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A Smart Range Image Sensor

M. de Bakker, P.W. Verbeek
Pattern Recognition Section
Department of Applied Physics
Delft University of Technology
Lorentzweg 1, 2628 CJ Delft
The Netherlands

Abstract

In the present paper we discuss a smart image sensor,
specifically designed for sheet of light range imaging. The
image sensor is capable of measuring the projection of a
light stripe on an object. The sensor consists of an array
of Position Sensitive Detectors (PSD’s), as well as some
on-chip electronics. The sensors are made in a standard
3GHz bipolar process. Each PSD measures a light center
of gravity, and this way the line of light is sampled in the
plane of the image sensor. 3D information is computed
by means of triangulation. On chip circuitry takes care of
preamplification of the sensorsignals, and multiplexing of
the different sensor signals to a single output channel.

1. Introduction

The last couple of years, a lot of effort has been de-
voted to the development of camera’s that are capable of
measuring the 3D shape of an object, rather than an or-
dinary intensity image. These, so called, range finding
camera’s can be useful in a wide number of automation
applications. To name a few, one could think of bin pick-
ing, robotic assembly of industrial parts, rébot navigation,
quality inspection and product classification. An extensive
overview of various methods for acquiring range informa-
tion has been given by P.J. Besl [1].

One of the approaches described in [1] is sheet of light
range imaging. This technique was first introduced by
Y. Shirai [2]. The idea is depicted Figure 1. A sheet of
light is projected onto the object that has to be measured.
In the situation of Figure 1 this is a semisphere on an flat
background. The cross sectional line of the sheet of light
with the object is projected onto an image sensor. 3D co-
ordinates are derived from the sensor signals using trian-
gulation. In order to do this, the only extra information
needed is the angle between the lightsheet and the opti-
cal axis of the camera lens. If a complete surface has to
be measured, the object has to be moved perpendicularly
with respect to the lightsheet. This can be accomplished,
e.g., by placing the object on a conveyor belt.
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TNO Institute of Applied Physics
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The Netherlands

Laser diode

Figure 1: Sheet of light range imaging

The sensor of Figure 1 that is being developed con-
sists of an array of Position Sensitive Detectors (PSD’s)
{3] [4]. For each discrete V-value in the image plane of
the camera, a PSD measures the position of the incident
illumination. In the next section is explained how a PSD
works. Each separate PSD has a length of 2 cm (in the U-
direction), and the pitch in the array (in the V-direction) is
28um. On-chip electronics take care of preamplification
of the sensor-signals and multiplexing of the sensorsignals
to a single output channel. This is the topic of Section 3.
AD-conversion and computation of the range values pro-
ceeds off-chip. The goal is to be able to record 2 million
range values per second at a 12 bits resotution.

In this paper we will start with the basic theory on Po-
sition Sensitive Detecors. Next, some details are given on
the signal processing that takes place on the image sensor,
and we will explain how we produced PSD’s that exceed
the standard die size for the chosen process (i.e. 1 cm?).
The paper ends with some measurements on a prototype
device containing 6 PSD’s and on-chip electronics.

2. Position Sensitive Detectors

In the present section we will tentatively describe how
a PSD works. We regard a planar pn-junction (like the
one depicted in Figure 2, and we will start by describing



the effects that occur if this pn-junction is illuminated at a
specific position. Due to the photo electric effect electron
hole pairs are generated, and if they are generated close
enough to the depletion layer, they can be separated by
the electric field. Once the holes have arrived at the p-
type layer a (hole-)current will flow to the end-contacts of
the layer (if they are placed at a proper potential).
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Figure 2: Model of a pn-junction under non-uniform
illumination.

Figure 2 gives an idea of what happens: Figure 2a
shows the incident illumination that has its center of grav-
ity at Ucog. At this point optically generated electron hole
pairs will be separated by the depletion layer. The holes
will flow to the end-contacts, as indicated in Figure 2c:
because there is a large resistance to the left contact only
a small current will flow to the left side, and a large current
will flow to the right side (according to Ohm'’s law).

Now suppose the implanted p-type layer has a perfectly
homogeneous resistivity. In the one dimensional situation
this means that the resistance to the left and right sides
are perfectly proportional to the distance to the left and
right contact, respectively. This implies that the ratio of
the left and right lateral current gives us the exact position
of incidence as follows [see Figure 2 for the parameters]:

Diest  Rpignt _ 5Lpsp = Ucog

= = e))
Iright Rleft -5LPSD + Ucog
If we solve Eq. 1 for U,,4, we get:
Triont — 1
Ucog = .5Lpsp right Left (2)

Iright + [left

Eq. 2 is the well-known PSD-equation [5]: the center
of gravity of a Position Sensitive Detector can be deter-
mined from the photocurrents to the left and right side.

The PSD’s have been fabricated in a standard bipo-
lar process, DIMES-01 {6], at our university 1C-facility
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DIMES (the Delft Institute for Micro Electronics and Sub-
microntechnology). With regard to reaction speed and
noise considerations it is possible to compute what the
ideal implantation level for the PSD’s should be [4]. In
order to be able to use the standard process, a p-type im-
plantation from DIMES-01 was used that was closest to
the ideal implantation level.
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Figure 3: Prototype of the smart PSD sensor con-
taining 6 PSD’s and on-chip circuitry. A/D-conversion
and further signal processing proceeds off-chip.

3. On chip circuitry

The on-chip electronics consists of two preamplifiers
for each PSD-strip (one for the left, and one for the right
current) and two multiplexers. The preamplifiers perform
low-pass filtering on the sensorsignals at 16kHz (video
linespeed).

