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In this paper, we survey the automated visual inspection sys-
tems and techniques that have been reported in the literature from
1988 to 1993. Several earlier systems are also discussed. In the
survey, a taxonomy of inspection systems based on their sensory
input is presented. The general benefits and feasibility of auto-
mated visual inspection are also discussed. We present common
approaches to visual inspection and also consider the specification
and analysis of dimensional tolerances and their influence on the
inspection task(s). One of the recent developments in automated
visual inspection, namely the expanded role of computer-aided
design (CAD) data in many systems, is examined in detail. o1sss
Academie, Press, Inc.

1. INTRODUCTION

The visual inspection of parts is one task within manu-
facturing that has been automated at a comparatively
slow pace. Many inspection tasks also require a substan-
tial amount of reasoning capability to make an accept/
reject decision or to classify the type of defect. One rea-
son for this is that many inspections require substantial
visual abilities. Some inspection tasks also require flexi-
bility. However, one hallmark of the automated inspec-
tion applications is their specialization. To our knowl-
edge, nearly all of the existing automated inspection
systems, with the exception of very few experimental
systems (e.g., [136]), have been designed to inspect a
single object or part whose position is highly constrained.
Added flexibility to allow the inspection of parts whose
poses are less constrained and/or to allow the porting of
inspection protocols from one inspection domain to an-
other would increase the number of automated inspection
applications. Flexibility is thus one of the important re-
search issues in the automated visual inspection arena,
although great advances in the flexibility (i.e., the generic
application) of commercial vision systems is probably
more likely in the long—rather than short—term.

This paper first discusses the stages of inspection and
motivates the need for and feasibility of automated visual
inspection. A survey of many of the automated visual
inspection systems that have been reported in the litera-
ture since 1987 is then presented. Earlier surveys of the
automated visual inspection (AVI) literature have been
presented in [982 by Chin and Harlow [47] and in 1988 by
Chin [44]). In addition, we devote special attention to a
popular recent development in automated inspection,
that is, the use of computer-aided design (CAD) models
in inspection.

Since the 1988 literature survey [44], there have been
several developments in AV1 in addition to the expanded
role of CAD models. For example, there is now more
emphasis in the literature on the use of multiple images
and on the use of color or range data. Processors have
also become less expensive and much faster. The cost of
memory and scanners have also been reduced. It is now
feasible for a desktop workstation or PC to serve as the
central processor in many industrial inspection applica-
tions. As a result, new inspection applications are also
becoming more cost-effective. Finally, due to increased
international competition, the market for automated vi-
sual inspection applications has become global.

1.1.

Inspection is the process of determining if a product
(aiso referred to as a part, object, or item, both in this
paper and in the literature) deviates from a given set of
specifications [93, 98, 114, 119]. Inspection usually in-
volves measurement of specific part features such as as-
sembly integrity, surface finish and geometric dimen-
sions. It is a quality control task, but is distinguished
from testing tasks (e.g., stress analysis) that involve ac-
tive examination of specific operational functions of the
product [119]. Part identification or recognition, by con-
trast, consists of the positive identification of an object.

Definition of Inspection
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Identification of the object usually is not necessary for
the inspection task; identity is usually assumed to be
known a priori in inspection. Thus, inspection, testing,
and recognition are distinct but related tasks.’

Some of the papers in the literature labeled as inspec-
tion methods actually perform either recognition or seg-
mentation. Ker and Kengskool [115], for example, have
described a Hough transform-based edge segmentation
method that they claimed as an inspection technique. In-
spection should also be distinguished from guidance and
control (i.e., localization) tasks. Guidance and control
consist of measuring the relative position of objects to
provide feedback to a robot [146]. The Partracker system
by Automation, Inc., which was reported as an inspec-
tion system in the literature [189], is actually an example
of a guidance and control system. Partracker locates
parts whose position is not known precisely. After part
position has been determined, Partracker allows a weld-
ing or assembly operation (or, potentially, inspection) to
be performed. An area closely related to inspection, that
is, the recognition of objects that contain flaws, has also
received some attention in the literature. Wen and Lozzi
(255}, for example, have presented a technique that rec-
ognized manufactured parts with artificially induced
flaws using moments of 2D boundaries.

1.2. A Taxonomy of Inspection Problems

One method for classifying inspection applications is
by the type of inspection decision which must be made. It
is also possible to classify an inspection application by
the area of production in which it is used. In this section,
several dichotomies of the types of the inspection opera-
tions are presented. The advantages of automated inspec-
tion and an examination of AVI's feasibility are also pre-
sented.

L.2.1.

There are three generally accepted application areas
(or stages) for inspection. These are input (also called
receiving or incoming) inspection (65, 70, 114, 235, 257],
process inspection [32, 65, 83, 108, 114, 221, 235, 250,
257, 2711, and output (or, product) inspection [65, 114,
221, 235, 257, 271). Receiving inspection is the examina-
tion of raw materials to determine if their quality is ac-
ceptable for use. It also involves determining if there is a
sufficient amount of material for use in assembly. Process
inspection is the examination of the output of an interme-
diate work stage; it is useful for determining if the opera-
tions at a stage were performed within specified toler-
ances and whether the assembly process is in control or if
tools are worn or broken. Process inspection allows fine

Inspection Stages

! The reader should note that these definitions are not universally
acc.pted.
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FIG. 1. Stages of inspection in a production sequence.

adjustments to be made for tool wear and helps prevent
nonconforming parts or material from being used in a
later production stage. The advantages of process inspec-
tion are discussed further in Section 1.2.4. Output inspec-
tion is the final exhaustive inspection of a product at the
end of all assembly or manufacturing stages to determine
the product's acceptability. Qutput inspection is also of-
ten used to collect statistical information to discover
long-term trends in the assembly process, for instance, to
find that tools need to be replaced or that general mainte-
nance may be required [235). Figure 1 shows several
stages of production and inspection.

1.2.2. Inspection Dichotomies

Wetherill [257] presented several dichotomies of in-
spection. One dichotomy for batch inspection is rectify-
ing inspection versus acceptance inspection. Rectifying
inspection refers to sorting out bad products from the
batch and adjusting (or replacing) those items. Accep-
tance inspection involves the labeling of batches of prod-
ucts into categories such as ‘‘accept,” ‘‘reject,’’ or, per-
haps, ‘‘seconds’’ (e.g., products to be sold at a lower
price). )

Another dichotomy of inspection tasks is inspection by
attributes versus inspection by variables [257). Inspec-
tion by attributes classifies objects as either acceptable or
defective. Mair prefers the term qualitative inspection for
these visual inspections [133]. Typical attribute inspec-
tion tasks include qualitative and semiquantitative men-
suration, such as checking labels, examining cosmetic
and surface finish properties (such as colors or blem-
ishes), detecting cracks and flaws, and verifying part in-
tegrity and completeness (including spurious and missing
features) [133, 201]. Inspection by variables produces a
measurement of some feature, such as the product’s
length or weight. These dimensional inspections are
termed quantitative inspection by Mair [133]. Some of
the quantitative geometric features and the symbols com-
monly used to describe them on blueprints are provided
in the chart in Fig. 2, taken from Kennedy et al. [114].
These symbols are used on blueprints to indicate manu-
facturing tolerances. Another inspection by variables
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FIG. 2. Common blueprint symbols for geometric characteristics
and features from Kennedy ef al. [114].

task is measuring important part dimensions such as ex-
terior wear, tool wear, and workpiece dimensions. Grad-
ing inspection is a hybrid classification that classifies
products based on degree of acceptability of features,
such as length or weight [257). One example of this is
grades of produce (for example, grade A versus grade AA
epgs).

Lee [127] identifies an inspection task he terms implicit
inspection which involves detecting that ‘‘novel but ‘ob-
viously' faulty items’’ are defective. Defects detected by
implicit inspection include poor finishes, dents,
scratches, incorrect color, wrong orientation, improper
reflective properties, and other ill-defined faults. While
these defects might appear to overlap with some of the
inspection tasks defined above, implicit inspection in-
volves recognizing an unanticipated defect. Human in-
spectors are quite flexible and can easily recognize novel
defects. Many of these unanticipated defects are not de-
scribed by explicit parameters, making automated detec-
tion difficult. Implicit inspection is an open research
problem, calling for sophisticated representations of the
object, task, and processing requirements [127].

1.2.3. Surface Geometry Inspection Scenarios

Figure 3 shows our dichotomy of the various surface
geometry inspection problems [158]. In the diagram, the
unlabeled subtree under ‘‘Arbitrary Surfaces’ is identi-
cal to the subtree under ‘‘Quadric Surfaces.’ At the high-
est level, inspection tasks can be distinguished by the
surface types that compose the object boundary. Many
industrial objects can be modeled using only planar and a
few quadric surface primitives (often only spheres and
cylinders) [24, 136]; thus, most inspection systems do not
have to deal with the complications arising from the use
of arbitrary surfaces. However, with the increasing use

PAGE 3 OF 32

233

of plastics in industry, free-form surfaces are becoming
more common [145], creating additional demand for in-
spection systems that can handle complex surface geom-
etries. Modeling, representation, and inspection of ob-
jects consisting of free-form surfaces are difficult,
although these issues have recently attracted some atten-
tion (e.g., [18, 179, 239)).
" The next level of the tree indicates if inspection re-
quires solution of the object recognition problem. Object
recognition has received a great deal of attention in the
literature. The survey articles by Arman and Aggarwal
[4], Besl and Jain [19], Chin and Dyer [46], Flynn and
Jain [76], Perrott and Hamey [188], and by Suetens et al.
[231], the book edited by Jain and Flynn [104], and the
workshop report on directions in computer vision re-
search by Negahdaripour and Jain [156] provide excellent
starting points for those unfamiliar with the status of ob-
ject recognition research. '
Finally, the lowest level of the tree indicates if the
object’s pose is known (perhaps through control of fix-
tures) or unknown. Most of the inspection systems in the
literature focus on a problem domain in which object
identity and position is known.

1.2.4. Why Automated Inspection?

100% Inspection vs Batch Inspection. In industrial
environments, inspection has usually been performed by
human inspectors on a small sample from the lot or
batch. In this modality (called batch inspection) the qual-
ity characteristics of the sample are generalized to the
batch from which the sample was drawn. Some experi-
ments have indicated that batch inspection by human in-
spectors tends to be more accurate than an inspection
modality of /00% inspection of parts [257] (where every
product in the lot is inspected), probably because of in-
spector fatigue and inconsistency. As a result, achieving
100% inspection using human inspectors typically re-
quires high levels of redundancy, thus increasing the cost
and time for inspection [66).

However, in some critical applications, such as aero-
space and medicine, even a single faulty product is unac-

The Inspection Problem
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FIG. 3. Scenarios of visual inspection of surface gcometry.
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ceptable. In other markets (notably those for consumer
products, especially foodstuffs) products having aes-
thetic appeal sell better [96, 253]. Many manufacturers
also desire 100% inspection to enhance a product’s com-
petitiveness in the marketplace. Part suppliers to factor-
ies using just-in-time inventory practices are especially
conscious of product quality since the recipient factories
are generally unwilling to store and pay for inventory that
requires testing before use [141]. The cost of poor quality
components (in terms of lost sales) has been estimated to
be between 5 and 10% of the total sales for most prod-
ucts, and approximately 20% of sales for manufactured
goods [141]. In some industries, 100% visual inspection is
also necessary to meet process yield goals [125). There-
fore, 100% inspection is desirable.

Sampling can be formally defined as the ‘‘process of
selecting a representative set of data from a large number
of measurements or observations (the population) in or-
der to perform inferential reasoning about the population
itself** [65]. Two types of risks are associated with sam-
pling. These are known as producer’s risk and con-
sumer’'s risk. Producer’s risk is the risk associated with a
lot or batch of good quality that is mistakenly rejected
due to the extraction of a random sample containing
many defective parts. Consumer’s risk is the chance of
mistakenly accepting a lot of poor quality due to the ex-
traction of a sample containing many good parts. Pro-
ducer’s and consumer’s risk are analogous with Type I
and Type II statistical inference errors, respectively,
where the null hypothesis Hy is that the product is accept-
able. There are many consequences associated with high
levels of consumer’s risk, although the end result of all of
them is that the manufacturer’s reputation and market
share are endangered. Consumer’s risk can be reduced
through 100% inspection.

General Benefits of Automated Inspection. Auto-
matic inspection is desirable because human inspectors
are not always consistent evaluators of products. In fact,
it has been reported that human visual inspection is, at
best, 80% effective, and, furthermore, this effectiveness
can only be achieved if a rigidly structured set of inspec-
tion checks is implemented {222].2 The consistency asso-
ciated with automated inspection should allow the level
of quality to be predicted [108], however. Many inspec-
tion tasks are also time-consuming and/or boring for hu-
mans to perform. For instance, human visual inspection
has been estimated to account for 10% or more of the
total labor costs for manufactured products {133]. Human
inspectors may also reject products based on the satisfac-
tion of quotas rather than the actual defect levels (66].
Furthermore, some manufactured part defects are too
subtle for detection by an unaided human [155]. In con-
trast, machine vision results in lower labor costs and im-

2 [125] claims that human inspection can be up to 90% effective.
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proved quality. Finally, automated inspection allows ob-
jects to be inspected in environments unsafe for people.

Currently, many automated inspection tasks are per-
formed using contact inspection devices that require the
part to be stopped, carefully positioned, and then reposi-
tioned several times [115]. Machine vision can alieviate
the need for line stoppage and precise positioning. Since
machine vision inspection operations are, in general,
noncontact, there is also a lower level risk of product
damage during inspection [96].

