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Abstract

This thesis describes sheet-of-light range imaging and Doppler radar signal processing. The
focus is on implementing algorithms on bit-serial SIMD processor arrays.

The reduction of 2D sensor data to 1D position data in sheet-of-light range imaging is a
task well suited for smart optical sensors combining image acquisition and image processing
on a single chip. Several smart sensor approaches aimed at sheet-of-light range imaging are
presented. Among these is a novel sheet-of-light range imaging architecture based on the Near-
Sensor Image Processing concept. We predict that this architecture is capable of range imaging
with range pixel (rangel) frequencies up to 25 MHz while keeping a relative accuracy in the
range of 1/500 and delivering intensity data concurrently with range. We also present several
sheet-of-light range imaging algorithm implementations using the commercial smart image
sensor MAPP2200. With this system we can reach up to 5 MHz rangel frequency with a rela-
tive accuracy of 1/500. General sheet-of-light system setup and calibration issues are also cov-
ered.

We also present how three different Doppler radar algorithms can be implemented on dif-
ferent versions of the VIP, Video Image Processor, architecture. VIP is a family of bit-serial
SIMD processor arrays aimed at real-time signal processing. We present the design of three
VIP architectures, RVIP, FVIP, and MVIP. The Radar VIP, RVIP, is aimed at ground-based sur-
veillance radar applications. The Flight VIP, FVIP, is aimed at airborne search radars. The
Matrix VIP, MVIP, finally, is aimed at airborne space-time adaptive processing in phased array
antenna applications. Common for all these radars is that the real-time processing demands are
very high, ranging from 2 to 40 Giga MAC operations per second, and that the IO data rates
are high, up to 1.5 Gbit per second. FFTs are an important part of Doppler radar signal process-
ing and FFT implementations on a VIP array are therefore presented in detail.

The RVIP architecture has been manufactured by Ericsson Microwave systems for uise in
their future radar systems.
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About this thesis

Background

This thesis describes work in two seemingly very disparate areas, triangulation-based range
imaging using sheet-of-light illumination, and bit-serial Single Instruction stream Multiple
Data stream, SIMD, architectures aimed at Doppler radar signal processing. However, both
these projects share the same origins in the SIMD-architecture/Smart-Sensor research at
Linkdping University [5]. All architectures described in this thesis evolved at least partly from
the PASIC project which started in the late eighties at Linkping University [2], [4], [29], see
Figure 1. PASIC, which stands for Processor, A/D-converter and Sensor Integrated Circuit,
combined a fully addressable 128x128 photo diode sensor with a linear array of A/D convert-
ers and bit-serial Processing Elements, PEs, on a single chip. PASIC and LAPP1100, Linear
Array Picture Processor, [12] together evolved into the MAPP2200, Matrix Array Picture Pro-
cessor, [9], [32], a commercial smart sensor from Integrated Vision Products, IVP, in
Linkdping. MAPP2200 contains a 256x256 photo diode array and a linear array of 256.A/D °
converters and PEs on a single chip.

A novel imaging and signal processing idea called Near-Sensor Image Processing, origi-
nally implemented in the LAPP architecture, then led to the evolution of the 2D NSIP architec-
ture [10], [11], [30], [33]. In the NSIP architecture the sensor and processing element is
combined into a compact Sensor-Processor Element, SPE, and the SPEs are arranged in a 2D
architecture. The NSIP architecture is capable of general low-level image processing but a
simplified version of the NSIP architecture called NESSLA [16], [23] was developed for sheet-
of-light range imaging applications. This architecture, together with several sheet-of-light
range imaging algorithm implementations on the MAPP2200 sensor [16], [17], [18], [22],
[271, [28] are presented in Part I of this thesis. We also cover optical design, calibration and
general signal processing aspects of sheet-of-light range imaging as well as comparisons with
other smart sensor architectures aimed at this particular application. This is an reworked edi-
tion of my licentiate thesis [16] together with work on novel MAPP2200 algorithms [18], [27],
[28] and calibration [19]. Three of the MAPP2200 algorithms and the calibration routines have
been implemented in a sheet-of-light range imaging software package called RANGER com-
mercially available from the MAPP2200 manufacturer IVP since mid 1994 [26]. The NSIP
work in [16] have been updated to include experimental results from two general NSIP chips
that have been designed and tested to verify the concept of NSIP as a good sheet-of-light range
imaging architecture [7], [8].

During the work with PASIC, its processor part was discovered to be very powerful on its
own. This resulted in a processor design called VIP, Video Image Processor [3], [6], [31]. VIP
is a 1-Dimensional bit-serial SIMD architecture. The combination of many small but powerful
Processing Elements, PEs, on a single chip gives a very effective row-parallel image process-
ing computer for demanding low-level real-time applications.

ix
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FIGURE 1.
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The VIP design also proved to be effective for Doppler radar signal processing [15], and
Part II of this thesis describes the Radar-VIP, RVIP, architecture aimed at ground-based sur-
veillance radar Signal processing [1], [25] and its successor for airborne applications, the
Flight-VIP, FVIP, [24], [35]. We also present ideas for the Matrix-VIP, MVIP, architecture
aimed at future airborne space-time adaptive phased-array processing.

The RVIP chip has been implemented by Ericsson Microwave systems, EMW, (formerly
Ericsson Radar Electronics) in Mdélndal for use in ground based surveillance radar applica-
tions. Two other VIP architectures, the Wood-VIP (WVIP) [13] and the Infra-red-VIP (IVIP)
[34], [21] have also been developed but are not presented in depth here. For more information
on the IVIP and WVIP architectures we refer to [14]. The FVIP, WVIP and IVIP designs have
been developed concurrently and are very similar. We also present implementations of Fast
Fourier Transforms, FFTs [20], on VIP arrays since this is an important part of the Doppler
radar signal processing.
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Thesis overview

Part I describes sheet-of-light range imaging, and the goal is fast imaging. Using a standard
video sensor gives us very slow imaging speed, and the work focuses on effective peak detec-
tion algorithms and their smart sensor implementations. After the introduction about different
active range imaging techniques in chapter 1, I present a thorough investigation of the optical
design of a sheet-of-light system in chapter 2. I derive equations mapping from sensor to world
coordinates and describe how to apply the Scheimpflug condition so that the whole light-sheet
can be viewed in perfect focus.

In chapter 3 I present a novel sheet-of-light camera calibration scheme based on approxi-
mations of the triangulation equations derived in chapter 2.

Different suitable peak detection algorithms are studied in chapter 4, and I present simula-
tions of the accuracy of the algorithms with and without signal degradation by noise.

An overview of different sensor designs aimed at sheet-of-light range imaging are given in
chapter 5.

In chapter 6 1 present the novel NESSLA sensor architecture. NESSLA is a special pur-
pose NSIP-type architecture with a 2D array of Sensor-Processor Elements and it is capable of
very fast sheet-of-light range imaging. Experimental results obtained using a general 16x16
SPE NSIP chip are given to verify the NESSLA concept.

Chapter 7 presents implementations of different peak detection algorithms on the
MAPP2200 smart sensor, and I describe how to achieve fast and accurate imaging. The algo-
rithms in sections 7.10-7.13 were mostly devised by E. Astrand.

I have implemented the presented calibration routine and the algorithms in sections 7.3-7.6
in the RANGER sheet-of-light range imaging software package available from the MAPP2200
manufacturer IVP. '

Part I ends with chapter 8 which is a short discussion of the presented smart sensor archi-
tectures.

Part II of this thesis describes the evolution of different VIP architectures for Doppler
radar signal processing applications. Much of this work was performed in a large group of peo-
ple from Ericsson Microwave systems, the VLSI group at Link&ping University, and from the
Image Processing Laboratory at Linkdping University, where I work.

Chapter 1 gives an overview of the history of the VIP architecture and describes two simi-
lar linear array SIMD architectures.

Chapter 2 describes a few of the principles and the signal processing algorithms of pulsed
Doppler radars.

Chapter 3 describes an LPD algorithm and how this algorithm led to the evolution of the
RVIP architecture. The RVIP PE redesign mainly affected two parts of the PE, the IO-register
and the Multiplier-Accumulator. I was involved to a high degree in the evolution of the Multi-
plier-Accumulator design, where I studied several different designs to find the best trade-off
between high performance and small area. The combination of the parallel coefficient load port
and the dual-ported accumulator increased the PE performance for multiply-accumulate opera-
tions three to four times compared with the original VIP PE design. We also present an over-
view of the system design with several chips and a local micro controller packaged together in
a 512 PE system. For this part I worked on the micro controller design.

Xi
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Chapter 4 then presents an MPD algorithm and how this led to the evolution of the FVIP
architecture. There was very little architecture development in FVIP and my work was concen-
trated on the problem of mapping the 2D input image on a linear array architecture. A compli-
cation was that the image size varied continuous between three different aspect ratios, and that
the architecture and algorithm mapping had to be able to handle all three formats.

I also studied how 1D FFTs, which are a major part of the MPD algorithm, could be imple-
mented efficiently on FVIP, and this work is presented in chapter 5. One of the main problems
with the FFT implementation was that the organization of the samples within the array made it-
impossible to neglect the bit-reverse sorting and butterfly-scheme communication problems.

In chapter 6 1 present ongoing work on how to map a space-time adaptive processing
(STAP) algorithm on a new VIP architecture called MVIP. Here I have devised a possible map-
ping of the 3D data matrix and algorithm on an MVIP array. To solve the difficult communica-
tion problems the linear array has been augmented with limited 2D communication capacity. A
new floating-point version of the MVIP PE is also presented.

Part IT ends with chapter 7 which compares the VIP performance with two other architec-
tures, and describes possible future work within the VIP project. There is also a short list of
abbreviations used in Part II.
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Chapter 1

Introduction

1.1 Range Imaging

Normally, the image from a camera depicts the intensity distribution of the viewed scene as in
the left image in Figure 1.1. A range camera on the other hand, depicts the distance from the
camera to the objects of the scene as in the right image in Figure 1.1. In this range image the
printed text is no longer visible, while the can opener and edges show up because of their dif-
ference in height. Interestingly, range and intensity images may also be combined as in
Figure 1.2.

Range images are used in many applications, e.g. road surface surveying [9], industrial
inspection [4], [50], [45], [65], and industrial robots [63]. In road surface surveys the goal is to
measure cracks and ruts in the road surface. In industrial inspection the goals are often to deter-
mine if fabricated parts are within the tolerated sizes and/or orientations. In industrial robot
applications we need to find Jocations and sizes of objects for navigation and/or object manip-
ulation purposes.

Range images are obtained in many different ways. Traditionally these are separated into
two categories, active and passive range imaging respectively. In active range imaging a dedi-
cated and well defined light source is used in cooperation with the sensor. In passive range
imaging no special light (except ambient) is required. The most common passive method is
stereo vision where at least two images from different positions are used in a triangulation
scheme. More detailed descriptions of different passive range imaging methods can be found
in for instance [24], [1] and [22].

FIGURE 1.1.

An intensity and a range image of a fish can. Dark areas are far away from the camera,
and light areas close.
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FIGURE 1.3.
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Single spot range imaging. Note that the range can also be defined as the distance between
the sensor and the illuminated object instead of the distance between the light source and

the object.
FIGURE 1.4.
Light source @ 2D
Sensor
X-axis
Range Scanning
X

—

Sheet-of-light range imaging.
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FIGURE 1.5.
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Sensor

Range imaging with gray coded light.

It would seem that the gray coded light method has speed advantages over the other active
triangulation methods since fewer sensor integrations are needed. However, one problem
seems to be how to make a high intensity projector that can switch between patterns as fast as
the sensor can integrate images. Hence, the trouble spot is the design of the illuminator rather
than the sensor: Furthermore, any object movements between the integrations can give errors
in the range image since the triangulation is performed after the logN integrations under the
assumption that the illuminated scene was static. Admittingly, the errors are minimized and not
catastrophic due to the properties of the Gray code. In the other methods, however, each single
sensor integration gives one set of range values. Therefore any object movement between inte-
grations only gives a time dependent range image, where each range datum was correct when it
was acquired.

In gray-coded light systems ordinary tungsten or halogen lamps are predominant instead of
the laser light predominant in the other methods. We note that tungsten and halogen lamps are
less harmful for the eyes than laser light and therefore better suited for measurements of
human body parts.

The single spot technique requires advanced mechanics to allow the spot to reach the
whole scene. At least two synchronous scanning mirrors are required. The advantage is that a
relatively simple linear sensor, e.g. of the Position Sensitive Device type, can be used. But, the
use of only one single sensing element often reduces the acquisition speed; the system pre-
sented by Rioux [49] reaches a rangel (range pixel) speed of 10 KHz. However, a recent sys-
tem by the same research group actually outputs range data at RS-170 compatible video rate
[5].

In the case of sheet-of-light systems, the projection of the light can be made with one single
scanning mirror which is considerably simpler than the projector design for gray coded light,
or the two mirror arrangement for single spot. Actually, in the sheet-of-light systems presented
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in this thesis the sheet-of-light is not swept at all. Instead the apparatus itself or the scene is
moving. Thus, the camera system itself has no moving parts. In principle, however, the sensor
designs to be presented are just as applicable to sweeping sheet-of-light.

Finally, it should be noted that a moving scene or moving apparatus rule out the gray-coded
methods since they require a static scene during the logN integrations.

1.3 Sheet-of-light range imaging

In a sheet-of-light system range data is acquired with triangulation. The offset position of the
reflected light on the sensor plane depends on the distance (range) from the light source to the
object, see Figure 1.6. Using trigonometry we can solve the equations for the range if we know
the distance between the laser and the optical center of the sensor (the baseline) and the direc-
tion of the transmitted ray. The third triangulation parameter, the direction of the incoming
light ray, is given by the sensor offset position.

For each position of the sheet-of-light the depth variation of the scene creates a contour
which is projected onto the sensor plane, see Figure 1.6B-C. If we extract the position of the
incoming light for each sensor row we obtain an offset data vector that serves as input for the
triangulations.

To make a sheet-of-light the pencil sharp laser spot-light passes through a cylindrical lens,
see Figure 1.6A-B. The cylindrical lens spreads the light into a sheet in one dimension while it
is unaffected in the other. A sheet-of-light can also be made using a fast scanning mirror mech-
anism [4], an array of LED’s [45], or with a slit projector [45].

FIGURE 1.6.
FIGURE 1.6A FIGURE 1.6B FIGURE 1.6C
Laser Laser
Sensor Area
Baseline
-
Offset

Scene Contour

A range camera using sheet-of-light. Figure 1.6A shows the illumination with the sheet-of-
light perpendicular, Figure 1.6B parallel to the plane of the paper. Figure 1.6C is a snap-
shot of the sensor area.

As mentioned, two-dimensional range images can be obtained in at least three ways: by
moving the apparatus over a static scene as in a road surface survey vehicle, by moving the
scene as a conveyor belt, or by sweeping the sheet-of-light over a static 3D-scene using a mir-
ror arrangement. In the two first cases the distance can be computed from the offset position in
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each row using a simple range equation or a precomputed lookup table. The third case is more
awkward since the direction of the emitted sheet-of-light changes so that a second triangula-
tion parameter becomes involved for each light sheet position.

In any case, for each illumination position and sensor integration, in the first processing
step, the output from the 2D image sensor should be reduced to a 1D array of offset values.

Many commercial sheet-of-light range imaging systems are based on video-standard sen-
sors. Such a sensor has a preset frame-rate, which in the PAL standard is specified as 50 Hz.
This limits the range profile frequency to 50 Hz assuming that the processing can be made in
real-time. A 256x256 range image is then obtained in 5 seconds, and the range pixel frequency
is 12.8 KHz. Even if the frame rate could be increased the sensor output is still serial which
would require very high output and processing clock frequencies and possibly increase the
noise level.

In [6] Besl reports on a few commercial sheet-of-light range imaging systems with CCD
video-type sensors, but none of these have higher rangel frequencies than 5 KHz. As will be
shown below, combining sensing and processing on the same chip implies that shorter integra-
tion times and considerably faster range imaging can be obtained.

1.4 Smart sensors

Part I of this thesis deals mainly with smart optical sensors and some initial comments on the
concept seem appropriate. A smart sensor is a design in which data reduction and/or process-
ing is performed on the sensor chip. Sheet-of-light range imaging is well suited for smart sen-
sor architectures since each row of sensor data shall be reduced to one offset position value for
the incoming light sheet.

In Linkdping the first smart sensor was LAPP1100 [19], conceived in the early eighties.
LAPP1100 combines a linear photo diode array with a linear array of bit-serial processing ele-
ments. It was followed by the PASIC design [68] in the late eighties. PASIC was a general pro-
grammable smart sensor, consisting of a 2D sensor array combined with a 1D array of A/D
converters and processing elements. No PASIC chip was built, but the ideas from this design,
combined with the LAPP1100 architecture became the MAPP2200 sensor [40], [17] now
being manufactured by IVP, Integrated Vision Products, in Link&ping.
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Chapter 2

Optical design for sheet-of-light

2.1 Geometry definitions

In Figure 2.1 we show the coordinate system to be used in the sequel. The world coordinate
system is (X,Y,R) and the sensor coordinate system is (S,7,A). The transformation between the
coordinate systems can be described by two translations and one rotation (Translation B along
the X-axis, rotation 90-o. around the Y-axis and translation -b, along the A-axis). As will be
shown later, there might also be a skew of the (S,7,A) system so that A is non-orthogonal to the
(S,7) plane.

Since the Y and T axes are parallel, range measurements along the R-axis are independent
of the sensor t-coordinate. This reduces all geometric range discussions to 2D, and we can
view the system as in Figure 2.2 (for geometry definitions see Table 2.1). Here we only con-
sider a non-scanning light-sheet and therefore the illumination angle 7y is set to 90° unless oth-
erwise is stated. This simplifies the range expressions somewhat. Also, the laser axis is
considered vertical unless stated otherwise. A discussion on different scanning techniques can
be found in [31].

FIGURE 2.1.

2D
Sensor

Light source

—

A Sheet-of-light system with world and sensor coordinate system definitions.

=
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TABLE 2.1.

Word Short Definition
Optical center ocC Position of the center of the sensor system lens.
Optical axis OA The A-axis, passing through the optical center.
Laser axis LA Optical axis of the laser system (the R-axis).
Laser origin LO Position along the laser axis closest to the optical cen-
ter. Origin of world coordinate system.
Baseline B Distance between the optical center and the laser ori-
gin.
View angle o Angle between the optical axis and the baseline. Also
the angle between the laser sheet and the normal of the
optical axis if y= 90"
Illumination angle Y Angle between the baseline and the laser sheet.
90°unless deflected by a mirror.
Sensor angle B Angle between the normal of the optical axis and the
SEensor s axis.’
Sensor position st Sensor coordinates along rows and columns. Origin at
optical axis
Focal length f Focal length of the lens.
Lens aperture d Effective diameter of the lens.
Sensor distance by Distance along the optical axis between the optical
center and the sensor.
Focus distance ag Distance along the optical axis between the optical
center and the sheet-of-light.
Range 1(s) Range (distance), parallel with the range axis, from
LO to a point in the laser sheet from where a ray ema-
nates and hits the detector at s. r(0) = Ry is the range of
ray going in the optical axis.
Sensor height hg Height between the baseline-axis and the sensor center
column position (s = 0)
Sensor baseline byg The base in the triangle made by the optical axis, the
sensor height and the baseline-axis.
Pixel pitch Ax Inter-pixel distance on the sensor.
Sensor row size N The number of pixels in a sensor row.
Light angle p Angle between a light ray and the optical axis
Max angle Pm Maximum angular deviation from the optical axis.
Range interval Rr Total range covered by light rays offset with Ipl < pp,

from the optical axis.
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FIGURE 2.2,

Laser
axis
; Sensor
Laser Plane
- Optical
center
LO /
Laser 1
sheet
Optical
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. Deflected
"-.,__ laser sheet

Hlustration to the definitions made in Table 2.1.

Numerical examples are used in the sequel to give a better intuitive understanding of the
problems and the derived equations. We consider two systems with equal view angles and
approximately equal range interval but with different optics. One system utilize a “normal”
lens with f= 18 mm, the other one a “zoom™ lens with f=75 mm. We also consider two aper-
tures for each lens. The light sensitivity of a lens is expressed by the f-stop (relative aperture) 7
d. The used f-stops are 5.4 and 1.8 which give the lens apertures 3.3 and 10 mm for the 18 mm
lens and 14 and 42 mm for the 75 mm lens. Typical parameters are

View angle o 45°
Range intexrval Rq 500 mm
Sensor row size N 256
Pixel pitch Ax 32 pm
Focal length £y 18 mm
Lens aperture dp 3.33 mm
Lens aperture dy 10.0 mm
Base line B; 520 mm
Focal length fq 75 mm
Lens aperture dy 13.9 mm
Lens aperture dg 41.67 mm
Base line B, 2282 mm
I-11
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2.2 The Scheimpflug condition

In Figure 2.3 we see the sheet-of-light geometry for arbitrary laser and sensor angles, and
for an arbitrary incoming light ray. The relation between the focal length and the sensor and
focus distances is dictated by the lens law

2.1)

+

51—
=
o@"l.—

FIGURE 2.3.

A setup with arbitrary sensor and laser angles and an incoming light ray at an angle p.
For an arbitrary light ray making an angle p with the optical axis and hitting the sensor at s,
we can find the corresponding orthogonal distances a and b from the optical center to the laser
sheet and the sensor. The equations are
9

=1 + tanp tana) 22)

by
. (1 -tanptanP) 23)
If we want the ray going to s to be focused on the sensor plane, a and b must satisfy the lens
law (2.1). From (2.2) and (2.3) we get

};}) = alo(1+tanptana) +51;(l—tanptanﬁ) (24)
(TR e
We see that the lens law is satisfied for arbitrary angles p if
%‘" . taT:E @.6)
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This is satisfied in the special case

o=B=0 2.7
and in general for
bytanol
tanp = 0% 2.8)
a4

The condition in (2.7) implies that the sensor is orthogonal to the optical axis and that the opti-
cal axis is orthogonal to the laser axis. The condition in (2.8) is known as the Scheimpflug con-
dition [6], and defines the tilt of the sensor plane to achieve focus over the whole sensor plane
on the sheet-of-light when the optical axis is not orthogonal to either plane. In normal cameras
the sensor angle is fixed and orthogonal to the optical axis, which means that only the special
condition in (2.7) can be satisfied.

If we have a setup which satisfies the Scheimpflug condition in (2.8), how large is the angle
B? Numerical examples are given in Table 2.2. As expected we find that B is very small for
view angles below say 70°. Notice also that the angle is almost independent of the lens param-
eters for a given range interval and view angle.

TABLE 2.2.
f by a b
18 mm 18.4 mm 45° 1.43°
75 mm 76.8 mm 45° 1.36°
18 mm 184 mm 63° 2.81°
75 mm 76.8 mm 63° 2.67°
18 mm 18.4 mm 85° 15.98°
75 mm 76.8 mm 85° 15.21°

As said before, in normal cameras the sensor plane is orthogonal to the optical axis and if
we focus the camera on the light plane as in Figure 2.4 the focus condition in (2.7) is satisfied.
Unfortunately this arrangement is not very attractive. If we assume that the objects in the scene
are planar and parallel with the optical axis, then when an object is higher than the range R, the
laser light will by all likelihood be occluded, and no light will reach the sensor.
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FIGURE 2.4.

Laser
 —
Optical
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-0 B =a, J' Sensor
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A system with the sensor aligned with the optical axis orthogonal to the light plane.

However, there might be applications where the surface orientations of the objects have lit-
tle variation. The system in Figure 2.4 should then be arranged so that the object surface nor-
mal approximately bisects the 90° angle between the laser sheet and the optical axis. For a case
where the 3D scene moves horizontally the setup should be tilted 45° as shown in Figure 2.5.

If we use the setup in Figure 2.4 but move the sensor so that the whole sensor is above the
optical axis we still satisfy (2.7). We then get the setup in Figure 2.6. However, normal lenses
attenuate the intensity across the image plane with the factor cos®p [24]. Therefore, in
Figure 2.6 where we utilize a shifted interval of the sensor plane off the optical axis, there is a
price to pay in the form of uneven sensitivity along the sensor plane. Also, lenses are often less
than ideal for light rays far away from the optical axis, which results in distorted images.
FIGURE 25.

Sensor
Plane
Optical
Centre

Baseline

The system in Figure 2.4 tilted 45°.
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FIGURE 2.6.
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A system with the sensor offset from the optical axis.

The most common arrangement for sheet-of-light systems is to tilt the camera and its opti-
cal axis so that the view angle o is substantially larger than zero, typically in the range of 30-
60°, see Figure 2.7. This reduces the problem of occlusion, but the conditions in (2.7) or (2.8)
are not satisfied. Furthermore, the linearity found between range r and sensor position s in the
previous cases is lost since linearity is only found when the sensor and laser planes are parallel.
To regain linearity we can tilt the sensor as in Figure 2.8, Here, the sensor and view angles o
and P are equal but with opposite signs. Unfortunately this setup dissatisfies the conditions in
(2.7) and (2.8) even more, and therefore gives more unfocused (unsharp) images. If we want a
focused design we should use a setup as in Figure 2.7 but instead tilt the sensor according to

the Scheimpflug condition (2.8).

FIGURE 2.7.
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A system with the sensor aligned with the view-angle approximately 40°.
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FIGURE 2.8.
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A setup for linearity between the sensor position and the range data.

2.3 Equations for range
From Figure 2.2 we have
Bh
Ry =2 2.9)
b 10 '

For an arbitrary light ray, offset from the optical axis with an angle p, and hitting the sensor at
s, we get the geometry in Figure 2.9 where

;= 11_?,_" (2.10)

FIGURE 2.9.

Geometry for an arbitrary sensor alignment, and an arbitrary input ray.
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The geometry for the triangles give

b,sin (90 + bycos

bi+b, = sin(290—(9(a +ﬁl;)) = coso(a +B[3) 211
bysinol bysino.
= S (90— («+P)) _ cos (@+P) @.12)
h = (L-s)cos(o+p) (2.13)
b, = (L-s)sin (ct+p) (2.14)
Using (2.11) - (2.14) in (2.10) yields -
bysinal

_ (m—s)cos (o+B) 015

bycosP [ bysino
cos (o +B) \cos (a.+B)

s] sin (o + B)

This rather cumbersome equation holds for all sensor and laser alignments including the Sche-
impflug geometry. For the special geometry in Figure 2.4 we have o = B = 0, which simplifies
(2.15) to

r= b_o (2.16)
For the geometry in Figure 2.7 we have B = 0, which reduces (2.15) to
B (bytano - 5) coso bytanc — s
= = (2.17)
b, . by + stano.
——— — (bytan@ - 5) sina.
cos 0L
For the geometry in Figure 2.8 we have o = - which gives the range equation
B (bysino. -
r = Bbosine=s) @.18)

bycoso

As mentioned above the most common setup is the one in Figure 2.7, with the non-linear range
equation (2.17). The non-linearity means that a constant precision As in the sensor position s
results in a variable precision Ar

-Bb,
(bycosa + ssinor) 2
The system should be designed with this in mind. The function |Ar is plotted in Figure 2.10 for
the two cases f= 75 mm and f = 18 mm and the range interval ~350 mm. Here we see that the

difference in Ar is much larger for the smaller f value. This is an indication that a larger f (a
zoom lens) gives better linearity.

Ar = As (2.19)
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FIGURE 2.10.
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Plot of range increments |Arl as a function of the sensor offset using two different lenses
f1 =18 (solid) and f, = 75 (dotted). s = 0 is sensor offset position 128.

To find the range interval Ry for a given setup we insert the extreme values of s (+/- NAx/2)
into equation (2.17) and after simplification we obtain

_ 4BbyNAx (1+ (tan0)”)  4BfNAx(1+ (tanc)?)
"7 4p%— (NAxtano) 4f — (NAxtanq)

This equation can be useful if we want to determine the range interval of a given system, or for
instance if we want to redesign a system keeping the same range interval but using a different
focal length or view angle. )

(2.20)

2.4 Equations for width

In Figure 2.11 we see the correspondence between sensor coordinate ¢ and world coordinate y
which can be expressed as
a-t

= -2t @2.21)

where a and b as functions of p are defined in (2.2) and (2.3) and as shown in Figure 2.12 tanp
is found using

scosf

tanp = ———
P by + ssinB

(2.22)
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FIGURE 2.11.

The width geometry.

FIGURE 2.12.

Sensor
plane B

bebg+ssinp

The focus distance as a function of the incoming light angle p.
If we combine these equations we obtain

y= =t-B t 2.23)
cosct (by + ssinP) ( 1+ M)
by + ssinf
If B=0 (2.23) can be simplified to
)= -t-B ___-tB 2.24)

bocosa(l + stan(x) bycos o + ssino

0
From (2.23) and (2.24) it is evident that y decreases for increasing s and constant 7.

As we have shown the range r and width y can be determined from the sensor offset posi-
tion (s,?) if we know the system parameters. However, in practice these range equations are not
often used to obtain the range in a sheet-of-light range imaging system. Instead the range val-
ues (ry) and their corresponding offset values (s,#) are registered in a calibration procedure,
and stored in a look-up table which later can be addressed with the sensor offset positions. The
advantage of the calibration solution is that it may automatically compensate for lens and sen-
sor aberrations [55] which are not accounted for in the formulas above. Sheet-of-light range
camera calibration is discussed in chapter 3. Nevertheless, the formulas (2.15) - (2.24) should
give a solid qualitative understanding of the design problems for sheet-of-light based ranging
systems.
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2.5 Depth of focus

The lens parameters affect the depth of focus for the system. To correctly design a system we
must know the tolerances for the sensor and sheet-of-light alignment. Specifically, we want to
know how much the sensor can deviate from the Scheimpflug condition (2.8) without loosing
much focus. To this aim we define the sensor to be in focus when the focusing ray-cone has a
cross section width which is less than 1/2 pixel pitch, see Figure 2.13.

To be in focus, the sensor must be aligned so that the maximum deviation Ab from the cor-
rect distance b, is smaller than the depth of focus distance Ab,. For simplicity, in these compu- "~
tations we only consider the case f=0 but the results should be valid for most B within the
narrow range given in the first four rows of Table 2.2 above.

FIGURE 2.13.

b

A
y

AB NAx/2

A

Depth of focus geometry. The broad line depicts the sensor plane.

The depth of focus distance Aby,where the ray-cone has a cross section diameter which is
half the pixel pitch Ax, is

Aby = oA 2.2
o= Sg (2.25)
The length Ab as a function of the sensor mis-alignment Ap is

Ab = EA%“AE (2.26)

and it denotes how much the distance b deviates from b, at the edge of the sensor. If this
change in b is smaller than Ab, according to (2.25) the sensor is in focus, which gives a condi-
tion for the maximum deviation angle AB,,

sinAB,, = Nd~ N 2.27)

The only parameters that determines A, is the sensor row size N, the lens diameter d and the
focus distance b, (the sensor row size N and the f-stop f/d). Numerical examples are given in
Table 2.3. We notice that the sensor angular alignment is rather critical, especially for small f-
stops f7d, but that for f/d = 5.4 AR, is almost as large as B.We can conclude the depth of focus
discussion by noting the following. If we have high laser intensity (good signal to noise ratio)
we can use a large f-stop, and then we can possibly achieve sharp (focused) images without
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using Scheimpflug sensor geometry. If, on the other hand, we are forced to use a small f-stop or
a large view angle we should definitely align the sensor according to the Scheimpfiug condi-
tion to achieve sharp range images.

TABLE 2.3.
f/d ABm Aby,
18 0.41 0.03
5.4 1.24 0.09

2.6 Accuracy limitations

The limited resolution of the sensor limits the possible ranging accuracy. The range uncertainty
Ar as a function of the sensor uncertainty Ax (= As if no sub-pixel accuracy is used) and the
sensor position s is obtained as follows, see also Figure 2.14.

s = bytanp s (2.28)
ap, = Ax(eosp)® _ Axby (229)

Ps B 7 2

() by+s
r = Btan (0. + p) (2.30)

2 2 Axb 2 2
ar=B@rp)B _ p B rr SPB Ay @31)
(cos (0. +p)) B by+s” B

Let us increase the angle o and assume r>> B, by >> s and b, = f. Then (2.31) reduces to

2

’
Ar = Axf-E (2.32)
This equation shows us that the range uncertainty increases proportionally to the square of the
range r. This makes it clear that range imaging based on triangulation only is attractive for
short range distances where the baseline distance is at least in the same order of magnitude as
the range distances. Further discussion on accuracy limitations due to sensor resolution can be

found in [28].

Another limiting factor is the thickness of the laser sheet, see Figure 2.15. To give an
unambiguous range value the reflected laser light should only illuminate one pixel in each sen-
sor row. Each pixel interval Ax corresponds to a range increment Ar according to (2.32). For a
given maximum view angle 0+p, and resolution Ar we get a maximum laser sheet thickness m
as

m<Artan (90-0.—p,) (2.33)
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FIGURE 2.14.

Sensor
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Optical
center

The accuracy limitations due to the sensor resolution.

FIGURE 2.15.

The resolution limit due to the thickness of the laser sheet.

In [44] a theoretical value for the maximum range error due to laser sheet width is given,
but it is only valid for center-of-gravity sensor offset position computations. However, we can
observe that the larger baseline we have, the smaller view angle o. we get, and therefore better
accuracy for a given laser sheet thickness. Figure 2.16 gives an example of what happens with
a laser sheet which is thicker than the limit in (2.33). We see that the range values are incorrect
where the maximum intensity change to/from very low values. When one part of the laser
sheet illuminates an area of low reflectance and the other part illuminates an area of high
reflectivity the maximum intensity along the sensor row gets shifted left or right away from the
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center-plane of the sheet as shown in Figure 2.17. Off course, if the object reflectivity is con-
stant a wider laser sheet can be used and therefore the offset position can be obtained with very
fine sub-pixel accuracy, see section 4.1.

Another problem with a thick laser sheet is the risk for multiple reflections when the laser
illuminates two different ranges.
FIGURE 2.16.

A range image where the laser sheet width is larger than the limit in (2.33). The range
image depicts a flat surface. The top image is the range and the bottom image the intensity.

FIGURE 2.17.

Laser input
Intensity

Object
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» Sensor position

Reflected
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Correct Observed
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> Sensor position

Response from a thick laser sheet illuminating an object with strong reflectivity contrast.
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In theory the laser can be focused to a very thin sheet, limited only by the wavelength of
the light. Unfortunately, some materials such as plastics spread the light so that a thick line is
reflected nevertheless. If the 3D-object is made of a material which does not spread the light
the potential range increment Ar may well be in the 20 pm range [45].

Since the laser sheet thickness changes over the range it is not possible to focus the laser
precisely over a very large distance. In [44] dynamic laser focusing is suggested, but this
requires that two range images are acquired. The first one is to achieve approximate range val-
ues so that the laser sheet focus distance can be adjusted and the second one to obtain the exact

range.

2.7 Occlusion

A major problem in all triangulation methods is occlusion. In our case the problem manifests
itself as one of the two following cases, see Figure 2.18. Either the laser light does not reach
the area seen by the camera (laser occlusion) or the camera does not see the area reached by the
laser (camera occlusion). In both cases the maximum reflection peak found in the sensor row
data is the result of noise and/or ambient light. Any range value computed from such a maxima
is totally insignificant as seen in Figure 2.19. We see large spurious range values computed for
a large occluded area to the right of the can and smaller occluded areas around the other edges.

FIGURE 2.18.

Laser
Sensor

. Occluded area

Laser (left) and camera (right) occlusion.

Both laser and camera occlusion can be minimized by careful placement of the laser and
sensor. Laser occlusion is avoided by assuring that the laser reaches all areas seen by the sen-
sor. Ideally, the baseline should be small so that the sensor and the laser can be considered as
being in the same plane. Laser occlusion is then avoided by ensuring that the optical centre of
the laser lens is further away from the scene than the optical centre of the sensor system, see
Figure 2.20. Here the divergent sheet-of-light reaches all areas seen by the sensor since for any
occluding object edge the area not illuminated by the laser is smaller than the area not seen by
the sensor. Laser occlusion can also be avoided with multiple laser sources each illuminating
the scene a little from the side, see Figure 2.21.
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FIGURE 2.19.

A3D plot of an unfiltered range image of a fish conserve can illustrating the effects of
occlusion.

FIGURE 2.20.

Laser occlusion

Sensor "occlusion”

Laser occlusion avoidance.

