of projecting light-stripes started to be used in industrial object
recognition systems as early as the 1970s, and time-of-flight laser-scanning
range finders became available for outdoor mobile robot navigation in the
mid-eighties. Once range data are obtained, a vision system must still
describe the scene in terms of 3-D primitives such as edges, surfaces, and
volumes, and recognize objects of interest. Today, the art of sensing,
extracting features, and recognizing objects by means of three-dimensional
range data is one of the most excitingf research areas in computer vision.

Three-Dimensional Machine Vision is a collection of papers dealing
with three-dimensional range data. The authors are pioneering researchers:
some are founders and others are bringing new excitements in the field. I
have tried to select milestone papers, and my goal has been to make this
book a reference work for researchers in three-dimensional vision.

The book is organized into four parts: 3-D Sensors, 3-D Feature
Extractions, Object Recognition Algorithms, and Systems and Applications.
Part I includes four papers which describe the development of unique,
capable 3-D range sensors, as well as discussions of optical, geomefrical,
electronic, and computational issues. Mundy and Porter describe a sensor
system based on structured illumination for inspecting metallic castings. In
order to achieve high-speed data acquisition, it uses multiple light stripes
with wavelength multiplexing. Case, Jalkio, and Kim also present a multi-
stripe system and. discuss various deéign issues in range sensing by
triangulation. The numerical stereo camera developed by Altschuler, Bae,
Altschuler, Dijak, Tamburino, and Woolford projects space-coded grid

patterns which are generated by an electro-optical programmable spatial
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viii PREFACE

light modulator. Kanade and Fuhrman present a proximity sensor using
multiple LEDs which are conically arranged. It can measure both distance
and orientation of an object’s surface.

Having acquired range data, the next step is to analyze it and extract
three-dimensional features. In Part II, Ponce and Brady present the Surface
Primal Sketch. They detect, localize, and symbolically describe the
significant surface changes: steps, roofs, joints, and shoulders. Vemuri,
Mitiche, and Aggarwal represent 3-D object surfaces by patches which are
homogeneous in intrinsic surface properties. Sugihara describes how thé
knowledge of vertex types in polyhedra can be used to guide the extraction
of edges and vertices from light-stripe range data.

An important goal of 3-D vision systems is to recognize and position
objects in the scene. Part III deals with algorithms for this purpose. After
describing object surfaces by curves and patches, Faugeras and Hebert use
the paradigm of recognizing while positioning for object matching by
exploiting rigidity constraints. Oshima and Shirai have long worked on a
system for recognizing stacked objects with planar and curved surfaces using
range data. Their paper presents procedures for feature extraction and
matching together with recent experimental results. The matching strategy
used by Bolles and Horaud to locate parts in a jumble starts with a
distinctive edge feature of an object and grows the match by adding
compatible features. Grimson and Lozano-Pérez discuss how sparse
measurement of positions and surface normals may be used to identify and
localize overlapping objects. Their search procedure efficiently discards
inconsistent hypothetical matches between sensed data and object model
using local constraints.

Finally, Part IV contains three papers discussing applications and system’
issues of three-dimensional vision systems which use range sensing. Beeler
presents a precision 3-D measurement system for replacing damaged or

missing tiles on space shuttle vehicles. The acquired shape description of a
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PREFACE . iX

tile cavity is used to control a milling machine to produce a new tile.
Nakagawa and Ninomiya describe two three-dimensional vision systems
that use active lighting: one is for inspecting solder joints and the other for
automatic assembly of electronic devices. The paper by Jarvis, arguing for a
semantic-free approach to three-dimensional robotic vision, discusses
various system issues in a real-time sensory-based robotic system, such as a
hand-eye system.

In editing the book I have received great help from Richard Mickelsen
and Magdalena Muller. Richard read all of the papers and brought
consistency into the book. ~Maggie spent untiring effort for typing and
perfecting the format. Iam heartily grateful: without them, this book would

not have been completed.

Takeo Kanade
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A Three-Dimensional Sensor
Based on Structured Light

J.L. Mundy
G.B. Porter III
General Electric Company
Corporate Research and Development
Schenectady, NY 12345

Abstract

This paper describes the design of a 3-D range sensor using
structured light to provide multiple range points by
triangulation.  The algorithms and sensor hardware are
described along with the supporting theory and design strategy.

1. Introduction

The formulation of three-dimensional descriptions of objects from two-
dimensional perspective images is a major goal for machine vision research.
In many cases, the images are formed using unconstrained lighting and
camera position. The interpretation of such scenes relies on features such as
shadows and intensity discontinuiﬁes as the primitives from which the
object descriptions are formed. It is now re;:ognized that this process cannot
be carried out successfully without detailed’a priori models of the objects ‘
and the properties of illumination and image formation. The nature of such
models and the design of efficient matching algorithms are still the focus of
intensive research efforts in image understandigg. Existing techniques are
not yet robust enough to form the ba;is for a practical industrial inspection
or robot guidance system.

An alternative approach is to carefully control the illumination and
position of the objects to be described. In a calibrated configuration, it is
possible to derive an independent description of object surfaces without
additional a prior: knowledge. This description is in the form -of three- *

3
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4 3-D SENSORS

dimensional coordinate triples taken at intervals over the object surface. In
many industrial applications this description is sufficient to determine
product quality or object position for automated assembly. The various
approaches for controlled illumination have often been presented under the
name structured light or structured illumination. .
This paper describes a sensor system that uses structured illumination to
inspect metallic castings. The discussion focuses on optical design
considerations and high speed processing techniques for converting intensity
images into a range image. In addition, a number of examples of sensor

performance are discussed.
2. Structured Light Principles

2.1. Simple Triangulation
The underlying principle of structured light methods is optical
triangulation. This principle is illustrated with a single ray of light
impinging a surface, as shown in Figure 1. The image of the ray is formed
along an optical axis which is at an angle with the ray. This angle, 6, is
known as the parallax angle. It follows that the image of the ray shifts in the
image plane according to the.position of the surface along the ray. This
parallax shift can be used to calculate the surface location provided that the
geometric configuration of the éamera and ray are known. In practice, such
a system can be calibrated by measuring a known object surface, such as a
plane.
The relationship between the ray image and the surface position is given
by
T dysinf—bcosf

1

If the image field of view is limited so that the parallax angle can be

considered constant, then the relation reduces to

PAGE 15 OF 613



Mundy/Porter 5
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di*r q=As8inO r=Acos©

dl
d, AsinO=0d, +bAcosb
Al(d, 8inD- bcosB) =bd,
dd,
d, 8in© -bcosO

a.
)

or A=

Figure 1: The geometry of parallax triangulation. 0 is the parallax
angle, A is the height of the surface above the reference position, and §is
the shift in the image of the beam.

6=4 | = | sind . (2)

In this case, there is a linear relation between the ray image position and
object surface position. This relation -is conceptually useful, but not
accurate enough for industrial measurement applications.

The object surface can be sampled by sweeping the ray over a range of
angles within the field of view of the camera. If the triangulation relation of
the ray image is calibrated for each ray position, it is possible to derive an
array of surface positions within the field of view. This array is known as
the range image. In this‘ case, the range is defined as the distance from the
unknown surface to a given reference surface such as a plane. The
reflectance of the surface can be obtained by measuring the intensity of the

ray image for each ray position.
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6 3-D SENSORS

2.2. More Complex Patterns

This simple approach to three dimensional measurement has been used
in many industrial applications such as controlling the height of liquids an¢
simple gauging instruments. However, the speed of such systems is limited
by the rate at which the location of the ray image can be determined. A
common sensor for this purpose is a solid state array camera which can
operate at about 30 fields of view, or frames, per second; this corresponds to
about 30 points per second of range information. This performance can be
improved by using a one-dimensional image sensor or line array. These
devices can be read out much faster, producing a range sample rate of
several thousand points per second.

Another approach which can improve the range sample rate is to project

a stripe of light rather than a single spot, as shown in Figure 2. Each row of

Line
Source Receiver

Part Contour | u .
—\ /
C ~ 0

/< Single Stripe

Figure 2: The projection of a single stripe on an object surface. The
apparent location of the stripe in the image depends on the surface
height due to parallax.

the image sensor is used to triangulate the position of the stripe along that

row. This multiplies the throughput of range sensing by a factor
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Mundy/Porter 7

corresponding to the number of rows in the image sensor. If the sensor ar

can resolve 128 stripe positions, the range sample rate is about 5000 samn;

per second.

Figure 3: The projection of multiple stripes. The intricate surface
profile of the casting is clearly revealed by the stripe contours.

Additional parallelism can be obtained by projecting more than one
stripe, as shown in Figure 3. In this case, the details of the three-
dimensional surface are clearly exposed. Again, it is possible to calibrate the
relationship between each stripe position and the three-dimensional surface
range. A major drawback to this method is that the stripes can be confused
with each other. If the surface position is far enough from the reference
position to shift the stripe image more than the stripe spacing, the range
becomes ambiguous. The use of multiple stripes is attractive because, by
virtue of its parallelism, it can produce a throughput of several hundred
thousand range samples per second.

The ambiguity of the multiple stripes can be eliminated by projecting a

number of stripe patterns in sequence. The set of stripes form a Grey code
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8 3-D SENSORS

sequence so that each surface point has a unique code value. Figure 4

illustrates such a set of patterns. An image point is recorded as illuminated

Projection
Mask
Grey Code /
Bit Planes %

Opaque

Transparent

Resolution Index

Figure 4: A set of Grey code patterns for time multiplex projection.
The patterns define a unique binary code for each resolution element.

or unilluminated for each projected light pattern. The shift of each unique
code from the reference position is determined and a range image is
calculated. The number of stripe patterns required is proportional to the
logarithm of the number of image points along each row. For example, with
256 image points in each row, 8 stripe code patterns are required. At 30
sensor image frames per second, this approach provides about 200,000 range

points per second.

3. Limitations of the Structured Illumination Method
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Mundy/Porter 9

3.1. The Problem of Reflectance Variation

In the discussion above, it is assumed that the illumination ray has
infinitesimal diameter, and the position of the ray image can be determined
precisely. In practice, these ideal conditions cannot be met, and variations
in surface reflectance produce errors in the range measurements. In this
section the relation between reflectance variation and range error in the case
of a single ray is analyzed.

The intensity cross section of the image of a laser beam is approximately

a Gaussian function. That is,

~ (z—::o) 2
I(z)=1I e v . ®)

where z; is the beam center and IO is the intensity there. This function is
shown in Figure 5(a). Note that the spot intensity function is circularly
symmetric. For simplicity, this analysis will be carried out for the spot cross
section, with the obvious extension for the symmetry. The analysis is,
however, directly applicable to the practical case where a one-dimensional
' image sensor is used.

There are a number of methods for determining the location of the beam
center in the image plane. The center location provides the parallax shift
data necessary for the calculation of range values. The most common
method is to compute the first moment of image intensity. If this is
normalized by the zeroth moment, the result gives an estimate for the beam
center, Zq

For an ideal Gaussian, it follows that the ratio of the first intensity

moment to the zeroeth moment is identically the beam center.

(3—”()) 3

f * ze 7
Zp=" &
0 (2_"0) 2

0o
—00
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10 3-D SENSORS

Beam
Intensity

Position

(a)

Reflectance Ro + AR
Function
Ro
Position
(b)
Distorted
Beam
Intensity
Position
(c)

Figure 5: The effect of reflectance on the location of the center of a
Gaussian beam. (a) The ideal Gaussian distribution; (b) A step in
surface reflectance; (c) The resulting image intensity function. Note
that it is no longer symmetrical about the beam center.

Actually, this result holds for any beam intensity cross section that is
symmetric about zy
Now suppose that the incident beam is reflected from a surface that has
variable reflectance, R(z). The resulting beam image intensity is given now
by
Iz) = P(s) R(z), )

where P(z) is the incident illumination power density at the point z on the
surface. The form of this modified intensity is plotted in Figure 5(c). The
ratio of Equation (4) no Ioﬁger corresponds to the center of the beam. This
asymmetry introduces an error in the parallax shift measurement and,

consequently, the resulting range is in error.

PAGE 21 OF 613



Mundy/Porter 11

To get an idea of the magnitude of this error, a simple reflectance model
is assumed. Suppose that the surface reflectance can be considered uniform
everywhere except at the location z, where a step in reflectance from R‘O to
R+ AR occurs as shown in Figure 5(b). To understand the effect of this
variation in reflectance, let us examine a simple case in which the parallax
angle is zero and the sensor is observing the surface at unit magnification. In
this case, the coordinate systems of the sensor image plane and the object

surface can be considered the same. The new location of the beam center is

given by
2-zy) | 2
. | e
AR/ ze i
zf
!~ +z,. 6
%o (z—z,) | 2 “o ()
0

It has been assumed that AR is small compared to Ry, Carrying out the
integrations, it follows that
2

z
70

M . ™

zo' -z AR _
=~ €
4 2RV

Notice that the error in beam position is related to the location of the
reflectance step within the beam cross section. If the step is far away from
the beam center, then the error in beam location is small. The maximum
error occurs when the reflectance step is right at nominal beam center.
From this analysis we conclude that any nonuniformity in the surface
reflectance will lead to a beam location error.

As another example, consider the case where the surface reflectance
varies linearly over the region of interest. The resulting beam center error is

given by
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12 8-D SENSORS

% o dR -
o~ 3R dz (®)

Here the error does not depend on the beam position, but only on the rate of
change of surface reflectance and the beam spread, o. In both of the
examples, the width of the beam is the major factor that determines the
magnitude of range error. Hence, the range errors can be reduced by using
the smallest practical beam diameter.

To estimate the effect of these considerations on range accuracy, we will
apply them to a typical case. Assume that the incident ray is an unfocused
laser beam with a diameter of 1 mm and that the reflectance step is 10% of
the incident energy. With the parallax angle at 30 degrees, the maximum
range error is .05 mm.

The error can be much worse if the surface is metallic and has glint
facets. High variations of reﬂectebd intensity due to glint are equivalent to
radical variations in surface reflectance. It is possible to experience an
intensity dynamic range of as much as 10? when imaéing metallic surfaces
with highly reflective facets. In this case, the measured beam center can be
pulled far from the actus,l center if the glint source is at the periphery of the
beam. As before, this problem can be reduced if the beam diameter is kept .

small.

3.2, ‘Alternatives for Reducing the Effect of Reflectance

3.2.1. Normalizing the Reflectance

As menticned above, the reduction in beam diameter is one important
factor to comsider for reducing reflectance effects. Another reasonable
approach isl to measure the reflectance and normalize the image intensity
signal before calculating the parallax shift. This can be accomplished, in
principle, by sampling the beam intensity over its cross section and

computing the corresponding reflectance. However, in order to compute the
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Mundy/Porter 18

surface reflectance function using the beam, the beam center, which can be
shifted from the expected position by parallax, must be known. In other
words, a single beam does not provide enough information to determine both
range and reflectance. The additional information necessary can be
measured by introducing an independent beam and appropriate image
analysis. If both beams are illuminating the same surface point, the
reflectance effects can be separated from parallax shifts.

The next sections will discuss several methods of obtaining the
equivalent of two indepehdent surface measurements in order to reduce the

effects of surface reflectance.

3.2.2. Time Multiplexed Beams

If two beams are time multiplexed, two sequential image frames are
acquired. As a simple example of how normalization can be achieved,
suppose that one beam is shifted slightly with respect to the other, as shown
in Figure 6(a). If the two images are subtracted, the resulting difference is as
shown in Figure 6(b). Note that the difference  crosses zero at the point
where the nominal beam intensities are equal.

The position of this zero crossing is not dependent on the surface
reflectance, since at the crossing both beams are identically affected and the
difference remains zero. There is error introduced in actually determining
the zero crossing since the difference signal about the crossing must be
examined in order ‘to locate its position precisely. The beams do not
experience identical reflectance variations on both sides of the zero crossing,
so that methods for determining the location based on sampling or
interpolation will be in error. This effect is discussed further in a later
section. ' ,

An additional source of error is any relative motion of the sensor and the
unknown surface. If a motion that alters the appearance of the surface to
the two beams occurs during the time that the two measurements are made,

then the correction for reflectance is invalid. Unfortunately, in the case of
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14 3-D SENSORS

Beam t2

( a) Intensity
~
Position

Zero
Crossing
Intensity g /
(b). Difference ,

Figure 6: (a) The use of two time multiplexed beams; (b) The
intensity difference between the two beams.

metal surfaces, only a small motion (or indeed, even a minor beam
misalignment) can. cause a significant error due to the faceted nature of

metal surfaces.

3.2.3. Wavelength Multiplexing

An alternétive to time multiplexing two beams is to use multiple
wavelengths. The beams are projected simultaneously, and each beam has a
discernible color spectrum. The sensor separates the image into appropriate
color spectra llsing wavelength filters. The resulting images. can be
subtracted to form a difference image as described in the time multiplexing
approach. The advantage of wavelength multiplexing is that both images
can be collected at the same time using two aligned sensors with color filters.
This avoids errors due to relative motion of the surface during the time the
measurements are made. ' k

There is some risk in the assumption in that the reflectance of the surface

is the same at the two beam wavelengths. A difference can cause an
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Mundy/Porter 15

erroneous shift in the location of the zero crossing and thus the range value.
This effect does not present a problem for many industrial applications that
involve metallic surfaces. Most metals have a reasonably flat spectral
response over the range of wavelengths near the visible band. On the other
hand, organic materials and specific color agents can cause a reflectance

variation that produces a significant range error.

3.2.4. Other Multiplexing Possibilities

There are other physical phenomena which can be exploited to provide
independent channels for reflectance normalization. For example, polarized
light can be used to create two coincident beams. The image of the beams
can be separated by polarizing filters. This method is not likely to be as
robust as the wavelength technique since many materials cause a shift in the
polarization. This shift causes crosstalk between the two channels and
prevents proper normalization of the reflectance.

At present, it appears that time and wavelength multiplexing are the
most promising methods. The next few sections discuss Vapproaches to the
normalization of reflectance variations using information from multiple

beams.

3.2.5. Normalization Methods

Having established two separate channels of information using the
multiple beam approach, the next issue is how to use the two intensity
signals to normalize the effects of surface reflectance variations. There are
many viable solutions, but the choice of an optimal one is still an open
question. To determine the functional combination of the channels that
leads to maximum accuracy in parallax shift detection, we must apply
optimum signal theory analysis to a carefully honed model of the surface
reflectance properties and the sensor system.

Two methods are presented that serve as a first approximation to

satisfactory reflectance normalization. They use a simple model for the
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16 8-D SENSORS

spatial variation of surface properties to remove the influence of reflectivity

on the normalized signal.

3.2.6. Difference Ratio
The simplest normalization is given by the ratio of the difference of the
intensity of the two channels to the sum of the intensities. If the two

intensities are given by I; and I,, the normalized signal is

I 1“12
AR ©

J

The normalized result, N(z), is independent of surface reflectivity under the

following model. Suppose that the image intensity is given by

Il(.'z:) = R(z) P](m) ’ » (10)
I(z) = R(z) Py(z) . (11)

Here P,(z) represents the incident beam po{ver spatial distribution for beam
t. The conﬂr_ibutioqs of sensor geometry and sensitivity, as well as the
effective numerical aperture of the camera, are included in the reflectance,
R(z).

It is easy to shéw that the expression for N(z) leads to complete
suppression of the spatial variation of R(z). Using the expressions for I,(z)
and Iy(z), N(z) is given by

N(z) = —Pl(z)— .5 . (12)
P,(z)+Py(z)

Notice that R(z) appears in the numerator and denominator of N(z) and is
thus canceled.” The normalized signal depends only on the incident beam
power distribution and the sensor properties.

Consider the simple case of two Gaussian beams which are shifted
slightly with respect to each other. The power distributions for the two

beams are
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Mundy/Porter 17

&
Plm)=e | ° | , : (13)
and
[z—-zo—d 2
Bfz)=e | ° |, (14)

where d is the shift in beam centers. Using a Taylor series expansion about

Tg P,(z) and Py(z) become

z—z 2 1 -z 4 ‘
Pz)=1- ~ + 2 - - .., (15)
L L
[ 54 |[ 2=5| 1] [2a] z—3 |2
Pyz)=1+ | — o | +2 el > |t (16)
If we represent
2d(z—z)
Py(z) = P(z) + D , where D ~ — T ) (17)
then N(z) is given approximately by
P,—P,
1772 —D
Nz =p 3P, ~2P+D (18)
or,
d (x—zo) dl2| (z—zp) 2
N(z) ~ | = > tl3 - + ... (19)

assuming that the shift between the two beams is'small compared to the
beam spread, 0. Note that N(z) vanishes at z, and is approximately linear

o ,.d S
at the zero crossing. The slope at z;; depends on the ratio 7, which implies
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18 8-D SENSORS

that the accuracy of the zero location is improved either by a small beam
radius o, or by increasing the shift d. These conclusions only hold for small
shifts since the Taylor series expansion is only accurate near z.

The assumption that the reflectance R(z) is the same for both beams is
quite reasonable for the time multiplex method. If wavelength multiplexing
is used to produce separate beams, it is possible that a difference in
reflectance for the two colors may result. This color variation introduces a
reflectance dependency in the difference ratio normalization just discussed.
The effect can be seen by assuming a different reflectance for each beam
R/ (z) and Ry(z). Substituting into the normalization expression, we obtain

R,P,-R,P, ‘
N(z)

D) =5 ThP 20
R,P,+R,P, (20)

There is ﬁo obvious cancellation of the reflectance. In f@ct, the situation can
become unsatisfactory if the reflectance in one wavelength band is much
larger than the other. Suppose that R >R, N(z) becomes constant and no
signal feature is computable to determine parallax shift. This problem can

be reduced by using differential normalization.

3.2.7. Differential Normalization
Another form of normalization is given by the ratio of the spatial
derivative of the intensity to the intensity itself.  Consider this

normalization function for a single illumination image intensity channel,

I(z).
N(z) = 1—(15 di(: (21)
Given that I(z) = R(z)P(z), it follows that
dP (z z ,
N(z)= Ptc) };i ), E(lz—)dljg . (22)

The first term is related only to the illamination pattern, while the second

term gives the effect of reflectance.
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The same normalization can be applied to the second illumination
channel. By forming the difference of these normalized channel signals, the
effect of reflectance variation may be further reduced. That is,

N(z) = N[(z)—Nz(z) ’ (23)

where N,(z) and N2(z) are the normalized signals for each beam.
Expanding NV, (z) and Ny(z) we have .

' 1 @P(z) 1 dPy(z) 1 4R|(=) 1 dRy(z)
N(z)=PI(z) dz ~ Pyz) dz + R(z) dz ~ Ryz) dz

.(24)

The effect of reflectance completely vanishes if R (z) = R,(z), as was the
case for the difference ratio normalization form. The differential
normalization goes further in that scaled reflectance forms are removed. For

example, suppose that
Rl(“') = Rlo fl=), (25)
Ry(z) = Ry flz). ‘ (26)

We see that the reflectance terms in N(z) cancel, leaving only a dependence
on the illumination pattern.
There are reflectance variation effects that are not removed by
differential normalization. For example, let
R,(z) = R y+r,(2), (27)
Ry(z) = Ryyt+ry(2) - (28)

Then the effect of reflectance variation is not canceled by differential
normalization unless
1 dry(z) 1 dry(2)
Ry dz ~ Ry dz °

(29)
10

It is unreasonable to expect that surface reflectance at different wavelengths
will obey this relation for all materials. However, if the spatial variation of

reflectance is small compared to the structured illumination pattern, the
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effects of reflectance can be ignored. The reflectance spatial slope, Z—f, is
rarely significant except from metallic surfaces with glint. However,
metallic surfaces are reasonably neutral in color, so the reflectance terms
cancel.

There is one second order effect associated with = differential
normalization that produces an error in range measurement. In the analysis
above, it was assumed that the rate of change of the beam position from the
reference position is small. This assumption is not valid at points where the
range is changing rapidly, such as at surface height discontinuities. The
effect can be demonstrated by considering the location, z, of the beam image
to be a function of surface height. In other words, the modulation function,
f(z), can be expressed as f(:cn-i-g(z)), where g(z) is an approximately linear
function of 2, and z,, is the nominal image coordinate (where nominal means
the location of the beam image when the surface is at the reference position).

The normalized form for f(z) expands to two terms,

1 df(z) 1 .df(z) dg(z) dz
}m*ﬁ;=@—d;— 1+j}z—'Tmn' . (30)

If the surface slope ﬁz“ is small, then the expression reduces to the original
form. The second ten,;l can be large in the vicinity of step profile changes.
In practice, the surface slope measurement is restricted by the limited
resolution of the optical and sensor elements. This effect can be seen in
Figure 20, where the profile step measurerﬁents exhibit a small overshoot at

the step location.

3.2.8. Other Forms of Normalization

One can approach the problem of normalization from the standpoint of
optimal signal theory. Most classical results have been developed for
additive noise, while the effects of reflectance appear in product form. This

can be handled by considering the logarithm of intensity rather than
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intensity itself. That is,
log I(z) = log R(z) + log P(z) . (31)

From this perspective, one can consider log B(z) to be an additive noise term
which interferes with an estimate of the signal, log P (z).
This leads to consideration of classical noise elimination methods such as
Weiner filtering. Such a filter is of the form
P (w)

H) = P+ Rw) -

(32)

The effectiveness of the filter depends on the degree to which the spatial
frequency distribution of the reflectance variation is disjoint from that of the
structured illumination.

At first, it would seem that this would be the likely case. For example,
consider a periodic illumination pattern (stripes) which has a single distinct
spatial frequency. The spatial frequency distribution corresponding to
reflectance variations can be considered uniform, particularly for metallic
surfaces with a rough finish. Thus, a notch filter can be constructed that
only passes energy at the spatial frequency of the illumination pattern. This
would eliminate most of the energy due to reflectance variations.

The fallacy in this line of reasoning is that the spatial frequency of the
illumination pattern does not have a well defined distribution even if the
projected pattern is a periodic set of stripes. The image of this pattern
presents a stripe period which depends on the local surface slope. The
spatial frequency can be higher or lower than the nominal stripe spacing
depending on whether the surface is tilted toward or away from the sensor.
For this reason, it is possible to encounter a band of spatial frequencies
centered around the stripe frequency.

This observation would suggest that it is not feasible to approach the
reflectivity normalization problem from an optimal filtering point of view

without a model for the surfaces that will be examined. At the very least, it
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seems that a bandpass filter would be necessary and that the spatial
response of the range sensor would be limited by the bandwidth of the filter.

An adaptive approach would be to form an estimate of the surface slope
at each point of observation. It is not likely that this information will be
available in advance. It may be possible to provide an iterative solution
where a rough estimate is made of the surface range, and is used to corlipute
surface slope. The slope is used to define a filter which provides a more
refined estimate of surface range. This procedure can be repeated until the

desired accuracy is achieved.

s

4. A Profile Sensor Based on Wavelength Multiplexing

4.1. Sensor Requirements

The basic principles for range sensing, described above, were exploited to
implement a practical profile sensor to inspect metallic surfaces for small
defects such as scratches and dents. ln most cases, defect limits. are related
to the detailed profile of the defect. For example, maximum depth, radius of
curvature, and lateral dimensions of a dent determine if it is unacceptable.
All of these parameters can be computed from part surface profile
measurements. The sensor must therefore perform a complete scan of the
part surface. From this scan, an accurate measurement of the surface
contour can be extracted. ’

As we have mentioned above, metallic surfaces can produce undesirable
image conditions such as glint. These large excursions in surface reflectﬁivity
lead to a large dynamic range in image intensity. It has been shown [4] that
the power reflected in a solid angle from metal varies exponentially as a
function of incident and observation angles. This can lead to variations of
several orders of magnitude in scattered light power over a small distance in
the viewing plane. It follows that a.sensor suitable for metal surface
inspection must be tolerant to large and rapid variations in image intensity.

The scale of surface defects in the metal castings to be inspected is on the

s
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order of .001", That is, the depth variations due to defects must be
determined with this accuracy. The lateral resolution required is ideally on
the order of .002" to allow adequate presentation of small scratches and pits.
This determines the pixel size and consequently the processing rate. A
typical casting has ten square inches of surface area. If the pixel area is 4 X
1078 square inches, 4 X 107 pixels are needed to cover the surface. In order
to meet the inspection throtlghput requirements for a production
environment, each casting must be processed in about 30 seconds. It follows
that a rate of about 108 pixels/sec must be achieved. The sensor to be
described here will not achieve all of these goals, but they serve as an
important guide in the selection of design approaches and implementation

strategy.

4.2. Theory of Sensor Operation
In order to achieve the aggressive throughput requirement, it is necessary
to project a parallel pattern of parallax shift features. It is desirable to have
the pattern as dense as possible so that many range readings can be obtained
_in one image capture. The density of the pattern is limited by the problem
of shift ambiguity. If the surface range varies by an amount which causes a
shift in the pattern by more than one stripe spacing, then the range becomes
ambiguous.

The desire for high throughput rules out the use of timé multiplexed
patterns sincé the range pixel rate is ultimately limited by the sensor frame
rate. These considerations dictate the choice of wavelength multiplexing
| since the channels can be detected in parallel with separate sensor arrays for
each color. In addition, it is difficult to provide more than two color
channels due to problems in wavelength filtering and sensor alignment.
Thus the stripe spacing must be large enough to avoid range ambiguity over
the range depth of field. In the application déscribed, the range interval is

.05". Larger excursions in depth are accommodated by a manipulation
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system which is guided by a nominal description of the part surface.

4.3. Sensor Normalization
The differential normalization method is used to minimize the effects of
surface reflectance. In this design there are two wavelength channels, Pl(z)
and P2(:r). The two patterns are projected in a complementary fashion
which gives the best normalized signal amplitude. Assume that the patterns
are complementary, that is
Py() = (2), (33)
P)(#) = G (K—s(z) (34)

where G represents the different channel gain for P2(x), and K represents

the overall illumination intensity. The normalized signal becomes,

dR dR.
o | Lo, 1] [ 6wt 1]
s(z) dz " R dz G(K—S(z)) dz "R, dz |’

Assume for the moment that the reflectance terms cancel or are small

compared to the illumination pattern term. Then, N(z) is given

approximately by
1 1 ds!x!
N=z)= s(z) + K—s(z) | dz - (36)

Also assume that the patterns are sinusoidal, which is the case in a practical
optical projection system with limited spatial resolution. A suitable
functional form for s(z) is

P(z)=s(z)=1+mcosz (37)

where m is a modulation factor (it is assumed that the modulation factor is
the same for both channels in this analysis).
Py(z) = K—s(z) = (K—1)—mcos z . (38)
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Substituting this into Equation (36) for N(z) and choosing K=2+6, we

obtain

N(:c) - (1+m cazs-zé))gigifn cos :z;) ' (39)
which simplifies to

N(z) = — - (2+8)m sin z )

1-m2 cos? z +6(1+m cos z)

For m reasonably less than 1 and 6 small, this expression reduces to
— 2m sin . For m=1 and é small,
2stnz

Ng)=— —F =—2secz . (41)
1—cos’z :

The first case represents a low level of modulation of the illumination.
The resulting normalized signal is a sinusoid having easily detected features
from which to determine the lateral position of the stripe image. The
extrema and zero crossing locations give four distinct features for each
projected stripe:

The second case represents maximum modulation of the illumination
where the dark interval goes completely to zero intemsity. The resulting
normalized signal provides two zero crossings for each stripe with no other
distinct features. Thus it is desirable to use a value of m small enough to
“produce distinct extrema at z==(2n+1)7/2 . A suitable value for m is 1/2
where reliable detection of the features for each pattern stripe is achieved.

Note that both of these cases have the same phase, sin z, as long as § is
" approximately zero. The phase of the peaks shifts slightly as § bécomes
significant. For example, with m=0.5 and §=0.1, the phase of the peaks
shifts about 1-1/3 percent. As we will see later, this is insignificant since
only variations in phase with light level and time actually matter, and § can

be made relatively stable for both light level and time. Figure 7 shows the
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Figure 7: The illumination pattern intensity and the resulting
normalized signal for a modulation factor of m = 0.5.

form of the illumination patterns and the normalized signal.

4.4. Sensor Optical Design

The ray diagram of the optical system is shown in Figure 8. . The
illumination projection system is conventional with the exception of the ﬁse
of two wavelengths. The incandescent source is divided into two paths by
the dichroic beam splitter, 5. The splitter has a wavelength cutoff at 800
nm. This divides the illumination into a visible component and a near
infrared component. This choice leads to an equal division of effective power
in the two wavelength bands. That is, when the wavelength distribution of
the tungsten source and the detector response are taken into account, the
detected signal from a neutral surface is equal for both channels. The two
light beams are recombined by a patterned mirror, 13, providing a self-

registered combination of the two wavelengths. The details of the mirror

PAGE 37 OF 613



Mundy/Porter 27

Figure 8: The optical system for the projection and detection of
wavelength multiplexed patterns. The projector is 22 and the receiver
23.

configuration are shown in Figure 9. In the current implementation, the
pattern is projected with a period that-allows an unambiguous range depth
of .05". ' '

The receiver, 2, is composed of two linear photodiode arrays, 20 and 22.
Each array has 512 detector elements spaced on .001" centers. The dichroic
beam splitter, 18, splits the light into two images, one in the visible, the
other in the near infrared. The receiver images at a magnification of .5X,
resulting in an image of .002" for each detector element.

The overall sensor is shown in Figure 10. The internal views of the
receiver and transmitter are shown in Figure 11. The optical design allows a

‘ nominal standoff distance of 3.5" from the sensor to the surface reference
plane. The scan line covers a field of 1" with pixels on .002" centers.. This

scan is converted by special purpose hardware into an array of 128 distance
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Infra-Red
Ray

Reflective Ray
Thin Film

Figure 9: A detailed view of the patterned mirror principle. The two
wavelength channels are automatically registered by the interleaved
transmission and reflection of the deposited metal film pattern.

measurements on .008" centers. Since a one dimensional array is used, the
sensor must be scanned mechanically along the axis orthogonal to the array.
In this application, scanning is accomplished using a six-axis servo-controlled

manipulator.

4.5. Normalization Signal Processing

The normalization ideas discussed earlier have been applied in the design
of the sensor signal processing system. The functions to be described in this
section have been implemented in special purpose hardware. The hardware
implementation is necessary to achieve the design target of 60,000 range

readings per second.

PAGE 39 OF 613



Mundy/Porter 20

Figure 10: An overall view of the sensor. Note the parallax angle
between the transmitter and receiver. There is an extendible mirror at
the side for viewing at right angles to the normal optical axis of the
sensor. This facilitates the observation of concave surfaces.

4.6. Sensor Calibration

The first step is to remove inherent distortions and artifacts in the
intensity signals derived from an A/D conversion of the solid state diode
array signals. The array signals are corrected for gain and offset differences
between diodes as well as 2 periodic noise term related to the geometric
layout of the detector array known as pattern noise. The pattern noise term
is difficult to remove since its amplitude depends non-linearly on the
illumination intensity. In the current implementation, the solid state arrays
exhibit a noise pattern that repeats with a period of four diodes.

A block diagram of the sensor calibration function is also shown in
Figure 12. The gain and offset corrections for each diode are saved in a local
RAM. The pattern noise correction is also stored in a RAM table and the

correction value is accessed using an address formed by combining the least
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Figure 11: Internal views. (a) The transmitter; (b) The receiver. The
projection lens for focusing the incandescent source is an aspheric design.
The objective lenses are standard components. The detector arrays are

512 element photodiode arrays. The wavelengths are split by a dichroic
filter at 800 nm.
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Figure 12: A block diagram of the sensor calibration and
_ normalization process. -

significant two bits of the diode location and the upper 7 bits of the signal
amplitude. This allows correction to depend on the four diode period and -
the signal level, as required. The offset and pattern noise corrections are
subtracted from each diode. The resulting signal is multiplied by the gain
correction factor. The incoming signal is digitized to 10 bits and the
corrected signal is carried to 12 bits which is the precision maintained

throughout the remainder of the system.

4.7, Differential Normalization
As discussed earlier, reflectance normalization requires a computation of

the form
1 df(=

f(z) dz (42)

The first issue is the computation of the spatial derivative of the function
f(z). The approach here is to use one dimensional convolution with a mask

selected to minimize the error in the estimate of the derivative. There has
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been extensive effort applied to the problem of optimal estimators for linear
operations on signals [1}, [2]. The first derivative of the Gaussian with
suitable spatial scale is often suggested. In the implementation described
here, the derivative mask coefficients are completely programmable so that
any derivative function may be used. In the experiments to be described
later, the first derivative was calculated using a least mean square ‘estimator
based on a second order polynomial model for the local signal behavior.

The hardware implementation allows five signal values to be used in the

calculation of the derivative. The coefficients for the derivative estimate are
1
==]-2 -1 01 2]. (43)

These coefficients are suitably scaled to allow fixed point computation with
12 bit accuracy. The hardware carries out the 5 point convolution in one

microsecond.

4.8. Signal Estimation
The signal itself is also processed with a linear estimator to obtain the
denominator of the normalization form. The second order estimation for the

value of the function, f(z), is represented by the five point mask

j—_~%[—3 12 17 12 -3]. : (44)

4.9. Experimental Normalization Results

The normalization process requires four convolution steps to be
performed in parallel. The division of %2 by f(z) is actually done by
retrieving the reciprocal of f(z) from a ROM table and then multiplying.
The result from each wavelength channel is combined by subtraction to
produce the desired normalized signal. The actual signals obtained by
viewing a flat neutral surface are shown in Figure 13. Figure 13(a) shows the
two wavelength signais superimposed. The visible channel is solid, the

infrared channel is shown dotted. The variation in the image signal
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Figure 13: Experimental normalization results. (a)  The two
wavelength intensity channels. The infrared channel is shown dashed.
(b) The normalized signal, N(z). The variation in amplitude is due to
lens distortions.
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amplitude is due to spatial non-uniformity of the tungsten source and
aberrations in the projection and receiver optics.