Traditionally, most industrial inspection has focused
on product inspection; usually, only the final assembly of
the product is inspected. However, process inspection
offers certain advantages. Without inprocess inspection,
for example, parts that fit poorly can cause machines to
jam or break, interrupting assembly. If defects are not
detected as they occur, material, time, energy, and labor
are also wasted [88, 221]. Zeuch has estimated that a fault
found on bare printed circuit boards immediately after
fabrication costs only 25 cents to repair, but if the same
fault is found only after the board is fully loaded with
components, then the repair cost increases to approxi-
mately $40 [271]. Assembly processes involving many
parts pose a serious challenge to human inspectors. If the
assembly process involves several operations per sec-
ond, process inspection by humans is probably physically
impossible [221]. One system that inspects the output of
several assembly stages has been presented by Tsatsoulis
and Fu [247].

Feasibility of Automated Inspection. Although auto-
mated inspection might seem to be a panacea for improv-
ing quality and reducing costs, it may not always be feasi-
ble. For automated inspection to be feasible, it must run
in real time and be consistent, reliable, robust, and cost-
effective. It is difficult to formally define what is meant
by real-time inspection, although Van Gool er al. {250]
have suggested a working definition **that the [visual in-
spection system]) should not be the major bottleneck for
reducing cycle time or robot operation speed.™ On many
production lines, this would require the inspection of sev-
eral parts per second [45, 250]). For most assembly line
inspections, the upper time limit for inspection is proba-
bly about 1 s. A few inspection tasks, such as printed
wiring board or semiconductor inspection, are not as
time-critical, however, and can take as long as several
minutes [260). Often, the rate of assembly for complex
parts or for small batch production also allows for less
rapid rates of inspection [13). Automated inspection sys-
tems are also expensive and time-consuming to develop.
Development costs can be as high as $100,000 [250] or
more.’ The development cost usually cannot be amor-
tized over many systems, either, because special illumi-

3 Some inspection systems have cost several million dollars to de-
velop.



A SURVEY OF AUTOMATED VISUAL INSPECTION

nation, image analysis, and part orientation restrictions
are usually necessary steps in achieving robust system
performance [166]. This makes it necessary for the devel-
opment process to begin afresh for each application.
Therefore, automated inspection is feasible when the ap-
plication has large part volumes, demands very precise
measurement, requires very ‘consistent inspection, or is
in a hazardous environment.

The complexity of automated inspection procedures
can be reduced by requiring precise placement of the
objects to be inspected. Positioning aids such as special
fixtures, conveyor belts, and rotating tables have been
used for this purpose. In some inspection systems, parts
are placed on surfaces made of transparent glass or plas-
tic to allow easy extraction of object silhouettes through
backlighting [260]. Backlighting and other sensing envi-
ronment constraints are appropriate for the inspection of
simple objects. Constraints of these types have been suc-
cessfully applied to the high-speed inspection of some
products that are assembled quickly in large volumes.
Unfortunately, using positioning aids and lighting con-
straints is not necessarily useful for more complex
shapes; it is difficult and expensive to obtain well-jigged
and uniformly lit parts on the factory floor [124). Further-
more, for automated inspection to compete with the flexi-
bility of human inspectors, the inspection procedure
must be able to handle objects that are in unexpected
positions and orientations.

The fexibility of human inspectors should not be un-
derestimated. Wright and Bourne [262]) have observed
that machinists make many careful inspections and diffi-
cult acceptability judgments throughout the machining
cycle. This is especially true when the part has a complex
shape with tolerances on the other of several thousandths
of an inch. For instance, aircraft parts have very complex
profiles which require special tooling, fixturing, and nu-
merical control programming. These parts are usually
made of alloys that are difficult to machine. These alloys
impose great stress on the machining tools, forcing the
machinist to carefully monitor tool wear throughout the
process. Many of the parts also contain internal cavities
that reduce weight but also result in thin exterior walls,
compounding the machining difficulty. Wright and
Bourne claim that the machining process for these air-
craft parts is ‘‘nondeterministic and unstable’ and that
the machinist’s judgments and abilities are ‘‘irreplaceable
secret ingredients of expert machining [262).”* Automa-
tion of the expert inspective and adaptive capabilities of a
human machinist would be quite a challenging task for a
vision researcher.

Logging Defect Rates and Types. One of the great
advantages of automated inspection is that defect rates
can be automatically logged for each defect. This allows
defect detection to be more closely connected with pro-

duction. A high frequency of a certain type of defect
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might indicate that a tool or machine in the production
process is malfunctioning, for example, or that the prod-
uct design needs to be improved [96, 235). Consumer
complaints and field service records could also be inte-
grated with the factory log of defects to monitor the com-
plete lifespan of the product. An integrated record of
product defects should enable better part design and pro-
duction in the future.

In the remainder of this paper, we present a review of
the automated visual inspection literature, classifying
systems by their sensing modality. We first review sys-
tems that use binary images, then systems that use inten-
sity images, color images, and range images, and then
systems that use other sensing modes. Next, we discuss
common approaches to the inspection problem, and fi-
nally we investigate CAD-based inspection methods.

2. REVIEW OF THE INSPECTION LITERATURE

Many automated inspection systems have been pre-
sented in the literature. Chin and Harlow have surveyed
some of the early work in automated visual inspection in
[47]. Chin presented a second survey of papers published
from 1981 to 1987 in (44]. The complete inspection litera-
ture is quite vast, appearing not only in the computer
vision conferences and journals, but also in the robotics,
manufacturing, CAD, and other engineering disciplines’
literature. Many of the inspection systems have not even
been reported in the literature, probably due to proprie-
tary considerations. There appear to be two general
schools of thought about inspection. In the machine vi-
sion community, the emphasis seems to be on specialized
techniques that allow the inspection of one part, while in
the computer vision literature, the emphasis seems to be
on more general inspection applications. In addition,
many of the systems and techniques presented in the
computer vision literature appear to use contrived de-
fects and ‘‘widget’ objects that may not be an accurate
portrayal of actual likely manufacturing defects and ob-
jects. There needs to be greater interaction between the
machine vision and compuler vision communities if more
usable general-purpose inspection systems are to be de-
veloped.

Most of the papers surveyed below discuss inspection
systems. We focus on actual inspection systems rather
than on theoretical algorithms that have not (yet) been
applied to inspection. It is beyond the scope of this paper
to explore theoretical techniques (e.g., texture-based ap-
proaches potentially applicable to surface inspection) in
detail.

Commercial inspection systems are available for a
wide variety of inspection tasks, including checking en-

“gine blocks, tool wear, automobile wheel hub structural
integrity, spark plug dimensions, dimensions of ceramic
supports for CRTs, and automatic transmission valve
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body dimensions [146). Automated inspection syslems‘

have also been used to search for impurities and fractures
in casting processes, to inspect letters and numbers on
labels, to check packaging and content of pharmaceutical
and edible products, and to inspect glass objects for
cracks and bubbles [30, 98, 170, 189] or for presence of
loose slivers [12]. A robot that can detect some of the
defects in nuclear reactor vessel shells and nozzles has
also been developed [27]. The majority of the automated
inspection systems have been developed by machine vi-
sion companies while others have been developed by
manufacturers for in-house applications. In this section,
many of the inspection systems that have been recently
presented in the literature, including noncommercial in-
spection prototypes developed by the research commu-
nity, are reviewed. However, most existing automated
inspection systems probably have never been reported in
the literature or have received only fleeting reference.

2.1. Typical Commercial Visual Inspection Systems

A few of the typical commercial visual inspection sys-
tems are presented in this section. Qur attention is di-
rected on some of the major machine vision companies
that supply AVI systems. Several of these companies
have focused on specific market niches and thus provide
one or a series of products designed for a particular in-
dustry. For example, GEI, a machine vision company,
has developed the Gemini system for inspecting semicon-
ductor packages for proper closure and correct place-
ment of labels [189]. Global Holonetics has developed the
Lightware inspection system based on Fourier features
that has been applied in manufacturing and packaging
inspection applications [82]. IRT and Four Pi have re-
cently developed systems for inspection of solder joints
on printed circuit boards using X rays [110]. These sys-
tems are discussed briefly in Section 2.3.5. In the past,
KLA Instruments has specialized in PCB inspection and
provided a number of systems for this purpose ranging in
price up to $200,000. KL A now offers AVI machines for
reticle and wafer inspections, at prices ranging from 1 to
3 million dollars per system. KLA is probably the largest
company supplying AVI equipment for the semiconduc-
tor industry, with annual sales of over $200 million. KLA
and Japan Energy (formerly Nippon Mining) have also
formed a joint venture, KLLA Acrotec, that develops sys-
tems for inspection of flat panel displays [132].

A few of the other machine vision companies which
have delivered AVI systems recently include Machine
Vision International, which has delivered systems for in-
spection of painted surfaces [12], and Sira, which has
‘built automated inspection systems for monitoring photo-
graphic film [12] and for checking gloss level and other
car body paint defects [32, 250]. European Electronic
Systems has built high-speed metal surface inspection
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systems for use in applications such as a rolling mill [12].
Geodetic Services has developed a system useful for di-
mensional inspection tasks [77]. Computer Recognition
Systems has built a system that was applied to orange
grading and inspected at a rate of 64 oranges per second
using eight processing elements’ and intensity images
[53]. Cognex and Matrox Electronics Systems have re-
cently offered machine vision systems on cards that can
be plugged into a bus on a PC [110, 199]. Some of these
systems have been used in inspection applications (e.g., a
Matrox Image 1280 board was used in [74] to inspect
continuous aluminum strips). Other companies include
ADEPT, AISI, Allen-Bradley, and Itran. Innovision is
another example of a machine vision company that has
delivered several custom-designed AVI systems, for ap-
plications such as inspection of continuous webbing,
measurement of dimensional tolerances and gaging, and
inspection of surface characteristics [2]. Most of these
companies do not offer universal inspection machines but
rather deliver custom integrations and solutions for each
application. The cost of the systems can vary greatly,
from as low as $30,000 up to $200,000 or more. The solu-
tions presented are typically VME-based with embedded
CPUs. None of the commercial systems have been truly
general purpose, however, which may be one cause for
the lack of business success for some machine vision
companies. The successful companies have either devel-
oped expertise in a single inspection domain (e.g., the
semiconductor industry) or have been able to understand
customer needs and deliver custom integrations for var-
ied applications.

2.2. Typical Industrial In-house Inspection Systems

Some large industrial companies have developed their
own inspection systems. Saab, for example, built a sys-
tem for automated inspection of flywheel castings [250].
Westinghouse has developed an automated visual inspec-
tion system for turbine blade inspection and Delco has
developed an automated system for inspecting chip struc-
ture [146). General Motors has developed a system for
dimensional  inspection of automobile body openings
[204]. Volkswagen has developed a system for inspection
of dimensional measurements of automobile bodies [122].
IBM developed a system to inspect key-return springs on
PS/2 keyboards [151]). Texas Instruments has developed
the Modular Advanced Vision System (MAVS) that was
incorporated in a number of their in-house inspection
systems, including the AT4600, a system that used two
MAVS and multiple cameras to perform full DIP inspec-
tion for marking, lead, and package defects [153]. The
Tokyo Electric Power Company has developed and in-
stalled an inspection robot that visually inspects for
steam or water leakage in a high-radiation area in a nu-
clear power plant [266]. Mitsubishi has developed a sys-
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tem to measure several dimensional tolerances of color
picture tube shadowmasks (at a resolution of 100 zm) and
the screens’ black matrices (at a resolution of better than
5 pm) with a triangulating structured light arrangement
{120]. Mitsubishi has also implemented a system that can
inspect submicron gate patterns in GaAs field effect tran-
sistors [205]). A few additional systems are discussed in
more detail within Section 2.3.

2.3. A Taxonomy of Inspection Systems

This section presents a taxonomy of inspection sys-
tems based upon the sensory data used by the system.
We describe many of the systems presented in the litera-
ture that use binary images, gray level images, color im-
ages, and range images. Other possible sensing modali-
ties are also discussed.

Imaging constraints and special lighting arrangements
can often be used to simplify an inspection task. Specifi-
cally, through exploitation of such methods, many of the
AVI systems have been able to use *‘simpler’” forms of
sensory input (e.g., binary data). Systems which rely on
simpler input tend to have reduced computational pro-
cessing demands, increased inspection speeds, and often
lower system development costs.

A summary of some of the specific applications are
exhibited in Table 1. A block diagram of one typical in-
spection system is shown later in the chapter in Fig. 4.
(The diagram, from [136], is of an automated inspection
system that uses range data.) :

23.L

Historically, most commercial vision systems for auto-
mated inspection have used binary images. Many of
these systems use images of limited resolution and per-
form only simple coarse verifications, such as testing for
the presence of a part [108)]. Binary data are sufficient to
inspect many industrial objects which can be represented
using only their silhouettes. Flat objects with no surface
characteristics are also inspected using binary data {250).
It is economical to use binary images since these can
usually be acquired using inexpensive sensors in con-
junction with simple lighting arrangements, such as back-
lighting [260]. High-contrast backgrounds and controlied
lighting eliminate unwanted shadows, highlights, and
noisy backgrounds but also make it difficult or impossible
to use orientation, texture, and reflectance information in
the inspection procedure {45]. The use of binary images
also reduces the amount of data that need to be pro-
cessed, aiding the system's designers in meeting speed
and cost requirements [45]. Typically, the binary vision
systems use only simple verification schemes [98] such as
pixel counting or boundary examination [12, 45] that can
be executed very rapidly.