Sensor occlusion occurs when the baseline increases from the ideal zero value. This can
only be avoided using multiple sensors as seen in Figure 2.22. If two sensors are used, each
viewing with a baseline B, but from separate sides of the laser most of the sensor occlusion is
avoided. For more on the problems and benefits of a two-sensor system see for instance [51].
The only remaining sensor occlusion comes from deep holes where both sensors are occluded
[57]. The system can be designed with only one sensor and mirrors reflecting the light from
two virtual baselines as in Figure 2.23 [43]. The sensor must alternate between imaging as the
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two virtual sensors since the sensor offset position will be different for the different virtual sen-
sors. This technique also reduces the physical width of the system since the utilized baseline is
wider than the system.

FIGURE 2.21.
—
Laser o Laser
[Z] Sensor "occlusion"
Laser occlusion avoidance using two lasers.
FIGURE 2.22.
Laser
Se or 1 Sensor 2
rad Occluded
occ]uded
Sensor occlusion avoidance using two sensors.
FIGURE 2.23.
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Using one sensor with two virtual baselines.

1-26

PAGE 41 OF 204



Chapter 3

Sheet-of-light range camera calibration

3.1 Calibration Procedures

As was shown in chapter 2 the mapping from sensor to world coordinates can be found using
trigonometric and geometric calculations. Often the geometry parameters are hard to measure,
especially the interior camera parameters, which are the focal distance and sensor center offset
position relative to the optical center. An alternative to setup measurements is to calibrate the
system to find all unknown parameters in the equations. No direct (non-iterative) solution
exists to find all the parameters, only iterative solutions [23]. However, a direct (non-iterative)
solution exists to find 4x4 homogenous transformation matrix describing the sensor-to-world
transformation [51], [55]. Alternatively, if the interior camera parameters are known all trans-
formation parameters in the equations can be determined [41].

Another approach is to find the precise matching for a number of points in the scene and
make an interpolation for all points in-between [57]. This method takes all lens and setup dis-
tortions into account, but it is often cumbersome, both in data acquisition and in the mapping
from sensor to world coordinates. If this mapping is made as a direct lookup, a table with MxN
entries is needed. A smaller table can be used, but then a 2D interpolation step is needed for
each 3D value that is computed. For example, if N = 256 and M = 512 a complete table with
32-bit data precision would require 1Mb.

A third approach, which is used here, is to calibrate the system and find a polynomial
approximation of the desired functions for range and width derived in chapter 2. This approach
results in two small 1D lookup tables (one with N and one with M values) and requires only
two table lookups and one multiplication to find the desired world coordinates for range and
width. Another reason to choose this approach is that the resulting tables can be used with the
existing RANGER range camera software [48]. However, this calibration scheme does not
account for lens and setup distortions.

3.2 Function approximations

In our calibration we find the best polynomial approximations of the range and width equations
(2.17) and (2.24) using least-square techniques. We wish to use a low order polynomial since it
allows us to use fewer calibration points, and it minimizes the risk that the approximation fits
closely to calibration data corrupted by noise. This is because a high-order polynomial tends to
follow the noise. To find the suitable polynomial orders we have evaluated the maximum devi-
ations between the correct equations and the least-square fitted polynomial functions. We used
a setup with £=23 mm and B =300, and using the view angles 0=30°,45° and 60°. In Table 3.1
we give the maximum deviations between the least-square fitted polynomial and the correct
range equation (2.17). In this example each pixel corresponds to a range of roughly 0.5-3 mm
and we aim at an accuracy of the resulting system which is within 1 pixel (the range camera
algorithms used has a resolution of 1/2 pixel). Thus we propose to use at least second, third and
fourth order approximations for the three cases 0=30°,45° and 60° as this can give an approxi-
mation accuracy within +/-0.25 mm.
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TABLE 3.1.

Maximum approximation error (mm)
View-angle Appdegl | Appdeg2 | Appdeg3 | Appdeg4 | Appdeg5

30° 43 0.24 0.01 0.0001 < 0.00001
45° 12.3 1.2 0.12 0.01 0.001
60° 509 9.0 1.5 0.25 0.04

If we compare with Table 3.1 the maximum width error is approximately 10% of the maxi-
mum range error. Therefore we chose to use a first order approximation. However, for angles
above ~45° it might be worthwhile to use a second order approximation.

3.3 Error sensitivity

In our calibration scheme we assume that the laser plane is parallel to one axis of the sensor.
How sensitive is the system to violations of this assumption? If the laser plane is rotated an
angle v around the range axis (laser optical axis) this gives a translation W, tanv of the laser
plane reflected at the edge of the sensor, see Figure 3.1. This translation gives a projection
range error which is

e, = W tanvtan (o + P 3.1)
FIGURE 3.1.
From the side
Actual Assumed
v laser position laltser position
) W,
Rotation Reflection
0D,
A1 e,
lethogonal Laser W.tanv
plane plane R
Y|
R @_’X Y

The projected range error when the laser plane is rotated.

If we input the system parameters, using the approximation that b is approximately equal
to finto equation (3.1) we obtain

_ BNAxtanv

er
2
2fcosa,

(3.2)

where
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NAx) (3.3)\‘

o, =0+p, =0+ atan(z—f
If we use the system considered before, with B= 300 and f=23, we find that for a 1° degree rota-
tion the error is 1.6, 2.8 and 8 mm for the cases o = 30°, 45° and 60° degrees respectively.
Thus, we see that the laser plane must be aligned very carefully, which has proved to be very .’

hard.

3.4 Calibration procedure

To calibrate the system we need to know the corresponding world and sensor coordinates for at
least one more point than the highest order of the approximations. We use a calibration object
with bright patches at well defined 3D positions placed in the laser plane. In order to achieve
an accurate calibration the calibration object should cover as large part of the field-of-view as
possible.

A segmentation program implemented on the MAPP2200 smart sensor is then used to
accurately find the center-of-gravity of these patches [69]. Least-square adaptions are then
made to find the best approximations of the transfer functions. Since both functions are
approximations around the origin and the exact location of the optical center (camera coordi-
nate system origin) is unknown, we iterate the least-square adaption over several possible sen-
sor offset positions and use the offset which gives the best least-square fit to the model. The
whole procedure takes less than 1 minute using a standard PC. The resulting polynomials are
then used to create lookup-tables compatible with the RANGER software.

3.5 Experiments

We give results for two setups, one with a baseline B = 290 mm, view angle o = 45" and one
with a baseline B = 170 mm and view-angle o = 30°, both with an f = 23 mm lens. The first
system has a total range resolution of approximately 200 mm and each pixel corresponds to
approximately 0.7-1.1 mm. The second system has a total range resolution of 80 mm where
each pixel corresponds to approximately 0.3-0.7 mm. The fit between the calibration data set
and the second and third order approximations are found in Table 3.2. We see that both the
maximum error and the standard deviation is more than halved using the third order approxi-
mation compared to the second order ditto.

In Table 3.3 we have collected the corresponding results when the calibration lookup tables
were applied to actual range data. We can see that the resulting accuracy of the calibrated sys-
tem is close to the theoretical (measured) system in the first case (in the second case no accu-
rate setup measurements were made). Thus we believe that the observed errors are errors in the
range data acquisition rather than in the calibration. In the second experiment the range acqui-
sition was more accurate, i.e. the thickness of the sheet-of-light was wider, giving a more sta-
ble range algorithm output, and we see that the second order approximation actually gives
better results than the third order ditto. This is probably due to the low number of points (5)
used in the calibration. Here the calibrated range accuracy is within 1 pixel on the sensor.
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TABLE 3.2.

Model Max Error (mm) Std dev (mm) # points

2-deg app 1 1.18 0.56 12

3-deg app 1 0.46 0.24 12

2-deg app 2 0.28 0.17

3-deg app 2 0.08 0.05

TABLE 3.3.
‘ System1 System 2
Calibration { Max error (mm) | Stddev(mm) | Max error (mm) | Std dev (mm)

Equation 1.6 . 0.7 - -
2-deg app 1.8 0.7 0.25 0.15
3-deg app 12 0.6 0.48 0.2

We feel that the resulting accuracy, around 0.5% of the measurement range is adequate and
comparable to those reported in [57], [55] and [51]. However, we have noticed that our cali-
bration scheme is very sensitive to sensor and calibration (laser) plane rotations. That is, if the
Y and T axes are non-parallel no correct calibration can be made since the range values then
depend both on the s and ¢ axis position of the sensor data. We have not presented any results
on the y-axis calibration accuracy but from our experiments we believe that it works as good as

the range calibration.
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Chapter 4

Signal processing for sheet-of-light

4.1 Localizing the impact position on the sensor

Assume that the scene contour is reflected vertically along the image array as in Figure 1.6C.
Along a row in the sensor the sheet-of-light reflected from the 3D scene may produce a signal
as in Figure 4.1, Various rules and algorithms may be formulated to derive a unique impact
position (pos) from this 1D signal. The most natural may be to find the position of the maxi-
mum intensity. Alternatively, we can threshold the signal and find the mid position of the pix-
els above the threshold. Analog devices such as position sensitive devices (see section 5.1)
measure the center-of-gravity of the incoming light and this can also be computed with ordi-
nary pixel-based sensors.

FIGURE 4.1.

A
Intensity, I(x)

Threshold

! Column number, x

v

n ab m

An illustration of two different ways to find the laser reflection.

As indicated in Figure 4.1, even if the signal is well-behaved, the localization of the maxi-
mum of a discrete and quantized signal might be ambiguous. Assuming that the signal maxi-
mum is flat in the interval a<x<b the position (pos) would naturally be chosen as

a+b

pos = T (41)

In some smart sensors [11], [38] the position is actually given as either a or b whichever is eas-
ier to compute. Obviously, this simplification is allowed only if it is ensured that the interval b-
a is small.

If we use thresholding the peak mid position is given by

pos = 111 42)
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where n and m are the first and last positions with a pixel value above the threshold respec-
tively, see Figure 4.1. For signal peaks with a width of an even number of pixels equations
(4.1) and (4.2) result in a position halfway between two pixel centers. This tells us that these .
formulas give answers with half-pixel resolution (sub-pixel resolution).
The center-of-gravity position using the total signal is given by

le (x)
) 21 (x)

where x is the pixel column position and I(x) the pixel intensity.

In [4] an accuracy of 1/20000 is claimed for a sensor with 388 pixels/row (which is 1/50
pixel sub-pixel resolution) using a White Scanner [54] with center-of-gravity computations.
We find these claims somewhat doubtful and certainly impossible to hold up in the presence of
noise and changing object reflectiveness. In [44] 1/16th of a pixel resolution is reported, but it
is also stated that 1/2 pixel is a realistic value when viewing metallic surfaces with specular
reflections. This resolution is acquired with a twin laser-sheet illumination scheme, and
approximating (fitting) the signal bolus (c.f. the signal in Figure 4.1) with a Gaussian before
the center-of-gravity computation. The double-sheet illumination design utilizes two lasers of
slightly different wavelengths displaced slightly from each other and this scheme is used to
avoid effects of abruptly changing object reflectiveness (c.f. Figure 2.17).

Both the maximum and center-of-gravity techniques can be combined with thresholding,
so that only values above a threshold are considered in the computations. This makes the com-
putations less sensitive to noise and background illumination. A compromise between center-
of-gravity and thresholding, where multiple thresholds are used and the pos value is chosen as
the mean center-of-gravity of the binary peaks obtained in the thresholding, is suggested in
[20]. Maximum finding can also be combined with multiple thresholds to increase the position
resolution.

A well known technique for finding the exact location of a peak is to find the position of
the zero crossing of the first derivative. Using this for laser triangulation was suggested in [7].
Here several different derivative operators were evaluated using linear interpolation to deter-
mine the exact zero crossing location. The filter that gave the best performance was an eight-
order FIR filter, with the convolution kernel [1 1 1 10 -1 -1 -1 -1]. Using this a reso]ution of
1/5 of a pixel was achieved in their experiments. If we assume a certain smoothness of the
imaged scene it might be worthwhile to use filter kernels that cover several rows, for instance
3x3 or 5x5 Sobel filters, but this has not been evaluated.

Another elaborate scheme to find the range is to threshold the data at half of the maximum
intensity and then use a linear interpolation as in [10]

pos 4.3)

T-1,_, I,-T
In_I,;_l Im—1m+1

1
pos = zln-1+m+ 4.4)

The portion above the threshold is n to m, see Figure 4.1. According to the authors this gives
very good resolution, but they also claim that their thresholding and center-of-gravity methods

produced equally correct values. Furthermore, maximum finding was found to be more noise
sensitive than thresholding.

1-32

PAGE 47 OF 204



In the MAPP2200 chapter we will discuss the implementation of an ad-hoc peak-detection
algorithm called the odd-even method, OEM [66]. In this method the odd and even rows of the
sensor are processed separately. Starting with the odd rows the charge from all pixels is added
until the sum is above a certain threshold. The same technique is applied for the even rows, but .
starting on the other edge of the sensor. The idea is that each measurement gives the start posi-
tion of the peak from one direction of the sensor, and that the correct peak position is the mean
of these values. The algorithm is sensitive to noise since a small noise contribution from each
pixel can give a large contribution to the sum which is compared with a threshold. The algo-
rithm and its implementation is discussed in more detail in section 7.13.

To evaluate these different algorithms we have performed two sets of experiments. First we
simulate the algorithm peak detection accuracy with and without the addition of white noise.
Then, we test the algorithms on real data, where the noise cannot be said to be white. In the
simulation results we can give very accurate error estimates, but the evaluation of the real data
experiments is only qualitative.

Simulations

The simulations were performed using Matlab. The Signal-to-Noise Ratio, SNR, of an image
row is measured as

2
SNR = 10logZ* 4.5)
O n
where o is the standard deviation of the signal and o, is the standard deviation of the Gaussian
noise. The signal has 8-bit dynamic range. Since the algorithm performances might be depen-
dent on the peak width we evaluated a narrow and a wide peak. The narrow peak covered
approximately 2 pixels at half the maximum intensity and the broad peak 5. Results for the
sub-pixel accuracy of two different peak-widths are found in Table 4.1 (narrow) and Table 4.2
(wide). In Table 4.1 the columns indicate maximum absolute error and mean error in pixels for
zero noise, 43 and 10 dB SNR, left to right, and in Table 4.2 they indicate zero noise, 66dB
SNR and 23 dB SNR. The added noise component is the same in the two simulations, but the
peak width is changed, thus changing the SNR.

The simulated algorithms are thresholding, maximum finding, maximum finding with four
extra thresholds, center-of-gravity with and without thresholding, the odd-even method, the
interpolation method and the derivative method. The derivative method has been simulated
using four different filter kernels, three derivative of Gaussian filters and the filter suggested in
[7]. The derivative of Gaussian filters have the size three, five and seven pixels, and they are
[10-1],[120-2-1]and [1 3 30-3-3-1] respectively.
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TABLE 4.1.

Algorithm accuracy measured in pixels
SNR o dB 43 dB 10dB
Algorithm E-max | E-mean | E-max | E-mean | E-max | E-mean
Thresholding 0.41_‘ 0.05 0.47 0 94.3 0.7
Max-position 0.49 0.04 0.76 0.03 1.01 0.03
Max-multi thr 0.18 0 0.3 0 0.49 0.01
CoG 0.01 0 5.15 0.66 6.6 0.70
CoG w thr 0.20 0.02 0.34 0 13.96 0.1
Odd/even 0.73 0.05 7.67 0.6 10.97 0.64
Interpolation 0.02 0 023 0 114.4 14
Der 3 0.03 0 0.18 0.01 0.41 0
Der 5 0.02 0 0.17 0.01 0.36 0
Der 7 0.02 0 0.19 0 0.35 0
Der 8 0.01 0 0.22 0 0.44 0
TABLE 4.2.
Algorithm accuracy measured in pixels
SNR = dB 66 dB 23dB
Algorithm E-max | E-mean | E-max | E-mean | E-max | E-mean
Thresholding 0.48 0.05 0.66 0.01 1.68 0.01
Max-position 0.8 0.05 1.36 0.05 1.89 0
Max-multi thr 0.19 0 0.44 0 0.79 0.01
CoG 0.01 0 42 0.73 6.37 0.74
CoG w thr 0.20 0.02 0.50 0.01 4.38 0.04
Odd/even 0.75 0.05 6.89 0.88 14.6 0.29
Interpolation 0.01 0 0.38 0 3.89 0.03
Der 3 0.05 0 0.65 0.01 1.20 0.02
Der 5 0.03 0 0.36 0 0.74 0.02
Der 7 0.02 0 0.28 0 0.61 0.01
Der 8 0.01 0 0.24 0.01 0.48 0.02

In the leftmost columns in these tables we see how the algorithms perform under ideal con-
ditions. As can be expected the more elaborate algorithms give high accuracy, and the simple
maximum and thresholding around 1/2 pixel accuracy. If we study the middle rows of the
tables we see how the algorithms perform under fairly reasonable SNR values. We see that the
center-of-gravity, CoG, and odd/even methods give large errors, and that maximum finding on
a broad peak also gives quite large deviations. We also see that the clsim from [7] of 1/5 of a
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pixel should be possible with the derivative algorithm and an appropriate derivative kernel. If
we study the rightmost columns we see how the algorithms perform under low SNR. We can
see that maximum finding combined with multiple thresholds gives fairly good accuracy and
that the derivative methods perform very well, but for the narrow peak the Gaussian derivative
filters give slightly better accuracy than the filter suggested in [7]. We also note that the inter-
polation method and center-of-gravity with thresholding, which works well under moderate
noise conditions deteriorates under heavy noise. As a conclusion we can state that maximum
finding combined with multiple thresholds or a derivative method seems to give the best peak
detection accuracy under very noisy conditions.

Experiments

‘We have tested the algorithms above on real images acquired using the MAPP2200 sensor. The
images illustrate several of the error sources in sheet-of-light range imaging i.e. occlusion,
uneven object reflectiveness, secondary reflections and illumination from ambient light. An
example of range profiles acquired using maxima, center-of-gravity and derivative-based max-
ima detection can be found in Figure 4.2. As was expected the center-of-gravity is very inaccu-
rate but the other two methods give similar, more correct, profiles. We also tried the algorithms
subtracting two images, one obtained with the laser on and one with the laser off. This gives
almost noise free images and all algorithms give performance in accordance to the table above.
Another effective way to reduce the problem with ambient illumination is to use A/4 optical
interference wavelength filters which only allows light with a wavelength close to the laser
wavelength. More experiments using real data are reported in [31].

FIGURE 4.2,
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An example of range profiles. The scene contains three objects, a dark tilted plane, a
wooden pencil and a polished wrench on a flat surface. The profiles were obtained using
maximum (solid) derivative (dotted) and center-of-gravity (dashed) methods.
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4.2 Multiple maxima considerations.

With all the above algorithms we get problems if two or more maxima appear in one sensor
row. The most natural scheme would then be to simply remove or disregard the range results,
or mark them as uncertain. However, this is not possible in all sensors. Some sensors/algo-
rithms output the position of one of the maxima [11], or the mid-position between the two [2],
[60].

In some applications it is desirable not to discard the values but to read out the range values
from several peaks on one row, and leave the decision on which datum is correct to the next
computational level. The reason that several peaks occur might not always be background illu-
mination noise but secondary reflections from the laser reflecting on specular or transparent
surfaces. In those cases more global information is needed to distinguish between the correct
and the false reflections [46].

4.3 Post processing

The main purpose of the post processing is to detect, remedy, or alleviate the effects of occlu-
sion and multiple reflections. Of course the true offset position for an occluded position can
never be obtained, but once detected it might be approximated and/or interpolated, for instance
using so called normalized convolution [39]. Alternatively the range data can be labeled as
occluded (uncertain). We have used two different cues to detect erroneous (occluded) peak
positions. Error filtering uses the error value, which we define as the number of detected max-
ima (peaks) in the sensor row. If occlusion occurred, the background illumination should be
almost homogeneous and thus the probability that several peaks are found is large. This filter-
ing is also very effective for detecting multiple reflections. Thus, when the number of maxima
are more than one we know that the range datum is unreliable. Another way to detect and alle-
viate effects of occlusion is to use only those sensor rows where some pixels has an intensity
above a certain maximum value. We define this as intensity filtering. If the laser is occluded
very little light reaches the sensor row and the maximum intensity is low. Actually, if we use a
thresholding algorithm intensity filtering is an integral part of the algorithm. An alternative to
intensity filtering is to use the intensity as a confidence measurement in normalized convolu-
tion. When discussing different smart sensors and smart sensor implementations we will also
discuss their ability for intensity and/or error filtering. Further discussion on different post pro-
cessing techniques can be found in [31].
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Chapter 5

Sensor designs for sheet-of-light

5.1 Position Sensitive Devices

A laterally extended photo diode is shown in Figure 5.1. This device is known as a Position
Sensitive Device, PSD. The incoming light produces a photo-electric current in the p-n junc-
tion of the diode, and by measuring the currents flowing out from the edges of the diode the
centroid position of the illuminated area can be obtained with the formula

I a” ] b
= 5.1
pos 1+, (5.1)
The sum 7 +1, is proportional to the total incoming light intensity.

FIGURE 5.1.

A 1D PSD photo diode.

Sheet-of-light range finders based on use of multiple 1D PSDs has been presented by Ver-
beek et. al. [53], [60], [61] (1985) and Araki et.al. [2], [3] (1990), see Figure 5.2.

From Verbeek et. al. a 96-strip PSD array chip has been fabricated for which is reported 2
Mrangels/second with an accuracy of 1%. However, as of present, due to a bottle-neck in the
analog processing only 8 of the 96 strips are utilized. The sensor chip from Araki et. al. has an
array of 128 PSDs which is said to produce range images at 32 Hz with a range accuracy
within 0.3%. If 1282 images are obtained the range pixel frequency is 500 KHz. However, it is
also stated that the PSD response time is 1 ps. Assuming that the processing is no bottleneck
the theoretical maximum rangel frequency is in the 100 MHz range. But given the processing
complexity a more realistic maximum rangel frequency ought to be more in the order of 3-10
MHz.

We notice that the primary sensor output from a PSD is the two analog values 7, and I,
which have to be transferred (in Figure 5.2 also muitiplexed) and A/D converted. Analog data
transfers are more sensitive to noise than digital data transfers which is a potential problem for
PSD range finders.

Another problem is the following. If the background light intensity is high in parts of the
scene, the centroid position is no longer the same as the peak position value as pointed out in
section 4.1. To overcome this problem a PSD-system needs very high signal to noise ratios,
and this can only be acquired by either increasing the sheet-of-light intensity and/or quelling
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the ambient illumination. This is reflected in the use of a very high powered laser, 200 mW, in
the case of [2], [3], and very short imaging distance, 50 mm, in the case of [53], [60], [61]. An
image subtraction technique similar to the one discussed in section 4.1 can also be used with
PSDs [59]. First the outputs of the array are recorded without any laser illumination. Then,
when the sheet-of-light sweeps over the scene these values are subtracted from the sensor out-
puts prior to the pos calculations.

Since the intensity values might be read out they can be used as a confidence measurement.
It is not possible however, to detect multiple maxima.
FIGURE 5.2.
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A range finder architecture from Verbeek et. al. [60]. The amplifier control is used to con-
tinuously adapt the analog values to the working range of the eight-bit A/D converters.

To overcome the drawback of analog data transfers and the A/D conversion bottle neck in
the proposed PSD array architectures we can combine a PSD array sensor with on-chip A/D
conversion using row-parallel A/D converters, see Figure 5.3. The A/D converter and shiftreg-
ister layouts are very similar to the MAPP2200 design [17], [25], [27]. In [27] C. Jansson
describes a 16-bit A/D converter design suitable for array implementations, and this precision
would certainly be enough for high accuracy sheet-of-light range imaging. The conversion
speed of the described circuit is 78 s, giving an effective sample frequency of 3.3 MHz in a
256 cell array, but it is also stated that higher speeds are possible. Thus, this architecture should
easily be able to output digital samples corresponding to 50 Hz 2562 range image frame rate.
Higher speeds are probably possible, especially if lower A/D conversion precision is used.
FIGURE 5.3.

|
Sreg

A/D control r

A novel sheet-of-light sensor combining a PSD array and on-chip A/D conversion.

Sreg
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5.2 Smart sensor architectures

We will present three devices below all of which attempts to compute position (offset) from a
2D discrete sheet-of-light sensor using on-chip circuitry. To be able to compare these non-
implemented architectures we have assumed that we need 10 s integration time and that the
on-chip processing and analog data transfer frequency is 10 MHz.

The column readout peak detection sensor was originally described briefly in [11], and it
has not been implemented. The chip combines an ordinary photo-diode or CCD sensor array
with a column of peak detection circuits, see Figure 5.4. After integration of one sheet-of-light
position in the sensor array the analog pixel values are read out column-wise, and the maxi-
mum positions are obtained during the column readout by the analog peak detection circuits.
Thus, one column of data from all sensor rows are processed in parallel, not in series as is the
case with a standard video sensor.

FIGURE 5.4.
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Column by column readout with peak detection.

The peak detection circuits is suggested to consist of a column of comparators which com-
pare each row output with the previously recorded maximum intensity for that row, see
Figure 5.5. If a new maximum is found, the analog value is saved in an analog register and the
digital column position is saved in a position/max register.

After the position has been obtained the analog maximum registers contain the intensity
values for the range data. To obtain the digital maximum intensity values a D/A converter
instead of the row output is connected to the comparator so that the maximum value can be
compared with a global ramp (staircase) signal from the D/A converter. When the ramp signal
reaches the value of the analog max register the counter value is loaded to the corresponding
register as seen in Figure 5.5. Thus, one column of range values for one sheet-of-light position
is captured in a time frame which consists of integration plus sensor readout and peak detec-
tion plus position result output plus (optional) detection and readout of intensities. By doubling
the digital registers sensor readout and peak detection can be made in parallel with the position
result output. By again doubling the digital registers and also doubling the max-detection cir-
cuits and analog registers the intensity detection can be made in parallel with the next sensor
read out and peak detection.
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FIGURE 5.5.
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If we have an NxN sensor one NxN range and intensity image can then be obtained in a
time defined as

T, = N( T, + ’%’) 5.2)
where f is the processing frequency. If we assume that the integration time is 10 ps, the pro-
cessing frequency is 10 MHz and N = 256, a complete 256 range image can be obtained in
approximately 9 ms. This is a range and intensity pixel frequency of 7.2 MHz.

If we redesign the sensor so that we can integrate and process in parallel we can achieve a
range and intensity image frequency of approximately 150 Hz, corresponding to a rangel/
intensity frequency of 10 MHz. This method might introduce errors since the maximum find-
ing is done on columns integrated at slightly different time intervals, but we believe that this is
no great problem. It is also possible to include peak width and multiple peak detection in the
read-out circuits to decrease the noise sensitivity. If we preload the analog max registers with a
threshold value before the sensor readout we obtain an automatic intensity filtering.

The row readout successive approximation architecture was also described briefly in [11],
and it has not been implemented. It utilizes row-by-row readings of analog sensor data from an
ordinary photo diode or CCD sensor array. For each row of analog sensor output we find the
mid-point position of the incoming light profile. The analog values from the sensor outputs are
multiplexed and summed to one of the two inputs of a comparator, see Figure 5.6. The output
of the comparator controls a sequential network of type successive approximation which
moves the approximative mid-point position left or right. First the array middle is tested as
midpoint. If the left sum is larger than the right sum the assumed mid-point is moved so that
the leftmost 25 percent are summed and compared to the rightmost 75 percent e.t.c. To get the
output for an N bit row the network has to do logN approximations. After the approximations
the register indicates the pixel position where half of the total intensity is to the left and half to
the right, that is, the mid-point. The mid-point is the integer approximation of the center-of-
gravity position.
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Sensor integration and read-out can take place in parallel, but the readout speed is not so
high since logN cycles are needed for each rangel output. Another disadvantage is that no
intensity information can be obtained. If we have an NxN sensor an NxN range image can be
obtained in a time defined by

T, = N(max( Tinp N-L‘(;‘gl_v}) (5.3)

If we assume a 256x256 sensor using an integration time of 10 ps, having a clock frequency of
10 MHz, the maximum range pixel frequency is limited by the processing and is 1.25 MHz.
This is a range image frequency of 20 Hz. Obviously the design is sensitive to background illu-
mination since all pixels in a row always contribute to the result.

FIGURE 5.6.
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Row-by-row read-out with analog/digital processing to find the mid-point of a sensor row.

An analog processing sensor cell design differs from “standard’ sheet-of-light range imag-
ing techniques which integrate and read out for each sheet-of-light position. With analog pro-
cessing cells a whole 2D range, or at least point in time, image is captured before the 2D sensor
array is read out. (The sensor cells measure the instant light intensity at any given time.) The
light-sheet sweeps over the whole scene and each sensor cell records at which sweep position
the maximum light intensity occurred. That is, each sensor cell records events in the scene
along a ray from the sensor cell through the optical center (OC), the sight line. Using this and
the recorded impact time translated to illumination angle a triangulation can be made to obtain
the range value, see Figure 5.7. Thus, each full sweep single “integration” gives a complete 2D
range image of the scanned scene.

A design for this purpose was proposed by Kanade et. al. [21], [38], see Figure 5.8. Peak
detection and registration of the time when the peak occurred is done within each sensor cell.
Actually, Figure 5.8 represents the simplified circuit implemented on a 28x32 sensor chip [21]
and not the more complex circuit implemented with discrete components in [38]. Among other
things the difference is that the latter had true peak detector and also the ability to register the
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maximum intensity in each sensor cell. During the “integration” a well-defined analog ramp
signal is distributed to the sensor cells. This value defines the time, and the ramp value is
stored when a maximum occurs.

As pointed out true maximum detection is not performed. Rather a fixed threshold is used
and the ramp (time) value is saved when the sensor output crosses the threshold the first time.
This makes the circuitry sensitive to background illumination and secondary reflections since
any peak can be chosen as the maximum. It also gives inaccurate results for a thick light sheet
reflection since any part of the sheet can give a positive result.

In [21] it is argued that the time domain sampling, restricted by the time resolution in sam-
pling of the ramp signal, in this circuit gives higher range accuracy than the traditional space
domain sampling, restricted by the inter-pixel pitch of the sensor. However, this reasoning is
only valid if the peak is found accurately, and this is not ensured since no real peak detection is
made in the circuit. Furthermore, in space domain sampling it is often possible to determine
the width of the peak to correct for laser sheet width and uneven reflectiveness as discussed in
section 4.1.

FIGURE 5.7.
S
Sensor cell
sight lines
Image acquisition while the light sheet sweeps over the scene.
FIGURE 5.8.
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Sensor cell due to Kanade et. al.
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As we mentioned each serisor cycle gives data for one complete range image. Hence, every
pixel in the 2D sensor must be read out in-between cycles which takes time and decreases the
duty cycle for the system. Furthermore, analog processing is needed outside the chip to convert
the analog time values to digital range ditto. Different triangulation parameters are needed for
every sensor cell since each sensor cell represents one unique direction of the incoming light.

Due to the extensive hardware in each sensor cell this design is very hard to implement in
standard VLSI. A recent report mentions a fabricated 28x32 array [21], where each sensor cell
is 0.25 x 0.25 mm. Nevertheless, Kosuke Sato at the University of Osaka, who previously
worked with Kanade, states that a similar design with 1282 sensor cells is currently being man-
ufactured by their laboratory [52].

In [21] it is stated that a range image speed of up to 1000 images per second can be
achieved. 1000 images per second gives a range pixel frequency of approximately 900 KHz
with the 28x32 sensor. If the same image speed is obtained in an 1282 sensor the range pixel
frequency is 16 MHz, and the requested readout frequency is 32 MHz if equal time is used for
sweep and readout. Accurate readout of analog values at such high clock frequencies might be
a problem. Even so, we admit willingly that this architecture has a potential for very high range
image speeds. It is claimed [21] that the range accuracy is 1/256, based on eight bits of resolu-
tion in A/D conversion of the registered impact times.
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Chapter 6

The NESSLA architecture

6.1 The NSIP paradigm

Near-Sensor Image Processing (NSIP) [18], [69], [70] is a new image processing concept
where the individual sensor operation is an integrated part of the signal processing algorithm.
In conventional smart sensors and image processing systems, after a fixed integration time, the
sensor data is A/D converted and then processed digitally. In NSIP however the binary (thresh-
olded) sensor cell outputs are repeatedly interrogated and processed during the integration and
the results are obtained directly when the integration is completed. The use of binary signals
seem like a disadvantage, but by processing the binary signals as they evolve over time we can
nevertheless emulate grey-scale image processing. Actually, if we want a grey-scale output, by
repeated interrogation of the binary outputs we can measure the time from the start of the inte-
gration until each binary sensor output switches from “0” to “1”. The time until the sensor out-
put switches is inversely proportional to the accumulated light intensity.

A general 2D NSIP architecture [69], [71] is capable of many low level image processing
algorithms, but the architecture we present here is specialized to implement a row wise maxi-
mum finding algorithm. Thus the Sensor-Processing-Element (SPE) is much simpler and eas-
ier to implement than the general case. The architecture to be presented below can be
implemented in full-scale with current CMOS technology. We call the architecture NEar-Sen-
sor Sheet-of-Light Architecture, NESSLA [36], [37].

6.2 The NSIP sensor element

The basic NSIP sensor element is shown in Figure 6.1. It consists of a pre-charged photodiode
connected to a high impedance voltage comparator with a binary output. If the diode voltage is
below the reference voltage the comparator output is high (one), otherwise low (zero). After
the diode precharge the incoming light will induce a current in the diode, proportional to the
intensity. This current will discharge the capacitor of the diode and decrease the voltage. The
time from the precharge of the diode to the time the diode voltage crosses the reference voltage
of the comparator is inversely proportional to the light intensity, see Figure 6.1. Further discus-
sions on NSIP sensors can be found in [69].

6.3 The NESSLA Sensor-Processing-Element

The design of a complete individual NESSLA Sensor-Processing-Element (SPE) is shown in
Figure 6.2. The sensor area consists of a two-dimensional array of SPE’s interconnected by
inhibit and readout buses. An inhibit bus connects SPE’s in a row for the purpose of maximum
finding and a readout bus connects SPE’s in a column for data readout. We shall see later that
in an alternative design the readout bus is made horizontal, but this does not affect the design
of the SPE itself.
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FIGURE 6.1.
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The NSIP sensor cell design. Circuit diagram for the diode and comparator (left). Voltages
as a function of time and intensity (right).

FIGURE 6.2.
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A complete single NESSLA SPE. The inhibit and readout buses are precharged high.

The integration starts when the photo diode capacitors in the SPE’s have been precharged,
after which they discharge proportionally to the incoming light intensities. When a photo diode
voltage reaches the reference voltage its comparator output switches from low to high, and the
inhibit bus goes low from its precharged high. Thus, at this moment all comparator outputs in
the row are forced to freeze their potentials at the capacitor C. Interpreted as binary signals
these values are zero except for the cell with the highest intensity and which took command
over the inhibit bus. This cell has attained the value one.

When the transfer transistors are enabled the binary data are moved from the first inverter
to the second, and a new integration can begin in the photo diodes. The readout is then made
concurrently with the next integration cycle in the sensor array.

We notice that the NESSLA SPE of Figure 6.2 so far is only capable of producing a maxi-
mum intensity position indication and we will see shortly how this is taken care of to obtain
range data. However, already now we may also notice that if we would be able to record the
point in time when the inhibit bus switches to low in a certain row, this information should be
possible to translate to intensity. Hence, the NESSLA cell harbors the same possibilities for
intensity and range data fusion as those presented in previous chapters.
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6.4 Global architecture

The global architecture presentation is split in two parts; the position readout and the intensity
readout respectively. An overview of the chip layout is shown in Figure 6.3. From the 2D-
array of SPE’s binary position data is read one row at a time, and the binary code of the posi-
tion of the single one is obtained with an encoder. The encoder is preceded by the position
readout logic, which inhibits all but a single one in a way defined below. Intensity values are
read out to the right and stored in the intensity registers during integration. They are then read
from the intensity registers concurrently with the position readout. As already indicated above,
what is called intensity here is really time intervals inversely proportional to intensity.

FIGURE 6.3.
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The NESSLA chip layout. Max position data are read out downwards from the sensor and
intensity data are read out to the right.

The SPE row is designed so that in most cases the resulting binary position vector contains
only a single one which corresponds to the position of the maximum intensity. However, if
several SPE’s in a row are subjected to the same or nearly the same intensity (possibly because
of a thickened, unfocused sheet-of-light or because of multiple reflections) more than one SPE
could obtain a binary one output. Hence, some binary post-processing is necessary to obtain a
clear-cut position of the maximum intensity.

Another case which must be accounted for is the case where no maximum intensity exists
in the row, or rather when all intensities are so low that none of them are able to bring the
photo-diode voltage down to U in the allotted integration time, see Figure 6.1.