The resulting normalized signal is shown in Figure 13(b). The
differential normalization is sensitive to the period of the illumination
pattern since the period affects the magnitude of d—ﬁ—(z@ The lens used to
project the illumination pattern introduces a small variation in the pattern
period due to pincushion distortion. This appears in the normalized signal
as a gradual variation in amplitude over the field of view with a peak in the
center. ‘

- To illustrate the dynamic range of the normalization process, the same
situation as in Figure 13 was repeated with the receiver optical aperture
stopped down so that the signal level was reduced by a factor of 12:1; The
illumination signals and the resulting normalized signal are given in Figure
14. Notice that there is only a minor variation in the normalized result for a
decrease in image intensity of over an order of magnitude. (Note that the
sensor intensity magnitude scales are not the same between Figures 13 and

14. The normalized signal scales are the same.)

4.10. Feature Detection and Selection

The next major step in the extraction of surface profile is the detection of
the significant features in the normalized signal. The location of these
features indicates the shift due to parallax, and thus is used to calculate
surface depth. '

In principle, each point in the normalized signal could be used to define a
unique pattern location. If the normalization procedure were ideal, the
value of N(z) would map uniquely onto the corresponding location in the
projected pattern. Thus the process of profile computation could be carried
out for each pixel in the intensity sensor array.

In practice, this ideal condition is not realized due to many second order

effects which lead to variations in the amplitude of the normalized signal
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Figure 14: The same display as in Figure 13 except the receiver
aperture is stopped down to reduce the signal level by 12:1.
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that are not due to profile variations alone. The most stable features are the
zero crossings and extrema of the approximately sinusoidal form of N(z).
The current design projects 32 stripes over the field of view so that each
period of N(z) contains 16 sensor array sample points.. There are -two
extrema and two zero crossings in each period which are nominally
separated by four sample intervals. This nominal spacing implies that 128
features are present in the field of view; thus 128 profile measurements can

be obtained for each scan of the sensor array.

4.11. Peak Detection

The accurate location of peaks and valleys in the normalized sighal is a
problem which is encountered in many signal analysis applications. “The
approach here is to specify a number of properties that the signal extremum
must satisfy and then implement a linear estimator for each property. This
is done in such a way that the estimator vanishes if the property is satisfied.
The final decision on the presence of the peak or valley is based on the sum
of the absolute value of the estimators.

Three properties of a peak which should be satisfied at the maximum
point of a signal, f(z), are:

af

dz (T’m) =0 (p1)
g{ (2, +d) + % (z,—d) =0 62
flz, +d) — flz,—d) =0 (p3)

These properties all reflect the basic idea that a signal is approximately
symmetrical and constant in the vicinity of an extremum or inflection point.
The conditions in (p2) and (p3) insure that the inflection point case is
eliminated by requiring even symmetry in the distribution of the signal

about the extremum location. The quantity, d, is a suitable distance on each
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side of the extremum. In the current design, d = 2 pixels.

4.12. Implementation of Symmetry Estimators
The estimators in (pl), (p2), and (p3) can all be calculated by
convolutions, with the subtraction indicated in (p3) absorbed into the
convolution coefficients. Using the same least mean square estimation
methods as in the normalization, the masks are:
pl=1[0 -3 —2 =1 01 2 3 0]

p2=[-2 -1010 -1 01 2]
p3=[—17 5 17 19 0 —19 —17 —5 17]

These linear operators are also implemented with programmable coefficients
so that alternative estimators can be tried. The convolution computation
provides for up to nine coefficients. The computations are carried out in one
microsecond using hardware multiplier circuits.

The scaled, absolute values of all three convolutions are added together
to form the extremum signal. A peak or valley is indicated when this signal
goes through a minimum. Ideally, the signal becomes identically zero at the
extrema locations. The actual normalized signal is not perfectly
symmetrical about the peak or valley so the properties in (p1) through (p3)
do not all vanish exactly. However, the minimum location in the sum of the
absolute values is a solid and reliable indication of the peak or valley
location. In practice, the method works well, even for signals with barely

discernable features.

4.13. Zero Crossing Detection

The detection of zero crossings is much more straightforward than for
peaks and valleys. The approach here is simply to form an estimate of the
normalized signal N(z) and then take the absolute value of the estimate. It

is seen that the resulting signal will go through a minimum at the location of

PAGE 48 OF 613



38 ' 9-D SENSORS

the zero crossing. This method has the added advantage that the resulting
signal has the same form as that obtained for the extremum detection.
Thus, the treatment of the signals later in the feature identification process
can be implemented with identical circuits. The same linear estimator for

signal value is used as in the normalization case. That is,

f(z)zglg[—s 12 17 12 -3] . " (45)

4.14. Experimental Results

The results of the feature location operations are given in Figure 15; the
conditions correspond to the setup for the normalized signal plot in Figure
13. Note that the detector signals for the extremum are interleaved with
those of the zero crossing. The feature signals reach a minimum fqur times
for each period of the normalized signal. )

The effect of low image intensity is illustrated in Figure 16. Here the
input light level has been reduced by stopping down the receivel; objective.
The normalized signal appears approximately the same as in Figure 15, but
there are subtle differences which are clearly reflected in the feature signals.
The positions of the. minima are still quite stable and distinct. Note that the
signal for the extrema feature is at a maximum when the zero crossing signal
is at a minimum and vice versa. This property is exploited in the detection

of the minimum in each signal.

4.15. Detection and Interpolation of Feature Position

The location of -peaks, valleys and zero crossings in the normalized signal
has been transformed into the problem of detecting and precisely locating
minima in the feature signals. A crude location of the minima is provided by
starting a sequential search along one signal when its value falls just below
the other. This idea is clarified by Figure 17, which shows an expanded
section of the feature signal plot.

To be specific, suppose that the minimum of the zero crossing signal is
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Figure 15: The feature location signals computed for the conditions
of Figure 13. (a) The normalized signal of Figure 13(b); (b) The
extremum and zero crossing signals. The extremum signal is solid and
the zero crossing signal is shown dotted. The excursions at the left are
due to an unilluminated portion of the detector array.
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Figure 16: The same display as Figure 15 except the receiver
aperture is stopped down as in Figure 14.
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Figure 17: The procedure for locating the feature minimum. The
search proceeds to the right from point A until the signal starts upward.
This is taken as the starting point for the minimum interpolation.

desired. The zero crossing signal is scanned from left to right until it falls
below the amplitude of the extremum signal. At this point a search is
initiated for a minimum in the zero crossing signal. The minimum is
assumed to be where the signal first reverses direction after falling below the
extremum signal. The location of the minimum is thus known at the
precision of the sampling interval of the feature signals, which in the current
design is 512 samples per line.

The use of the complementary signal as a threshold to define the interval
of search for the minimum in a signal is very robust since their amplitudes
track together as the normalized signal degrades. There is, of course, the
possibility that a signal could exhibit several minima over the interval where
it is smaller than the complementary signal. This condition implies quite a
high frequency phenomenon which should only occur in an extreme
degradation of the normalized signal. Since there are only four sample

intervals between each feature, a double minimum would require variation
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which is dangerously close to the Niquist sampling condition and should not
be considered valid.

The location of the minimum can be refined considerably by
interpolating around the minimum using a variant of Newton’s method.
The equation for interpolation is obtained by a Taylor series expansion ’of
the feature signal in the vicinity of the minimum. Representing the feature

signal by f(x), the approximation is

if 1y :
(6) = o i) + i min)E i) + § i) (46
Now the minimum of f(z) can be determined by setting ‘
g (&)
or, in terms of the approximation,
2
T G ) + 3 i) i) =0 (9

In this case z_ . is the approximate minimum location determined by the
search described above. This linear equation can be easily solved for z, the
interpolated value of the minimum,

af
E (zmin)
min d2 f

.d? (zmin)

(49)

With this interpolation it is possible to refine the location of the minimum to
subpixel accuracy. Under ideal conditions with uniform reflectance surfaces
and sufficient illumination, the standard deviation of the feature location is
on the order of % of a sample interval. Under poor illumination conditic;ns
and observing a metallic surface, the standard deviation can increase to ; a
pixel. This is an extreme case with glint and low surface reflectivity so that

the image intensity variations exceed the dynamic range of the sensor array.
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4.16. Mapping of Feature Location Into Profile

The precise location of illumination pattern features is now complete.
The next step is to map the shifted location of the features into the surface
profile which is related to the shift of the features from its nominal position.
Since the mapping function is non-linear and learned through calibration, it
would be difficult to compute directly, and so it is implemented using table
lookup methods. ’

The features are classified into four groups corresponding to the unique
positions on the sinusoidal normalized signal. The classes in order of

occurrence in the signal are:

o Z+4 = Positive going zero crossing
o P+ = Positive peak

o Z— = Negative going zero crossing
o P— = Negative peak

The classes repeat in this sequence over the image. There are 32 groups of
each of these four features or a total of 128 individual features. The
translation of feature location into range is performed using the feature map
which contains four regions corresponding to the four feature types. Each
region is 512 elements long and each address corresponds to the location of a
feature on the input image. Thus, if a P+ feature was found at pixel 47 of
the input image, then the corresponding surface position is stored in address
47 of the feature map. Both X and Z coordinates are stored; the Z value is-
used to compute the actual range data and the X position is used as the X
position of that range value. The Z value stored is the range displacement of
the calibration surface which would result in the identified feature appearing
in the measured position of the input image. This value is obtained by
actually measuring the position of each of the features on a calibration
surface. This method has the advantage of accounting for the first order
anomalies of the optics, with one calibration point for each feature. The X
position is a pointer to an output slot corresponding to the X position of the

center of the feature in the input image. When a particular feature is found
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in the input image, its computed range or Z value is placed in the
corresponding output or X position slot in the output range image.

The actual computation of the Z range is accomplished in three steps.
First, an approximate (un-interpolated) Z value of the feature is retrie}/ed
from the address of the feature map corresponding to the input pixel
location of the identified feature. In the example above, the value woulci be
retrieved from address 47 of the feature map. The sign of the interpolator
defined in Equation (49) is used to choose the adjacent pixel location in
either the plus or minus direction. In our example, if the interpolator were
negative, the value at pixel 46 would be retrieved. Finally, the interpolator
magnitude is used to linearly interpolate between the two retrieved range
values. The result is computed in fixed point arithmetic to twelve bits of
resolution.

In addition to the determination of surface position (X and Z), the
feature map also contains the address of the range of input pixels over which
the reflectance of the corresponding range pixel should be computed. This

information is passed to an averaging circuit which will be described next.

4.17. Acquisition of Surface Reflectance

The formation of surface profile readings is carried with a spatial
resolution of four intensity samples (pixels) on the average. Provision is also
made to acquire a measure of surface reflectance for each profile sample. In
this design the reflectance is taken to be proportional to the sum of the
intensities of each wavelength channel.

The intensity sum is averaged over the interval corresponding to each
profile feature. This interval is illustrated in Figure 17, which shows a series
of feature detection signals. The computation for R, which corresponds to

profile sample 2, is

dy
=i+ )
2
R, = dy+d, E (slj+ s2j) s (50)
4
=i
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where 5, ; and 8y, are the intensity signals in channels 1 and 2, respectively,
d is the number of pixels to the left of the current feature to the previous
feature, and d2 is the number of pixels to the right of the current feature to
the next feature. The index j corresponds to the sensor sample index, while
the index 7 is the profile feature location. There is not a fixed relationship
between z and 7 because the profile feature location depends on the surface
height, z .

The sum of the intensity channels does not exactly measure the surface
reflectance since other factors can influence the intensity in each channel.
For example, if the surface is not neutral, one of the wavelength channels
will be smaller than the other and the sinusoidal pattern of illumination will
not cancel. To see this effect, consider the following forms for s,(z) and
sq(z):

s;=1+mcosz, ] (51)

52=1+6K—(m+6m)cosz. (52)

The quantity 6K represents the difference in optical transmission and ém
represents the difference in modulation factor between channel 2 and
channel 1. The sum of these two signals is

R(z) = 2+ (6K — ém cos z) . » (53)

The reflectance measure should be constant (2), but instead is modulated
with a sinusoidal component, ém cos z which is proportional to the
imbalance in the channel modulation characteristics, and a constant offset,
6K, which is proportional to the imbalance in the channel transmission.
These two factors correspond to a first order approximation of the dynamic
and static lumped response characteristics of the optics, the part surface,
and the electronics. ‘

In practice, for the application of the sensor to metallic surfaces, there is

not a significant difference in the reflectance for the channels. The
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difference that does exist is reasonably uniform over the surface and can be
removed by calibrating the gain constants for the channels to give equal

intensity signals.

.

4.18. Experimental Results for Line Scans

Continuing the example of Figures 13 and 15, the results 'of profile and
reflectance are now presented in Figure 18. The uppermost plot shows:the
original sensor intensity data for each channel. The profile readings should
be nominally zero since these data were taken on the reference surface. Note
that there is a small sinusoidal component in the reflectance signal. The
standard deviation in profile is approximately .00015". B

The corresponding result with the receiver objective stopped down is
shown in Figure 19. Note that the reflectance signal is about one order of
magnitude less than in Figure 18. The standard deviation in profile has
increased to about .0005". The systematic slope to the profile data is caused
by the change in optical characteristics of the receiver when the objective f
number is increased. The rays are confined more to the center of the lens.
As a consequence, the effective focal length of the lens is changed slightly,
which produces a small change in image magnification. This change in
feature scale is interpreted as a slope in surface height. Under normal
operation, the lens settings are not changed and the optical characteristics of
both the transmitter and receiver are incorporated into the profile mapping
function.

Another example of sensor performance is shown in Figure 20. Here the
sensor is measuring an adjustable step on a metal surface. The step is
increased in steps of .002" for each scan. The overshoot in profile is due to
the effect of surface slope on the differential normalization process. The
nominal scatter in the profile readings is quite small in regions away from

the step. In this example the deviations are on the order of .0005".
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Figure 18: (a) The sensor intensity data of Figure 13; (b) The
reflectance and profile results for the conditions in Figure 13. The dotted
curve shows reflectance on a relative scale. The profile data is shown as a
solid curve. Full scale is about .008".
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Figure 19: The same conditions as Figure 18 except the receiver
aperture is stopped down to reduce the signal level. Note that the
reflectance signal is about 1/12 of that in Figure 18.
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Figure 20: The measurement of profile steps on a metal surface.
Bach trace corresponds to a .002" increase in surface height.

4.19. Two Dimensional Profile Scanning

The sensor as described provides a single line of profile data. The data
provide a profile sample every four sensor sample points, which corresponds
to .008" using the average magnification of .5X. This magnification
produces a sensor pixel image corresponding to .002" x .002" on the sample
surface. The profile readings are computed using a normalized signal which
is first averaged over two sensor lines for a physical domain of .008" x .004".
This is again averaged for two lines which yields a square profile pixel of
.008" x.008".

The input sensor rate is designed to be as high as 108 sensor pixels per
second. After the indicated sampling and averaging, the resulting profile
generation rate is 62,500 profile readings per second. This rate corresponds
to an area coverage of four square inches per second, which is quite
acceptable for inspection purposes.

In practice, this rate was not fully achieved. The sensor A/D conversion

PAGE 60 OF 613



50 8-D SENSORS

module limits the input sample rate to 800,000 samples per second. In
addition, the low reflectance of many casting surfaces requires that the
sensor integrate the incident intensity for longer than the 'time
corresponding to the maximum line scan rate. The extra integration is
necessary to achieve enough signal to noise ratio in the sensor data to allow
computation of the normalized signal. For dark, oxidized metal surfaces,
the maximum scan is limited by this effect to about one inch per second.
Profiles can be measured at scan rates up to about three-inches per second
for moderately reflective surfaces.

Another limitation is imposed by the multi-axis manipulator, which
provides the other direction of scan along the part surface. In the current
system the six manipulator axes are divided between the sensor and the part,

as shown in Figure 21. For best results, the sensor should have its optical

Z AXIS Y AXIS
-
+
X XIS SENSOR [ 1~ AXIS
«—||l{
. o)
+
PART x AXIS
B AXIS

-

Figure 21: The configuration of manipulator axes for part surface
scanning. The inertia is reduced by splitting the axes between the part
and sensor manipulation.

axis aligned with the normal to the object surface. If the the surface is highly
curved, this condition requires large axial accelerations. The massive

construction of the manipulator, required to maintain global positional
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accuracy, limits the maximum axial accelerations that can be achieved, so

that for curved surfaces the scan rate is also limited to one inch per second.

4.20. Two Dimensional Surface Measurements

A typical surface scan is shown in Figure 22(a). This scan is taken of the
surface of an airfoil casting as shown in Figure 22(b). The region
corresponding to the profile surface is indicated by the arrow. A small step
(.002") has been introduced in the data by moving the manipulator during
the scan sweep. This step provides a calibration for the scale of the profile
data. Another example is given in Figure 23, which shows the profile
displayed as an intensity plot. The figure shows a small flaw which is about
025" across and .005"* deep.

In Figure 24 a series of scans are taken on a recessed portion of a casting.
The casting is shown in Figure 24(a) with the two regions to be scanned
illustrated with arrows. A scan of the edge of the pocket is shown in Figure
24(b) as an intensity plot. The corresponding perspective view is in Figure
24(c). The lateral resolution of the sensor is illustrated by a scan of a portion
of the raised serial number on the casting. The characters "80" are clearly
legible in the profile intensity plot of Figure 24(d). The double images in
some of the plots are a result of scanning back and forth over the area and
recording profile images for both directions.

The effect of surface glint is illustrated by a scan made of a small
metallic washer shown in Figure 25(a). The washer surface has many small
glint sources and leads to false excursions in the profile data. The resulting
profile is shown in an intensity plot in Figure 25(b) and the profile format in
Figure 25(c). The profile noise here has a peak-to-peak variation of about
.003".

The sensor has been applied to the inspection of casting surfaces for
small pits and scratches. Extensive tests have indicated that defects as small

as .020" across by .003" deep can be reliably detected for gradually curved
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Figure 22: A two-dimensional scan of an airfoil surface. (a) The
profile shown in perspective. The sensor was shifted .002" to show the
scale. (b) The airfoil surface. The arrow indicates the area of the profile
scan.

L
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Figure 23: A small flaw displayed as an intensity plot. The flaw is
about .025" across and .005" deep.

surfaces. The case of highly curved surfaces is still a problem because of the
difficult mechanical problems in maintaining the sensor axis normal to the

surface.

5. Future Directions

The effects of reflectance are diminished the most by projecting highly
localized patterns. In the simple case of a single beam of illumination, this
corresponds to reducing the beam spread as much as possible. It is therefore
relevant to consider what optical phenomena ultimately limit the size of the

beam.

5.1. Limits on Beam Spread

The effects of diffraction impose a final limit on the size to which a beam
can be focussed. The main parameters are the wavelength of the light, X,
and the numerical aperture of the objective, NA. The definition of

numerical aperture is given in Figure 26. Essentially, NA is a measure of the
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Figure 24: A scan of a recessed casting pocket. (a) A view of the
casting with arrows indicating the location of the scans; (b) The profile
of the edge of the pocket as an intensity plot. The surface was scanned in
two directions which causes the repetition.
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Figure 24:

(c) The data in (b) shown as perspective; (d) Profile
data in perspective showing the characters "80".
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Figure 25: A scan of a metallic washer. (a) The washer; (b) The
washer profile as intensity;
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Figure 25: (c) The profile data in perspective.

NA = Sin (©)

Figure 26: The definition of numerical aperture. f is the focal
length of the lens, D is the lens diameter.  is the angle subtended by
the outermost ray intercepting the lens and the optical axis.

convergence angle of the rays towards the beam focus point. The beam

spread, o, at focus is given approximately by
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b

=4 (54)

The depth of field, 6, is also related to the numerical aperture of the
objective lens. The focus spot diameter increases according a _simple
geometric interpretation of the divergence of the beam away from focus,
That is,

by

§=—=.
NA?

(55)

To get an idea of the magnitude of these quantities, consider a typical
case where the objective lens has a .1 NA and the desired beam spread, o, is
.01 mm or .0004". The resulting depth of field is only .2 mm or about .010",
This extremely limited range is difficult to maintain for manipulation over
curved surfaces, so some form of profile feedback must be used to maintain
the focus setting. On the other hand, with a beam spread of only .0004", the
maximum profile error that can be caused by glint spikes is limited to about

.001" for a parallax angle of 30°.

5.2. Dynamic Focus

To maintain the beam focus for such a limited depth of field, one
approach is to provide two levels of depth resolution. An example of this is
shown in Figure 27. Here two wavelengths are used to proviae dual .
channels. One channel is focused with a small NA and correspondingly large
depth of field. This provides a crude profile reading to precisely locate the
focus for the second beam. The second beam is focused, with a large NA
and, consequently, fine profile resolution.

It is difficult to see how an approach along these lines can be extended to
a parallel pattern of stripes as in the sensor described earlier. Each point
must be individually focused, which implies that sensor readings are taken
for each sample beam location and focus position. In the sclieme just

described, at least two sensor readings must be taken for each profile
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A2

A1

Figure 27: An arrangement for dual resolution beams. One beam is
used to provide an approximate focus position for the other.

sample.

5.3. Structured Light and Stereo Matching

A more interesting prospect which avoids the need to maintain a finely
focused system is the hybrid use of structured light and stereo feature
matching. This idea is illustrated in Figure 28. Here, two receiver sensors
are provided to observe the surface at the parallax angle with respect to the
direction of the projected pattern.

If the reflectance of the surface is relatively uniform, the accuracy of
profile measurements made by the differential normalization method will be
good. In the presence of glint or other rapid variations in reflectance, the.
normalization procedure may degrade and lead tc error in profile
measurement.

However, this is exactly the condition in which stereo matching is
effective. The rapid change in reflectance can be localized accurately in each

sensor image using standard intensity edge detection methods [3]. The
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Stereo Pair

Laser Beam

Figure 28: A hybrid arrangement using stereo riatching and
structured light.

location of these intensity features can be matched between the two views,
which gives an accurate estimate of the surface position. '

On the other hand, if the surface reflectance is uniform there are no
intensity features to match in the stereo pair. The projected illumination
pattern provides the needed triangulation features in this case. Thus the
two methods nicely complement each other and are capable of high degrees

of parallelism.

6. Conclusion

As we have described, the technology for direct profile sensing is complex
and rapidly evolving. It is clear that the process of obtaining an accurate
profile reading over rough metallic surfaces is computationally intensive.
Fortunately, the present cost of computation is plunging rapidly through the
application of VLSI technology. It is likely that in the near future many of
the sensing and signal processing requirements described here will be

available in highly integrated modules with correspondingly low cost.
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In addition, other methodologies for profile sensing are becoming

practical as a result of the improvement of semiconductor technology. For

example, there is an increasing interest in time-of-flight methods. In these

approaches, the round trip time or phase of a modulated laser beam is used

to measure distance. It is not yet clear whether or not time can be measured

with sufficient precision to compete with structured light triangulation

methods for surface profile measurement.
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Abstract

Structured light vision systems offer a practical solution
to many 3-D inspection problems. This paper examines the
tradeoffs involved in the design of 3-D inspection systems
that use triangulation. General equations describing the
behavior of such systems are derived. Problems common
among structured light systems are explored and alternative
solutions presented. The implementation of a multi-stripe
system 1s discussed.

1. Overview

Vision systems are becoming an integral part of many automated
manufacturing processes. Visual sensors for robot arm positioning, parts
placement, and work cell security have greatly enhanced the utility of
robots, while inspection systems employing similar sensors help ensure high
quality products in many areas. However, standard vision systems provide
only a two dimensional picture of the work area or finished product; unable
to discern the distance to, or height of, the object viewed. Recently, various
3-D vision systems have been produced to alleviate this problem via several
methods [10], [14]. The two major distance measurement techniques are

triangulation and time of flight [12]. Triangulation systems can be further

63
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subdivided into active [11] (structured light) and passive [13] (stereo
disparity) systems. Most commercially available 3-D vision systems employ
structured light triangulation because this method currently has the greatest
potential for fast, accurate, and inexpensive high resolution systems.

As shown in Figures 1 and 2, structured light triangulation systems
determine distance by projecting light from a source onto an object and
imaging the resulting illumination pattern onto a detector. Knowing the
position of the image on the detector, as well as the lateral separation
between the detector lens and the light source, and the projection angle of
the source, allows the determination of the distance, z, to the object.
Multiple measurements at different (z;y) coordinates on the object lead to a

full 3-D image of the object’s surface.

OBJECT
LENS
LASER M
DETECTOR
(a)
T
)\ Il
4

(c)

(b)

Figure 1: Structured light triangulation. (a) Single point projection;
(b) Single line projection; (c) Multiple line projection
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Figure 2: Geometric model for general triangulation system

In this paper we examine the design of structured light triangulation
systems, starting with a discussion of illumination patterns, and an analysis
of general triangulation geometry. We then consider the design of the
illumination and detection subsystems (including light source and detector
selection as well as the creation of illumination and receiving optics). Data
processing techniques are addressed next, followed by a discussion of optical
problems including a brief description of filtering techniques which minimize
their effects. Finally, results from our prototype system are presented and
our system’s performance is discussed in the light of the original

specifications.

2. Light Structures

The simplest structured light system projects a single point of light from
the source onto an object for triangulation (Figure 1(a)). This method has
the potential for delivering a great deal of light to that single point and can

provide a high signal to noise ratio even when looking at dark or distant
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objects. Only a single point is measured per sampling interval so that nXm
sample times are required to acquire data for an n by m lateral resolution
element image. Single point triangulation systems usually use lateral effect
photodiodes or linear arrays as detectors. If a full 3-D image is to be
obtained, a bi- directional scanning apparatus is required [9].

A second class of 3-D imaging instruments operates by projecting a light
stripe onto the object and using a two dimensional detector array (Figure
1(b)) [1]. Fewer frames are needed to scan over an object (n frames for an n
by m element picture) and scanning need only be done in the direction
perpendicular to the stripe. This results in a system with fewer moving
parts. In fact no moving parts are required if the object being inspected
moves past the vision system (as on a conveyor belt). The image of the
illumination stripe is free, in principle, to move across the entire width of the
detector array and therefore the system can have depth resolution at least
equal to the number of pixels in a horizontal line of the detector array.

‘Whether all of this depth resolution will in fact be used depends on both
the object and the optics used in front of the detector. For proper optical
design, the length, [, of the stripe in Figure 1(b) should be imaged so as to
match the vertical dimension of the detector array. With standard spherical
imaging lenses and a 45 degree angular separation between source and
receiver optics axes, a height change of approximately [ must be encountered
in order for the stripe image to move all the way across the width of the
detector array. Many objects in the world are quasi-flat, (e.g., circuit
boards) so that in going from minimum to maximum height we use only a
fraction of the detector array unless expensive anamorphic optics are used.

We can make use of this disparity between poténtial depth variation
(determined by the resolution of the detector) and the useful depth variation
(determined by object size and opto-mechanical geometry) by projecting
multiple stripes onto the object (Figure 1(c)). Since with n stripes projected

onto the object, each stripe can traverse only 1/n of a detector scan line, the

PAGE 76 OF 613



Case/Jalkio/Kim 67

potential depth resolution has been decreased by a factor of n. However, as
Jong as the useful depth variation for a quasi-flat object is smaller than the
potential variation this is not a problem. A given lateral resolution can now
be obtained with 1/n times the number of frames that a single stripe system

would require.

3. Analysis of Triangulation Systems
Before designing a. multi-stripe 3-D vision system we must understand

the geometric constraints inherent in such a system.

3.1. Object Coordinate Calculation

In Figure 2 we show a general triangulation system, specifying the
z,y, and z coordinates of the object, light source, and detector lens aperture
centers. The coordinate system is centered on the primary detector lems.
" The (z,y) coordinates of an image point are given relative to the
corresponding imaging lens center. A single illumination beam is
represented at angles 6, and Gy to the z axis in the z and y directions
respectively. It illuminates the object at the coordinates

z,=z,~(z,~2z,)tan 6, (1)

I

y,=y,~(z,—z)tan Gy . 2)

An image of this point is formed on the primary detector at the coordinates

F F :
T,= %, = (z8+zstan GI)—F tan 91’ (3
o ]
F _F
y, = Py Y, = z (y,+2 tan Gy)—F tan Gy, (4)

where F is the distance between the receiving lens and detector, which is
nearly equal to the focal length of the receiving lens for long working
distances (large z ). If this image point is compared to that produced by an

object at a calibration distance 2oy WE find displacements of the image by
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1 1
Az, = F(z +ztan 91)(;; - a}) ) (5)

. ©)

1
gy = Pl rzan 0~ -

T

Using the z displacement to calculate the object distance we find
_ zrcl
0 . Azizr ef
Mz, +ztan 6)

(7)

which implies that the relation between z and Az, is space variant (ie.,
dependent on 6,) unless z,=0 .

To simplify calculations and eliminate the need to buffer an entire frame,
we would like image points to move only in the z direction (i.e., along a
detector row or raster) for changes in object distance. For this we require
Ay,=0 which implies y =z =0, so that the effective source position must
be on the z axis.

If we introduce a second camera, we can measure distance by comparing
the relative separation of image points on two detectors instead of
comparing the coordinates of a given image point to those corresponding to
a previous reference point. As shown in Figure 2 the coordinates of the
image on the second detector plane are

F(z,~zp)
Ca= ®
F(y,~y,)

Yig = (z,—

©)

sz) :

Using Equations (3) and (8) to eliminate z  and solving for z, we find

Fapo—219%
z = (10)

o z.—Z,
T 12
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which tells us that unless z;,=0 we will have space variant behavior. The

vertical displacement is given by:

Fyjo=219;9

Ay = yi_yiz b ——zo—__— ’ (ll)

indicating that for the desired condition of Ay=0 we must have

yL2=zL2=0 , 50 lens 2 lies on the z axis.

Finally, we must consider the determination of z_ and y . Clearly we
could use Equations (3) and (4) to find them from z; and y,, but it might be
simpler to report coordinates in the zo,Ox,Gy system; since 62 is fixed for a
given illumination stripe, it need not be calculated. Furthermore, we note
from Equation (2) that if z =y =0, © y is uniquely determined by y; and

hence it need not be calculated either.

3.2. System Parameter Calculations
To demonstrate the procedure used to calculate the adjustable system
parameters, we will assume that we wish to measure an object of overall

dimensions z and varying in distance from Z e B0 2,000, 88 shown

size? Ysize m

in Figure 3(a). We further assume that measurement resolutions of T o0

Yyes? Zres aT€ Tequired. If we denote by Az;  the smallest measureable

mn
change in image stripe position on the detector (determined by both the
pixel size and the stripe detection algorithm used), and by Az; the
mazr
change in image stripe position caused by the object distance changing from
20z 10 2,00, We find from Equation (5) that
Fzz

8 res

Az, (12)

"min - zﬂuzz(zmaz—zfu)

F I’( zmaz_zmin)
Az. I S ——— (13)
‘maz 2 maz®min

Assuming that Az,  is known, Az; can be found in terms of Az,

min maz min
by eliminating F z, from Equations (12) and (13):
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Figure 3: Geometric model for the prevention of aliasing
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(zma:c—zmin) (zma:t_zres)
Az, = Az, . (14)

1 . .
maz min zres zmm

In Figure 3(b) we show two adjacent stripes projected from the source
and imaged onto the detector. Shown are the image positions corresponding
to maximum and minimum object distances. If we project M stripes onto
the object and collect IN frames of data wherein in each frame each stripe is
shifted laterally on the object by an amount T, from its position in the
previous frame, we obtain a total lateral resolution of INM pixels, where to

match the object resolution requirements

T . .
s12¢e
NM > —. (15)
z'ree
Adjacent, simultaneously projected stripes are separated by eres and if we
denote the separation between the images of these stripes on the detector by
the distance sep , we have '

NzresF

sep = (16)

max
To image the entire object onto a detector of lateral extent z,,, y, , we
impose the constraint

F/z

min *

Ziet > Tsize (17)

Eliminating F from Equations (16) and (17), we can find the number of

frames required to obtain sufficient depth and lateral resolution:

zZ se. T
N > mazT __Z_?_ s1ze ) A (18)
Zmin Tdet Tres

Once N is chosen, the number of stripes used in a single frame, M, can be
found from Equation (15).
We define the ratio of the range of travel of a single stripe, Azi , to

maz
the separation between adjacent stripes, sep, and denote it by R. That is,
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Az,
'maz za(zmaz_zmin)
R = = . (19)
Sep Nzrea 2 min

Clearly we require |R| < 1 to prevent aliasing. The exact value of R chosen
for a system must take into account the stripe finding algorithm used, since
some algorithms require more dead space between stripes than others. Once
a value has been chosen for R, we can solve Equation (19) for the separation
between the light source and detector lens pupil:

RNz

resZmin
T =
8

20
(zmaz_zmin) ( )
Using this value in Equation (5) determines the focal length of the detector

lens

RNz " (21)

If the dimensions of the object and detector are such that this focal
length does not allow the entire y extent of the object to be imaged onto the
detector, anamorphic optics can be used to provide a different focal length,
and hence magnification, in the y direction, satisfying the relation

Ydet = Fyyaizc/ Zmin * (22)

For systems employing two detectors, Equation (20) needs special
interpretation. In particular, for the second detector z, must. be replaced by
z,—;, and R, may differ from Rl' Combining the two versions of Equation
(20), we can solve for the required lens separation z,:

zresszi
-2

Z5=7 = (R,~Ry) . (23)

mazx min

It should be noted that for the case of two detectors located symmetrically
about the light source, we have R,= —R, and z;, = 2z,

From the above derivations we can see that if the dimensions and
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resolution of the object and detector are known, all system parameters (i.e.
number of stripes per frame, number of frames, lens focal length, and source
and detector offsets) can be uniquely determined. As an example, our
system was designed to view objects for which Ty e =Yi = 60 mm, and

z —z_. =125 mm withz = 0.5 mm and z__= 0.25 mm. We chose a
mar ~min res res
working distance z_ = 650 mm. The active detector area has z det =Y det—

5.5 mm, Azi . = 0.001 mm (using a super resolution algorithm) and we

in
planned on R = 1/6 (see Section 6.2). Using these values and the above
equations we find Az¢ = 0.051 mm, N > 6.8 (we chose 8), z = 34 mm,

and F= 50 mm.

3.3. Light Source Calculations

We have to this point presumed that stripes of light of suitable size could
be accurately projected into the object space from the specified source
position. Such does not happen by accident. In this section we will describe
source design.

In Figure 4, a laser beam with Gaussian intensity profile impinges on a

— "\77¢\—/
4
s JoA—7 A
2w(?)
LENS (D,F)

> I }
>

1
!
[o] Zmin E' 21mcx

z

Figure 4: Focal properties for Gaussian beam

lens of diameter D and focal length F. The beam width as a function of
position, z, is given by [15]

Mz—2z )[2]1/2

wiz)=w,| 1+ N
W,
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where w(2) is the distance from the center of the beam to the 1/e? intensity
point, and w  is the minimum value of w(z) (which occurs at 2 ).

We require that the beam diameter

w(z) <z, (25)
in the interval

2 in <z< Zrmaz (26)
in order to obtain the desired lateral resolution. Selecting

W(2,,,0) = Tp,/2 and 2z, =(z .+ z,:.)/2 (2n

allows us to solve Equation (24) for w,, the beam waist size, which in turn
allows us to find w(0), which is the minimum allowable lens radius. We find

that

Tres 4)\(zmaz_zmin) 1/2
= 1+vV1- (——2——~—)2 ) (28)

W =
°" 92

TZ
res

Hence there are two beams that satisfy our requirements. The beam with
the smaller value of w converges more rapidly than the other, hence it
requires a larger lens diameter. For this reason we chose the larger value of
w, in hope of minimizing the size of our optical system. For this beam, the
lens diameter must have size
D = 2w(z=0) = 2w_| 1+ ( " )2 v (29)
° 2

mTw
o

As an example, with stand off distance z,= 650 mm, depth of focus
2 e Zmin— 12.5 mm, lateral resolution z .= 0.5 mm, and A= 0.633
%1072 mm, inserted into Equation (28) (with the positive radical) we find
the beam waist diameter (full stripe width) to be

2w = 0.49990 mm ~ 0.9998z (30)
o e

8
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so that the laser beam is only weakly convergent as it approaches the focus.
Inserting Equation (30) into Equation (29) and applying our numerical

values gives
D =1.16 mm == 2.32z_,,

4. Source Implementation

We saw in the previous section that it was advantageous for the fan
beams producing our multiple illumination stripes to appear to diverge from
a point which is only displaced in the z direction from the center of the
detector lens pupil. Such an array of beams is easily produced via a multi-
faceted hologram [3] which segments a single beam of light into M beams;
these cross at a given distance to produce an effective source some distance
from the hologram, and come into focus some distance later as shown in
Figure 5. The cylinder lens diverges the beams to form stripes, although this

function also could have been incorporated into the hologram.