Inspection Using Binary Images

PAGE 7 OF 32

237
TABLE 1
A Taxonomy of Selected Visual Inspection Systems
Input
image Application Date  Reference
Binary Bolts 1992 n2]
Brake shoes 1990 9}
Color picture tube photomasks 1988 (101
IC chip patterns 1989 [163)°
Packaging 1988 [71)
Printed Wiring Boards (PWBs) 1988 [270]
1991 2]
1992 [164)
Shrimp grading 1991 [112)
Surgical staples and ligating clips 1990 [240]
Intensity  Aircraft jack seals 1990 7y
Casing labels 1993 [245)
Ceramic tiles 1993 [61)
Drill bit wear 1990 [130]
Glass CRT faceplates 1988 (2591
Lumber 1990 [48)
Nuclear reactors 1992 [266)
PWBs 1985 98]
1989 {219}
1990 [182}¢
1991 [227]
1993 [200)
Sandpaper 1989 {79}
Semiconductor packages 1989 [189)
Solder joints 1992 138)
Videocassette labels 1991 [208]¢
Web iextiles 1992 £169)
Color Batteries 1989 [189]
Citrus fruit grading 1989 [189]
Color CRT displays 1992 [5)
Denim dye streaks 1950 155)
Integrated circuit chips 1991 [(265)
Microelectric gate thickness 1987 [184]
Plywood 1992 [
Poultry grading 1991 {56)
Range Automobile bumpers 1988 [178]
Beverage cans 1990 [170)
Castings 1993 [158)
Extruded aluminum profiles 1950 [54)
Open-die forgings 1988 [262]
PWBs 1988 [6l]
PWB solder joints 1988 [1o1)
Ship propellers 1990 [126)
Solder joints 1988 [155]
Tubes 1993 85)

e Used multiple binary images.
& Used multiple intensity images.

A number of binary vision systems have been pre-
sented in the literature. Hitachi, for example, developed
an inspection system that used binary images to find 10
different types of defects on the photomask for a color
picture tube [101]. Olympieff et al. inspected screws us-
ing polygonal approximations of object contours [175).
Their system operated at a speed of approximately S s per
inspection and reduced consumer’s risk from 0.5% for
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manual inspection to 0.05%. Diffracto built a system that
can inspect bolt threads, head profiles, and overall di-
mensions at a rate of three per second [12]. JAI of Den-
mark built systems that can be used to inspect items such
as rivets at high speeds [12]. Escher [71] developed sev-
eral systems that verified presence or placement of items
within packages. His systems used techniques such as
perimeter measurement, centroid position, and height to
make the determination in low-resolution (e.g., 32 X 32)
images. Shabestari and Miller [212] inspected dimensions
of molded rubber parts using binary images collected
from two cameras. Smyth [223] inspected print quality
using a process that first used correlation to find areas of
discrepancy of printed characters from stored template
characters and then utilized morphology to determine if
these discrepancies were within the design rules. Lapidus
has presented a brief description of the Itran 8000, an
automated visual inspection system which avoided the
use of special lighting and jigs by matching edge tem-
plates for object localization {124]. The Itran 8000 inspec-
tion system used a number of pixels along an edge as the
feature for comparison to a defect-free part.

Ishizaka and Shimomura [100] presented techniques
for binary image inspection using template matching, al-
though they did not present any specific applications of
their methods. Their techniques were able to determine
position and orientation prior to template matching and
operated in real time. They determined pose by matching
principal component axes, boundary arcs, and straight
lines on boundaries. The pose determination and tem-
plate matching together executed in less than 67 ms on a
256 x 200 image.

Edward Weck, Inc., a subsidiary of Bristol-Meyers
Squibb, is developing a machine vision inspection system
for dimensional verification of surgical staples and ligat-
ing clips [240]. In this critical inspection task, 100% in-
spection is required. Few details of the inspection system
were presented, although it appears to use boundary fea-
tures extracted from backlit objects. The objects have
some freedom of position and orientation, although each
object was required to be in approximately the same
pose.

Baldur and Horth [9] developed a system that sorted
up to 4000 brake shoes an hour. Their system also re-
jected damaged parts that varied excessively from a
stored set of user-supplied training patterns. The width
and span of the brake shoe along with several user-speci-
fied features (such as position or size of certain holes)
were used to perform the sorting.

Kassler et al. [112] developed a machine vision system
for grading inspection and packaging of shrimp for the
Australian prawn industry. Their system operated at a
rate of approximately 20 shrimp per second. It used sil-
houette area to grade the shrimp and used other statistics
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to determine the shrimp’s orientation and to find if the
shrimp was deheaded or not.

PWB and IC Inspection. Due to increasing miniatur-
ization and growing complexity, human inspection of
printed wiring board (PWB) and integrated circuit (IC)
patterns has become quite difficult and time consuming.
In fact, the cost of inspection may equal the cost to fabri-
cate a PWB [218]. Automated PWB inspection is already
cost-effective because the inspection systems are faster
and more accurate than human inspectors [189]. Soon,
the complexity and miniaturization of PWBs and ICs may
make inspection possible only through automated sys-
tems [6, 269]. Currently, many steps in semiconductor
production can be reliably performed only through-the
use of machine vision [272]. PWB inspection is consid-
ered one of the most important applications of machine
vision. Zuech has estimated that 20% of the U.S. market
for machine vision is semiconductor inspection [272].

Many algorithms and techniques for inspecting PWBs
have been presented. Typical defects which must be de-
tected include over-etchings (opens), under-etchings
(shorts), flaws, cracks, holes, etc. Geometric features,
such as conductor length and width, hole and pad diame-
ters, and distances between conductors, can be examined
to find these defects [260]. Two well-known techniques
that have been used to find the defects are image subtrac-
tion and feature-based approaches [260]. Approaches
based on mathematical morphology have also been pre-
sented (e.g., [59, 172]).

Inspection of IC patterns is a task somewhat similar to
PWB inspection, although it is generally a more difficult
task due to the complexity of IC patterns. Many tech-
niques for the inspection of patterns in ICs have been
presented. Brecher and Dom [31] examined some of the
recent developments in pattern defect inspection in IC
chips. They discussed several inspection systems in de-
tail, including [58, 63, 68, 89, 107, 106, 254]. Yoda et al.
[(269] used CAD data to inspect multilayer wafer patterns
for submicron defects. Their system acquired gray-level
images but performed its image processing on binarized
images created by thresholding. The system is discussed
in more detail in Section 4. Khotanzad et al. {117) pre-
sented a system that inspected wire bonds that connect to
IC bond pads. Their system acquired gray-level images
but performed most of its image processing and inspec-
tion on binary images created by thresholding after an
early edge enhancement stage. Bond quality was deter-
mined by examining the parameters of ellipses fitted to
the image data.

Hunt has presented an overview of several of the ear-
lier (i.e., pre-1985) PWB/IC inspection systems in [98].
Baird at General Motors, for example, developed an IC
chip inspection system that detected cracked or fractured
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chips by thresholding images and then matching against
templates of IC corners. Hseih and Fu developed a top-

~down and model-driven ‘‘tree-like syntactic approach”
for inspecting IC chips. Chin et al. developed a PWB
inspection system that checked assembly correctness us-
ing graph matching of extracted edges against prestored
ideal edges. Krakauer and Pavlidis developed a PWB in-
spection system that used binary template matching with
a quick lookup table technique. Jarvis also inspected
PWBs using 5 X 5 binary templates. Jarvis's system per-
formed additional inspection in regions that appeared to
contain a defect.

Darwish and Jain [59] also developed an inspection
method that they applied to PWB inspection. Their sys-
tem conducted inspection by verifying design rules
through graph matching. A semantic graph representing
the circuit was constructed using morphological thining
followed by steps that merged some segments and de-
leted others. The semantic graph’s nodes represented ob-
jects or primitives. Several attributes representing prop-
erties of the object or primitive were also associated with
each node. The links of the graph represented relation-
ships between nodes. The graph of the inspection object
was matched to a graph representing an ideal board. The
ideal board’s graph was created during an interactive off-
line training phase. Darwish and Jain used their tech-
nique to inspect 95 PWBs for shorts, wire cuts, and viola-
tions of minimum wire widths. All of the defects were
detected and no false alarms were signalled for the test
data.

Hara et al. [87] used a technique primarily based on
image subtraction of a registered input image from an
image of a “‘golden’’ PWB. The input image was aligned
with the reference image using alignment marks. Their
system illuminated the PWBs with ultraviolet light and
detected fluorescence emitted by the boards’ base mate-
rial. The emitted light was filtered optically with a band-
pass filter to produce an essentially two-color image.
They performed several image processing operations us-
ing a pipelined architecture on certain regions of the im-
age to allow line features to be reliably inspected. They
reported that their system required 18 min to inspect a 50
by 60-cm surface. This task would have required 10 or
more hours for a human to inspect. Hara et al. tested
their method on images of boards containing artificial de-
fects.

Yu et al. (270) implemented (in hardware) a PWB in-
spection algorithm that allowed line width, spacing, pin
hole, and short and open circuit defects to be detected.
Their technique was based on design rule checking, al-
though some template matching was used to detect com-
mon defect conditions during design rule verification.
Their method could inspect at rates up to 4 million pixels
per second using a 1024-element line scan camera and an
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xy translation stage. The method was made robust to
illumination changes, oxidation, and sensor distortions
through the use of optical fiber lighting and adaptive bi-
nary thresholding.

In general, binary inspection systems are advanta-
geous because their hardware and software requirements
are usually modest. Binary inspection is inadequate for
many inspections of surface characteristics and 3D
shapes, however.

2.3.2. Inspection Using Gray-Level Images

Several systems have been presented in the literature
that use gray-level intensity data for inspection. There
are few systems, however, that are capable of performing
visual inspection on intensity images in complex indus-
trial environments with dirt and unfavorable lighting con-
ditions [45]. Most of the industrial inspection systems
that use intensity imagery have limited capability and use
image subtraction or localized histogramming methods
for defect detection [12].

Sokolov and Treskunov [226] developed a real-time
system for inspection of liquid crystal display (LCD) ap-
pearance and function. It executed the inspection in ap-
proximately 5 s. Most of the system’s image processing
operations were performed on a special video processor.
The system used a microcomputer as the central CPU;
e.g., the microcomputer regulated the video processor,
calculated histogram thresholds, and made decisions
about defects.

Beyer [20] presented an experimental system for in-
specting the dimensions of vehicles after crash testing.
His system utilized two exterior cameras and one interior
camera at known viewpoints as well as a turntable for
revolving the vehicle. During a training phase, a model
was built using images of an ‘‘uncrashed’ vehicle. Re-
gions of interest (or, ‘‘target areas’’) in the model that
comprised several pixels in the image(s) were used as
estimates of the expected position of target points on the
crashed vehicle. A least-squares template matching pro-
cedure was used to determine the probable dimensional
measurements of the crashed car. Beyer’s system exe-
cuted in 15 min on a Sun 3 workstation and measured the
target points with an average error of approximately 1|
mm, which was acceptable for the application. Fraser
and Legac (77] have developed a commercial product, V-
STARS, offered by Geodetic Services, that uses a CCD
camera for dimensional inspection tasks, such as measur-
ing points on automobile body panels (in that application,
400 target points were measured in about 1 h), jigs used in
nuclear reprocessing plants (the system was able to mea-
sure 50 points with 0.1 mm accuracy in approximately 30
min), and rocket engines. The tasks that V-STARS per-
forms are those that conventionally would have been per-
formed using touch sensors, such as.:CMM probes.
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Ratcliff er al. [193) developed a system for defect de-
tection on ground metal components. They detected de-
fects first at a coarse resolution and then *‘zoomed in"’ on
any potential defective regions to find the size and loca-
tion of the defect. Their system performed the inspection
using images collected from several known viewpoints.
The position of the part was also known a priori.

Siemens developed a robot vision system called Gray-
Scale Sensor (GSS) which has been used to detect flaws in
the hub of cast aluminum car wheels [203]. The system
matched edge features against geometric models to rec-
ognize different types of wheels and detect defects.

Xian et al. [264] described an experimental system for
inspection of bearing rollers. Their system could detect
cracks, nicks, scratches, and rust of width as small as 20—
30 wm on 14 mm diameter by 15 mm length rollers. They
used a line-scanning technique to collect the data, Image
processing was performed on a Vax 11/750 and consisted
of “‘unrolling’’ an image that was composed of several
line scans. The system was able to detect defects in the
presence of ‘‘noise’’ such as surface grease or oil smears.

Intensity images have also been used in the inspection
of tool wear. Currently, tool wear is usually monitored
manually by a machine operator. Wright and Bourne
have noted that machinists occasionally examine tool
points during machining to make certain that the tool
edge is still acceptable and to estimate the time duration
in which the tool will remain usable [262]. Liu [130] de-
veloped a tool wear inspection system that examines
flank wear of a multifaceted drill bit to determine if the bit
is still usable. A typical test for drill wear would use the
width of the drill flank wear, but because the drill in Liu's
application was multifaceted, he used drill wear area in-
stead. Liu found that worn areas of the drill had a higher
reflectivity than unworn surfaces; thus he located regions
of high wear using an intensity histogram. Liu compared
his system’s performance to manual measurement of ar-
eas under a microscope and found that his system exhib-
ited a 3.5-4.5% deviation from the performance of a hu-
man expert.