If the output from a SPE row contains one consecutive run of ones the correct output ought
to be the mid-point value of this run. Ideally, the vector is expected to have one or maybe two
ones if the light is focused and the object is a good reflector. We have chosen to accept up to
three ones as an acceptable run while more than three consecutive ones will be indicated as an
error. This rule comes from empirical experiments using MAPP2200 [29], [35].
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The position readout logic is pipelined into four stages, see Figure 6.4. The first operation
on the output vector is a subpixel ripple chain. This is used to produce a sub-pixel position bit
which extends the precision of the final position vector with an extra least significant bit, see
Figure 6.5. The sub-pixel output is set to one if the sensor output vector has two consecutive
ones. In such a case the maximum position is more likely to be the mid-point between these
two pixels than the position of the leftmost or the rightmost of the two. This is exactly what the
extra bit signifies. :

FIGURE 6.4.
Sensor outputs
. CCR| CCR| CcCRr
Subpixel 4 | Subpixel || Subpixel | Subpixel -
logic logic logic
| L1 1 I
L CR|L CR|L CR
Left Left Left
erosion erosion erosion
L = 1 II‘ | I 1
1 [ 1 1
L C RfL C R||/L C R
Right [ Right || Right
erosion | erosion erosion
I I [
al =
. tie-breaker |tie-breaker|tie- r
tie-break o logic logic || logic |
[ l l
To encoder
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The sub-pixel ripple chain logic.
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The second and third operations are one-dimensional erosion from the left and the right
respectively, implemented with the logic seen in Figure 6.6. These stages erode two and three
consecutive ones to a single one.

The last pipeline stage is the error indicator and tie-breaker logic, seen in Figure 6.7. The
error indicator checks if there is more than one bit set to one after the erosion stage. Thus, the
error bit will be set if there are more than three consecutive ones or more than one run of ones
in the row read-out from the sensor. The tie-breaker ripple chain blocks all eroded outputs
except the rightmost one to ensure proper function of the subsequent encoder in Figure 6.3.
Hence, if there are more than a single one in the input vector to the tie-breaking logic it never-
theless gives the encoder a chance to deliver a properly coded position response. At the same
time, potential multiples of ores in the input are indicated by the error output and the program-
mer can therefore decide wether the possibly flawed position value should be used or not. If no
column position data is set to one the tie-breaker chain will deliver a one in the last position as
a default. Hence, the encoder will always have a well defined output.

FIGURE 6.6.
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Error indicator and tie-breaker ripple chain logic. The error output is one if there is more
than one bit set to one after the erosion stage.
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Since the position readout logic has a gate-depth which is at least as large as the width of
the sensor it is hard to use high clock frequencies. We must set aside time for the signals to rip-
ple through the subpixel, error and tie-breaker ripple chains. One way to allow higher clock
frequencies is to read out the position values column-wise and replace the position encoder by
a serial peak detection in a manner that is vaguely similar to the column readout sensor in
section 5.2. In fact, in the present case the peak detection is digital (binary) and therefore much
easier to implement. The error and subpixel logic are already given as iterative networks and
therefore ready to be implemented in a serial fashion.

One such column-wise readout circuit can be seen in Figure 6.8. To ensure that the position
register receives a valid information, loading is only allowed twice. Thus a three pixel wide
peak will get the correct position value. Error is indicated if more than three ones are found,
that is when the two-bit width counter overflows, or when multiple peaks are detected.

FIGURE 6.8.
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Serial column-wise position readout logic.

As pointed out before the time from the start of the integration to the activation of the
inhibit bus is inversely proportional to the light intensity in the maximum intensity position.
This intensity depends on the reflectance (brightness) of the surface illuminated by the sheet-
of-light. Thus, a full reflectance map, an intensity image, can be obtained by saving these
points of time for each row. To this effect the intensity registers in Figure 6.3 are utilized as
follows.

A counter is started when the sensor diodes are precharged, and when the inhibit bus of a
certain row is triggered the corresponding register is loaded with the counter value. These reg-
isters are then addressed simultaneously with the row output so that both the position and its
intensity value are output concurrently. To be able to use this design together with the integra-
tions, the registers have to be doubled so that one set of registers can be loaded from the inhibit
bus while the other set is used for output.
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6.5 NESSLA implementation

The implementation discussion is based very much on the results of two general NSIP chip
prototypes presented in [13] and [14]. The two prototypes have 16x16 and 32x32 SPE cells
respectively.

To achieve high sensor aperture the sensor should cover a large part of the area. However,
to be able to implement the SPE logic effectively the area of the photo diode must be reduced.
This is possible while actually increasing the aperture if we apply focusing micro lenses on top
of the chip [15], [42], [58]. Such a lens is able to increase the effective light sensing area from
around 1% to almost 100%. Other possible solutions are 3D VLSI processes [56] or thin-film
amorphous silicon sensors applied on top of the chip [16]. The use of micro lenses is currently
being tested on a prototype chip.

The comparator must be compact, use low power and be compensated against fabrication
variations. The low power requirements makes it impossible to use standard current mirror
comparators [26] and the proposed solution is to use an inverter with some sort of offset com-
pensation [31], [13], [14]. The fabrication variations gives different threshold voltages for all
transistors, and thus different thresholds for different inverters. The compensation can, for
instance, be implemented by short-circuiting each inverter before the pre-charge, driving each
inverter to its own individual threshold voltage.

Using the above comparator solutions in a 0.8 m process a general 32x32 NSIP chip has
been designed with 118x118 pm SPE size. The expected clock frequency is up to 100 MHz.
For a NESSLA design the SPEs can probably be implemented on a 60x60 um area, making it
possible to implement a 256x256 SPE chip on a 15x15 mm chip [12]. The 16x16 prototype
NSIP chip has been programmed for sheet-of-light range imaging, and an example of the
results can be seen in Figure 6.9. For a 128x128 chip the predicted performance is 500000 pro-
cessed frames per second, giving 64 MHz rangel frequency [14], [13]. However, if we consider
the integration time the NxN range image speed for an NxN NESSLA sensor is given by the
equation
N,
f}
Hence a 256x256 SPE sensor array, 10 us integration time and 100 MHz processing speed

this gives a range image speed of 390 Hz, and a 25 MHz pixel frequency for both range and
intensity values.

T, = N-Max{T, (6.1)
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FIGURE 6.9.

An example of a sheet-of-light range profile acquired with a 16x16 general NSIP prototype.
Left shows maximum finding results, mid after erosion and right after tie-breaking. Here
the inhibit bus, left-right erosion and tie-breaker is implemented on the SPE array using

general NLU and GLU operations. The grey levels of the pixels indicate the reflected
brightness.
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Chapter 7

MAPP2200 as range image sensor

7.1 MAPP2200 architecture

The smart sensor MAPP2200 [40], [17], is a 256x256 photo diode sensor array combined with
a linear array of 256 A/D converters and 256 bit-serial processing elements (PE’s) on one chip,
see Figure 7.1. Each PE has an eight-bit A/D converter output register, an eight-bit parallel
shiftregister, 96 bits of memory and an ALU, all connected via a one-bit bus. The A/D convert-
ers have direct outputs to the A/D registers so that pixel-row A/D conversions can be made
independent of, and parallel with, the PE processing. The shiftregister can also run autono-
mously so that row transfers to/from MAPP2200 are independent of the processing. Each ALU
has a Point Logic Unit (PLU) for 1-3 input logic operations, a Neighborhood Logic Unit
(NLU) for left-right neighbor dependent binary operations and a Global Logic Unit (GLU)
which sees MAPP2200 as one 256 bit wide processor. The sum of the accumulator contents of
the ALUs (the number of ones) is called COUNT and can be read via MAPP2200s status reg-
ister. The Global Or (GOR) output is one if the contents of the accumulator register is non-
Zero.

The row parallel Single Instruction stream Multiple Data stream, SIMD, PE array in
MAPP2200 can be used to process the sensor data with a variety of low level image processing
algorithms. For algorithms such as gradient (Sobel), high-pass (Laplace), low-pass and median
filters video rate processing with eight-bit data precision is possible with 3x3 kernels. In [69]
MAPP2200s performance for many low level algorithms are listed. Bit-serial addition of b by
b bit words requires 3b operations and an increment of a b bit word requires 2b operations.
However, if we use a Gray coded counter we can implement an increment operation with only
an exor operation in 2 clock cycles. A conversion from Gray code to ordinary binary represen-
tation requires 2b operations.

During normal sensor row readout the read transistors are only activated a short time to
allow the photo diode voltage to be polled, see Figure 7.2. Then as long as the integrate transis-
tors are activated the pixel charge is stored in the capacitance C. V,; changes linearly from 0-5
V (0-255) via a counter and an internal D/A converter. The D/A counter value is stored when
the PD-output switches from zero to one. The A/D converter resolution is programmable, so
that any A/D conversion precision b between 1 and 8 bits can be used. A b-bit A/D conversion
requires 2° clock cycles.

A special mode allow MAPP2200 to be used for Near-Sensor Image Processing. The pro-
cessor capacity is hardly sufficient to give NSIP support to the full 2D-array of sensor ele-
ments. However, it is possible to repeatedly interrogate the binary comparator outputs while
integration is going on in one row of pixels. The readout stage of one MAPP2200 pixel column
can be seen in Figure 7.2. One row of sensor elements are activated by one row of read transis-
tors. By keeping both the read and integrate transistors on and V, constant the comparator out-
put (PD-out) is the NSIP cell output for the activated sensor row. Thus, we can emulate NSIP
architectures on a row by row basis. One thing to note about the sensor layout is that the sensor
rows are grouped two and two, i.e. the distance between consecutive rows alternate between
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two different values. This will affect the performance of some algorithms. Also, the pixel aper-
ture, i.e. effective sensor area, is only around 50%.

FIGURE 7.1.
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The NLU/GLU operations in MAPP2200 to be used in the sheet-of-light implementations
are demonstrated in Figure 7.3. The NLU operation LEDGE is used to find the number of left
edges, that is, the number of separate runs of ones, in a binary vector. We see that after the
GLU operation LFILL the number of ones in the accumulator is the same as the position of the
leftmost one in the original binary row. This number is the COUNT value. The MARK opera-
tion operates on two vectors, image and mask, and objects in image vertically connected to any
set bit in mask are kept. The MARK operation can for instance be used to extract single objects
from a binary vector (if the mask register is the result of an LFILL and a LEDGE operation the
leftmost object will be extracted). The NLU operations LSHIFT and RSHIFT shift the binary
vector one PE left or right respectively. This can be used in convolutions since it can be used to
input data from the left/right neighbor to a PE. Thus it is easy to implement 3x1 convolution
kernels using the NLU.

FIGURE 7.3.
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The NLU-GLU functions used in this chapter.

MAPP2200 is connected to a controller, normally a PC, which writes instructions to the
camera and reads camera output data. A special semi-autonomous video generator can be con-
nected to the shiftregister output so that the camera can generate a video signal. This unit also
contains four external vram image memories connected to the shiftregister. MAPP2200 is also
available as a smart camera which contains a MAPP2200 chip and an embedded 186 PC pro-
cessor in a compact package. This camera can be used as a stand-alone image processing sys-
tem. The smart camera communicates via four binary IO channels and a serial PC-port.

MAPP2200 is designed for a maximum clock frequency of 4 MHz, but our experiments
have shown that clock frequencies up to 8 MHz is possible on selected chips. The maximum
A/D conversion and shiftregister clock frequencies possible are 23 and 10 MHz respectively
[27).

MAPP2200 can be used for sheet-of-light range imaging either with the light-sheet pro-
jected horizontally or with the light-sheet projected vertically on the sensor. Both ways are
illustrated in Figure 7.4. When the sheet-of-light is vertical the PEs are used as one 256-bit
processor to find the position of the sheet-of-light impact position of each row in a serial fash-
ion. When the sheet-of-light is horizontal the PEs are used as 256 independent bit-serial pro-
cessors, where all PEs find their own sheet-of-light impact positions in their respective
columns in parallel. Thus, with a vertical sheet-of-light each sensor row processing gives one
position value, whereas with a horizontal sheet-of-light each processor is expected to deliver
one position datum after processing of all sensor rows. '
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FIGURE 7.4.
Vertical sheet-of-light Horizontal sheet-of-light
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Vertical and horizontal sheet-of-light range imaging on MAPP2200.
In the pseudo code examples given we use syntax similar to the programming language C.
All MAPP2200 specific instructions are written in capitals, and MAPP2200 macros start with a
capital letter. All other instructions are executed by the controller.

7.2 Trading resolution for speed

The programmability of MAPP2200 makes it possible to generate range images of arbi-
trary size or range resolution. With a vertical sheet-of-light, range images with less than 256
samples per range image row are obtained by only utilizing a fraction of the sensor rows, see
Figure 7.5. This does not change the range pixel frequency, and thus the range image fre-
quency increases. For instance, if we generate 1282 range images instead of 256 ditto the
image frequency increases with a factor 4. The readout can also easily be interlaced, so that all
sensor rows are utilized, but only every second integration [31].

FIGURE 75.

Vertical sheet-of-light
Unused sensor rows

Range image
Tow size

Processor
array

Increasing the range image speed by decreasing the image size.

With a horizontal sheet-of-light it is possible to increase the range pixel frequency by lim-
iting the offset position resolution to a fraction of the sensor, see Figure 7.6. This can be made
in two ways, either by using maximum accuracy over a smaller range interval, or by using
lower accuracy over the maximum range interval. If we only process a fraction of consecutive
rows we obtain maximum accuracy over a fraction of the range interval. In MAPP2200 it is
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also possible to address several sensor rows concurrently and read out the analog sum of the
rows to the A/D converters. If we process, say, the analog sum of pairs of rows we obtain range
images with half of the maximum range resolution over the whole range interval.

FIGURE 7.6.

Horizontal sheet-of-light
A Unused sensor rows

IOffset resolution

Increasing the range pixel speed by decreasing the range resolution.

7.3 Vertical NSIP algorithm

MAPP2200 can be programmed to emulate the NSIP maximum finding algorithm in the
NESSLA architecture (see chapter 6). The performance is of course not as good as in NESSLA
since each row of sensor data must be processed in series and not in parallel.

The principle is to integrate each row until the first pixel charge reaches the preset thresh-
old. The pixel which first reaches the threshold is the one which received the highest intensity.
Thus, after the maximum finding loop the binarized sensor row vector has a one at this PE
position. The position of the one is then found using the GLU function LFILL. In pseudo code
the program can be written

/* NSIP sheet-of-light algorithm on MAPP */

SETV 20 /* An appropriate threshold */
for (i=x;i<y;i++) { /* Loop N = (y-x) rows */
SETR i /* Set sensor row to read */
3=100 /* Reset integration counter */
RESET /* Reset PD register */
INTEG /* Start integration */
LDI PD /* Load comparator output */

/* Loop until threshold is reached */
while ((GOR == 0) && (j > 0)) {

j--
LDI PD} /* j = 0 Indicates no range data */

width([i] = COUNT /* Width of maxima */

LD LEDGE Acc /* Find no of maxima */

err[i] = COUNT /* Read error value */

LFILL Acc /* Find leftmost pixel pos */

pos[i] = COUNT /* Read position values */

int[i] = 3 /* Read intensity */
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The algorithm output consists of four values for each sensor row, the leftmost position of
the maxima (pos), the maxima width (width), the error value (err) and the counter value corre-
sponding to the maximum intensity (inf). The width value is used to compensate for the max-
ima width using the formula

(7.1)

pos[i] = posl[i] _%

Thus, we reduce the pos value with half the maxima width to the mid maxima position value
and get half pixel sub-pixel accuracy. If the err value is larger than one we know that there
were more than one maxima, and that the pos datum is uncertain. If we use up to 100 NSIP
interrogations for each sensor row the possible range pixel frequency is 15-30 KHz, which cor-
responds to frame rates of 0.2-0.5 Hz for the image size 2562

Unfortunately, the design of MAPP2200 makes it hard to use for NSIP range imaging. This
is because the read transistors attached to the column readout bus also act as photodiodes, see
Figure 7.2. When we use MAPP2200 for NSIP processing we activate one row of read transis-
tors and activate the integrate transistors in the read-out circuits. This opens a path for charge
transport from the capacitor C, via the read bus to the photo diode. However, additional charge
is leaking from C via the parasitic photo diodes attached to the bus. This gives the result that if
high intensity reaches several sensors in the same column this light might discharge its column
capacitor C more than the higher but single intensity can do in another column in the same row.
Since this leakage increases the generated intensity levels using the intensity as a confidence
measure often fails. As a whole, the leakage effect often leaves errors which are hard to detect
and remedy, such as contours getting expanded over occluded areas [31]. The only real remedy
would be to redesign the read-out circuitry. The leakage effect is also visible in some of the
other algorithms we have implemented, but since the time the analog PD register is connected
to the bus without a reset is shorter the effect is smaller. Examples of images obtained using
this algorithm can be found in [29] and [31].

7.4 Vertical successive approximation algorithm

This implementation uses a successive approximation algorithm previously described in [29],
[37], [35] and [31] to find the maximum intensity in each row. The intensity is converted to an
eight bit integer. The successive approximation is done by first setting the threshold to the mid-
dle of the interval, i.e the most significant D/A bit set to one (10000000, = 128,¢). If any PE has
a pixel value above this threshold we know that the maximum intensity is higher and we keep
that D/A bit set to one and then test again with the next D/A bit set to one (11000000, = 196,;).
If no PE has a pixel above the threshold we know that the maximum intensity is lower, and we
reset that D/A bit to zero and test again with the next D/A bit set to one (01000000, = 64,,).
Thus, we half the possible maximum intensity interval at each iteration and after eight itera-
tions we obtain the maximum intensity for that sensor row. If we threshold the row with the
found maximum we should, normally, obtain a binary vector with a single one at the position
of the maximum. The position of the one is then found using the GLU function LFILL. In
pseudo code the program can be written
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/* Vertical Successive approximation */
/* Sheet-of-light algorithm */

SETR 1 /* Start row */
for(i=x;i<y;i++) { /* Loop over N = (y-x) rows */

INTEG /* Read pixel to PD reg */
HOLD /* Hold pixel value */
volt = 128 /* Initial approximation */
for(j=7;3>=(8-b);j--) { /* Succ. app. loop */

SETV volt /* Set A/D voltage */

LDI PD /* Load binary row */

if GOR /* If “hit~” */

ST PD,R(0) /* Save binary vector */

volt -= ((1-GOR)<<3j) /* Change volt */

volt += (l<<(j-1)) /* Set next bit */
}
LD R(0) /* Load best approx vector */
width[i] = COUNT /* Read width value */
LD LEDGE ACC /* Detect left edges */
err[i] = COUNT /* Read number of maxima */
LFILL ACC /* Fill from leftmost one */
LD GLU /* Read fill result */
pos[i] = COUNT /* Read position value */
RESET, + /* Reset PD/pixel, new row */
int[i] = volt /* Read intensity value */

}
The time to acquire one NxN range image is approximately

_ N (4b + 10)
m fp
where b is the number of steps in the successive approximation loop. Fewer steps in the loop
gives higher ranging speed, but the accuracy of the range data might decrease. Also, the resolu-
tion of the intensity data decrease. With b=8 the maximum range data frequency is 190 KHz,
and the 2562 image frequency is 2.9 Hz. With 5=4 the corresponding figures are 308 KHz and
4.7 Hz. With a dedicated PAL controller we reached approximately 160 KHz rangel frequency
[35], [31]. Without the error and peak width filtering the speed increase around 10%. In
chapter 4 peak finding using thresholding was found to be slightly less noise sensitive than
maximum finding. It might therefore be worthwhile to threshold the peak with for instance half
the peak intensity instead of with the peak intensity. This actually increases the algorithm
speed, since the store of the binary vector in the inner loop can be omitted, but in our tests no
accuracy improvement was detected. The store of vectors in the inner loop is made to remove
errors which occurred when a final thresholding at the maximum found intensity gave only
zeros due to analog noise in the readout circuitry [31].
An example of the combined range and intensity output of the successive approximation
algorithm can be seen in Figure 7.7.

(12)
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FIGURE 7.7.

A 256x256 range image plotted as stacked height curves and with the intensity information
as plot intensity.

Improvements in MAPP2200 architecture

If the successive approximation loop could be performed without transfers to the accumulator
the inner loop of the algorithm could be speeded up with a factor of at least three since only
one instead of three-four instructions would be needed. This implies that a Global Or net,
wired to the comparator outputs and input to a small sequencer to control the A/D converter, is
added, see Figure 7.8. To make it possible to read out the D/A counter value (the maximum
intensity) another modification is also needed. These modifications should not be too difficult
to implement since the existing automatic A/D conversion net is rather similar. This modifica-
tion should be useful in other MAPP2200 applications such as finding the brightest pixel over
the whole sensor.
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FIGURE 7.8.
Analog sensor output

Vref
[ |

I
-+ -+ -+
Comparators

HEEEER

Setv
Readv

Successive 0 0 n Global Or net

approx logic

To A/D registers and bus
A modified A/D converter design with automatic maximum detection.

7.5 Vertical thresholding algorithm

The pseudo code for an implementation of a vertical thresholding algorithm on MAPP2200
can be written

/* Vertical thresholding algorithm */

SETV volt /* Set A/D threshold voltage */

SETR i

for (i=x;i<y;i++) | /* Loop over N = (y-x) rows */
INTEG /* Read analog sensor row */
LDI PD /* Load thresholded row */
RESET, + /* Reset PD/pixel, new row */
width[i] = COUNT /* Read the peak width */
LD LEDGE Acc /* Detect no of peaks, error */
err[i] = COUNT /* Read the error val */
LFILL Acc /* Fill from leftmost one */
LD GLU /* Read £ill value */
pos([i] = COUNT /* Read position value */

}

The time to acquire one NxN range image is approximately
T, = 9%2 (7.3)
P

If we use a clock frequency of 8 MHz we achieve approximately 880 K rangels per second (an
image frequency of 13 Hz) with error/peak width correction and 1.3 MHz without. A complete
range image acquired with the thresholding algorithm can be seen in Figure 7.9.
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FIGURE 7.9.

A 3D plot of a complete range image of a computer mouse acquired with the thresholding
algorithm.

7.6 High accuracy combination algorithm

By augmenting the successive approximation maximum finding algorithm with a number of
thresholdings, the extra thresholds selected uniformly between the found maximum and the
supposed noise level, we obtain higher accuracy. Each extra thresholding gives a new range
value estimate, and by averaging all estimates we can get higher accuracy than with only a sin-
gle maximum finding or thresholding. Of course the range imaging speed decreases, but in
some applications high accuracy is more important than high speed. We feel that the combina-
tion of maximum finding and thresholding is better than to just use several pre-set multiple
thresholds since we always use the whole available signal. We applied this technique using 5
extra thresholds, and a resulting combination profile with 14-bit resolution and the maximum-
finding profile with 9-bit resolution can be seen in Figure 7.10.
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FIGURE 7.10.

% 100 150 200 250
A comparison of maximum finding (solid) and maximum finding combined with multiple
thresholds (dashed). The profile depicts a cross-section of a jet-fighter model.

7.7 Vertical first-derivative method

In [7] a peak detector based on the position of the zero-crossing of the first derivative was pre-
sented. This is a similar implementation on MAPP2200. We use a thresholding algorithm to
find the initial peak position and we use the NLU and GLU to read out the intensity values at

the zero crossings of the first derivative, see Figure 7.11. Then we interpolate a sub-pixel value
from the first derivative.

FIGURE 7.11.
Pixel 3
intensity Ak
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[ ]  Mark(signl,sign2)
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* Mask AND derivative

» (Mask<<1) AND derivative

Threshold
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The peak detection in the vertical first-derivative method using the GLU/NLU.

In our implementation we use a 5x1 Sobel-type binomial filter to approximate a smoothing
first derivative operator and in pseudo code the algorithm looks like

1-63

PAGE 77 OF 204



/* First derivative peak-detection algorithm */

for (i=x;i<y;i++) { /* Read N = (y-x) rows */
pix = ReadAD /* Read A/D converter b */
Sub(pix, thresh, signl) /* save only sign, 2b */

/* Derivative filter */

Add (pix, left_pix, tmp) /* 1 1 kernel 3b */
Add (tmp, right_pix, tmp) /11 ->121 %/
Add (tmp, left_pix, tmp) /11 ->1331%*/
Sub (tmp, right_pix, tmp) /*1 -1 ->12 0 -2 -1 */

/* sign of tmp = sign2, possible pos */
/* Find zero crossings within peak */

MARK (signl, sign2) /* 2 clock */
LFILL
pos[i] = COUNT /* Read position of peak */
LEDGE /* Mask for positive val */
ST MASK /* Store mask */
for (3=b;3>0;j~-~) { /* Read nval, 3b */

LD MASK

AND der(j) /* Mask out bit */

nval += GOR<<j /* Read bit to controller */
}
LD (LSHIFT) MASK /* Pos for positive val */
Read (pval) /* Read positive value 3b */

}
The sub-pixel peak position is then found as

nval

pval —nval (74

posli] = posl[i] -

note here that nval is negative. Since we need time to A/D convert the next row while process-
ing the present one the time for an NxN image is approximately

b

T, = Nz[Max(z—, M) + QJ (7.5)
S Sy TSy

This gives a rangel speed of approximately 44 KHz if b is eight. With a 3x1 derivative filter the

corresponding speed is 67 KHz, but it will also be more sensitive to noise. The range frequen-

cies obtained are not very high, but on the other hand this algorithm is, as was shown in

section 4, capable of high accuracy even under noisy conditions.

7.8 Horizontal maximum finding algorithm

A horizontal maximum finding algorithm over a rows is obtained by the following

/* Horizontal maximum finding sheet-of-light
algorithm over part of the sensor */
/* Position counter is Gray coded */

pos = 0 /* Reset counter; loga */
Max = 0 /* Reset max; loga */
for (i=x;i<y;i++) { /* Read a = (y-x) rows */
pix = readAD /* Read A/D converted row b */
if (pix > Max) { /* Test for maximum 2b */
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Max = pix /* Save new maximum 3b */

poOs = rowno /* Save position 3loga */

}

rowno++ /* Increment pos 2 */
}
Convert (pos) /* Convert from Gray code */
Move (pos, Sreg) /* Readout pos loga */
SAVE /* Shift out position */
Move (Max, Sreg) /* Readout Max b */
SAVE /* Shift out intensity */

Since we need time to A/D convert the next row while processing the present one the time
for an NxN image with the range resolution a is approximately

b
T, = NMax(N loga  mpax( 2 6b+3loga+2, b+ 210ga)

i 5 fap 5 ' 5
If we choose a = 64 and b = 8 the A/D conversion sets the speed limit with an image frequency
of 4.75 Hz. The range and intensity pixel frequency is approximately 310 KHz. If we evaluate
equations (7.3) and (7.6) we note that if the range accuracy needed is more than 6 bits the ver-
tical algorithm is faster, but for 6-bit accuracy and less the horizontal algorithm is preferable.
Note that if the intensity as well as the range is to be read out the limit-frequency is halved (~
5MHz), and that no error and peak width corrections are implemented.

(7.6)

7.9 Horizontal thresholding algorithm

In this implementation, previously described in [34], [32] each PE finds the row position of the
first pixel above the threshold (= the start position of the peak) by counting the number of rows
before any pixel is above the threshold, and the row position of the last pixel above the thresh-
old (= the end of the peak) by counting the number of rows before the end of the first peak is
found. The peak position is then computed with half pixel sub-pixel accuracy as the sum
(mean) of the two counters.

In pseudo code the horizontal thresholding algorithm is described as follows

/* Horizontal thresholding sheet-of-light algorithm */

SETV volt /* Set threshold voltage */
Countl = Count2 = 0 /* Reset counters 2logn */
START = 1 /* Reset Mask bits */
ISTOP = 0
ERR = 0
SETR x /* Set row */
for (i=x;i<y;i++) { /* Read a = (x-y) rows */
INTEG /* Read analog row value */
LD PD /* Read inverted row */
RESET, + /* Reset PD, new row
ST Rx(1) /* Store inv. row */
/* Peak start counter */
AND START
ST START
XOR Countl (i) /* Change counter bit */
ST Countl (i) /* Counter Gray coded */

/* Peak end counter mask */
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LD Rx (1) /* Load invert row */

AND Rx(i-1) /* And prev row */
OR ISTOP /* Or with stop */
ST ISTOP /* Save stop */
/* Error filtering */
AND Rx (1)
OR ERR
ST ERR
/* Increment end counter */
LDI ISTOP /* Read count 2 cond */
XOR Count2 (i) /* Change counter bit */

STORE Count2 (i)
}

Convert (Countl) /* from Gray 2loga */
Convert {Count2) /* from Gray 2loga */

Add (Countl, Count2, Sum) /* add 3loga */

Move (Sum, Sreg) /* Load sreg loga */
sreg(8) = ERR /* Load err bit to sreg */
SAVE /* Shift out row */

The START bit in each PE is used to detect the beginning of a peak. If a peak is found it
will be set to zero for the duration of the sensor readout. When the START bit is zero no start
increment of Countl is possible in this PE and Count] will retain the peak start position value.
The ISTOP bit in each PE is used to detect the end of a peak. If the end of a peak is found
ISTOP is set to one for the duration of the sensor readout. When ISTOP is one no increment of
Count2 is possible and Count2 will retain the peak stop position value. In the code we output
the error value, but it is also possible to make the error filtering in MAPP, i.e. use the error bit
to AND with the data bits. This requires approximately loga cycles.

Since we need time to shift out the result of the previous sensor processing while process-
ing the previous the time for an NxN (N = 256) image with the range resolution 2loga is
approximately

T, = N(Max{(%, +1 +;:g“)(1_2‘1 + 91]‘2;’“)} ) a7

For n = 128 (8 bit range accuracy) the range image frequency is 13 Hz and the rangel fre-
quency 860 KHz, i.e. the speed is very similar to the vertical implementation. However, for
lower range accuracy than 8 bits the horizontal algorithm has higher speed. For instance, if the
range accuracy is 6 bits the rangel frequency is 3.3 MHz. Also, when the accuracy is less than
5 bits it is possible to output 2 rangels during each 8-bit shift, so the rangel frequency can actu-
ally increase above the 10 MHz shiftregister transfer frequency.

7.10 Horizontal thresholding with USM

The Unique Sequence Method, USM, was originally described by Astrand et. al. in [66] and
[67]. Although it is technically a horizontal thresholding algorithm, the USM implementation
is very different from the previous algorithms, giving radically different performance.

To understand how the USM algorithm works, study Figure 7.12. With each sensor row we
have associated a USM number, say between O and 15. The sequence of USM numbers is
called the USM sequence. How the USM sequences can be generated will be discussed below.
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Now, if we threshold a peak which covers n consecutive pixels we thereby select n USM num-
bers from the sequence. Due to the characteristics of the USM sequence the combination of
USM numbers thus selected is unique, and can be used to determine the peak position.

When implementing USM the USM numbers are represented by bit positions in a 16 bit
word, called the USM vector. When thresholding each sensor row we thereby obtain a bit indi-
cating if this bit in the USM vector should be set or not, and by OR-ing this bit with the previ-
ously stored bit we obtain a new bit value in the USM vector. The peak position indicated by
the USM vector after all rows have been thresholded can then be found by a look-up table.

FIGURE 7.12.
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USM sequence generation

We have generated USM sequences using a computer program. It iteratively tries to add new
USM numbers (i.e. more sensor rows) to the generated sequence while ensuring the unique-
ness of the USM vectors generated by all possible peak positions in the sequence. The parame-
ters that control the sequence generation is the length of the USM vector, i.e. the number of
bits in the code, and the minimum and maximum peak widths n that should be possible to
detect. The program then tries to find the longest possible sequence of USM numbers within
the given constraints. There is no guarantee that the generated sequence is optimal, but we
believe that no significantly longer sequences will be possible for a given set of input data. The
sequence generation is covered in more detail in [66].

Ideally we want to be able to detect peaks with a variety of widths using as few bits in the
vector as possible. Using few bits in the vector facilitates the conversion from the USM vector
to the peak position. So far we have not implemented this conversion in MAPP2200, instead
all USM vectors are output to the controller where a table lookup is performed. Since the
MAPP2200 shiftregister is eight bits wide it seems natural to chose USM vector lengths as
multiples of eight, and since 8 bits gives very short sequences we use 16 and 24 bit vectors.
Data for four generated sequences can be found in Table 7.1. We see that for a 16 bit USM vec-
tor we can choose between detecting 3-9 pixels wide peaks using 182 sensor rows or 5-11 pix-
els wide peaks over the whole sensor. Using a 24 bit USM vector we can detect peak widths
down to 2 pixels. The first sequence in the table is the one we have used in our experiments.
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TABLE 7.1.

USM vector Minimum Maximum
Sequence Length length peak width | peak width
182 16 3 9
256 16 5 11
256 24 2 9
232 24 2 11

Since the number of valid USM vectors is around 10% the possible vectors the inversion
lookup tables contains a large number of non-valid entries. This gives a limited form of error
detection capability. If the peak is thinner than the minimum width it is always guaranteed that
no valid USM vector is generated, but if the peak is wider or a noise induced pixel position is
set to one the generated USM vector may or may not be part of the valid set. In our experi-
ments we have verified that the probability that a correct USM vector is generated from an
incorrect peak is very small.

USM implementation

USM can be implemented on the MAPP2200 sensor in several ways. The most straightforward
is to address the sensor rows in sequential order and threshold each row with the pre-specified
threshold. The resulting bit is then OR-ed with the data in the USM vector position given by
the row number. In pseudo code this will be

/* USM Implementation 1 */ ]
/* tab[i] contains the USM number for row i */

Reset (R) /* Reset the USM vector, L */
SETR 0 /* Set start row */
for (i=0;i<a;i++) {
INTEG /* Read pixel value */
LDI PD /* read thresholded bit */
RESET, + /* Reset pixel */
OR R{tabl[il]) /* Or with USM bit in RAM */
ST R(tab[i]) /* Store new bit in RAM */
}
Move (R, Sreg) /* move vector to sreg */
SAVE /* Shift out USM vector */

This implementation requires five MAPP2200 instructions in the inner loop. However, by
utilizing the capability of analogue addition of charge from several rows before the threshold-
ing we can implement the algorithm in a much more effective way. If we consider the charge in
a pixel as zero if the peak does not illuminate that pixel and above the threshold if it does, then
we can add the charge from all pixels who have the same USM number by addressing the cor-
responding sensor rows, and then threshold the result, getting the logic OR of the thresholded
sensor rows as before. Thus, instead of the table with the USM sequence we generate a table
which contains the row indices for the rows with USM number zero, the rows with indices one
and so on. This table is then used in the implementation which looks like

1-68

PAGE 82 OF 204



/* USM Implementation 2 */

/* tab[i][0..(J-1)] contains the row numbers for
the USM number i */

/* The number of rows in each USM bin is J */

Reset (R) /* Reset the USM vector, L */
for (i=0;i<L;i++) { /* for all L USM numbers */
RESET /* Reset PD register */
SETR (tab[i][0]) /* select first row */
INTEG ) /* Start integration */
for (j=1;3<d;j++) {
SETR (tab[i] [j]) /* Select rows */
}
ST PD, R(1) /* Store thresholded bit */
}
Move (R, Sreg) /* move vector to sreg */
SAVE /* Shift out USM vector */

Using this implementation there is only one MAPP2200 instruction in the inner loop and
the time to acquire one NxN range image using an L bit code word is approximately

T, = N(Max([%'-’ %’ a ‘;pSL) +}L;) 1.8)

where a is the number of rows in the sequence. If @ is 182 and L is 16 the range image fre-
quency is 74 Hz and the range pixel frequency 4.8 MHz.

USM drawbacks

A large drawback of the USM algorithm is the limited peak widths that can be detected. This
sets a limit in how much the reflectivity of the viewed object can change. Thus, the USM is not
suited for applications where the object reflectivity changes very much. Also, the use of analog
addition before the thresholding makes the algorithm more sensitive to background noise. In
this implementation the shiftregister communication is the bottleneck, not the processing.
Thus, if an effective way of translating the USM vector to a peak position can be implemented
in MAPP2200 the performance can increase the range pixel speed up to almost 8 MHz.