STRIPE

6 FACET

oLOGRAM CE'E;QDER

OBJECT

EFFECTIVE
OURCE

OSITION

PoINT Lens

SOURCE

Figure 5: Schematic of illumination subsystem
In order to obtain a horizontal resolution of 128 pixels, our system
produces M=16 stripes which are laterally shifted in each of 8 consecutive
frames. This motion could be accomplished by moving a lens or mirror
within the source optical system or by using 8 adjacent light sources that -
can be switched on sequentially. LEDs and laser diodes are small and easily
switched. LEDs have lower brightness than lasers but eliminate speckle

problems (explained later). For our experiments we used a HeNe laser whose
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visible beam made optical alignment easier. Since it was not practical to use
8 HeNe lasers, our system moves a lens via a computer controlled translation
stage to translate the stripes between frames. Our hologram facets were
1/16* = 1.6 mm in width and the illumination across each facet was of
uniform irradiance so that depth of focus, etc. differed slightly from our

above design analysis.
5. Detector Implementation

5.1. Detector Selection

Since our multiple stripe technique requires a two dimensional detector,
we must choose between a solid state or vidicon type camera. Although
solid state cameras are small, rugged, long life devices, our system uses a
vidicon detector in order to obtain greater depth resolution. Not only does a
vidicon camera offer higher resolution than currently available solid state
cameras, but also the dead zones between the pixels of a solid state camera
can cause distortion of narrow stripes, whereas data are obtained from a
vidicon via smooth convolution with a scanning electron beam, which
broadens the stripe but does not distort it.

Because of the scan instability inherent in vidicon devices, we chose to
use a dual detector architecture to minimize the effects of jitter on our data.
Comparing Equations (7) and (10) we see that in a single detecter éystem, z
data are obtained by comparing stripe positions in sequential frames,
making the system quite semsitive to jitter (small changes in horizontal
synchronization) and thermal drift, whereas with the dual detector
architecture, z data are obtained by comparing two stripe images obtained
at the same time. If the two detectors are produced via a double optical

_ system in front of a single detector, the resulting system is immune to jitter
effects. In fact, if the images from the dual optical system are interleaved so
that the two image stripes corresponding to the same illumination stripe are

adjacent, the resulting system is quite insensitive to fluctuations in the scan
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rate during a single frame. In the next section we will discuss several
techniques for producing the virtual camera pair and compare their

strengths and weaknesses.

5.2. Dual Detector Implementations

MIRROR

|- JDETECTOR

Figure 6: Mirror - Beamsplitter system produces asymmetric -
detector pair

One method for producing a pair of virtual detectors is to use a mirror
and beamsplitter [4] as shown in Figure 6. With this arrangement the
relative separation between the two stripe images increases with decreasing
object distance in correspondence with Equation (5). This is inexpensive and
simple to align, but it has three problems. First, the separation between the
two detectors cannot be smaller than the aperture of the camera lens. Since
there is an inverse relationship between the range of measurable distances,
2 o Zminy 20d the detector separation (Equation (20)), this gives us an
undesirable trade-off between useful range and aperture size (light level).
Second, the path length between the object and the camera is different for

the two different paths. This means that the two images can never be

simultaneously in focus. The third problem is also due to the path length
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difference, namely that the two virtual detectors do not lie in a plane
perpendicular to the optical axis, leading to a space variant relationship
between distance and image separation as shown in Equation (7). Since we
want to reduce the computational complexity of the system tﬁis is a very
undesirable side effect.

One way to reduce the detector separation, as required for long working
ranges (while maintaining depth resolution and lens aperture size), is to
create an equivalent arrangement of mirrors by sputtering a pattern of gold
on both sides of a glass plate. For glass with an index of refraction of n, the
pattern shown in Figure 7 behaves similarly to the mirror beamsplitter
arrangement; half of the incident light which passes the first surface is
transmitted directly to the camera while the other half is reflected twice to
enter the camera at a position laterally displaced by

T, =2wsing, (31)

where [ and w are related by

| = e T (3

3vn2—1

This technique has different path lengths, but the difference can be so small
as to not affect focus appreciably. However, the space variant effect arising
in Equation (14) is unchanged, since it is the ratio between the detector
separation in the z and y directions that determines the relative importance
of this effect. This system is half as light efficient as the system shown in
Figure 6.

Another way of producing two images using the same camera is to equip
the camera with a dual aperture and operate away from perfect focus [2] as
shown in Figure 8. The light from the two apertures will focus in a plane
before that in which the detector is located, and hence form out of focus
images in two different places on the detector plane. Since we do not want

to operate far from correct focus, this method can be modified by placing a
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Figure 7: Multiple aperture asymmetric mirror system
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Figure 8: Dual aperture system producing defocused double images
chevron made of two glass plates in front of the apertures (Figure 9). In this

manner a double, in-focus image is formed. Again the separation between
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Figure 9: Dual aperture system employing a glass chevron to
produce focused double images

the two cameras is forced to be greater than the lens aperture size. This can
be overcome by using multiple chevron patterns adjoined to form the
corrugated structure shown in Figure 10. However this severely limits the
working range of the system since as the image moves far from proper focus
the light from each segment of the glass ‘wiggle’ forms an ‘image’ at a
different lateral position, leading to a great multiplicity of images.

All of the above techniques were investigated, and for our experiments
we chose a symmetric modification of the first one mentioned above.
Instead of a mirror and beamsplitter, four mirrors [7] are used as shown in
Figure 11. This system provides symmetry for the two paths, simplifying
focus and computation, but the separation between the two cameras is still

constrained to be greater than the aperture size.
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Figure 10: Multiple chevron

! \
! v
A \
/ \
! \
I \
! \
I \
’ \
U
/ ,WI--‘ \ A SvmmerRIC
- H 1 = IRROR
t 7 Lens
‘ .
o
PE—
v
[
' ]
Vo
v
Vo
]

=M DeTecTOR PLANE

DoUBLE IN-FOCUS IMAGES

Figure 11: Symmetric mirror system
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6. Data Interpretation

We must now face the question of how accurately the position of our
stripes can be determined. The simplest approach to determining stripe
position is to look for the highest intensity pixel in a region and assign its
position to the center of the peak. For a noiseless system this gives an
accuracy of +1/2 pixel. This accuracy is rapidly degraded by noise; since
the slope of the signal is zero at the peak, small amounts of noise can greatly
affect the peak position.

If we assume that the peaks are symmetric or that the pair of peaks is
symmetric about the center of the pair, we can determine the separation of
the two peaks by noting where the intensity, I(z), crosses a threshold, T.
Assuming for a single peak that thé threshold is crossed upward between
pixel n and n+1 and downward between pixel m and m+1, the center of the
peak, to a linear approximation, is at

1 T-I(n) Im)-T
C=3| "™ *Tnr1)—In) T Im)—I(m+1)

(33)

and the separation between two peaks is the difference between their
centers. This technique is simple and effective for the peaks we have
observed if the threshold is set at one half the maximum value of a Gaussian
stripe image. It has lower noise sensitivity than peak detection because of
the non-zero slope of the Gaussian at the threshold level.

A third technique uses the fact that the sampling theorem tells us that if
a continuous bandlimited signal is sampled frequently enough, all of the
details of the original signal can be reconstructed from the sampled data by
convolution with a sinc function. Hence if the size of the peak on our
detector is large enough to cover several pixels on the detector we should be
able to determine the position of a noiseless signal exactly. This technique
assumes that the sample values are not corrupted by noise, which is not a

reasonable assumption for stripes reflected from real surfaces.
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If the signal is not perfectly bandlimited, this reconstruction will not be
ideal. Hence we expect that the error introduced by sampling will depend on
the extent to which the high frequency components of the signal shift the
peak position away from the position determined by the low frequency
components. If this effect is slight (which we would expect for a Gaussian
beam) we need not worry about it. Broadband noise will be a problem,
however, since its effects cannot be eliminated by lowpass filtering. Some
sources and potential solutions to this problem are discussed in the next
sections.

A technique that reduces the effects of noise to obtain sub- pixel
resolution is to perform a Gaussian least squares fit. Although this
technique does provide a good estimate of the peak position, it is
computationally intensive. Since one of our goals is to reduce the
computational complexity of making height measurements, we did not
choose to implement this algorithm as part of our system.

Yet another technique for achieving sub-pixel resolution is to view the
intensity of the signal at a given pixel as the probability that the peak is
centered at that pixel. Then averaging would give the mean position of the

peak. The average is easily computed by the algorithm:
SUM =0
SUML = O
DO 10 x =N, 1, -1
SUM = SUM+I(x)
SUM1 = SUM1+SUM
10 CONTINUE
AVE = SUM1i/SUM

producing a simple technique that works reasonably well. Our tests have
shown that threshold crossing and averaging work equally well for the

optical system described above.
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7. Ubiquitous Optical Problems
Having discussed algorithms for improving the system’s resolution, we
must now turn to the optical problems that limit our ability to determine

the object distance at a given point.

7.1. Surface Properties

The first two problems to be discussed are object surface roughness and
varying object reflectivity. They have two deleterious effects on structured
light triangulation systems. First they alter the shape of the stripe, so that
the most intense point in the stripe image is not necessarily at the stripe
center, and particularly dangerous, the images of the stripes in the two
virtual detectors can have different intensity profiles. If the object has finite

zones of locally planar surfaces as in Figure 12, then to overcome this
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f OBJECT SURFACE (EXPANDED)
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< LENS
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I
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Figure 12: Effect of surface roughness

problem one is forced to make the illumination stripes on the object

PAGE 94 OF 613



Case/Jalkio/Kim ‘ 85

narrower than the scale of surface texture and reflectivity changes. (Then
_ the problems arise only at regional boundaries). To accomplish this and still
achieve sub-pixel resolution we must magnify the image of the stripes so that
each stripe occupies multiple pixels on the detector, reducing the field of
view. This may not be possible if the object is rough on a microscopic scale
or if we cannot tolerate a reduced field of view. The second problem arising
from roughness and reflectivity variations is the large dynamic range of the
detector required by the large variation in peak intensities of the stripe
images. We have found that our peak finding algorithms work acceptably
over a one decade range of peak intensities. Since object reflectivities
commonly vary over a four decade range, this leads to errors if there is a
large variation in reflectivity in the field of view. One way to solve this
problem is to take multiple frames of the same object with different
illumination levels. If a log-intensity detector were available this would be

ideal.

7.2. System Properties

The next problems are distortions introduced by the optical system
itself. The imaging lens introduces aberrations and the detector can have a
non-linear and/or space varying response to intemsity. Both of these
problems lead to space varying errors in distance measurements which do
not vary with time, and they can be reduced by proper choice of lens and
camera. If the additional processing time is tolerable, the most practical
way of eliminating their effects entirely is by calibrating the system to take
their effects into account. For example, detector non-uniformities can be
compensated by uniformly illuminating the detector and using the resulting
intensity readings as normalization factors for future reference
measurements. Pincushion or barrel distortion can be compensated in a
similar manner by measuring stripe image separation in a reference plane

and using this measurement for calibration purposes.
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7.3. Speckle

Speckle may be a problem in any system which tries to achieve sub-pixel
resolution while using a coherent light source. Since the stripe’s image must
occupy several pixels to achieve sub-pixel accuracy, the detector must
sample the image (and hence the speckle pattern). Several suggestions have
been made to reduce this problem which include rotating the polarization of
the source, so that the observed speckle pattern is the superposition of two
uncorrelated patterns, and making slight perturbations in the position of the
effective source to achieve similar effects. Both of these techniques require
cycle times shorter than a single frame time, so that the speckle pattern
captured in a single frame is really the superposition of the produced
patterns. None of these effects have yet been tested sufficientl}; to report
any significant results. »

The goal is to make the speckle small with respect to the pixel size of the
detector (25 speckles within 1 detector pixel is sufficient for speckle free
imaging [6]). Speckle size is similar to the spot size (impulse response)
produced by the detector optics [8]. For a focused image, the speckle size is
diffraction limited so that it varies as 1/D, where D is the lens diameter.
However, for an out of focus image, the speckle pattern defocuses to produce
patches whose size in the geometrical limit is proportional to D. There is
therefore a lens diameter Dy which minimizes the size of speckle over a given
range of defocusing. For practical systems this optimal lens diameter results
in such a high f that the light level is unsatisfactory. Hence our approach
thus far has been to reduce the lens aperture as much as possible while

maintaining adequate light levels.

8. Filtering Techniques
In the previous two sections we have mentioned several noise sources,
these and others can be reduced somewhat through the use of filters. High

frequency noise such as that due to object roughness, detector non-
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uniformities, and electronic noise in the detector system can be removed via
an analog lowpass filter. The cutoff frequency for this filter can be readily
determined by examining the image of a Gaussian stripe on the detector.
For a Gaussian distribution with a variance of 02, lowpass filtering with a
cutoff frequency of 2 o will leave 95% of the spectrum of the stripe.

Low frequency noise due to variations in ambient lighting can be reduced
by a narrow band filter in front of the camera lens. For our system this was
entirely acceptable, for applications where it is not, we have found that local
min - local max filtering nearly eliminates space variant biases due to
ambient lighting,.

Quantization noise can only be removed by using a high resolution A-D
converter or avoiding the digital domain entirely. We have found that using
an 8-bit A-D converter the noise introduced before quantization have alwayé ‘
exceeded the quantization noise.

Once the distance data have been calculated, the noise in the resulting
distance map can be reduced by using the assumption that distances vary
smoothly and averaging distance data in small windows, or by assuming that
distance features smaller than some minimal size are artifacts and
eliminating them by median filtering [5]. However, it should be noted that
severe noise in distance data usually corresponds to edges or holes where the
stripes are not reflected back to the camera due to shadowing. Since edges
are often important features of objects, it may be a good strategy to flag the
absence of data caused by such features to provide data about possible

object structure.

9. Experimental Results

A diagram of our prototype system is shown in Figure 13. We produce
multiple illumination stripes via a multifaceted hologram, H, which spatially
divides an expanded incident laser beam into 16 beams. The 16 beams

collectively overlap at the position of lens Ly (to form a small effective
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Figure 13: Schematic of multi-stripe 3-D vision system

source) but individually come to focus at the object plane, O. A cylindrical
lens, L3, spreads each beam into a vertical stripe so that a set of 16 focused
vertical stripes illuminate the object. Transversely translating lens L2 in our
prototype system, scans the stripes across the surface of the object. Ina
final system the HeNe laser would be replaced by a laser diode and multiple
laser diodes would be pulsed in sequence to scan the stripes, thus eliminating
all moving parts. A television camera (lens L, and detector D) directed at
this pattern can generate the data required for a 128 by 128 element 3-D
picture in 8 frames. Again only 8 diodes would be required to i)roduce a
picture with the resolution mentioned above. The apparent position of the
light source is at the lens pupil so that the center position of any pair of
stripes does not change as z is varied, which further simplifies data
interpretation and also allows one to treat the system as two single
triangulation systems in the event of hidden part problems.

Figure 14 shows a sample image in the detector plane of the stripes
corresponding to the staircase object seen in Figure 15. Adjacent steps differ

by 2.5 mm in distance from the detector, while the average range is 65 cm.
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Figure 14: Image of stripes corresponding to step object in Figure 15

Figure 15: Step object corresponding to stripes in Figure 14

The green lines in Figure 14 are bin markers added by our computer to
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Figure 16: System output for step object in Figure 15

indicate the zone in which the stripes should be found. Figure 16 shows the
output of our system when viewing the staircase object with height encoded
in pseudocolor. A calibration scale has been added at the edge of the image
where blue corresponds to 0" object height (located at z_ ) and red
corresponds to 1/2" height. Data acquisition for the image requires only 8
frame times. Doing all data processing in software, this picture was
generated in 2 minutes, and is displayed from a digital frame buffer at TV
frame rates. With a special purpose hardware processor the time required to
produce a single 3-D picture could be brought down to well under a second.
This step from software to hardware is facilitated by the low computational
complexity of our algorithms.

The remaining figures present the system’s pseudo-color output when
viewing common objects in several application areas. Figure 17 shows a
printed circuit board. Note that the orientation depressions on the
integrated circuits are clearly visible. Figure 18 shows a pile of metal

washers. The topmost washer is pseudo-colored green; clearly distinguishing
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Figure 17: System output for a printed circuit board

Figure 18: System output for a stack of washers
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it from lower washers. Such data would be quite useful in robotics
applications where sorting or grasping must be performed. This photograph
also demonstrates the problems caused by varying surface reflectivity and
multiple reflections at the edges. Figure 19 is the median filtered version of
Figure 18 showing why filtering is often desirable for human monitoring of
the system’s output. Median filtering preserves edge acquity but removes
impulse noise. Figure 20 shows a side view of a nose. This problem was
posed by persons in the medical field interested in the use of 3-D inspection
systems for the data gathering phase of reconstructive facial surgery.
Finally, Figure 21 shows a mapping of distance vs. displacement along a
single vertical line of the nose showing how various displays can be
generated from the digital range data within the system.

The above results show that 3-D vision can find useful applications in a
number of areas. Multiple stripe techniques and dual detector architectures

may prove to be particularly useful due to the properties described in this

paper.

Figure 19: Median filtered version of Figure 18
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Figure 20: Side view of a nose

Figure 21: Distance data along a slice of the nose
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Abstract

A robot eye is more than a camera and less than a
complete vision understanding system. It is a device which
can scan or sense objects in the three-dimensional
environment and extract useful numerical tnformation about
those objects. The information obtained by the robot eye
should be of a form that can be interrogated by a viston
understanding system. Thas article describes the development
of a dependable, robust, and versatile robot eye which can
rapidly mensurate a surface in three dimensions. Ustng an
active /passive camera patr, surface mensuration is achieved
with fast electro-optic tmplementation of well-known stereo-
photogrammetric principles. We discuss the caltbration of the
robot eye and the application of the robot eye to exploring and
mensurating 3-D objects.
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1. Introduction

A computer vision system consists of both a robot eye (or preprocessor)
and a vision-understanding (or analysis) component. The robot eye scans or
images or otherwise records the environment (or ‘scene’), and extracts
information and patterns from the data. The vision-understanding
component maintains a knowledge base of patterns (or mathematical
functions) that may be present in the scene, interrogates the patterns
obtained by the robot eye, and attempts to model the scene or classify the
object using entities in its knowledge base. The robot eye can explore a
scene according to pre-determined strategy or dynamically through feedback
from the vision-understanding component.

A simple passive vision system consists of (1) a video camera (or image
recorder) to view the scene, and software for image segmentation, and (2) an
analyzer, essentially several 2-D patterns stored in memory, and software to
recognize whether the observed image contains those patterns. The working
environment of a simple vision system is usually strictly controlled with
regard to lighting, the orientation and scaling of the camera image relative
to the scene, the types of objects allowed in the scene, and the allowed
orientations and spacings of those objects. Typical applications for such a
vision system are to detect objects on an assembly line, to determine the
width of a welding seam, and to inspect fabrics and LSI circuit masks [13].

More advanced passive vision systems attempt to extract 3-D
information about a scene (in the form of models or object recognition) with
the use of (a) camera images, (b) very sophisticated software for image
processing (involving filtering, edge detection, segmentation, feature
extraction, etc.), (c) the generation of data structures to organize patterns
(such as polygons) extracted from the image, and (d) software to analyze or
model the scene by comparing the information derived from the image with
the information derived from known objects. When the scene contains

many primitive objects that can occlude one another in an image, the
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problem becomes very difficult. Model building software may require a
hierarchy of inference rules to account for many different image situations
that arise with varying scene illumination, shadows, surface texture, and the
occlusion of objects along the line of sight. Determining when a complete set
of inference rules is obtained or obtainable is always a difficulty [37], [26],
ja7), 7], [28).

So far we have assumed that the passive robot eye extracts and organizes
features of a 2-D image, and that image understanding software infers the
3-D scene by analyzing 2-D image features rather than 3-D information. It is
possible, however, to derive 3-D information directly by using two passive
stereo cameras separated by sufficient parallax. The robot eye is then a pair
of passive stereo cameras that view the same scene. To triangulate a point
in the 3-D scene, the corresponding image points must first be identified in
the two camera images. The matching of corresponding stereo image points
is a difficult correlation problem for a computer, since the light intensity
patterns in the image of a scene depend on the camera angle. Humans can
match corresponding image poihts for triangulation with their ability to
perceive three-dimensions when the images of a scene are viewed
stereoscopically. See [14], [44], [35], [16], [17], [21], [23], [36].

To overcome the complexities of passive vision systems and to obtain
directly numerical 3-D information about the scene, active/passive camera
systems, sometimes called ‘structured light systems’ have been developed.
In these systems, the robot eye consists of a passive camera and an active
element separated by sufficient parallax for triangulation of a scene. The
active element emits light patterns which illuminate the scene. Bright
points in the passive camera image can then be correlated automatically
with rays or planes of light emitted by the active element, and triangulation
of points in the scene can be effected. A robot eye that directly acquires and
stores 3-D information about a scene obviates much of the complex software

needed to extract 3-D information from 2-D images [38], [50], [2], [32], [34],
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(39], [43].

Several types of structured light systems have been constructed. The
simplest conceptually has a single laser beam sweep across the scene [20]. At
any instant, the passive image sees a single illuminated spot of the scene,
and triangulation of the spot location is immediate. To obtain a fast J
sampling rate of the scene, the passive image detector can be a special
electronic chip which returns only the location (z*,y*) of the centroid of
illumination of the image. Then, as the laser beam sweeps the scene, four
numbers for each sample point 7 are obtained, namely the measured
direction of the laser beam (u;w;) and the corresponding passive image |
location (z.*y.*). If the passive camera is calibrated to the active element,
then each set of four numbers will triangulate a single point of the scene and
provide the three coordinates (ii,yi,zi) for the point’s location. The simple
laser scanner is as good as the chip and the accuracy with which it

determines the centroid of illumination. In a noisy environment, where

several laser beams or their reflections may be present, or in cases of a laser
beam grazing a surface, several surface points may be illuminated l
simultaneously. Since the chip returns only the illumination centroid of the
passive image rather than multiple image points, erroneous mensuration of
positions in the scene may sometimes occur.

In a second type of structured light system, the active element projects a

plane of light which intersects the scene as a bright stripe [50], [38], [2], [32],

[34]. Each bright point appearing in the passive image determines a line
from the passive camera to the bright stripe in the scene. Thus three
numbers are recorded for any illuminated sample point 7 in the scene,
namely, its passive image location (x,.*,y'.*), and the light plane u; projected
by the active element. If the passive camera is calibrated with the active
element, each set of three numbers will triangulate a single point of the
bright stripe in the scene. After sufficient points of the illuminated stripe on

the scene are triangulated, a new stripe can be generated by a parallel light
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plane from the active element. In this way the stripe can be swept across the
scene, and many sample points of the scene triangulated. Spatial resolution
is limited by the thickness of the light stripe. Inaccuracies may result if the
parallax is small or if random errors occur in measurement of v, z;‘, or y: .

The difference between the simple laser beam scanner and the stripe
projection scanner lies in the precision of the triangulation. The laser beam
scanner provides four equations (one each for U, w:f, z;, y:) to determine
the three spatial coordinates of the illuminated point. The equations are
overdetermined, hence inconsistent, since two lines in 3-D space need not
intersect (and generally won’t if there are random errors in image position or
active element pointing). The overdetermined equations, however, permit a
Jeast-squares triangulation solution, which for the same parallax is less
sensitive to random errors of measurement than is the consistent solution (3
equations for 3 unknowns) obtained with the light stripe generator. To
achieve the same precision with the light stripe scanner, we can sweep the
scene twice, once with vertical and once with horizontal stripes, thereby
obtaining four numbers (u,w,z*y*) for each scene point and
overdetermining the triangulation problem as before.

Rather than sweep a light stripe across the scene so that N light stripes
are necessary to mensurate the scene, we can illuminate (and observe) the
entire scene with a sequence of only [log, (N+1)] binary-coded striped-light
patterns. For image point (:ci*,yz.*), viewing sample point z of the scene, we
can decode the brightness variation in the sequence of images and determine
the coordinate u; of the light plane (stripe) which illuminates point 7. Thus
eight binary coded light patterns and passive images provide the same
information for triangulation (namely “i’zi*’yi* for each sample point 7) as
do 128 individually-projected stripes and passive images. Although just
|’Iog2 N1 light patterns are needed to binary code N stripes, one stripe, zero,
is always unilluminated in the binary code.

In this paper we describe the development over the past few years of an
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advanced robot eye of the structured light type [3], [4], [33]. The eye
contains an active element which can convert a beam from a single laser
source into an interferometric array (currently 128 X 128) of laser
‘beamlets’ diverging from a common focus, then project and spatially
modulate the distinct laser beamlets. For robot vision purposes, the
beamlets are essentially rays. Thus the active element obeys exactly the
same mathematics as a passive camera with an array (128 X 128) of pixels.
We will call the active element an ‘active camera’, and the active/passive
camera pair a ‘numerical stereo camera’ or ‘NSC’. The computer controller
can be programmed to turn on and off individual rays from the active
camera, so that the NSC can simulate a single laser beam scanning the
scene, a light stripe projector, or a projector of binary coded light patterns.
Although we briefly describe the NSC hardware, we are concerned primarily
with the algorithmic and software effort to make the NSC into as reliable
and intelligent a robot eye or vision system preprocessor as possible. The
goal is to make a robot eye that can adapt to different ambient light
environments, can be calibrated simply and quickly, and is {ntelligent
enough to decide on new viewing perspectives when concavities or holes are
poorly observed from initially chosen perspectives. A robust robot eye
which mensurates a 3-D scene can be an off-the-shelf item applicable to
many different industrial and biomedical problems without being dependent
on the vision understanding component of the system [19], [9], [5], [53]. Such
an independent entity which directly obtains 3-D information could lead to
vision understanding modules which are less complex and more
standardized, require less development time for a particular application,
require less time for computation in operation, and probably require less
memory for pattern recognition of 3-D objects.

Some recent developments in direct acquisition of 3-D scene information

also show promise:
1. Structured light systems which project multi-wavelength (i.e.,
multi-color) light patterns for stripe coding [52].
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2. Radar-type rangefinders which emit picosecond pulses of laser
light and record their echoes from the scene; this approach does
not use triangulation [24], [43].

3. Passive fixed cameras which observe the same scene as it is
illuminated from different directions; here some knowledge
about the texture of the reflecting surface is useful, and the goal
is to obtain the spatial orientation of surface elements (that is,
partial 3-D information) [40], [18], [51].

We will not discuss these techniques further.

Over the past several years, the USAF has developed an advanced
prototype NSC. This work began at the USAF School of Aerospace
Medicine in the late 1970’s and was transferred to the Wright Aeronautical
Laboratories (AFWAL) in 1982. An advanced prototype system was
constructed at the AFWAL Avionics Laboratory where it is still being
developed and evaluated. Dr. J. Taboada (USAF School of Aerospace
Medicine), a co-inventor of the NSC, has been and remains a key contributor
to the development of the NSC optical subsystems. The integrated NSC
hardware/software system developed at AFWAL is somewhat different from

that described in this paper, and will be described in detail elsewhere.

2. System Description of the NSC

The NSC version of the robot eye consists of three components: an active
camera, a passive camera, and software.

The active camera transmits an array of discrete laser beams outward
from a common focus. Each beam can be identified and addressed by its row
and column in the array of beams. The beax:ﬁs intersect an ‘image plane’
that controls which of them may pass through to illuminate the
environment. We can use the same terminology for both the active and
passive cameras by considering each discrete beam of the laser array to be a
‘pixel’ of the active camera image plane.

The active camera hardware consists of (a) a single laser, (b) a lens to

expand the single beam into a larger solid angle, (c) an optical assembly to
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generate (by reflection or refraction methods) an interference pattern of
MX N discrete and orthogonally arranged laser beamlets, (d) optics to
position the pattern so that the M XN laser beamlets are collimated and
aligned to correspond precisely to optical window elements of a planar light
modulator, (e) an electro-optic programmable spatial light modulator device
(or PSLM) to modulate the projection of each of the discrete laser beamlets
into the environment [10], [8], [22], [30].

All the laser beamlets have the same plane polarization orientation. A
PSLM can control the transmission of beamlets because the plane of
polarization of electro-optic material in the PSLM can be rotated as a
function of an applied electric field, and because the applied electric field in
the PSLM can be made to vary with position across the wavefront of
beamlets. The presently implemented PSLM is a composite of two PSLMs,
one to modulate the N columns and the other to modulate the M rows of the
beamlet array, with M=N=128. A command by computer can cause a
(preprogrammed) set of columns in a PSLM to rotate optically in
polarization, thereby permitting either transmission or absorption of the
corresponding incident beamlets (depending on the relative orientation of
the polarized beamlets to that of the PSLM electro-optic material). A
polarization rotator at the laser source is adjusted to maximize the
transmission/absorption ratios of the PSLM in the optical system.

The generation of the initial interference pattern which creates the
orthogonal array of beamlets is the product of diffraction effects. Individual
beamlets are part of the interference pattern, so that range of projection is
limited by the diffraction limits of the entire projecting lens aperture, and
.not by the aperture size of each beamlet.

The PSLM has window apertures greater than the beamlets, and light is
so aligned and collimated that each beamlet passes through (or is blocked
by) a corresponding window with minimum far field diffraction by the

PSLM. Thus beamlets at infinite focus can project significantly into the far
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field with little degradation.

Lenses can converge the laser beamlet array for the mensuration of
microscopic surfaces or expand the array for the mapping of large surface
areas. Bach beamlet retains its relative spatial position and size in the array,
and the entire pattern expands or contracts proportionately. Limitations to
the system are set by the wavelength of the light and by the S/N ratio; the
latter involves laser beam power, quality of the active camera hardware and
optical alignment, monochromaticity, sensitivity —and electronic
characteristics of the passive camera, ambient light, and noise in the
environment.

The passive camera is an optical image recorder which views the scene
from a given perspective as different patterns of light are emitted by the
active camera. The passive camera obtains a numerical image of the scene
(that is, an 8-bit number for gray level for each pixel) for each pattern of
scene illumination. Some types of passive camera can obtain an image
directly in digital form; others must pass an analog image through an A/D
converter. Buffer storage to hold a sequence of images, or else a device to
transfer rapidly image data to and from a computer, is needed. The optical
recorder must be synchronized with (the transmission of patterns by) the
electro-optic light modulator of the active camera. To obtain a good signal
to noise ratio, optical filters are used to make the paséive camera specific to
the wavelength of the laser light transmitted. The choice of wavelength is
largely dependent on the application and the available lasers and sensors.

The region of the scene illuminated by a single beamlet should be
observed by several pz'xssive camera pixels to ensure resolution. Ultimate
mapping resolution is more dependent on a higher resolution video camera
than on the laser array size.

Although available active cameras can create huge laser beamlet arrays,
PSLM technology is presently limited to modulating 128 X 128 arrays.
With video cameras and recorders of 2048 X 2048 on the verge of
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practicality, mapping scenes illuminated with 512 X 512 beamlet arrays
should be reasonable as soon as appropriate PSLMs become available.

When the first NSC was implemented several years ago, much laser light
was lost in generating interference fringes by multiple reflection, thus
lowering the signal to noise ratio. As a result, it was often difficult to
determine whether or not a passive image pixel was viewing a laser
illuminated part of the scene. Also, the active and passive cameras had
relatively long focal lengths (that is, weak convergence toward the focal
point of the camera), so that determining those calibration coefficients
containing perspective information was an ill-conditioned (error sensitive)
problem. An intense software effort was initiated to improve the reliability
of the NSC and to simplify wraparound mapping of a 3-D object. Recently
patented optical hardware to generate interference fringes by refraction, and
other significant optical improvements in PSLM alignment, have led to very
high efficiencies of laser light during array generation in the system. The
array now has extremely discrete and sharp laser beamlets, and a much
improved S/N ratio. With improved hardware and software, the NSC is
becoming a reliable and versatile device. In this paper we discuss the
improved algorithms developed for the NSC; the new hardware
improvements will be described elsewhere.

Since we discuss only the robot vision applications rather than the
eﬂgineering details of the system, we hereafter use the word ‘beam’ or ‘ray’
instead of ‘beamlet’. Keep in mind, however, that the ‘beams’ we refer to
are peaks of an interference pattern on a single laser beam, and cannot

mutually overlap or interfere with increasing range of projection.

3. Mathematical Concepts
We consider a beam of the laser beam array to be simply an image point
(or pixel) of the active camera. We can then use the same terminology for

both the active and passive cameras, thus the terminology of
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stereophotogrammetry. A correlation of a specific point in the passive image
with a specific beam in the laser array is considered to be a correlation of

image points (or pixels) in the active and passive cameras.

3.1. Triangulation
The point (z,y,2) on the surface of interest and its passive camera image
(z*,5*) are related by the perspective transformation [14], [44], [35]:
(T~ T4 %)z + (T =Ty 2y + (T~ T3, z¥)2 + (Tyy—2*) =0 , (1)

(T1o=T14 ¥)2 + (Tyy=Tog vy + (T3p= T3y v*)2 + (Tye—9*) =0 . (2)

If the scene-to-image transformation matrix 7" is known, we have for each
illuminated point visible to the passive camera the known quantities
Tij’ z*, y* and two equations for the three unknowns (z,y,2). We need one
more equation for triangulation. The active camera point (or laser beam)
(u,w) which illuminates the point (z,y,2) of the surface of interest is also

given by a perspective transformation

(Ly=Ly )z + (Lo —Loyu)y + (Lg —Lgu)z + (Ly—u) =0 , (3)
(Lyg—Lyqw)z + (Lgg—Lo,w)y + (Lgg~Lg,w)z + (Lyg—w) =0 , (4)

where L is the scene-to-active-image transformation matrix. If we sequence
the electronic shutter to project certain specific light patterns (that is, a
spacecode) with the active camera columns, we can associate each bright
image point (z*,y*) in the passive camera with a value of u corresponding to
the column of a beam in the projected array of laser beams. Since only three
equations are necessary for triangulation, we can solve for each of the laser-
illuminated surface points with only column coding, making use of
Equations (1)-(3). However, if we spacecode the optical shutter for rows and
columns, we can improve the precision of the triangulation. The full set of
four (usually inconsistent) Equations (1)-(4) can be solved for a ‘best’ value

of (z,9,2) by least squares. In computation, the singular-value-
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decomposition method (SVD) provides for least-squares answers with more

significant figures for the same computer word size [15], and is preferred
when the condition number of the matrix is large, as is the case when the
triangulation parallax is small. A further justification for spacecoding both
rows and columns lies in the detection of surface regions that are illuminated
by the active camera but not seen by the passive camera.

Thus the problem of triangulation is: Given a (passive) image point
(=*,9%), a corresponding active image point (u,w), and the constants {T} and
{L}, find the three-dimensional location (z,y,2) of the point being
illuminated.

Although the triangulation problem is conceptually straightforward, the
practical problem of programming the numerical stereo camera is not trivial.
In a subsequent section we discuss the software needed to make the

numerical stereo camera a practical device.

3.2. Spacecodes

The correlation of corresponding image points in cameras at two
different perspectives can be made automatic with the use of active and
passive cameras. The array of laser beams emanating from the laser-
interference-electro-optical projector is equivalent to an array of pixels of an
active camera. When the laser beam array is turned on and off in certain
light patterns, and the passive camera, which is synchronized to the active
camera, receives those light patterns in sequential images, the corresponding
pixels of the active and passive cameras (that is, a stereo pair) can be
determined for each observed surface point. For example, a simple binary
spacecode can be projected to encode the address of each column of a 128

column laser array as follows:

Pattern Columns transmitting (columns are numbered 0-127)
1 64-127
2 39-63,06-127 :
3 16-31,48-63,80-95,112-127
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8-15,24-31,40-47,...,104-111,120-127
47,12-15,20-23,...,116-119,124-127
9-3,6-7,10-11,...,122-123,126-127
1,3,5,..,125,127 (i.e., every other column)
0,1,2,...,126,127 (i.e., every column)

O ~3I O Tt W

Pattern 8 is not used for the binary code but to identify the regions of the
scene illuminated by laser column 0. (See also Figure 1.)

From the table above, we see that if a pixel of the passive image is bright
in the first image, dim in the second, bright in the third and fourth, dim in
the fifth and sixth, and bright in the seventh, in accord with the pattern
1011001, then the pixel is viewing a surface position illuminated by a laser
beam from column (28+2%+23+1=) 89 of the laser beam array.

Although binary coding of a scene by light patterns is conceptually
simple, image noise can result from the hardware, from the nature of the
surface of the objects in the scene, and from the chosen perspectives of the
cameras. To compensate for noise, additional light patterns may be

projected and imaged, and additional processing steps may be added.

3.3. Focal Point of a Camera

The focal point of a camera with calibration coefficients Tij is
(21 4 2) = ~(A/D, B/D, /D) (%)

where the values of A, B, C, D are given by the determinants

Ty Ty Ty T Ty Ty
A=| Ty Ty Ty C=| T3 Ty Ty
L Tyy Toy T3y ] Ty Tog Tyy |
T Ty Ty Tyy Ty Ty,
B=| Ty Typ Ty, D=| Ty Ty, Ty (6)
| Ty Tyy Ty | Ty Toy Ty |
a.nd T44 = 1.