The main reason for the on-chip electronics is that we
wish to perform multiplexing on-chip. This way we avoid
having to make a chip with a large amount of bonding
pads (i.e. twice the number of PSD’s since each PSD pro-
duces two photocurrents). The on-chip multiplexer is im-
plemented in ECL technology. The ECL-signals drive the
switches of the preamplifiers. Each PSD is connected to
the output node once, every 64us. The values that are pre-
sented at the output node can be regarded as the average
of the photocurrent over the last 64 us.

In Table 1 we have enclosed a number of characteristics
of the PSD-chip. Figure 3 gives the idea of the on-chip
signal processing for a prototype device that consists of 6
PSD’s, 12 preamplifiers and 2 multiplexers.

4. Exceeding the standard die-size

In order to be able to make PSD’s with a length that
exceed the standard die-size in the IC-process used (i.e.
1 by 1 cm), and also be able to integrate electronics on
the same die a special trick in the photolithographic pro-
cess had to be performed. Two separate masksets were
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Figure 4: Masksets of the PSD-chip: area | separated PSD arrays and electronics, area Il array of 6 PSD’s
connected to the on-chip electronics, area Il array of 80 PSD'’s connected to the on-chip electronics

Table 1: Specifications of the prototype PSD-chip

a)
measured position (mm)

7.

18}

-
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stage position (mm)

b)

difference with line (1L m)

10

(=]

\AM AN

Die size for 80 PSD’s 1.5cm?

Nr. of PSD’s 6 or 80

Size of PSD’s 2cm by 20pm
Supply voltages +/- 5V

Total power dissipation 0.5mW per PSD
Linearity 1:2000

Nr. of bits 12

Clock readout frequency | 500kHz

Light source (type/power) | LASER-diode SmW
Sensitivity of PSD’s 0.6A/W for A=780nm
Input current noise 55pA (BW=16kHz)
(analog) Outputsignal 4-5V

designed: one containting the electronics, and one con-
taining the PSD-arrays. By accurate alignment during il-
lumination, the PSD’s and the electronics were "stitched”
together. This can be seen in Figure 4. Using this tech-
nique, a wafer has been produced that contains PSD’s with
a length of 2 cm.

5. The prototype device

In the present section we will discuss the prototype
PSD-chip. In this section we will start with the measure-
ment results on the linearity of the PSD’s. Finally, we will
show some examples of the sensor signals for different
circumstances of illumination.

5.1. Linearity

The most important feature of a PSD is its high linear-
ity. As explained in Section 2 for a highly linear PSD, a
very homogeneous PSD layer is needed. Otherwise the re-
lations of Egs. 1 and 2 lose validity. What we would like
to know is if linearity is maintained if we produce 2cm
PSD’s by stitching two adjacent dice, as explained in Sec.
4. In order to determine this, a laserdiode was placed on
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Figure 5: Linearity measurements: a) Measured po-
sition vs. translation stage position b) difference of
Figure 5a with a linear fit.

a translation stage. The laserbeam was focused on one of
the separated PSD’s {see Figure 4]. In this experiment, the
PSD-signals were measured with an off-the-shelf opamp.

In Figure 5a the horizontal axis represents the position
of the translation stage. The vertical axis contains the
measured data, i.e. the position as determined from the
PSD signals. The PSD position measurement has its ori-
gin at the center of the PSD (this is due to the factor .5
Lpsp in Eq. 2). Figure 5b gives the difference of Figure
Sa with a linear fit through the data as a function of the
stage position. From Figure 5b can be seen that the PSD
stays linear within 10 pm for the inner cm of the PSD. It
is possible to calibrate for the deviation from linearity at
the outer regions of the PSD.
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Figure 6: The sensor signals: a) no light signal: the preamplifier offset values, b) projected light stripe at right
side of the PSD’s, ¢) projected light stripe at the center of the PSD’s.

5.2. The sensor signals

In the present section we will shortly describe the sen-
sor signals that are produced by the smart PSD-chip. Fig-
ure 6 shows the signals for the prototype chip containing
6 PSD’s. Three situations are taken into consideration.
Figure 6a shows the situation where no light falls onto
the sensor. The upper oscilloscope signals correspond to
the photocurrents to the right side of the PSD’s, and the
lower signals to the left photocurrents. The numbers in
the scope plots correspond to the PSD that is placed to
the output channel by the multiplexer. The difference in
signal-level in the “dark-image” of Figure 6a, is due to
offset differences between the on-chip preamplifiers. This
will be corrected for by off-chip signal processing. In this
particular example the readout frequency was 100kHz.

In Figure 6b the center of gravity of the incident illu-
mination is at the right side of the PSD’s. In Figure 6¢c
the PSD’s are illuminated near the center. In Figures 6b
and Figure 6¢c PSD nr.1 captures the highest light inten-
sity, and the amount of light decreases for PSD 2-6. This
is indicated by the iso-intensity contours, depicted below
the scope signals.

6. Conclusions

In the present paper we discussed a smart image sen-
sor, specifically designed for sheet of light range imaging.
We have succeeded in making a prototype sensor with 6
PSD’s and on-chip circuitry consisting of 12 preamplifiers
and two multiplexers implemented in ECL technology.
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Present work concentrates on a redesign of the electron-
ics in order to improve linearity and readout frequency.
It was shown that long PSD’s can be made by aligning
two masks in the lithographic process. For these stitched
PSD’s a linearity has been measured of 1:2000.
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