7.11 Horizontal center-of-gravity algorithm FBM

In [31] we presented a straight-forward implementation of a center-of-gravity peak finding
algorithm. The implementation has very low performance, less than 100 KHz rangel fre-
quency, and has never been implemented. The Forward Backward Method, FBM, however is a
very effective way to implement a horizontal center-of-gravity algorithm on MAPP2200. FBM
was originally described by Astrand et. al. in [66] and [67]. Just as the USM it utilizes the abil-
ity to add charge from several sensor rows before thresholding or A/D conversion. To under-
stand the FBM study Figure 7.13. We scan the sensor rows in a forward-backward pattern,
adding analog charge from all accessed rows, and at each turning point the collected intensity
sum is A/D converted.
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FIGURE 7.13.
Sensor row x

A/D convert AD rt
E(EGOMT,) SEGONTy

Time
0
A/D convert A/D convert
I(f(x)*T,) E(fx)*T,)

The row access pattern and A/D conversion in the FBM.

For each row x the integration time is alternating between 2x and 2(a-x). The intensity sum
achieved after a forward scan written as an integral is

S, = [2xf (x)dx (7.9)
and correspondingly the intensity sum achieved from a backward scan is
S, = [2(a-x)f(x)dx (7.10)
Now, if we combine these two sums we get
S48, = [2xf(x)dx+ [2(a-x)f(x) dx = 2af(x) dx (7.11)
and thus we can compute the center-of-gravity position of f{x) using
xf(x)dx S
P= j = ag— (7.12)
Jf (x) dx Sy +8,
In pseudo code the FBM implementation looks like
/* Horizontal center-of-gravity using FBM */
RESET
laser(on)
INTEG /* Start integration */
for (i=0;i<a;i++) /* Forward scan */
SETR i /* Access gives integration */
}
laser (off)
HOLD
INITAD /* A/D convert S; */
WAITAD
Move (AD, Sreq)
SAVE
RESET
laser(on)
INTEG /* Start integration */
for (i=a-1;i>=0;i--) {
SETR i

}
170
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laser{off)

HOLD

INITAD /* A/D convert S, */
WAITAD

Move (AD, Sreg)

SAVE

If the position P is to be calculated within MAPP, a bit-serial division is required which
takes approximately 6b? cycles where b is the number of bits. To avoid this the two intensity
values are shifted out and the range values are then computed in the controller. A feature is that
intensity data, i.e. the sum of the two components, is acquired as well as range data. Note that
we niodulate the laser to avoid integration during the A/D conversion.

The time for an NxN range image is then approximately

2N (2a+18 2x2”))+y) (1.13)

T, = N(max(f, T +7A;— 7,

The data output using the shiftregister limits the rangel frequency to 4.8 MHz if the maximum
A/D converter precision is used. Actually, by computing a new range vector for each forward
or backward scan readout the rangel frequency can be doubled, giving 9.6 MHz rangel fre-
quency. To reduce the noise sensitivity we can apply an image subtraction using an image
acquired without the laser illumination. This requires two additional scans and A/D conver-
sions, and two bit-serial subtractions. Since the computations can be performed concurrently
with the A/D conversions and shifts, and the maximum A/D converter frequency is more than
double the shift frequency, the performance loss for the image subtraction is very low.

FBM has a large potential for sub-pixel accuracy peak detection. The limiting factor is the
A/D conversion, limited to eight bits, which constrains the theoretical position resolution.
According to Matlab simulations around 9 bits of accuracy can be attained. However, this res-
olution is independent of the number of sensor rows actually used. Experiments have shown
that around eight bits of resolution can be obtained using as few as eight sensor rows. In
Figure 7.14 we give an example of an FBM image with eight bit resolution acquired using
FBM on 16 sensor rows.

Now, since we can achieve around eight bits of resolution using FBM on a few sensor rows
FBM has potential for very high accuracy if several consecutive scans over different parts of
the sensor are combined. That is, we obtain a coarse resolution by noting at which row interval
the laser illumination was detected, and a fine resolution using the output from this interval. An
example where FBM has been used iteratively over the sensor is shown in Figure 7.15. 32
FBM scans over the sensor has been combined into one complete range profile with 5+8 = 13
bit resolution. We observe some noisy areas which occur when the scale factor a does not
match between the different iterations. Part of this comes from the fact that a depends on the
width of the laser line, and due to the perspective projection this width changes over the sensor.
Thus it is very hard to trim the transitions between different scans. Note that the ranging speed
is reduced proportionally to the number of scans over the sensor.
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FIGURE 7.14.

A 3D plot of an FBM range and intensity image acquired using 16 sensor rows.

FIGURE 7.15.
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An FBM profiles with 13 bit resolution. Compare with the profile in Figure 7.10.
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7.12 Horizontal integrating algorithm I, TIM

The Total Integration Method, TIM, was originally described by Astrand et. al. in [66]. Imple-
mentation-wise it is very similar to the horizontal thresholding algorithm without peak-width
and error computation. However, instead of resetting the readout register after each row access
the charge is added and we compare the sum with the threshold. If we consider the rows not
illuminated by the laser as containing zero charge we get the same algorithm as with horizontal
thresholding. Furthermore, after the scan of all rows the sum of all row charges is found in the
registers, and after A/D conversion we have the total integrated column intensities. Thus we
get both range and intensity information. In pseudo code the algorithm looks like

/* Horizontal total integrating method, TIM */
/* Gray(i) returns the correct counter bit pos */

Count = 0 /* Reset position counter */
SETV volt /* Set threshold voltage */
SETR x /* Select start row */
RESET /* Reset readout register */-
for (i=0;i<(y-x);i++) { /* Read a = y-x rows */
INTEG, + /* Access row i */
LD PD
XOR R(Gray(i}) /* Change counter bit */

ST A,R(Gray(i))
}

HOLD

SETV 0 /* Reset A/D Start value */
INITAD /* A/D conversion */
Convert (Gray) /* 2loga */

Move (Counter, Sreg)

SAVE

The time to acquire one NxN image of range and intensity data is

b+loga 2N\ (6+3loga+4a 2
T,, = Nmax(( + —), (———— + = (7.14)
L T 5 fap
and if only range data are acquired this is reduced to
loga ., N\ (2+3loga+4a
- (5 ) (2024
fp fgh fp ( )

For b=8 and a = 256 the range pixel frequency is almost 2 MHz (1.8 MHz if the intensity also
is read out). If the resolution is reduced to 6 bits or less the shiftregister communication limits
the performance and the rangel frequency increases to almost 10 and 5 MHz respectively.

Although TIM is very fast it has several drawbacks. It is very sensitive to background illu-
mination since the total column charge is compared with the threshold, and the acquired peak
position depends heavily on the peak width, and therefore on the peak intensity. If the peak
intensity is acquired it might be possible to compensate for this, but no accurate compensation
scheme has been devised. Despite all this the image quality can be quite good. We have suc-
cessfully experimented with increasing the threshold incrementally during each sensor scan to
reduce the sensitivity to accumulated background illumination noise.
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7.13 Horizontal integrating algorithm I, OEM

The Odd Even Method, OEM, was originally described by Astrand et. al. in [66] and is an
extension of the TIM. In OEM we integrate the odd and even lines separately in order to over-
come the intensity dependance and to extract some sub-pixel information. The algorithm
works in two phases, one for odd rows and one for even rows. Each phase is identical to the
TIM algorithm, the difference being that the even rows are accessed in reverse order. By
reversing the scan order we get one measurement for each edge of the peak. It is then possible
to approximate the peak position with their mean value. Since we still integrate all pixel
charges we can find the total intensity by adding the intensities from the two passes. In pseudo
code the implementation looks like

* Horizontal total integrating method, TIM */
/* Gray (i) returns the correct counter bit pos */

Count_o = Count_e = 0 /* Reset counters */
SETV volt /* Set threshold voltage */
RESET /* Reset readout register */
INTEG /* Start the even integration */
for (i=0;i<(y-x);i=i+2) { /* a = (y-x) */

SETR x+1 /* Access row */

LD PD

XOR R(Gray_o(i))
ST A,R(Gray_o(i))
}

HOLD

SETV 0 /* Reset A/D Start value */
INITAD /* A/D conversion */
WAITAD

Move (AD, Regl)

SETV volt /* Set threshold voltage */
RESET /* Reset readout register */
INTEG /* Start the odd integration */
for (i=0;i<(y-x);i=i+2) { /* Read a = y-X rows */
SETR y-i/* Access row */
LD PD

XOR R(Gray_e(i))
ST A,R(Gray_e(i))
}

HOLD

SETV 0 /* Reset A/D Start value */
INITAD /* A/D conversion */

WAITAD

Move (AD, Reg2)

Convert (Gray_o) /* Convert counters */
Convert (Gray_e)

Add(0dd, Even, Sum) /* Mean of counters is peak */
Move (Sum, Sreg) /* Shift out mean peak posl*/
SAVE

Add(Regl,Reg2, Sum) /* Add intensities */

Move (Sum, Sreg) /* Shift out intensity sum */
SAVE
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The time to acquire one range image using OEM is then

I, = Nmax((b +loga , QV) ( 14+2b+4a 2_1”))
b8 fon 5 fap
The OEM performance is slightly lower than for the TIM, and for »=8 and a = 256 the range
pixel frequency is 1.8 MHz (1.5 if the intensity is readout as well). For less than 6 bit resolu-
tion the shiftregister limits the performance and the rangel speeds are close to 10 and 5 MHz
respectively.

In the pseudo code we compute the intensity sum and transfer that out to the controller.
However, it might be advantageous to shift out the intensity and peak position components
instead as they contain sub-pixel and error information. If the two positions indicated by the
counters are dissimilar one of them is probably affected by noise and the absolute difference
can be thresholded into an error value.

That the intensity components can be used for sub-pixel information can be understood by
noting the following. Assume that the peak is approximately one pixel wide. Then, if the inten-
sity components are equal the peak is centered between two pixels, and if the even sum is
much larger than the odd sum the peak is centered around an even pixel. A simulation of the
intensity components as a function of the peak position can be found in Figure 7.16. In the sim-
ulation we have used MAPP2200 sensor geometry, and the uneven row distance is the cause of
the non symmetric intensity curves. Now, if we can recover the “phase” of the two components
we should be able to estimate the peak position more accurately.

FIGURE 7.16.
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0dd and even pixel intensities for different peak positions. The integer peak position incre-
ment is shown amplified.

In Figure 7.17 we show the result when we have used the intensity components to try to
recover sub-pixel accuracy. In the figure we see that the method fails at every second integer
transition, but otherwise the results looks good. This is because the acquired sub-pixel infor-'
mation and the integer position values are “out-of-phase”, i.e. the change in integer position
does not occur simultaneously with the change from plus to minus sub-pixel information. In
this example we have managed to select the threshold so that one transition is in-phase with the
sub-pixel information but the other is not. Thus, it is hard to use the intensity components for
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sub-pixel accuracy ranging. However, if a continuous surface is viewed any change in distance
may be determined with high sub-pixel accuracy from the intensity components, but not the
absolute peak position. Also the amplitude of the sinusoids depends heavily on the peak width,
which makes the method unsuitable for use with materials having large intensity variations.
Actually, if we only study the intensity components the results are very similar to the FBM
results, but in the FBM the unsymmetrical sensor row positioning gives no non-symmetry in
the components since the odd and even sensor rows not are processed separately.

FIGURE 7.17.

The integer and recovered sub-pixel range for a range profile. Note that the predicted non-
symmetry of the integer position increments is clearly visible.

Four image results from one OEM range image acquisition is shown in Figure 7.18.
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FIGURE 7.18.

Range (top left), intensity (top right), sub-pixel information (bottom left) and error (bottom
right). The sub-pixel information is the difference between the intensity components and
the error image is the difference between the range components.

7.14 Multiple peak readout

Multiple peak readout can easily be incorporated into the MAPP2200 vertical sheet-of-light
programs using the PEs to mask out the peaks from the binary position vector one after the
other as in the code example below.

/* Multiple peak redout from MAPP2200,binary peak row in Acc*/

ST Acc, RO /* Store temporary row */
while (GOR) /* While any peak left */
LFILL RO /* Detect leftmost pixel */
LD GLU
pos[i] = COUNT /* Read position */
LEDGE /* Find leftmost pixel */
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MARK RO /* Mask out leftmost peak */

LD GLU
width[i] = COUNT /* Read peak width */
XOR RO /* Remove peak from temporary row */
ST Acc, RO /* New row as temporary */
endwhile

The width and position data is in fact the run-length code of the thresholded row, and the
extra execution time is approximately 1.5 ps for each additional peak readout (at a PE clock
frequency of 8 MHz).

7.15 RANGER RS2200

The RANGER RS2200 range sensor is a MAPP2200 sensor with sheet-of-light range imaging
software and it has been commercially available from IVP since mid-1994. So far systems
have been sold in for instance Sweden, USA, Italy and Israel.

The system is based on the results presented in [31] and it incorporates the vertical algo-
rithms in section 7.3 - section 7.6, i.e. NSIP maximum finding, successive approximation max-
imum finding, and thresholding algorithms. Both the successive approximation and the
thresholding algorithm support multiple thresholdings to increase the range resolution. The
system also contains tool functions for system accuracy prediction, calibration and range
image viewing. With the PC version maximum rangel frequency of between 90-150 KHz can
be obtained, and with the Smart Camera version the maximum rangel frequency is approxi-
mately 200 KHz.
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Chapter 8

Comparisons and conclusions

In this part of the thesis we have presented a total system overview of sheet-of-light range
imaging. We have covered geometric design and calibration as well as several algorithms. A
novel smart sensor architecture for range imaging called NESSLA has been presented, and
several algorithm implementations have been studied using the MAPP2200 sensor. Here we
give a comparison between our results and those for other smart sensor implementations pre-
sented in the literature.

The range pixel speed differences among the presented smart sensor architectures are not
very large. Most of them are capable to output position data at around 1-2 MHz, which is 50-
100 times faster than what is possible with a standard video sensor. The best predicted perfor-
mance, up to and above 5-10 MHz, was found for the NESSLA architectures and for certain
MAPP2200 implementations.

The NESSLA architecture has digital data transports from the pixel cells which should be
less noise sensitive than the analog transfers in all other designs. However, the extensive use of
logic in the pixels makes it hard to have a large sensor aperture, and thus the light sensitivity
might suffer. The NESSLA design automatically adapts for different light intensities and there-
fore the risk for sensor saturation is very low. Sensor saturation can otherwise be a problem,
especially when we get specular reflections of the laser light.

The Analog processing sensor cells architecture is the most complex design with the analog
signal processing in each sensor cell. The NESSLA design is also quite complex but we
believe that it is possible to fabricate a working 2562 sensor with standard 0.8 tm CMOS VLSI
process design. Furthermore, the NESSLA design does not need any analog hardware outside
the sensor area which makes it rather VLSI friendly. The PSD designs seems to be easy to
implement but they need extra analog processing to obtain the offset (range) data from the sen-
sor outputs. The analog bottleneck in the previously presented designs can be avoided by using
the design with on-chip A/D conversion presented here. Both the Row readout successive
approximation and Column readout peak detection architectures utilize a standard sensor area
and are therefore not very complex to implement.

The NESSLA architecture, the Column read-out peak detection architecture and several of
the MAPP2200 implementations can all output grey level intensity images concurrently with
the range data. Theoretically, the PSD architecture can output reflectance maps, but no reports
of this are available. Intensity information is very useful both as image information and as a
confidence measurement.

We believe that a sheet-of-light range imaging system using the NESSLA architecture can
output range images with range image frequency and accuracy comparable to or better than the’
architectures found in the literature. NESSLA also has a built-in error correction which does
not exist in any of the others except some of the MAPP2200 implementations. The Column
readout architecture can also be very effective and it is fairly easy to implement in VLS

The MAPP2200 implementations are maybe not as fast as the special purpose architectures
for the same accuracy, but the overwhelming advantage of this sensor is that it is commercially
available. With MAPP2200 a sheet-of-light range camera system can be built today, whereas
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the other designs are prototypes at the best. Also, with MAPP2200 it is possible to trade reso-
lution for speed and obtain low resolution images at high speed. An additional feature of
MAPP2200 is its general programmability which makes it possible to implement not only the
sheet-of-light range finding algorithm but also subsequent processing of range data as has been
shown in a can sorting application example [30]. This alleviates the need for extra hardware
and makes the overall system installation easier
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Chapter 1

Introduction

1.1 Parallel processing

High data rates and large computational demands are typical for real-time image- and signal-
processing applications. Already for a standard black and white video signal the data rate is in
the order of 50 Mbit/s, and, if typical radar signals are processed, this figure may well be sev-
eral hundreds of Mbit/s. With these kind of data rates even the simplest real-time signal pro-
cessing task requires hundreds of millions of operations per second (Mops), and with a more
complicated algorithm thousands of millions of operations per second (Gops) performance is
needed. Since no single processor comes near this kind of performance (yet!) the processing
has to be broken down into smaller tasks which can be executed by several processors in paral-
lel.

Two different ways to parallelize a task are: 1. A pipeline of processors, each one solving
its part of the algorithm on all input data. 2. An array of parallel processors, where each proces-
sor executes the whole algorithm for a limited amount of data. See Figure 1.1.

FIGURE 1.1.
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A comparison between pipelined and parallel multiprocessor systems.
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In a pipelined system it is always possible in principle to optimize the processor design for
each sub-task, but the partitioning problem itself might be non-trivial. Also, each processor
must still process the data at the input data rate. Although not conceptually identical this kind
of parallel system is often called Multiple Instruction stream Single Data stream (MISD)
machine.

In an array of parallel processors each processor processes only a sub-set of all data. Nor-
mally this will lower the data rate to each processor and therefore a less complex processor can
be used. Two different kinds of parallel systems, Multiple Instruction stream Multiple Data
stream (MIMD) and Single Instruction stream Multiple Data stream (SIMD), can be used to
implement this very general idea. In an MIMD system the processors run, possibly, but not
necessarily, individual programs asynchronously and data dependently. In an SIMD system all
processors execute the same program synchronously. Since one single control unit can support
many processors in an SIMD-machine, the processors can be made extremely simple, lending
themselves to massive parallelism. The disadvantage with SIMD processing is that since all
Processing Elements, PEs, execute the same instructions, data dependent operations are cum-
bersome. In this thesis we concentrate on SIMD systems. Further discussion on different paral-
lel systems can be found elsewhere, for instance in [10], [37], [38], [40], [49] and [53].

The seemingly most natural SIMD architecture to process 2D data is the 2D processor
array. Although numerous 2D architectures have been presented, for instance GAPP [29], the
Connection Machines CM1 and CM2 [67], CLIP [22], MPP [6], Blitzen [8], and MasPar [56],
the number of 2D arrays used for real-time signal processing is low. One common reason is
that the IO bandwidth of the system is too low, and this limits the performance before the
actual processing capacity. Also, even with the current state-of-the-art technology it is hard to
make a compact (and reasonably cheap) 2D array with say 512x512 processors. One recent
design, scheduled for release in early 1996, has compacted a 128x128 PE MasPar 32-bit SIMD )
RISC processor design into a two cubic feet package [66]. The system has a predicted peak
performance of 34 GFlops.

Instead of using a complete 2D array we may use a 1D row-parallel array. Examples of
such 1D array designs are LUCAS [62], AIS-5000 [68], IMAP [25], SVP [55], CRAM [18],
[19] and LAPP1100 [21]. The LAPP1100 also contains a linear image sensor on the processor
chip. It is easier to implement a row-parallel linear array than an image parallel 2D array, but
of course, each of the processors must then execute the chosen task for a column of pixels in
the image rather than for one pixel.

1.2 VLSI limitations

Even though the CMOS VLSI technology evolution is very fast there are still many physical
limitations on chip design. The most apparent limit is the chip area, which effectively limits
the number of transistors on a chip. However, with the current sub-micron feature size fabrica-
tion processes combined with chips larger than 200 mm? this limit is less important and
designs using several millions of transistors are common. Furthermore, the trend towards even
smaller feature sizes still continues.

More acute is the limited number of IO connections. While the feature sizes of the state-of-
the-art CMOS VLSI processes used today are well below one micron the size of an IO pad
remains in the order of at least a hundred microns. This, together with a maximum chip cir-
cumference of around 4-6 cm, limits the number of connections to a few hundred. This makes
it hard to design large processor arrays with large IO bandwidth per processor. A lot of effort is
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put into the problem of increasing the number of interconnections between chips by distribut-
ing the IO pads over the chip surface rather than around the circumference. Those methods are
not very common however. An overview of different state-of-the-art chip interconnection
strategies can be found in [32].

Also, as the clock frequency and therefore the power consumption increases, the power
supply has to be connected over many input pins which further limits the number of available
signal pins. For instance, the Alpha microprocessor, clocked at 300 MHz, has a power con-
sumption of SOW, giving currents above 10 A [3].

1.3 VIP history

The Smart Sensor project at Linkdping University started around 1988 aiming at a smart sen-
sor named PASIC (Parallel A/D converter Sensor Integrated Circuit) [72]. PASIC was a 2D
sensor with a 1D SIMD array of bit-serial processing elements on a single chip. Some of the
ideas in PASIC have subsequently been implemented in the commercial smart image sensor
MAPP2200, fabricated by the company IVP in Linkoping [20]. The processor array of the
PASIC architecture was found to be a very powerful signal processing architecture on its own
due to the effective but small Processing Element (PE) design. This modified architecture was
then called Video Image Processor, VIP [74].

The row-parallel bit-serial VIP processor was designed with real-time video-rate input sig-
nal processing in mind. However, a preliminary study showed that a modified VIP could be
used for Low Pulse repetition frequency Doppler (LPD) radar signal processing as well [43]..
Following this study a joint project between the University of Link&ping and Ericsson Radar
Electronics was started in 1991, which resulted in the Radar VIP (RVIP) architecture described
here and in [47], [48] and [4]. The RVIP is currently being implemented by Ericsson Micro-
wave systems, EMW, (formerly Ericsson Radar Electronics) and a prototype VLSI-system is
in operation since mid 1995.

After the success of the RVIP, further studies were launched in 1993 to find other suitable
applications for the VIP design. The new applications studied so far are airborne Medium
Pulse repetition frequency Doppler (MPD) radar signal processing (Flight VIP, FVIP) [76],
[46], infrared video signal processing (IR VIP, IVIP) [33], [35], [75] and “secondary” wood
inspection (Wood VIP, WVIP) [35], [36]. In 1994 we also started a study of a space-time adap-
tive phased array antenna application, the Matrix VIP. Only the RVIP, FVIP and MVIP designs
will be described in this thesis.

The original VIP

The original VIP architecture, [74], [43], is an SIMD architecture with a linear array of possi-
bly 512 bit-serial processing elements (PEs) on a single chip, and the layout of the chip can be
seen in Figure 1.2. In the floorplan the linear array is folded so that (possibly) 256 PEs are fac-
ing two opposite sides of the chip. Each PE has a bit-serial multi-functional ALU with an 8-bit
serial-parallel multiplier, 256 bits of memory, two 8-bit shiftregisters and an external memory
port, all connected via a one-bit bus, see Figure 1.3. Each external memory port is shared by
eight PEs in order to reduce the number of IO connections on the chip.
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FIGURE 1.2.
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The layout of the original VIP chip.
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FIGURE 1.3.

256-bit RAM

8-bit parallel shiftregister

8 ' 8
P .
7
| 8-bit parallel shiftregister
8
Z
7

8-bit Serial-parallel multiplier

Eorrl”"

External memory
register

| =
PE-l{)us [_

Extemal memory
port

8-1 multiplexer

The processing element in the original VIP.

The VIP was designed for 20 MHz clock frequency, and the 8-bit size of the shiftregisters
and multiplier indicates that the target application was video image processing of 8-bit greys-
cale images. The predicted performance of one 512 PE VIP chip was approximately 420 Mops
for 8+8 bit additions and 320 Mops for 8x8 bit multiplications.

A 256 PE prototype, without the multipliers, was implemented in 1990-1991, and it was
successfully integrated in a test system with a micro controller, compiler, simulator and frame
grabber [45]. The compiler and simulator package was later updated and used to simulate the
RVIP architecture and algorithms [47].
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1.4 Other related architectures

Many 1D SIMD architectures have been presented throughout the years. We feel that two of
these share a lot of ideas with the VIP concept, and have somewhat comparable performance.
They are therefore presented below. The most notable difference between these architectures,
and older architectures not presented here, is the extended IO capacity which makes it possible
to implement more IO intensive operations.

A row-parallel SIMD architecture called Serial Video Processor (SVP), has been presented
by Texas Instruments [55]. The target application is digital television applications and 768-
1024 Processing Elements on each chip are proposed for different TV standards. Data IO is
supported by two parallel shiftregisters, 40 and 24 bits wide respectively, running at 33 MHz
clock frequency asynchronously with the PE processing. Each PE consists of 2x128 bit data
registers (register files), a bit-serial ALU with four internal registers and a communication net-
work allowing each PE to reach four left-right neighboring PEs, see Figure 1.4. The perfor-
mance for a 1024 PE chip is stated as 1250 Mops for 8+8 bit addition and 155 Mops for 8x8 bit
multiplication at a PE clock frequency of 20 MHz. The SVP is currently available in Japan, but
we do not have any detailed information of the current version [28].

FIGURE 1.4.
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The processing element of the SVP processor array (adapted from-[55)).

An architecture for video input processing, called alternatively Integrated Functional
Memory, IFM, and Integrated Memory Array Processor, IMAP, has been presented by NEC
[24], [25], [26], [27], [65]. This chip combines a large dual-ported VRAM and an up to 512 PE
SIMD array of 8-bit PEs. Each PE has an 8-bit ALU with a barrel shifter using input data from
sixteen 8-bit registers, see Figure 1.5. IO communication is supported by two 8-bit parallel
shiftregisters and a third 8-bit shiftregister is used for neighbor PE communication. The inter-
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nal memory is 2-4 Kbyte and since it is dual-ported it can be accessed by the external control-
ler as well as by the PEs. A mask bit can be used to enable/disable each PE which allows for a
limited form of data dependent operations. A special feature of this architecture is the 256
word indirect access memory which speeds up histogram computations, multiplications, and

image rotations.
FIGURE 1.5.
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The IFM (IMAP) processing element (adapted from [25]).

Two prototypes have been implemented. The first one employs a 0.8 pm process with 8
PEs on each chip running at 25 MHz and reaching 7.7 Gops for a 64-chip 512 PE system. The
second one employs a 0.55 pm BiCMOS SRAM process with 64 PEs on each chip, reaching
3.84 Gops per chip at a clock frequency of 40 MHz. The latter design contains 11 million tran-
sistors on a single 235 mm? chip.
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The chip performance for 8+8 bit addition is 2.56 Gops and 8x8 bit multiplication 230
Mops. 3.84 Gops is attainable by counting additions and memory accesses as separate opera-
tions. The large internal dynamic memory, which originally had a cycle time of 150 ns [24],
has been exchanged for a faster static memory in the latest prototype, but the memory band-
width is still a bottleneck as long as the access time is at least 2 clock cycles.
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Chapter 2

Pulse Doppler Radar

2.1 Generall

This part of the thesis investigates VIP architectures suitable for pulse Doppler radar signal
processing. Therefore this chapter presents some of the basics of a radar, i.e. how range and
velocity can be detected using reflected microwave pulses. To understand this we also present
the function of parts of the required hardware, i.e. the antenna and the receiver. We then give
an overview of the typical signal processing algorithms which are used in the radars in the fol-
lowing chapters.

RAdio Detection And Ranging, RADAR, is a ranging technique based on time-of-flight
measurement which was developed in the late nineteen thirties. The radars discussed here use
electromagnetic microwave pulses with a wavelength A of around 1-10 cm, i.e. a frequency of
3-30 GHz, as a carrier wave. The applications are military ground-based or airborne radars
where the goal is to detect and measure the position of airborne targets, e.g. acroplanes, heli-
copters and missiles. In principle it is also possible to use ultra-sound or visible light pulses in
a radar, but microwaves are better suited for accurate long distance ranging.

The normal radar transmitter antenna emits energy in a direction called bearing, and the
receiver, which often uses the same antenna, detects the echoes returning from targets in the
bearing direction. To resolve the direction to the targets accurately, the antenna should only
transmit energy in one direction, i.e. the direction of the main lobe. However, small parts of the
energy is always transmitted in several other directions, known as the side lobe directions, see
Figure 2.1. When the same antenna is used both for the transmitter and the receiver the side
lobe characteristics are of course the same. Echoes returning from these side lobes may be
detected. Unwanted echoes are called clutter, and a large part of the signal processing task is
aimed at detecting a weak target signal in the presence of strong clutter. Clutter is not only
caused by the sidelobe echoes, but often the main lobe produces clutter from the ground, which
in fact can be much larger than the target echoes. Another type of unwanted signals comes
from active jammers, i.e. enemy transmitters, trying to disturb the function of the radar. Anti-
jamming techniques are not employed in the radar applications discussed here.

1. Much of the contents of this chapter has been collected from the book “An introduction to airborne RADAR”
by G.W. Stimson [61].
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FIGURE 2.1.
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A cross section of the sensitivity and directivity of a typical radar antenna.

2.2 Radar ranging

Radar ranging is performed by transmitting a modulated continuous wave (CW radar) or a
pulsed wave in one direction (bearing). The range r to a reflecting object is then proportional to
the round-trip time ¢ of the wave, i.e. the time until the echo is received, such that

_c-t
r= 2.1
where c is the speed of light. The range resolution Ar is inversely proportional to the receiver.
sampling frequency f;
c
= = 2
Ar 37, 2.2)

For each transmitted pulse R samples, called range bins, are collected over an instrumented
range Ar-R, giving one row of range data. The number of samples R is limited by the pulse rep-
etition frequency, prf or f,, and the sampling frequency f; so that

by
R<H 2.3
7, 2.3)
This implicates that we can only detect targets at ranges up to the unambiguous range r,,
r =Ar-R = £ 2.4
; 7, @4
If the target distance r is larger than r,, aliasing will give a detected apparent range, r,, which is
rg=r=r,n 2.5)

where 7 is an integer value describing the number of times the range value has been folded
around the ambiguity limit r,,. » is also the number of pulses that has been transmitted since the
detected signal was transmitted.

Prf switching is a technique which is used to distinguish between aliased and non-aliased
target echoes. By changing the prf while acquiring several rows of data from the same bearing
we obtain data where we know that non-aliased target echoes appear in the same range bin in
all of the acquired rows. Aliased echoes will, however, since the ambiguity limit changes,
move to different range bins in the different rows. This is illustrated in Figure 2.2. We see that
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a target echo appears in range bin 8 in all three rows, and thus a target detection is made for
that bin. The other echoes are discarded since they do not coincide, and are either generated by
noise or targets at a distance greater than r,,.

FIGURE 2.2.
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Data from three consecutive rows from the same bearing acquired with different prfs. One
target is found in range bin 8, and the other echoes are aliased and therefore discarded.
The distances to targets at ranges greater than r, can be found by further exploiting prf

switching with a technique called resolving. By definition a Coherent Processing Interval,
CPI, contains data sampled from one or more pulses transmitted with a constant prf. If we dis-
card data immediately after a switch to a new prf we know that all echoes in the collected data
from each CPI i satisfies equation (2.5) for some integer n;. Thus with X CPIs we get X equa-
tions

P=rytr,n (2.6)

with the unknown variables n; and 7, i.e. we have X equations and X+ unknown variables. A
value of r which satisfies the equation system can be found by a trial and error search. To the
data in Figure 2.2 this gives one possible solution as

=3+10-4=13+15-2=7+18:-2 =43 2.7)
Alternatively we can use the technique illustrated in Figure 2.3, where data from the CPIs from
Figure 2.2 is resolved.
FIGURE 2.3.

CPI expansion limits
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bins

Resolving data from the three CPIs in Figure 2.2. The ranges of the two targets are 8
and 43.

Here we unfold data from each CPI around its respective ambiguity limit and find the coinci-
dences analogous with the prf switching technique described above. In the example each CPI
contains between ten and eighteen range bins and the resolving is performed out to fifty range
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bins. Thus, in this example the resolving increases the maximum distance to a correctly
detected target with a factor between three and five compared with the maximum target dis-
tances of the individual CPIs.

For various reasons only a fraction x, usually around 0.75-0.9, of the available time is spent
sampling the receiver so that in practice the number of range bins is reduced to

fs
R =X 7 (2.8)

One reason for an x smaller than 1 is that the transmitter is active around 10% of the time and
we cannot sample simultaneously with transmission if transmitter and receiver use the same
antenna. We denote x as the receiver duty factor. When the receiver is switched off we get
blind range bins, or blind zones, see Figure 2.4. A blind zone close to the radar is often not a
problem, but during resolving blind zones can appear further away as is shown in Figure 2.5
The impact of the blind zones is minimized by careful selection of the used prfs.

FIGURE 2.4.
Range bin
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Three CPIs with the first range bin blind since the receiver is switched off.

FIGURE 2.5.
Blind range bins
. AR N ; ,
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mivﬁ?ns " Resolwe target positions
Resolving the three CPlIs in Figure 2.4. Note that two of the three CPIs are blind in the

resolved range bin 31.

2.3 Pulse code compression

To be able to detect target radar echoes they must contain a certain amount of received energy.
Ideally, the transmitted pulse should be a very short pulse with very large peak power, giving a
large reflected energy at a well defined point in time. In practice however, the peak power of
the transmitter is limited and the energy must be distributed over longer pulses. The technique
to compress the energy of a long received pulse into a shorter and stronger response to be
saved in a single well-defined range bin is called puise code compression and is illustrated in
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Figure 2.6. Here the 3 element pulse is phase coded with a binary phase code, and thus the rel-
ative phase of the carrier wave is either 0° or 180°. To detect the pulse the received signal is
correlated with a discrete three-point kernel which is equal to the code. The pulse response is
strong when the kernel matches the incoming signal. In Figure 2.6 the ratio between the correct
peak and the largest sub-maxima (compression side lobe) is three to one. By using longer
codes, possibly with more phase positions and/or amplitude modulation, higher ratios between
true maxima and sub-maxima are acquired. Another common modulation technique is fre-
quency modulation.

It may be noted that coding by means of amplitude modulation is uncommon since ampli-
tude modulation reduces the pulse energy. With phase or frequency modulation the radar is
always using the transmitter peak power. A typical pulse length (transmitter duty factor) is
10% of the total number of range bins, which gives a pulse duration time of 10/f;.

FIGURE 2.6.

3 Amplitude

R=Phase reversal 1

Pulse code compression. A 3 sample code (left), its decoder (middle) and the pulse
response of the decoder (right).

2.4 Synchronous detection

To be able to perform pulse code compression we must be able to retrieve both the amplitude
and the phase of the return echoes. The amplitude and phase information are also needed to
determine the speed of the target relative to the receiver. To this effect the signal is received in
a so called synchronous detector. In the synchronous detector the input signal is multiplied
with two reference signals with the same frequency ot as the carrier frequency of the radar sig-
nal and then low-pass filtered, see Figure 2.7.

FIGURE 2.7.
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A synchronous detector.

The received signal, which has an amplitude A and a phase ¢ relative to the reference sig-
nal will in the in-phase channel, Z, be converted to

I=LP (2sinot- Asin (0t +¢)) = 2.9)
= LP (2Asindsinorcosor + 2Acosd (sinwr)?) = (2.10)
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= LP(A sindsin2wz + 2Acosq>(l + lcosZ(m‘)) = (2.11)

22
= Acosd (2.12)
Analogously, the quadrature channel, Q, will become
Q = Asing (2.13)

Thus, the synchronous detector demodulates the received signal and makes it possible to
extract both the amplitude A and the relative phase ¢ of the echo.

2.5 Target velocity detection

When a target is moving relative to the radar the received phase will change between consecu-
tive echoes. This is called the Doppler effect or Doppler shift. For instance, if the distance
between the target and the radar changes d = A/4 meters between two pulses the phase between
the echoes will shift 8=1/2 period. The Doppler shift 8 is then proportional to the relative target
velocity according to

2d _ 2y

A A- 5
where d is the distance moved between the pulses and v the speed of the target. The negative
sign in the equation shows that if the target is approaching (v is negative) the received phase -
will increase.

To extract the target speed, echoes from N pulses are collected during a CPI. Each sample

in this CPI is then collected in a 2D array of pulse and range bins, see Figure 2.8,
FIGURE 2.8.

S = (2.14)
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A CPI array of NxR pulse and range bins.