Equations (5) and (6) derive from the perspective projection
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SPACE CODING ILLUSTRATION

SHUTTER PLANE IMAGE PLANE
01234567
PATTERN | T
01234567
PATTERN 2
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(Blackened areas are opaque)

Figure 1: The array of laser beams is space coded by the sequence of
binary patterns (shown at the left) obtained by controlling the opacity of
the columns of the shutter plane. The intersections of the laser beams
with the scene provide bright spots on the scene which can be imaged by
a passive camera from a suitable perspective. The passive camera is
synchronized with the active camera so that for each projected light
pattern a passive image is obtained (shown at the right). In the figure,
the passive image sees four bright spots of the scene. The column
location u of a beam in the active image plane can be determined by the
space coding received by the passive image plane. Point B is seen in
passive images 2 and 3 but not in image 1. The binary code of the
‘column of the corresponding active beam is therefore u = 011 = 3. The
fourth (open) pattern illuminates column zero.
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T2+ Tyy+TyH2z+Ty=He*=X (7)
Tygo + Togy + Tppz + Tyy = Hy* =Y (®)
Tye+ Ty + Tz + Ty =H )

If H 7 0, these three equations reduce to Equations (1) and (2). Thus the
case H 5% 0 corresponds to a line or ray from the camera focal point to the
point (z*,y*) of the image plane and then outward into the 3-D space of the
scene. The focal point is on every ray of the camera, and cannot depend on ~
the values of z* or y*. Only for the case H = 0 do Equations (7)-(9) give a
solution for a point rather than a line; thus the focal point is given by the
case H=0. Equations (5) and (6) correspond to the solution of Equations (7)
through (9) with H = 0.

3.4. Camera Calibration

We now discuss camera calibration, the determination of the matrix
coefficients connecting the coordinates of the scene and the image plane. In
this section (only), the same notation T and (z*,y*) is used for both the
passive and the active cameras. To obtain the calibration mathematics in
the notation used previously for the active camera, one need merely replace
Tij with Lij and (z*y*) with (u,w). By image plane we mean either the
image plane of the passive camera or the electro-optiq shutter plane of the
active camera.

The values of the camera calibration coefficients Tij depend on the
orientation, translation, focal distance, and scaling of the camera relative to
the 3-D scene. There are two independent coordinate systems: (z*,y*) for an
image point and (z,y,z) for a point in the scene. The calibration procedure
determines the Tij values that satisfy Equations (1) and (2) when we are
given a set of known points {(z,y,72,)} in the scene and their known
corresponding image points {(z;*,y,*)}, where i=1, ... ,nand n > 6.

We can set T,,=1 [44], [35] and obtain the 2n (n > 6) (inconsistent)
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inhomogeneous equations for the 11 unknown values of T.-j:

—xl ;2,1 000 0 x*x x*,¥y -x*lzl-‘ FTIJ r.x"‘l-.
T21
T3l
T4l
X, ¥,2,1 000 0 -x*nxn ~x*nyn -x*nzn T, x*n
0000 xy,2 1 Y% VY 2, [| Tae] = % (10)
T3‘2
T42
T14
000 0 x, ¥, 2, 1 YV, V[Tl | V)
.
or simply
AT=D (11)

where A is the 2nX11 matrix, T is the 11 X1 column vector, and D is the
2n X 1 column vector.
The matrix Equation (11) can be solved for ‘best’ values of T;. The

normal equation method would involve solving

A'AT=A'D (12)

where A is the transpose of A, the matrix AlA is an 11X11 symmetric
matrix, and Af D is an 11 X1 column vector. However, for the same word
size, the normal equation method of Equation (12) loses more significant

figures than other methods such as singular value decomposition [15].
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Significant figures are important in this calibration procedure because the
matrix A may not be very well conditioned if the known points in the scene
(zi’yi’zi) or the camera points (xi*,yi*), are not sufficiently separated. The
calibration coefficients Ty Tog Ty derive from the converging of rays to
the focal point; without significant separation of sample points and careful
solution of Equation (11) they cannot be extracted accurately.

The problem of calibrating a camera is thus: Given a set of known
noncoplanar points in 3-D and their corresponding image points in the
camera, find the constants {T}. Thus giveﬁ
{(z,9;%; 85,7 1=1, ... ,n;n > 6}, find {T"7 ;i=1, ... ,4; 7=1,2,4}.

4. Fundamental Software Problems
The fundamental software problems that must be solved to make the

NSC robot eye a relatively independent preprocessor for a vision system are:

1. Signal Detection: To determine whether or not an observed
bright point seen in a passive image corresponds to a laser-
illuminated region of the scene, and if so, to determine the bit of
the spacecode contributed by that light pattern at that point of
the passive image.

2. Passive Camera Calibration: To calibrate the passive camera;
that is, to determine the constants T . of Equations (1) and (2).

3. Active Camera Calibration: To calibrate the active camera; that
is, to determine the constants L, of Equations (3) and (4).

4. Motion Recalibration: To recalibrate rapidly the passive and
active cameras if the surface of interest or any of the cameras are
displaced by a known amount.

5. Triangulation: To triangulate a point in the scene reliably with
the minimal loss of significant figures.

6. Missing Region Detection: To detect regions of the scene that
were not triangulated because of missing data (due to blocking of
beams or occlusion of lines of sight by intervening hills and
valleys).

7. Information Recovery: To pick new perspectives to attempt to
mensurate regions of missing data in the scene.

8. Wraparound 3-D Mapping: To effect wraparound mapping of
any 3-D object by merging in the same 3-D coordinate system
the triangulation data of different stereo perspectives.
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5. Signal Detection: the Problem of Determining the

Spacecode

5.1. The Nature of the Problem

To stereo-correlate the active and passive camera images and triangulate
points in the scene, the sequence of images acquired by the passive camera
must be analyzed to determine the binary code received at every pixel of the
passive image. To achieve this task, the passive camera must distinguish
laser-illuminated areas of the surface from other areas. Unfortunately, there
is no obvious single threshold value in the brightness distribution of the
passive image to flag those image regions viewing laser-illuminated surface.
The reason is that considerable variations of brightness may occur from one
passive image to the next, because (1) regions of the surface of interest may
reflect differently (anisotropically) for different angles of beam incidence, (2)
different regions of the sﬁene may have different textures and scatter
properties, (3) the shutter configuration of each different projected light
pattern may have different scatter and transmission properties, and (4) the
environment may be noisy because of other lasers, grazing beams, or
reflections. Detection (or thresholding) errors mean incorrect values for the
spacecode, thus the creation of non- existent beams with concurrent loss of

existing beams in the database created for 3-D stereo triangulation.

5.2. Algorithmic Considerations

A number of ways are available to reduce and correct errors. These
methods are similar to the error detecting and correcting codes of
information theory. All of them require additional projected light patterns
and recorded passive images. Two methods have been tried for error
detection and correction with the numerical stereo camera.

In the first method, the scene is illuminated by an all-laser-beams-on
pattern and the passive image is scanned for brightness peaks and valleys. A

single (global) threshold is determined to separate the bright regions (which
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are presumably.seeing laser illuminated surface) from the rest of the passive
image. These ‘valid’ regions are remembered and followed in the subsequent
sequence of images containing the light code. For each passive image in the
sequence, the same brightness threshold determines the spacecode bit for
each valid pixel; if a pixel is brighter than threshold, the spacecode bit
contributed by that image is one. The method gives reliable spacecodes
when there is a large S/N ratio and the image contrast does not change with
the projected light pattern (shutter configuration). Experience has shown,
however, that S/N ratio may vary over an image because the angles of
incidence of the passive and active rays vary over the surface, and that the
contrast at the same point in the passive image plane may vary significantly
from one coded image to the next because the shutter transmission may vary
with the configuration. Under such circumstances, a single global brightness
value to threshold all the passive images in the coded sequence is not
reliable.

The second method, developed by L. Tamburino, determines the
spacecode received at each pixel of the passive image, and, in addition, a2
measure of statistical reliability for the spacecode [45]. Since 1983, several
versions of the Tamburino detection algorithm have been implemented on
the prototype NSC at the AFWAL Avionics Laboratory, and all
demonstrate marked improvements in computational and spacecode

accuracy [46], [12].

6. Calibrating the Passive Camera

In Section 3.4 we discussed the mathematics of camera calibration. For
the case of the passive camera, the simplest calibration procedure is to (1)
insert a known rectangular prism into the scene, (2) let the vertices of the
prism define the scene coordinate system, (3) pick the 6 or 7 visible vertices
of the prism and record their image positions as seen on the graphics screen,

and (4) solve Equation (11) by singular value decomposition (SVD) for the
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TI.]. coefficients.

A sequence of two software programs is required. The first allows the
user to define the prism coordinates and pick the vertices visible to the
passive camera. The second solves for the values of Tij by SVD.

This section and the next describe possible approaches to passive and
active camera calibration. A somewhat different approach has also been

implemented [11]..

6.1. Picking Calibration Points

The first program records the spatial coordinates of six or seven points in
the calibration prism and their image coordinates in the passive camera.

The algorithm steps are as follows:

S1: Enter the name of the data file for the sequence of coded images.
The name acts as a tag to be associated with all the files associated with this
problem.

S2: Enter the dimensions of the sides of the calibration prism. The first
dimension is assumed to be along the z-axis; the second to be along the
y-axis; and the third to be along the 2-axis.

S3: Enter the 3-D locations of the calibration points on the prism. The
points chosen are usually six or seven of the vertices of the prism since their
images are easiest to identify in the passive camera image. The eight
vertices of the oprism can be conveniently chosen to be
(0,0,0), (4,0,0), (a,b,0), (0,5,0), (0,0,¢), (,0,¢), (a,b,c), (0,b,c), where a, b, ¢ are
the known dimensions of the prism for the z, y, z axes respectively. With an
opaque calibration prism, at most seven of these eight vertices can be
expected to be visible from any given perspective.

S4: Enter the (2-D) locations of the image points corresponding to the
calibration points of the prism. In the program a corresponding imége point
is entered immediately after the chosen calibration point.

S5: Create a data file which contains the values
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6.2. Determining the Passive Camera Calibration Coefficients

The second program finds the values of the calibration coefficients Tij of
the passive camera.

The algorithm steps are as follows:

S1: Read the data file generated by program 1.

S2: Find the coefficients Tij . The input data are used to create a
2n X 11 matrix and a 2n vector, where n is 6 or 7. The 11-vector containing
the values of Tij is then solved by SVD. If the parallax is so small that the
converging of the rays to the camera focal point cannot be detected, the
condition number of the solution will exceed a threshold determined by the
number of significant figures for single precision real numbers. In that case,
the program will reduce the 2nX 11 matrix to a 2n X8 matrix and the 11-
vector to an 8-vector, the rotation and translation components of Tij will be
computed, and the converging-ray components set to zero.

S3: Find the location of the focal point of the passive camera if the
parallax permits (i.e., if the SVD provides sufficient significant figures for
the available parallax). The focal point of the passive camera is used
primarily as a check on the reasonableness of the calculation, and later in the
program for active camera calibration to determine the visible faces of the
calibration prism.

S4: Find the maximum and minimum values of {z *} and {y,*}. In the
calibration of the active camera (next section), these values allow us to limit
the search range in the passive image and to ignore background scatter
{noise) from points outside the calibration prism.

S5: Write an output file which contains the values of Tif the focal point

location, and the limits of the calibration prism in the passive camera.
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7. The Problem of Calibrating the Active Camera

7.1. Algorithmic Considerations

The problem of calibrating the active camera requires that the constants
L of Equations (3) and (4) be determined. Just as for the passive camera,
the values Lij depend on the orientation, translation, focal distance, and
scaling of the active camera relative to the 3-D scene. There are two
independent coordinate systems: (u,w) for an active image point (i.e., for the
address of a laser beam in the array of laser beams) and (z,y,z) for a point in
the scene. The calibration procedure determines the L, j values that satisfy
Equations (3) and (4) for a set of known points (2,,y,,2,) in the scene and
their known corresponding active image points (ui,wi) where 1=1, ... ,n and
n 2>6. We have tried four ways of calibrating the active camera.

Method 1: Turn on one beam in the laser array at a time and locate in
3-D by direct measurement where the beam falls on a surface. With six or
more noncoplanar measured points (zi,yz.,zi) and their corresponding beams
(u;w,) , we can solve for the Lij using the same technique that we used for
the passive camera calibration. This method has the advantage that the
accuracy of the active camera is independent of the accuracy of the 'pa.ssive
camera. The disadvantage is that the location of the intersection of the laser
beam (u;w,) with the 3-D surface at (z,,y,,2;) must be physically measured
in 3-D space.

Method 2: Place a rectangular prism of known dimensions in the
scene. The six surfaces of the prism might, for example, satisfy the
equations z=0, z=a, y==0, y=b, 2=0, z=—c where the values for q, b, ¢ are
the lengths of the prism edges. Observe (sequentially) six or mofe laser-
illuminated non- coplanar spots on the calibration prism (due to six or more
separate laser beams of the array) and record each laser beam (u;w,;) and the
corresponding position (z:_’, y:) in the passive image. Identify and record the

passive image positions of the (observable) vertices of the prism (or retrieve
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them from the files of the passive camera calibration). Then, use the image
positions of the vertices to determine the face of the prism that each spot
illuminates, and to locate in 3-D (by interpolation in the image) each of the
illuminated spots on the prism. We then have
{(”i’yi’zi’uz"wi); 1=1,...,n;n > 6} and can determine the Lij calibration
coefficients of the active camera. The advantage of the method is that no
measurement need be made in the 3-D scene. The disadvantage is that
correctness and accuracy depend on the accuracy of the pixel discretization
of the passive camera, the absence of distortions in the passive image, and
the foresight to ensure that the selected active camera beams do not all
intersect a single plane surface in the 3-D scene.

Method 3: Turn on one beam (ui,wi) of the laser beam array and
locate the illuminated prism point (zi,yi,zi) by using (1) the known Tij values
previously calculated for the passive camera, (2) the known image point
(z,;*,y;*), and (3) the equations for the faces of the rectangular prism. To do
this, trace the ray from the passive camera and find the intersections of this
ray with the planes of each of the prism faces. Choose the correct
intersection point automatically by considering the visibility of the prism
faces relative to the passive camera. Repeat this procedure for n > 6 non-
coplanar illuminated points on the prism (from n different laser beams), and
determine a  set of active  camera and  spatial  points
{(Ii’yi’zi’ui’wi)5 =1, .. f\,n, n > 6} to provide the calibration. The
advantages and disadvantages of this method are similar to those of method
2. Now the accuracy also depends on the accuracy of the values of the Tif
However, since this method determines the 3-D positions of the calibration
points ¢ from the ray and plane equations in space and not from
interpolation in 2-D images, it is preferred if there are distortions in the
passive image; this follows because even a distorted image plane corresponds
point by point to rays radiating outward from the focal point, whereas

interpolation in a distorted image must be done in non-Euclidean

i
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coordinates.

Method 4: A variation of method 3, but now instead of imaging one
active camera point (i.e., laser beam) at a time, we sequence through a
spacecode pattern of illumination, correlate each (u,w;) with the
appropriate (z.*,y,*) which appears in the passive camera (provided (ui,w‘.)
hits the surface at a point visible to the passive camera). Here as many as
128 X 128 points may be used to calculate the Lz‘j by least squares. Since a
plane has the equation

Az+By+Cz=D (13)

and the values of A, B, C, D are known for each face of the rectangular
prism, we can solve Equations (1), (2), and (13) for (z,y,2) when we are given
(z*,4*) and the Tij . ’

The problem of calibrating the active camera is thus: Find a set of
known points in 3-D that are illuminated by known laser beams (active
image points) of the active camera. This may be obtained from knowledge
of the prism faces, the passive image points, the passive camera calibration,

and the spacecodes of the passive image points. Then calculate the Lij .

7.2. Calculating the Coefficients of the Active Camera

We have implemented a program using method 4 above to find the
values of the calibration coefficients Lij of the active camera.

The algorithm steps are as follows:

S1: Retrieve the data files generated by previous programs for the prism
parameters and for the passive camera calibration coefficients T’ I

S$2: From the passive camera images of a sequence of coded light
patterns, derive the spacecode received at each pixel of the passive camera,
and create both a column and row coded image. The column coded image is
a 512 X 512 table of bytes, one byte for each pixel of the passive camera.
The numerical value of each byte is either the (reliable) spacecode of an

active camera column, or zero if the space code at the pixel of the passive
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image is not reliable. (In a normal mmage, the numerical value of each byte
corresponds to the intensity or gray level at a pixel; thus the spacecoded
image should be distinguished from a normal picture image!) Similarly, the
row coded image is a 512 X 512 table of bytes, each byte containing the
spacecode for the active-camera row seen by a pixel of the passive image.

S§3: Ask for an optional speed-up factor. A speed-up factor of 2 will
process every other pixel of a coded image, allowing shorter times of
computation at the cost of poorer statistics.

S4: For the column and row coded images separately, check each pixel.
For each pixel with a non-zero (reliable) spacecode, trace back the ray from
the pixel to the calibration prism. The ray of (z*,y*), determined by
Equations (1) and (2), intersects the known planes (see Equation (13)) of the
calibration prism. If an intersection point is found on a prism face visible to
the passive camera, then the matrix and ‘vector used to derive the active-
camera calibration coefficients are updated. In effect, the matrix and vector
contain both the 3-D locations of points on the calibration prism and the
corresponding beams from the active camera (derived from the column or
row spacecode values detected at the passive camera pixel). The number of
intersection points found for each face of the calibration prism is recorded.
At least two prism faces must be sampled for the active camera to be
calibrated.

S5: Use the matrix and vector generated by the data to determine the
values of the calibration coefficients Li;i of the active camera. Singular value
decomposition is used to solve the large matrix equation, with one matrix
row for each reliable spacecode byte.

S$6: Calculate and report the focal point of the active camera. The
location of the focal point checks the reasonableness of the calculation and
helps pick the face of the prism intersecting a line of sight from the passive
camera.

S7: Store the values of Lij .
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8. Rapid Recalibration for Changing Perspectives

8.1. Algorithmic Considerations

To map the surface of a truly 3-D object, we I;lust view the object from
several different perspectives. With the calibration technique so far
described, the wrap-around mapping procedure would be as follows: (1) Set
up the active and passive cameras; (2) Insert a calibration prism into the
scene and calibrate the cameras; (3) Remove the calibration prism from the
scene and insert the object of interest; (4) Map the object from this
perspective; (5) Move the object or cameras to a new perspective; (6) Repeat
steps 2 through 5 until the entire 3-D surface of the object is mapped. This
calibration procedure is slow and error prone because the object of interest
must be removed prior to each new perspective to allow camera calibration
and then replaced in exactly the same position it was originally.

If a precision positioning device can be attached to the camera mounts or
object platform, the calibration procedure can be somewhat simplified to: (1)
Set up the active and passive camera; (2) Insert a calibration prism into the
scene and calibrate the cameras; (3) Move the prism or camera to a new
perspective, note the position readings, and calibrate the cameras; (4)
Repeat step 3 for a sufficient number of perspectives; (5) Remove the
calibration prism from the scene and insert the object of interest; (6) Map
the object from each of the previously calibrated perspectives. The
advantage of this method is that the calibration is done initially for all the
perspectives so that the object of interest can be mapped in 3-D without
disturbing its position on the platform. The disadvantage is that we must .
decide on the viewing perspectives in advance.

If a precision positioning device keeps track of the translations and
rotations of the object and cameras, we need only calibrate the cameras and
object initially. Thereafter we can recalibrate the cameras with a

mathematical transformation. without actually inserting a physical prism
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into the scene. The advantage is that we can choose new perspectives as the
topology of the surface dictates; we need not restrict ourselves to previously-
chosen perspectives of uncertain efficacy. Thus the simplest ‘calibration
procedure with a precision positioning device is: (1) Set up the active and
passive camera; (2) Insert a calibration prism into the scene and calibrate the
cameras; (3) Remove the calibration prism from the scene and insert the
object of interest; (4) Map the object from this perspective; (5) Move the
object or a camera to a new position; (6) Recalibrate the cameras
mathematically from the motion information, in accord with the discussion
below; (7) Repeat steps 4 to 6 for a sufficient number of perspectives. (See
also [42] and [41] for more on calibration techniques.)
Let T'be the perspective operation (z,y,2,1) — (X,Y,Z,H) or
[zy 21T = [z*y* 2* 1]H

and let Pbe the projection opera.iion onto the z==0 plane
[zyzl]P=[zy01].

Then the operation T' P (i.e., first T'then P) is
[zy2z1]TP=[z*y*01]H. (14)

Equation (14) is shorthand for Equations (7) to (9), or (1) and (2). Let R be
the (known) displacement operator which rotates or translates points (z,y,2)
to (¢',y/,2’) so that

[zyzllR=[z'y Z1].

Then the 3-D points would project onto new (primed) camera points by
[zyz1l]RTP=[z* y* 0 1]H (15)

Because we want to map a 3-D object from multiple perspectives, we want
coordinates (z,y,2) fixed to the object regardless of any motions of the
cameras or the object. We thus interpret Equation (15) by saying that there

exists new calibration coefficients T/ where
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T'=RT/k ‘ (16)
H'=H'[k ~ (17)

and k is a normalization constant, so that Equation (15) becomes
[ryzlT'P=[z*y*01]H" (18)

We can now triangulate using the primed (new perspective) image points
and the known calibration coefficients T/P and continue to locate the
surface points of the object in the same object coordinate system as before.

Thus

7 RTP
~ k
1 Rn Ry R13 0 Ty T12 0 T14
=7 Ry Ry Ry 0 Ty T22 0 T24 (19)
Ry Rgy Rgg 0 Ty Ty 0 T3y
Dl D, Ds 1 Ty Ty 0 Ty

where the Rij are rotation terms, the Di are displacement terms, and the
Tij are the original calibration coefficients. Since we assigned T,, =1
(normalization) to reduce the number of coefficients T,; from 12 to 11, we
similarly require T4 4’=1 for the new calibration coefficients T''; thus

k=D, Ty,+D, Ty, +Dy Ty,+1 . (20)

Note that the normalization factor k is only non-unity when translation
occurs (that is, D}, D,, Dy are not all zero).
The same type of transformation applies to the active camera, namely
L'=RL/k. (21)

On the other hand, if the object remains st;a.tionary but the camera is
displaced, we use the inverse of R for the camera that moves and obtain the
same form of Equation (18). But now only the camera that moves requires
new calibration coefficients. If both cameras move, then two different
(inverse) operators of the form of R are used. A sequence of motions for the

camera or object leads to a sequence of new calibration coefficients given by
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Equation (16) and (21) but with

R=R R,R, ... (22)

8.2. Rapid Recalibration After Relative Motion

A program has been developed to find the values of the new calibration
coefficients Tz’j and Lz'j after relative motion between the object and the
passive and/or active cameras. If the relative motion is known precisely,
there is no need to insert the calibration prism back into the scene or to
disturb the cameras or object of interest. The recalibration can be done
mathematically rather than physically.

The algorithm steps are as follows:

S1: Read the data files for the present calibration points and camera
calibration coefficients Tij and Lij' These files contain information about
the calibration prism, the original calibration coefficients for the passive and
active cameras, and the calibrations done at each step in a chain of previous
motions chosen by the user or system. That is, every time the object or a
camera is moved and a recalibration is done, the new calibration information
is stored. If a string of motions is carried out, calibration is continually
updated. Error buildup is less if the motions are known more precisely.

S2: For interactive mode, display a menu of options for the user:
1. rotate passive camera
2. rotate active camera
3. rotate object
4. translate passive camera
5. translate active camera
6. translate object

After a motion option is completed, the program returns to display this
menu, and the user can continue to move the object and/or a camera until
he chooses an exit option.

S3: To rotate the object, specify the axis and angle of rotation. The axis
specification requires any point on the axis and a vector parallel to the axis.

S4: Calculate new calibration coefficients for the passive and/or active
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cameras directly from the old coefficients and the given rotations and
translations (see Equations (19) and (20)). The case of translation has the
complication of requiring a renormalization in the calculation for the new
calibration coefficients (cf. Section 8.1). The accuracy of the new calibration
coefficients does not depend on the parallax; although there:is little point in
doing so, one can move the object or camera miles apart and still recalibrate
accurately.

S5: Determine the new focal points of the active and passive cameras
directly from the calibration coefficients.

S6: Although the calibration prism has been physically removed from
the scene, we can imagine the ~ertices to be still attached to the object and
can follow them mathematically. If the object is rotated or translated,
determine the new positions for the vertices. From the 6 or 7 vertices of the
calibration prism, calculate the corresponding image points in the passive
and active cameras. If only the passive (or active) camera is rotated,
calculate new image points only for the passive (or active) camera. From
these image points, calculate the new limits of the image of the (imaginary)
calibration prism on the passive camera. In this way we can keep track of
the field of view.

S7: Store the new calibration coefficients, and the locations of the

calibration prism vertices and their images, in a user-designated file.

9. Triangulation

When the passive and active cameras have been calibrated by the
methods described in Sections 6 to 8, the NSC can be used to triangulate
multiple points in the scene. With a 128 X 128 array of laser beams, up to
16,384 points of the scene or of a surface can be mensurated in 3-D space.
The basic mathematics of the triangulation problem was discussed in
Section 3.1.

The major problem that arises in actual practice is that the parallax
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between the passive and active cameras is often small, so that the solution of
Equations (1) through (4) becomes ill-conditioned. When this happens, the
number of significant figures in the solution decreases and one must be
careful not to end up with (meaningless) answers that have no significant
figures. One approach is to use double precision real numbers in the
calculation. The other is to use SVD [15] to solve the four overdetermined
equations. Conceptually, the loss of significant figures corresponds to the
error-sensitivity of the triangulated position in the direction perpendicular
to the baseline between the active and passive cameras.

Since the Tij and Lz'j coefficients of the cameras are known from the
calibration procedures, the position (z*,y*) of a passive image point (or
pixel) is known, and the corresponding laser beam (u,w) is known from the
spacecode received at the pixel, Equations (1) through (4) can be written as

the matrix equation
Tz=b. (23)

Here T'is a 4 X 3 matrix containing the expressions in parentheses in the
first three terms of each of the Equations (1) through (4), b is the 4 X 1
vector containing the negative of the expressions in parentheses in the last
term of each of the equations, and z is the 3 X 1 column vector containing
the unknown coordinates (z,y,z) of the scene point to be triangulated.

If the parallax is small, then Equation (23) represents a set of four ill-
conditioned inhomogeneous linear equations. These four equations are
usually inconsistent because of measurement errors, and correspond to
planes in space which intersect in a tetrahedron rather than at a single point.
If we were to solve the equations by creating the 3 X 3 square matrix T T
and solving for z, we would lose many more significant figures than if we
simply solved Equation (23) directly by SVD. The least squares solution
obtained by SVD corresponds to a point in the tetrahedron satisfying a
condition of minimum error.

Constraint equations can be added to Equation (23) to weight the
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solution and move the solution point around within the tetrahedron. If the
tetrahedron is elongated away from the cameras because of ill-conditioning,
then the additional constraints may significantly affect the location of the
solution. One should introduce constraints into the least squares solution
only if one has some prior knowledge as to how the solution should behave,
With large parallax and well-conditioned equations, the tetrahedron is
generally small, and any point in the tetrahedron should provide an
adequate solution for triangulation.

In the algorithm and software that we have developed, the SVD method
is used to flag cases with a very high condition number (that is, too few

significant figures for the accuracy desired).

10. Missing Region Detection

Stereo cameras, separated by parallax, view a scene from different
perspectives. As the parallax increases, the problem of tri.angulating points
in the scene becomes more well-posed (less error sensitive) but the number of
points in the scene that are imaged simultaneously by both cameras
generally decreases. In stereophotogrammetry, an observer views a stereo
pair of photographs and perceives which points of the scene are visible to
both cameras and thus can be triangulated. If some scene regions are not
viewed by either camera because mountains or valleys obstruct the line-of-
sight from a camera perspective, the observer may use or request images
taken from yet other perspectives. ‘

The same problem of missing regions can occur with the NSC, except
that now missing regions can be detected by an algorithm rather than by
human perception. For the NSC, there are two separate cases, depending on
which camera (active or passive) is obstructed.

Case 1: Light projected by the active camera does not illuminate a part
of the scene because of a surface convolution (obstructing mountain, cliff, or

hole). The passive camera viewing the unilluminated part of the scene sees a
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region of unreliable spacecodes in the image plane because there is little
change in light intensity received when either a light pattern or its
complement is on. Thus, if the passive image has a region which (1) contains
pixels with mostly unreliable spacecodes, and (2) is surrounded by regions
which contain many pixels with reliable spacecodes; then we conclude that
lines of sight from the active camera to the corresponding region of the scene
are occluded because of intervening mountains or holes.

Case 2: Light reflected from an illuminated part of the scene does not
reach the passive camera because of an intervening surface convolution. The
passive camera may obtain reliable spacecodes in the image plane, but may
see spacecode values which change discontinuously from one observed bright
spot to the next across some unseen boundary in the image plane, indicating
some spacecode values are missing. Thus if the passive image sees two
adjacent regions, each containing pixels with mostly reliable spacecodes, and
a sudden discontinuity in the value of the spacecode from one region to the
next, then we conclude that some lines of sight from the scene to the passive
camera are occluded because of intervening mountains or holes.

In different regions of the same passive image both cases 1 and 2 may
arise (Figure 2).

We have two tasks in this section: (1) to detect which regions of the
scene are not illuminated by the active camera, or viewed by the passive
camera, and (2) to estimate a minimum depth of any hole or minimum
height of any hill in the unmernsurated regions of the scene.

We assume that the active camera can sample the scene sufficiently; that
is, every significant wiggle or convolution in the scene can be sampled at
least twice. Equivalently, the separation of laser bright spots on the scene
nowhere exceeds half the smallest wavelength of any 3-D spatial harmonic
contained in the scene. Without sufficient sampling by the active camera,
the mensuration of the scene could be aliased. (‘See for example [27].)

In practice the grid of pixels in the passive image has much finer spatial
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SPACECODE | 2 3

Figure 2: Region ab is unilluminated by the active camera so that
the passive image gets an unreliable spacecode there (thus Case 1). The
bright dots within region bc are not seen by the passive camera; the
camera sees bright dots at b and ¢ and a jump in the spacecode values
from 4 to 7 (Case 2).

resolution than the grid of pixels in the active image. Thus, the passive
image may have (1) pixels which view the same bright spot of the scene and
thus detect the same spacecode, and (2) pixels which view regions between
the bright spots of the scene and thus have unreliable spacecode. Pixels in
the second group do not correspond to obstructed rays from the active
camera, and must be distinguished from them.

It is therefore convenient to define a neighbor of a passive image pixel as
follows. Consider a passive image pixel which has a reliable spacecode
corresponding to active camera beam (p,q). Then a neighbor of that pixel is
a passive image pixel which has a reliable spacecode corresponding to beam
(¢',d)=(p+4,9+7) in the allowed domain of the active camera beam array

such that p,q, !, ¢,1,j are integers and (7,7) is in one of the classes
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(e > 0,0), (0,5 > 0), ( < 0,0), (0,7 <0) called the directions of the
peighbor. A neighbor of order n is a neighbor such that the magnitude of
either 7 or 7 is n. Note that adjacent passive pixels which view the same
bright spot are not neighbors by the definition above, but share the same

neighbors. See Figure 3.

bright spots with reliable (u,w) space codes

Ffor:
YAy

PORTION OF PASSIVE IMAGE PLANE

Figure 3: All pixels within the labelled regions (or spot images) have
reliable spacecodes and are seeing the reflections of laser beams from the
surface of interest. Every pixel in region (1,1) is a neighbor of order 1 to
every pixel in regions (1,2) and (2,1), a neighbor of order 2 to every pixel
in region (1,3), and not a neighbor to pixels of regions (2,2) and (2,3).
Pixels in regions (1,2) and (2,1) are not neighbors.

Task 1la: To detect regions of the scene that are not illuminated by the

beams of the active camera (case 1):
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S1: In the passive image, find the mean and standard deviation of the
separation distance (in pixel units) of pixels from their neighbors of order 1.

S2: Flag all passive pixels which are separated by two or more standard
deviations from (at least) one neighbor of order 1. Remove duplication by
keeping only the median pixel of any group of pixels which view the same
illuminated spot on the scene (and have the same spacecode).

S3: Determine which of the flagged pixels are néighbors of order 1 and
are separated by more than two standard deviations. These should form the
boundary of the region of unreliable spacecodes in the passive image.

Task 1b: To detect regions of the scene that are illuminated by the
active camera but are not seen by the passive camera (case 2): -

S1: Find all beams of the laser array whose spacecodes are missing from
the passive image.

82: In the passive image, record the locations of all pixels which have (1)
a reliable spacecode and (2) a neighbor of order n > 2 in a certain direction
but no neighbor of order 1 in that direction.

S3: Find the contours in the active image plane that correspond to the
loci of pixels found in step 2.

S4: Find which of the missing beams of step 1 lie within these loci in the
active image. This subset of the missing beams reaches the scene, but the
rays from the scene to the passive camera are obstructed. )

Task 2: We have now delineated the regions of missing (blocked or
obstructed) rays in the active and passive images. However, the boundaries
of these missing ray regions can be used in triangulation of the scene. The
boundary of an unmensurated region appears in the passive image plane for
case 1 and in the active image plane for case 2. Since the mathematics is the
same for both cases, we simply say the image boundary of the unmensurated
region is in the image plane.

 The steps to determine the minimum depth of an unmensurated region

of the scene are as follows (see Figure 4):

PAGE 141 OF 613



Altschuler, et al. 139

fa

base SCENE

Figure 4: Cameras are at f, and f, and an unmensurated region is
outlined in the image plane of camera 1. Image points p' and ¢ at the
image boundary of the unmensurated region are correlated by the NSC
with points of the other camera so that the boundary points p and ¢ in
the scene can be triangulated. The quadrilateral phgd in the plane
f} fop gives the height of the possible hill or the minimum depth of the
possible hole that could cause obstruction of rays.

S1: Pick an image point p’ on the image boundary of the unmensurated
region; this image point is associated with a scene point p which can be
triangulated.

§2: Determine the plane f|, fy,p containing that scene point and the focal
points,of both the active and passive cameras.

S3: Determine the line of intersection p'¢’ of that plane with the image
plane. The image point chosen in step 1 is on this line.

S4: If the point ¢ is on the image boundary of the unmensurated region,
we have a line segment in the image plane which cuts through the image of

the unmensurated region. Find the scene points p,q corresponding to the

PAGE 142 OF 613



134 3-D SENSORS

‘e

endpoints of the line segment in the image plane; these scene points will be
considered the base of a triangle.

S5: Draw rays from the focal points of the active and passive cameras to
these measured endpoints in the scenme. These four rays intersect in a
quadrilateral. Calculate the altitudes of the two triangles containing the
measured scene points as a base. These altitudes determine the minimum
possible height of a hill or the minimum possible depth of a hole (in the plane
of the rays) to explain the unmensurated region.

S6: Choose a neighboring image point of p’ on the image boundary of the
unmensurated region and repeat steps S1-S5. Repeat for consecutive points
on the image boundary until every point has been considered. Choose the
greatest minimum height and greatest minimum depth derived from all the
line segments through the image of the unmensurated region in the image
plane. These values correspond to the minimum possible height and
minimum possible depth consistent with the entire unmensurated region, as

determined from the perspectives of the active and passive cameras.

11. Information Recovery

Once we have detected a missing region of the scene and have found the
minimum values of height and depth for that NSC perspective, we can
choose new perspectives to allow triangulation of points in that region.

We begin on the assumption that the unmensurated region is a hole.
Since we know nothing about the hole, we assume it extends as a right
cylinder in a direction perpendicular to the least squares plane of the hole
boundary. We find the principal axis of the hole boundary (projected) on
the least squares plane, and measure depth along the central axis which
bisects the princibal axis and parallels the cylinder of the hole. Since we do
not know the depth of the hole, we must consider the tradeoffs in positioning

the cameras:
1. If we position the cameras so that both are within the cylinder
delineated by the hole boundary, we can look directly into the
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hole. Unfortunately, triangulation becomes more ill-conditioned
as the parallax between the cameras decreases. Moreover, the
error is greatest in the direction of depth into the hole. Thus for
every possible depth of the hole bottom, the parallax angle must
exceed some minimum if triangulation is to provide a given
number of significant figures.

2. To map the floor of the hole with several sample points, the
passive image must resolve the bright dots illuminated by
adjacent beams of the active camera. For laboratory situations,
there will be little difference in resolution from object surface to
hole bottom.

3. For a hole of a given depth, maximum parallax is obtained as
follows: Consider a triangle whose base is the principal axis of
the hole and whose third point lies on the central axis at the
depth of the hole (Figure 5). Extend the sides of the triangle
from the third point and let the cameras be within the angle of
these lines and in the plane of the triangle. Position the cameras
as near as possible to the sides of the extended triangle. Note
that the triangle becomes more acute as the hole depth increases.

The strategy we choose is as follows:

S1: For each unmensurated region, begin by assuming it is a hole.

S2: Decide on the minimum depth for which repositioning cameras is
worthwhile. In particular, if the hole opening is so narrow that only a small
depth into the hole can be measured without losing significant figures in the
triangulation calculation, moving the cameras may not be efficacious.

S3: To position both cameras within but at the edge of the hole cylinder,
calculate the pa.ra.lla;x of measurement to the hole bottom for each possible
depth. Determine the maximum depth for which some desired number of
significant figures can be obtained with the available parallax.

S4: To position both cameras to maximize parallax (Figure 5), calculate
the maximum parallax for different possible depths (from the extended
triangles of tradeoff (3) above). Again calculate the maximum depth for the
hole consistent with significant figures in triangulation.