Wilder has developed an operational inspection system
for detection of small defects in glass panels (CRT face-
plates) [259]. The inspection was performed using two
stages of image acquisition. A coarse-resolution image
was acquired first and used to identify image regions that
might contain defects. Then, a series of high-resolution
images was acquired for each of the potential defect re-
gions. Defects were detected using components of the
gradients of a Sobel edge operation computed in real
time. Several gradient components were used to select
the “‘best’” image from the series and the other compo-
nents were used in the computation of an adaptive
threshold that allowed defect detection. Wilder’s system
was tested on several thousand faceplates on the factory
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floor and was found to deliver acceptable results. The
system could inspect one faceplate every 15 s. An inspec-
tion system has also been reported that inspects position,
width, height, distortion, brightness, and focus of PC
CRTs (253]. The inspection system was built using off-
the-shelf equipment such as a Panasonic CCD camera, a
framegrabber, and an Apple Macintosh computer.

Applied Intelligence Systems and AECL Advanced
Systems developed a fluorescent lamp inspection system
for General Electric [8]. This system used six cameras,
controlled lighting, and three SIMD array computers to
inspect for nine defects in lamp bases. It performed 100%
inspection at a rate of 8000 lamps per hour. The system
was somewhat flexible for lamp pose, although the as-
sembly line imposed some constraints on the general po-
sition of the lamp. Pose was determined by locating two
salient features on the ends of the lamp. All dimensional
inspections on the lamp were made with respect to these
data.

Shih and Mitchell [214] presented techniques that use
recursive adaptive thresholding and mathematical mor-
phology to inspect the positions, orientations, and size of
corners and holes in industrial parts. Laligant et al. [123)
developed a prototype system that could detect defects
as small as 2 mm in size in the threads of plastic cosmetic
bottle caps. Their system inspected at a rate of 3 s per cap
by examination of wavelet coefficients. All processing
was performed on a 386 PC using 50 images of the cap
threads captured with a linear CCD array. Giet and
Kleinemeier [80] used a pyramidal approach to match
templates of flaws that have known length and width pa-
rameters. The Jet Propulsion Laboratory is developing
image subtraction techniques to detect small defects (sur-
face pits approximately 0.2 to 6.0 mm in size caused by
collisions with small meteors) in large structures in space
(e.g., a space station) [92, 190]. Olsson and Gruber [176]
have presented a method for defect detection in coated
sheet steel. Their method involved first extracting fea-
tures that measured the intensities of scattered coherent
light within image regions. They then located defects us-
ing a neural net that performed a k-means clustering fol-
lowed by Kohonen Learning Vector Quantization.
Fernandez et al. [74] have developed a system that can
detect approximately 15 types of defects on continuous
aluminum strips. Their system first segmented the defect
regions using local smoothing followed by detection of
local intensity variations and then classified the defect
type using syntactic methods. They implemented their
methods on Matrox’s Image 1280 image processing board
but also performed some processing using five digital sig-
nal processing boards each of which had two CCD cam-
eras attached.

Hattori et al. [91] developed a pipelined image process-
ing architecture designed to meet automated inspection’s
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real-time requirements. Their system has been applied
for the automated visual inspection of 40 different objects
using intensity images. Simon and Rogala [220] devel-
oped a technique for real-time inspection of correct inser-
tion of components on computer boards. Their tech-
nique, which exploited model information about

expected component location and the types of neighbor- -

ing components, was somewhat flexible under different
lighting conditions and was able to conduct its inspec-
tions in approximately 10 s. Hanahara et al. [86) detected
cracks in the thin film head of a magnetic disk using
Hough line detection in edge maps.

Agricultural Applications of Inspection. Several
studies of the visual inspection of foods using intensity
images have been conducted. Pau and Olafsson [186], for
example, have discussed applications of computer vision
for fish quality control. One application was presented by
Bengoetxea [16] who used average spectral reflectivity
features to detect black skin and blood spots in cod fillets.
Bardin [10] used histograms of rectangular regions within
intensity images to detect blood spot defects in fish. Wu
and Rodd [263] presented a rule-based boundary extrac-
tion technique that they have applied in the inspection of
crackers. They were able to determine the boundary of
overlapping crackers in intensity images at a rate of ap-
proximately 80-90 ms per object using a single INMOS
T800 transputer. An experimental chicken grading sys-
tem was developed by Daley et al. [57]). They simulated
discoloration and exposed flesh defects on rubber models
of chickens and were able to detect these defects using a
thresholding’ technique. Aneshansley et al. [3] deter-
mined watercore damage to apples using histogram anal-
ysis.

Label and Packaging Inspection. Several systems
have been developed to inspect packaging of products.
White et al. [258], for example, have developed an in-
spection that R. J. Reynolds uses to detect defects in
cigarette container labels. The system can distinguish
from among 88 different cigarette brands and can inspect
over 500 packages per minute. Novini [170] has reported
the FastTrack inspection system for detection of defects
in the bottoms of glass bottles. FastTrack was able to
inspect at a rate of 1000 containers per minute. Novini
also reported an industrial inspection system that in-
spected metal beverage containers for scratches, dents,
lid placement, and other features at rates between 200
and 1000 parts per minute,

Truchetet et al. [245] have developed a system that
inspects printing quality on plastic casings. Their system
was designed with a goal of low-cost implementation and
thus consists of a CCD camera, fluorescent lamp illumi-
nation, and a 386 PC. The system could inspect one cas-
ing every 3 s, which is the assembly line speed for their
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end application. The processing consisted of a number of
steps including, first, an alignment (with subpixel accu-
racy) of several windows of the casing image with win-

-dows of a reference image and, later, an adaptive

thresholding of the difference image formed by subtract-
ing the aligned image from the reference image.

Sato et al. [208] are developing a system for inspecting
Sony videocassette labels. Their system currently uses
five cameras, five special-purpose image processing
boards, and a MC68020 master CPU to inspect the char-
acters on the videocassette label. Each camera is used to
inspect a small portion of each character for missing ink,
incorrect centering, and ink spots. The method first per-
forms a coarse localization step using horizontal and ver-
tical histogram profiles. The estimate of position is then
refined using normalized correlation of each character
with an image of a master character. If the correlation
value is below a threshold in any of the five regions, the
character (and thus the label) is considered defective.
The present version of the system requires 1.2 s per label
for all processing.

PWB and IC Inspection. Several systems have been
presented in the literature for defect detection in PWRBs
and ICs using gray-level images. Ninomiya et al. [164],
for example, presented techniques for inspection of
PWBs and of the screen-printed circuit patterns in an
unbaked ceramic layer (known as the green sheet). They
used connectivity-preserving shrinking to reduce the
amount of data their system must process, allowing the
green sheet to be inspected in approximately 16 s. Their
system exhibited a false alarm rate of about 0.2 per 100
cm?, Ninomiya et al. [163] presented a shape inspection
system that detected defects in via hole fillings on green
sheets. The system could detect concave and convex de-
fects as small as 30 um and lack-of-fitting defects as small
as 10 um. To find defects in the fillings, two silhouette, or
“‘shadow,”” images were acquired from different view-
points and compared against predetermined criteria.
Their method was fast but it was unable to recover 24D
shape perfectly. Nevertheless, the technique was very
suitable for inspection of simple objects. They reported
perfect defect detection for 161 sample defects with a
false alarm rate of less than one occurrence per green
sheet. Kim et al. [118] also developed a system for the
inspection of via hole fillings on green sheets. Their sys-
tem is similar to the Ninomiya system, although they
claimed much faster and more accurate operation due to
use of a laser scanning technique. Kim et al.’s system
could inspect up to 100,000 via holes on a 16 by 16-cm
sheet in less than 4 s.

Sprague et al. [227] inspected wire width and separa-
tion and the presence of the desired circuit pattern in
PWBs. Their method consisted of building a segment
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graph that represented a skeleton of the circuit wires.
This graph was compared with a reference (ideal) board’s
segment graph. Sprague et al.’s method was designed to

combine reference comparison with design rule checking -

in a more efficient manner than systems that used mor-
phological-based reference comparison techniques alone.
They implemented their method on a 386-based PC that
allowed the inspection of a 3-in. PWB in 13 s. Park and
Tou [183] developed a system that inspects for common
PWB component defects. This system collected images
from three viewpoints. Each of the images was then split
into specular and Lambertian components using highlight
separation. A dual channel processing paradigm was fol-
lowed to process these components. Board pose was re-
stricted through the use of fixtures. The system correctly
classified over 77% of the components inspected. Bose
and Amir [28] investigated the optimal size and shape of
alignment markers for fixture-free PWB inspection.
Chehdi and Corazza [38] inspected distances between
circuit links and the quality of solder joints in two small
circuit boards. Their system first determined the area of
interest within the image and then used histogramming to
subsequently binarize the image region and inspect it.
Kuczborski and Attikiouzel [121] proposed that a pipe-
line of gray-scale morphological processors be used for
PWB inspection. Silvén et al. [217-219] and Takagi et al.
[232] have also investigated PWB inspection using inten-
sity images. Their systems are discussed in more detail in
Section 4.

Sreenivasan et al. [229] presented a method for inspec-
tion of the ball and wedge bonds that connect bond pads
to the lead fingers of microelectronic circuit chips. Their
method used histogramming with varying thresholds that
were dependent upon the region (e.g., bond region, back-
ground, and pad region) of the intensity image. Following
the histogram-based segmentation, bond size and shape
were inspected.

Bartlett es al. [11] inspected solder joints on PWBs
using two techniques to determine acceptability of solder
joints and to classify the defective joints. The first inspec-
tion technique was a statistical pattern recognition ap-
proach based on minimization of a quadratic distance
metric. The metric was based on 27 features which were
decorrelated and weighted using a method based on in-
class and out-of-class covariance. A number of training
samples of each class of defect were used in the feature
weight calculation. The statistical method correctly clas-
sified between 75 and 94% of the defects. Its acceptance
decision was correct in approximately 98% of the cases.
The other method Barlett et al. investigated was an ex-
pert system that used 40 features. Defect class was as-
signed through a voting technique on the features; which-
ever class had the most evidence was hypothesized as the
most likely defect class. The expert system correctly
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classified 78% of the defects. Its acceptance decision was
correct in 96% of the test cases. Teoh et al. [241] also
developed and tested algorithms for inspecting solder
joints, component alignment and orientation, and for de-
tecting missing components on surface mount printed cir-
cuit boards. Most of their techniques detected defects by
examining pixel frequency (that is, histograms) within
windows in the image. The user specified the windows
during a training phase on defect-free images of the
boards. Kashitani et al. [111] developed a prototype sys-
tem for inspection of solder joints between PWBs and
surface-mounted pin grid arrays. Their system illumi-
nated the solder joints using an optical fiber light guide
and acquired its images using a CCD sensor that was
connected to an optical fiber image guide. Their system
extracted possible defect locations in these images using
fuzzy clustering. They tested their method on images of
7100 good solder joints and four bad solder joints and
were able to detect all the bad solder joints and nearly all
of the good solder joints; the system had a false alarm
rate of less than 1%.

Inspection of IC chips has also been conducted using
intensity images. Berard et al. [17], for example, detected
excessively high solder points in IC mounts. Chi ef al.
[43] developed an expert system that used 64 classifica-
tion rules to detect six different types of defects on IC
chips. Nishihara and Crossley [165] inspected the dimen-
sions of the smallest features in an IC and also the regis-
tration accuracy between circuit layers using correlation
of signs of Laplacian of Gaussian filter output. Bose and
Kim [29] developed a system that inspected defects in the
bonding of the IC chip to its carrier. Their system used
low resolution data to inspect for presence of the chip
and for wedge finger scratches and then used high-resolu-
tion data to determine chip pose (using alignment marks
on the chip) and to inspect for cracks and location of
edges. Bose and Kim's system exhibited less than a (%
rate of false rejections and was 12-40% better than hu-
man inspectors at the defect detection tasks. Chemaly
{39] used controlled lighting and mathematical morphol-
ogy to detect surface defects (holes, blisters, and grease
marks) on integrated circuit packages. Khalaj et al. [116]
presented a method to find defects in repeated pattern
wafers. Their method first estimated the period of the
pattern in the horizontal and vertical directions using
spectral estimation techniques. This information was
then used to construct a reference, or building block,
pattern that was shifted throughout the image and then
subtracted from image windows to find defects. This ap-
proach allowed template matching to be used without
explicitly registering.the image to a prestored reference
image. Texas Instruments developed the MAVS system,
an image processing system that has a Motorola 68030
CPU and special-purpose hardware for template match-
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ing applications [153). This system has been used in
Texas Instruments’ AT4600 inspection system. The
AT4600 used multiple cameras and two MAVS to inspect
dual in-line packages from all sides for marking, package,
and lead defects. Okabe et al. [174] of Hitachi developed
a system that inspects for lead pitch and coplanarity,
surface marks, for foreign objects between LSI package
leads, and for defects on mold and lead surfaces. Their
system used three 2048-pixel line scanners, six digital
signal processing boards, and a single CPU to extract
several features which are compared to similar features
extracted during a training phase. The system had a reso-
lution of 25 um, had less than a 3% false alarm rate, and
performed all processing in less than 3 s. Sakamoto er al.
[205] of Mitsubishi Electric developed a system that can
inspect a 2- or 3-in. gallium arsenide field effect transistor
wafer for submicron line width defects, electrode pattern
defects, and for correct interelectrode distance in 5 s,
which was fast enough to allow its use in a production
line. The system conducted the inspection in images col-
lected with a laser scanning microscope.

Texture Inspection. Many techniques have been pre-
sented for the inspection of textured surfaces in intensity
images. In this subsection, the recent papers on textural
inspection are surveyed. For a review of the general tex-
ture analysis literature, the reader may wish to consult
the recent survey paper by Tuceryan and Jain [248].