An object not moving a distance longer than Ar during the acquisition time N, will give
echoes that appear in the same range bin for all pulses. However, the phase between any two
consecutive samples within that range bin will be proportional to the relative velocity of the
target as shown in Eq. (2.14). Between the first and the last sample in the range bin the signal
will shift NS periods. Note that with a wavelength A in the order of centimeters and a range res-
olution Ar in the order of tens of meters the total phase shift N& may very well be several hun-
dred periods while the target moves within one range bin. This total phase shift can be
interpreted as a (Doppler) frequency along the pulse bin axis
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- N
Tt

fp -2y

£ = NS.N =5 (2.15)
Thus, by Fourier transforming the N samples in each range bin the Doppler frequency, and
therefore the object velocity, can be detected as

A
v = —é (2.16)
2
The Fourier transform will have a frequency resolution of f,/N over the frequencies
5
Vil <% @17
This gives the velocity resolution Av as
M,
= 2p
Av N (2.18)
The maximum unambiguous velocity v, that is possible to detect will then be
A
v <}—r4L (2.19)

If the target velocity v is above v, aliasing will give an apparent velocity, v,, that will be
detected. The apparent velocity will be, analogously to the apparent range r,,

S
2

Vv, =vim- (2.20)

Here, m is an integer which describes the number of times the velocity has been folded into the
detected frequency spectrum.

After the Fourier transform the pulse bins are called velocity bins. The samples from N
pulses from a single bearing processed in this way to obtain simultaneous velocity and range
information is called a Coherent Processing Interval, CPI, and the CPI-time, t¢py, is

N
fer = 7 @21)
P

The accurate detection of velocities larger than v, is possible by processing data from several
consecutive CPIs acquired using different prfs analogous with the range resolving described in
section 2.2.

2.6 Multi channel antennas

Many of the radars used today have multiple antenna elements. The output of each antenna ele-
ment is then sampled in its own separate channel.

Guard horn

A guard horn (or guard antenna) can be used to distinguish between main and side lobe ech-
oes. In Figure 2.9 we see typical lobe diagrams for the main and guard antennas, and by com-
paring the respective outputs main lobe target echoes, which should be significantly stronger in
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the main channel, can be distinguished from side lobe target echoes which typically has similar
strength in the two channels. Note that the signal from the guard channel should be processed
analogous with the main channel, and thus the signal processing demands are doubled.

FIGURE 2.9.

Antenna

The lobe diagrams for main and guard antennas.

Monopulse antenna

Another common multichannel antenna uses a technique called monopulse. The idea with a’
monopulse antenna is to transmit several similar, but not identical lobes simultaneously, see

Figure 2.10, and then process the returning signals to obtain a more accurate estimate of the

target direction than what is possible with just one single transmitted lobe. A one-dimensional

example of phase comparison monopulse antenna can be seen in Figure 2.10. By comparing

the phase of the echoes from the two channels the target direction relative to the main lobe

bearing can be determined very accurately. Typically a mono pulse antenna transmits two or

four lobes, giving one- or two-dimension target direction information. Note that the processing

of a delta channel is made analogous with the sum channel, and thus the signal processing

demands increase considerably with a monopulse antenna.

FIGURE 2.10.

Synchronous detector A
outputs B

Sum channel = A+B
Delta channel = A-B

Delta channel
amplitude is
proportional to o

A two-lobe phase comparison monopulse antenna. The distance difference d between the
target and the two antenna elements gives a phase shift of the echoes which is proportional
to the angle o.
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Phased array antennas

A phased array antenna can be viewed as an extension of a monopulse antenna. In a phased
array antenna many individual antenna elements are arranged in a 1D or 2D array. By control-
ling the relative phase of the transmitted pulses the main lobe bearing can be controlled with-
out moving parts. When receiving, the main lobe direction can be steered analogously.
Furthermore it is possible to attain zero sensitivity in other directions, i.e. almost totally block
out jammers. This beam forming can be made either direct at the microwave receiver, or digi-
tally in the subsequent signal processing. The radar signal processing of phased array antenna
data is often called space-time processing [5].

2.7 Radar image generation

For each CPI a 1D range vector is acquired. To obtain 2D range images the radar bearing is
changed. Several different sweep strategies are used. A typical ground based surveillance radar
system sweeping in circles can be seen in Figure 2.11. With this technique 2D images covering
360° around the radar are obtained. A typical airborne search and tracking radar setup can be
seen in Figure 2.12. Here the radar sweeps in a 2D scan pattern. It is also possible to lock the
radar on a selected target to track its trajectory.

The radar sweep velocity is slow so that several consecutive CPIs can be considered as
being acquired in the same bearing. '
FIGURE 2.11.

Transmitter-
receiver

A typical ground-based surveillance radar sweep pattern.

2.8 Doppler radar system classification

Pulsed Doppler radar systems are commonly categorized in Low, Medium and High Pulse
repetition frequency Doppler, called LPD, MPD and HPD respectively. Typical pulse repeti-
tion frequencies for the different modes are found in Table 2.1. Each has its own distinctive use
and characteristics. Many radar systems can switch between the three modes by changing the
prf and the subsequent signal processing.

If we combine equations (2.8) and (2.21) we find that

R-N=xfitcp, 2.22)
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which shows that for a given CPI time, receiver sampling frequency and receiver duty factor
the product RN is constant. Typical CPI times range from 10-30 ms. The correspondence
between the number of range and pulse bins used in each CPI with the different prfs can be
studied in Figure 2.13. An LPD radar often has a range resolution in the order of 1000 bins and
a velocity resolution in the order of 10 bins, and vice versa for the HPD radar. With the MPD
radar we have in the order of 100 range and velocity bins.

FIGURE 2.12.
Transmitter-
receiver
A typical airborne search radar sweep pattern.
TABLE 2.1.
LPD MPD HPD
PRF (KHz) 0.25-4 10-20 100-300
Puises per CPI ~10 ~100 ~1000
Range bins per CPI ~1000 ~100 ~10
FIGURE 2.13.
Number of pulses (velocity bins)
A
10001 ypn
100 MFD
LPD
10 ] - Number of
10 100 1000 range bins

Typical Coherent Processing Interval (CPI) matrices for LPD, MPD and HPD.
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LPD

An LPD radar system is designed for unambiguous range detection. That is, a new pulse is not
sent out until all possible (or probable) echoes from the previous pulse have returned. Thus, the
lower the prf is, the further away the radar can see, as shown in Eq. (2.4). On the other hand,
the low prf and the low number of pulses in each CPI makes it harder to accurately compute
the Doppler shift between echoes from the same target, and thus the velocity resolution and the
maximum unambiguous velocity is low as was shown in equations (2.18) and (2.19). LPD sys-
tems are often found in ground-based search radar where long detection range is important.

MPD

An MPD system is designed so that both the received range and the received velocity is ambig-
uous. That is, we know that the conditions in the equations (2.4) and (2.19) might be violated.
However, using the resolving technique described earlier, it is possible to process several con-
secutive CPIs acquired using different prfs and find the unambiguous range and velocity of
each target.

Note that the resolving increases the number of range and velocity bins beyond the unam-
biguous range and velocity of the individual CPIs. Thus, after resolving both the number of
range and the number of velocity bins might be around 1000. MPD systems are often found in
airborne radar systems where it is important to accurately estimate the range and velocity of
the targets.

HPD

An HPD system is designed for unambiguous velocity detection. That is, the high prf gives a
high maximum detectable velocity, and the large number of CPI pulses N make it possible to
compute the relative target velocity accurately as was shown in equations (2.18) and (2.19).
However, the fact that many pulses are in the air at the same time makes it hard to determine
the range to a target unambiguously. HPD systems are often found in tracking radar systems
where it is important to accurately predict the trajectory of a target.

2.9 Radar signal processing

All Doppler radars have many processing steps in common and a typical radar signal process-
ing algorithm can be seen in Figure 2.14. Observe that the MTI filter, the Doppler filtering and
the pulse code compression often are implemented as linear filter operations which implicates
that their relative order in the algorithm can be exchanged.
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FIGURE 2.14.
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A typical radar signal processing chain.

Synchronous detector

If the radar platform is static there is no processing in the synchronous detector. However, if
the platform is moving there is a motion compensation that shifts the Doppler frequency of the
ground clutter to the DC-component. This simplifies the MTI filter as will be described below.

Wind compensation

When a wind blows, rain and clouds will move with the wind and give clutter which has non-
zero Doppler frequency. This means that this so called wind clutter not is removed by the MTI
filter. To ensure that the MTI filter removes both the ground and the wind clutter the spectrum
of the return signal is shifted in the wind compensation so that both the ground and the wind
clutter falls inside the frequencies removed by the MTI filer, see Figure 2.15. The wind com-
pensation is performed by a vector rotation

Tye| _ |cosa —sinct| | 1 2.23)
Quwe sino, coso

where the angle o. is range and/or pulse number dependent. The angle o is range dependent if
the Doppler frequency of the rain clutter is range dependent.

MTI filter

The Moving Target Indicator, MTI, filter is used to remove clutter echoes arising from static
targets. The goal of the radar is to detect small moving targets, but at the same time the ground,
which is static, gives very strong main lobe clutter.
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FIGURE 2.15.
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The shift of the signal frequency spectrum to ensure that wind clutter is rejected by the MTI
Silter.

If the radar platform is static the MTI filter can be implemented with a filter operating
along the pulse axis and removing the DC component of the signal. However, if the platform is
moving the ground clutter will not be the DC component. Instead the ground clutter will have a
frequency which depends on the platform velocity and lobe direction. Instead of changing the
frequency response of the filter to compensate for the platform velocity and lobe bearing, a
compensation so that the frequency spectrum of the signal is shifted so that the DC component
always corresponds to the ground clutter frequency is done in the synchronous detector.

The MTI filter is often implemented as a high-pass convolution in the pulse direction.

Doppler filtering

The Doppler filtering transforms the pulse bins into velocity bins. This is often implemented
using a Fast Fourier Transform, but if only a few Doppler channels are extracted it can be per-
formed using Doppler filter banks (convolutions) instead. If only one Doppler channel is pro-
cessed, as may be the case in LPD radars, the Doppler filter can be combined with the MTI
filter into a single pulse direction convolution.

Since the DFT/FFT by definition operates on a circularly repeated signal, a pre-weighting
(or windowing) is often applied before the transform to meet this condition. The result is a
reduction of side lobes, i.e. signal response in an incorrect velocity bin. The window typically
reduces the amplitude of the samples from the first and last pulses.

Pulse code compression

The goal of the pulse code compression, pec, is to collect all received energy from one target
into a single range bin. This is made with a correlation with the transmitted phase or frequency
code which normally has a length of R/10 range bins. Since the pulse codes might be several
hundred bins long the computation is sometimes performed in the Fourier domain, i.e. an FFT
is performed along the range bins, the correlation is then implemented as a Fourier domain
multiplication and then an inverse FFT is performed. For each sample a pcc convolution has a
complexity of ~R/I10 and an FFT implementation ~logR operations. This makes a Fourier
domain implementation favorable if R is larger than approximately 64-128. However, the over-
head often found in parallel FFT implementations might increase this limit considerably. In our
LPD implementation to be presented in the next chapter we implement the pulse code com-
pression with a convolution even though R is 4000. In chapter 5 we investigate when a Fourier
domain implementation might be favorable in VIP.
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Envelop detection

The envelop detection removes the phase information from the samples since it is not needed
after the FFT and/or pulse code compression has been performed.

CFAR

The Constant False Alarm Ratio, CFAR, processing is made to reduce the number of possible
targets in each CPI. The name comes from the goal to only allow detection of a certain number
of false targets in a specified amount of time.

Since each target often gives several echoes in neighboring bins the CFAR works in a
range and/or velocity neighborhood. Often it is implemented as a local maximum detection,
i.e. only local maxima are considered as targets. Sometimes a thresholding is a part of the
CFAR, but if not, local maxima are amplified relative to their neighbors so that they can be
extracted by a subsequent thresholding operation.

Multi CPI integration

The integration, or accumulation, of results from several CPIs is made to further increase the
probability of detecting a target while reducing the probability of false target detection. The
integration is often combined with the prf switching and resolving techniques described earlier
in this chapter. The integration can either be made on thresholded data, called binary integra-
tion, or before thresholding, called video integration.

In binary integration the CPIs are often acquired using slightly different prfs. The different
prfs makes it possible to perform resolving of ambiguous target velocities and/or ranges, but it
is also used to move the blind zones of the radar. That is, the range/velocity areas where no tar-
get detection is possible due to clutter and the fact that the receiver duty factor is less than
100% are moved around in the integration matrix. The detection criteria is then typically that at
least 3 of 9 coinciding indications are needed. The integration can either work on batches of A
CPIs, delivering a result every A:th CPI, or use a gliding window of the A latest CPIs, giving a
new result for every acquired CPIL

Video integration is often performed as a correlation over several neighboring CPIs (and
bearings), and the length of the correlation kernel reflects the number of CPIs that a target is
expected to be within the main lobe and thus appear in the CPI data.

2.10 VIP in RADAR signal applications

Intuitively, both LPD and HPD algorithms seems to fit well into a linear SIMD architecture
since they are open to a large degree of parallelization in either range or pulse/velocity direc-
tion, see Figure 2.13. MPD however, has only “medium” parallelism in two dimensions and
therefore an implementation in a 2D architecture is attractive whereas a linear SIMD array
implementation is much less straightforward. In this thesis we limit our studies to LPD and
MPD implementations on linear VIP arrays. One of our LPD implementations uses a phased
array antenna and space-time adaptive processing.
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Chapter 3

The Radar VIP

3.1 General

The Radar VIP, RVIP, was designed for Low Pulse repetition frequency Doppler, LPD, radar
signal processing. This application differs in many ways from the image processing for which
the original VIP was designed. Therefore we present an overview of a typical LPD algorithm
and then show how this has affected the PE design. After that we present the overall system
design and the result of the LPD implementation on the modified RVIP architecture.

3.2 An LPD algorithm

An overview of one of the studied LPD algorithms, which is very similar to the generalized
signal processing chain described earlier, can be found in Figure 3.1. The application is a
ground-based surveillance radar.

Typical CPI parameters used are collected in Table 3.1. We see that the sampling frequency
fsis 5 MHz. The pif f, is around 900 Hz and the number of samples R in one bearing (row) up
to 4000. The sampling frequency and number of samples acquired for each pulse/bearing gives
the radar a range resolution Ar of 30 m over an instrumented range of 120 km.

The actual algorithm uses only one pulse in each CPI and therefore no Fourier transforma-
tion and subsequent separation into different velocity bins is performed. Instead all moving tar-
gets extracted by the MTT filter are considered. That is, we can view the MTI filter as a
Doppler filtering, where we only are interested in, and compute, one frequency bin. This is the
main difference to the more general scheme in Figure 2.14.

The input is I and Q data sampled as 2x12 bit 2-complement integers. The precision grows
to a maximum of 2x16 bits after the pulse code compression. All filter coefficients have 10 bit
precision. The wind compensation is range dependent and the coefficients for each range bin
are input concurrently with the radar data.

TABLE 3.1.
LPD algorithm' parameters Value
Sampling frequency, f; 5 MHz
Pulse repetition frequency, f, <900 Hz
Unambiguous range, r, <167 km
Number of pulses/CPI 1
CPI time > 1.1 ms
Range resolution, Ar 30m
Number of range bins <4000
Instrumented range <120 km
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FIGURE 3.1.
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An overview of an LPD algorithm.

Algorithm complexity

We have found it convenient to approximate the algorithm complexity in terms of real-valued
MAC-operations per input sample. One MAC (Multiply and Accumulate) is typically executed
on 10-16-bit fix-point integer data. Without going into too many details we are now going to
give such estimates for the various parts of the LPD-algorithm in Figure 3.1. For more details
on the different steps in the algorithm we refer to the material in chapter 2.

The complexity of the vector rotation in the wind compensation is 4 MAC operations, see
equation (2.23).

The MTI filter is a real-valued FIR filter over eight consecutive CPIs (bearings)

7
(I+jQ) M-n(",P) = z CMT](i) ((I+j0O) we (,p=1) (3.1
i=0
and the complexity is 2x8=16 MAC operations. Since the filter is in the bearing direction
seven old bearings (rows) must be stored in internal RAM memory.
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The correlation window in the pulse code compression is 383 range bins and the coeffi-
cients are all real valued. The convolution can be written

382
(I+jQ) pc(r,p) = Y, Cpc (i) - ((T+JQ) yypy (r=i,p)) (3.2
i=0
This is by far the most computationally demanding part of the algorithm, requiring 2x383 =
766 MAC operations.
The envelop detection is the operation

A(r,p) = JLc(r,p) +Qpc(r,p) (3.3)

Since taking the square root is a time consuming operation in a bit-serial architecture the
envelop detection is approximated with the operation

X(r,p) = max(|Ipc(r,p)|,|Qpc (r. P)]) (34)
Y(r,p) = min(|[Ipc(r,p)|s|@pc(r:P)|) (3.5)
A(r,p) = max(X(r,p),0875X (r,p) +0.5Y(r,p)) (3.6)

This approximation gives a result within three percent of the actual value. The envelop detec-
tion requires approximately 5 MAC equivalent operations.

The CFEAR operation is implemented by dividing each sample A(r) with a mean value of 16 of
its nearest range neighbors. The definition is

17

Smrly(r’p) = '11'62‘4 (r—i,p) (3.7)
i=2
1 -17
Siie (nP) = 1 Y, A(r-i,p) (3.8)
f=-2
Smax (1, P) = MAX (8,41, (1, P), Sy (1, P)) (3.9
= Ap)
Ac]ar(r’p) - Smax(rip) (310)

If we examine the equations (3.7) and (3.8) we note that Sy,,,(r,p) equals S.q,;,(r+19,p). This
means that if we compute S,,,,(r,p) for all range samples we have also computed Sy,,(r,p) for
all samples. For simplicity we assume that the complexity of a division equals that of a MAC
operations and then the CFAR processing requires approximately 17 MAC operations.

The video integration consists of two FIR filters in the bearing direction. First the CFAR
result is averaged and down-sampled a factor eight,

' ZAC[:AR(";PV—") (3]1)
i=0

001 =

Ayp (P =

where

p=8p ‘ (3.12)
The down-sampled signal Ay, is then input to a 16-tap FIR filter in the bearing direction
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15
Ay (np) = Y Cy(r,p) - Ay, (D) (3.13)
i=0
Due to the down-sampling the 16-tap FIR filter is only evaluated every eighth bearing. For
simplicity we approximate the complexity of the video integration as 8+16=24 MAC opera-
tions, i.e. we can evaluate the FIR filter at every bearing (CPI). Row buffering of 16 intermedi-
ate (down sampled) results is needed.

The data is thresholded using a threshold determined by other parts of the system and the
result indicates if a target is present in the range bin or not. The complexity is 1 MAC opera-
tion.

The total computational complexity is then approximately 830 MACs for each sample in
each bearing. Thus, the total processing demand is around 830x4000x900 = 3 Giga MACs per
second. If each sample is to be processed before the next sample arrives, eliminating the need
for input buffers and not using the empty part of the receiver duty cycle, the complexity is
830x5x108 = 4.15 Giga MACs per second. In principle, by computing the pulse code compres-
sion in the Fourier domain this demand can be decreased with one order of magnitude.

The data input is 2x12 bits of radar data and 2x10 bits of wind compensation coefficients,
which gives a total of 44 bits for each radar sample. Thus the input capacity to the system must
be at least 220 Mbits/s. The required output is the envelop detected video signal and one bit
every eighth CPI, which equals less than 70 Mbits/s. The needed internal RAM is approxi-
mately 8x2x12 for the MTI filter and 16x15 bits for the video integration, which gives a total
of 432 bits.

Variations

Ericsson also intended to use some algorithm versions where the IO and memory capacity
had to be 3-4 times larger than what is shown here. One of those versions is described in [34].

Algorithm mapping

The mapping of the algorithm onto the VIP architecture is made straightforwardly, by assign-
ing one PE to each range bin, which means that the PE array will require at least 4000 process-
ing elements (although not on one chip). Since we propose to use a PE array where the number
of PEs is an even power of two the array will have 4096 PEs. With the approximate MAC
complexity given above and a target PE clock frequency of 50 MHz we find that one MAC
operation must be performed in less than 70 clock cycles. In the original VIP architecture the
optimum MAC performance is 8b, i.e. 8 times the word size b, and with a data precision
between 10-16 this indicates that the PE performance must be increased in order to meet the
real-time requirements.

The actual number of samples per CPI varies continuously, which must be taken into
account in the chip implementation. Also, the algorithm contains parameters which change as
the number of samples and the pulse code change. The use of different pulse codes (and possi-
bly different carrier wave frequencies) is necessary to find the currently best combination of
target detection and clutter suppression.

All IO communication can be made transparent to the processing. This is achieved by pro-
cessing one CPI (row) while the next is being input and the previous result is being output.
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3.3 PE design

Clock frequency

It was predicted that an on-chip clock frequency of S0 MHz would be attainable. With a prf of
900 Hz this leaves 55000 VIP clock cycles for the processing of one CPI in the preceding
LPD-algorithm.

The IO register

In the original VIP design, described in section 1.3, the IO-system consisted of synchronous
shiftregisters. When, as in this application, the IO data frequency differs from the PE clock fre-
quency such a design requires large amounts of buffer memory. Therefore, an asynchronous
solution was chosen, and for RVIP we decided to replace one of the shiftregisters with a dual
ported (orthogonal) memory, see Figure 3.2. IO data is written into and read from the array via
port one, while the PEs access the data via port two. More details will be given below.

The addressable memory makes the I0-system more flexible since data may be written into
the array in any order, e.g. bit-reversed for FFT operations, but if the addresses are sequential
the functionality equals that of an asynchronous shiftregister. In the LPD algorithm the dual-
ported design is especially favorable when all PEs are not in use. A shiftregister would have to
spend idle cycles bypassing empty PE positions while the dual port system can be repro-
grammed and stay fully efficient. Furthermore, the size of the dual-ported cells are smaller than
the shiftregister cells and the power consumption is much less. However, the additional
address decoding hardware needed on the chip evens out some of the area gain [42].

FIGURE 3.2.
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The 10 register design on the chip level.

To obtain a large enough IO bandwidth with a moderate number of IO connections the IO
memory is organized as 4x32 bits in each PE. This means that each PE contains four 32-bit
words, called register banks, see Figure 3.3. In this way each IO cycle contains one read and
one write operation of 32-bit words. It is natural to input and output 128 bits of data to/from
each PE concurrently with the processing of one row (bearing). That is, while data is being
processed in the PEs, the next row of data is input and the previous result output. Then, in the
blank interval when no data is input, the PEs read the new input data from the IO register into
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the RAM and write the result of the previous bearing into the IO register. To ensure that the
external IO controller does not access a certain register bank at the same time as the PEs are
accessing it, a synchronization of the register bank access must be implemented by the micro
controller.

Note that in the presented algorithm only two of the four 32-bit registers are needed.

The maximum data sampling frequency is expected to be approximately 5 MHz. Including
some future needs that requires all four parallel register banks the required 1O data rate is 20
MHz. This IO data rate and the width of the IO interface gives an input and output capacity of
20*32 = 640 Mbit/s for each chip, i.e. a total JO capacity of 1.2 Gbit/s per chip.

FIGURE 3.3.
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The RVIP 10 register and register bank layout in the PEs.

The internal shiftregister

The internal shiftregister in RVIP has been augmented to 16 bits to accommodate for the
higher data precision used in radar signal processing compared to greyscale image processing.
When longer words than 16 bits are used several shift operations are needed. It is not possible
to run the shift operation synchronously at the internal RVIP clock speed of 50 MHz since the
signal may pass a circuit board and possibly a back-plane to the next chip. The maximum shift
frequency will probably be around 25 MHz. This should not be a serious bottle-neck, however,
since most of the shifts are short, and longer shifts can often be made concurrently with the
processing. If the shift frequency is 25 MHz the number of 50 MHz cycles needed to shift b
bits of data to a PE A steps away is

N = 2A"£] +2b (3.14)
16
where the 2b factor comes from loading and unloading the shiftregister.

The internal RAM

The size of the internal RAM was set to 2048 bits per PE since at least 1700 bits are needed in
some versions of the LPD algorithm [47]. Although a dynamic memory requires less area the
RVIP memory is static to avoid implementing the refresh logic needed for dynamic RAMs. For
reset purpose one memory cell is a ROM containing the constant 0.

11-30

PAGE 127 OF 204



The serial-parallel multiplier

A serial-parallel multiplier is a hybrid between a bit-parallel and a bit-serial architecture [41].
Since there is no carry propagation in such a design it can easily utilize very high clock fre-
quencies [14]. Another important feature is that the length of the multiplicand is arbitrary
whereas the coefficient length in RVIP is ten bits. The multiplier can be designed to accept
both unsigned and two-complement integers, but we have chosen to hard-wire it for two-com-
plement operation. To avoid confusion we denote the multiplicand in the parallel part of the
multiplier the coefficient and the multiplicand applied serially the multiplicand, see Figure 3.4.
FIGURE 3.4
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The serial-parallel multiplier. The select signals s; are used to input either one bit from the
PE bus to the multiplier coefficient register a; or a 10 bit coefficient from the external par-
allel load bus to a. The feedback of the sum in the sign (MSB) bit-slice makes two-comple-
ment multiplication possible.

Initially all internal D registers are reset to zero. The ten-bit coefficient is loaded to the par-
allel register ag-ag. Then, the multiplicand is applied bit by bit starting with the least significant
bit, the Isb, to the one-bit register b. For each new bit in the multiplicand the new sum is shifted
one step and the Isb of the result is output. After the last multiplicand bit (the sign bit) has been
applied the multiplications continue using this bit until all 2b-1 bits have been output.
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A common coefficient can be loaded to all PE multipliers concurrently and bit-parallel
from an external array controller via the external load bus. Of course, the coefficient can also
be loaded bit-serially from the PE bus. The parallel load bus reduces the execution time for
multiply operations from 4b to 3b cycles when all PEs use the same coefficient (as in convolu-
tions and correlations).

The ALU-Accumulator

The most common operation when using RVIP for radar signal processing is convolution and
correlation (a correlation is a convolution with a non-rotated convolution kernel). This opera-
tion can be written

h(x) = Y f(x-0)g(a) (3.15)

In RVIP a typical convolution is made with f{x) in the shiftregister so that different f(x - o) are
obtained by shifting. The coefficients g(o) are common for all PEs and are loaded direct to the
parallel port of the multiplier from the external controller as described above. The total convo-
lution consists of multiply and accumulate, MAC, operations. In the original VIP a MAC oper-
ation required 8b cycles for bxb bit multiplication and 2b bit accumulation (without further bit-
expansion in the accumulation and with serial coefficient load). This is illustrated in the pseudo

code below
/* MAC operation: m = a*¢c, acc +=m */
load a /* load coefficient a */
for(i=0;i<b;i++) /* loop over multiplicand */
mult = c(i) ' /* load multiplicand bit */
alu = m(1i) /* move mult-res bit to alu */
alu = acc(i) /* move acc-bit to alu */
acc(i) = sum /* store new acc-bit */
end
for(i=b;i<2b;i++) /* loop over mult content */
alu = m(i) /* move mult-res bit to alu */
alu = acc(i) /* move acc-bit to alu */
acc(i) = sum /* store new acc-bit */
end

The parallel coefficient load reduces the MAC complexity to 7b, and the LPD algorithm
would then require approximately 830*7b = 70000 clock cycles with b=12, which this still
exceeds the available 55000 clock cycles. The limiting factor is the PE bus which only can
transfer one bit at the time. In the above program we notice that the partial results m(i) are
transferred from the multiplier to the ALU over the PE bus. Therefore the redesign aimed at
transferring m(i) without the use of the PE bus.

First we redesigned the connections between the multiplier and the ALU so that the multi-
plier output connects directly to the ALU input, see Figure 3.5. This gives a gain of 2b cycles
since the ALU can be loaded with both the previous accumulation result and the multiplier out-
put simultaneously. However, the decrease to 5b for a MAC operation still gives around 50000
clock cycles for the LPD algorithm example, and further improvements were needed to ensure
that the RVIP actually could implement the algorithm within the given specifications.
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FIGURE 3.5.

ket Ram

[ leg—— External load

Serial-Parallel
multiplier

PE
bus

Alu

LA

The accumulator-ALU design with the multiplier output connected direct to the ALU.

The second redesign incorporates a dual-ported 32-bit accumulator register. This makes it
possible perform the accumulation in parallel with the multiplication without loss of clock
cycles. The accumulator is separated from the ram memory and PE bus as seen in Figure 3.6.
Using this architecture the pseudo code for the MAC operation will be

/* MAC operation: m = a*c, acc += m */

Load a /* load coefficient a */
mult = c(0) /* load one bit of b */
for (i=0;i<b-1;i++) /* loop over multiplicand b */

/* save new acc bit, load mult bit and alu */
/* performed in one clock cycle */
alu = acc(i), alu = m(i), acc(i) = sum(i),
mult = c(i+l)
end
for (i=b-1;i<2b;i++) /* loop over multiplier */
/* sum to acc, load alu */
alu = acc(i), alu = m(i), acc(i) = sum(i)
end

We see that there is a one step (one clock cycle) pipeline between the multiplier and the
ALU (accumulator). That is, the result from the previous multiplication step is used at the
same time as the next is computed.

The cycle count for the MAC operation is then close to 2b for parallel coefficient load and
3b for serial coefficient load. This accumulator-bus structure also improves multiple addition
accumulations from 3b to b cycles per b-bit operand. Thus the 830 MAC operations should be
possible to compute in less than 30000 clock cycles (exact cycle counts will be given below).
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FIGURE 3.6.
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The accumulator-ALU design with the accumulator separated from the PE bus.

The ALU has three inputs as seen in Figure 3.7. The connections within the ALU are rather
inflexible to keep down the width of the instruction word. Input A is dedicated to the PE bus
and the multiplier output. Input B is dedicated to the accumulator output, and input C is dedi-
cated to the PE bus and to internal carry-feedback.

To unload the accumulator the output bus may be connected to the PE bus with the bus
switch. However, all data input to the accumulator must pass the ALU.

FIGURE 3.7.
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The design of the Multiplier-ALU-Accumulator connections.
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The implemented ALU functions and their micro-codes are found in Table 3.2. All arith-
metic operations use a carry bit stored in the carry register C. The Multiplex (Mux) operation is
used for data dependent choices such as maximum finding, and the xor operation is used for
absolute value computations.

The four-bit micro-code word has room for more logic functions but the instructions in
Table 3.2 was found to be enough in the LPD algorithms. Two-input AND and OR functions
can easily be implemented using the carry output. With C pre-set to zero an Add will give A
AND B as a carry result. And with C pre-set to one an Add will give A OR B as a carry result.
Thus, we can implement arbitrary Boolean expressions.

TABLE 3.2.

Code A B C Out Function
0 - - - - Nop
1 Peb - - A Load acc
2 Peb - - A Load acc inverted
3 Mult - - A Load acc from mult
4 Mult - - A Load acc inv. w. mult
5 - - Peb - Load ¢
6 Peb Accb Cf A+B Add from bus
7 Peb Accb Cf B-A Sub bus from acc
8 Mult Accb Cf A+B Add from mult
9 Mult Accb Cf B-A Sub mult from acc
10 Peb - - | AxercC Xor A and C |
11 Peb Accb - CA+CB Mux with ¢ to acc

PE performance

The number of cycles required for a number of arithmetic/logic functions are collected in
Table 3.3. We give cycles counts with and without bit-expansion. Thus, in the left cycle col-
umn a b+b and a bxb operation gives a b bit result and in the right cycle column a b+b opera-
tion gives a b+ bit result and a bxb operation a 2b result. We see that a division has 0(b2)
performance, but since the LPD algorithm only contains one division this is acceptable. For the
complex operations the notation is that p is the precision and b the total data size, i.e. if the
complex data has 2x16 bits b is 32 and p is 16.

A complex division is performed by first multiplying divisor and dividend with the conju-
gate of the dividend, thus achieving a division with a real valued integer. Thus, the complexity
equals the complexity of two complex MAC operations and two division operations.

1-35

PAGE 132 OF 204



TABLE 3.3.

Data location Cycles
No bit Bit
Operation Op1l Op2 Result | expansion | expansion
Add/Sub RAM RAM RAM 3b+1 3b+2
Add/Sub RAM Acc Acc b+l b+2
Absolute value RAM - RAM 3b+1 -
Absolute value RAM - Acc 2b+1 -
Mux RAM RAM RAM 3b+1 -
Mux RAM Acc Acc b+l -
Max/Min RAM RAM RAM 5b+2 -
Max and Min RAM RAM RAM 8b+4 -
Muit RAM RAM RAM 4b+1 Sb+1
Mult RAM RAM Acc 3b+1 4b+1
Mult RAM External RAM 3b+2 4b+2
Mult RAM External Acc 2b+2 3b+2
MAC/MSUB RAM RAM Acc 3b+1 3b+1
MAC/MSUB RAM External Acc 2b+1 3b+1
Complex mult RAM RAM RAM 14p+4 16p+4
Complex mult RAM External RAM 10p+8 12p+8
Complex MAC/ RAM RAM RAM 16p+4 20p+4
MSUB
Complex MAC/ RAM RAM Acc 12p+4 12p+4
MSUB
Complex MAC/ RAM External RAM 12p +8 16p+8
MSUB
Complex MAC/ RAM External Acc 8p+8 8p+8
MSUB
Division RAM RAM RAM ~7b% -
Complex division RAM RAM RAM ~14p2 -

External memory

The original VIP architecture incorporated external memory ports shared by eight PEs. This
means that with standard eight-bit wide memory chips we need two per each 128 PE, using
one-bit memory chips we need 16 per each 128 PE. Both these solutions have drawbacks and
the memory bandwidth is still rather small, approximately only 6 Mbits per PE. Increasing the
bandwidth to external memory chips is difficult and costly due to pin count limitations on the
RVIP chip. Thus, instead of this external port design we chose to extend the internal RAM and
the IO capability as shown above. This only increases the memory bandwidth to around 10
Mbits but it simplifies the VLSI layout of the RVIP chip.
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3.4 The chip design

In the LPD algorithms the number of samples in each CPI (i.e. one image row or bearing) is
large, up to 4000. This means that up to 4096 Processing Elements are needed in the system if
each PE is to process one sample in a row-parallel fashion. With the current VLSI technology
it is not possible to integrate that many RVIP PEs on a single chip. Therefore an array of chips
connected in series is needed. This does not change the design of the individual PE, but it puts
special demands on the overall system design.

RVIP was designed to be implemented in a 0.8um CMOS SRAM process. The SRAM pro-
cess has a second, high resistance, poly-silicone layer which is used to design 4-transistor
NMOS SRAM cells with pull-up resistors instead of p-transistors. This makes it possible to
design the SRAM cells with only a third of the area of a 6-transistor cell designed with p-tran-
sistors in a standard (2-metal) CMOS process. A 2-phase (pseudo 4-phase) clock is used. The
chip area was maximized to around 100 mm?. The estimated areas for each part in a 128 PE
chip are collected in Table 3.4. The total chip area was estimated to be 115 mm? including
instruction decoders and IO pads [47]. The power consumption was estimated to 1.8 W at 5V.
The total number of connections on each chip is around 250, of which approximately 150 are
used for IO and control and 100 for power distribution.

TABLE 3.4.
Chip part Area mm? Area% of total
IO reg 9.4 12
S-reg 6 75
Multiplier 15 19
ALU 4 5
Acc 7.5 9
SRAM 38 47.5
SUM 80 100
The RVIP chip layout

The final RVIP PE and chip layouts are shown in Figure 3.8 and Figure 3.9, respectively.
Each chip contains 128 PEs. The peak performance in each 128 PE chip is around 320 MMAC
operations per second for 10x10 bit data. The peak performance of a 32 chip 4096 PE RVIP
array is around 10 GMAC operations per second for 10x10 bit operations.
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FIGURE 3.8.
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FIGURE 3.9.
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The layout of the RVIP chip.

3.5 System design

An RVIP LPD radar system consists of 4096/128 = 32 chips connected in series. If a standard,
e.g. pin-grid, chip package is used the package size would be much larger than the chip due to
the large number of external connections. To reduce the total system size it was decided to use
a Multi Chip Module, MCM, package where four chips are bonded together on a 2”x2”
ceramic wafer, see Figure 3.10. This reduces the system size since many of the pins on the
chips can be shared on the MCM level. Furthermore, a micro controller, which is described
below, was included in each MCM.

Thus, the RVIP system will be built with a number of Multi Chip Modules, MCMs. Each
MCM contains 512 RVIP PEs and a complete 4096 PE system will then use eight modules in
series, see Figure 3.11. Internally each module runs at 50 MHz, but due to synchronization
issues all communication to and between modules is limited to 20 MHz. The system controller
selects the current program and distributes the micro-code to the modules synchronously.
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FIGURE 3.10.
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RVIP Multi Chip Module packaging. Each module is a stand-alone 512 PE RVIP module
with an internal micro controller.