S5: If neither S3 nor S4 allow probing of the hole to any significant
depth, the hole is too small; do not reposition the cameras. If S4 allows

probing to a significant depth but S3 does not, then reposition the cameras
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in accord with S4. If S3 allows probing to a significant depth, reposition the
cameras in accord with S3.

S6: If it should turn out that the mensuration at the new camera
positions is poor and indicative of a mountain rather than a hole, then the
camera positions should be shifted (in the plane of the central and principal
axes of the region boundary) so that both cameras are first on one side of the

unmensurated region and then on the other.

right cylinder

| |

I |

] |

1 | 8
central axis |

| of hole |

' |

| I ' Az

l !

| | |

I | |

-principal axis of hole-l/least square plane

_____l_ 5
|

Figure 5: The cross-section of an unmensurated hole is used to
illustrate how the maximum parallax decreases when we want to see
deeper into the hole. Let PP, be the principal axis (thus the widest
opening of the hole). To probe the hole to depth A, we can separate the
cameras by a maximum parallax angle of A A3A2. To probe to depth
B3’ the maximum parallax angle 313332 is less

PAGE 145 OF 613



Altschuler, et al. 187

12. Fully Three-Dimensional Wrap-Around Surface
Mapping
To reconstruct the surface of a three-dimensional object, we need images

from multiple perspectives around the object.

12.1. Data Acquisition

The first step in reconstructing the complete surface of a 3-D object is to
triangulate numerous surface sample points from each of several
perspectives. The numerical stereo camera is capable of illuminating and
mensurating up to 128 X 128 different regions (spots) of a éurface at each
perspective. For real-time 3-D data acquisition, several active and/or °
passive cameras may be used simultaneously at various perspectives around
an object; the reflections from the different active cameras can be
distinguished if each laser operates in a different spectral region. When real
time is not required, a single setup can be used sequentially at different
perspectives (for example, by placing the object on a turntable). Since
object and camera repositioning need not require recalibration, cameras can
be relocated to any perspective to achieve better measurements.

The problem then is to combine the mensurations made at each different

perspective to achieve the overall surface map.

12.2. Representation of the Surface Data Points
Suppose, for an object or scene, that the surface points which have been

triangulated from different perspectives or camera positions are given by

{(zip, z.p,zip) 12=12,...,I(p); p=1,2,...,P}

where P is the number of camera perspectives used in the mensuration, and
I(p) is the number of surface points measured from perspective p. A vision
preprocessor or robot eye should be able to specify the complete surface of
the object or scene from these sample points. This involves two tasks: (A)

the surface locations determined from the different perspectives must be
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consistent, and (B) the surface measurements must permit an accurate
representation of the surface on the global scale. It is left for the vision-
understanding component of the system to segment the 3-D information and
identify the object or scene components. '

As long as the camera positions and their changes from perspective to
perspective are accurately known, and the parallax between the active and
passive cameras .of the NSC is sufficient to .provide well-conditioned
solutions, triangulation from the different perspectives will be consistent
with one another. In fact, any inconsistency for a surface locaf;ion measured
with overlapping camera perspectives is itself evidence of either a systematic
error in the determination of camera positions or insufficient ‘paralla.x.
Experimental work with the NSC indicates that task (A) has been achieved.
We are therefore concerned primarily with task (B) of the robot eye.

To obtain a useful global representation of a surface, it is necessary to
sample every ‘significant structure’ of the surface at least twice by bright
dots (laser beam/surface intersections) from some active camera perspective.
The passive camera is always assumed to sample a surface of interest more
finely than the active camera. If some surface features are smaller than
twice the spacing between sample points on the surface, then the
reconstructed surface derived from the triangulated bright dots will be
undersampled (aliased). An aliased representation of a 3-D surface not only
loses the fiﬁe structures (that is, the high harmonics), but provides an
incorrect global (low harmonic) map as well. Great care must be taken to
ensure that surface mensuration is not done with aliased data.

A complication is that ‘significant structure’ is determined not only by
the spatial harmonic spectrum of the object but also by the minimum
information required by the vision-understanding component to recognize
the object. If one needs to know only that an object of a certain size is
present, then the ‘significant structure’ of the object can be obtained with

only a few surface sample points. On the other hand, if one needs to
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distinguish one human face from another or to detect small shape
abnormalities for anthropometry, then very high harmonic information,
thus fine sampling, is needed to obtain the ‘significant structure’ of the
surface. This complication requires feedback loops between the robot eye
and vision-understanding modules of the system. In the case of the NSC,
collecting high density sampling data is only logarithmically more expensive
than collecting low density data. (In fact, the data collection time, even for
high density data, is only about 1 second at TV camera scan rates. Since the
solid state shutter switches in microseconds, data collection times of 1 ms are
conceivable with faster and more sensitive cameras.) The processing of the
data, however, is linear with the number of sample points when a sequential
computer is used. Hence to apply the NSC in a 3-D vision system, the
number of sample points to be processed for any application would be read
from the vision- understanding component. Thus a single number for the
sampling rate would feed back from the higher understanding level to the
level of surface data acquisition. The higher level may also decide where the
robot eye should look, that is, the boundaries of the scene, but once this is
done, the 3-D data acquisition for the delineated scene is done at the
preprocessor level. The modular integrity of the eye and the understanding
components is thereby maintained.

Some surfaces of intgrest may have undersampled fine structure only
over relatively small paﬂches. For example, a small grating in a street may
be undersampled, when the rest of the street is adequately sampled. A good
global representation of a surface should not be unduly affected by small
undersampled patches.

We are studying several approaches to the representation of a 3-D object
from local position measurements. The first method uses voxels [6], the
second uses the convex hull [29], [49], and the third uses surface patches

[35], [31]. All of the methods are reasonably insensitive to small areas of

undersampling. (See also [1], [48].)
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12.2.1. Simple Voxel Approach

S1: For each surface region, choose the smallest dot spacing from among
those active camera perspectives which sample the region.

S§2: Choose the voxel size to be twice the largest of these smallest dot
spacings of the different surface regions.

S3: Fill the three-dimensional space (which contains the object or scene
of interest) with voxels of the chosen size.

S4: For each sample point (bright dot) on the surface, find the address of
the voxel which contains it. The voxels which contain bright dots constitute
the surface of the object or scene. The addresses of these voxels are the only
numbers that need be stored to describe the surface.

S5: Because of the way we chose the voxel size there should be few gaps
(empty voxels) in the object surface. Filled (surface) voxels are connected if
they share a surface, edge, or point. Close any gaps in the mensurated

surface which are at most a voxel thick.

12.2.2. Convex Hull Approach

S1: Find the convex hull of all the triangulated surface points. The
convex hull is chosen as the initial approximation of the object’s surface.

S2: For each point within the convex hull, effect a local connection to the
hull to achieve a better approximation of the object’s surface. Continue this
procedure until all mensurated points are attached to the surface. Several
methods have been proposed to do this based on various optimization goals
such as minimum area [29], or minimizing a cost function of various local

geometric properties [49].

12.2.3. Bicubic Spline Approach
S1: Construct a separate surface patch for each perspective of the active
and passive cameras.
>SZ: If the edges of every patch overlap with edges of other patches so

that an extended path from a patch always lies within some patch, we can
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construct a global representation of the surface of the 3-D object.
This method is used in aerial photogrammetry, and in mapping moons

from interplanetary fly-bys [25].

13. Appendix: Singular Value Decomposition
To solve least squares problems with a minimum Jloss of significant
figures, the method of singular value decomposition has been used
throughout this work. Here we review briefly the salient ideas of the
method.
The problem is to solve the linear system of equations
Az=b (A1)

where A is an m Xn real matrix with m > n, the vector z is an unknown
n-vector, and b is a given m-vector. The classical method of solution is to

form and solve the normal equations

At Az =Alb (A2)

where A' Aisan nXn symmetric matrix.

To solve this equation, one can apply the well-known diagonalization
algorithms such as the Gaussian elimination method and the QR
decomposition. There is, howéver, a serious fundamental disadvantage in
using the normal equations. The computation of A? A involves excessive and
unnecessary loss of significant figures, thus numerical inaccuracy, because of
its ill-conditioned nature. ’

The most reliable method for computing the solutions of least squares
problems is based on a matrix factorization known as the singular value
decomposition (SVD). Although there are other methods which require less
computer time and storage, they are less effective in dealing with errors and
linear dependence [15].

The SVD is based on the following theorem. Any mXn matrix A with

m > m can be factored into the form
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A=UDV? (A3)

where

UV'U=V!'V=VV!=1TI and D= diag(d,, ...,d,). (A4)

The diagonal elements of D are the non-negative square roots of the
eigenvalues of A 4; they are called ‘singular values’.

The SVD is a little more complicated factorization than that given by
Gaussian elimination or by the QR decomposition but it has a number of
advantages. The idea of the SVD is that by proper choice of orthogonal
matrices U and V, it is possible to make D diagonal with non-negative
diagonal entries. The orthogonal matrices have highly desirable
computational properties; they do not magnify errors because their norm is
unity.

In the least squares problem for the solution of Az=1b, we require the

vector z for which norm(b—Az) is a minimum. Then

norm(b—A z) = norm(U '(b—A z)) = norm(U* b—D V? z)

= norm(c—Dy) (A5)

where

c=U' and y=Viz. : (As)

Since D is a diagonal matrix with elements d;,
‘2
norm(c—D y) = Z (Ci_diyi)2+z c; . (A7)
: i
Therefore the minimal solution is

y,=c;/d; for i=1,...,n; y,=0for i=n+l,...,m. (A8)

The most fundamental question in the least squares problem is the

reliability of the computed solution z. In other words, how can we measure
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the sensitivity of z to changes in A and 5? The answer can be obtained by
the idea of matrix singularity. If matrix A is nearly singular, we can expect
small changes in A and b to cause very large changes in z. Since the singular
values d; of A are sensitive to perturbations in the values of A, we can
determine the measure of nearness to singularity by defining the ‘condition
number’ of 4 to be

cond(A) =d (A9)

ma:c/dmin
where
d,.. = maz{d;} and d_;

ma: N

= min{d,} . (A10)

That is, the condition number of a matrix is defined to be the ratio of its
largest and smallest singular values.

If cond(A) =1, then the columns of A are perfectly independent. If
cond(A) is very large, then the columns of A are nearly dependent and the
matrix A is close to singular. The condition number can also be interpreted

as a relative error magnification factor in computation.
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Abstract

We have developed a moncontact multi-light source optical
prozimity sensor that can measure the distance, orientation,
and curvature of a surface. Beams of light are sequentially
focused from light emitting diodes onto a target surface. An
analog light sensor - a planar PIN diode - localizes the
position of the resultant light spot in the field of view of the
sensor. The 3-D locations of the light spots are then computed
by triangulation. The distance, orientation, and curvature of
the target surface 1s computed by fitting a s'uxrface to a set of
data points on the surface.

The. prozimaty sensor that has been built uses 18 light
sources arranged in 5 conical rings. The sensor has a range
of 10 em where 1t can measure the distance of approzimately
200 discrete points per second with a precision of 0.Imm, and
then compute ‘surface orientation with a precision of 1.0°
This sensor may be used by a robotic manipulator to home wn
on an object and to trace the object’s sur face.

1. Introduction

Noncontact proximity sensors that can measure the range and shape of a
surface have useful robotic applications such as surface inspection, seam or
edge tracking, obstacle avoidance, and homing a manipulator to an object.

The simplest devices are optical switches that detect the presence of a
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nearby surface [3], [11]. In these devices, a beam of light originating from a
light source on the sensor illuminates a surface. The closer the surface is to
the sensor the greater the intensity of the light reaching thé sensor. By
assembling the light emitter and the detector on small moving plaltforms the
range of this device can be continuously altered [14]. However, this
technique for measuring distance is sensitive to the orientation and
reflectivity of a target surface as well as the distance of a surface. One
method that was developed to overcome this limitation uses a single detector
and several light sources. Distance is measured by comparing the relative
intensities of the light reflected from a surface [13].

When light detectors sensitive to light spot position are used in a
proximity sensor, distance can be measured by triangulation. The
measurement then does not depend on the amount of reflected light reaching
the sensor. Linear or planar CCD arrays [5], and linear or planar PIN diodes
(1], [2], [6], [9], [8], [12] have been incorporated into proximity sensors. For
example, in one application, a mirror deflects a beam of light into the field of
view of a sensor. The position of the light spot is detected by a planar PIN
diode and then correlated with the mirror position to compute distance and
eventually the shape of a weld seam [2].

The proximity sensor that we have developed is configured around a
planar PIN diode. Multiple conical arrays of light sources focus beams of
light into the center of the field of view of the sensor where the distortion
and nonlinearity of the sensor chip are smallest. The proximity sensor uses
18 light sources configured into 5 conical arrays. The sensor has a range of
10 cm where it can measure the distance of approximately 200 discrete
points per second with a precisioﬁ of 0.1 mm, and then compute surface
orientation with a precision of 1°.

This paper focuses on the design and performance of the new proximity
sensor. How well this type of sensor can measure the orientation of a target

surface depends on the number of projected light spots, and how they are
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distributed. Hence, the new sensor was designed with the aid of a statistical
argument that takes into account the geometry of the sensor to minimize
measurement uncertainty. The performance of the sensor was tested by

measuring the distance and shape of various target surfaces.
2. Measurement of Distance and Shape

2.1. Overview

The proximity sensor is based on the principle of active illumination and
triangulation. Figure 1 shows the basic configuration of the proximity The
sensor head in this drawing consists of a ring of light sources, a lens, and a

light spot position sensor chip.

LEDS

Sensor chip
OLens

Figure 1: Configuration of the Multi-Light Source Proximity Sensor
The principle of operation is as follows. A beam of light emitted from
the sensor head is interrupted by a target surface. The resultant light spot
on the target surface is focused by the lens onto the analog light sensor that
is sensitive to the intensity and position of a light spot in its field of view.
Since the direction of the incident beam of light is known, and the light
sensor measures the location of the light spot in the field of view, the three

dimensional (3-D) coordinates of the light spot on the target surface can be
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computed by triangulation. The proximity sensor has multiple light sources,
and as a result the coordinates of several discrete points on the surface can
be measured. The average distance, orientation, and curvature of the target
surface are computed by fitting a plane and then a quadric surface to this set
of points.

Three features of the analog sensor chip make it an attractive device for
use in the proximity sensor: its pesition linearity, its intrinsic ability to
measure the centroid of a light spot on its surface, and its speed of response.
The chip, a planar PIN diode, measures both the intensity and the position
of the light spot on its surface. If the spot of light on a target surface is
distorted because of the curvature or orientation of the surface, the sensor
chip responds to the stimulus by measuring the coordinates of the centroid
of the image of the light spot. To minimize error when computing the
coordinates of the light spot, the spot size must be kept small. Therefore,
light emitting diodes (LEDs) are used that have a light source diameter of
about 150 pm.

2.2. Measuring the Distance of a Surface

The coordinates of a light spot on a target surface are computed by
triangulation. The trajectory of each light beam that illuminates a surface is
fixed and is measured in advance. The line of sight to the light spot on the’
target surface is obtained from the sensor chip. The calculation of the
coordinates of the light spot is based on a simple optical model: first, the
light source beam is a line, and thus the projected light spot is a point;
second, the camera lens forms a flat, undistorted image; and finally the
sensor chip is linear in finding the light spot position and is insensitive to
defocus. Since the sensor is subject to small errors because of deviations
from the simple model, they are treated as perturbations from the model and
error corrections are calculated beforehand.

The position and orientation of a line in 3-D space can be defined by the
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Triangulation:

PO: Center of the camera lens

Ayt Vector defining the line of sight
Pg: Location of 1ight source

Ag: Direction of 1ight source

P : The chosen result of triangulation
A : A vector along the common normal

Figure 2: Calculation of Point Coordinates by Triangulation

- coordinates of a point on the line and the direction cosines of the line. In
Figure 2 light beam trajectory is defined by the light source origin
b, cs). The
line of sight has an orientation A = (a,b ,c,) that is defined by the camera

0’ 0" o

P =z, Y, 2,) and the light beam direction vector A = (as,
lens center P == (zo,yo,zo) and the centroid of the spot of light P = (zc,yc)
on the sensor chip. Let us denote the coordinate of the spot position we
want to locate as P = (z,y,2). In principle, the two three-dimensional lines
(the light source beam and the line of sight) should intersect at the location
of the spot on the surface. In practice, however, the two spatial lines thus
obtained only come very close due to noise and the simplified optical model
being used. We therefore determine the spot location P to be located along
the line of closest approach (i.e., along the common normal) between the two

skew lines. A set of equations from which the coordinates of the light spot
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can be calculated is found by observing that the four vectors consisting of
the baseline from the center of the camera lens to the light source (P, — P),
the light beam from the light source to the common normal (A A ), the
common normal AA, and the line of sight from the common norma] to the

center of the camera lens (—AOAO) sum to zero, that is,

(P, =P )+HAA )+AA+H(-A A ) =0. (1)
Let the baseline have a length B and a direction specified by the unit vector
B=(P, - P )/|P, — P |. Then Equation (1) can be rewritten as

BB+A A +AA-AA =0 (2)
Taking the scalar product of Equation (2) first with the direction vector of
the line of sight A and then with the direction vector of the light beam A,

leads to a set of two simultaneous equations. Noting that As +A=0and

A, A = Oyields
AA,-A,—A = —BA B (3)
A —AA -A = —-BA -B o (4)
After solving for A and A , the coordinates of the light spot can be chosen
to be on the light beam or on the line of sight, or at any point along the
common normal. Since the output of the sensor chip is subject to noise, and

the position and orientation of each beam of light are stable quantities, we

choose the cémputed coordinates of a light spot to lie on the light beam.
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2.3. Surface Fitting

To estimate the position and orientation of a surface, a plane is fit to the
set of three dimensional data points obtained by the proximity sensor. To
estimate the curvature of a surface, a second order equation is fit. The
accuracy of the calculation of position, orientation and curvature depends,
therefore, on the accuracy of the individual data points, and the number and
distribution of the data points on the surface. For example, if the points are
too closely spaced, the orientation of the plane that is fit to the points will be
very uncertain. These relationships were analyzed, and the results were
used to design a sensor whose expected uncertainties are less than the design
specifications,

Suppose there are n measured points on a surface, where each point
(z;,9;%;) has an estimated total uncertainty in position of 0. A surface can

be fit to this set of points using the method of least squares to determine the

coefficients a; in the equation

z(z,y) = Eaj Xj (z,y) (5)

where Xj (z,y) is a polynomial of the form Zc qrz" T, as for example, when
fitting a plane, ¢ +r < 1, and when fitting a quadric surface, g+ r < 2.
We are concerned with how the uncertainty in the measured points and their
distribution on the surface affects the uncertainty of the computed
coefficients.

The values of the coefficients a; are chosen so that they minimize the

aggregate error E:

B=Y (3l - Anad)h = X 5= Bo Xz )t 6)

=1 t i={] T
F

By minimizing E, each a;can be computed by:
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a;= ; <ubr - M
where

fegd = o] = ! ®

o =§1 Gt} = af;,’f,k o)

Bo= 2 Cartean) )

The symmetric matrix [ajk] is known as the curvature matrix because of its
relationship to the curvature of E in the coefficient space [4].

We can estimate the uncertainties of the coefficients, and determine
their dependence on the geometry of the proximity sensor if we assume that
fluctuations in the coordinates of the individual data points are
uncorrelated, and assign the total uncertainty in the measurement of

position to the variable z. The uncertainty of the coefficient a; is then

n da. 2 b

2 _ 2 _J
aaj =) o 3z, (11)

=1

By calculating the partial derivatives of Equation (7), it follows that the
uncertainties of the coefficients are proportional to the diagonal elements of

the inverse of the curvature matrix [4], that is

c t=c.. . (12)
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Let us first examine the case where the plane

2 = Gz+Hy+I (13)

is fit to a set of data points. Here we have set a) = G, ay = H, ag==1I,
X, ==, X, =y, and X, =1 in Equation (5). The local surface normal is
N = (G, H, —1). Since all of the measured points on a surface are at about
the same distance from the sensor in any one measurement cycle, the total
uncertainty o, can be taken as a constant o for all of the data points. More
accurately, since the uncertainty in the location of a light spot depends on
where it is in the field of view and the intensity of the measured light, o is
considered an upper limit on the uncertainty in the location of a light spot.

The curvature matrix for this case is

. ZzQi Z‘:cz.yi Z’:v'. o
== Sry, By, Dy, (14)
Yz, Xy, mn
In many applications the proximity sensor will be used to maintain an
orientation normal to a surface. The light sources can be arranged
symmetrically so that the resulting spots of light on a flat surface facing the

sensor perpendicularly satisfy the condition

Emi = Eyi = Eziyi =0 (15)

that is, the o matrix is diagonal. The uncertainties in the coefficients of

Equation (13) are then simply
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g = Jggz (16)
s (17)

01=“;—;' (18)

The angle between the optical axis of the proximity sensor and the surface
normal is ¢ = tan “1VG24H? The uncertainty in the angular orientation
of a surface perpendicular to the sensor can be estimated by
2 2 2 :
o, S og toy . » (19)
Equations (16) through (19) relate the uncertainty in the/measured position

and orientation of a surface with the number of data points, the uncertainty

in their measurement, and their distribution on the surface.

2.4. Normal Curvature
To compute the curvature of a surface and to compute a more accurate
value for the distance of a curved target surface from the proximity sensor,

the second order equation

z = Az°+Bzy+Cy*+Dz+Ey-+F (20)

of a surface is fit to the set of data points. The curvature of the target
surface can be computed at any point from the coefficients of this equation.
In particular, the normal curvature, «,, and the principal normal
curvatures, £, and &, can be computed where the surface intersects the axis
of the sensor.

Figure 3 shows the proximity sensor over a target surface. The projected
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Figure 3: Measuring the Curvature of a Surface

light spots are shown as small circles on the surface. The intersection of the
axis of the sensor with the target surface is located at P. The curve C on the
surface is the intersection of the target surface with a plane (not shown)
containing the axis of the sensor. The vector n is the principal normal of the
curve C at P; it lies in the intersecting plane. The vector T is tangent to the
surface, and to the curve C at P. The vector N is normal to the surface at
P. The angle between the vectors n and N is A.

The equation of the fitted surface can be expressed as
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R = zi + yj + (Az%+Bzy+Cy’+Dz+Ey+F)k. (21)

The surface normal, N, is given by

RxXRy . ((2Az+By+D), —(Bz+2Cy+E), 1)
- b
R, XR,| V(2Az+By+D)? +(Bz+2Cy+E)*+1

N= (22)

where the subscripts z, y denote partial derivatives. The vector, T, tangent

to the surface, and to the curve C at P, is given by

R .
T="s" i, (23)
where ds = |dR|. The curvature vector, K, whose magnitude is the

curvature of C at P is then given by
K=-5". (24)

The normal curvature vector, K Ny 18 the projection of K onto the surface
normal N. The component of K in the direction of N, Ky is called the

normal curvature of C at P:

Ky=(KN)N=ryN. (25)

The magnitude of K is the curvature of a curve on the surface, in the plane
of N, with tangent vector T at P.

To compute the curvature cf a surface, one first computes the first and
second fundamental coefficients of the surface [10]. The first fundamental

coefficients of the surface are
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£=R_ =1+ (24z+By+D)?,
F=R_- R, = (2Az+By+D)(Bz+2Cy+E) ,

5= Rf = 1+ (Bs+2Cy+E)?.

The second fundamental coefficients of the surface are

L=R,_ -N=24,
M=R, -N=B8,

N=RW-N=20.

163

(26)
(27)

(28)

(29)
(30)

(31)

In terms of these coefficients, the normal curvature of the surface is given by

Ldz%+2 Mdzdy+ Ndy?
Ey= 2 2
Edz“+2 Fdzdy+ Gdy

(52)

where the ratio dz:dy specifies the direction of a line tangent to the surface

at point P. In terms of the coefficients of the second order surface defined by

Equation (20), the normal curvature at z = y = 0 is given by

1 2[Acos 20+ Bsin fcos 0+Csin 26]

K

N Vi+E24D? [(1+D%cos 29+2DEsin 6cos 0+(1+E2)sin 20] '

(33)

Here, @ defines the orientation of the intersecting plane with respect to the

T—y axis.

The principal normal curvatures of the target surface where the axis of

the sensor intersects the surface, Ky and Ko, are the extreme values of

Equation (32). In terms of the fundamental coefficients of the surface, Ky

and Kq are the roots of the equation
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(EG—FHRP—(EN—2FM+GL)e+LN-M? =0, (34)
The directions of the principal axes are given by the roots of the equation

(EM—FL)tan 20+(EN—-GL)tan 9+ FN-GM =0 (35)
The principal curvature, & , of the curve C at P is given by

Ky V1+ D% E?
K= =ky T
n " cos A V1+D?

(36)

where & N i computed in a direction tangent to C at P, and A is the angle

between N and n.

3. Measurement Error

The computed coordinates of a light spot in the field of view of the sensor
is subject to error. The affects of various sources of error were taken into
account in designing the sensor. Features of the sensor include: the beams of
light from the sensor are focused into the center of the field of view where
non-linearity and distortion are smallest; the light sources are modulated
and the resultant signals from the sensor chip are synchronously detected;
the resultant light spots on a target surface are small when compared to the
area of the field of view of the sensor; and a means for adjusting the light
source intensity has been provided so that the measured light intensity is
within a small range.

One of the features of the sensor chip is it intrinsically measures the
center of gravity of a light spot on its surface. If the shape of a target
surface doesn’t vary rapidly, the location of the light spot in the field of view

of the sensor can be measured accurately. However, if the surface is
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concave, light can be reflected about the surface. The center of gravity of
the reflected light in the field of view will not coincide with the center of
gravity of the projected light spot.

3.1. Distortion

To measure and then compensate for the distortion of the lens and the
nonlinearity of the sensor chip, a square array of light spots was generated in
the field of view of the sensor. The coordinates output by the sensor chip
were then compared with the results computed according to the geometrical
model of the sensor. A  two dimensional transformation,
{z,, 4.} — {2, ¥}, maps the measured sensor chip coordinates into their
expected values [7]. This transformation is applied to measured sensor chip
coordinates each time a light source is turned on when the proximity sensor

is in use.

3.2. Light Source Trajectories

The sensor chip was used to measure the trajectories of the beams of
light that are emitted from the sensor head. To do this, a flat surface was
mounted perpendicular to the optical axis of the sensor head. The z
coordinate of a spot of light on the surface is simply the z position of the
surface. As each light source was turned on, the sensor chip coordinates
were measured and the z and y coordinates of each light spot were
computed. By moving the plane along the z axis of the sensor, a set of points
{z, y, 2} for each light source was acquired. ,

For each light source, a line was fit through a subset of the acquired data
points, {z, y, 2}, near the center of the field of view where distortion and
nonlinearity are smallest. These lines were chosen as best estimates of the
light beam trajectofies. The intersection of a line with the target plane
yields the coordinates of a set of points {z, §,2}. These points are
considered to be the best estimate of points along the trajectory of a light

beam.
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3.3. Error Correction

Just as the set of points {Z, §, 2} were computed, now a set of points
{z, y, z} are computed for each LED by triangulation. The error is taken to
be the difference between the coordinates {z,y,z} computed by
triangulation and the coordinates {Z, 7%, Z} computed according to the
geometrical model.

Assuming that (Z, 7, Z) is the correct location of a light spot, let us set

i:m+ex y (37)
J=y+e, (38)
Z=z+e, . (39)

It would be difficult to model the effect of the departures from the simplified
model precisely to determine the terms ¢ , €y and ¢,. However, since the
errors are small and usually repeatable with respect to the measured spot
position (xc,yc) on the sensor chip, we model them as a whole by means of

polynomials, for example, by third order correction polynomials of the form
3 2 2 3
€= ft(zc’yc) =047 +at2zc yc+at3zcyc +a’t4yc (40)
+a :c2+a Ty +a y2
t57c t67c’c ' TtTY¢
FpT Y+ 0410

where

t=2y2.

When the proximity sensor is calibrated, these polynomials are designed

for each LED using a calibrated data set. During operation, the values
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€ €y and €, computed by Equations (40) can be added to the spatial
coordinates (z,y,z) computed by triangulation to obtain the corrected

Jocation of the spot.

4. Multiple Conical Arrays of Light Sources

Uncertainty in the measurement of surface orientation ultimately
depends upon the uncertainty with which the sensor chip measures light
spot position. Although the resolution of the sensor chip is potentially high
(about 1/5000 across its surface), the precision of a single measurement is
limited by several factors. The intensity of the light that reaches the sensor
chip depends upon the distance, orientation and reflectivity of the target
surface. The shape of a surface also affects the intensity distribution of the
light spot on the sensor chip, causing a small error in measurement.
However, because the sensor chip is very fast we can use redundant multiple
light sources and choose the orientations and positions of the light sources so
as to increase the accuracy of the sensor.

‘When measuring the distance of a surface, the region of greatest interest
is generally the center of the field of view of the sensor. The effects of the
various distortion and non-linearity are smallest near the optical axis. In
addition, even if a spot of light is out of focus or grossly distorted by a
surface, errors that are the result of a portion of the light spot falling beyond
the edge of the sensor chip will be minimized. For these reasons the
proximity sensor is configured using multiple conical arrays of light sources.
In this way, several light sources are always focused near the optical axis
over the range of the sensor.

Since the sensor chip measures the centroid of the intensity distribution
on its surface, the distortion of the spot of light on a flat surface does not
lead to an appreciable error. However, a large light spot size does decrease
the linear range of the proximity sensor, and certainly will affect the

measurement of curved surfaces. To minimize the size of the light spots, the
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sensor uses light emitting diodes that were intended for fiber optic
communication. These LEDs have a light source diameter of 150 microns.
As a result the projected light spots on a target surface are on the order of

350 microns in diameter.

4.1. Placement and Orientation of Conical Arrays

Having decided that all of the light sources are to be arranged in multiple
conical arrays, the angles of orientation for these light sources, and then the
number of light sources comprising each cone, the number of cones, and the
placement of the cones are determined by means of the statistical analysis of

errors.

Surface
Field of view
(xc. ¥e) —
sor

(x. y. 2)

Ilip
Iens
fil d- L \} I
4
z - L .
X |

Figure 4: Camera Model of the Proximity Sensor

Figure 4 shows the locations of the sensor chip, the lens, and one light
source focused on a point along the optical axis. The angle of the light beam
relative to the z axis is 6. A line is drawn from the point on a surface
interrupting the light beam, through the effective center of the lens, to the

sensor chip. The equation of the beam of light in the z-z plane is

z= 1z tan 0+d. (41)
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The z coordinate of the spot of light on the sensor chip is

z. (42)
A small change in the z coordinate of the target surface by Az corresponds

to a shift in the spot of light on the sensor chip by Azc:

Az, L, Li—d)
Az~ (z—L)tan 6 ()2 tan g’

(43)

The larger the magnitude of S, the more sensitive the measurement. The
orientation of the light beam 6 can be chosen so any measurement of
distance using a single light source will have a nominal sensitivity Sy, in the
center of the field of view, 7.e., at z=d. This condition places an upper

bound on the value of 6:

L_1
d—1)Sy

0 < tan ! (44)

Suppose one particular cone of light is generated using n light sources
equally spaced in a circle. When a flat surface intersects the cone of light
beams normal to the axis of the cone, the spots of light fall on a circle. The

radius R of the circle is given by

R=|z—d|cot 9. (45)

To determine the uncertainty in the orientation of a plane that is fit to these
points, the mean-square values of the coordinates are first calculated. For

n> 3
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n n . 2
2m nR

2 __ p2 2°°7 .
D5 =Ry cos n o 2 (46)
=1 =1 .
e 9 2 T o2m nR?
2oy =R st T=" (47)
=1 =1

Using Equations (16), (17), (18), and (19), the uncertainty in measured
orientation when using a single cone of light can be calculated in terms of the
uncertainty o in the measurement of spot position, the radius of the circle of
points, and the number of light sources:

< (48)

&yla
S

%
When using multiple cones of light, where the jth cone consists of n;
light sources focused towards a point dJ., the radius of the 7 th cone at z is

Rj = |z — dj| cot 91.. (49)

The mean square value of the z coordinates of the data points is then

T

1
2 = 2 2
E g, =3 E n; cot OJ(z—dj) . _ (50)
J

The uncertainty in measured orientation becomes

20
o, < . (51)

¢ = 2 2
VEn;cot %0 (2 - d))

This equation guides the determination of the number of light sources n; in

each cone, their orientation GJ. , and their placement dj .
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4.2. Design of the Proximity Sensor

Several goals guided the design of the proximity sensor: the sensor should
be compact, with dimensions on the order of 10 cm, in order that it can be
used by a robotic manipulator; the sensor should have a useful range of
about 10 cm; the incident angle of the light beams on a target surface should
be small to minimize light spot distortion; there should be at least three
separate conical rings of light sources; and each individual light source
should measure position with a sensitivity of at least 0.25 mm.

The primary constraint on the design of the proximity sensor was the
light source intensity. The intensity of the light that is incident on a target
surface depends on the intensity of the light emitter, the distance of the
emitter from its focusing lens, and the diameter and focal length of the
focusing lens. These last two quantities determine the size of the sensor and
the number of light sources that can be mounted on the sensor head. The
intensity of the reflected light that reaches the sensor chip depends on the
distance of the camera lens from the target surface and the diameter of the
lens.

In a tradeoff between sensitivity, range, and the size of the field of view,
the distance from the camera lens to.the plane that is in best focus was
chosen to be 3.42 times the distance from the sensor chip to the lens. Asa
result, the area of the field of view that is in best focus is approximately
4.0 cm square. In the version of the sensor that has been built we vuse a
16mm, f/1.6 camera lens. If a camera lens with a shorter focal length were
used, a smaller sensor could have been built. This sensor would focus over a
closer range and have a wider field of view. However, the sensitivity of the
sensor would then be decreased at longer distances as the field of view of the
sensor rapidly expanded. If we used a longer focal length camera lens the
angular field of view would be smaller, and the sensitivity greater, but it is
difficult to focus small spots of light with sufficient intensity at the greater

distance that would then be in focus.
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light Sources

/-— Tight beam

|

- dy d, dy d, . d
76.2  91.4  106.7 121.9 152.4  (nn)

Figure 5: Geometry of the New Proximity Sensor

Figure 5 shows the configuration of the proximity sensor that has been
built. To begin the analysis, we choose three cones of light each consisting of
a three light sources. Equation (44) determined the choice of the angle of
orientation of the light sources. With this angle chosen, we use Equation
(51) to calculate the minimum spacing between the vertices dl’ d, and d3 of
the cones of light, where z = d,, is in best focus.

First we have to estimate the uncertainty ¢ in the measurement of spot
position at z == d,. Referring to Equation (43) and Equation (44), we first
set § = 60° and (d, — L) / L = 3.42 and find S, = 6.67. A smaller angle
would increase the sensitivity of the sensor, but the light spot on a surface
would then be further elongated. We assume that when a flat surface is
measured, a signal to noise ratio can be achieved so that the effective

resolution of the sensor chip is at least 1/500 its linear dimensions. This
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corresponds to Az, = 0.026 mm , and a shift in the position of the target
surface by Az = 0.15 mm . This value of Az is used to estimate o, The
total uncertainty o is estimated by observing that when the position of a
point is calculated by triangulation, the solution is constrained to lie on the
line determined by the light beam. Since o? ~ az2 + oy2 + 022, and

tan 60° = \/—3-,

2
o, mS(al_z—i—oyZ) (52)

and therefore,

2 2
o ~1.33z7z . (53)

The maximum value of the uncertainty in the measurement of surface
orientation o  occurs near the vertex of the middle cone. We use Equation
(51) to calculate the minimum spacing between the vertices d,, d, and dg of
the cones of light by insisting the uncertainty in any single measurement of
orientation at z = d,, be less than 1.0° (17.4 milliradians). Assuming these

three cones are equally spaced, and consist of three light sources, we find

14.0mm < dy —d; =dy —d, (54)

Figure 6 shows how the uncertainty in orientation o P calculated by
Equation (51) decreases as cones of light are added to the proximity sensor
head. o ¢(1) is graphed assuming a single cone of light consisting of three
light sources is focused toward d,. Then 0¢(2) and 0¢(3) are graphed as
successive cones of light are added: first the cone with a vertex at dg, then
the cone with a vertex at d,.

In order to further increase the accuracy of the sensor a second cone of
light is focused at d; to augment the original light sources. In order to

extend the range of the sensor, two more cones of light with an orientation of
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Figure 6: These graphs display the uncertainty when measuring the
orientation of a flat target surface. Curves 1, 2, and 3 show the
uneertainty when using a single, then two, and then three cones of light,
each having three light sources
70 ° are focused towards points further along the optical axis. As a result,
the range of the proximity sensor consists of two overlapping regions: first
an inner region with a small field of view, a depth of 6 cm, and many

redundant light sources where the sensor accurately measures the distance

and shape of a surface, and then an outer region that extends the range of
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the sensor by another 4 cm . The proximity sensor actually has an extended
range of 20 cm. At this distance several of the light beams leave the field of
view. However, the center of the field of view is devoid of light spots.

The computed distance and orientation of a target surface are estimated
to be the values at the intersection of the surface with the axis of the sensor.
If there are data points in this region, the estimate is more reliable than
otherwise. The spacing of the vertices of the cones of light, and the
orientations of the light sources determine how localized the data points are
near the axis of the sensor over the range of the sensor. In the sensor that
has been built, a light spot on the target surface is always within 5mm of the
axis of the sensor.