Marutani [139] investigated the use of controlled light-
ing, Sobel edge detection, and morphology to detect de-
fects in silk crepes. Norton-Wayne et al. [169] are devel-
oping a low-cost system for real-time inspection of rolls
of web textile fabric. Their system used a CCD linescan
camera to detect defects as small as 2 mm? on a 2-m wide
piece of fabric moving at S cm/s (1/20 of factory line
speed). They used a thresholding and filtering step to
reduce the effects of noise and then located any clusters
of pixels that represented defects. Cohen et al. [49] have
inspected textile fabrics for defects through the use of
stochastic texture models, specifically the Gaussian Mar-
kov random fields. Defects were detected using likeli-
hood ratio tests in nonoverlapping windows within the
image. For faster execution, Cohen et al. performed the
test using easily computable sufficient statistics of the
model parameters. Neubauer [157] presented a segmen-
tation algorithm for use in the rapid detection of defects
in textile fabric. Neubauer's method involved first filter-
ing the image and then evaluating the filtered images us-
ing a histogram calculated in windows within the image.
Finally, the textures were classified using a perceptron
net trained by backpropagation. Neubauer trained his net
on images containing defects. Dewaele ef al. (62] de-
tected point, band, and line defects in fabric textures.
Their technique used convolution filters whose spatial
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form adapted to the textures for inspection. Specifically,
the filter size was based on an estimate of the repetitive-
ness of the pattern. Filter coefficients were computed
using the eigenvectors of a covariance matrix for several
image points. Chen and Jain [41] also presented a tech-
nique to inspect for defects in fabrics.

Tobin and the Advanced Computing and Machine Vi-
sion Group at Oak Ridge National Laboratory are devel-
oping an automated fabric inspection system [242]. They
will initially concentrate on inspection of unbleached fab-
ric but hope to eventually inspect solid colors and then
patterns. Inspection in a textile mill is challenging be-
cause the line rate is typically 8 to 12 in. per minute, with
the forward motion accompanied by a great deal of vibra-
tion [243). Tobin is also developing a ceramics inspection
system that is based on a commercial image analysis
workstation, Data Translation’s PC-based GLIDE sys-
tem. GLIDE is used to investigate the suitability of vari-
ous image processing operations for defect detection and
then generate inspection scripts of the image processing
commands that were found to be suitable for inspection.

In addition, Tobin and colleagues have investigated
currency inspection with the Bureau of Engraving and
Printing [242, 243]. They developed techniques allowing
inspection of a continuous currency web that have been
transferred to commercial industry for implementation.
Their system used a 1024 x 1024 8-bit intensity camera to
inspect at a rate of approximately 1 s per note. The actual
inspection system will have to operate at a rate of about
80 ms per note (600 ft per minute), however. Their tech-
nique performed a grading inspection using a template
matching technique that first ‘‘warped’ an image to allow
for deviations in printing and then matched the warped
image to a ‘‘golden’’ (i.e., defect-free) image.

Conners et al. {50} presented a rule-based production
system that detects defects in hardwood lumber. Their
system can be easily modified to handle changing defect

specifications. Cho et al. [48) also developed a system to

detect four types of defects in rough lumber from four
different species of hardwoods. Their technique used a
blackboard framework to store all available knowledge
about properties of the defects. Fuzzy logic was used to
compute the confidence of different defect types based
on spectral and shape features. Paul et al. [187] presented
a multiprocessor architecture for visual inspection which
they applied to the inspection of hardwood to detect and
classify three groups of defects. They used adaptive and
fixed thresholding techniques and the rate of intensity
extrema to perform the classification in a hierarchical
tree classifier. They anticipated that their system could
inspect 5 boards per second, which is seven times the
rate of the current production line. Ojala et al. (173] also
investigated the detection of defects in images of wood -
surfaces. They were able to detect over 90% of the de-



244

fects in their samples using texture measures based on
first-order statistics derived from edges in the image.

Schmitt [211] used a technique based on gray-scale
morphology (which he implemented on a massively par-
allel computer) to remove surface texture patterns on
machined metal surfaces. He was then able to inspect for
defects such as pits and holes on the machined surfaces.
Schmitt tested his system on machined exhaust mani-
folds and found almost no false acceptances and less than
1% false rejections. Jain ef al. [103] presented a tech-
nique for inspection of painted surfaces on automotive
body panels. Brzakovic et al. [33] developed an approach
for defect detection in complex textures. Their system
used statistical pattern recognition to detect simple de-
fects in the textures. The textures were segmented using
a pyramidal linking scheme and then classified using a
modified tree classifier. Limas-Serafim [128] used a
multiresolution pyramid scheme for segmenting edges
that was applied to the segmentation of certain defects in
leather. Desoli et al. [61] developed several techniques
suitable for defect detection in textured ceramic tiles.
Glaze clots, spots, and other defects with distinct edges
were detected using rank order filtering. Defects, such as
water droplets, that covered large areas were found using
rank functions that estimated the *‘distance’’ of an image
histogram from the histogram of ideal tile textures. De-
soli et al. also were able to find scratch and surface de-
fects. Siew et al. [216] graded carpet using carpet wear
estimates based on first- and second-order statistics of
gray-level differences. Chetverikov [42] detected texture
defects by median filtering and thresholding the image
subtraction of sample images from the image of a golden
standard. Gerhardt ez al. [79] inspected sandpapers using
4 CCD cameras. They inspected the size of the coating of
the sandpaper’s bonding agent using a technique based
on morphology and found wrinkle defects using a Hough-
based method.

Gray-level images continue to be a popular image
modality for inspection. Gray-level images provide an
adequate level of information for many industrial appli-
cations, although gray-level inspection, like binary in-
spection, is not appropriate for some inspections of sur-
face characteristics and 3D shapes.

2.3.3. Inspection Using Color Images

As Daley and Rao [55] have observed, color is an espe-
cially important factor in apparel and food inspection
where changes in shade or variations in color indicate a
defect. Humans are not reliable color inspectors, primar-
ily because humans do not have a very good memory for
color. Therefore, color inspection tasks are very appro-
priate for automated systems. A few experimental auto-
mated inspection systems using color images are cur-
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rently under development. Barriers to more widespread
application of color inspection systems include the neces-
sity for more computing power, intricate optics, and for
careful or controlled lighting. Factors such as light source
intensity, color temperature, angle of illumination, and
magnification and lens aperture are crucial for accurate
color monitoring [184] due to the inspection system’s in-
creased sensitivity to the energy distribution from the
light source [55].

Some of the current commercial agricultural applica-
tions of automated color vision inspection include sys-
tems that check the color of bell peppers, examine apples
for bruises, or find defects in tomatoes [189]. Sunkist
Corporation developed a citrus grading machine that uses
machine vision to grade oranges and lemons according to
size, color, blemishes, and frost injury. This machine
grades eight pieces of fruit per second [189]. Van Renesse
[251] developed a system called Apple Quality and Ripe-
ness Inspection System (AQUARIUS) that has been
used to grade three varieties of apples for ripeness and
quality. AQUARIUS actually used three CCD cameras,
each of which captured information from a different spec-
tral band. Ripeness was judged using the ratio between
two of the bands and quality was primarily determined by
examining the reflectance of small regions in the other
band. The performance of the system was not stated,
however.

Daley and Rao [55] are exploring automated inspection
to find dye streaks on denim. They were able to find the
dye streaks by transforming color data into HSI (hue,
saturation, and intensity) space and then segmenting the
image using a histogram-based thresholding on the hue
values. Daley and Carey [56] have also used thresholding
and morphological operations to segment HSI color im-
ages of poultry. They aim to detect discoloration defects
(e.g., overscalds) on poultry skin. Their current system
achieved near real-time performance using 4 T800 trans-
puters. Their goal is to achieve real-time processing (hu-
man inspectors currently examine one bird every 2 s)

.using an array of 16 T9000 transputers.

Alapuranen and Westman [1] developed a prototype
system for detection of defects on plywood boards. Their
technique utilized an iterative split-and-merge region seg-
mentation using RGB information to locate potential de-
fects. The defect candidates were then classified using a
k-nearest neighbor classifier on 10 geometric, color, and
structural features. They tested their method on 200
boards containing 600 defects and were able to classify
approximately 88% of the defects correctly.

Richards and Casasent [196] inspected cigarette pack-
ages using edges detected in the blue channel of RGB
data. Their system was designed to detect if the label
printing was skewed or if blemishes were present. The
system operated in real time and was relatively low cost;
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the component cost was less than $6000. They detected
structures within the edges using an optical Hough bin-
nring technique with a computer-generated hologram.

Poole [189] reported an automated inspection system
for batteries. Color registration of the label, battery
length and width, and correct formation of the positive
and negative tips were checked by this system. Since
80% of the defects were color registration errors, the
system first checked for that defect, and, if no registra-
tion errors were encountered, proceeded to search for
other defects. The battery was removed from the assem-
bly line as soon as the first defect was detected.

Asano et al. [5) of Hitachi have presented a system for
inspection of whiteness uniformity on color CRT dis-
plays. Their system detects defects using a two-step pro-
cess. In the first step, a fixed threshold on hue and satura-
tion was used to signal potential defects. In the second
step, each of the potential defects was graded through the
use of adaptive thresholds. The grade was assigned based
on the color contrast, hue, defect area, and edge
strength. The system was able to inspect color CRTs in
10 s, similar to the time for human inspection, and exhib-
ited error rates similar to human rates, although the re-
peatability rate was three times better than that for hu-
man inspection. The system is now in use on production
lines. Bien et al. [21] have developed a prototype system
for measuring color purity and convergence on color pic-
ture tubes. Their system is used not to make accept/
reject decisions but rather to determine the nature of any
adjustments to make the tube image quality acceptable.
Their system uses six Motorola 68030 CPUs for vision
processing and collects images from nine cameras to
make this determination. They use thresholding to pre-
pare the images for purity measurement and use a fuzzy
algorithm to measure convergence.

Parthasarathy et al. [184] developed an experimental
inspection system using color vision for rapid inspection
of microelectric gate oxide thickness. Microelectric
structures are usually fabricated using a thin film that is
optically transparent. Optical interference effects pro-
duce colors that are characteristic of film thickness. Par-
thasarathy et al. presented two schemes to determine the
film thickness. One method determined thickness with a
resolution of 20 A in less than 100 ms using a nearest-
neighbor matching in the RGB color space. It achieved
an accuracy of approximately 90%, but this percentage
was optimistic because every test sample had a thickness
identical to one of the training samples.

Capson and Eng [34] inspected solder joints on PCBs
using a tiered lighting arrangement. Their lighting scheme
used a red-and-blue-colored ring light to create color con-
tours on the solder joints. Different defect types pro-
duced particular contour patterns, allowing the identifica-
tion of defect class using simple shape and intensity
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features. They identified defects using a classification
tree constructed with training samples. They tested their
method on 1400 solder joints on two boards and were able
to detect 97% of the defective joints. The rate of correct
defect classification was 76% for one board and 93% for
the other board.

Xie and Beni [265] used fuzzy clustering to detect de-
fects in the thin film layer of IC chips. Particles on IC
wafers cause the film thickness to vary nonuniformly in
the region around the particle, which produces light inter-
ference patterns that appear as several concentric rings
of different colors around the defect. They were able to
estimate the size of the defect by counting the number of
color rings in the interference pattern.

2.3.4, Inspection Using Range Images

For many applications, inspection using binary, gray-
level, or color images is impractical. Pryor noted that
surface inspection of turbine blades is usually not possi-
ble using intensity (binary, gray-scale, or color) imagery
because silhouette information provides negligible infor-
mation about the blade surface and intensity data can
contain variations in reflected light as large as 100,000: 1
over the surface of the blade [191]. Pryor listed gears,
female thread forms, and bore inner diameters as other
surfaces for which 3D information (depth or range im-
ages) is necessary for inspection. Dimensional inspection
of parts that have etched height variances, warp, or re- -
liefs also requires accurate 3D measurement of depth
[221]). The greatest advantage in using range data,
though, is that it explicitly represents surface information
[105, 136]. As Marshall has observed, when explicit sur-
face information is available, the shape information can
be used for efficient matching [135]. In contrast, match-
ing on edges, which is the practice of many of the gray-
level inspection systems, discards much of the surface
information [136]. Unfortunately, there do not appear to
be any complete 3D industrial inspection systems for
complex objects that have been placed online [45].

Robotic Vision Systems developed a structured light
sensor and MC 68000-based image processing system in
1984 which were claimed to acquire 3D data in real time
[209, 210). Their claim of real-time operation is somewhat
dubious, however, because the sensor was reported to
take 40 min 1o scan all six sides of a cubic object (al-
though over 800,000 points were scanned). The sensor
has been used for inspecting large propeller surfaces (i.e.,
the propellers are up to 24 ft in diameter) for the U.S.
Navy [126, 209], engine castings for Cummins Engine (in
this application, over 1250 dimensional inspections were
required), sheet metal hole and edge features [126], and
weld seams (with inexact workpiece positioning) on pro-
duction lines at General Motors, Westinghouse, and Cat-
erpillar. »
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Pryor developed several inspection systems using
structured light, some of which are discussed in [191].
These systems were developed in the early 1980s but
were able to achieve high accuracy. We briefly review the
systems here to provide additional historical context of
inspection using range images.*

1. One system inspected pitch line runout’ and tooth
spacing errors in gears at a rate of one pair of mating
gears every 10 s.

2. Another system qualified and sorted bolts on 10 dif-
ferent dimensions at rates of 10,000 bolts per hour.

3. A third system inspected the internal bores of a
power steering housing, performing a complete inspec-
tion for surface defects such as pits, scratches, voids,
tool marks, and cracks in less than 6 s.