FIGURE 3.11.
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The RVIP system layout with multiple MCM modules, system controller and IO controller.
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Micro controller design

The size and complexity of an RVIP system makes it very hard to have a common instruction
sequencer distributing instructions synchronously at the RVIP clock frequency 50 MHz.
Therefore we included a local micro controller on each MCM so that each module can run at
full speed. To make this scheme work it must be possible to either load the complete current
program code to the modules and then execute the program, or to load the program code piece-
wise to the modules during execution. Since the RVIP program is constantly changing it is
impossible to use the first method and we must be able to load new code to the MCM program
memories during execution.

At first this might seem impossible by the same reason it was impossible to have a common
instruction sequencer. However, if we make the MCM micro controller capable of expanding
loops in the code we can obtain a lower data rate to the MCMs. Since the RVIP architecture is
bit-serial, loops with only a few instructions repeated over the word size b are very common.
This gives a ratio of approximately b between the number of instructions the controller
receives and the number of instructions the controller issues. In the simulations of an LPD
radar algorithm, with b in the order of 10-16, the ratio was indeed 1/10 between the number of
non-expanded micro-code instructions and the number of executed instructions. Thus, it is
possible to distribute the VIP code to the micro controller(s) at a much lower data rate than the
instruction rate. This lower data rate is used both to decrease the width of the program load bus
and the data rate on this bus so that in RVIP we distribute the 64-bit RVIP instruction words
over a 32-bit wide bus at 20 MHz and still run the RVIP array at 50 MHz.

The controller reads the micro code and unwinds low level loops. Three nested loops can
be used, and one of these can be indexed, see Figure 3.12. The micro controller also communi-
cates with the external high level controller to synchronize the use of the register banks in the
IO registers. Loading multiplier coefficients to the RVIP chips are made from the micro con-
troller with data in the internal data field.

The index hardware uses two counters, one loop counter and one index counter. The loop
counter is decremented for each lap in the loop and the loop ends when it reaches zero. The
index counter starts at zero, and it is incremented when the loop counter is decremented. The
index counter value is then added to the respective address fields to be indexed. The index
adders can also be used to issue a NOP instruction, which is useful if VIP must wait for syn-
chronization of for instance IO transfers. The micro controller loop logic uses simultaneous
decrement and test for zero, and thus the loop will end when the counter is decremented from
zero to minus one. This scheme is used to save code, since only one instruction instead of two
is needed when test and decrement are separated. Thus, a bit-serial loop can be written with
only one instruction.
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FIGURE 3.12.
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A micro controller with loops and external program write.

The program counter address the two-ported instruction queue in a circular FIFO fashion,
and new instructions are written asynchronously from the external controller, see Figure 3.13.
External write of new instructions is made at addresses which are at a fixed distance below the
current program counter value to avoid overwrite of loop starting points. How large the queue
and the writing distance need to be will be determined using a simulator. If the queue is empty
the controller automatically waits until a new code word is written. A shift counter is used to
be able to synchronize long shift operations concurrent with the rest of the program. The
counter is loaded, and as long as it is greater than zero the shift instruction is held in the regis-
ter. The controller can be programmed to wait until the shift counter reaches zero, and until
then the RVIP instructions are set to be NOP instructions. An overview of the complete micro

controller design can be seen in Figure 3.13.

PAGE 139 OF 204

11-42



FIGURE 3.13.
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and wide data signals.
The functions needed in the micro- controller are summarized in Table 3.5 below.
TABLE 3.5.
Code Mnemonics Function
0 Nop No control op
1 Loadl Load loopcounter 1
2 Load2 Load loop counter 2
3 Load_index Load index-loop counter
4 Load_shift Load shift counter
5 Load_mult Load multiplier coeff
6 Decé&Jmpl Decrement Ic1, jmp if not zero
7 Dec&JImp2 Decrement Ic2, jmp if not zero
8 Dec&Jmpl Decrement index Ic, jmp if not zero
9 Wait_shift Wait for shift operation to finish
10 Wait_IO Wait for external IO to finish
30 Break Simulator break point
31 Halt Stop execution, signal user
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The micro controller needs a 10 bit wide internal data bus apart from the 4 bits needed for
the micro controller instructions (the use of 5 bits here is to allow for future extensions of the
controller functions). The internal data bus must be able to hold multiplication coefficients and
relative jump addresses. However, the relative jump addresses can be left out if the controller
keeps track of the loop start positions. The indexation can be applied independent to the differ-
ent parts of RVIP, and thus five bits are needed to decode which PE part that is indexed. The
coding of the indexation vector can be seen in Figure 3.14. This vector can probably be
decoded into a smaller vector since all combinations are not meaningful which has been sub-
ject to further studies regarding newer VIP designs [35].

FIGURE 3.14.

10-reg | S-reg Ram | Mult Acc

The coding of the index vector.

RVIP micro-code

The total number of bits needed for the RVIP micro code word is found in Table 3.6. We have
coded the micro word so that all parts of the PE can be used independently. This makes it pos-
sible to use broadcasting, i.e. one unit is writing to the bus and several units are reading, but
other possibly more compact and/or effective codings have been proposed [35], [54].

TABLE 3.6.
Part # bits

Control 4
Index vector 5
Data 10
1O-reg 9
shiftreg 6
Muilt 4
ALU 4
Acc 5
Bus-switch 1
Ram 12
SUM 60

The instruction field coding is shown in Figure 3.15. We have augmented the micro word
to 64 bits by extending micro controller field to 5 bits, the internal data bus to 12 bits and the
accumulator address to 6 bits. This allows more functions in the controller, the multiplier to be
extended to 12 bits, and the accumulator to be extended to 64 bits without re-coding the
instruction field.
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FIGURE 3.15.
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The coding of a VIP instruction. The shaded areas represent the extensions of the micro
word mentioned in the text.

3.6 EMW RVIP modifications

Ericsson Microwave systems made a few changes to the RVIP design when implementing the
chip. Due to increased precision requirements the parallel part of the multiplier was increased
to 12 bits. A one-bit activation register was inserted in the PE. This register is used for data
dependent operations and to “turn off” unused PEs when less than 4096 samples are collected
in each CPL. Compared with the estimates in Table 3.4 the RAM now requires approximately
60% of the PE area due to the use of a 3-metal CMOS process without high-resistance poly-sil-
icone. To increase the yield and to reduce the risk of the project the final chip has only 64 PEs
instead of the planned 128, but instead eight chip are used in each MCM module, still giving
512 PEs in each module [4]. Also, JTAG boundary scan logic has been included to faciliate
testing of the chip and modules. The expected power consumption for a 64 PE chip is around 2
W. The number of transistors on each chip is around 1.1 million.

The design of the RVIP chip, micro controller and system started early 1994, and the first
chips have been successfully tested during the summer of 1995.
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3.7 Results

With the modified RVIP architecture given above the implementation of the algorithm is
straight-forward. The total number of cycles needed are summarized in Table 3.7.We see the
RVIP array can make the processing in less than half of the pre-specified maximum number of
clock cycles 55000. This indicates that it actually is possible to process two range bins in each
PE, using only 2048 PEs to implement this particular LPD algorithm.

TABLE 3.7.
Algorithm part RVIP cycle count
Input data transfer 24
‘Wind comp 188
MTIfilter 410
Pulse compression 20714
Envelop detection 384
CFAR 2061
Video integration 499
Thresholding 30
Output data transfer 16
Sum 24326

In section 3.2 we found that the complexity of the LPD algorithm was approximately 3-4 G
MAC operations. If we assume that we wish to implement the LPD algorithm using word-par-
allel Digital Signal Processors, DSPs, we can then find an approximation of the number of
such processors required to reach the given performance. To make the comparison fair we
assume that the clock frequencies of the two systems are equal, i.e. 50 MHz, and that each DSP
is ideal and can execute one MAC operation each clock cycle. The number of required DSPs, .
Npsp » is then between

3% 10° 4.15%10°
i 60 < Nygp <83 = 22X 20 (3.16)

50 x 10°

That is, the algorithm which could be solved by 2048/128 = 16 RVIP chips requires at least 60
ideal DSPs. In reality however, no ideal SOMHz DSP processor exists and we have not consid-
ered the problem of partitioning the LPD algorithm into sub-algorithms suitable for single
DSPs. Thus, very conservatively we claim that for this application each RVIP chip is at least
three times as powerful as a sequential word-parallel processor operating at the same clock fre-
quency. Note however, that if the pulse code compression is implemented in the Fourier
domain the number of ideal DSPs required decreases to around 8-10.

The internal memory required by this algorithm is less than 500 bits. The motivation for a
2Kbit memory is the ability to store intermediate results from several different lobes (bearings)
at the same time, and, as in the MPD case studied later, to use one array to compute several
input channels of radar data concurrently.
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Chapter 4

The Flight VIP

4.1 General

A Medium Pulse repetition Doppler, MPD, algorithm is studied in this chapter. The algorithm
is presented and implemented in two parts. The first part is the CPI processing and the second
part is the resolving and integration of data from the nine latest CPIs. We call the architecture
suitable for CPI processing FVIPa. For the resolving processing we propose a slightly different
architecture, called FVIPb. The only difference between the two FVIP architectures is the size
of the IO registers and the internal memory.

First we present the CPI and resolving algorithms, and find suitable mappings of the algo-
rithms on a linear array. Then we present the required changes in the PE architecture, and
finally the results.

The real-time requirement is that the delay between the acquisition of a CPI and the output
of target information from the resolving must be less than 100 ms.

4.1.1 CPI processing

The different CPI formats to be accommodated for can be seen in Figure 4.1 and data for
them are collected in Table 4.1. The formats differ in trade-off between range and velocity res-
olution. Within each CPI format prf switching between three prfs is used, see section 2.2. In
the table we have indicated the maximum number of range bins used during the switching. The
sampling frequency is fixed at 2 MHz. All transmitted pulses are not sampled as is indicated in
the table, and we see that the number of samples processed in each CPI range from 7710 to
12900. The number of samples actually processed are selected so that the number of pulse bins
for each range bin is an even power of two at the beginning of the FFT transform. We denote
the number of range and pulse bins processed within a CPI as R and P.

FIGURE 4.1.
A Number of
Pulse (velocity) bins
300 — 3
2
150
1
50 | Number of
p Range bins
30 100 300

The three different CPI formats.
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TABLE 4.1.

CPI format 1 2 3
Sampling frequency, f; 2 MHz 2MHz 2MHz
PRE, f, ~6 Khz ~18 KHz ~60 KHz
Prf switching 3 3 3
Range resolution, Ar 75 m 75 m 75 m
Range bins, R <300 <100 <30
Processed range <22.5km <75km <225km
Unambiguous range, r, <25 Km <8.3 km <2.5km
Transmitted pulses 50 150 300
CPI time 8.3 ms 8.3 ms 5 ms
Processed pulses, P 33 129 257
Velocity resolution, Av | <0.78 km/h | <0.6 km/h <1 km/h
Unambiguous velocity, v, | <12.5 km/h | <37.5km/h | <125 km/h
Samples <9900 <12900 <7710

An overview of the CPI algorithm, which is very similar to the general radar signal pro-
cessing algorithm given in section 2.9, can be seen in Figure 4.2. It does not exactly represent
any of the algorithms used by EMW today, but it has been designed to represent a typical MPD
radar algorithm in computational complexity. The input to the CPI processing is four quadra-
ture (,Q) channels from a two-dimensional monopulse antenna with a guard horn, see
section 2.6. We call the four channels main, guard, auxiliaryl, and auxiliary2. All four chan-
nels are processed independently but identically until after the normalization when the auxil-
iary channels are output as quadrature video data. This means that the actual monopulse
processing to acquire additional target bearing information is handled by the system control
Processor.

The input channels are sampled with 16-bit precision and the maximum intermediate preci-
sion is 28 bits.

Analogous to the LPD algorithm studied previously we also study the MPD algorithm
complexity, i.e. the number of MAC operations required. Using this result we can find an
appropriate FVIPa parallelization.
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FIGURE 4.2,
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An overview of the CPI processing algorithm.

ADC saturation detection

The ADC saturation detection is a function where all samples in a range bin are set to zero if
any sample in that range bin has an envelop above a global threshold, see Figure 4.3. This is
used to suppress very strong direct radar reflections. Formally this can be expressed as

Vi 3p( M (1. p) + Q7 (rop) > Thresh )= Vp ((147@) sp (r.p) > 0)) ) @
re [LLR],pe [1,P]

This operation requires that a global OR of all test results within each range bin is distributed
to all PEs containing data from that range bin. This indicates that special processing or a new
PE design is required for our SIMD implementation. The computational complexity for each
channel depends on the number of pulses in the CPI, since in the worst case a result must be
distributed to P different processors or memory locations. The envelop detection and thresh-
olding requires approximately 5 MAC operations and we approximate the total complexity to
P+5 MAC operations for each channel.
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FIGURE 4.3.
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Wind compensation
The wind compensation is a vector rotation with an angle o which is common for all samples
in that CPI. The complexity is, as in the LPD algorithm, 4 MAC operations for each channel.
MTI filter
The MTI filter is a first-order differentiation in the pulse direction

+jQ yr () = T+jQ) ye (rp+ 1)=(I+jQ) ye (r, p) “4.2)

That is, the output is the result of a subtraction between two neighboring pulse values. The
complexity is 2 MAC operations for each channel. After this operation the last sample in each
pulse is discarded, giving a number of pulse samples which is a power of two.

Windowing

The window is real-valued and varies in the pulse direction, but it is common for all range
bins, see Figure 4.4. Up to P different window values must be distributed to the array.The com-
plexity is 2 MAC operations for each channel.

FIGURE 4.4.
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Approximate envelop of the window parameters.

Fourier transform

The complexity of a P-point FFT operation is approximately (PlogP)/2 butterfly operations,
which approximately equals 4PlogP real-valued MAC operations. For each of the P data
points this equals a complexity of 4logP MAC operations. The implementation of FFTs on
FVIPa will be treated in more detail in chapter 5 below.
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Windowing

This is a real-valued window, analogous with the previous window, varying in the frequency
direction and it has a complexity of 2 MAC operations for each channel.

Pulse code compression

The pulse code compression correlation kernel is complex and its length is approximately 10%
of the number of range bins.

R
10

(+Q) pc (r,p) = 3, (C+JD) pc (D) - (I+jQ) pc(r—i, p) (4.3)
i=0
The complexity for each sample in each channel is approximately R/10 complex MAC opera-
tions, which equals approximately 4R/10 real-valued MACs.

Normalization

The normalization is a scaling to equalize the signal strength between the different CPIs. The
peak strength after the pulse code compression is proportional to the pulse length which should
be compensated for. The normalization factor is a complex number common for all samples in
a CPIL. The complexity is 2 MAC operations for each channel. After this step the auxiliary
channel results are output while the main and guard channels are processed further.

Envelop detection

The envelop detection complexity is 5 MAC equivalent operations for each of the two remain-
ing channels.

CFAR

The constant false alarm ratio, CFAR, processing is computed in a 6x6 range-pulse neighbor-
hood of the main channel, and the following three criteria must be true in order to be a target.

The main sample must be more than X dB larger than

7 of the 35 neighbor samples.
The main sample must be a local maximum in a 3x3 neighborhood.
The main sample must be more than Y 4B larger than

the guard sample.

To avoid the logarithm computation the first condition can be computed as

The main sample must be larger than at least

7 of the 35 neighbor samples scaled with the constant 10 (¥/10)

The third condition can be computed analogously. The first and second conditions imple-
ments the actual CFAR (local maxima) computation, and the third condition is used to remove
side lobe echoes detected by the guard horn, see section 2.6. The complexity of the CFAR is
approximately 47 MAC operations since we need to perform 45 comparisons and two multipli-
cations to compute the criteria above. ’
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Target extraction

The target extraction delivers the range, velocity and envelop of the targets indicated by the
CFAR to the resolving. One comparison is required to determine if the range/pulse bin con-
tains a target. We note that to extract target position information from a VIP array a new PE
design is required.

The number of targets extracted from each CPI is limited to one hundred. If more targets
are present they are discarded. A natural way to select which targets to discard is to always
process the targets that are closest to the radar platform.

CPI algorithm complexity

The computational complexity of the CPI processing is approximately 125+4(P+4logP+4R/
10). For P=256 and R=30 this gives a maximum of 1325 MAC operations for each sample
acquired at 2 MHz. The computational demand is then 2.6 G MAC operations per second. If
we allow for computation during the whole CPI interval this demand decreases to 2 G MAC
operations per second.

CPI algorithm mapping on FVIPa

With a precision of 20 bits an FVIPa PE, using the same ALU-Accumulator-Multiplier design
as RVIP, has a peak performance of around 1 Mega MAC operations per second. With a pro-
cessing demand of 2 G MAC operations at least 2000 FVIPa PEs are needed to implement the
CPI processing. However, we must find a suitable mapping of the CPI data matrices onto the
FVIPa array. Each 2D CPI array contains between 7710 and 12900 samples, and if we process
one sample per PE at least 12900 PEs are required. If we process two samples per PE at least
6450 PEs are required, and if we process four samples per PE at least 3225 PEs are required.
This indicates that it might be possible to process four samples in each PE. However, since our
linear array must emulate a 2D array we cannot hope to implement the algorithm without a
large communication overhead, and therefore we propose to process two samples in each PE,
giving at least 6450 PEs.

When emulating a 2D PE array with a 1D PE array there are at least two ways of organiz-
ing the data in the array. Either the linear array is aligned along the rows or along the columns
of the 2D array. In the present application this means that neighboring PEs contains either
neighboring range bins or neighboring pulse (velocity) bins. In any case neighbor communica-
tion in one dimension is straight-forward, but in the other dimension neighboring data are
found up to several hundred PEs away. In FVIPa neighbor communication is accomplished by
the shiftregister, causing overhead proportional to the shift length. Thus we should map the
data onto the array so that the long shift operations are minimized.

Communication with neighboring pulse/velocity or range bins are needed in five parts of
the algorithm. In the ADC saturation detection, the MTI filter and in the FFT the communica-
tion is with neighboring pulse bins. In the pulse code compression the communication is with
neighboring range bins. In the CFAR the communication is with neighboring pulse and range
bins and between the sum and guard channels. Of all these the communication in the FFT is the
most complicated, and the total communication complexity is much larger in the pulse than in
the range direction. Therefore, as shown in Figure 4.5, we have chosen to organize the linear
array so that neighboring PEs have data from neighboring pulses within the same range bin,
thus minimizing long shifts of data. This indata organization is possible since the IO registers
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can be addressed in arbitrary order. As mentioned above, each PE is assigned to process two
samples, and thus each PE contains two neighboring pulse samples, see Figure 4.6. Note that
the sample positions are changed during the FFT, and this creates an extra overhead in the
CFAR. This, together with two PEs without input data between each range bin makes the com-
munication overhead to neighboring range bins P/2+4 PEs. The use of empty PEs between
range bins facilitates the implementation of the ADC saturation detection and the CFAR, as
will be shown below, but it increases the maximum number of required PEs to (P/2+1)R+2R.
However, this is still less than 7168 which is the closest multiple of 1024. The system layout
will be discussed in more detail below.

FIGURE 4.5.
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A more detailed view of the data organization in FVIPa. The number of unused PEs
between each range bin increases to three after the MTI filter when the last sample in each
pulse is discarded.
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4.1.2 Resolving

The resolving is made out to 3000 range bins and 1000 frequency bins, extending the unambig-
uous range to 225 km and the unambiguous velocity to +/- 500 km/h, see Figure 4.7. The
resolving can be described and implemented in several ways, and we describe the algorithm
using an easy to understand implementation.

The input to the resolving is the target positions extracted from the nine latest CPIs. Ini-
tially the resolving matrix is reset to zero, and for each target extracted from a CPI a one is
written into the resolving matrix at the correct positions. Note that since each CPI matrix is
folded around its respective ambiguity limits in range and velocity several times within the
resolving matrix each target gives several ones in the resolving matrix, compare with the range
resolving example in section 2.2,

The resolving is then performed by finding all positions within the resolving matrix where
at least three of the nine CPIs indicate a target. We note that a target echo may only contribute
to one resolved target position. However, since it is represented at several positions within the
resolving matrix it might also contribute to erroneous target detections. Therefore it is crucial
that once a target has been detected all duplicates of the echoes causing it must be removed
from the resolving matrix. If we look at the example from section 2.2, reprinted in Figure 4.8,
we see that the two echoes gives four possible target positions indicated by at least two of the
three CPIs.

FIGURE 4.7.
V ]
oL 9 CPI
500 Jem/hF= bit-planes
. Resolving matrix P
L { |
CPI matrices [l | }
i R
ooy '
L__L 1
_—i—_l N
-500 km/h Y _‘l/ — '-225 km

The resolving matrix. The individual CPI matrix sizes and some of their expansions around
their respective ambiguity limits are also shown.

Thus, the algorithm needs to detect all coincidences with nine occurrences and then
remove those target echoes from the matrix. After that all coincidences of eight are found and
removed and so forth until all coincidences of three or more have been found. Additional con-
straints, for instance a similarity in echo strength, might be applied for a target to be deter-
mined as correct. This can be handled by the system control processor which has access to the
envelop information extracted by FVIPa.

Note that due to the different Av in the different CPIs an interpolation step is required in the
frequency resolving. The interpolation is implemented using the nearest neighbor value.
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FIGURE 4.8.
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An example showing that the targets echoes with three CPI coincidences at range 8 and 43
also gives two CPI coincidences at four other positions.

Resolving complexity

The complexity of the resolving is difficult to approximate since many different implementa-
tion approaches are possible. The matrix contains 3000 range bins and 1000 velocity bins, and
each bin contains 9 binary values. A target detection in each bin is performed by counting the
number of ones among the 9 binary values. Seven consecutive tests are performed, and the
brute force complexity is then 3000x1000x9x7 = 190*10° (binary) operations. This must be
performed in 5 ms (before the arrival of the next CPI) which requires a computing power of 38
Gops.

A more effective implementation is to first test which of the bins that contain at least three
hits, and then only poll these in the subsequent processing. After the first test only a fraction of
the resolving matrix bins need to be polled in the subsequent processing. This can be under-
stood by noting that since each CPI matrix has a maximum of 100 targets and around 10000
bins only around 1% of the bins in each bit-plane of the resolving matrix contain a target.
Therefore no more than 1%, and probably much less, of the resolving bins can contain more
than three target indications. The initial test requires 3000x1000x9 binary operations and the
subsequent six tests less than 3000x1000x9x6/10 and the total requirements are around 8.5
Gops. This scheme does not fit well in an SIMD implementation however, and is not used, but
we will use it in out comparisons with a DSP implementation of the resolving.

Resolving mapping on FVIPb

The resolving is implemented within a 1000x3000 data matrix. In the complexity analysis we
approximated the complexity of an SIMD suitable implementation to be 38 Giga binary opera-
tions. If a binary operation requires 3 clock cycles each FVIPb PE has a peak performance of
16 Mega operations per second. This means that at least 2300 FVIPb PEs are required for the
resolving. Therefore it is only feasible to align the PEs along the 3000-bin range axis, giving at
least 3000 PEs. With this PE layout each PE is assigned to process one resolved range bin (col-
umn) of the resolving matrix. For each target at the range r, extracted from CPI i the possible
resolved ranges are given by equation (2.6). Thus it shall be input to the PEs

PE = r,+r,;n (4.4)
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The variable »n is in the range from O to the maximum number of data multiples used, see
Figure 4.9.
FIGURE 4.9.
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The PE positions where data with the extracted range r,, should be input.

To input the data to the correct PEs we use the shiftregister and PEs in the following man-
ner. First we store all possible r,:s in the internal RAM of the array. Or rather, vectors with
ones at the r, interval are stored, see Figure 4.10. We then shift the appropriate r,, vector r,
steps and read the result to the PE RAM. Since r, can be up to 300 we initially also store
shifted versions of r, so that by selecting the appropriate pre-shifted vector a shift longer than
three PEs never is needed. This gives a total of 3*300/5+3*100/5+3*30/5 = 258 r, bit-vectors
stored in the RAM of each PE. These bit-vectors are then used analogously to indicate the PE
positions where CPI target data should be removed from the resolving matrix.

Instead of storing the complete resolving matrix columns in the PEs we store the columns
of the nine CPI matrices. For each velocity to resolve the corresponding target positions within
the CPI matrices are given by equation (2.20). Thus, for each resolved frequency we find the
appropriate CPI matrix entries and we can perform the velocity resolving without explicit stor-
age of the complete columns of the resolving matrix. The position extraction once a target
detection vector has been obtained requires the same PE modifications as in FVIPa. These
modifications are described below.

FIGURE 4.10.

PE array

An ry vector, and its phased shifted version stored in internal RAM.

4.2 The FVIPa/b PE

The FVIPa and FVIPb PE layout can be seen in Figure 4.11. Since the FVIPa and FVIPb
designs are very similar the design overhead to implement both chips is very low compared to
designing only one chip. The FVIPa/b PE design is similar to the RVIP PE, and below we dis-
cuss the modifications made and how they are used to implement the problems encountered in
the algorithm descriptions. We still assume that the PE array is clocked at 50 MHz.
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FIGURE 4.11.
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The layout of one Processing Element of FVIPa/b. The difference is that the I0-register
only is implemented in FVIPa and that the size of the RAM differs.
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The IO register

If we input two samples to each FVIPa PE we need at least 2x4x16x2= 256 bits in the IO reg-
ister. Thus, the FVIPa PE has no less than eight 32-bit register banks in the IO register. We note
that the input channel capacity is used fully which means that any additional input must be per-
formed by other means. The IO-register is not used in FVIPb and can therefore be omitted.
Instead we can use the shiftregister for input of the required mask vectors.

The Shiftregister

The shiftregister is identical to the RVIP, and just as in the RVIP design we assume that the
shiftregister is clocked at half the PE clock, i.e. 25 MHz. However, since the RVIP system
implemented by EMW has reduced the shiftregister clock frequency from our estimate of 25
MHz to 12.5 MHz we have also studied the effect of using only 12.5 MHz shiftregister fre-
quency.

The RAM

The data in the CPI processing in FVIPa expands to 28 bit precision, and thus up to 2x4x2x28
=448 bits are required to store the data. All parameters are input when needed and require only
temporary storage. Thus, 512 bits of RAM is sufficient in FVIPa. In the resolving the input
data is binary data from nine CPIs. This is 3%(256+128+32) = 1248 bits. As was shown earlier
an additional 258 bits was required for r, vectors and we implement 2048 bits of RAM in
FVIPb.

The Multiplier

Compared to RVIP the multiplier has been extended to 16 bits, allowing for higher coefficient
precision. We have also found that we without hardware modifications can use the multiplier
for counting purposes. The inner loop of the resolving procedure consists of counting the num-
ber of ones present in a word in the RAM. This loop is performed 7000 times for each resolv-
ing, and thus the counting operation must be efficiently implemented. Normally, the operation
to count the number of ones in a b-bit word using the FVIP ALU has the complexity

b
c®) = ¥ [ Clogi+1)] “5)
i=1
clock cycles. For instance, counting the bits in a 16-bit word requires 50 clock cycles. This
operation can be performed more effective using the existing serial-parallel multiplier hard-
ware in the following way. »

In every multiplication step the serial-parallel multiplier performs a parallel 16-bit carry
save addition of the contents of the parallel coefficient register and the internal parallel register.
The sum is also shifted down one step before the next addition. Thus, if we load the parallel
coefficient register with 267 and multiply with one bit from the vector, we will get the result
2b-1 if the bit was one and zero otherwise. Now, if we re-load the parallel register with 252 and
multiply with the next bit in the vector, without resetting the internal state of the multiplier, the
multiplier will contain the sum of the two bits multiplied with 222 since the previous partial
result is down-shifted one step. These steps are then repeated for the remaining bits and after
that the parallel register of the multiplier contains the number of ones. Thus, the addition of
ones in a b-bit word can be performed in approximately b cycles if the external load of the
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coefficient is made in parallel with the load/mult of the currently counted bit. For b=16 we
need 16 cycles instead of 50 as above. Of course, if we want to store the result in the internal
ram this requires at least 2log(b)+1 cycles.

The ALU

Since the FVIPb array is used for logic rather than arithmetic processing we have augmented
the ALU functionality with the logic operations AND and OR. This can be done without
increasing the size of the ALU instruction field given for RVIP in section 3.3.

The GLU

The Global Logic Unit, GLU, is a new hardware feature used for global data dependent opera-
tions and data extraction. This type of operations are needed to implement the ADC saturation
detection efficiently and to extract the target positions. The functional description of the
FVIPa/b GLU is derived from the LAPP chip [21] and the VIP implementation is described in
more detail in [15], [35]. The GLU has two binary input registers in each PE called Image, I,
and Mask, M, and one binary output register G. Connected to the GLU we also receive the sta-
tus information COUNT and Global Or (GOR) to the micro controller. COUNT equals the
number of ones in the G registers of all PEs in the array and GOR is one if any PE have a bit
set to one in the G register.

Two GLU operations are implemented in hardware, MARK and LFILL. The MARK oper-
ation is illustrated in Figure 4.12. Those objects (runs of ones) in the image which overlap the
mask in at least one position are kept. The LFILL operation is illustrated in Figure 4.13. All G
registers to the right of the leftmost PE containing a one are set to one. We note that after an
LFILL operation the number of ones in the G register equals the distance from the leftmost one
to the right edge of the array. Thus, by reading the COUNT value we find the PE position of
the leftmost one in the array. In the LAPP GLU the LFILL also set a one in the leftmost PE
containing a one. Our re-design makes it possible to implement an operation called LEDGE,
giving a single one in the PE with the leftmost one, by a bit-wise AND between the LFILL
input vector and the inverse of the LFILL output vector.

The MARK operation is used in the ADC saturation detection. As we pointed out, the Glo-
bal Or of the thresholding results within each range bin is to be distributed to all PEs contain-
ing data from that particular range bin. Assume that we have a bit-vector B with ones at the
PEs containing input data, see Figure 4.14. A MARK operation, with the result R of the thresh-
olding operation input to the mask register and B input to the image register gives the desired
Global Or distribution.

FIGURE 4.12.
L PE array
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FIGURE 4.13.
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The GLU operation LFILL and the LEDGE operation.
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The use of the MARK operation to distribute a Global Or to selected PEs.

The LFILL operation is used for target position extraction in FVIPa and FVIPb. Assume
that we have a bit-vector R with ones in the PEs where a target was detected, see Figure 4.15.
After an LFILL operation the COUNT value, which indicates the PE position, and therefore
the range/frequency, of the leftmost target, is read by the micro controller. To extract the posi-
tions of all other targets in R we remove the leftmost bit from R by an XOR operation between
R and the LEDGE result and perform a new LFILL operation. Furthermore, if we wish to
extract envelop information for each target this can also be accommodated. For each bit in the
envelop of each target we perform an AND operation with the L vector and input this to the
image register and read the Global Or output. If the Global Or is one the selected bit was one
otherwise it was zero.

FIGURE 4.15.
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The use of LFILL and LEDGE operations to extract target positions.

The speed of the GLU operations will be dependent on the maximum length of the signal
propagation across the array. In the MARK operations we know that the maximum object
length is Py,./2 which is 128, and then we assume that MARK will be ready within 160 ns,
which is 8 FVIP clock cycles [15]. The GOR function can be made very fast if implemented as
a tree structure on each chip. The Global-Or output from one chip can then also be used as a
look-ahead signal for the LFILL if it is connected to the left edge input of the LFILL ripple
chain on the next chip. With this construction we expect the LFILL/GOR ripple to be ready
within 80 ns, which is 4 FVIP clock cycles, on a 6600 PE array. The COUNT net work in par-

II-60

PAGE 157 OF 204



allel with the LFILL net and will be ready within another 80 ns, giving a total of 160 ns. The
COUNT net only ripples through one MCM, and is then added to the result of the other MCMs
externally. The GLU implementation is discussed in more detail in [15] and [35].

The Active register

In SIMD architectures it is common to allow PEs to be turned of conditionally via a PE active
or mask register [7], [24], [29], [62]. This is a deviation from strict SIMD processing since all
PEs do not perform the same instruction. Such an active register is very useful for parameter
distribution in FVIPa. We illustrate the parameter input using the active register with an exam-
ple.

Assume that we have an N-PE array and wish to distribute one unique 16-bit constant to
each of them. Assume also that we in the PE RAM have an N-bit-vector which contains a sin-
gle one at the leftmost PE, compare with the 7, vectors in Figure 4.10. If we load a multiplier
coefficient using the parallel load port it is normally stored in all PE multipliers. If we instead
load the bit-vector to the active registers and perform the multiplier coefficient load condition-
ally only the leftmost PE will load the coefficient. Now, if we input the bit-vector to the
shiftregister and perform N-I right shifts, active register stores and coefficient loads each PE
will have a unique constant stored in the parallel register of the multiplier. Thus, if a one PE
shift requires 2 clock cycles, distributing one unique parameter to each of the N PEs requires
3N clock cycles. Without the active register the distribution can be implemented in a similar
fashion using mux operations and the number of cycles is then approximately (b+1)N = I7N.
In FVIPa we have two real-valued window parameters and logP twiddle factors that should be
distributed. Since all parameters are constant along the range axis each parameter has no more
than P unique values. The twiddle factors actually has less than P/2 unique values and when
P=256 all parameters can be distributed using around 8000 clock cycles. Without the active
register the corresponding figure is 43000, and thus the gaih with the active register is around
35000 clock cycles.

The active register also makes the CFAR communication more effective. In section 4.1.1
we noted the data organization after the FFT. To allow each PE to process data within a +/-3
pulse window we use the shiftregister and active registers in the following way. We load the
vector with the high frequency samples to the shiftregister and shift P/2 steps to the right. We
then conditionally load the shiftregister with the low frequency samples using a mask-vector
indicating the active PEs. Now the shiftregister contains the P/2+3 lowest frequencies and the
CFAR processing of the P/2 lowest frequency bins is straight-forward. The samples required
for CFAR processing of the P/2 highest frequencies is obtained analogous.

4.3 FVIPa/b chip and system design

The expected chip area for FVIPa and FVIPb chips have been estimated using available data
from the RVIP estimates in [42]. The area estimates for 128 PE chips are given in Table 4.2.
The total estimated chip areas including instruction decoders and I/O pads are 100 mm? for an
FVIPa chip and 113 mm? for an FVIPb chip. The expected transistor counts for the FVIPa and
FVIPb chips are 540000 and 1.1 million respectively, and if a non-SRAM process is used the
corresponding estimates are 730000 and 1.6 million. The layout of an 128 PE FVIPa/b chip
can be seen in Figure 4.16.
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TABLE 4.2.

FVIPa FVIPb
PE part Area mm? Area% Area mm? Area%
10 16 23 0 0
SR 6 8 6 7
GLU 1.5 2 1.5 2
Mult 25 34 25 30
ALU 4 5 4 5
ACC 7.5 10 75 10
RAM 12.5 18 38 46
Total 725 100 82 100
FIGURE 4.16.
The layout of the FVIP chip.
System design

Each FVIPa/b chip will consist of 128 PEs and eight such chip and one local controller will be
mounted inside one Multi Chip Module, MCM, compare with the RVIP MCM layout in
section 3.5. Thus, each FVIPa/b module will have 1024 PEs and it will run at a clock fre-
quency of 50 MHz. The IO and shift register frequency however, is limited to 25 MHz. The
peak performance for one MCM is then approximately 1.6 Giga MAC operations on 16-bit
words. In the CPI processing 7168 PEs are used which gives a total of 7 MCM modules.

In the resolving approximately 3000 PEs are used which gives a total of 3 MCM modules.
The FVIPb system will have approximately 50 Gops performance for binary operations. Thus,
the total system will require ten MCM modules and a system overview is given in Figure 4.17.
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FIGURE 4.17.

IO control

A/D Data 10+3/ 1+3 /CS

l—-—o Auxiliary channel
System control
Extracted CPI and output
target data code generation ¢————
Operator input

and data output

Program
AN code
Sreg Input.

COUNT

abs g

An overview of the FVIP system.

The feedback from the FVIPa/b MCMs is more complicated than in RVIP where no feed-
back occurred. Thus, a more complicated system controller is needed. The external controller
will probably be based on some standard signal processor architecture, for instance a TI C40.
The design of a more powerful controller and different approaches to code the micro word effi-
ciently are discussed in [35].

We expect the total FVIP system to be around 3 dm? in size and need no more than 200 W.
The limits for an airborne system is 25 dm? and 500 W and we are well within those limits.

4.4 FVIP performance

The CPI time is between 5 and 8.3 ms which at a clock frequency of 50 MHz leaves at least
250000 clock cycles for the processing of a CPL. The two-step pipeline makes the delay
between the acquisition of a CPI and the presentation of a result less than two times the CPI
time, i.e. less than 17 ms.