The distances va;here the beams of light enter and leave the field of view
of the sensor were computed for each light source. The angular field of view
of the sensor depends on the active area of the sensor chip. Table 1 lists the
entrance and exit distances for each light source assuming the active area of
the sensor chip has a radius of 4 mm. In addition, the table lists the
distances where each cone of light intersects the optical aiis. From the

table, one can see over what distances the cones of light overlap.

Entrance Axis Intercept Exit

(mm) (mm) (mm)
Cone 1 62.26 76.2 104.18
Cone 2 73.67 91.4 127.11
Cone 3 85.09 106.7 150.03
Cone 4 86.78 121.9 236.79
Cone 5 106.68 152.4 301.85

Table 1: Entrance and Exit Distances for Each Light Source.

This proximity sensor uses a total of 18 light sources arranged in 5

conical arrays. The diameter of the sensor is 11 cm. Assuming a sufficiently
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high signal to noise ratio, the overall accuracy in the measurement of
position when using the innermost 12 light sources is expected to be on the
order of .1 mm. The accuracy in the measurement of surface orientation ig

expected to be better than 1°.

Figure 7: Photograph of the new proximity sensor
The proximity sensor head shown in Figure 7 is composed of a barrel
that houses the analog sensor chip, and into which the camera lens and
eighteen light sources are fixed. The barrel was machined from a single piece
of aluminum to insure the concentricity of the cones of light sources with the

optical axis of the camera lens and with the center of the sensor chip. Any
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suitable C-mount lens can be mounted in front of the sensor chip. The light
sources screw into the flange of the barrel.

To summarize, the final parameters of the proximity sensor are:

Camera lens focal length: f =16 mm
Sensor chip to lens distance: L = 20.67 mm
Distance from sensor chip to plane in best focus: D = 91.4 mm
Orientation of inner rings of light sources: 01 23 = 60°
Orientation of outer rings light sources: 04 5= =170°
Number of light sources in ring 1: n; = 6
Number of light sources in outer four rings: Ny345 =3
Distance between inner light source target points’along

the optical axis: 15.24 mm

This particular sensor head weighs approximately one pound. Future
versions of the sensor can be constructed of composite materials to decrease

the sensor’s weight.
5. Performance

5.1. Measuring Distance and Orientation _

The proximity sensor was used to measure the distance and orientation
of flat target surfaces to determine the accuracy of the sensor. The target
surfaces were moved by high resolution linear and rotary platforms in the
field of view of the sensor. Each surface was rotated in 2° increments from
—16° to +16°, and moved in 2 mm steps in front of the sensor. The
distance and orientation of the surfaces were measured and compared with
their expected values.

The results for a uniform white target surface are summarized in Figures
8 and 9. The graphs show the error in the measured distance and
orientation of the surface as a function of the actual distance and orientation
of the surface. The error in orientation is typically less than 2 °, and the
error in the measurement of distance is less than 0.2 mm.

The amplifier gains of the proximity sensor were set so that the sensor

could measure the distance of a matte surface over a range of 10 cm. The
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Figure 8: White surface: error in measured distance versus
orientation and distance. The error in measured distance is typically less
than 0.2mm

light intensity measured by the sensor agreed with the expected result when
the white surface was used as a target. However, the reflectivity of an
unpainted aluminum surface, for example, is less than that of a white
surface, and in addition the reflected light has a large specular component.
As a result, the range of the sensor was limited to 5 cm when measuring the
distance of this type of surface. Either an insufficient amount of light is
scattered by the surface towards the sensor, or alternatively, light is
specularly reflected directly towards the sensor and overflows the amplifiers.

The measured coordinates of a light spot on a target surface also has a
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Figure 9: White surface: error in measured orientation versus
orientation and distance. The error in measured orientation is typically
less than 2°

small dependence on the intensity of the light reaching the sensor chip. Asa
result, when the sensor was calibrated for the white target surface and then
used to measure the distance and orientation of the other target surfaces the
results were in error. However, by recalibrating the proximity sensor for
each of these surfaces, (that is, recomputing error correction polynomials),
the performance of the sensor was improved so that the measurement error
at normal incidence was less than 0.5 mm. Figures 10 through 13 show the
errors cox\nbuted for two target surfaces, a brushed and a tarnished

aluminum surface, after recalibrating the sensor for each of these surfaces.
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distance

Orientation axis: -16° to 16°in 2° steps.
Distance axis: 66.4 mm (0) to 166.4 mm (50) in 2 mm steps.

Figure 10: Aluminum surface: error in measured distance versus
orientation and distance after recalibrating the sensor. ‘

5.2. Curvature

To measure the contour of a surface, a surface was moved through the
field of view of the proximity sensor. At each position of the surface, the
distance of the surface from the proximity sensor was measured, and the
orientation and curvature of the surface were computed. The results were
compared with the actual shape of each surface, and with shape of each
surface that was computed assuming the proximity sensor behaved ideally.

The measurement of surface shape was simulated to evaluate the
expected results. The coordinates of the resultant light spots on a simulated

target surface were computed for each position of the surface. The distance,
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distance

Orientation axis: -16° to 16° in 2° steps.
Distance axis: 66.4 mm (0) to 166.4 mm (50) in 2 mm steps.

Figure 11: Aluminum surface: error in measured orientation versus
orientation and distance after recalibrating the sensor.

orientation and curvature of the simulated target surface were then
computed, and the results were compared with the actual measurements.
Since measuring the contour of a surface uses only a small interval of the
range of the sensor, relative measurement errors are generally small. For
example, when a flat surface with uniform reflectivity was moved across the
field of view of the sensor, the error in measured distance was much less than
the errors that were reported when the distance and orientation of the target
surface were varied over a range of 10 cm. In many applications of the
proximity sensor, a target surface will be nearly flat. In addition, the sensor
can be moved to maintain a fixed distance and orientation above a target
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Figure 12: Tarnished surface: error in measured distance versus
orientation and distance after recalibrating the sensor.

surface to achieve a better measurement.

The shapes of a cylinder and a cone were measured by moving each
surface linearly across the field of view of the sensor a distance of 5 cm in 2
mm steps. The cylinder was in focus when closest to the sensor; the cone
was positioned 6 mm further away. Both the cylinder and the cone were
covered with a sheet of matte white paper. The cylinder had a 57.15 mm
(2.25 inch) radius. In Figure 14 the contour of the cylinder is graphed as the
sensor was moved across its surface.

The cone that was used as a target had a base angle of 81°. At the height

at which the axis of the sensor intersected the surface of the cone, the cone
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distance

Orientation axis: -16° to 16° in 2° steps.
Distance axis: 66.4 mm (0) to 166.4 mm (50) in 2 mm steps.

Figure 13: . Tarnished surface: error in measured orientation versus
orientation and distance after recalibrating the sensor.

had a radius of 45 mm. The distance between the sensor and the cone was
97.4 mm at the\ir‘closest position. This is 6 mm further away from the sensor
than the distance of best focus. In Figure 15 the contour of the cone is
graphed as the sensor was moved across its surface. Curve ‘1’ shows the
measurement results. Curve ‘2’ shows the expected results that were
computed according to.the geometrical model of'the sensor which assumes,
for example, there were no extraneous reflections. Curve ‘3’ shows the
actual contour of the cone.

Figures 14 through 17 show that the proximity sensor can accurately

measure the distance and orientation of a curved surface when the surface is
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Figure 14: Contour of the surface of a cylinder: the measured 1 and
the simulated 2 results, along with the actual 3 values

near normal to the axis of the sensor. When the orientation of eacil of these
surfaces was computed from the coe‘fficients of the second order equation,
the results were not accurate. Fitting a quadric surface to the data points on
a curved surface provides a better estimate of the range of a surface, but the
7 gradient and the curvature of the surface are not stable. The local
orientation of the target surfaces was better represented by fitting a plane to

the data points. Figures 16 and 17 show the measurement results and the

PAGE 192 OF 613



Kanade/Fuhrman 185

-50_,

1 I

-70.

-80.

90,

- ™

//

-110.

-120.

-130.

=30 20 -10 0 10 20 30

Vertical axis: distance from sensor. (mm)
Horizontal axis: motion of sensor across surface. (mm)

Figure 15: Contour of the surface of a cone: the measured 1 and the
simulated 2 results, along with the actual 3 values

simulation results. .

The principal normal curvatures, &, and Ky, of the cylinder and the cone
were also computed. Figures 18 and 19 respectively show the smaller value
for the computed principal radius of curvature of the cylinder and of the
cone. The curves labeled ‘1’ are the measured results and the curves labeled
‘2’ show the simulation results. The solution for the curvature of the

cylinder and the cone can be chosen where the other principal radius of
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Figure 16: Surface orientation of the cylinder: measured 1 and
simulated 2 results, and the actual value 3. The orientation is measured
with respect to the axis of the proximity sensor

curvature has a maximum. For the cylinder this occurs where £ = —6. For
the cone this occurs where z = 2.

The proximity sensor can accurately measure the distance and
orientation of a smooth surface when maintained at a near normal position
relative to the surface. According to the simulation results, the proximity

sensor has the potential to accurately measure the curvature of a surface.
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Figure 17: Surface orientation of the cone: measured 1 and
simulated 2 results, and the actual value 3. The orientation is measured
with respect to the axis of the proximity sensor

The simulated measurement of curvature is stable over a range of
orientation and distance relative to a surface. However, the simulation did
not take into account specular reflection of light toward the sensor head,
finite light spot size and other perturbations. Either increasing the number
of light sources, focusing smaller light spots onto the target surface, or using

data points from earlier measurements in the computation, should increase
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Figure 18: The smaller principal radius of curvature of a cylinder:
measured 1 and simulated 2 results, and the actual value 3.

the accuracy of the computed curvature.

6. Conclusion

A new compact multi-light source proximity sensor has been developed.
The sensor is based on the principle of active illumination and triangulation:
each time a light source is pulsed, the coordinates of the resulting spot of the

light on a surface are calculated. The proximity sensor that has been built
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Figure 19: The smaller principal radius of curvature of a cone:
measured 1 and simulated 2 results, and the actual value 3.

has a range of 10 cm where it can measure distance with a precision of 0.1
mm and surface orientation with a precision of 1.0°. The sensor can acquiré
data at a rate exceeding 200 points per second.

The design of the proximity sensor was guided by a statistical analysis of
the uncertainty in the measurement of position using a single light source
and the measurement of surface orientation using several light sources. The

analysis related the number of light sources needed to measure orientation
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within a specified accuracy to the distribution of light spots on a targeﬁ
surface. The new design is also intended to be a compact sensor for use on a
robotic manipulator.

The proximity sensor is subject to error because of various types of
distortion, nonlinearity, and noise. To compensate for the distortion of the
sensor chip and imaging optics, a square array of light spots was generated
in the field of view. A two dimensional transform was computed that maps
the measured image of this array on the sensor chip into its ideal undistorted
image. This transform was applied to the sensor chip coordir;ates during the
operation of the sensor.

To further compensate for errors in the computation of distance, error
correcting polynomials were computed that map the distance of a surface
computed by triangulation into its actual distance. These polynomials were
used during the operation of the sensor to improve measurement results.

The features of this proximity sensor include its simple principle of
operation and its fast speed. The sensor chip which detects the spot of light
on the target surface is an analog device which outputs the pbsition of the
centroid of a spot of light on its surface. Although the accuracy of any
individual measurement of light spot position is limited by the distortion of
a spot of light by a surface, and the noise and sensitivity of the sensor, we
take advantage of the speed of the sensor and use ‘multiple light sources to
increase the overall accuracy of measurements. The geometrical
arrangement of the light sources was guided by the statistical analysis to
achieve the design specification for accuracy. Measurement of distance,
surface orientation and surface curvature can exploit the geoﬁetrical

redundancy of the device.
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Abstract

This paper reports progress toward the development of a
representation of significant surface changes in dense depth
maps. We call the representation the Surface Primal Sketch
by analogy with representations of intensity changes, image
structure, and changes tn curvature of planar curves. We
describe an implemented program that detects, localizes, and
symbolically describes: steps, where the surface height
function 1s discontinuous; roofs, where the surface s
continuous but the surface mormal is discontinuous; smooth
joins, where the surface normal 1s continuous but a principal
curvature is discontinuous and changes sign; and shoulders,
which consist of two roofs and correspond to a step viewed
oblzquely. We tillustrate the performance of the program on
range maps of objects of varying complezxity.

1. Introduction
This paper describes an implemented program that detects, localizes,

and symbolically describes surface changes in dense depth maps:

o steps, where the surface height function is discontinuous;

e roofs, where the surface is continuous but the surface normal is
discontinuous;

o smooth joims, where the surface normal is continuous but a
principal curvature is discontinuous and changes sign; and

e shoulders, which consist of two roofs and correspond to a step
viewed obliquely.

Figures 4, 7, 9, and 10 show the idealized instances of these surface changes

that are the basis of the mathematical models used by the program.

195
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The work reported here continues our investigation [3] of surface
descriptions based on the concepts of differential geometry. Section 2 ‘
summarizes our ideas and shows the kind of geometric (CAD) description we
are aiming at. An important component of our work is the identification
and isolation of a set of critical surface curves, including significant surface
changes. To this end, we report progress on the developmént of a

representation we call the Sur face Primal Sketch by analogy with:
e Marr’s Primal Sketch [22] representation of significant intensity
changes;
¢ Asada and Brady’s Curvature Primal Sketch [1] representation
of significant curvature changes along planar contours; and
e Haralick, Watson, and Laffey’s Topographic Primal Sketch
[14] representation of image structure.

In each case, there are three distinct problems: to detect significant changes;
to localize those changes as accurately as possible; and, to ‘sgmbolically
describe those changes. We follow the approach of Asada and Brady [1], as
sketched in Section 3. A key component of that approach is scale space
filtering, pioneered by Witkin [28]. Yuille and Poggio [30], [31] have proved
that, in principle, scale space filtering enables a discontinuity to be
accurately localized. Canny [7] uses the smallest scale at which a given
intensity change can be detected to most accurately localize it.

Brady, Ponce, Yuille, and Asada [3] report initial experiments that adapt
Asada and Brady’s algorithm [1] to find surface changes. We describe a
number of problems, both mathematical and implementational, with that
approach.

Section 4 describes a robust algorithm to find roofs, steps, smooth joins,
and shoulders. Roofs are found from extrema of curvature (positive
maxima and negative minima), whereas steps, shoulders, and smooth joins
are found from parabolic points: zero crossings of the Gaussian curvature.
We use écale space behavior to discriminate steps, shoulders, and smooth

joins. Section 6 shows the algorithm at work.

PAGE 203 OF 613



Ponce/Brady 197

2. Background

In this section, we recall some of the main features of our work on
representing visible surfaces. We work with dense depth maps that are the
output of “‘shape-from” processes such as stereo or, more usually, direct

ranging systems. There are three principal problems to be addressed:

1. Finding surface intersections. These enable the description of
the depth map to be partitioned into a set of smooth surface
patch descriptions. This is the problem addressed in the present
paper. Surface intersections do not, in general, partition the
depth map. Consider, for example, a bulbous end of an
American telephone handset (Figure 1). The surface intersection
marked on the figure peters out by the time the cylindrical
portion is reached. Each surface intersection has an associated
description that includes its type (step, roof, smooth join, etc.).
In general, the type of surface intersection may vary along its
length [16], [27]. If a surface intersection has a special property,
such as being planar, that property is included in the description.

2. Generating descriptions for the smooth surface patches that
result from the partitioning in (1). This is the problem addressed
by Brady, Ponce, Yuille, and Asada [3], who introduce a
representation called Intrinsic Patches. This is discussed
further below.

3. Matching surface descriptions to a database of object models
that integrate multiple viewpoints of a surface. We have not yet
addressed this problem. Grimson and Lozano-Pérez [13],
Faugeras, Hebert, Pauchon, and Ponce [12], and Faugeras and
Hebert [10] have made a solid start on the problem, though they
restrict attention to the case of polyhedral approximations to
surfaces. However, Faugeras and Hebert [10], [11], illustrate the
advantages of representations based on sculptured surfaces.
Brou [4], Little [21], and Ikeuchi and Horn [17] have developed
the Extended Gaussian Image (EGI) representation for
recognition and attitude determination. The EGI is an
information-preserving representation only for complete maps of
convex objects, a rare situation in practice. Not much has been
done to extend the representation to handle non-convex objects.

The Intrinsic Patch representation that we are developing is based on
concepts of differential geometry, principally because it provides a hierarchy
of increasingly stringent surface descriptions. A surface may simply be

(doubly) curved, but, in some cases, it may be ruled, even developable, even
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Figure 1: A telephone handset illustrates that surface intersections
on curved surfaces do not, in general, partition the surface into a
patchwork of smooth components.

conical. Our aim is to find the most appropriate and most stringent
descriptors for portions of a surface. If, for example, there is z; connected
region of umbilic points, indicating that part of the surface is spherical, then
it is made explicit, as is the center of the corresponding sphere (Figure 2). If
there is a portion of the surface that is determined to be part of a surface of
revolution, it is described as such, and the axis is determined (see Figures 2
and 186).

Similarly, if there is a line of curvature or an asymptote that is planar or
whose associated curvature (principal curvature or geodesic curvature
respectively) is constant, then it is made explicit. For example, the
asymptote (which in this particular case is also a parabolic line) that marks
the smooth join of the bulb and the stem of the lightbulb in Figure 2, as well
as the surface intersections marked on the oil bottle in Figure 16, are noted
in the representation. The program described in Section 3 cannot compute
the asymptote on the lightbulb; but that described in Section 4 can. We
may associate a description with a curve that is a surface intersection; but
only if it has an important property such as being planar. For example, a

slice of a cylinder taken oblique to the axis of the cylinder produces a planar
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Figure 2: The representation of a light bulb. (a) The dotted region
consists of umbilic points, indicating that the bulb is spherical. The
parallel lines are the meridians of the cylindrical stem. The parallels,
which are also rulings, are not shown. (b) The representation that we are
working towards for the lightbulb. All save the rightmost column can be
automatically computed by existing programs.

curve of intersection. Machining operations such as filleting tend to produce
planar curves. Similarly, the intersection of a finger of a dextrous robot
hand [25], 18], [19] and an object surface is planar. On the other hand, the
intersection of two cylinders is not a planar curve.

Figure 2(b) illustrates the representation we are aiming at. The stem of
the lightbulb is determined to be cylindrical, because it is ruled and because
it is a surface of revolution. We can compute the axis of the stem. The bulb
is determined to be a portion of a sphere, because it is a connected region of
umbilic points. The center of the sphere can be computed. Similarly, the
center of the spherical portion that forms the threaded end can be
determined. The stem is smoothly joined to the bulb. Moreover, the axis of
the cylindrical stem passes through the centers of the spheres defined by the
bulb and threaded end. This distinguishes the diameters of each sphere that

are collinear with the stem axis, showing that the lightbulb is a surface of
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revolution. All of Figure 2(b) can be computed by the algorithms described
in this paper and in Brady, Ponce, Yuille, and Asada [3], except for the
rightmost column, which relates to the inferences that derive from attaching
the spherical portions to the cylindrical stem. Currently, we are working on

the inference engine (see also Kapur, Mundy, Musser, and Narendran [20]).

3. Surface intersections from lines of curvature

Asada and Brady [1] introduce a representation, called the Curvature
Primal Sketch, of the significant changes of curvature along a planarﬁ curve.
We review that work here because our extension to surfaces follows an
analogous development. Asada and Brady describe an algorithm that not
only detects and localizes significant changes, but describes those changes
symbolically. The simplest descriptor is corner, where two arcs meet
continuously but where the tangent is discontinuous. Other descriptbrs are
composed of two or more instances of the corner model. The curve that is
input to the algorithm is represented by its tangent 9(s) where s is the
intrinsic arclength coordinate. The algorithm is based on a mathematical
analysis of a set of models that are idealized instances of the descriptors.
For example, the corner model is formed by the intersection of two circles.
Note that this is intended as a local approximation to a corner to facilitate
analysis. It does not prejudice the subsequent approximation of the contour
to be piecewise circular. Rather, it suggests a set of knot points for any
appropriate spline approximation.

Asada and Brady derive a number of salient features of the curvature of
the models as they vary with the scale of the smoothing (Gaussian) filter. '
For example, a corner generates a curvature maximum, equivalently a
positive maximum flanking a negative minimum in the first derivative of
curvature. The height and separation of these peaks varies in a
characteristic fashion over scale. The salient features are the basis of the

tree matching algorithm that locates a curvature change and assigns it a
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descriptor. Note that the distance between peaks varies approximately
linearly (in arclength) with scale.

In the next section we develop an analogous mathematical framework for
significant surface changes. Our surface analysis is local and based upon
smoothing (locally) cylindrical functions with a Gaussian distribution. This
is because of the following theorem, proved in Brady, Ponce, Yuille, and
Asada [3].

The ILine of Curvature Theorem: The convolution of a cylindrical
surface with a Gaussian distribution is cylindrical. In more detail, let
f(z,y,2) be a surface that is the cross product of a planar curve and a straight
line. The lines of curvature of the convolution of f with a Gaussian
distribution are in the plane of the curve and parallel to the generating line.

In  wvector notation, a cylindrical surface has the form
r(z,y)=zi+yj+(z)k, and consists of parallel instances of a curve f(z) in the
z—z plane. Our models for roof, step, smooth join, and shoulder
correspond to different choices for the function z=f(z).

The curvature of the smoothed curve is given by the non-linear
expression

z"amooth ( 1)

K smo (z) = *
o (1+#2 /2

smooth
Since Asada and Brady [1] could work with tangent directions 6(s) along a
planar curve, the curvature was the linear expression df(s)/ds, so that the
curvature of a smoothed contour is simply equal to the smoothed curvature
of the original contour. This is not the case for surfaces represented as
height functions 2(z,y). For example, the (constant) curvature of the
parallels of a surface of revolution are modified (see Figure 15(a)). The non-
linearity of curvature considerably complicates the analysis of surface
change models presented in Section 4 relative to those used by Asada and
Brady. Non-linearity affects smoothing too, as we discuss in Section 5.

Brady, Ponce, Yuille, and Asada [3] used the Line of Curvature
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Theorem directly in a two-step process to detect, localize, and symbolically

describe surface intersections, as follows:
1. Compute the lines of curvature on the surface; ‘
2. Compute significant changes of curvature along the lines of
curvature found in the first step. '

The lines of curvature are computed using a best-first region growing
algorithm [3]. A good continuation function is defined between neighboring
points of the surface. The function involves the Cartesian distance between
the points and the inner product of the tangent vectors corresponding to the
curvature principal directions at the two points. The region growing
algorithm joins the point pair whose good continuation function is globally
maximum, and incorporates the new link into the developing set of lines of
curvature. Brady, Ponce, Yuille, and Asada [3] show several illustrations of
the algorithm’s performance. In the second step of finding surface
intersections, Asada and Brady’s algorithm for computing the Curvature
Primal Sketch, described in the previous section, is applied to the lines of
curvature in turn.

The two step process has been tested on the objects shown in Brady,
Ponce, Yuille, and Asada [3]: a lightbulb, a styrofoam cup, and a telephone
receiver. It is robust and gives good results, suggesting that the method has

competence. Nevertheless, there are several problems with the method:

e The method is inefficient. Typical running times on a lisp

machine for a smoothed depth map that is 128 points square are

of the order of one hour. Much of the time is spent on further

smoothing each of the (typically hundreds of) lines of curvature

at multiple scales, as required by the Curvature Primal Sketch
algorithm.

o Multiple multiple-smoothing is mathematically

confused. The raw surface data are smoothed at multiple scales

o, giving a set of surfaces z,. The Curvature Primal Sketch

algorithm further smooths the lines of curvature of z, at

multiple scales o yielding a set of smoothed lines of curvature

T (s;)- There’ is no obvious relation between the scales
o, and o, .

e Discretization makes implementation difficult. The

lines of curvature of an analytic surface form a dense orthogonal
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web. The (smoothed) depth maps we work with are discrete
approximations to analytic surfaces. In practice, the lines of
curvature found by the two step process are sometimes broken.
The lines of curvature near the perceptual join of the stem and
bulb of the lightbulb shown in Figure 2 illustrates this problem.
This is due in part to quantization effects, but is also because the
principal directions change rapidly near surface discontinuities.
This is why the smooth join between the bulb and the stem of
the lightbulb is not found by the two step process.

o The Line of Curvature Theorem only applies locally. In
practice, few surfaces are cylindrical in the sense of the Line of
Curvature Theorem. The Theorem is only approximately true
in general, and then only locally. The application of the
Curvature Primal Sketch algorithm in the second step does not
respect this.

e Lines of curvature on smoothed surfaces are not
planar curves. The models that are embodied in the
Curvature Primal Sketch algorithm are not a complete set for
surface intersections.

The success of the two step process suggests that the method is on the
right track. The problems just enumerated suggest that reducing the
problem to apply an existing algorithm developed for planar curves, though
expedient, is wrong. Together, these observations suggest that a real two-
dimensional extension of the Curvature Primal Sketch should be developed
along analogous lines. The next section reports our progress toward such an

extension.
4. Toward a surface primal sketch

4.1. A three-step process

In this section we develop a method for finding certain types of changes
in the height of a surface that overcomes the difficulties of the two-step
process describea in the previous section. The types of changes we have
analyzed and implemented are as follows: steps, where the surface height
function is discontinuous; roofs, where the surface is continuous but the

surface normal is discontinuous; smooth joins, where the surface normal is
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continuous but a principal curvature is discéntinuous and changes sign; and
shoulders, which consist of two roofs and correspond to a step viewed
obliquely. It turns out that roofs consist of extrema of the dominant
curvature; that is, maxima of the positive maximum curvature or minima of
the negative minimum curvature. On the other hand, steps, smooth joins,
and shoulders consist of parabolic points, that is zero crossings of the
Gaussian curvature. They are distinguished by their scale space behavior.
We have implemented the following three-step process (Figure 3) that is

illustrated in the examples presented in Section 6:

1. Smooth the surface with Gaussian distributions at a set of scales
0,, yielding surfaces z;. Compute the principal directions and
curvatures everywhere;

2.In each smoothed surface z;, mark the zero-crossings of the
Gaussian curvature and the (directional) extrema of the
dominant curvatures.

3. Match the descriptions of the surfaces z; to find points that lie on
roof, step, smooth join, and shoulder surface discontinuities.

The computation of principal curvatures is described by Brady, Ponce,
Yuille, and Asada [3]. They investigate parabolic lines and lines of curvature
as global descriptors of surfaces, and suggest that such lines need additional
global properties, such as planarity, to be perceptually important. In this
paper, we are interested in parabolic points and curvature extrema as local
cues for significant surface intersections.

We discuss smoothing in more detail in the next section. The next four
subsections analyze steps, roofs, smooth joins, and shoulders. Finally, we
discuss the matching algorithm and further work that is needed to elaborate
the model set.

Is it necessary to use multiple scales to find surface intersections?
Arguments supporting multiple scales for edge finding in images have been
advanced elsewhere (see [23]). However, it might be supposed that it would
be sufficient to smooth depth maps with a single coarse filter. Figures 12(b)
and 15(a) show that this is not so. Even after thresholding, there is still a

large curvature extremum in the neck of the bottle running parallel to the

PAGE 211 OF 613



Ponce/Brady 205
Depth
Map
smoothing
7 y T’llt‘ll’ll ,T_hcf':" . 11 Extrema of curvature, A M
1 Ky Ky KRR R Parabolic points a
smoothing t
Thcm] Thclaz L’ Lxtrema of curvature ;
Ll g ry g ogrm prw
4 2 K K, K} K; K K Parabolic points i ]:f
smoothing n d
Thetal Thcmz Extrema of curvature 4 e
> S s per qew o [P P
Z 3 K, K, Kl K 2" ] k7 Parabolic points !
s
¢ smoothing w
Theta Theta Extrema of curvature i
VA TR >
4 K, Ky K} KSR K Parabolic points t
h
Step 1 Step 2 Step 3
\ 4
Surface
Intersections

Figure 3: ' Schematic of the three-step process described in this paper
and in Brady, Ponce, Yuille, and Asada [3]. The analysis of the set of
models and the matching algorithm are the topic of the present paper.
Results of running the process are shown in Section 6.

axis. This extremum is an artifact of non-linear smoothing, and it cannot be

eliminated at a single scale. Instead, we reject it because it does not change

over scale in the characteristic manner of a roof.
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4.2. Step discontinuities
A step occurs when the surface itself is discontinuous. The model we use
consists of two slanted half planes whose normals lie in the z—z plane. They

are separated by a height h at the origin (Figure 4).

Figure 4: The step model, consisting of two slanted planes separated
by a height k at the origin. The roof model corresponds to the case h=0
and k, F# ky.

Using the line of curvature theorem, we study the one dimensional

formulation of this model.

Let the curve z = f(z) be defined by

klx + ¢, z <0 ]

z= @ |
kx+c+h, z>0; §

2 3

where h and c are constants. In this expression, k is the height of the step. #
We now derive the result of smoothing this function with a Gaussian
distribution at a given scale 0. To obtain a symmetric form for this

smoothed version, we introduce the two following parameters:
k= (kl + kz)/2;

§=tky—k,.

If we denote the smoothed curve G 4z, by z_ , we then obtain
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ho [z £2
+ exp(——)dt 3
oV 21r/;oo a 202) ( )

6z z 2
+ kz +—= / exp(——7)dt
ovarm Jo ( 202)
LA =5
—= ezp(~——7)-
2n P 20°
The first and second derivatives of z_ are given by
2 2:2

h
2 = a\/—./ ezp(——3)dt + mezp(—;g); (4)

\/__(6 — ezp( 07) ()

In particular, the curvature «, given by Equation (1), has a zero crossing at

the point z = 026/ h. This is at the origin if and only if k| = ky; otherwise,
the distance from z_ to the origin is proportional to o>, Thls is illustrated in
Figure 5 for the step between the cylindrical body and the cylindrical base of
the oil bottle shown in Figure 16. From Figure 5, we calculate §/h to be
0.105. The actual height of the step is about 1.5 millimeters. By the way,
the position of the zero crossing shown in Figure 5 moves by about 3 pixels
over one octave.

Using the fact that the second derivative of z_is zero at z , it is easy to

show that

i
K" (] 26
W) = ile) == ©)

So the ratio of the second and first derivatives of the curvature at the zero

crossing is constant over the scales. Calculating 6/h this way gives 0.11,
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Figure 5: Variation over scale of the position of the zero crossing of
the curvature of the smoothed step between the cylindrical body and the
cylindrical base of the oil bottle shown in Figure 16. The abscissa is 02,
and the ordinate is the position of the zero crossing. The height of the
step is about 1.5 millimeters. The slope is §/h = 0.105.

which is close to the value given by the slope in Figure 5. This suggests that
one ought not be overly coy about computing first and second derivatives of
curvature of appropriately smoothed versions of a surface, even though they

correspond to third and fourth derivatives.
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4.3. Roof discontinuities
A roof occurs when the surface is continuous, but the surface normal is

discontinuous. Specializing Equations (2) to (5) to the case h==0, we obtain

Ed
1 be 20
K= 7
ovVar ( )
5 /x £ 2|3/2
1 k+—— —=—=)dt
ks = enpl g
2
z.
-5 2
1 be 20
o ovV2n
z/o 2 913/2

§ u
1+ (k+ E-/(; exp(—7)du)

From Egquation (7), we deduce that for a roof, we have
k(z,0)=(1/0)x(z/c,1) . In particular, this implies that the extremum value
of k is proportional to 1/c, and that its distance from the origin is
proportional to ¢. This is illustrated in Figure 6 for the roof discontinuity
between the cylindrical neck and the conical shoulder of the oil bottle shown
in Figure 16. Figure 6(a) shows the variation in the position of the negative
minimum of curvature as a function of scale. Figure 6(b) shows that
curvature is directly proportional to 1/0. It is also easy to show that the
second derivative of the curvature, £”, is proportional to 1/ o°. However, we
do not use this property in the current implementation of the program,
relying instead on the the variation of the extremum height over scale.

We first look for points that are local maxima (minima) of the maximum
(minimum) curvature in the corresponding direction. The curvature
directions can be estimated accurately. Then we use non-maximum
suppression [7] to reject local extrema. The location of the peak, its height,

its type (maximum or minimum), and its orientation, are the features we use
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Figure 6: Scale space behavior of the roof discontinuity between the
cylindrical neck and the conical shoulder of the oil bottle shown in Figure

16. (a) The position of the negative minimum of curvature varies linearly
as a function of scale as predicted by the analysis.

for the subsequent matching over scales.

4.4. Smooth join discontinuities

In certain circumstances, one can berceive surface changes where both
the surface and its normal are continuous, but whe;e the curvature is
discontinuous. We call such a surface change a smooth join discontinuity.
If the curvature changes sign at a smooth join, the surface has a parabolic
point. As we shall see, such changes can be found from zero crossings of a

principal curvature. It is well-known (see [1] for discussion and references)
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Figure 6: (b) The curvature is directly proportional to 1/o, as
predicted.

that a smooth join where the curvature does not change sign is perceptible
only when the (discontinuous) jump in curvature is “sufficiently large”. In
such a case, there is not a zero crossing of curvature; rather there is a level
crossing, and the curvature typically inflects. We do not yet have a
complete analysis of that case.

Our model of a smooth join consists of two parabolas that meet
smoothly at the origin (the curve is differentiable). Figure 7 shows the two
distinct cases of the model. Though the two cases appear to be perceptually
distinct and lead to different matching criteria, they are governed by the
same equatioﬂ, so it is convenient to analyze them together at first.

Consider the curve 2(z) defined by

2 (8)

1
{- cl:c2 + blz +a, z<0
z =
1
Ecrz2 + brz +a, z>0

The continuity and differentiability of the curve at z=0 imply that

bl=br=b’ say, and a/=a,=a, say. As in the case of the step, we introduce
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(@)

(b)

Figure 7: The model for a smooth join consists of two parabolas
meeting smoothly at the origin. (a) The curvature changes sign
generating a parabolic point on the surface; (b) The curvature does not
change sign. Such smooth joins are typically perceivable only when
there is a large, discontinuous jump in curvature.

the parameters
c= (cl + cr)/2,
6= c.—cp

We can express the surface, smoothed at the scale o, as
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2
=-;'c+6\/— / ezp(— 2)dt) (9)

z2

% eap(- )
eTPl— — o)) T
ovar P ggt

+(b+

co? bo z t2

+(a +—+2\/_ ezp(— )dt)

The first and second derivatives of z_are now given by:

P 8 : £ d |
7 (e oVanJo exp( 20’2) ):z; ( )

2

bo
+(b+

Vo =52

y § (= 2
=+ —= ——Z)dt . 11
e = ¢ ov2m ,/0 et 202) , (11)

In particular, we deduce from Equation (11) that the curvature has a zero

crossing if and only if

1 z/o 2
\/_2—;-/0 ezp(— u?)du =— % . (12)

This equation has a solution if and only if the absolute value of ¢/§ is less
than 1/2, which simply corresponds to ¢, and ¢, having opposite signs. It
follows that smooth joins of the sort shown in Figure 7(a) generate a zero
crossing in curvature, hence a parabolic point on the surface. Those shown
in Figure 7(b) do not.

For example, the parabolic lines found on the light bulb shown in Figure

8 are smooth joins. The two-step process utilizing the Curvature Primal
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Figure 8: Parabolic lines found by the program described in Section
4 for the lightbulb shown in Figure 2. The smooth join between the stem
and bulb were not found by the program described in Section 3.

Sketch algorithm, discussed in the previous section, failed to find the
smooth joins (see 3] Figure 1).

Equation (12) implies that the distance from the zero crossing location z,
to the origin is proportional to o. Using this property and the fact that 2" is
zero at T , it is then easy to use the Implicit Function Theorem to show that

" 2" ”
S @) ="r()=7 (13)
(-2

for some constant 4. It follows that the ratio of the second and first
derivatives of the curvature in z_ is inversely proportional to o. This scale
space behavior allows us to discriminate zero crossings due to steps from

those due to smooth joins.
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4.5. Shoulder discontinuities

A step discontinuity confounds information both about the geometry of
the surface and the viewpoint. Shifting the viewpoint to the half space
defined by the outward normal of the “riser’’ of the step typically changes
the depth discontinuity to a pair of roofs of opposite sign whose separation

again confounds geometry and viewpoint. We introduce the shoulder

discontinuity to cater for this situation (Figure 9).

A

Figure 9: The shoulder discontinuity consists of two roofs of
opposite sign. The shoulder appears as a step when viewed from the half-
space defined by the inward normal of the ‘“riser”.

We may expect the scale space behavior of the shoulder to closely
resemble that of the step when the projected separation 2a of the roofs is
small compared to the filter size o, perhaps becoming more like a pair of
roofs as the viewpoint shifts. This is what we find. '

We model the shoulder by the function

kz + (kj—m)a, z< —a;
z={ mz z € [—a,+aj; (14)
kyz + (m—kyla, > +a.

If we denote k,—m by 6, and ky—m by 6y, then ¢; 7 0, and 6,/6, is positive
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(otherwise the curve is always convex, or always concave). It is easy to show.

that the second derivative of the shoulder, smoothed at scale o is

y 4y (z—a)2 6y (z+a)2

” =U\/2_7re.'x:p(— 202)—0_\/2—7;”?(— 202 ) (15)

Since 62/51 is assumed positive, we deduce from Equation (15) that the

curvature has a zero crossing. The location of the zero crossing is given by

o2 65
z, =5~ log ('5;) . (18)

Using the Implicit Function Theorem as in the case of the roof, it is then

straightforward to show that

X 2" 18
W) =7 (2) == G loglg), )

so the ratio of the first and second derivatives at the zero crossing is

constant over scales.