4. Twelve cameras were used to inspect the dimen-
sions of engine valves at a rate of 4200 valve inspections
per hour on a production line.

5. Power steering worm assemblies were inspected at a
rate of 1500 parts per hour using two cameras and two
microcomputers.

6. Threaded and machined holes in cylinder heads
were inspected using 80 image sensors to check for the
presence of each thread in every hole and to detect hole
blockage. A part throughput rate of 600 parts per hour
was achieved.

Many recent inspection systems have also used struc-
tured light arrangements for the collection of range data.
Ye et al. [267], for example, inspected edge locations of
an automotive subassembly in range data collected using
structured light. Ozeki. et al. [178] inspected several di-
mensions of a plastic automotive bumper using a triangu-
lating structured light arrangement. Their system mea-
sured bumper flushness at 12 positions and width and
depth of a hole used to mount the bumper at 4 other
positions. They were able to perform this inspection in 3
min, which is approximately one-fifth of the time it would
take a human inspector. A system for inspecting the di-
mensions of car bodies has also been installed [185]. The
system used 90 triangulating structured light sensors to
determine the exact position of the car body and to exam-
ine its dimensions before insertion of doors, fenders, and
hood. Approximately 1 car'per minute was inspected.
The system included LEDs to light hold and slot loca-
tions that were not visible to the triangulating sensors.
Mistretta and Gerhardt [147] inspected simple 3D objects
(spheres and cylinders, for instance) using precondi-
tioned structured light. They distorted a grid before pro-
jection such that a uniform grid pattern would be pro-

¢ These systems also appear to have been omitied from the earlier
AVI literature surveys.

$ Pitch line runout refers to the eccentricity in the line of contact
between gear teeth.

PAGE 16 OF 32

NEWMAN AND JAIN

duced on the image plane by the object to be inspected.
Belitove and Hekker [15] extracted Fourier features from
moiré interference patterns to detect dented cans and
bottles. Blumenkrans and Viano [22] used Fourier tech-
niques to determine depth in images illuminated with
light passing through a grating. After determining depth,
they detected deformations and discontinuities in alumi-
num bars by comparison to a reference (ideal) surface’s
characteristics.

Newman et al. [160] developed several matching statis-
tics to use in template matching to inspect for gross de-
fects in range images of objects for which there is a CAD
model. She ez al. [213] used a stereo camera technique to
monitor motion in structures in order to assess structural
damage. Grimson et al. [85] inspected long tubes (of
length up to 13 ft) in range data. Their system first
coarsely located the tube in sparse range data. The
coarse estimate of pose was used to plan a scanning strat-
egy for acquiring dense range data. The components of
the tubes were then verified. Their system typically re-
quired 2 min to inspect a 6-ft long tube.

Many systems have also been created for automatic
inspection of solder joints. Range images are well suited
for solder joint inspection because the joints and their
key process indicators are complex geometric shapes
[198). Nayar et al. [155] developed the SHINY system
that used structured highlighting® which consists of iflu-
minating the object by a large number of point light
sources, to compute local surface orientations. These ori-
entations were utilized to build an Extended Gaussian
Image (EGI) representation [97] of the joints. The solder
joints were then classified using features extracted from
the EGI. The system required 12 s to inspect each joint.
This inspection time included image capture and all com-
putation steps. A misclassification rate of 3% of the joints
was observed, a rate which is within the variance of hu-
man experts in solder inspection. This system was later
used by Westinghouse Electric to inspect solder joints on
circuit boards [154]. The system at Westinghouse used
special-purpose hardware to allow inspection at a rate of
2 joints per second, or approximately 18 min to inspect a
typical board.

An automated 3D inspection system has also been de-
veloped for the inspection of open-die forgings [262]. The
3D image was constructed by backlighting the object and
using a rotary turntable to collect silhouette data from
360 viewpoints. Three cross-sectional measurements and
two vertical measurements were extracted from the im-
age and verified by the system. The system replaced a
person who had manually measured some of the critical
locations on the forging using calipers.

¢ The structured highlight technique Nayar et al. used is described by
Sanderson ez al. in [207).
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Several PWB or IC inspection systems that utilize
range data have been reported in the literature. Hitachi,
for example, developed a system that examined solder
joints on printed circuit boards [101]. Their system de-
tected four types of defects and inspected 10 points per
second using a 3D structured light arrangement. Davis et
al. [60] also used structured lighting for PWB inspection.
Their system detected missing or misplaced components.
Kelley et al. [113] developed a camera head and proto-
type inspection system based on triangulation techniques
for inspecting component position on surface mount
technology printed circuit boards. Harrison and Weir [90]
developed a triangulating structured light range sensing
technique that they applied to inspection of PWBs before
soldering. Badami et al. [6, 7] presented a system that
used dense range data to inspect leads on a PWB. The
system checked for the presence or absence of leads and
verified lead height and angle when necessary. They used
a triangulation arrangement for data acquisition with a
- depth resolution of 0.0006 in. that measured 120,000
points per second (i.e., about 0.5 in.2 of the board per
second). Few other details were presented about how
accurately the system conducted the actual inspections.
MclIntosh [142] developed a system that used multiple
intensity images to inspect dimensional tolerances of lead
tips of surface mount devices prior to their soldering to
the PWB. Rao et al. [192] have developed techniques for
inspection of height tolerances and presence or absence
of material in semiconductor layers using confocal imag-
ing followed by deconvolution with a Wiener filter and
cluster-based smoothing.

General-Purpose Inspection. All of the range image-
based inspection systems discussed previously are highly
optimized and constrained for use in a single application.
Several experimental systems are under development at
research laboratories and universities that are somewhat
more general, however. Freeman [78], for example, is
designing LESTRADE, a system that will learn an in-
spection task by tracking the human inspector’s eye
movements to determine regions of interest on the prod-
uct. The system would then extract features from the
areas of interest and correlate them with the inspector’s
acceptance or rejection decision to create automated in-
spection rules. Tarbox et al. [236-238] also developed a
system (called Integrated Volumetric Inspection System
(IVIS)) for inspecting objects in range images. 1VIS used
a volumetric representation to model the object and a
golden (i.e., perfect reference) object. Tolerances were
incorporated in the reference object by defining a mini-
mum and maximum allowable volume, offset by the al-
lowable tolerance distance from the nominal reference
surfaces of the object. Their system is useful for finding
gross deformities in objects, but is not appropriate for
inspections requiring high accuracies. Newman and Jain
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(158, 162] also developed a system for the inspection of a
class of objects, specifically, the class of casting objects
that contain planar or quadric surfaces. Their system is
discussed in Section 4.3. Marshall et al. [135-138] has
developed a system for gross geometric feature inspec-
tion, including verification of hole presence, part dimen-
sions, and feature relationships (e.g., distances and an-
gles) using dense range data collected from multiple
views. His system inspected objects composed of planar,
cylindrical, or spherical faces, although only planar sur-
faces (which were extracted more reliably) were used to
match the model to the sensed object.

Marshall matched the surfaces in one of the sensed
views to the model surfaces using a depth-first search of
an interpretation tree. Thus, the search strategy used a
single view to estimate the position and orientation of the
object. The interpretation tree was pruned to a manage-
able size using rigidity constraints; i.e., the model-to-
view transformation generated after several (usually,
three or four) surfaces had been matched. Specifically, a
“‘current transformation’’ between model and scene was
computed after several surfaces had been matched.
Searches deeper than the first few levels were pursued
only at nodes that satisfied the current transformation,
which was then refined using this new relation. Several of
the approaches to 3D object recognition in the literature,
including those of Faugeras and Hebert [73] and Chen
and Huang [40},7 have also used rigidity constraints.

Marshall’s system used all of the views in the inspec-
tion tasks. Specifically, the system inspected geometric
tolerances, such as errors in position, size, and shape of
model primitives. No details about system execution
times were presented, although real-time performance
did not seem to have been a goal. Marshall’'s work is
significant because of its generality (any object’s geome-
try can be inspected if a model of the object exists, pro-
vided that the object contains several planar surfaces that
are visible to the sensor) and its use of multiple range
images. Marshall apparently inspected only two fairly
simple objects, however. Also, many of the defects the
system detected were artificially induced on the objects;
thus the general application of the method may be lim-
ited. A diagram of Marshall’s inspection method is shown
in Fig. 4.8

* 7The local-feature-focus method of Bolles and Cain [25] and the

3DPO object recognition scheme of Bolles and Horaud [26] also employ
rigidity constraints, although Bolles, Cain, and Horaud employed dif-
ferent terminology.

8 Marshall's system follows a paradigm that might be termed match-
and-compare. This approach is not uncommon for the AVI systems,
although in many of the highly special-purpose industrial systems, part
position (and identity) is known, due to the use of fixturing. In some
systems, especially those that compare scene object features with rules
of an ideal part's characteristics, an explicit correspondence between
the ideal part (or model) and the scene object is also not necessary.
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FIG. 4. Schematic diagram of Marshall's 3D Inspection System.
Reproduced by permission of the publisher, from A. D. Marshall, Auto-
matically inspecting gross features of machined objects using three-
dimensional depth data, in Proceedings of the SPIE Conference on
Machine Systems Integration in Industry, Boston, 1990, Vol. 1386, pp.
243-254,

2.3.5. Inspection Using Other Sensing Modalities

Other sensing modalities are also possible for inspec-
tion. For example, X ray inspection is often used to in-
spect complex industrial parts [94]. Noble et al. [152,
166, 167] proposed a technique based on deformable tem-
plates to inspect drill holes in X ray images. Hedengren
[94] has developed real-time algorithms to verify the
presence, size, and location of drill holes in metal using X
ray images. Boerner and Strecker [23] developed a pilot
system for detection of pit defects in cast aluminum
wheels using X rays. They segmented defect regions
from defect-free areas using two techniques, one based
on edge detection using DOG filters and the other based
on rotationally invariant features derived from Zernicke
circular polynomials. Jain and Dubuisson [102] located
defects in X ray and ultrasonic C-scan images of compos-
ite materials using adaptive thresholding and Canny edge
detection.

A number of PWB, IC, and semiconductor inspection
systems have also been presented recently. Four Pi [99,
110], a subsidiary of Hewlett—Packard, has developed a
PWB inspection system that uses X ray scanned beam
laminography. The scanned beam laminography tech-
nique collects X ray images from several parallel planes,
allowing inspection of some 3D features. One of Four
Pi’s newer systems, the SDX series, whose price is ap-
proximately $370,000, uses a RISC processor to inspect
solder joints with a repeatability of within 2.5 um at rates
up to four images per second [110]. IRT Corporation has
developed a system that does X ray inspection of PWB
solder joints using parallel multitasking with several Mo-
torola 68040 CPUs [110]. Shu et al. [215] have used a
modified Hough technique to detect and inspect submi-
cron resist lines in VLSI wafers imaged with scanning
electron microscopy (SEM). SEM is a method that col-
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lects images using a focused electron beam. SEM gener-
ally has 10 to 100 times better resolution than optical
methods and has 100 or more times greater depth of field
[215). A commercial wafer (and X ray mask) inspection
system that uses SEM is available al a cost of approxi-
mately $4 million from KLA Instruments [132].

Onda et al. (177] identified welding defects in ultra-
sound images using a neural network based on back prop-
agation. Casasent and Carender [36] inspected cigarette
warning labels using 1D acousto-optic transducers. Bat-
ten [14] proposed that inspection for cracks in railcar
wheels be conducted using infrared sensing while the
wheels are heated with AC electricity. Durrani et al. [67]
inspected for surface and interior flaws in composite ma-
terials by heating the object with a thermal pulse followed
by Laplacian of Gaussian filtering to detect edges sur-
rounding defect regions in infrared images.

Alternate Modalities for Food Inspection. Chan et al.
[37] examined the suitability of other sensing modalities
for use in automated visual inspection of foodstuffs. X
rays could be used to detect foreign bodies in food, for
instance, although only foreign bodies whose density is
higher or lower than the food sample’s density can be
detected. X rays are also useful for texture analysis of
foods. Other advantages in using X ray images for inspec-
tion include the high contrast nature of the images and
the potential for real-time imaging. There are cost and
safety considerations, however, in the use of X rays.

Gamma rays are similar to X rays but can be used to
inspect denser materials. Chan et al. [37] noted that while
gamma ray images can be acquired in real time, they also
present several disadvantages. One disadvantage is that
gamma ray images typically are of lower contrast than X
ray images, There are also several safety considerations.
Like X rays, there are dangers from gamma radiation, but
unlike X ray machines, gamma ray machines cannot be
switched on and off. This makes transportation and stor-
age difficult and also presents constant safety concerns.

Chan et al. [37] also discussed the potential application
of nuclear magnetic resonance (NMR) imaging for in-
spection of the texture and composition of food. NMR
equipment is very expensive, however.

Ultrasound images may also be useful for foodstuff
inspection, particularly for packaged foods with no air
content and high water content [37). There are no safety
concerns about ultrasound although it is not well suited
to many industrial environments because it requires spe-
cial transducers for imaging. Aneshansley et al. [3]
graded beef by enhancing ultrasound images of the area
near the 12th rib and then detecting edges.

Another potential sensory source for automated visual
inspection of foodstuffs is thermal (infrared) imaging [37].
Infrared (IR) sensors are flexible and easily recalibrated.
As many as 5 images per second can be collected with
current IR sensors. There are also no safety consider-
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ations about IR sensors. A disadvantage of IR imagery is
that the sensors have limited sensitivity and produce im-
ages which usually require preprocessing.