44.1 CPI processing in FVIPa

The FVIPa computational results for the three different CPI cases are collected in Table 4.3.
Instead of presenting the cycle counts for all parts of the algorithm we have separated the cycle
count into processing, parameter input using the multiplier port, target position extraction
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using the GLU and communication requirements. We also note how many of the communica-
tion cycles that can be hidden by the processing. We see that the FVIPa array requires around
50% of the available 250 000 clock cycles. If the shiftregister clock frequency is reduced to
12.5 MHz the number of required communication clock cycles doubles, increasing the number
of clock cycles to around 200000, and thus it should be possible to implement the CPI process-
ing in FVIPa even if the shiftregister clock frequency is reduced to 12.5 MHz.

TABLE 4.3.
Algorithm part CPI format
Number of pulses, P 32 128 256
Number of range

bins, R 300 100 30
Processing 109496 72632 60824
Parameter input 912 3392 8848
Data extraction 13300 13300 13300
Communication 31564 53132 62780

Parallel comm/proc -22968 -19504 -4048
Clock cycle sum 132304 | 122952 | 141704 |

4.4.2 Resolving in FVIPb

The results for the resolving algorithm implementation in FVIPb are given in Table 4.4. We are
closer to the 250 000 cycle limit than with FVIPa, but still around 30% below the limit. This
corresponds reasonably well with the predicted PE performance and algorithm complexity.

TABLE 4.4.
Algorithm part # Clock cycles
CPI data input 14000
Resolving 156000
Sum 170000

4.4.3 Architecture comparisons

FVIPa

Earlier we approximated the CPI processing, solved by 7168 FVIPa PEs in 56 chips, to have a
complexity of 2 Gops. Using the same ideal DSP assumption as in section 3.7, a DSP imple-
mentation would require 40 ideal 50 MHz DSPs. That is, the number of FVIPa and ideal DSP
processor chips are roughly the same. We believe however, that the overhead to implement the
MPD algorithm on a DSP array or pipeline is very large, and that performance of each DSP
would be far from ideal.

If we look at the FVIPa PE efficiency we use more than three times as many PEs as is the-
oretically needed. This is because a large overhead is required for the communication, but
there is also a large overhead due to our implementation of the parameter input and the data
extraction. These cycles could be reduced if the IO and memory capacity in the PEs are
increased, and if extra external hardware is used for the extraction.
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If we instead of a linear SIMD array try to implement the algorithm using a 2D FVIPa
array we can approximate the number of required clock cycles by using the linear array results
but removing the communication overhead. The number of cycles required in one CPI is
approximately 124000. If we also remove the parameter input and data extraction overhead the
cycle sum is around 110000. We see that the gain with a 2D array is very small and designing a
2D layout and corresponding VIP architecture suitable for this application is not trivial since
the CPI formats vary very much. Furthermore, the design of a 2D FVIPa chip with full 2D
communication capacity is not feasible with the current chip packaging technology.

FVIPb

The complexity of the resolving was approximated as 8.5 Gops in section 4.4.2. Using our
usual DSP approximation 170 ideal 50 MHz DSPs are required to implement this. This is
much more than the 24 chips which the FVIPb implementation requires. That the FVIPb
implementation is very successful is because a large part of the processing is bit-manipulations
which are effective in a bit-serial architecture, whereas a DSP is effective for word-parallel
operations.
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Chapter 5

Fourier transforms in FVIPa

5.1 Introduction

Fast Fourier Transforms, FFTs, are very common in signal processing applications. Since FFT
computations are very demanding many ways of speeding them up has been studied, see for
instance [31], [37], and [40]. Different speed-up techniques include application specific pro-
cessors [13], [57], systolic arrays [64], MIMD arrays [1], [60] and SIMD arrays [1], [50], [56],
[62].

Linear SIMD arrays without any shuffle interconnection network, such as the FVIPa, are
not the obvious or ideal choice for FFT implementations. The butterfly scheme is inherently
global in nature with a variety of communication needs across the array.

5.2 FVIPa design prerequisites

In this chapter we will study FFT implementations using an FVIPa PE array. Apart from using
the exact FVIPa design we will also investigate how a wider shiftregister and increased multi-
plier precision affects the FFT performance. The used PE parametrizations can be found in
Table 5.1.

When we study 2D FFTs we give one solution where we assume that the internal PE RAM
is 16 Kbits. With the VLSI technology available today we can only implement 1-2 Kbit mem-
ory in each PE, but within 2-3 years we believe that up to 16 Kbit RAM/PE is feasible.

We use the notation for complex numbers introduced in section 3.3, i.e. the precision of the
data is p and therefore the size of a complex word is b where b=2p.

TABLE 5.1.

Parameter Values

Shiftregister width, W 16-32

Shiftregister cycle speed, R 2

Multiplier size, M 16-32

Accumulator size, 2M 32-64

Precision, p 16-32

Data size, b = 2p 32-64

5.3 Fourier transforms

The discrete Fourier transform, DFT, of a 1D discrete signal sampled from 0 to N-1 is
defined as [9]

N-1 —i2mux N-1

F =3 fwe © =13 /@ 5.0

x=0 x=0

where
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The phase factor @ is a complex number called twiddle factor. Since the computation of each
of the N fourier components requires N complex multiplications the complexity of the algo-
rithm is O(N?). An implementation in an N-PE FVIPa array is straight-forward and requires
around I6pN clock cycles.

However, the DFT can be computed with O(NlogN) complexity with a technique called
Fast Fourier Transform, FFT [9], [58], and an implementation on an O(N) PE array should ide-
ally be able to compute an FFT with O(logN) operations. However, since the communication
of the N data points includes O(N) distances there is a risk that the ideal speed up is heavily
offset by the communication across the array.

The FFT algorithm exploits the fact that an N-point DFT can be computed with O(N) oper-
ations from two N/2-point DFTs on the original data. This subdivision can then be carried out
recursively logN steps until only N/2 DFTs of the length 2 remains (if N is an even power of 2).
This FFT technique is called decimation-in-time radix-2 and the butterfly scheme for an 8-
point FFT can be seen in Figure 5.1. A 2-point DFT is computed by a so called butterfly oper-
ation

C=A+B o (5.3)

D=A-B-o (5.4)
where @' is the twiddle factor. Thus, each butterfly is composed of one complex multiplication
and two complex additions and the whole FFT algorithm can be computed with (N-logN)/2
complex multiplications and NlogN complex additions/subtractions. Other radices than two
can also be used, but for SIMD implementations the number of cycles for the computations are
minimized with radix-2 transforms [1]. Decimation-in-frequency implementations will have
the same complexity as the decimation-in-time algorithms studied here.

If the input data is real-valued, the resulting transform is an even function, and if input data
is imaginary the resulting transform data is an odd function [9]. This can be exploited by com-
puting the FFT of two real-valued N-point sequences in one transform, setting one as the real
part and one as the imaginary part of the input. Afterwards the DFTs of the different input
sequences is obtained by separating the output into one odd and one even sequence by the

operations
A(u) = %(F(u) +F*(-u)) = %(F(u) + F* (N-u)) (5.5)
B(u) = jy (-F () +F* () = j3 (-F () + F* (N-w) 56)

A 2D Fourier transform is usually computed by taking one 1D transform in each direction, so
called row-column FFT. If we assume that the input (image) data is real-valued we know that
the 2D FFT result is Hermitian (has conjugate symmetry) [9], i.e.

F(u,v) = F*(-u,—v) = F* (N-u, N-v) (GN))

This shows that all the information in the NxN 2D Fourier transform of a real-valued image can
be extracted from N/2 columns in the Fourier domain image. Thus only N/2 column transforms
need to be computed.
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We have studied an 1D FVIPa FFT implementation using N/2 PEs. Using N/2 PEs is more
effective than N since each butterfly layer contains N/2 butterflies and because the communica-
tion distances decrease [44]. We have also studied two alternative approaches to 2D FFT
implementations. One where the column FFT is performed within each PE, and one where it is
performed by a second array after a corner turning operation.

FIGURE 5.1.

Bit-reverse Butterfly Data Butterfly Data Butterfly
sorting layer exchange layer exchange layer

A decimation in time radix-two FFT algorithm implementation of an 8-point sequence on a
four-PE array.

5.4 FFT employing N/2 PEs

In Figure 5.1 we showed the butterfly scheme for an 8-point FFT. We note the following.
Before the first butterfly layer data is sorted in bit-reverse order. In each of the logN butterfly
layers N/2 butterflies are computed. Between each butterfly layer there is a pair-wise exchange
of data between butterfly nodes at a distance of 1, 2, 4, up to N/4.

The FVIPa FFT implementation can be broken down into four separate parts. Bit-reverse
sorting of the input data, shifting data to the correct PEs before each butterfly layer, distribut-
ing twiddle factors o and computing the butterflies.

Bit-reverse sorting data

If the input data to the transform are brought in from the outside of the chip these can be writ-
ten into the array bit-reversed since the IO registers can be addressed arbitrary. If the FFT-input
is an intermediate result the sorting operation must be done within the FVIPa array. If the sort-
ing is performed within the array each PE initially contains one even-indexed data and one
odd-indexed data, and after the sorting each PE contains one A and one B input data, see
Figure 5.1. We denote the distance between the reversed and the in-order index d. If d is posi-
tive the corresponding input sample should be fetched d/2 PEs to the left of the PE and if it is
negative the sample should be fetched d/2 PEs to the right. Furthermore, if d is even the input
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sample to the A sequence is to be fetched from the even samples and if it is odd from the odd
numbered samples. Vice versa holds for the samples in the B sequence. We have studied the
required shift lengths empirically and found that for the A sequence no positive odd distances
appear and for the B sequence no negative odd distances appear. Thus, the A sequence can be
generated as in the pseudo code

/* Generate the A-sequence */
Move (Even, Sreg, 4) /* Move even data to sreg and A, b */
for (i=1;i<D_el;i++) { /* Pos even shift lengths D_el */
shift(left,len_el(i)) /* Shift left*/
active = maskel(i) /* Load mask */
Cond_load(Sreg,A) /* Load shifted data, b */
}
Move (Even, Sreg, A) /* Move even data to sreg and A, b */
for (i=1;i<D_e2;i++) { /* Neg even shift lengths D_el */
Shift(right,len_e2(i)) /* Shift right */

active = maske2(i) /* Load mask */
Cond_load({Sreg,a) /* Load shifted data, b*/

}

Move (0dd, Sreg, A) /* Move odd data to sreg, b */

for (i=1;i<D_ol;i++) { /* Neg odd shift lengths Do2 */
shift(right,len_ol(i)) /* Shift right */
active = maskol (i) /* Load mask */
Cond_load(Sreg,A) /* Load shifted data, b */

}

The B sequence can be generated analogously, using only positive shift lengths for the odd
shift lengths. The total number of non-zero shift lengths, D, required for each of these opera-
tions is less than 10% of N for N larger than 512. For instance, if N = 16 D is five and the A
sequence shift lengths are -9,-7,-5,-2,2 and the B sequence shift lengths -2,2,5,7,9. The maxi-
mum shift length is less than N/2 in each direction. With the data length b the number of clock
cycles needed for the bit-reverse operation can be approximated with

- : RN (2 3RM'p )
Cpp = 36+D-b+3R Z[Vv] M 5+ Z[V_V-l (5.8)
One mask vector for conditional load is required for each shift length and sequence that is gen-
erated, giving a total of 2D mask planes. We note that the bit-reverse sorting has O(N) com-
plexity on FVIPa.

Shifting data to the correct PEs

As seen in Figure 5.1 cube-interconnected PEs, i.e. PE pairs with only one bit different in the
PE index, exchange data between the logN butterfly layers. This is done in an operation similar
to the bit-reverse sorting, but only one positive and one negative shift length appear in each
layer. In pseudo code one shift operation is

/* Sshift operation before butterfly layer i */

/* A is either C from PE i or D from PE i+L (i) */
/* B is either D from PE i or C from PE i-L(i) */

Move (D, Sreg) /* Move D to Sreg */

Move(C,A) /* Move C to A, b */

Shift(right,L(1i)) /* Shift right */
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active= mask (i) /* load active register */

Cond_load(Sreg, A) /* Load A conditionally, b */
Move (C, Sreg) /* move C to Sreg */

Move (D, B) /* Move D to B, b */
Shift(left,L(i)) /* Shift left */

active =!mask(i) /* load active reg w/ inverse */
Cond_load(Sreg, B) /* Load B conditionally, b */

The shift lengths between the different butterfly layers are 1,2, 4, up to N/4 long, which
adds up to less than N/2 shifts in each direction. The number of cycles needed to complete the
data shifting for an N-point FFT is approximately

Cy = 6b (logN~1) +R-Nl__%-‘ (5.9)

One mask pattern is needed for each butterfly layer, which means that logN patterns are
required for an N point FFT. The shift operation has O(N) complexity.

Distributing twiddle factors

The twiddle factors can be distributed to the PEs in at least two ways, via the IO register or via
the parallel load port on the multiplier. The reason that the multiplier is feasible to use comes
from the fact that many PEs share the same coefficient. In the first layer all twiddle factors are
equal (one), in the second only two different twiddle factors occur, in the third there are four
and so on up to N/2. The use of the multiplier port is even more attractive when, as in
chapter 4, a large array is used to compute several smaller FFTs in parallel because then the
twiddle factors are common for all the parallel Fourier transforms in the array. Another attrac-
tive feature with this technique is that twiddle factors are input when needed and do not occupy
blogN bits of RAM which they will if they are brought in via the IO register.

Using the parallel register of the multiplier for IO we need, as discussed in section 4.2,
approximately (R+1I)N cycles to distribute one unique word to each PE and then b cycles to
move data to RAM. The number of different twiddle factors in each butterfly layer is 1,2,4 up
to N/2, and thus the total number of cycles is less than

Cryw = (R+ I)NI-A%-‘+blogN (5.10)

A mask pattern is needed for each butterfly layer giving logN masks to determine which PE is
receiving the current twiddle factor. The twiddle factor distribution using the multiplier has
O(N) complexity.

Butterfly computation

We illustrate the butterfly operation on FVIPa with a pseudo code example showing the com-
putation of the real part of the result

/* Butterfly computation pseudo code */

/* Re(C) = Re(A)+Re(B*w); Re(D) = Re(A)-Re(B*w) */

/* Re(B*w) = Re(B)*Re(w)-im(B)*Im(w) */

Mult_coeff = Re(w) /* Coefficient load p/1 */
Acc = Mult*Re(B) /* Multiply 2p */
Mult_coeff = Im(w) /* Coefficient load p/1 */
Acc += Mult*Im(B) /* MAC 2p */
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Tmp = Acc /* Store Re(B*w) p */

Acc += Re(A) /* Add Re(A) p */
Re(C) = Acc /* Store result p */
Acc = Re(A) /* Load Re(A) p */
Acc -= Tmp /* Subtract temp p */
Re(D) = Acc /* Store result p */

If we sum the number of clock cycles we find that with serial coefficient load 12p and with
parallel coefficient load 10p clock cycles are required to compute the real part of the result.
Each twiddle factor is used twice, and since the number of cycles required to store/retrieve a
parameter from RAM is less than the number of cycles required to load the multipliers with
different coefficients externally we assume that serial coefficient load is used. Thus, here a but-
terfly operation requires approximately 2*12p cycles. The twiddle factors have at the most M
bit precision, where M is the size of the parallel part of the multiplier. The complexity for all
butterfly operations is then approximately

Cyr = 24plogN = 12blogN (5.11)

Total FFT complexity

With input data in correct bit-reversed order and twiddle factors in internal RAM the number
of clock cycles required for an FFT operation is approximately

Crpps = 22blogN+R-N[_%—‘ ~ [p, W= 16, R= 2] =~704logN + 4N (5.12)

With twiddle factor distribution and bit-reverse sorting the number of clock cycles required for
an FFT operation increases to approximately

= b 3RMp MNP bl
Corrs = 23blogN+N(10+ 2 [WD”{ N[VV-|+ (R+1)NLT4-‘~ (5.13)
~ [p, W, M= 16,R= 2] =736logN + 20N (5.14)

In Table 5.2 we see the number of clock cycles for FFTs of different lengths. The numbers are
for 16-bit precision. We note that for long transforms the gain of implementing a wider
shiftregister/multiplier is clearly visible. In Figure 5.2 we graphically show the complexity of
the different parts of the FFT implementation. We see that for transforms longer than 512 the
linear terms for the twiddle factor distribution and the bit-reverse sorting are larger than the
logarithmic twiddle factor computation term.

TABLE 5.2.
FVIPa FFT 128 512 2048 8192
FFT1,W=16 4160 6848 14144 39872
FFT1, W =32 3904 5824 10048 23488
FFT2, W =16 6528 15640 44288 154176

FFT 2, W =32 5888 12480 34048 113216
FFT2, W/M =32 5504 10944 27904 88640
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FIGURE 5.2.
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The number of clock cycles required for the different algorithm parts. The plot shows bit-
reverse sorting (solid), shifting (dotted), twiddle factor distribution (dashed) and butterfly
computations (dashed-dotted).

A comparison of 1D FFT execution times in milliseconds on a 8192 PE FVIPa array and a
2D 8192 PE MasPar-1 array [56] can be found in Table 5.3. The data precision is 32 bits and
the total number of data points used is always 16384. Thus, either 256 64-point transforms are
computed or 32 512-point transforms and so on. We have used an FVIPa model with 32-bit
shiftregister and multiplier. We see that the FVIPa array performs 2-15 times better if the bit-
reverse sorting and twiddle factor distribution is implemented, but with the twiddle factor dis-
tribution and bit-reverse sorting is implemented the gain is smaller. The difference of the two
architectures makes it hard to compare the implementations, the FVIPa clock frequency is four
times the MasPar’s, but on the other hand the MasPar-1 has 4-bit processing elements.

TABLE 5.3.
FFT size 64 512 8192 | 16384
MasPar-1 25 4 5.4 6.1
FVIPagpy 0.12 022 0.92 16
FVIPager, 0.16 039 3 6.4

Note that in the FFT, when the computational complexity increases because of the long
shift operations, the twiddle factor generation complexity also increases. However, the shift
operations can be performed concurrently with the twiddle factor distribution, and the total
complexity might therefore actually be smaller than the sums indicated above.
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5.5 2D FFTsin FVIPa

The most common way to compute a 2D FFT is the row-column method, i.e. first all rows are
transformed using 1D FFTs and then the columns of that image are transformed using 1D
FFTs. We have two strategies to compute an NxN row-column 2D FFT with FVIPa, with or
without external corner turning.

With external corner turning

The most straight-forward way of implementing 2D FFTs in FVIPa is to pipeline two arrays
with a corner turning in-between. Thus, the first array computes the row transforms and the
second the column transforms. It is then easy to exploit real-valued input data and conjugate
symmetry, see Figure 5.3. This halves the work loads for the two arrays. We use one N-PE
array for the odd-even separation. The odd-even separation is two complex add/sub operations,
requiring 3b cycles each, and we approximate that with 16-bit precision the separation takes
200 clock cycles.

Now, if we use one N-PE array it can be used for all the processing. First the array com-
putes the row transforms four rows at the time, then the odd-even separations and last the col-
umn transforms two at the time as in the pseudo code

/* 2D FFT using one N-PE array and corner turning */

for (i=0;i<N/4;i++) /* Transform N rows */
FFT({rg;+3¥a341} {Tgi40+3Tg543}) /* Four rows concurrent */

for (i=0;i<N/2;i++) /* Separate odd-even data */
OE_separate (R;) /* Each row gives 2 rows */

for (i=0;i<N/4;i++) /* Transform N/2 columns */
FFT({Rz;}{Roi411}) /* Two columns concurrent */

Thus, the processing needed for an NxN 2D FFT transform with 16-bit precision and twid-
dle factors stored in internal RAM is then using equation (5.12) approximately

Coper = 2+ (T0410gN +4N) +1 200 = N (100 + 352logN + 2) (5.15)

If we compute 5122 transforms with 16 bit precision (W=32) in a 512 PE array the processing
of each image 28 ms, giving a frame rate of 35 Hz. However, several external VRAMSs are
required for the corner turning.
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FIGURE 5.3.
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Computing 2D FFT with FVIPa using external corner turning.

Without external corner turning

To compute an NxN 2D FFT within an N-PE 1D array we may first compute N different row
FFTs along the array followed by one column FFT within each PE. However, if the input
image data is real-valued the 2D FFT result is Hermitian, and we can use N/2 PEs to first com-
pute N N-point row FFTs as described above, and then compute N/2 N-point column FFTs by
computing one transform within each PE.

To compute a complete FFT within one PE no communication overhead is required. The
computations needed in each PE are (NlogN)/2 butterflies, and since the twiddle factors can be
input directly to the multiplier one butterfly takes 20p cycles. Thus, one FFT requires approxi-
mately

Cpg_ppr = 20p - %’ logN = 5bNlogN = 160NlogN (5.16)
clock cycles. Thus, using equations (5.12) and (5.16) the computation of one NxN 2D FFT in
an N/2 FVIPa array takes

C,oprrr = N (704logN + 4N) + 160NlogN = N (864logN + N) (5.17)

A 5122 transform in a 256-PE array takes 82 ms. If we increase the shiftregister width to 32 the
time decreases to 71 ms. A 512 PE array computes two 5122 transforms in 82 or 71 ms, giving
41 or 36 ms for each transform. Hence, one 1024 PE FVIPa MCM module can perform 5122
point FFTs at 50 Hz frame rate. However, the internal memory requirement is a problem. A
FVIPa chip with 16 Kbit SRAM/PE, which is required for 5122 transforms, is not feasible with
current VLSI technology.
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The Micro-Grain Array Processor, MGAP, running at 25 MHz is capable of computing a
32x32 2D FFT in a 32x32 PE array in 2.15 ms [59]. A 16 PE FVIPa array would require 2 ms
for the same task. Of course, the FVIPa implementation only uses 16 PEs whereas the MGAP
uses 1024 PEs.

5.6 Convolution-FFT comparison in FVIPa

In section 2.9 we noted that the pulse code compression convolutions in radar signal process-
ing are often very long, and that Fourier domain implementations theoretically can be favor-
able. With the results obtained above we may compare signal domain convolution and Fourier
domain multiplication implementations in a typical FVIPa array.

The shiftregister and multiplier widths are set to 16 and the data precision is 16 bits.

1D convolutions

The most common case when using a linear SIMD array for row-parallel processing is to pro-
cess one sample in each PE. If we want to replace a 1D convolution along the array with a Fou-
rier domain implementation we must implement an N-point FFT in an N-PE array. In FVIPa
this can be made analogous with the N/2 PE implementation discussed in section 5.4. The main
difference is that the communication distances increase a factor two, and the total number of
cycles required with bit-reverse sorting and parameter input is approximately [44]

Cy_rprr1 = 450logN + 35N (5.18)
and without bit-reverse sorting and parameter input
Cy_rpra = 415logN + 8N (5.19)

Computing a convolution in the Fourier domain requires one forward transform, one point-
wise multiplication and one backward transform. Thus, the number of cycles for a Fourier
domain convolution implementation is approximately twice that of the results in equations
(5.18) and (5.19).

In a convolution each kernel coefficient requires one MAC operation and for a complex 1D
convolution kernel with L coefficients the convolution cycle count is approximately

C.=8p-L=25-L (5.20)

If we study these functions we find that the complexity is approximately equal if the convolu-
tion kernel lengths are 15% of N. Thus, in RVIP and FVIPa it is not effective to implement typ-
ical pulse code compressions, with kernels who are 10% of N, in the Fourier domain. If the
twiddle factors are stored in internal RAM and if the bit-reverse is not needed either, the break
even length is around 5% and a typical pulse code compression is favorable to implement in
the Fourier domain.

If input data and kernels are real-valued the results will be approximately the same since
the correlation complexity decrease and two input rows can be Fourier transformed in the same
transform, roughly halving the complexity in the two cases.
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2D convolutions

Large 2D convolutions are not common in radar signal processing, but they might appear in

typical image processing applications. The typical linear SIMD system layout in an image pro-

cessing application is an N-PE array processing NxN images. The image data and convolution

kernels are often real-valued rather than complex as in the radar signal processing examples.
The convolution of one NxN image with an mxm real-valued kernel then requires

C,=N-m"-2b=32N-m" (5.21)

clock cycles. Using external corner turning the total Fourier domain computation requires
approximately twice that reported in equation (5.15) which is

Cr = 2N (100 +320logN + 2N) (5.22)

clock cycles. Using these figures we find that with an image size of 5122 convolutions with
kernels up to approximately 15x15, i.e. with a total of around 225 kernel coefficients, are more
efficient to compute in the signal domain than in the Fourier domain. Note however that sev-
eral VRAMEs are required for the Fourier domain implementation.
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Chapter 6

The Matrix VIP

6.1 Introduction

The use of a phased array antenna with several parallel channels increases the signal process-
ing complexity considerably compared with non-array antennas. In the example below the
computational complexity is approximately twenty times larger than in the LPD and MPD
algorithms studied in chapter 3 and chapter 4, and the added antenna dimension makes the CPI
image format three-dimensional rather than one- or two-dimensional. This sets new demands
on inter-PE communication. Furthermore, the necessary space-time adaptive filtering requires
the processing of large, complex, matrices.

This chapter is a preliminary study of how a future VIP architecture can be designed to
meet these new requirements. Since the aim is an architecture that will be possible to imple-
ment by EMW within a few years rather than today we try to extrapolate the VLSI technology
available within that time frame. We also assume that we can increase the clock frequency to
100 MHz. Since the large amount of matrix operations is the main difference between the stan-
dard radar signal processing and the Space-Time Adaptive Processing (STAP) we call the
modified architecture Matrix-VIP, MVIP. Since the system will be airborne there are restric-
tions on the size of the system. It is estimated that the system must fit in a 25 liter box.

6.2 Space-time LPD radar algorithm

CPI Format

The radar has X parallel antenna channels which samples R range bins for each transmitted
pulse, and processes P pulses per CPI. Typical values are given in Table 6.1. With 16-bit  and
Q precision and 31 parallel channels the input data rate is almost 1.5 Gbit/s. The total amount
of data in each CPI is 48 Mbit. Results from three consecutive CPIs, from the same bearing but
with different prfs, are integrated into a Binary INtegration Interval, BINI, after the CFAR pro-
cessing, however we only present the processing up to the multi-CPI BINI integration.

An overview of the 3D data structure and the inter-sample dependencies of the different
parts of the algorithm is presented in Figure 6.1. In analogy with the work in the previous
chapters we try to approximate the algorithm complexity to find an appropriate parallelization.
We count the number of complex MAC operations required in each step of the algorithm as a
measure of computation complexity.

Fourier transforms

The first operation is a pre-weighting window followed by a Fourier transform in the pulse
direction. Each Fourier transform has an approximate complexity of PlogP complex MAC
operations if an FFT algorithm is used.
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FIGURE 6.1.
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The main parts of the space-time algorithm. The numbering indicates the sequence of the
parts of the algorithm and the shapes of the boxes corresponds to the communication

directions.
TABLE 6.1.
Space-time LPD
radar specification Value
Sampling frequency, f; 1.5 MHz
Range resolution, Ar 100 m
PREF, f, ~450 Hz
Number of prfs 3
Receiver duty factor, x 90%
Processed range bins, R 3000
Unambiguous range <333 km
Number of pulses, P 16
Velocity resolution, Av ~0.5 m/s
Unambiguous velocity ~3.75 m/s
CPI time ~35 ms
Samples/CPI = RP 48000
Antenna channels, X 31
Lobe directions, L 15
Suppression integration, N 64

Adaptive clutter suppression

The next step is the adaptive clutter suppression, which is performed by multiplying the FFT
output data with an approximation of the inverse of the covariance matrix of the antenna chan-
nel data [51], [52]. Each local covariance matrix is approximated by taking the mean of N
neighboring covariance matrices XiH -X;, where N is at least twice as large as X (The superscript
H denotes the conjugate-transponate of a vector or matrix.). Only one covariance matrix esti-
mate per N samples is computed, i.e. P-R/N estimates are made per CPL

Instead of inverting the covariance matrix the operation can be performed by QR-factoriza-
tion of the sample matrix X;.. X;, y followed by an inversion of the resulting upper-triangular R
matrix. This is possible since we can write the covariance estimate as [30]
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which makes it possible to compute the inverse covariance estimate using

c'=r"R" (6.3)
This inversion scheme is both less complex to compute and more numerically stable than the
inversion of the mean of the N covariance matrices. The numerical stability decreases when the
dynamic range increases, and C has a power of two larger dynamic range than R.

The QR-factorization scheme we have found most suited for factorization of an NxX
matrix on an N-PE linear SIMD array is a Modified Gram-Schmidt, MGS, algorithm [30]. QR--
factorization using Householder transformations, which theoretically has lower computational
complexity, can be implemented similarly but the theoretical complexity gain is lost in the par-
allelization. Further discussions on parallel matrix factorizations can be found in for instance
[11] and [16].

In pseudo code the MGS algorithm, where the data matrix A is overwritten by the orthogo-
nal matrix Q, can be written [30]

for (k=1;k<=X;k++) /* For all rows in R/cols in A */
H
Tk = ,/a kX ay /* Diag el ry, norm of column ay */
a
a, = r—k /* Normalize column k in A */
kk

for (j=k+1;j<=X;j++)/* Columns above diagonal k */
H
Tej = @ kXa; /* Compute ry 5 */

a; = a;—(a,-r.;) /* Update column in A */

All elements in R are computed by a complex inner product

N
d'yxa = Y % a, (64)
i=1
The complexity of the MGS algorithm is approximately NX? MAC operations. Note that the
algorithm contains X square roots and divisions and that the diagonal elements in R are real-
valued, which simplifies the implementation of the summation and division. When the ele-
ments of R are computed we store each element r; ; in memory position f{j-i). That is, all diag-
onal elements are stored at position “zero”, elements one position above the diagonal in
position “one” and so on. This facilitates the inversion of R.
We call the inverse of R, which also is an upper-triangular matrix, P and it can be obtained
by solving the equation system

11-81

PAGE 176 OF 204



1

Pk = T (6.5)
k Ter
J
Prj = Prr’ 2 i Pij J>k (6.6)
i=k+1

and the complexity is approximately X divisions and X34 MAC operations. If we reformulate
this using the memory locations defined above we get

1
Pro = — 6.7)
Tko
j
Pij = Pro” 2 Thi Preijei j>1 (6.8

i=1
where the memory locations are independent of the row index k, and thus the expression is
easy to implement in a SIMD array with one row of data in each PE. Once again the dividend,
which is the diagonal element, is real-valued.
The last step to achieve C ! is then to multiply P with PH, ie. the complex conjugate and
transponate. Since C s complex conjugate symmetric only half of the matrix need be com-
puted. In our notation the inner products are

X-k
Y Zpk,i D*eajicj (6.9)
i=j

and again the memory locations are row index independent and PE-dependent addressing can
be avoided. Each inner product requires approximately X/2 MAC operations, giving a total
complexity of X3/4 MAC operations.

Adaptive clutter suppression

The adaptive clutter suppression is matrix-vector multiplications between the computed

C 'matrices and the data vectors X. The complexity is X? MAC operations.

Lobe forming

From the X antenna channels we form L lobes (bearings). Each lobe is formed by a vector-vec-
tor multiplication between the antenna data and a lobe direction vector. For each lobe we then
need to perform X MAC operations, giving a total of X-L MAC operations.

Pulse code compression

The pulse code length is approximately 10% of R and each compression will then require R/10
MAC operations.

Envelop detection and logarithm

After the pulse code compression the data is envelop detected and logarithmed. We approxi-
mate the complexity with five real-valued operations.
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CFAR detector
There are four criteria which must be fulfilled for a bin to give a target detection:

Local max in R

Local max in F

Local max in L (6 neighboring lobes)

R is at least 3 dB larger than 12 of 16 closest range neighbors

Up to four of the six neighboring lobes are from the previous BINIL. Sometimes the local
max in frequency is exchanged for a global max in frequency to reduce the number of target
indications. This reduction is performed since a target often returns echoes with a variety of
Doppler frequencies within the same range bin. Twenty-six comparisons are required to imple-
ment the CFAR detector, making the complexity approximately 26 real-valued MAC opera-
tions.

Target reduction

Up to one hundred detected target positions and their respective envelops are output. This can
be implemented using GLU logic analogous to the FVIP implementation discussed in
section 4.2.

Algorithm complexity summary

The complexity of the windowing and FFT operation is approximately R-P-X-(1+logP) com-
plex MAC operations. The QR-factorization requires (P-R/N, )-N-X? operations. Computing R ~/
and C ! requires approximately (P-R/IN)MX312 operations. The clutter suppression and lobe
forming are matrix-vector multiplications requires approximately R-P-X-(X+L) operations. The
pulse code compression requires approximately (R-P-L)-R/10 operations, and each envelop
detection and logarithm around 5 real-valued operations. The CFAR complexity is around 26
real-valued operations. The total complexity is then approximately

3
C = RPX(1+logP+X+L) +I§’(X2N+£)+RPL(5+2) (6.10)
N 2 10 4
complex MAC operations. This shall be computed for each CPI, i.e. in 35 ms, which gives a
total complexity of approximately 10 G complex MAC operations per second, or approxi-
mately 40 G real-valued MAC operations.

MVIP parallelization

In the space-time algorithm outlined above the two most computationally demanding tasks are
the matrix inversion/adaption and the pulse code compression. Both these steps require good
communication in the range and channel directions. There is also a need for communication in
the pulse/frequency direction in the FFT and the CFAR. Thus, an initial parallelization attempt
would be to use one PE for all channels and pulses in one range bin. This would give R=3000
PEs, and the processing demand on each PE is around 15 M operations. With 100 MHz clock
frequency a word operation must then be performed in 7 cycles, which is impossible in a bit-
serial architecture but possible with a bit-parallel ditto.
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However, since there is more communication in the channel/lobe direction than in the
pulse/frequency direction, we then attempt to use one PE to process all channels in one range
and pulse bin. This gives R-P PEs, and the processing demands on each PE is around 1 M oper-
ations. This indicates that a word operation must be performed in 100 cycles, which is possible
with a bit-serial VIP processor.

With R-P PEs in a linear array we can either align the array so that neighboring PEs con-
tains neighboring pulse or neighboring range values. With neighboring pulse values the FFT/
CFAR communication is simple to implement, but the overhead in the matrix inversion and the
pulse code compression is too large. Thus, we align the array so that neighboring PEs contain
neighboring range values, making the matrix inversion and the pulse code compression possi-
ble to implement efficiently. However, now the communication overhead in the pulse direction
makes the FFT and the CFAR impossible to implement. To overcome this problem we will
introduce a new communication capability in the pulse direction. Now, in the matrix inversion
N PE blocks work independent of each other. This makes it feasible to divide the array in N PE
blocks in the range direction and P PE blocks in the pulse direction. Thus, a feasible MCM lay-
out would contain NxP = 1024 PEs. Internally on the MCM the PEs can communicate in the
pulse as well as in the range direction. This new communication scheme will be discussed in
more detail below.

6.3 Floating-point arithmetics

Representation

One of the initial demands on the implementation of this application was that floating-point
arithmetics were to be used. EMW considered the matrix inversion unsuitable for fix-point
arithmetics due to the large dynamic range which would require very large word sizes in a fix-
point implementation. Therefore we investigate a floating-point version of the VIP PE. A thor-
ough investigation of the properties of floating-point arithmetics can be found in for instance
[39]. However, we intend to use a non-standardized floating-point representation.

The m-bit mantissa and the e-bit exponent are stored as two-complement integers. Typi-
cally we intend to use 16-bit mantissa and 8-bit exponent. If we increase the mantissa to 24 bits
the sizes of the multiplier and accumulator must be extended above their present sizes. We
assume that the mantissa is normalized so that its absolute value is between

0.5<|m <1 6.11)
If the mantissa of a result cannot be normalized the number is considered as zero and the man-
tissa is set to zero and the exponent is set to the minimum value. The use of the minimum
exponent value instead of zero facilitates arithmetic operations as will be evident below. The
conversion to/from floating-point representation is made in the same way as the normalization
step shown in the floating-point addition pseudo code example below and requires approxi-
mately 2m+2e cycles, i.e. around 50 clock cycles.