4.6. Thin bar and other compound discontinuities

The models considered so far involve ¢solated surface changes. Even
though a shoulder may appear as a pair of roofs if it is viewed close to the
normal to the riser and if the riser subtends a sufficient visual angle, its more
typical behavior is like that of a step. As two (or more) surface changes are
brought more closely together, so that the filter width o approaches half the
separation of the changes, the filter responses due to the individual changes
interfere with each other. Since certain kinds of compound surface
discontinuity are important for recognition and use of objects, they must be
modeled and matched by the program.

This observation raises two questions: (i) which compound surface
changes should be modeled and matched; and (ii) how shall instances be

found by the program? Ultimately, the answer to (i) is application-
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dependent, though the thin bar, consisting of a step up closely followed by a

step down, presses for inclusion (Figure 10). Thin bars occur as ribs on many

l‘é—2a-ﬁ’

Figure 10: Model of a thin bar compound surface discontinuity. It
comnsists of a plateau of height h, width 2a, and slope k2, resting on flat
ground of slope Icl.

surfaces, for example along the sides of the neck of a connecting rod. Also, it
seems [22], [24] that the mammalian visual system is sensitive to thin
intensity stripes. In the case of curvature changes along a planar curve, the
crank [1] is analogous to a thin bar since it consists of a corner followed
closely by one of opposite sign. Other compound surface changes that might
be important are a rounded corner and a moulding that is like a thin bar but
with one of its risers smooth and concave. We have not studied such
configurations.

Restricting attention to thin bars raises question (ii): how shall instances
be recognized? First, let us conjecture what the curvature response to a thin
bar might look like. We may base our conjecture on Asada and Brady’s

analysis [1] of a crank, though we need to be cautious because their
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Figure 11: Expected curvature response of a thin bar to Gaussian
filters. At fine scales, the thin bar signals two separate steps; at coarser
scales it resembles a difference-of-Gaussians. The step responses begin to
interfere when o equals half the separation of the risers.

§

operators were linear. Figure 11 shows the response that might be expected,
indeed the response that is generated in one special case (see below).
Unfortunately, the response becomes substantially more complex in the
general case.

Note that the thin bar in Figure 11 generates as many as five curvature
peaks at fine scales, reducing to three at coarser scales. Note a.lso that there
appears to be a curvature peak at the origin. Asada and Brady extracted
peaks at all scales and developed a matcher that linked peaks across scales.
The crank model explicitly checked for three peaks splitting to five in the
way shown in Figure 11. Matching such compound (planar curve curvature)

changes was the source of the complexity of their program. In view of the
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non-linearity of surface curvature, and the two-dimensionality of surfaces,
we are reluctant to implement an analogous peak matching program. In
practice, the peaks from a thin bar may cover as many as fifteen pixels,
suggesting error-prone and inefficient search. In this paper, we have sought
local statements that apply to a single zero crossing or curvature extremum
and studied its scale space behavior in isolation. As we shall see, however,
the analysis is quite difficult for a thin bar, even in simple cases.

We analyze a model of a thin bar consisting of a plateau of height h,
width 2a, and slope k,, resting on flat ground of slope k; (Figure 10). We
model the thin bar by the function

klx, z < —a;
z=(h+kyz, z€[-a+a]; (18)
kl:, z > +a.

We denote kz—kl by 6. The first and second derivatives of the smoothed

thin bar are given by

5 z+a 2
2 =k + = ezp(— ;;E)dt (19)
(h-ba)  (a+af (h+bs)  (a—a)?
+ - - - H
oVer eap{ 20° ) oVer et 20° !
1 ‘h — ba)(z + a), (z+a)?
2 = —=(- O, CH (20

1 " (h + 8a)(z — a)) ( (z—a)®
- - exp(— .

ovVar 2 202 !
These expressions simplify considerably in the case that the plateau surface
is parallel to the ground, that is § = 0. In particular, in that case z’é’ = 0.
However, the curvature attains an extremum at the origin (equivalently,

&' =0) only when k; = 0. This is the case depicted in Figure 11, but it is
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too restrictive since it is too sensitive to changes in viewpoint. Further work
is needed here. The special case k; = k, = 0 is that typically studied in
psychophysical studies of intensity thin bars (e.g.,[24]). It would be
interesting to know what is the response to thinm bars of intensity

superimposed on a linear intensity ramp.

4.7. The matching algorithm

We now use the models introduced in the previous sections to detect and
localize the surface intersections. We use a coarse to fine tracking of the
extrema of curvature and parabolic points found at each scale, and direct it
by using the particular features associated to each model.

We first smooth the original depth map with a Gaussian distribution at a
variety of scales o (see Figure 3). We then compute, for each smoothed
version of the surface, the principal curvatures and their directions (using
the method described in (3]). We also compute the first and second
derivatives of the principal curvatures in their associated directions. All
parabolic points, as well as directional maxima of the maximum curvature
and minima of the minimum curvature, are then marked (Figure 12(a)).
The marked points are thresholded, according to their type: all extrema
whose curvature value is less than a given value are removed; all zero
crossings whose slope is less than another value are also removed (Figure
12(b)).

The values of the thresholds vary according to the scale. The extremum
threshold varies proportionally to 1/0, as suggested by the roof model.
There is unfortunately no such clue for the zero crossing threshold. This is
not a major problem however, as the thresholding step is used for selecting a
set of candidates for the subsequent matching process, rather than finding
the surface intersections themselves. For example, the curvature extrema
parallel to the axis of the oil bottle, that are due to the non-linear smoothing

(Figure 15), cannot be eliminated by thresholding, but are rejected by the
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Figure 12: (a) The extrema and zero crossings of curvature marked
on the oil bottle at four different increasing scales, from left to right.

matching algorithm (Figure 186).

The basic matching algorithm is a simple 2D extension of the Asada and
Brady method. We track the thresholded extrema and zero crossings across
the scales, from coarse to fine. We obtain a forest of points, equivalent to a
“fingerprint” [29]. We then use the models developed in the previous
sections to parse this forest. Paths in the forest are assigned a type, roof,
step, smooth jorn, or shoulder, according to the behavior of the associated
curvature and its first and second derivatives across the scales. This provides
us with a symbolic description of the models instances that are found.
Finally, we use a stability criterion (see Witkin [28]) to find the significant

surface intersections (detectzon phase); they correspond to paths in the
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Figure 12: (b) The thresholded points. Note the curvature extrema
parallel to the bottle axis are due to the non-linear smoothing, and the
numerous parabolic points not thresholded at the finest scale. These
non-significant points will be eliminated by the matching algorithm
(Figures 13 and 16).

forest that go from the coarsest scale to the finest one. Points at the finest
scale that have no ancestor at the coarsest scale are eliminated. The
remaining points at the finest scale ensure the best localization of the
surface intersections.

There are some problems with a straightforward implementation of this
method. In order to stress the first one, we momentarily restrict ourselves to
the case of the roof, which is the only one of our models to be characterized
by a curvature extremum. In the Curvature Primal Sketch, the extrema of

curvature are isolated points on a one-dimensional curve, and this makes the

PAGE 229 OF 613



Ponce/Brady 228

construction of the trees relatively simple. However, in the two-dimensional
case, the surface intersections themselves form continuous curves. This
makes it difficult, for each scale, to associate to each point a single ancestor,
and to build an explicit representation of the forest. This, in turn, makes
difficult an a posterior: interpretation of this forest. Instead, we associate to
each couple of marked points belonging to two successive images a
compatibility function. This function involves the Cartesian distance
between the points and the angle between their associated principal
directions. It also takes into account the roo f model by comparing the ratio
of the curvatures to the inverse of the ratio of the associated scales. At each
scale, and for each thresholded extremum, we look for an ancestor inside a
square window of the previous scale image. If an ancestor with a good
enough score is found, then the point is kept as a potential ancestor for the
next scale. Otherwise it is removed. This way, the forest is never explicitly
built, and the interpretation is done during the tracking itself, as the only
extrema tracked are those which correspond to potential roofs. In
particular, this is how the artifacts due to non-linear smoothing are
removed.

The case of the parabolic points is slightly more complicated, as they
may correspond to different types of discontinuities. In fact, a point may be
at the same time a zero crossing of the Gaussian curvature and an extremum
of a principal curvature. We again define compatibility functions for steps,
shoulders, and smooth joins that take into account their mathematical
models. The behavior of the ratio of the second and first derivatives of the
curvatures is the basis for these compatibility functions. At each scale, a
point may be a candidate for several different types of intersections, and be
associated to an ancestor of each of these types. The use of the succession of
scales is usually sufficient to disambiguate these cases. However, if several
interpretations subsist until the finest level, the interpretation with the best

cumulated compatibility score is chosen.
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Figure 18: Matching between the different scales. The three parts of
the figure show, for each couple of scales, points that have been matched
on different slices of the oil bottle. These points are linked by a vertical
line. Note that the matching is in fact made between points that are in a
square window, not necessarily in the same slice. The display is done slice
by slice for the sake of readability.
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Figure 13 él}ows the matching algorithm at work, and Figure 16 shows
the final result on the oil bottle. Note that, although we have analyzed the

behavior of the position of the characteristic point of each of our models, and
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have found it simple and reliable, we do not use it in the compatibility
functions. The reason is that, for each intersection found, ;he real origin on
the surface is unknown. This implies that at least three matched points are
necessary to estimate the parameters of the motion of the extremum or zero
crossing across the scales, and makes the measure of this movement
unsuitable for a scale-to-scale tracking. Note however that the estimation of
the movement parameters could be used for an a posterior: verification of

the surface intersections found.

5. Smoothing a surface with a Gaussian distribution

Brady, Ponce, Yuille, and Asada [3] discuss techniques for smoothing a
depth map with a Gaussian distribution. The main difficulty stems from
bounding contours, where the surface normal turns smoothly away from the
viewer, and where there is typically a substantial depth change between
points on the surface of the object and the background. In general, the
bounding contour is easy to find with a simple edge operator or by
thresholding depth values. The problem is how to take the boundary into
account when smoothing the surface.

Brady, Ponce, Yuille, and Asada observed that if the smoothing filter is
applied everywhere, the surface “melts” into the background and changes
substantially. Figure 14 is reproduced from [3] and shows this. They
suggested instead using repeated averaging [5], [6] as well as adapting
Terzopoulos’ technique [26] of computational molecules to prevent leakage
across depth boundaries. This smooths the surface without substantially
altering it (see Figure 14(c)).

Here we point out a slight difficulty in smoothing surfaces using the
technique illustrated in Figure 14(c), and suggest a refinement. Although
the smoothed surface appears to be close to the original, small orientation-
dependent errors are introduced. These errors are magnified in computing

the curvature (Figure 15(a)), to produce “false” curvature extrema near the
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— (c)

Figure 14: (a) Raw data from a cross section of an oil bottle after
scanning using the INRIA system; (b) Smoothing across surface
boundaries with a Gaussian mask that is applied everywhere; (c)
Gaussian smoothing using repeated averaging and computational
molecules. (Reproduced from [3], Figure 12)

boundary (compare the overshoot phenomenon in Terzopoulos’ work [26] on
detecting surface discontinuities). The overshoots do not exemplify Gibbs’

ringing as we originally thought. Instead, the phenomenon has two causes:

e The coordinate frame is not intrinsic. The smoothing
filter is applied in the z—y plane, and since this is not intrinsic to
the surface, the result is orientation-dependent. For example,
the difference between a cylinder and its smoothed version
monotonically increases toward the boundary from a value of
zero where the normal faces the viewer.

¢ Points near the boundary are not smoothed as
much. Such points areé relatively unsmoothed as several of their
computational molecules are continually inhibited. The result is
that the difference between the smoothed and original surfaces
decreases at a certain distance from the boundary. This creates
an inflection point, which in turn creates an extremum of
curvature.

It is possible to substantially reduce the effect of this problem by

smoothing in intrinsic coordinates. At each point of the surface, the normal
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(b)

Figure 15: (a) The curvature computed from the smoothed surface
shown in Figure 14(c). Small orientation-dependent errors in smoothing
are magnified. The first figure is the neck, the second part of the body;
(b) The curvature on the slices shown in (a) computed using the intrinsic
coordinate method described in the text

is estimated. Instead of smoothing z, the surface point is moved along its
normal 2 distance that depends upon the projected distances of the point’s
neighbors from the tangent plane. In the case that the normal faces the
viewer, this is equivalent to the previous technique. However, the result is
no longer orientation-dependent. Figure 15(b) illustrates the computation of
curvature after smoothing the oil bottle by this method. The drawback with
the technique is the computation time; it requires one to compute the
tangent plane at every point.

The technique described in Brady, Ponce, Yuille, and Asada 3] has been
used in all the examples presented here, as it represents a good tradeoff
between computational efficiency and faithful rendering of the smoothed

surface.
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6. Examples

In this section, we present a number of examples of the surface
discontinuities found on simple objects by our algorithm. In all the
examples, we use four different scales corresponding to 20, 40, 60; and 80
iterations of the smoothing filter described in Brady, Ponce, Yuille, and
Asada [3]. Viewing the resulting centrally-limiting Gaussian distributions as
approximately bandpass filters, they span one octave. Figure 16 shows the
final output of the algorithm for the oil bottle. The points detected during
the matching step are linked together using a connected components
exploration algorithm. The smallest components (less than 3 or 4 pixels) are
then removed. Conversely, points may have been missed during the
previous phases, creating gaps in the lines that are found. These gaps are
filled by adding points that have characteristics compatible with the
detected points. The bottle is finally segmented into six parts, separated by
three step edges and two roofs.

Brady, Ponce, Yuille, and Asada [3] showed that the coffee cup shown in
Figure 17 is best represented as the join of a cylindrical body and a tube
surface that corresponds to the handle. Here we show that the handle can be
separated from the body using the algorithms described in this paper. Note
that the surface intersections are of type roof.

The third example shows the surface intersections found on a telephone
handset, Figure 18. All the major intersections have been found. The
representation is not symmetric because the handset was not quite
perpendicular to the scanner, causing part of the surface to be occluded.
Note that the surface intersections are more reliably detected at the coarsest
scale, but are more accur‘ately localized at the finest scale.

The surface intersections found on a few simple tools, namely a hammer,
a drill, and the head of a screwdriver are shown in Figure 19. Figure 20
shows the surface intersections found on an automobile part that has

featured in several papers by the group at INRIA. On this complicated

PAGE 235 OF 613



Ponce/Brady v 229

A 1 Nt Caret

I OF 1 i ERIORG

Figure 16: The oil bottle is segmented into six parts. Three step and
two roof intersections are found by the algorithm described in this
paper. The algorithms described in Brady, Ponce, Yuille, and Asada
[3] determine the lines of curvature of the parts of the oil bottle, fit
circles to the parallels, and fit axes to the centers of those circles.

object, global lines of curvature have no significance, so the Curvature
Primal Sketch would not perform well. Notice in particular the circular step
edge found on the left “head” of the part: it corresponds to a shallow
depression whose depth is about one millimeter. This is approximately at
the resolution limit of the laser scanner, and underlines the practical

significance of the algorithms described here.
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HININA OF THE NINIMUM CURVATURE

- ]

Figure 17: The joins of the handle to the body of the coffee mug are
computed by the algorithms described in this paper. They are
determined to be of type roof.

Figure 21 shows the surface intersections found on the head of a
connecting rod. The current state of our algorithm cannot deal with the
thin bars located on the sides of the neck of the connecting rod, but
performs well for the other intersections.

The last example is the mask of a human face (Figure 22). The program
finds face features as the nose, the eyes, and the mouth. This shows its
ability to deal with arbitrary curved surfaces, usually not found in man-
made objects.

Although our primary concern in this paper has been with the intrinsic
geometry of a surface as found by a three-dimensional vision system, one
might suppose that the methods described in this paper could be applied
straightforwardly to eziract and interpret significant intensity changes in
images, considered as surfaces. To interpret intensity changes, it is
necessary to take irradiate effects into account, since intensity changes do

not always correspond to surface changes. Rather, they may signify
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results at the coarsest :
resolution results at the finest

(a)

maxima of the maximum
curvature minima of the minimum
curvature

maxima of the
maximum curvature

maxima of the maximum curvature
(b)

Figure 18: (a) The surface intersections found on a telephone
handset at the coarsest and finest scales, approximately an octave apart.
The intersections are more reliably detected at the coarsest scale; they
are more accurately localized at the finest scale. (b) The results of
matching the changes across scales.

reflectance or illumination changes. Extraction and interpretation was in
fact the intent of Marr’s original work [22] on the Primal Sketch, though
considerably more attention was paid to extraction than interpretation.
More recently, Haralick, Watson, and Laffey [14] have advocated a

representation of image surface geometry that involves concave and convex
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Figure 19: The intersections found by the program on simple tools.
(a) a hammer; (b) a drill

hills, planar regions, and saddles. These geometrical aspects of the image
surface are not interpreted in terms of the intrinsic geometry of the surface,
or of illumination or reflectance changes.

Some preliminary work exists on interpretation of intensity changes. An
early edge finder developed by Binford and Horn [2] included filters for step,
roof, and “edge effect” changes. Horn’s study of intensity changes

[15] included a suggestion that occluding boundaries and reflectance

changes correspond to step intensity changes, while concave surface
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HAXKIMA OF CURVATURE FOR THE DRILL

Figure 19: (c) a screwdriver

Figure 20: Surface intersections found on an automobile part (see,
for example, [8], [9]). The circular step edge found on the left “head” of
the part corresponds to a shallow depression whose depth is about one
millimeter. This is approximately at the resolution limit of the laser
scanner.

intersections generate roof intensity changes (because of mutual

illumination). Finally, Yuille [29] suggests that certain points along lines of

PAGE 240 OF 613



284 3-D FEATURE EXTRACTIONS

Figure 21: Surface intersections found on a connecting rod. Only the
head of the part is shown. The inclusion of the thin bar models in the
algorithm would allow a fine description of the neck of this object.

curvature of a surface can be extracted directly from an image. There is
much scope for additional work along these lines.

Figure 23 shows an initial experiment we have carried out on applying
the methods developed in this paper to image surfaces. The join of the wing
to the fuselage of the airplane is determined to be roof changes, consistent

with Horn’s suggestion.
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Figure 23: Application of the methods of the paper to an intensity
surface. The interest is in the type of the internal intensity changes. The
join between the wings and fuselage is a roof, suggesting a concave
surface intersection.
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Abstract

A representation of three-dimensional object surfaces by
regions homogeneous in intrinsic surface properties 1s
presented.  This representation has applications tn both
recognition and display of objects, and is mot restricted to a
particular type of approzimating surface.

Sur face patches are fitted to windows of continuous range
data with temsion splines as basis functions.  Principal
curvatures are computed from these local surface
approzimations, and mazimal regions formed by coalescing
patches with stmilar curvature properties.

1. Introduction ;

Range (depth) data provide an important source of 3-D information
about the shape of object surfaces. Range data may be derived from either
intensity images or through direct measurement sensors.

In recent years, considerable attention has been devoted to the problem
of analyzing intensity images of 3-D scenes to obtain depth information [18],

[2], [14]. Much of the work has been focussed on overcoming the difficult
problems caused by projection, occlusion, and illumination effects such as
shading, shadows, and reflections. Many monocular depth cues can be
exploited to produce three-dimensional interpretations of two-dimensional
images.  These cues include texture gradient [15], size perspective
(diminution of size with distance), motion parallax [25], occlusion effects

[17], depth from optic flow, surface orientation from surface contours [17],

241
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and surface shading variations [12].

According to mény researchers the problem of deriving the 3-D structure
of an object from its intensity image is equivalent to inferring the
orientations of the surfaces of the object. The word inference is used because
there is insufficient information in the intensity image to allow the visual
system to merely recover or extract the surface orientation. Rather, the
visual system must make explicit assumptions about the nature of the
surfaces it sees. Although depth cues in a single intensity image are weak,
there are generally strong cues to surface orientation; these were exploited
by Stevens [27]. To determine 3-D structure from intensity information
obtained from a single view of an object would require several restrictive
constraints in the form of additional information about the objects that
populate the environment of interest. Fundamentally this is because of the
many-to-one nature of perspective projections; an infinite number of 3-D
objects can correspond to any single view. Stereo-scopic vision [19] and
structure from motion [30] may be used to effect three-dimensional
reconstruction of objects. Both these methods may‘ be considered as
correspondence techniques, since they rely on establishing a correspondence
between identical items in different images; the difference in projection of
these items is used to determine the surface shape. If this correspondence is
to be determined from the imagé data there must be sufficient visual
information at the matching points to establish a unique pairing. Two basic
problems arise in relation to this requirement. The first arises at parts of the
image where uniformity of intensity or color makes matching impossible, the
second when the image of some part of the scene appears in only one view of
a stereo pair because of occlusion (the missing part problem) or a limited
field of view. The further apart the two camera positions, the potentially
more accurate the disparity depth calculation, but the more prevalent the
missing part problem and the smaller the field of view. Another iimitation of

correspondence-based methods stems from the large number of
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computations required to establish the correspondence.

The use of direct range measurements can eliminate some of the
problems associated in deriving 3-D structure from intensity images.
Capturing the third dimension through direct range measurement is of great
utility in 3-D scene analysis, since many of the ambiguities of interpretation
arising from -occasional lack of correspondence between 6bject boundaries
and from inhomogeneities of intensity, texture, and color can be trivially
resolved [13]. One of the disadvantages of direct range measurement is that
it is somewhat time consuming. Several range finding techniques have been
proposed in literature; a good survey of those in use is presented in Jarvis
[13]. Two widely used ranging methods are based on the principle of
triangulation [26], [1], [24] and time of flight [22].

There have been several studies on scene description using range data.
Will and Pennington [32] describe a method by which the locations and
orientations of planar areas of polyhedral solids are extracted through linear
frequency domain filtering of images of scenes illuminated by a high contrast
rectangular grid of lines. Shirai and Suwa [26] use a simple lighting scheme
with a rotating slit projector and TV camera to recognize polyhedral
objects. The facts that projected lines are equally spaced, parallel and
straight on planar surfaces are exploited in reducing the computational
complexity; only the end points of each line segment are found, and line
grouping procedures are used to identify distinct planar surfaces. Agin and
Binford [1] describe a laser ranging system capable of moving a sheet of light
of controllable orientation across a scene; their aim was to derive
descriptions of curved objects based on a generalized cylinder model. Their
method is interactive and is useful in describing objects with cylinder like or
elongated parts. Mitiche and Aggarwal [20] discuss an edge detection
technique for noisy range images. Their motivation for detecting edges was
to delineate regions on the surface of objects, and the technique is limited to

finding edges in prespecified directions. Duda, Nitzan and Barret [8] use
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intensity as a guide for finding planes, with plane equations being
determined from the registered range images. Their technique assumes
underlying surfaces to be planar. Faugeras, et al. [9] are quite successful in
segmenting range data from approximately planar and quadratic surfaces.
Their segmentation process partitions data points into subsets in which
approximation by a polynomial of order at most two yields an error less than
a given threshold. However, their edge detection scheme is prone to large
errors due to the fact that planes are used to detect surface creases. Also,
region merging requires explicit updating of region equations and could be
quite time consuming. Grimson [10] presents a theory of visual surface
interpolation, where the source of range data is a pair of stereo images. The .
theory deals with determining the best-fit surface to a sparse set of depth
values obtained from the Marr and Poggio [19] stereo algorithm. Grimson’s
algorithm assumes that the entire scene is a single surface although this is
not a valid assumption along occluding contours. Also, the iterative
algorithm suggested converges slowly. Oshima and Shirai [23] describe
scenes by surfaces and relations between them. Their intent was to develop
a program which described a scene containing both planar and curved
objects in a consistent manner. The primitives used in their algorithm are
planar surface elements which are not adaptable to the shape of the surface.
Following a region growing process, which requires explicit updating of
region equations, a region refinement procedure is described which involves
fitting quadrics to curved regions. This process is computationally
expensive. Terzopolous [29] presents a technique for visible surface
computation from multiresolution images. His surface reconstruction
process treats surfaces of objects as thin plate patches bounded by depth
discontinuities and joined by membrane strips along loci of orientation
discontinuities. He suggests the use of intrinsic properties of surfaces,
computed post reconstruction, to describe shape. His motivation for

computing these intrinsic properties was to demonstrate the robustness of
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his surface representation scheme.

In this paper a representation of visible 3-D object surfaces by regions
that are homogeneous in certain intrinsic surface properties is presented.
First smooth patches are fitted to the object surfaces; principal curvatures
are then computed and surface points classified accordingly. The surf;}ce
fitting technique is general, efficient and uses existing public dom;in
software for implementation. An algorithm is presented for computing
object descriptions. The algorithm divides the range data array into
windows and fits approximating surfaces to those windows that do not
contain discontinuities in range. The algorithm is not restricted to
polyhedral objects nor is it committed to a particular type of approximating
surface. It uses tension splines, which make the fitting patches locally
adaptable to the shape of object surfaces. Computations are local and can be
implemented on a parallel architecture . Our ultimate goal is to recognize
objects independent of the viewpoint; therefore, this necessitates a
representation which is invariant to rigid motion.

In Section 2 we describe the data acquisition mechanism, some relevant
cdncepts in differential geometry are recalled, and the surface fitting
technique used in building object descriptions is introduced. Section 3
describes in detail the algorithm for building object descriptions. In section
4 some experimental results using real range images are presented. Section 5

contains a summary.

2. Surface Fitting and Intrinsic Features Computation
The range information used in this study is obtained from a single view
of the scene by the White scanner [28], a laser ranging system shown in
Figure 1. This system works on the principle of light sheet triangulation. A
sheet of light produced with a laser and a cylindrical lens is cast on a scene,
resulting in a bright curve when viewed through a video camera. A rotating

mirror causes this sheet of light to move across the scene. The intersection of
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SCENE
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JUMP
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TV CAMERA
LIGHT
SOURCE

DISPLACEMENT

Figure 1: Laser ranging system [13]
this plane of laser light with projecting rays through the video image (bright

curve) determines the position of points in space. The actual output of the

device is a set of (z,y,z) coordinates of points in the scene. These coordinates

are stored in three two-dimensional arrays of size m Xn.
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2.1. Surface Fitting

In this section we discuss the details of the surface fitting technique used
in computing object descriptions.

The surface fitting problem can be stated as follows: given m X n arrays
of z,y, and =z coordinates, we want to determine a surface that
approximates the data in the least-squares sense and is smooth. Smoothness
is interpreted as the twice differentiability of the surface at all points.
Fitting a surface to an L XL window of data is equivalent to computing a
surface fit for a roughly rectangular grid of data values. Intuitively, a
roughly rectangular grid is one that has been obtained from a rectangular
mesh that has been deformed to fit the surface. The surfaces need not be
single valued; i.e., one coordinate need not be a function of the other two, as

in z==f(z,y). In fact, the surfaces are represented in the parametric form

z = f(s,t),
¥ = g(s,t), @)
z = h(s,t),

where s and t are the parameters and the functions f, g, and h are tensor
products of splines in tension. This fitting is a mapping from a two-
dimensional parameter space to a three-dimensional Cartesian space.

Note that points (z,y,2) and (z,y,2) could both occur within the grid with
z25£ 2. It is assumed however that no two adjacent rows and no two
adjacent columns are identical.

More precisely, let Py = (=; 1Y% j)‘ We require
Pij 7 Piyij (2)

P;; # P; i1 (3)
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for all 7==1, ... ,m and j=1, ... ,n. If these conditions are not satisfied thep
the parameterization fails.

The first step towards a solution to the surface fitting problem is to
obtain the parametric grids {s;}" ; and {tj};=l so that for each
1=1,...,mand each 7=1,...,n there exist s; and tj such that

(=(s; tj) »y(s; 5 tj) , 2(s; t,)) = (zi,j’ Y i zi,j) (4)

where z, y and 2 are twice differentiable functions of s and t. It is required
to have s,=t,=0 and s, =t =1. The quantity ;41 — §; is made equal to

the average (over j=1, ... ,n) normalized distance between p,_ ; and P

417t is made equal to the average (overi=1,...,m)
normalized distance between P; i1 and P Precisely,

Similarly, ¢

) ”pi+1,j - P; I
Sia1 =5ty 1 s (5)
=L\ X el
=1

hid I'p,',j+1 - p,"_,‘"

y n—1
= > ey =il
=1

where ||, it 2 j” is the Euclidean distance. It is easy to show, given these
definitions and s;=t,=0, that indeed s, =t =L

Having determined the parametric grids, the surface approximation
problem is now reduced to three standard surface fitting problems over

rectangular grids, namely
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. z(s'., tj) = z;; for i=1,...,m and j=1,...,n
* y(s;, tj) = Y for i==1,...,m and j=1,...,n
o s, tj) = z; for i=1,...,m and j=1,...,n

These problems can be solved using the following formulation by Cline [3],
[4], [5]. We are given a grid defined by two strictly increasing abscissa sets,
{s; }z—l and {¢ }]—1’ an ordinate set {{z‘]}t__1 ;‘_1, positive weights
{6s;};2, and {ét }]-l’

tension factor 0. We wish to determine a function g which minimizes

1 a non-negative tolerance S, and a non-negative

m—1 n-—1

/ f g st + 02 ST S / i1 f #UQ (s)2dsdt (1)

=1 j=I1 i

over all functions g € C 2[sl,sm] X [ty,t,] such that

m n g(s', -z
> T s ®
i=1 j=1 :

where

(g(s i1 +) g(sut+ it +9(5 t )
Q;(8,t) = g q(s:t)—{ — 1(5,'4,1 i)l(tﬁl ;;)1 : :

It can be shown that the solution to this problem is a tensor product of
splines under tension (i.e., g is a one dimensional spline under tension when
restricted to any value s or to any value of t). Also, g can reproduce local
monotonicity, local positivity and local convexity as the one dimensional
smoothing spline under tension can [5]. Because all three subproblems have

several components in common it is possible to solve them concurrently.
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The surface fitted to the roughly rectangular grid can be represented by

three tensor products of splines under tension:

=X Z i #ilE8)

Z Z ij z (t)’ (9)
22 Z 'Yijpi(s)’cj(t)y

i

where ¢, 9, 0, v, p and & are tension splines; and «, 8, and v are coefficients

of the tensor products.

2.2. Curvature Computation

In this section we discuss the computation of principal curvatures at a
point on the parameterized, fitted, surface. Principal curvatures at a point
on a surface indicate how fast the surface is pulling away from its tangent
plane at that point. In the presence of an edge the principal curvatures will
achieve a local maximum. Therefore it is appropriate to declare as edges
those points at which the curvature is above a given threshold. The partial
derivative information required to compute the principal curvatures are
provided by the surface fitting software [5].

In general, when a plane passing through the normal to the surface at a
point P is rotated about this normal, the radius of curvature of the section
changes; it will be at a maximum r, for a normal section s, and a minimum
ro for another normal section s, [L1]. The reciprocals k;=1/r, and ky=1/r,
are called the principal curvatures; the directions of tangents to 5 and sy at
Pare called the principal directions of the surface at P (see Figure 2). The
Gaussian curvature at point Pis defined as the product of the two principal

curvatures. The Gaussian curvature is an intrinsic property of the surface,
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— Normal Section 81

L —» Principal Directions

Normal

Section s2

Figure 2: A surface with normal sections along the principal
directions

since it depends only on the coefficients of the first fundamental form and
their derivatives, whereas the two principal curvatures are extrinsic
properties. The coefficients of the first and second fundamental forms (E, F, '
G and e, f, g as given below) determine the surface uniquely up to a rigid

body transformation {7]. The principal curvatures at a point on a surface
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-
are computed in terms of the parameters s and t as follows. Let X (s,8)

represent the surface.

X (s:8) = (a(s,8), y(s.8), 2(5.2)) , (10)
)?g=(i.7(/'(is=[:z:ayi9 z,], (11)
X ,=dX/dt =[z,y, 2], (12)
X, =d®X/dsdt =[5,y 2,), (13)
X, =dX/ds? =1z, vy, 2], (14)
X, =dX/d? = [z, y, 2, . (15)
Le£
E=|X P=(E+s+4D), (16)
F=X, X ,=(co+yy+2,2) (17)
G=|X,?=(2+y2+2). (18)

The unit normal is then given by

— —

L X XX,

X =—, (19)
VEG — F?

The Gaussian curvature K at any point on a surface is defined as the

PAGE 259 OF 613



Vemuri/Mitiche/Aggarwal 258

product of two principal curvatures k; and k,, and is given by

2
eg— f
== e e (20)

where ¢, f and g are

e=N-X .,

f=N-X ,, (21)

=X,
The mean curvature H is given by

(ky + k) oG~ 2fF +gE
2 2(EG — F?)

and the principal curvatures are

ky=H-VHE -K, (23)

ky=H+VH - K. (24)

The above formulas are used to compute Gaussian curvature, and points on
a surface are classified according to its sign. Points for which K > 0 are
called elliptic, K < 0 are called hyperbolic, K = 0 are called parabolic, K =
constant (i.e., ky = k2) are called umbilic, and k; = k, = 0 are called planar
umbilic [7]. This classification will be used subsequently to group object

points into regions.
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3. Computation of Object Description
In this section we present an algorithm to compute the object description
in terms of jump boundaries, internal edges, and regions homogeneous in

sign of Gaussian curvature. Our algorithm is:

1. Divide the range image into overlapping windows.

2. Detect jump boundaries and fit patches to windows not
containing jump boundaries.

3. Compute the principal curvatures and extract edge points.

4. Classify each non-edge point in a patch into one of parabolic,
elliptic, hyperbolic, umbilic or planar umbilic, and” group all
points of the same type in a patch and its neighboring patches

" into a region.

The details of each step in the algorithm follow. In step 1 the division of
the input arrays of z, y, and 2 coordinates into LX L windows should be
overlapped in order to ensure that an internal edge is always contained in a
patch.

In step 2 the standard deviation of the Euclidean distance between
adjacent data points in the LX L window gives an indication of the scatter in
the data. In the vicinity of the jump boundaries of an object the Euclidean
distance between adjacent points will be large. This will cause the standard
deviation of the windows of data containing such jump boundaries to be
very high. By setting a threshold on the standard deviation, jump
boundaries can be detected. After the jump boundaries have been detected,
smooth patches are fitted to the data in the windows not containing a jump
discontinuity. In the presence of a jump boundary, the window size is
adapted so that the window no longer contains the jump boundary. The
sizes of the objects in the scene are assumed to be much larger than the LXL
window, allowing us to detect fine detail such as internal edges in an object.
Fitting a surface to an LX L window of data is equivalent to computing a

surface fit to a roughly rectangular grid of data values, as mentioned in the
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previous section. The surfaces are represented parametrically, and thig
fitting is a mapping from the two-dimensional parameter space to three-
dimensional space.

In step 3 of the algorithm we detect all those points thai belong to or fall
on internal edges of objects in the scene. Intuitively it is reasonable to expect
high curvature to occur in the vicinity of an edge, and we define a point P in
a patch as an edge point if the absolute value of one of the principal
curvatures becomes greater than a threshold [31].

Due to the presence of noise in the data and inappropriate choice of
thresholds for detecting edges, clusters of edge points may appear in the
vicinity of a true edge position. In order to eliminate these clusters of
computed edge points, non-maxima suppression is applied at every edge
point in a direction perpendicular to the edge, which is the direction
associated with the maximum absolute principal curvature. Non-maxima
suppression will declare no edge present at points where the curvature is not
a local maximum.

The next step is to group object points into homogeneous regions. All
points in a patch are classified as either elliptic, hyperbolic, parabolic, planar
umbilic, or umbilic. All points of the same type are grouped together into a
large region. The merging of points does not require explicit fitting of a new
surface to this homogeneous region. This is because we can make the second
derivatives across patch boundaries match one another, thereby resulting in
a C? surface [6]. Each homogeneous region is assigned a label depicting its
type (elliptic, hyperbolic, parabolic, umbilic, or planar umbilic). The
grouping of points into regions immediately follows the surface fitting
process.

The above definition of a region allows for internal edges to occur within
regions. The extent of regions can be delineated by (a) jump boundaries, (b)
internal edges, and (c) curvature edges, which we define as places where

there is a change in curvature-based classification. Figure 4(d) shows an
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example of a wedge, where the regions are bounded by jump boundaries and
internal edges. For instance, Figure 8(c) depicts an example of a coffee jar,
where the regions are bounded by jump boundaries and curvature edges.
The object representation in terms of regions and curvature based
properties of regions, has the advantage of being invariant under the
tr’ansformation of independent parameters of the surface or rigid body
transformations and is therefore independent of viewpoint. In addition, our
algorithm for computing object descriptions has the advantage of being able
to operate directly on the laser range data without applying any coordinate

transformations, and uses existing, tested public domain software.

4. Experimental Results

This section presents examples of the object description algorithm. Real
and synthetic data are used fo demonstrate the performance of the
algorithm.

We consider three elementary surfaces and a composite surface in our
examples. Elementary surfaces are those that contain regions made up of one
of parabolic, umbilic, planar umbilic, hyperbolic or elliptic points. A
composite surface is one that is made up of a combination of elementary
surfaces. The three elementary surfaces are chosen because they constitute
regions that occur most often in practice. The composite surface is chosen to
demonstrate the performance of the algorithm on complex objects composed
of different types of regions.