Ultraviolet (UV) light can be used for fluorescent anal-
ysis of certain foods.? While ultraviolet light does not
penetrate materials, some foods, such as eggs, milk, and
fish, exhibit changes in fluorescence with freshness [37)].
Fresh milk, for example, exhibits a yellow fluorescence
while sour milk has a fluorescence which is white to gray
violet in color. Fluorescent images can be acquired in
real time, although high-intensity UV light can cause eye
damage or skin cancer. UV light may also affect some
foodstuffs. Furthermore, automated vision systems using
ultraviolet light sources usually require color processing,
which adds complexity to the system software and hard-
ware. .

Defect Enhancement—Magnetic Particle and Liquid
Penetrant Testing. Nondestructive visual inspection
has also been conducted using magnetic particle and lig-
uid penetrant testing, These two testing techniques are
especially applicable to inspection of cast or forged parts
{81, 114]. Both techniques increase the contrast between
defective and defect-free regions of a part. Liquid pene-
trant testing (LPT) consists of applying a visible dye to

make cracks, pores, and other surface defects more visi- .

ble. Usually, a penetrant is sprayed on a surface, and
after the penetrant dries, the surface is treated with a
developer that colors the area of inspection white while
also removing the penetrant from defects. As a result,
defects usually appear as dark or red lines or spots [114].
Often a fluorescent penetrant dye is used which, when
viewed under ultraviolet light, allows defects to appear
bright and sharp [114].

Magnetic particle testing (MPT) is one of the most
widely used contrast enhancement techniques (81, 114].
Magnetic particle testing consists of applying fine ferro-
magnetic particles to the object surface by dipping the
object in a water- or oil-based suspension [114]. The part
is then magnetized using either a longitudinal or circular
magnetic field. Magnetic particles are attracted to regions
where the magnetic field crosses a crack or pore, indicat-
ing defect location to a human operator. In a similar fash-
ion, near-surface nonmetallic inclusions in castings can
also be detected [81]. The object is often inspected under
ultraviolet light to further enhance the contrast of the
defects. Magnetic particle testing is preferable to many
other inspection techniques because it is affected less by
surface geometry, roughness, and materijal structure {81].

LPT and MPT testing are particularly important due to
their ability to greatly enhance detection of surface de-
fects. As Goebbels and Ferrano [81] have noted, mechan-

? Hara er al. {87] have noted that UV lighting has also been used in at
least one commercial product (by the Lincoln Laser Company) for PCB
inspection.
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ical and thermal loads as well as corrosion are directed at
surfaces. Surface defects greatly reduce the ability of ob-
jects to withstand such loads.

Gages and machines to aid human inspectors in LPT or
MPT have been developed by many companies. Magna-
flux, for example, dominates the market for MPT ma-
chines. Automated inspection using LPT or MPT tech-
niques has also been conducted. Goebbels and Ferrano
[81], for instance, have developed automated inspection
systems for many applications. Their systems use from
one to four cameras under both visual and ultraviolet
light sources to detect flaws in many small parts, includ-
ing casting rods, coil springs, axle housings, turbine
blades, and wheel hubs.

3. INSPECTION SCHEMES

Automated visual inspection techniques can be sepa-
rated into two general approaches. The first approach
involves matching a template of a defect-free model (of-
ten this is a synthetic image) to the sensed image of the
object to be inspected. Objects which are defect-free
match the model well. The second approach involves ex-
tracting features from the sensed object and comparing
those features to a description or list of rules that de-
scribes an ideal model. If all of the rules are satisfied, the
object is considered to be defect-free. The two ap-
proaches are described in detail in the following two sub-
sections.

3.1. Template Matching

Automated inspection has been performed on object
silhouettes and also on gray-scale images using template
matching schemes. These pixel-by-pixel matching
schemes compare the value of pixels in an image of the
sensed object against pixels in stored images of a defect-
free model. The image of the defect-free model may be a
sensed image or, alternately, a synthetically generated
image, perhaps from a CAD model.

One area in which template matching techniques have
been successful is the automated visual inspection of
printed circuit boards [166, 219). One example of a pixel-
by-pixel matching system for printed wiring board in-
spection was proposed by Silvén et al. [219). (Their sys-
tem is discussed in more detail in Section 4.) Template
matching has also been used for inspection of integrated
circuit photomasks (219]. The template matching was
performed in that system by comparing images of fabri-
cated photomasks with images of perfect photomasks.
The system experienced difficulty with frequently occur-
ring variations of patterns, however. This is a common
complication in template matching approaches; there are
natural (nondefective) variations between parts that arise
in most manufacturing processes [166). We have used a
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CAD-based bidirectional template matching technique
for finding gross defects in castings [161]. Rioux et al.
[197) have inspected bumper subassembly dimensions
and ceramic tile ‘‘flatness’’ using template matching in
dense range images. Template matching techniques have
also been used for seam detection in industrial seam
tracking applications [250], for propeller dimensional in-
spection [126], and for inspection of drill holes [166].

Pixel-level comparison schemes are flexible and are
probably the only reliable way to detect many faults
[217]. However, comparing low-level pixel values utilizes
only a small portion of the potential information which
could be used in inspection [217]. Exhaustive template
matching is also quite time consuming; no matching strat-
egy can efficiently match the hundreds of thousands of
pixels commonly encountered in an image [136, 250].
Schemes for reducing the size of the template have been
proposed, though, such as the learning algorithm based
on statistical pattern recognition preseated by Lin et al.
[129]). Template matching becomes painstakingly slow if
the pose (orientation and position) of the object is un-
known, or if the scale of the pattern to be matched is
unknown [250]). (In practice, many template matching
schemes are not very flexible because they assume that
the approximate pose of the object is known.) Some
methods have been proposed, however, to resolve the
pose determination problem in template matching, such
as Rodriguez and Mandeville’s [200] least-squares fitting
of points in edges extracted from an image of a PWB to
points in edges extracted from a CAD reference model.
Furthermore, ‘‘good’” and ‘‘bad’’ parts can often take a
variety of shapes, making it difficult to detect which ob-
jects deviate from the ideal (198]. This is one of the key
problems in inspection of solder joints [198] and wire
bonds on ICs [117], for example. Noble and Mundy [168],
however, have suggested that acceptable part deviations
(e.g., deviations of a dimension less than the allowable
tolerance) can be incorporated in a template built from
the model through a subsequent refinement process that
uses data sampled from real parts that deviate from the
ideal. On the other hand, most inspection techniques that
rely on high-level features suffer from the difficulty and
time-consuming nature of extracting features from the
imagery.

3.2. Rule-Based Methods

Most of the industrial inspection systems that have
been reported in the literature utilize rule-based compari-
son schemes. Rule-based schemes make decisions about
object quality according to classification rules [250]. The
sensed object is checked against 2 list of design rules or
against features that can be extracted from the design
rules. Most industrial inspection systems use attributes
such as surface area, perimeter, ratio of perimeter to
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area, number of holes, area of holes, minimum enclosing
bounding box area, maximum radius, and minimum ra-
dius [250]. One advantage of the rule-based schemes over
template matching is that it is unnecessary to maintain an
extensive database of templates [198]. The rule-based
methods suffer from the disadvantage that they are less
adaptable to design changes than pixel-level comparison
schemes, however. Extraction of design rules from an
object design model (e.g., a CAD model) is also not al-
ways trivial. Some rule-based schemes also require com-
plicated schemes to eliminate false alarms [217].

3.3. Hybrid Methods

Hybrid techniques that combine template matching
and rule-based reasoning are also possible. Noble e? al.
[166], for example, presented a variation on the usual
template-based and rule-based techniques. Their tech-
nique used deformable ‘‘templates’ in X ray images to
examine drill holes. Their technique did not use strict
pixel-based matching, but instead determined a coarse
match between edges extracted from the image and a
template consisting of curve primitives. After a coarse fit
was made, the curves in the model template were locally
deformed to more closely match the edges extracted from
the image. In addition, the model template was aug-
mented with higher level geometric constraint rules
which were evaluated to determine acceptability. The
part was accepted only if the deformations necessary to
align the model template to the edges extracted from the
image fell within the ranges specified by the constraint
rules. Noble et al. established their constraint rules by
collecting statistics on a large sample of defect-free parts.

4. CAD-BASED INSPECTION

Several CAD-based inspection schemes have been pre-
sented in the literature. In this section, we motivate the
need for CAD models in inspection and discuss several of
the CAD-based inspection systems.

4.1. Use of CAD Models

It is desirable to use CAD models in inspection because
the models contain an exact specification of an object.
Also, the models are preexisting; they provide a ready,
well-defined model for inspection [98]. A mathematical
description of the shape of an object, including an explicit
parameterization of surface shape and an explicit encod-
ing of intersurface relationships, is provided by most
CAD models. CAD databases can also be augmented
with manufacturing information, including material type,
geometric tolerances, desired quality of surface finish,
and finish color, thus providing a unified description ap-
plicable for inspection and other downstream manufac-
turing applications. Another advantage of using CAD
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representations for inspection is their flexibility. It is pos-
sible to add new object models to the inspection system,
for example.

CAD models are also useful because they offer the
potential of modeling common defects. It is likely that
some of the possible part defects are known a priori and
therefore can be modeled geometrically [93). If a part is
defective, an automated inspection scheme can attempt
to determine the nature of the defect by comparing the
observed defect to the models of common defects. The
generality of the CAD representation also allows new
defects to be quickly introduced into the existing struc-
ture. It should be noted, however, that there do not ap-
pear to be any current CAD packages that allow descrip-
tions of potential defects to be included in the model of a
part; defects must be modeled separately from the part.

4.1.1. Tolerances

When an object is designed using a CAD system, the
collection of part dimensions forms the specification of
an ideal part. But variances in the production process
make it impossible to build a part in exact accordance
with the specification. Thus, the design is usually aug-
mented with information defining acceptable limits (or,
tolerances) on size and shape variations. Historically,
most mechanical design tolerances have been expressed
informally and are mathematically nonrigorous [249).
This makes it very difficult to compute tolerances [249],
especially for automated inspection applications [109].
The study of formal tolerance specification and analysis
has received some attention, especially in the CAD and
manufacturing literature [75, 109, 194, 195, 246, 249).
Most of the current tolerance analysis techniques rely on
the designer to formulate the problem and explicitly re-
solve any ambiguities resulting from groups of related
features or tolerances [64].

One of the problems with tolerancing information is
that there is no robust definition of tolerance [136]. Spe-
cifically, tolerances usually involve no precise definition
of the features and do not formally define the allowable
**size.”” Requicha has presented several papers address-
ing this problem and has proposed that tolerances be
specified using a volume that defines the maximum and
minimum allowable offsets from faces of the object {194,
195). Tarbox er al. [237, 238] have used Requicha’s for-
mulation in the volumetric inspection of objects modeled
with octrees. Turner and Wozny [249] have proposed
that tolerances be interpreted as variables that define a
real-valued normal vector space of model variations.

Deciding what actually needs to be inspected to deter-
mine tolerance fulfillment is difficult. Merat et al. [144]
have formalized the problem of determining the optimal
number of inspection poiats to determine adherence to
tolerance as:
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Givenasurface S,let P = {Psisi=mland @ ={0Q;1sj=n}
be sets of variables representing points on §. Let C be a set of
constraints on the points in P and let D be a set of constraints on
the points in Q. We want to find values for all P, and Q; such that
(1) alf constraints in C and D are satisfied, and Q) the set PU Q is
as small as possible—i.e., as many points of Q are identified with
points of P, and vice versa.

Although this formulation is aimed at determining points
for a coordinate measuring machine (CMM) to sense, it is
also applicable to the related problem in vision-based in-
spection. Apparently, there are only some heuristics
available that attempt to achieve this (144]. Etesami [72],
however, has presented a formulation of the steps neces-
sary to inspect certain circular dimensional tolerances in
2D. Mengq et al. (143] have also presented techniques for
determining suitable representative points for measure-
ment by a CMM. Their method first determines an accu-
rate transformation between the CAD model and the ac-
quired image and then determines if the part falls within
acceptable tolerance limits.

Spyridi and Requicha [228] presented techniques for
determining accessibility of points in dimensional inspec-
tion. Their techniques were designed for CMM measure-
ment, but are also applicable to AVI’s concern with
determining feature visibility. They computed *‘accessi-
bility cones’* for this purpose and then clustered these
cones to determine a minimal collection of viewpoints
necessary for part inspection. Cowan and Kovesi [52)
presented a method for planning camera or range sensor
location based on. resolution, focus, field of view, and
visibility constraints. Their technique was applied to the
inspection of slot dimensions on sheet metal and other
vision applications. In [51], Cowan and Bergman extend
Cowan and Kovesi's method to allow planning of accept-
able camera apertures and location of a light source. Sa-
kane and Sato [206] have investigated placement of light
sources for photometric stereo systems using visibility
constraints calculated on a geodesic dome constructed
about an object model. Tarabanis et al. {233] developed
an optimization procedure that determines acceptable
camera poses and optical settings that allow the viewing
of polyhedral object features subject to visibility, field of
view, focus, and resolution constraints. Tarabanis et al.
demonstrated their technique using a vision system
whose sensors were mounted on robotic arms. Yi et al.
[268] presented an optimization approach to light and
camera positioning based on edge visibility. Mason and
Gruen [140] developed an expert system that determined
camera placement for dimensional inspection using the
CAD model of the product. Trucco ef al. [244] are also
developing techniques that automatically determine opti-
mal sensor position for feature inspection, Additional de-
tails on the recent literature in sensing planning are avail-
able in the survey paper by Tarabanis and Tsai (234].

Several researchers have evaluated the dimensional
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tolerance inspection capabilities of vision systems. Grif-
fin and Villalobos [84] determined if the tolerance re-
quirements of a part design could be met by a visual
inspection system that used binary images of flat (2D)
objects. They evaluated the effects of the three principal
sources of error, which are quantization error, illumina-
tion error, and positional error, to make the decision. El-
Hakim and Westmore [69], Lu and Ahlers [131], and
Wong et al. [261] conducted performance evaluations of
the dimensional measurement capability of stereoscopic
vision systems. Modayur and Shapiro [148—150] exam-
ined the role of measurement uncertainty in determining
acceptability of part dimensions. They propagated uncer-
tainties in detection of edges into a measurement task and
determined that this resulted in decreased inspection er-
ror rates. They modeled their objects using a CAD repre-
sentation that included tolerance information about part
dimensions. In [149], they used adaptive Kalman filtering
to fuse uncertainty in a fixtured part's position with an
estimate of image noise to determine the size and position
of a region of interest for inspection.

With the exception of a few recent releases, CAD mod-
eling packages generally lack capabilities for representing
and manipulating variational information such as dimen-
sional tolerances [136, 180). One problem with current
dimensional tolerancing is that there are often ambigui-
ties in interpretation depending on which area or point on
the object is treated as a datum (i.e., reference landmark)
[136).

Tolerance Analysis and Inspection Plan Generation.
Several methods related to tolerance analysis and genera-
tion of tolerance inspection plans have been presented in
the literature. Merat et al. [144] presented a system that
allowed automatic generation of inspection plans from
certain feature-based CAD models. Their system pre-
sented the feature-based computer-aided designer with a
menu of choices that allowed the designer to describe
feature dimensions and tolerances. The selected dimen-
sioning technique was translated into a representation
that conformed to the ANSI Standard for Geometric Di-
mensioning and Tolerancing. The selection of a tech-
nique also triggered the generation of an appropriate pre-
fabricated inspection plan for use by a coordinate
measuring machine.

Dong and Soom [64] proposed a technique for resolu-
tion of tolerance stackup through a tree search method.
Their technique extracted tolerance information from Ini-
tial Graphics Exchange Standard (IGES) entities that
contained a CAD drawing's text annotations. A tree
structure was constructed from this extracted data which
implicitly contained the relationships between all toler-
ances. Search of the tree allowed recovery of related
tolerances.
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Hermann [95] presented an expert system for planning
dimensional tolerance inspection. His system built the
inspection plan using information about tool and measur-
ing instrument capabilities, including their capabilities
and their cost in time and money. The inspection plan
was designed for use by a human inspector, although it
may be possible to extend Hermann's method to auto-
mated visual inspection. Ruhl and Death [202] developed
a decision support system that aided a user in adjusting a
dimensional inspection system’s lighting and other pa-
rameters to reduce levels of false acceptance and false
rejection. Their system also assisted the user in determin-
ing if the inspection arrangement can reliably measure
the dimensions within the required tolerance.

Marefat and Kashyap [134] used the CAD model of a
part to generate a list of the camera viewing directions
and the feature entities (edges) which must be measured
to verify dimensional tolerances. Their method used a
breadth-first search of a tree that enumerated camera po-
sitions and directions to determine an acceptable geome-
try that would permit the necessary verification.

4.1.2. Features

Form features such as holes and slots usually are not
explicitly represented in current solid models. (The no-
tion of a “‘feature’ is defined only vaguely in the manu-
facturing and CAD literature, usually as a region of inter-
est on a part [145).) As a result, features for inspection
usually have to be extracted from the CAD database.® A
few of the commercial CAD packages are beginning to
support feature-based representations, however. Feature-
based representations allow a higher level of abstraction
than the geometric primitives of traditional CAD systems
and form a connection across design, analysis, and manu-
facturing aspects of CAD {145]. Although there are ad-
vantages to design by features, there are some disadvan-
tages if strictly manufacturing features are used;
functional features may be more appropriate for design
{252]). Merat et al. [144] have identified a dichotomy of
features that includes ‘‘form features’’ and ‘‘geometry-
modifying features.” One class of features includes slots,
through-holes, ribs, pockets, etc. The other class in-
cludes chamfers, fillets, and other features that modify
the geometry that the form features define. Park and
Mitchell [180, 181] have inspected a simple flat 3D object
in a single 2D image using a feature-based CAD modeler.

4.2. Disadvantages of CAD Models

There are a few barriers to the widespread use of CAD
models for automated visual inspection, however. One
problem is that the process of image formation is very

10 The extraction of machinable features from a solid model has re-
cently been addressed by Vandenbrande and Requicha [252].
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complex and is usually not modeled completely by the
CAD model or by a supplemental image formation model
[166, 167]. For example, images often contain specular
reflections, complicating the inspection and/or recogni-
tion tasks. Another problem is that computing offset sur-
faces that are a tolerance offset from curved surfaces is
very difficult, requiring the solution of high-degree poly-
nomial equations [166]. For some surfaces, there are no
known methods to compute exact offsets. Although tol-
erance information can be included in the CAD models
produced by some CAD packages, it has been difficult to
build general-purpose models that combine mathematical
models of the semantics of dimensions and tolerances
with a solid model [109]. The greatest barrier to using
CAD models for inspection or recognition, however, is
that many times the actual manufactured part is different
from the original model [166]. This difference arises due
to adjustments made in the actual manufacturing process
during development. The CAD model should be updated
to reflect these adjustments, but often there is no feed-
back laop from manufacturing back to the design stage.

4.3. Applications of CAD-Based Inspection

Silvén et al. [217-219] developed an experimental
CAD-based visual inspection system for verifying printed
circuit boards using edge information. Their system was
somewhat robust with respect to board alignment. Minor
misorientations were resolved by choosing several line
segments and then rotating the board to align the line
segmented in the sensed image with those in an image
generated from the model [217]. The system used both a
statistical and a structural approach for defect recogni-
tion. The statistical analysis performed well for simple,
tightly controlled wiring patterns, while the structural
analysis worked better in complex wiring patterns. In the
structural approach, defects were recognized by a depth-
first matching of a structural graph derived from a sensed
image with stored structural graphs of commonly occur-
ring defects. Heuristic rules, such as commencing the
search from those nodes which exhibited high matching
scores, were used to simplify the matching [218].

Park and Tou [182] presented a CAD-based inspection
method for examining printed circuit board solder joints.
Fifteen features were extracted from four frames of
512 x 512 intensity images. Each frame was collected
using a different light source. Features were extracted
using CAD models that contained the sjzes and locations
of ideal solder joints and pads. Park and Tou used a fuzzy
set-based classification algorithm to categorize defects
into one of seven classes. The classifier was designed
using training data of defective joints. They reported an
average correct classification rate of 93.9% and a false
alarm rate of 5.6%. In 3.8% of the cases, the defect could
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not be identified. Their system used a simple lighting ar-
rangement and was able to process up to 250 solder joints
per frame. Because four images were used, however, the
inspection process was not very fast.

Takagi er al. [232] used a CAD model of a component-
less PCB to recognize the position of the board. Their
system then inspected the board for solder defects within
certain regions of interest. The method used the change
in reflectance of the joints under illumination with two
different light sources to determine if the joints were ac-
ceptable or not. The method was able to determine board
position, create an inspection plan, and conduct the in-
spection in approximately 6 min. They observed a 99%
rate of defect detection on nine PCBs that were evaluated
10 times each.

Yoda et al. [269] used CAD data to inspect multilayer
wafer patterns of ICs. The system collected gray-level
images using a linear array sensor but performed most of
its image analysis operations using binary images. The
first processing step involved subtracting the input image
from an image of an *‘ideal’’ chip pattern to find candi-
date defect areas. Thresholding and binary morphology
were then used to ‘‘filter’’ the candidate defect areas.
CAD data were used to guide the thresholding and mor-
phology. The ‘‘filtered’” defect candidates were also
compared to the CAD data to make an acceptability deci-
sion. The system’s image processing and defect detection
algorithms were implemented in hardware using a pipe-
lined architecture. The system did not perform 100% in-
spection of the wafer pattern; to save time, a statistical
decision of acceptability was made based on intensive
inspection of three areas on the wafer. Their system has
been used for inspection of 1 Mbit DRAMSs and 256 Kbit
SRAMS at Hitachi’s Musashi Works. The system re-
quired less than an hour to inspect one wafer, which is 30
times faster than human inspectors, and was able to de-
tect more than 95% of the defects on the chips.

Dahle et al. [54] are developing a system that inspects
extruded aluminum profiles using a structured light ar-
rangement. Their system uses information extracted
from CAD-generated models for inspecting surface pla-
narity, gap dimensions, and angular deviations. Their
goal is an inspection rate of 1-2 objects per second, al-
though the current inspection rate is not yet that fast.

Sobh er al. [224, 225] proposed that inspection can be
conducted by first building a CAD model from CMM and
intensity image inputs. The object could then be in-
spected by comparing the CAD model of the object with
the original CAD model.

West et al. [256] developed an experimental CAD-
based system for flat object inspection in intensity im-
ages. Their system inspected positional tolerances of
planar and cylindrical surfaces. They determined approx-
imate object pose using Stockman’s pose clustering tech-
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nique [230] and then inspected distances between edges,
positions of circle centers, and circularity. .

Newman and Jain developed a CAD-based system for
inspection of unmachined iron castings in range images
(158, 162]. The system inspected for common casting de-
fects and verified manufacturing features and dimen-
sional tolerances. Information extracted from a model
built with a commercial CAD package was used in sev-
eral stages of processing, including surface classification,
localization, and inspection. Following image acquisi-
tion, ‘““homogeneous’* regions in the range images were
identified and labeled using a range image segmentation
scheme, based on a split-and-merge region growing
method, and a suite of model-based quadric surface clas-
sification techniques [159]. The system correctly classi-
fied 45 of 47 defective castings and 9 of 11 defect-free
castings. A limitation of the system was that the range
sensor’s configuration could result in object self-occlu-
sions. There was also no method to acquire data from the
underside of the object.

Park and Mitchell [180, 181] developed an experimen-
tal system for feature-based inspection of objects in in-
tensity images. Their system was designed to inspect di-
mensional tolerances and for the presence or absence of
features such as holes, slots, edges, and vertices. Their
research was aimed at automatically generating an in-
spection plan based on 2 CAD model of a part. They used
a polygonal B-rep as their CAD model. This model was
extracted from a feature-based CAD model whose fea-
tures were subtractive (machining) operations that re-
moved material from a workpiece. In {180}, they esti-
mated part position using a variant on Bolles and
Horaud’s [26] local feature focus method. Specifically,
they used holes/circles, line fitting, and morphological
image operations as well as the pairwise relations be-
tween these features in a hypothesize-and-verify scheme
to recognize the part and determine its position. Park and
Mitchell restricted object position and orientation, how-
ever,; i.e., they did not allow six degrees of freedom in
pose. After the past was identified, the dimensional toler-
ances extracted from the CAD model by the inspection
planning algorithm were examined. Park and Mitchell did
not quantify the performance of their technique. In [181],
they used depth-first search to match intensity images to
60 stored views of a model (i.e., intensity images taken
from 60 “‘evenly-spaced’ viewpoints). This allowed for
six degrees of freedom in pose and allowed the estimation

of approximate pose. Pose was refined by matching edge

features of the 10 highest ranking coarse matches.
5. CONCLUDING REMARKS

In this paper, a taxonomy of the stages of inspection
was presented. An overview of the automated visual in-
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spection systems reported in the literature was also pre-
sented. The methodologies of the various inspection sys-
tems were discussed when they were known. In addition,
we have highlighted the commonly used techniques in the
literature. Special attention was placed on the use of
CAD data in inspection.

Since the last survey on AVI, a number of trends have
developed, including more systems utilizing CAD data,
an increasing number of PC-based solutions, an increased
usage of multiple processors and multiple sensors, and a
Jarger number of systems using 3D, X ray, ultrasound,
and other sensing modalities. We believe that these
trends will continue in the next few years. PC-based solu-
tions will probably become more feasible for many appli-
cations as processing capability increases and price de-
creases, although it is unlikely for PC-based systems to
become fast enough within the next 5 years for the most
intricate inspections, e.g., IC pattern inspections. It is
difficult to predict which CPUs will be the most popular
for inspection applications in the next few years, how-
ever, there will likely be a large number of projects that
make use of the next generation CPUs such as the MC
68060, Pentium, and Power PC CPUs, as well as the pop-
ular workstation RISC CPUs.

Future research efforts in automated visual inspection
will likely focus on making the systems more flexible and
on adding inspection capability for the free-form sur-
faces. In industrial inspection applications, there will also
likely be increased exploitation of CAD models as manu-
facturing enterprises become more integrated. The imme-
diate efforts of applied AVI systems will probably center
on improving the speed of inspection through the use of
better inspection algorithms, faster processing units, and
multiple processing units. Additional work will also be
concerned with improving ease of operation and pro-
gramming of the AVI systems. The cost of many AVI
systems is also fairly high and must be reduced for fur-
ther automation of inspection to be profitable. Finally,
tolerance specification and analysis will receive atten-
tion, perhaps leading to the adoption of accepted meth-
ods of tolerance and datum specification common to both
design and inspection. It is necessary for the computer
vision and machine vision communities to work closer
together in problem resolution, too. This would allow
real (not contrived) problems to be tackled by the com-
puter vision community as well as avoid duplication of
effort and promote dispersal of successful methodologies
into both communities.
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