In order to extract maximal regions of an object from a scene in the
presence of noise, preprocessing of the range data is necessary. A simple
filtering scheme, neighborhood averaging, is applied to the range image to
smooth out noise in the data.

Synthetic data are obtained using the approach discussed in [16]. After
completing the surface fitting process to each window of data, the (z,,2)

coordinate values on the surface are converted into intensity values using
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Lambert’s Jaw of direct illumination [21); this is done to facilitate easy
viewing of the reconstructed surface. Figure 3(a) shows the range image of
an automobile. The image has been pseudo-colored; red indicates points far
from the viewpoint and blue indicates points nearer to the viewpoint.

Figure 3(b) illustrates the reconstructed object. Figure 3(c) depicts the

Figure 3: (a) Synthetic range image; (b} Object reconstruction; (c)
Planar umbilic regions on the automobile; (d) Jump boundaries and
internal edges

various regions extracted. In this case all the regions obtained are planar-
umbilic regions. Regions in this and all the examples to follow are colored

with the following code:

Yellow Planar umbilic
Red Parabolic
Green Elliptic

Blue Hyperbolic

Cyan Blue Umbilic

The results are consistent with the theoretical predictions. Figure 3(d)

depicts the various jump boundaries (in dark) and internal edges (in light) of

. ]
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the automobile.
The real data are obtained using the laser scanner described earlier.

Figure 4(a) shows the pseudo-colored range image of a wedge obtained from

Figure 4: (a) Laser range image; (b) Reconstructed object; (c)
Region classification prior to mode filtering; (d) Planar umbilic regions
obtained after mode filtering

a laser range finder. A number of points in the scene have no (z,y,2)
coordinate values; such points are called holes, (Figure 5). Holes are caused,
when parts of the scene illuminated by the laser are not visible to the camera
or when parts of the scene visible to the camera are not illuminated by the
laser. Figure 4(b) depicts the reconstructed object, Figure 4(c) shows the
regions extracted from the range image. Note that the regions obtained are
not maximal. In order to extract maximal regions, mode filtering is applied
to the initial region classification shown in Figure 4{c). Mode filtering
replaces each label of a point in a region by the most dominant label in its

neighborhood. Figure 4(d) shows the regions obtained after applying mode
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filtering to the Figure 4(c). Every region obtained is a planar umbilic region.

The results obtained here are in agreement with the theoretical predictions.

INTERNAL EDGES, JUMP AND
/ HOLE BOUNDARIES :

Figure 5: Jump, hole boundaries and internal edges on the wedge

Figure 5 shows the hole boundaries and internal edges.. Figure 6(a) shows
the pseudo-colored range image of a cylinder placed on a block, obtained
from the laser scanner. Figure 6(b) shows the reconstructed objects. Figure
6(c) depicts the regions extracted (after mode filtering) from the range
image. In this case there are tworegions, one parabolic (on the cylinder) and
the other planar umbilic {on the block). Figure 6(d) shows the hole and
jump boundaries detected in the range image. Figure 7(2a) shows another
example of objects consisting of elementary surfaces, a balloon placed on a
block. Figure 7(b) is the reconstructed objects and Figure 7(c) depicts the
regions extracted after mode ﬁlteriné. In this case there are two regions, one
elliptic (on the balloon) and the other planar ﬁmbilic (on the block). Figure
7(d) shows the jump boundaries and hole boundaries on the balloon and the
block.

Finally, Figure 8(a) shows the pseudo-colored range image of a composite
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JUHP AND
BOUNDART

Figure 6: (a) Laser range image of a cylinder placed on a block; (b)
Reconstructed objects; (c) Parabolic (cylinder) and planar umbilic (block) -
regions; (d) Jump and hole boundaries on the objects

Figure 7: (a) Laser range image of a balloon placed on a block; (b)*
Reconstructed objects; (c) Elliptic: (balloon) and planar umbilic (block)
regions; (d) Jump and hole boundaries on the objects
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'PARABOLIC AND  JUMP BND HOLE
HYPERBOLIC ~ BOUWDARIES
REGIONS. e

Figure 8: (a) Laser range image of a coffee jar; (b) Reconstructed
object; (c) Parabolic and hyperbolic regions on a coffee jar; (d) Jump
boundaries on a coffee jar

surface (a coffee jar) obtained from the laser scanner. Figure 8(b) shows the
reconstructed object. Figure 8(c) depicts the regions extracted after mode
filtering. In this case and as expected, there are four regions, two parabolic
and two hyperbolic as shown in Figure 8(c). Figure 8(d) depicts the jump
boundaries and hole boundaries on the coffee jar.

It should be noted that surface fitting is an important operation in the
overall process. Indeed, refer to Figures 9(a), 9(b), 9(c), and 9(d) which show
the classification results obtained when the principal curvatures are
computed directly. These results confirm the need for smoothing (surface
fitting) the raw data prior to computation of principal curvatures. The
results of direct computation are very sensitive to noise in the data, and

misclassification is high as can be seen from the examples.
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REGIONS REGIONS
CLASSIFIED QN A CLASSIFIED ON A
CYLINDER & BLOCK WEDGE

REGIONS REGIONS
CLASSIFIED ON A CLASSIFIED ON R
BRLLOON & BLOCK COFFEE JRR

Figure 9: (2) Region classification of a cylinder placed on a block; (b)
Region classification of a wedge; (c) Region classification of a balloon
placed on a block; (d) Region classification of a coffee jar

The examples chosen constitute both planar and curved surfaces of fair
complexity. The results obtained are most often in agreement with the

theoretical predictions.

5. Summary

This paper has presented an approach where 3-D objects are represented
by regions which are defined as a collection of patches homogeneous in
curvature-based surface properties.

The input to the object description algorithm consists of a collection of
3-D points which need not be represented with one coordinate as a function
of the other two. First a local process fits a smooth, tension spline based
surface to the data. The surface fitting algorithm is general, efficient (linear

time [4]) and uses existing public domain numerical software. The principal
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curvatures are then computed and the surface points are classified
accordingly. Regions on the surface of an object are grown on the basis of
this classification. The object description so obtained is viewpoint
independent and hence will prove to be valuable in the context of object
recognition.

Future research will be directed towards organizing the region
descriptions in a meaningful fashion (segmentation) and developing efficient
algorithms for matching object descriptions with model descriptions to
achieve recognition.
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Abstract

This paper describes a knowledge-guided system for range
data analysis. Inputs to the system are raw range data
obtained by the slit-light projection method and outputs are
surface patch descriptions (i.e., organized structures of
vertices, edges, and faces) of the visible part of the objects. A
junetion dictionary is constructed to represent the knowledge
about the physical nature of the object world, and s used by
the system for the extraction and organization of edges and
vertices. At each step of the analysis, the system consults the
dictionary to predict positions, orientations and physical types
of missing edges. Those predictions guide the system to decide
where to search and what kinds of edges to search for as well
as how to organize the extracted features tnto a description.

1. Introduction

Three-dimensional range data contain rich information about object
shapes. However, raw range data are simply collections of distance values
from the viewer to surface points, and consequently are not directly suitable
for use as object identification and object manipulation; they should be
condensed into more concise descriptions.

Generalized cylinders [1], [11] and surface patches [12], [13], [5], [3] are

the prevailing tools in terms of which the descriptions are constructed from

1Previous&ly in the Department of Electrical Engineering, Nagoya University
267
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range data. The generalized cylinders are based on natural principal axes of
objects, and so enable us to construct object-centered descriptions relatively
easily [9]. Descriptions based on generalized cylinders, however, are unstable
or non-unique if the objects are not composed of elongated parts. The
surface patches, on the other hand, can be used for non-elongated objects,
but it is usually difficult to segment smooth, curved surfaces into patches in
a stable manner. If the objects are limited to polyhedrons, however, the
surfaces can be decomposed into natural patches, that is, planar faces.
Thus, polyhedral scenes can be described naturally in terms of surface
patches.

This paper presents a method for extracting surface patch descriptions of
polyhedral objects from range data [18], [20]. In doing this, knowledge about
vertex types is represented in terms of a junction dictionary, and used for
constructing scene descriptions. For this purpose we borrow some results in
the study of interpretation of line drawings.

One of the greatest milestones in interpretation of line drawings is a
labelling scheme proposed by Huffman [6] and Clowes [2]. They introduced
labels to represent physical properties of edges (such as convex and concave
edges), and found that the number of junction types that can appear in
labeled line drawings is very small. On the basis of this observation they
proposed the labeling scheme in which, once the list of all possible junctions
is constructed and registered, line drawings can be interpreted by finding
consistent assignments of labels in the sense that all the resulting junctions
belong to the list. This scheme has been extended to pictures with cracks
and shadows [22], pictures with hidden lines[19], and pictures of the
Origami world [8]. Thus, junction knowledge has been used for categorizing
lines in line drawings.

In the case of range images, on the other hand, we can classify convex,
concave, and some other types of lines directly from the data without using

any additional information; the junction knowledge is not necessary for
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categorizing lines. Therefore, this knowledge can be used for another
purpose, that is, for predicting missing edges. Comparing a line drawing
extracted from the range data with the list of the possible junctions, we can
tell whether the present drawing is consistent with physical reality. If it is
not, we can predict the locations and physical categories of possible missing
edges. The extraction of edges can be efficiently guided by those
predictions. This approach is practical, since noisy raw range data can be
dealt with, while the junction knowledge has been used for the analysis of
"perfect” line drawings in the previous studies.

In Section 2 we introduce a local operator that can extract edges from
raw range data, and in Section 3 we construct a junction dictionary, which is
a condensed representation of vertex-type knowledge. Using these two tools,
we construct a system for extracting surface patch descriptions of the scenes,

which is described in Section 4.

2. Edge Detection from Range Data

This section describes the method for detecting edges from range data.
First, the representation of range data is explained, then we define a local
operator to detect edge points, and finally we present the strategy to track
edge points, which can extract selectively a particular type of a line running

in a particular direction.

2.1. Range Data

One way to get range information is using a rangefinder by active
illumination. As shown in Figure 1, a beam of light is projected from the
source, say O, onto an object, and the illuminated spot is observed from
another angle by a camera. Let P(X,Y;Z) be the illuminated spot on the
surface, and P! be its image. Furthermore, let D(P) denote the distance
from the left margin of the image to the image point P’. This D(P) is what
we can observe directly by the method in Figure 1. Indeed, if a TV camera is

used, D(P) can be measured as the time interval from the time when the
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Figure 1: Range Finding Method
horizontal scan begins to the time when the video signal shows the
- maximum intensity.

Let us place a virtual plane, say S, with a Cartesian coordinate system
(z,y) between the light source O and the object, and let p (z,y) be the point
of intersection of the light beam OP and the plane S. Since the direction of
the light beam OP is specified uniquely by the point p (z,y) on S, the value
D(P) can be considered as a function of the point p(z,y). Hence, we
hereafter denote D(z,y) instead of D(P).

When the scene is swept by the light beam, the point p (z,y) sweeps some
region on S and we get raw data D(z,y) at many points (z,y), say

(DG |i=1,...,m, j=1,...,n},

where we use (7,7 ) instead of (z,y) in order to indicate that the data are
obtained only at discrete points. This collection of the data is similar to a
usual digital image in that the pixel values are defined at grid points (%,7) on
the image plane, i.e., the plane S. The only difference is that the values

D(2,7 )’s defined above are not light intensity values at the grid points. We
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shall call the collection of D(z,7 )’s a raw range picture.

If we use a spot light, D(z,7) is measured only at one point for each light
projection, which requires a long time to measure ranges for the whole scene
[7]. For practical purposes, therefore, we project light through a narrow
vertical slit so that we can obtain many data {D(z,7) | =1, ... ,n} along a

vertical line simultaneously [16] (see also [10] and [15]).

2.2. Edge Detecting Operators

To construct an operator for detecting edges from a range picture, we
need to consider the relations between geometrical configurations of objects
and the values of D(z,5)’s. Let £ be a line on a picture plane. Let ps(s)
denote a point which moves along the line ¢ with a line parameter s (that is,
s is the length along the line from a certain fixed point on ¢ to pf(s)).
Further, let PE(S) denote the corresponding point on the three-dimensional
surface of the object. Referring to Figure 2, we will examine how D(PE(S))
varies as Pf(s) moves across geometrical features of objects. The following
observations are intuitively obvious.

‘When Pf(s) moves on a flat surface, D(PE(S)) is approximately a linear
function of s as shown in Figure 2(a) (indeed, it is strictly linear if the light is
projected in parallel and its image is obtained orthographically). When
P

3
upward in the s—D plane as illustrated in Figure 2(b). Similarly, when Pf(s)

(s) moves across a convex edge, D(PE(s)) changes continuously and bends

moves across a concave edge, D(PE(s)) bends downward (see Figure 2(c)).
Note that these upward and downward bends corresponding to convex and
concave edges, respectively, are true only when the camera is to the right of
the light source. If the camera and the light source exchange their locations
to each other, the changes of D(PE(s)) at a convex edge and at a concave
edge are reversed. Finally, when Pg(s) moves across an obscuring edge,
D(Pf(s)) changes discontinuously as shown in Figure 2(d).

According to our observation we can devise the following operator to
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detect edges. Consider three points ps(s), P E(s+As), and p 6(s—As) along the
line € on the image plane S, where As is a short length (see Figure 3).

b

X
Figure 3: Three Points Used by the Edge Detecting Operator

Let 6 represent the orientation of the line £ in the image and measured

counterclockwise from the z axis. For simplicity in notation, let

p+=p€(s+As) and p_=p€(s—As)

as illustrated in Figure 3. We will define the operator Oy(p) by
1 —
Oy(p)=3;1D(p")+D(p™)~2D(p)}- (1)

Figure 4 shows profiles of Oy(p) when P moves across various types of
features of the object corresponding to the cases in Figure 2. We can see
that Oy(p) = 0 when P moves on a planar surface, O(p) > 0when Pmoves
across a convex edge, and Oo(p) < 0 when Pmoves across a concave edge.
For practical purposes we can redefine the operator on a digital range

picture by restricting =0, 7/4,7/2, and 37 /4:

Oy(4,3 )=(D(i+k,j )+D(i—k,7)~2D(i,j ) /(2k), (2)
0, /o623 )=[D(Z,5+K)+D(t,5—k)—2d(5,7 )] /(2K), (3)
O, 40,3 )=D(i+k,s+K)+D(i—k,j~k)~2D(i,5 )}/ (2V2k), 4)
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Figure 4: Behaviors of the Edge Detecting Operator
Oy altsd Y=ID(i-+k,j—k)+ D(i—k,j+k)~2D(:, 1)}/ (2V 2k). ()

As we have just seen, Oo(i,j ) takes the greatest absolute value when an edge
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lies in the direction 8 + /2.

In addition to the directional operators, we can also consider
nondirectional operators:

OM‘l(i’j)=;20=0,1r/4,1r/2,37r/4 Oyls7), ()
O pplind )=%[00(i.f 40,503, ™)

The operator in (6) or (7) will usually have a non-zero value when Pis on an

edge, but it does not give information about the direction of the edge.
T
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Figure 5:

Output of the Edge Detecting Operators Along the Line
AA’ in the Range Picture

Figure 5 shows the output of the operators from (2) through (5), (6), and
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(7) when the point p(¢,7 ) moves along the horizontal line AA’ in the range
picture, where the range picture is displayed as the image of vertical light
stripes. We can see that the operators in (2) through (5) are sensitive to
particular edge directions. In contrast, the operators in (6) and (7) have non-
zero values at all edges. Moreover, the values of all the operators are
positive at convex edges and negative at concave edges. There is not a great
deal of difference between the value of O, and that of Oy, and thus we

mainly use only Oy, which is more economical in computational time than

Ous

2.3. Edge Tracking

The previous subsection presented operators to detect edge points
locally. In order to extract edge lines, the following edge-tracking strategy is
used. We first scan the range picture with the nondirectional operator O,
or O M and when we come across a point where the absolute value of the
operator output is large enough, that is, a promising point for an edge, we
then determine the direction of the line using the four directional operators
from (2) through (5). We next follow the line in the given direction from
that promising point. That is, we search the neighboring area for the next
point along the line step by step and construct a string of points forming the

edge line.

Figure 6: Edge Following

Figure 6 illustrates these steps for edge following. Suppose that we have
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just found a new point P; by searching the neighboring area of a point p, ;.
Then, in the next step we search the fan-shaped area spanning from the
pivotal point p; as shown in Figure 6. For practical purposes, the discrete
points pli_{_l,pzﬂ_l, . ,p’“i+1 on the arc of the fan-shaped area are chosen as
the candidates for the next point, and the edge detecting operator is applied
to those candidate points. Since the expected directioﬁ of the line is given,
we need only use one of the four operations for each candidate point. Figure
7 gives the associated direction 6 for each candidate point used in our
system. We consider 32 points around the pivotal point and divide them
into four groups, one for each directional operator. Among the candidates,
we choose the point with the maximum value of the operator if the lines are
convex, or the one with the minimum value (i.e., the maximum absolute

value with a negative sign) if the line is concave.

6=3

12 1" |o 9 (8|7 S/
\14
P~

prl

/

©
]
N

Slflk’»l*lmlw\\“

20
/ 29

22 23 24 |25 |26 |27 ZB

Figure 7: Thirty-two Candidate Points for the Next Point in the
Edge Following

In our system we usually need not scan the whole picture to find the
starting points for edge following, because the vertex-type knowledge
suggests the starting point, the direction, and the type of an expected line as

will be described later.
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3. Junction Dictionary

Here we present our second tool for range data analysis, that is, a
junction dictionary. The junction dictionary contains. possible
configurations at a junction, and can be considered as a kind of
representation of knowledge about three-dimensional objects. It is used as a

predictor of missing edges that should be extracted from range pictures.

3.1. Line Types ‘

We consider a world consisting of solid polyhedrons, which are bounded
only by planar faces. An edge is a line where two faces meet, and a vertez is
a point where three or more faces meet. We call a collection of polyhedrons
in a three-dimensional space a scene, and its projection on the plane a
picture. The visible faces, edges, and vertices of the scene are associated
with the polygonal regions, the straight lines (actually, line segments), and
junctions, respectively, of the picture.

In the three-dimensional space there are only two types of edges for our
planar faced objects: convex edges and concave edges. When a concave edge
is visible, both of its side faces are also visible from the eye. Hence, we
always call a line representing a concave edge a concave lane, and represent
it by a line segment with a minus (—) label. On the other hénd, when a
convex edge is visible, one of the two side faces is sometimes hidden by the
other. Therefore, we distinguish between two types of lines representing
convex edges: a convez line to represent a convex edge both of whose side
faces are visible, and an obscuring line to represent a convex edge where one
of the sides faces hides the other. A plus {+) label is used for a convex line
and an arrow ( — ) is used for an obscuring line with the convention that,
when one stands on the line facing the direction indicated by the arrow,.both
of the associated side faces are to the right.

The three types of labels above were introduced by Huffman [6] and have

been used in various works on interpretation of line drawings. However,
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those three types are not enough to constitute line drawings representing
range pictures. In order to introduce another line type, we have to consider

the method for obtaining range information.

(a)

(c)

Figure 8: Line Labels for Range Pictures
A light-stripe rangefinder measures the range of a point on an object by
seeing the point from two angles. As shown in Figure 8(a), we project a
beam of light from a light source O and observe the illuminated spot with a
camera at the point O'. This method does not measure the range of a point

either when it is not illuminated (for example, see the point Pin Figure 8(a))
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or when it is not seen from the camera (point P’). Thus, after sweeping the
scene with the beam of light, there remains some regions of points whose
ranges are not determined. Examples of such regions are illustrated by
hatched areas in Figure 8(b) and (b"). Figure 8(b) is the picture of the scene
viewed from the light source, and hence the shaded regions represent
surfaces that cannot be seen from the camera. On the other hand, Figure
8(b') is the picture seen from the camera, and the shaded regions represent
surfaces that cannot be seen from the light source. We will call boundary
lines of those obscured regions obscured lines; we will represent them by
broken lines with arrows with the convention that, when we stand on the
line facing the direction indicated by the arrow, the obscured region is to the
left. Figure 8(c) shows the labeled line drawing of the picture in Figure 8(b)
according to our conventions.

Since we have defined a range picture as that obtained by seeing the
scene from the light source, unilluminated regions (for example, the regions
R, and R, in Figure 8(b')) are always out of sight. Nevertheless we will
represent the existence of those regions by a pair of contour lines: an
obscuring line and an obscured line, parallel to each other and opposite in
direction (see Figure 8(c)). Moreover, for convenience we will represent the

margin of the picture plane also by obscured lines.

3.2. Possible Junctions

Now that we have introduced the four types of lines, we next enumerate
possible junctions, that is, junctions that can appear in labeled pictures. For
this purpose we restrict our objects to trihedral ones, that is, objects in
which exactly three faces meet at each vertex.

Junctions in a picture usually correspond to vertices in a scene.
However, there are junctions which are not images of actual vertices. One
typical class of such junctions is found on an obscured line. An obscured line

is caused when one body is in front of another. Therefore, a shape of an
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obscured line is sometimes due to the shape of the obscured body, sometimes
due to the shape of the obscuring body, and sometimes due to both of them.
Although the configurations of obscured lines may contain much
information about shapes of the objects, it seems difficult to extract helpful
information for our purpose. Hence, we will ignore junctions on obscured

lines except in the following case.

{a) shodow causing junctions (b) symbolic representations
Figure 9: Shadow Causing Junctions and Their Representation

Figure 9(a) shows a line drawing of a scene with two blocks, one
supporting the other. Junctions J and J' in the figure have the property
that each of the junctions includes one obscuring line and one obscured line,
and that the former causes the latter; in other words, the latter is a shadow
of the former. We call a junction with this property a shadow causing -
junction. We represent a shadow causing relationship by an arc linking the
obscuring line to the obscured one as illustrated in Figure 9(b). Any vertex
that can generate a shadow causing junction in the picture has at least one
convex edge and at least one concave edge, for only a convex edge can cast
its shadow on a face associated with a concave edge.

The enumeration of possible junctions can be executed in a systematic
manner. Let us consider an isolated vertex. Since the vertex is trihedral,
there are exactly three faces meeting at the vertex. If the three faces are
extended into unbounded planes, then they divide the surrounding space
into eight parts, which we call octants. Some of the octants are occupied
with material and the others are empty. The eye and the light source can

only be in empty octants. Considering all the combinations of placing the
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light source and the camera in empty octants, we can exhaust possible views
of the vertex.

Actually, there are only four types of trihedral vertices: a vertex
composed of one nonempty octant, that of three nonempty octants, that of
five nonempty octants, and that of seven nonempty octants (see [6] for the
details). Hence, by the enumeration method above we eventually find that
there are only fourteen possible views of trihedral vertices provided that the
light source and the camera are in general positions so that neither of them

is coplanar with any faces. These fourteen junctions are listed in Figure 10,

Y%
2 &
s G

& & (B
@@@@

Figure 10: All Possible Junctions Resulting from Isolated Trihedral
Vertices

where the shaded regions represent the regions that can be seen from the
light source but cannot be seen from the camera.

If the scene contains two or more objects, other types of junctions can
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also appear because contact of objects often gives rise to non-trihedral
vertices. Let us assume that objects in the scene do not align accidentally,
that is, neither two distinct edges nor two distinct vertices share a common
position and no vertex lies on an edge of another object. Then, by the
exhaustive search we can find that there are only six additional types of
junctions as shown in Figure 11. After all, we have a total of twenty possible

junctions, which are listed in Figure 12.

3.3. Representing a Junction Dictionary

A junction dictionary is represented in a form of a directed graph whose
nodes are all subconfigurations of the possible junctions and whose arcs
represent the relationships that one node can be changed into another node
by an addition of one line.

Part of the junction dictionary is shown in Figure 13, where seven
junctions and relationships between them are illustrated. The three
junctions in rectangles (t,v, and y) are impossible ones and the four in circles
(u,w,z, and Z) are possible ones. The drawings beside the possible junctions
show the examples of situations in which the junctions occur. An arrowed
arc connecting two junctions denotes an addition of a line. If, for example,
we add a convex line in the shaded area of the junction ¢ in Figure 13, we
obtain junction u. Adding a concave line to u results in w, and thus we get
the path (¢,u,w) from ¢ to w. This kind of a path suggests where new lines
exist and thus guides the analysis of the range data. For example, if a
junction of the type u is found during the analysis, the dictionary tells us
that a concave line "may" exist at that junction. If, on the other hand, a
junction of the type v is found, the dictionary says that a convex line "must"
exist to form w because v is impossible and w is the only possible junction
that includes v as a subconfiguration. In this way, the junction dictionary
can suggest what type of edges exist and in what directions they must be

searched for near the vertex.
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Figure 11: All Possible Junctions Resulting From Contact of Two
Objects Without Accidental Alignments
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Figure 12: Final List of Possible Junctions
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Figure 13: Part of the Junction Dictionary

3.4. Body Partitioning Rules

For object recognition it is useful to decompose a complicated scene into
simple elements and to describe the spatial relationships among them. We -
show that the junction dictionary can also be used for the decomposition of a
scene. Note that this decomposition is inherently ambiguous (see [4]). We
get no information from a picture (no matter what kind of a picture it is, a
light intensity picture or a range picture) to judge, for example, whether a
block is merely placed on a desk or it is fixed to the desk with glue.
Consequently, the rules we will propose here are necessarily empirical ones.

Our junction dictionary contains only such junctions that are found
when polyhedrons in a scene are mutually in general positions; that is,
without accidental alignments. However, when there are accidental
alignments of objects in a scene, many new junction types can appear. If we
enumerated all such accidental junctions, the junction dictionary would
have become unmanageably large. Instead, the partitioning rules to be
described will sometimes decompose an illegal junction (that is, a junction
that is not included in the dictionary) into two legal ones. As a result, the
partitioning rules help in handling cases when accidental alignments of

bodies are involved.
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The first partitioning rule is the following:

Partitioning Rule 1.
If there are two pairs of lines with arrows and both pairs
have shadow causing relationships as shown in Figure 14(a),
then partition the junction into two as shown in Figure
14(b).
The condition of this rule is usnally found when a body is supported by
another at a point. Figure 14(c) gives an example scene to which the rule

can be applied.

PN
- \ pa
- \ 8 \\
\ \

(a} (b} (c)
Figure 14: Partitioning Rule 1

The second partitioning rule is based on the particular types of junctions
labeled S and D in the list of possible junctions of Figure 12. These
junctions occur at the point where two objects contact each other. Hence,

they can be used as cues for partitioning.

Partitioning Rule 2.
If a chain of concave lines connects two S and D type
junctions as shown in Figure 15(a), or if a chain of concave
lines connects an S or D type junction with a junction on an
obscured line as shown in Figure 15(b), then partition the
body into two by changing the chain of concave lines into a
pair of contour lines as shown in Figure 15(c).

Figure 15(d) shows an example scene to which the rule is applicable. The

scene is divided into two along the concave lines between junctions Sand D.
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Figure 15: Partitioning Rule 2

4. Range Data Analysis Guided by a Junction Dictionary

In the preceding two sections we have developed two tools, the edge
detecting operators and the junction dictionary. Here we combine them into
a whole system which generates a surface patch description from a range
picture and, at the same time, which partitions the scene into simple bodies.
We first describe the outline of the system, and then present experimental

results.
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4.1. Experts in the System

The input to the system is a raw range picture of a real scene and the
output is a collection of labeled line drawings of all the objects in the scene.
The system is composed of the following experts: a line predictor, a
prediction tester, a line tracker, a straight-line adjuster, a body partitioner,
and a vertex position corrector.

When a junction is given, a line predictor consults the junction
dictionary and predicts missing lines around the junction. New lines are
predicted if and only if addition of the new lines results in possible junctions.
If the present junction is an impossible one, the prediction is strong in the
sense that at least one of the predicted lines must be found. If the present
junction is a already a possible one, on the other hand, the prediction is
weak in that the predicted lines may not exist.

A prediction tester judges whether the predicted lines really exist or not.
The judgment is based upon two kinds of tests. One is to use the edge
detecting operators to see if there are new lines to be tracked in the range
picture, and the other is to examine old lines in the present line drawing if
their properties meet the prediction. The latter search is necessary, because
when a new line is found and is added to a junction, the end of the new line
may be left unconnected though it should be joined to one of its neighboring
junctions. When old lines whose properties meet the prediction are found,
the prediction tester concludes that the prediction is true. Otherwise, it
examines all the predictions in the range picture and concludes differently
depending on the strength of the prediction. That is, if the present junction
is impossible, the prediction tester returns the direction in which the edge
detecting operator gives the maximum output value even if the value may
not be very large. On the other hand, if the present junction is possible, the
prediction tester behaves conservatively; it reports the existence of new lines
only if the edge detecting operator gives very large absolute values.

When a new line is found, a line tracker tracks it as far as possible and

PAGE 295 OF 613



Sugihara 289

extracts the whole line. The tracking terminates when the line disappears or
when the physical type of the line changes (such as from concave to convex),
or when it comes near to another line that has already been found.

A straight-line adjuster finds a sequence of straight lines which fit to the
strings of points extracted by the line tracker. When a string is given, it first
finds points with maximal curvatures (the curvature at a point on a string is
calculated in the same way as proposed by Shirai [17]). The adjuster next
divides the string at those points into substrings and finally replaces each
substring with a straight line segment. If it fails in finding a well-fitting line,
the substring is left for later analysis. The joints between two substrings as
well as the end point of the original siring are added to the drawing as new
junctions.

Whenever a new line is added to the drawing, a body partitioner checks
the conditions for the partitioning rules and, if one of the conditions is
satisfied, it decomposes the line drawing into two smaller ones.

A vertez-position corrector revises a position of a junction whenever a
new line is connected to the junction. The position is estimated as the
weighted mean of intersections of all pairs of the lines incident to the

junction, where the weights are chosen according to the lengths of the lines.

4.2, System Behavior

The processing of the system is divided into two stages: the preprocessing
and the main processing.

In the preprocessing stage, the system first finds contour lines (i.e.,
obscuring lines and obscured lines) by tracking points where ranges show
discontinuity, divides them into straight line segments, and locates junctions
on the contours. Next it finds shadow-causing relationships and classifies
the contour lines into obscuring lines and obscured lines. At this stage,
shadow-causing junctions are also identified. Each connected region

bounded by obscuring and obscured lines is called a body.

PAGE 296 OF 613



200 3-D FEATURE EXTRACTIONS

In the main processing stage, the experts which have been described in
Section 4.1, work together to analyze the range picture using the following
seven steps.

Step 1. If the descriptions of all bodies have been constructed, the
system terminates the processing. Otherwise, the system picks up a body
whose description has not yet been completed.

Step 2. If all the junctions of the body have been examined, the
processing goes to Step 7. Otherwise, the system picks up a junction to
examine next. ‘

Step 8. The line predictor compares the junction with the dictionary,
and proposes all predictions of missing lines around the junction. The
prediction tester examines them to see if any lines are really there. If no
lines are found, it puts the mark "examined" to the junction and the
processing goes to Step 2. If old lines whose properties meet one of the
predictions are found, the processing goes to Step 5. If new lines are found,
the processing goes to Step 4.

Step 4. The line tracker extracts the strings of points which form the
new lines. The straight-line adjuster locates new junctions on the strings,
and divides them into substrings, each of which is approximated by a
straight line segment.

Step 5. The lines which are extracted are connected to the present
junction. The vertex-position corrector corrects the position of the junction
using all the incident lines.

Step 6. The body partitioner examines the improved part of the body. If
one of the conditions of the partitioning rules is satisfied, it decomposes the
body into two and the processing goes to Step 1. Otherwise, it goes to Step 3
(in this case the junction is the same but its type has been changed).

Step 7. The system sweeps the body region with the edge detecting
operator. If it finds a new line, it locates all junctions on it and goes to Step

‘2. Otherwise, it puts the mark "completed" to the body and goes to Step 1.
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4.3. System Performance

The range pictures used as inputs to test the system are all from real
scenes consisting of white polyhedrons. They are obtained by a rangefinder
developed at Electrotechnical Laboratory [14]. Each picture consists of 200
by 240 points and the value of range D(7,7) has nine bits of information.

Figure 16(a) shows a light stripe image of a scene with two blocks, one
supporting the other, and Figures (b) through (f) show how the description
of the scene is created progressively. The system, in its preprocessing stage,
extracts the contour, finds junctions on it, and adjusts line segments to the
contour. Junctions J1 and J2 are recognized as shadow causing junctions.

In the main processing stage, the system first picks the junction Ji and
finds that J1 is impossible. The line predictor suggests a concave line in the
left side of J1 (where the word "left" is used with respect to the reader) and
the prediction tester actually finds the concave line. The line tracker follows
the new line until it terminates at J3. Next the straight-line adjuster works
with this line. Junction J4 is found on the new line (Figure 16(b)), and the
resultant two portions of the string are approximated by straight line
segments J1J4 and J4J3. The system next picks up the junction J2. It is an
impossible junction and a missing line is predicted, but the old line J3J4 can
be used to resolve the problem by merging J2 and J3. Then the condition
for the partitioning rule is satisfied; that is, J1 belongs to the D type and J2
belongs to the S type, and they are connected by the concave lines J1J4 and
J4J2. The body partitioner partitions the picture into two bodies, BODY1
and BODY?, (Figure 16(c)). The system picks up BODY1l. When junction
Jb is examined, a new convex line is found. The new line terminates at J6
and junction J7 is also located on the new line (Figure 16(d)). Junction J6 is
joined to the neighboring junction on the contour. Another new convex line
J4J8 is found from J4 (Figure 16(e)). Two impossible junctions J7 and J8
are joined together. Now, since all the junctions in BODY1 are examined

and no new lines can be found, the description of BODY1 is completed. The
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(a)

1(((((/) ///{((ﬂ(

(d) (e) 1

Figure 16: Example Scene 1

system picks up the other body BODY2 and improves its description
similarly. The final result is given in Figure 16(f).
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Figure 17: Example Scene 2

Figure 17(a) shows a light stripe image of another two-block scene. A
vertex of one block lies accidentally on an edge of the other block, and a
non-trihedral vertex occurs. The system conquers this difficulty as follows.
A new concave line is found at J1 but it terminates at J3. Another concave
line is found at J2 and it is traced to J4. The system finds a convex line at
J5 and tracks it. However, the non-trihedral vertex obstructs the tracking
of the new line at J6 (Figure 17(b)). When the system examines J3, J4 is
merged to J3 and another convex line going upward is found at J3; J3
becomes a possible junction (Figure 17(c)). Now the partitioning rule is

applied to the concave lines J1J3 and J3J2, and the scene is partitioned into
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two bodies. When the junction J7 is examined, another part of the
incomplete convex line is found; J7J8 in Figure 17(d). Junction J8 is joined
to J6 and the resultant J6 is eventually deleted because the two lines J5Jg
and J6J7 are collinear. In this way the complete line J5J7 is found as is
shown in Figure 17(e).

(a)

Figure 18: Example Scene 3
The third example is shown in Figure 18. The scene contains three
blocks. The system finds two contours in this scene. One is a usual
clockwise contour. The other is a counterclockwise contour surrounding a
vacant hole found in the gap; that is, the contour J1J4 and J4J1 in Figure
18(b). When the system finds concave lines connecting J1 to J2, the body
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partitioner cuts the body along the lines. However, the resulting body still
remains connected. When the system examines J4, a new line J4J5 is found.
Since J4 is still impossible, the system searches for another line and finds a
convex line J4J6. On this line the system finds a new junction, J7 (though
its position is not quite appropriate). Junction J5 is merged to J8 and the
body is cut along the line J4J5 as shown in Figure 18(c) and (d). One of the
resultant body is further partitioned along the line J11J12 into two portions
shown in Figure 18(e) and (f). When the system finds a new convex line
emanating from J9, the new line is followed to J10. The system next creates
a new junction on the line J4J7, and the new junction is merged to J10.
Then the straight-line adjuster replaces the two strings J4J10 and J10J7
with straight line segments, and since the two lines J10J7 and J7J6 are
collinear, they are merged and the junction J7 is deleted as is shown in

Figure 18(e).

5. Concluding Remarks

We have presented a range data analysis system using knowledge about
vertex types. Since the junction dictionary suggests missing lines at each
step of the analysis, the detection and organization of edges can be done
efficiently and reliably. Moreover, the output is not merely a collection of
lines but an organized structure of faces, edges, and vertices (that is, the
surface patch description), which is useful for Jater processing such as object
identification and manipulation.

The present approach can be extended in several directions. First,
though we have restricted our objects to trihedral ones, our system can be
applied to other objects with a slight modification. All we have to do is to
replace the junction dictionary with the one containing all possible junctions
in a new world. If the object world consists of a finite number of prototypes
(which is often the case in industrial applications), the associated junction

dictionary can be generated automatically. Further details may be found in
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a paper by Sugihara [21].

Secondly, our system can also be applied to curved surface objects. The
greatest difficulty in dealing with curved surface objects is that curved lineg
appear in line drawings and consequently the number of possible junction
types becomes very large. However, we can circumvent the explosion of the
dictionary by replacing curved lines emanating from a junction with the
straight lines tangent to them. This convention is also practical in the sense
that the system need not distinguish between straight and curved lines,
which is a difficult task especially when the data contain noises. Thus,
curved surface objects can be dealt with by a little larger dictionary. The

reader is referred to papers by Sugihara [18], [20] for further details.
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