Arithmetic operations

Floating point addition/subtraction consists of a number of steps: First the mantissas must be
aligned according to the difference of the exponents so that they have a common exponent.
The mantissa from the number with the smallest exponent is down (right) shifted arithmeti-
cally while the exponent increases. After m-/ shifts the mantissa equals zero and no further
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alignment shifts are useful. Note however, that if the number is negative the mantissa does not
reach zero in our representation, only -2 D) The aligned mantissas are then added/sub-
tracted, and after that the resulting mantissa is normalized and the exponent is decremented
accordingly. The normalization of the mantissa is made by arithmetic up (left) shifts of the
mantissa fraction until the MSB differs from the sign bit. If the mantissa is not normalized after
m-2 shifts the number is considered as zero, and the exponent is reset to the minimum value to
represent this. Before the normalization a check for mantissa overflow is needed, and if over-
flow occurred a down (right) shift is performed and the exponent is increased. Before the nor-
malization starts we have an m+1 bit mantissa.

Here we give two addition examples which shows both alignment, overflow and normal-
ization.

Example 1:
0.1010-2011 /* 10/16:23 */
+ 1.0111.2012 /* -9/16:23 */
=(0)0.0001.2011 /* 1/1623, m less than 0.5 */
= 0.1000-2000 /* Normalized result */
Example 2:
0.1010.2010 /* 10/16-2% */
+ 0.1100-2°01 /* 12/16:2), Not aligned */
= 0.1010.2°10 /* 1071622 */
+ 0.0110-2010 /* 6/16-2%, Aligned to largest e */
=(0)1.0000-2°1° /* 16/16:22, overflow */
= 0.10002011 /* Normalized result 8/16.2% */

Multiplications and divisions are less complex to implement than additions and subtrac-
tions since no pre-alignment of the mantissas is necessary. In a multiplication the mantissas are
multiplied and the exponents are added, and in a division the mantissas are divided and the
exponents subtracted. The normalization after a multiplication is simplified since we know that
the absolute value of the resulting mantissa is

0.25<|m| <1 (6.12)
and after a division between :
0.5<|m| <2 6.13)

Thus, after a multiplication only a one position normalization test is required, and after a divi-
sion only a mantissa overflow check. We note that the whole 2m-I mantissa after a multiplica-
tion or division need not be saved since the last m-2 bits always are discarded when the
normalized mantissa is stored with m-bit precision.
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Exception handling

One of the problems with floating-point arithmetics is how to handle exponent overflow and
underflow and zeros in arithmetic operations. Exponent overflow or underflow occurs if the
exponent value falls outside its range. In those cases we set a bit in a register to indicate that
overflow or underflow has occurred, and the exponent is set to the maximum or minimum
value.

The handling of zeros is a bit more complicated. During addition and subtraction we obtain
the desired result automatically since the largest exponent always is from the non-zero number
and the zero mantissa does not contribute to the resulting mantissa. If one of the operands in a
multiplication is zero the resulting mantissa is zero, and this is detected during the normaliza-
tion, giving a zero as result. The same holds for the dividend in divisions. However, if we
divide by zero we must detect this, activate the overflow flag and set the exponent to the maxi-
mum value.

Complexity of bit-serial floating-point arithmetics

A bit-serial floating-point addition/subtraction requires that the two exponents are fetched
from memory and subtracted, requiring at least 2e clock cycles. One mantissa must be fetched
from memory and aligned, requiring at least m cycles. The mantissa addition requires at least
m cycles as does the normalization/store process. The resulting exponent must also be stored.
Thus, an optimal bit-serial add/sub operation requires 3m+3e clock cycles, which also is the
number of memory access operations. In an SIMD array it is cumbersome to fetch the correct
mantissa from memory and align it on the fly, it is easier to fetch the two mantissas to two reg-
isters and then align one of the registers conditionally. Likewise it is hard to make the normal-
ization at the same time as the mantissa is stored back to memory. Therefore an add/sub in a
bit-serial architecture is expected to require at least 6m+3e clock cycles. This can be decreased
by pipelining if several consecutive additions are computed.

A bit-serial floating-point multiplication contains one addition and one multiplication.
With a serial-parallel multiplier, a multiplication can be implemented in 3m cycles and the
addition in 3e cycles. Thus, the optimum multiplication performance is around 3m+3e cycles.
A floating-point MAC operation requires one floating-point multiplication, an alignment of the
multiplication result with the accumulated sum, and an accumulation. Several of these steps
can be pipelined and combined, e.g. the multiplication and the previous accumulation can eas-
ily be implemented concurrently. The theoretical limit is 3m clock cycles since a 3m multipli-
cation must be performed. If a 2m mantissa is used in the accumulations the complexity
increases to at least 4m since the 2m accumulation and 2m alignment cannot be parallelized.

In our modified floating-point MVIP PE we aim to get close to these performance figures.

6.3.1 Floating-point PE

As was described above the main difference between floating-point and fix-point arithmetics is
the need of data dependent arithmetic shift operations. To be able to shift data we redesign the
accumulator to become a bi-directional shiftregister, see Figure 6.2. For efficient alignments
and MAC operations we need two such accumulator shiftregisters, called shift-accs. Both of
these registers are m+1 bits long, to allow storage of an m-bit mantissa and an overflow bit.
The extra shift-acc is connected between the multiplier and the ALU, and therefore an m+1
clock cycle pipeline is introduced between a multiplication and an accumulation. In order to
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perform exponent operations concurrently with mantissa operations we have added an e-bit
parallel up/down counter and adder. The counter also has an ALU for serial exponent addition
and subtraction. A parallel eight-bit up/down counter and adder working at 100 MHz should
not be any problem to implement. To make MAC operations more efficient we also include
two extra parallel exponent registers, called temp and exponent register.

FIGURE 6.2.

PE bus
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Parallel Multiplier
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and exponent
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of counter

The floating-point MVIP ALU. The grey arrows depict control signals.

Conditional operations

The counter/adder is used to control the data dependent shift-acc shifts during alignment and
normalization operations. During additions and subtractions the counter and the H_ALU is
used to compute the exponent difference of the operands, and the mantissas are stored in the
shift-accs. The sign of the result of the exponent subtraction indicates which of the two mantis-
sas that should be shifted in the alignment, and the value the number of times. To perform this
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a conditional count and shift operation is performed m-1 times. If the counter value is positive
it is decremented and shift-acc2 shifted, if the counter value is negative it is incremented and
shift-accl is shifted. When the counter reaches zero it stops and no more shifts are executed.

After an arithmetic operation the resulting mantissa in shift-acc2 should be normalized.
Initially the n2 signal indicates overflow, and if it is one the counter is incremented, otherwise
shift-acc2 is shifted up so that n2 indicates if the register contents are normalized. Then a con-
ditional count and shift operation is performed m-2 times. If n2 is zero the register is shifted up
and counter! is decremented, and if n2 is one the shifts and decrements stop. If the mantissa
remains non-normalized after m-2 shifts it is zero and the exponent is reset to the minimum
when it is stored.

During the alignment in MAC operations we need both the counter and the two exponent
registers. We align the m-bit multiplication result in shift-accl with the so far accumulated,
non-normalized, sum in shift-acc2. Initially the counter contains the exponent of the multipli-
cation result and the exponent register the exponent of the accumulation result. We store the
contents of the counter in the temporary register and then we compute the exponent difference.
After a mantissa alignment implemented as above we use the sign from the exponent subtrac-
tion, and if it is zero we load the result in the temporary register to the exponent register to
update the accumulation exponent.

Associated with the counters we also have a register D indicating if overflow or underflow
of the exponent has occurred. If the contents of the D registers are output to the GLU we can
obtain an error indicator from the array by reading the GOR. It might be worthwhile to have
separate overflow and underflow registers since underflow might be tolerated but probably not
overflow.

Floating-point addition/subtraction

In MVIP we propose to implement floating-point addition/subtraction according to the pseudo

code below
SAl = ml /* Load mantissa 1, m */
SA2 = m2 /* Load mantissa 2, m */
Cl = el /* Load exponentl to counter e */
Cl -= e2 /* Subtract exponent2, e */
Align /* Align according to counter, m */
{ /* Concurrent processing */
Add_M /* Add M-bit mantissas, m */
Cl = sign*el+sign*e2 /* mux new exp, 2e */
}
Norm_M_SA2/C1l /* Normalize mantissa/exp m */
Save (SA2) /* Store new mantissa, m */
Save (Cl) /* Store new exponent, e */

In the code we annotate operations performed in parallel within brackets. If we count the
number of cycles we see that the addition/subtraction requires approximately 6m+3e, around
120 cycles. Without the extra hardware we expect that a floating point addition requires at least
400 clock cycles. If several sequential additions are performed the load of one mantissa can be
implemented concurrently with the normalization and the number of cycles decreases to
Sm+3e clock cycles. Furthermore, if several consecutive accumulations are computed the
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number of cycles decreases to 3m+e. Also, if we know that both operands have the same sign,
e.g. after a square-root or an envelop detection, the normalization can be skipped, only an
overflow correction is needed, giving 5m+3e cycles.

Multiplication and division

The pseudo code for a floating-point multiplication is

Load_coeff (ml) /* Load multiplier, m/l1 cycles */
{ /* Parallel execution */
Mult (m2) /* Mult mantissas 2m */
Cl =el /* Load counter with el, e */
Cl += e2 /* Add with e2, e */
}
Norm_M_SAl/C1 /* Only one step/cycle */
Save (SA2) /* Save new mantissa, m */
Save (Cl) /* Save new exponent, e */

The multiplication operation requires approximately 4m+e, around 75 clock cycles. With
parallel coefficient load the number of cycles decreases with m cycles. If several multiplica-
tions are pipelined and m is at least three times as large as e the number of cycles decreases to
4m. In a division the mantissas are divided and the exponents are subtracted and if the multi-
plier is redesigned to a combined multiplier/divider as in [35] the number of cycles is approxi-
mately 15m+e, around 140 clock cycles.

Multiply and accumulate

The easiest way to compute a floating-point MAC is to use a multiplication followed by an
addition. Then the number of cycles is then approximately 10m-+4e, around 200 clock cycles.
Nestling the two operations, and using the double shift-accs in a pipeline gives an operation as
in the pseudo code

(Load_coeff (ml) /* Load next coefficient mantissa, m/1 */)
Mult (m2) /* Multiply and discard LSBs m */
{
Mult (m2) /* Multiply to shift-accl, m */
Add_M /* Accumulate previous, m */
Cl = em = el+e2 /* Mult-exponent, 2e */
}
Norm_M_C1 /* Normalize mult-res */
Tmp = C1 /* Save mult-exponent in Tmp-reg */
Cl -= Exp_reg /* Subtract accumulated exp */
{
Align_M_C1 /* Align, use Counter m */
Load_coeff (ml) /* Load next coefficient mantissa, m/1 */
}
If (sign == 1) /* Conditionally store new exp */

Exp_reg = Tmp
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where the previously accumulated mantissa and exponent are found in shift-acc2 and the expo-
nent register respectively. We see that the number of cycles is approximately 3m, around 50,
and the save from the straight-forward implementation is around 75%. In a MAC operation
parallel coefficient load does not give any performance gain. If the shift-accs are expanded to
2m a MAC operation will require 4m clock cycles.

Floating-point performance

The cycle counts for real and complex floating-point operations using the modified floating-
point MVIP PE can be seen in Table 6.2. We note that with 16-bit mantissa and 8-bit exponent
a complex MAC requires around 225 clock cycles and a complex division around 950 cycles.
If we transform the figures in Table 6.2 to be proportional to the data size b=m+e =1.5m we
get 5b for an addition, 2b/3b for multiplication and less than 3b for a MAC operation, and we
see that multiplications and MAC operations are performed as efficient as fix-point ditto in the
RVIP/FVIP PE, but that additions have lower performance.

The performance figures given for the 32-bit precision floating-point ALU in [69] state that
pipelined addition/subtraction, multiplication and MAC-operations can be performed in 4m
cycles and non-pipelined in approximately 8m. Compared with our figures we note that the
VIP MAC performance is better, but that pipelined additions, subtractions and multiplications
are slightly slower in VIP. If pipelining cannot be used the VIP performance is better. The larg-
est architecture difference between the two architectures is that they use three shift-accs, one
2m and two m long, where the two m long registers can be connected in series, and that 2m
mantissas are used in the accumulations.

TABLE 6.2.
Approximate cycle count

Operation Real Complex

Add/sub 6m+3e 12m+6e

Accumulate 3m+e 6m+2e

Multiplication 4m+e 18m+6e

MAC 3m 12m

Division 15m+e S7m+lle

6.3.2 Floating-point function approximations

With floating-point arithmetics several function approximations can be implemented easier
than with fix-point arithmetics. Here we present two functions that are required in our STAP
application, square root and logarithm computations.

Floating-point square root computation

For high-accuracy square root approximations we have chosen an iterative Newton-Raphson
algorithm taken from [17]. We assume that we have a real, positive, floating-point number

X=m2° (6.14)
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which we normalize so that m is larger than one and the exponent is an even number. This
requires a one or two position normalization from our normally used normalization. Thus we
have

2-k

X=a-2 (6.15)

and then the square root is

JX = Ja-2* (6.16)
Thus, we shift the new exponent one step down, and approximate the square root of a where
we know that

1<a<4 6.17)
The Newton-Raphson iteration formula gives
1 a
xn+1 = i(xn-‘-x_) (618)

n

which converges fast and monotonously towards the square root of a if we select a good start-
ing approximation xy. We implement a small table-lookup to find a good starting approxima-
tion. The table-lookup is implemented as follows: We store the b first bits of a in the counter.
Then we decrement the counter whilst conditionally loading the parallel multiplier port with
start approximations. In each PE the value loaded to the mult port the last cycle when the
counter contains a positive value is saved. Thus, the b-bit table lookup can be implemented in
approximately b+2? cycles. We propose to use a four-bit table-lookup and the initial approxi-
mation error will then satisfy

|xo—a| <27 <27 (6.19)

and after two iterations the error satisfies

xz—«/{zsil—s(xo—«/e'z)“s%-z‘18 (6.20)
Therefore a 4-bit table lookup and two iterations gives the desired 16-bit mantissa precision.
Each iteration contains one division using positive fix-point values and one addition, requiring
around 8m+2m, i.e. around 160 clock cycles. The total square root computation will then
require around 340 clock cycles. If we use integer arithmetics we must perform a conversion to
floating point numbers first, and then convert back afterwards. The cycle count then increases
to around 1340 clock cycles with a fix-point PE with division hardware, and to 5340 with the
RVIP/FVIP PE without special division and floating-point hardware.

Floating-point logarithm computation

Almost all radar algorithms we have studied contains a logarithm step, and with floating point
arithmetics it is feasible to compute an accurate logarithm approximation. It is desirable to
compute the %log(x) but the Zlog(x) is easier to approximate, and a conversion can then be
made using

“tog (x) = log () - “log (2) (6.21)
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That is, a conversion is made by a multiplication with a known constant. If we have a floating
point representation of a positive number normalized so that the mantissa is between 1 and 2
we have

2 e 2 2 e 2

log(m-2°) = "log(m) + log (2°) = "log(m) +e (6.22)
This means that we must find an approximation for 2log(x) for x between 1 and 2. With the lim-
ited range of x a Jow order polynomial approximation is very accurate, and the error decrease
with approximately one order of magnitude for every increment in the degree of the approxi-
mation polynomial. For a least-square adapted third order approximation, for instance, the
absolute error is less than 0.0013, which is better than 8-bit fraction precision. The evaluation
of a third-degree approximation polynomial and a final fix-point constant multiplication
requires approximately 25m clock cycles, and for higher degree approximations, 5m more
clock cycles for each degree. Thus, an approximation with 8-bit integer and 8-bit fraction pre-
cision can be performed in approximately 400 clock cycles. In the RVIP/FVIP PEs the compu-
tations can be made in approximately the same number of clock cycles, but the initial
conversion to floating-point representation requires at least 500 clock cycles. This would give
a total complexity of around 900 clock cycles. The logarithm approximation result is in fix-
point representation.

64 The MVIP PE

Given the parallelization sketched above, where each PE is assigned to process all antenna
samples in one range/pulse bin, we can find the PE modifications necessary to implement the
space-time algorithm. We intend to use either the floating-point ALU presented above or up to
32-bit fix-point arithmetics with the complex MULT/ALU/ACC designs presented below. We
assume that we can use a PE clock frequency of 100 MHz, and we will show later that we can
implement 128 PEs on each chip. Since we want the PEs to work in blocks of 64 the layout is
64x2 PEs rather than 128x1 PEs. The chip layout is discussed in more detail later in this chap-
ter.

The IO register

The input to each PE is data from X=3I channels, which is almost 1000 bits, in each CPIL.
Therefore we extend the IO register to 32 32-bit register banks per PE. However, since we only
intend to use the register for data input the register cell layout can be simplified compared with
the layout in RVIP/FVIP. To reduce the number of external connections on the chip we remove
the random addressability, and instead data is written in sequential order to the registers. With
a sampling frequency of 1.5 MHz and 31 parallel channels the input word data rate to each
chip and PE is 1.5x31 = 46.5 MHz.

Inter PE communication

During the algorithm mapping above we found that two-dimensional communication was
required to implement the STAP algorithm. The addition of a vertical, parallel, shiftregister is
not feasible since the number of chip interconnections would be too large. For instance, with
64 PEs in a row on each chip a 16-bit parallel vertical shiftregister gives 2048 connections.
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However, if only consecutive one-PE word shifts are required a serial communication
channel is just as effective as a parallel ditto in a bit-serial architecture. This can be understood
by noting the following: Assume that we wish to perform a convolution, i.e. a series of MAC
operations where data is collected from neighboring PEs. For each b-bit sample in the convolu-
tion b cycles are required to move the word to the multiplier. With a serial neighbor communi-
cation channel a sample can be fetched from a neighboring PE instead of from the internal PE
RAM without overhead. Using the broadcast function of the MVIP PE it is also possible to
simultaneously store the word in the PE. Thus, at the next iteration each PE can access a word
from a PE one step further away, effectively achieving the effect of a parallel shiftregister. To
implement the word storage function a parallel communication register is still required in each
PE, see Figure 6.3. Analogous with the name used for similar designs in LAPP/MAPP [20],
[21] and NSIP [73] designs we call this design Neighborhood Logic Unit, NLU.

If longer shifts are required, as was the case at several points in the MPD algorithm
described in chapter 4, there will however be a large overhead if serial NLU communication is
used.

FIGURE 6.3.
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The new communication register design. The Neighborhood Logic Unit, NLU, is used to
access data from one of the four nearest neighbors, North, South, East and West.

The N+ NLU outputs on one chip are connected to the corresponding NLU N inputs on the
chip containing data from the next pulse, see Figure 6.4. The N+ output register in the chip
with data from the last pulse is connected to the chip with data from the first pulse. The S+ and
S connections are not required in our implementation and are not connected between chips.
Thus we obtain a one-way vertical 64-bit communication between chips and with all the thus
connected chips on a common MCM we believe that the communication can operate synchro-
nous with the PE processing. The one-way communication makes it hard to implement FFT
algorithms, but since the transforms are very short the gain of using an FFT algorithm com-
pared to a DFT algorithm is low.

The horizontal NLU connections, which are connected between MCMs cannot operate
synchronous with the PE processing however. One possible way to reduce the overhead we
introduce high-speed asynchronous serial interfaces [63]. Thus, before a horizontal NLU oper-
ation the contents of the communication registers at the edge of a chip is transferred to a tem-
porary register at the next chip. A horizontal NLU operation can then be performed on a word
at the PE clock frequency.
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We assume that each serial link, using asynchronous transfer, can use a transfer frequency
of 1 GHz. With a communication register width which is up to 32 bits, a word transfer between
two chips require up to 3.2 MVIP clock cycles. Including synchronization overhead we expect
that a one-step shift requires ten MVIP clock cycles. When only consecutive shifts to the next
PE are used this overhead can often be hidden in the processing. Also, when no data need to be
transferred between the chips, as is the case with the communication in the matrix inversion,
the horizontal NLU communication can be clocked at the PE frequency. The use of fast serial
links also makes it easier to make the system reconfigurable, i.e. Asynchronous Transfer Mode
type switches can be used to rout data to different MCMs.

FIGURE 6.4.
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The vertical NLU communication on an MCM.
The RAM

The RAM must be extended to allow storage of all required data. The input data is almost 1000
bits, and with bit-expansion to 24 or 32 bit precision 1500 or 2000 bits are required. The Fou-
rier coefficients require P complete words, and the storage of the Q and R matrices 2X complex
words. To be able to implement the CFAR we must also store data from the three latest CPIs
requiring 3L words. If we use 12-bit precision after the logarithm this sums up to 6 Kbit RAM
with 24-bit precision and 8 Kbit with 32-bit precision. This is a much larger memory than we
have previously used, but compared with the 32Kbit RAM/PE in the 64 PE IMAP chip it is
still not very much [65].

Division in the multiplier

The multiplier has been redesigned analogously to the IVIP/WVIP architecture so that it is
possible to perform division of positive fix-point integers in approximately 8b cycles. If both
the divisor and dividend are two-complement integers the complexity increases to around 13b.
The design of the combined multiplier/divider is described in [35].
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Complex Multiplier-Accumulator

To faciliate the processing of complex data we can extend the fix-point PE with a second mul-
tiplier and an ALU-Accumulator, see Figure 6.5. Using this structure the pseudo code for a
multiplication of two complex-valued numbers will look like

/* Complex Mult operation Re = AC-BD, I = BC+AD */
/* A+jB is “data”, C+jD is “coefficient” */

Load_M1(C)
Load_M2 (D)

Ml*= A(0),M2 *= A(O0)
for (i=1;i<p;i++)

Ml*= A(i), M2*= A(i),
R_Acc += M1(i-1),I_Acc

end
for (i=p;i<=2p;i++)

R_Acc += M1(i-1),I_Acc

end

Reset_mult

Ml*= B(0), M2 *= B(0)
for (i=1;i<p;i++)

Ml*= B(i), M2*= B(i),

R_Acc -= M2(i-1),I_Acc
end
for (i=p;i<=2p;i++)
R_Acc -= M2(i-1),I_Acc
end

Save (R_Acc, RAM)
Save (I_Acc, RAM)

/* 1 or p cycles */
/* 1 or p cycles */

/* loop over data, p-1 */

+= M2(i-1)

/* Loop over mult, p */

+= M2 (i-1)

/* Reset internal mult-state */

/* loop over data, p-1 */
/* Crosswise add/sub */

+= M1(i-1)

/* Loop over mult, p */

+= M1(i-1)

/* p cycles
/* p cycles (2p for whole acc) */

(2p for whole acc) */

The complexity for the multiplication is approximately 6p or 8p depending on if the coeffi-
cient is loaded serially or via the external parallel load port. Performance figures for different
complex operations are collected in Table 6.3. The performance of the RVIP/FVIP design from
Table 3.3 is also given in the table and we see that the gain is approximately 50%. A complex
MAC with 16-bit precision now requires approximately 100 clock cycles.
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FIGURE 6.5.
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The double-multiplier ALU.
TABLE 6.3.
Clock cycles
RVIP/ Complex
Operation Inputl | Input2 Result FVIP mult
Complex mult RAM RAM RAM 14p+4 8p+1
Complex mult RAM External RAM 10p+8 6p+3
Complex MAC/ RAM RAM Acc 12p+4 6p+1
MSUB
Complex MAC/ RAM External Acc 8p+8 4p+3
MSUB
Butterfly RAM RAM RAM ~24p ~18p
operation
The active register

Analogous to the FVIP design we use an active register for PE-dependent operations. It is
required at several places in the matrix inversion, where often only one single PE is allowed to
store a result.

The GLU

A GLU, similar in function to the FVIP design described in section 4.2, is needed for local data
distribution in the matrix inversion and for extracted data output. The GLU is not connected
serially between chips as in the FVIP case, instead each N-PE block works independent. This
increases the GLU speed since the ripple length is less than N, and we believe that a GLU oper-
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ation requires 2 PE clock cycles, i.e. 20 ns to ripple through the N-PE array. We also have a
new bit-serial COUNT design in the GLU, see Figure 6.6. Note that the output of the bit-serial
COUNT is fed back into the array via the Global Or.

At several places in the matrix inversion we need to compute inner products where we sum
data from N neighboring PEs on one chip. This can either be made in a tree structure using
logN additions and intermediate shift operations, using the COUNT logic as in [72] or using
the new bit-serial COUNT logic. When using any of the two COUNT logic implementations
we use the fact that the desired sum of N B-bit words D can be written

N N B-1 B-1 N
5=3YD3) =Y YDGb) 2"=3 2" Y D(b) (6.23)
i=1 i=16=0 b=0

Thus, the desired sum can be computed using B weighted summations of COUNT values.
When using the new bit-serial COUNT logic all carry signals generated while summing the
bit-plane with the weight 2' are stored locally in the carry registers. The carry signals have the
weight 21*1 and are fed back into the summation at the next iteration together with the data
whose weight is 2+ To acquire all bits of the sum log/N extra iterations are required after all
bit-planes have been added to output all carry information giving bit expansion and which is
saved in the carry registers. The logN steps are also required when using this design to com-

pute a single bit-plane COUNT sum.

If we have floating-point data we must align the mantissas before the operation. The maxi-
mum exponent can be found using a successive approximation loop similar to the algorithm in
section 7.4, part I, and each PE can then find the appropriate alignment shift.

The delay from input of one bit-plane until the GOR result can be polled by the PEs is
expected to be 20 ns, i.e. 2 MVIP clock cycles.

FIGURE 6.6.
IPE bus ]PE bus PE bus PE bus
a a a a
b FA b FA S b s + —b s
Cio  Cow Ca  Com Ca  Con "’cs. cm—/|

FA FA

i=1

S

Carry Carry Carry Carry
register register register register
GLU

feedback +——

The bit-serial COUNT logic. FA denotes a full adder.
6.5 MVIP chip layout

In our chip layout estimates we have assumed that we can use a 0.55 pm 2-metal CMOS mem-
ory process, and that the maximum chip size is around 15x15 mm. The expected areas for the
PE-core of the two versions of the MVIP chip are presented in Table 6.4. We expect that a 128
PE chip with floating-point PEs and 6 Kbit RAM or a 128 PE chip with 32-bit complex fix-
point PEs and 8 Kbit RAM can be implemented on a 13x13 mm chip. The number of transis-
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tors per chip is approximately 4 million for the floating-point version and 5 million for the fix-
point version. If a non-SRAM process is used the number of transistors increases to 6 and 8
million respectively. Since we want 64 PEs to work in a group during the matrix inversion we
use a 64x2 PE layout instead of a 128x1 ditto. This reduces the number of external connections
on each chip and the number of chips required in a 64x16 PE MCM. The layout of such an
MVIP chip can be seen in Figure 6.7. The number of external connections on each chip is
around 250. If the pin-count is found to be too high serial interfaces of the same kind as on the
shiftregisters can be implemented on the IO register and possibly also on the vertical NLU

communication.
TABLE 6.4.
Area in mm? for 128 PE core
PE part 24-bit float 32-bit fixed
10 26 26
SREG 5 5
RAM 42 58
MUL-ALU-ACC 41 28
Sum 114 117
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FIGURE 6.7.
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The layout of a 64x2 PE MVIP chip.

6.6 MVIP system layout

Each MCM consists of eight MVIP chips and one micro controller. This gives 64x16 = 1024
PEs on each MCM. The number of required MCMs is then 47, giving a total of 3008x16 =
48128 PEs. If we assume that each module requires 10x100x100 mm the modules requires 5 L.
This leaves 15 1 for interconnection, power supply, cooling and global system control.

6.7 MVIP results

The expected floating-point and fixed-point computation times for the different parts of the
LPD STAP algorithm can be seen in Table 6.5. Without the bit-serial COUNT logic with feed-
back the execution times increase with 5-10 ms, proportional to the used precision. The large
difference in time between the adaption and the lobe forming is due to the internal GLU distri-
bution of C */ in the adaption. The results indicate that the MVIP can solve the problem within
the given time limit. If we increase the shift-accs to 2m bits and accumulate 2m bits in all MAC
operations the execution time using the floating-point PE increases with around 5 ms. With 24-
bit mantissa the execution time for the floating-point PE increases to 33.5 ms.
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TABLE 6.5.

Time (ms)
Algorithm part 24-bit float | 16-bit fixed | 32-bit fixed
DFT 12 0.6 1.3
QR 7.1 43 8.3
Adaption 3.7 2.1 43
Lobe forming 1 0.4 0.9
PCC 9.1 48 9.1
CFAR + extract 1 0.8 1.6
Sum 23.2 13.3 25.6

6.8 Results and comparisons

In the earlier application studies we have compared the number of VIP chips required for a
particular radar application with the number of required ideal DSPs operating at the same
clock frequency. The complexity of the STAP algorithm was approximated with 40 Gops and
an ideal DSP solution, where we assume that the DSPs work at 100 MHz, would then require
at least 400 DSPs, which is slightly more than the 376 required MVIP chips. We believe how-
ever, that if we consider the additional problems of algorithm partitioning and the large mem-
ory requirements the MVIP solution is clearly favorable.

Another design of a PE array and a system solving this radar problem has been proposed
by a research group from Halmstad/Gothenburg [2], [7], [70]. Their approach is to use 2D PE
arrays with external memories. Each PE in a 32x32 array has a 16-bit ALU, 8-neighbor direct
communication and row and column broadcast, but no internal RAM. All IO and memory
communication is handled by the broadcast buses. It is expected that 64 PEs can be integrated
on one chip, and that a 16-chip 32x32 PE MCM module the size of a palm can be fabricated.
The expected PE clock frequency is 20 MHz [71]. Five such modules connected in a pipeline
are stated to be capable of solving the task. Due to the abstract level of the architecture and sys-
tem descriptions in the papers, and no knowledge of the used VLSI process parameter esti-
mates, an accurate comparison between the solutions is impossible to make. We note however
that their estimate has only 10% as many MCM modules and PEs, which indicates a much
smaller system than the described MVIP system, and that they use 16-bit precision.

Using the same PE array layout but a bit-serial architecture and 16+8 bit floating-point pre-
cision it is expected that 30 modules clocked at 125 MHz are required [71].
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Chapter 7

Discussion

7.1 Results

In this part of the thesis we have shown how three generations of the VIP architecture effi-
ciently can solve three demanding real-time radar signal processing tasks.

The RVIP, which is currently manufactured by EMW, is aimed at ground-based LPD radar
signal processing.

The FVIP, where the linear VIP array successfully emulates 2D arrays of varying size, is
aimed at airborne MPD radar signal processing.

The MVIP, where the inter-PE interconnections has been extended to allow limited 2D
array communication, is aimed at airborne phased array antenna LPD processing.

7.2 PE performance comparison

In chapter 1 we showed two somewhat VIP-similar linear SIMD architectures, the Serial
Video Processor, SVP, and the Integrated Memory Array Processor, IMAP. Throughout this
part of the thesis we have used MAC operations as a complexity measurement, and in
Table 7.1 we show the MAC performances of the respective architectures. For larger word
sizes than eight we have tried to extrapolate the MAC performance. In the table it is clear that
the SVP architecture, which has no hardware support for multiplications, scales very poorly
with increasing precision. The 8-bit IMAP architecture has outstanding performance at 8-bit
precision, but already at 16-bit precision the VIP performance is better. If we study the IO
capacity we see that the SVP has very high IO capacity, and that VIP has better 1O capacity
than IMAP. Furthermore, if we increase the IO frequency in VIP, as we did in FVIP and MVIP,
the capacity can increase from the values in the table with a factor larger than two. The relative
size of an IMAP and an RVIP PE can be hinted by noting that an IMAP PE contains around
15000 transistors and an RVIP PE around 5000. No transistor information is available for the
SVP.

TABLE 7.1.
Operation SVP IMAP VIP
K MAC operations 8-bit 340 4100 2100
Scalegi;i%MHz 16-bit 95 930 1000
24-bit 36 420 690
External communi- Input Capacity 1320 320 640
cation in Mbit/s [~ 5yout Capacity 792 320 640

If we use the performance figures from Table 7.1 above we can find out if the architectures
can be used for the radar applications studied here. If we approximate the data precision to be
16-bit in the LPD and 24-bit in the MPD algorithm, and we use one PE to process each range/
pulse bin we find that an SVP PE only has 10% of the required performance, but that IMAP
has 25-60% more capacity than needed. Thus it would be possible to implement the algorithms
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with the IMAP but not with the SVP. If we study the IO requirements the IMAP architecture
has enough IO capacity, but since the width of the IO channel] is much smaller than the width
of the data temporary buffering is probably needed. Furthermore, the data dependent global
operations in the MPD algorithm cannot be implemented efficiently in the IMAP or the SVP
arrays.

7.3 Future work

The ongoing VLSI evolution makes it possible to integrate more features on each chip, and the
smaller feature sizes also makes it possible to increase the on-chip clock frequency. This gives
design problems that we have not encountered before. It will become increasingly difficult to
distribute instructions to the PE array even with a low level micro controller unrolling bit-
serial loops. It will be impossible to ensure complete synchronism in large systems, making it
necessary to find new strategies for inter MCM communication. It will be increasingly difficult
to implement large PE RAMs with access times that matches the PE clock frequency.

We have not studied resolving implementations very thoroughly. Once we found an imple-
mentation that was feasible to implement we used that, but by studying simulations using real
data it is probably possible to find a more effective implementation.

The use of serial communication links and on-chip serial-to-parallel and parallel-to-serial
conversions introduced in chapter 6 will be subject to further investigations. Apart from study-
ing the maximum transfer frequency, we want to find suitable parallel buffer layouts for differ-
ent reconfigurable 2D and 3D array emulations. This would for instance be needed if the
space-time radar algorithm would use changing CPI matrix sizes in the same way as the MPD
algorithm.

The floating-point PE should be investigated further to verify the performance and area
estimates, and to find possible improvements. One detail to study is if the use of an m long
accumulator gives significantly poorer accuracy than using a 2m ditto. It would also be inter-
esting to find the precision requirements that makes it favorable to use a floating-point PE. Dif-
ferent QR factorization algorithms should be studied to find the best trade off between
numerical stability and implementation efficiency. The used modified Gram-Schmidt algo-
rithm was selected only because it could be implemented efficient and more numerical stable
methods are known. It might also be worthwhile to study square-root and division free QR fac-
torization algorithms [23], which makes a fix-point implementation much easier.

The extension of the bit-serial PE to handle two to eight bits in parallel has been studied in
[35], and should probably be studied further. In that thesis there is also a study of different
ways to code the instruction word to possibly decrease the bit-rate of the instruction flow.
There is also an ongoing cooperation with the computer science department to design efficient
high-level compilers capable of generating VIP code.
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Abbreviations used in part II

BINI Binary INtegration Interval, The time during which binary data from several CPIs is
integrated to increase the detection probability, remove ghost echoes, and possibly resolve
velocity and range data beyond the ambiguity limits.

CFAR Constant False Alarm Ratio, Processing to reduce the number of false/multiple target
indications from a CPI.

CPI Coherent Processing Interval, The time during which radar signal data is processed phase
coherent. Typical CPIs contains data received during the transmission of 10-1000 pulses.

DFT Discrete Fourier Transform, A discrete version of the continuous Fourier transform.

DSP Digital Signal Processor, A processor aimed at signal processing, typically with high IO-
bandwidth and fast floating-point MAC hardware.

EMW Ericsson Microwave systems, Swedish radar manufacturer, previously ERE.
ERE Ericsson Radar Electronics, Swedish radar manufacturer, name changed to EMW 1995,

FFT Fast Fourier Transform, A class of efficient algorithms implementing the discrete Fourier
Transform, DFT.

FVIP Flight-VIP, A VIP architecture aimed at airborne MPD radar signal processing. Two dif-
ferent versions, FVIPa and FVIPb have been designed.

GOPS Giga OPerations per Seconds, The number of word-operations, typically MAC equiva-
lent, in an algorithm scaled with 10°. Or the peak-performance in number of operations for an
architecture.

HPD High Pulse repetition Doppler, A class of radars aimed at unambiguous velocity detec-
tion. Typical prfs range from 100-300 KHz.

IFM Integrated Functional Memory, An SIMD architecture presented by NEC, name later
changed to IMAP.

IMAP Integrated Memory Array Processor, An SIMD architecture with 8-bit PEs presented by
NEC.

IVIP Infra-red VIP, A VIP architecture aimed at high resolution IR signal processing
LP Low-Pass, A low-pass filter.

LPD Low Pulse repetition Doppler, A class of radars aimed at unambiguous long distance
ranging. Typical prfs range from 250-4000 Hz.

MAC Multiply and ACcumulate, An operation which multiples two numbers and adds the
results to an accumulated sum. Used in convolutions and matrix/vector multiplications.

MCM Multi Chip Module, A large (ceramic) substrate where several chip can be bonded
together.

MGS Modified Gram Schmidt, A QR factorization algorithm.

MIMD Multiple Instruction stream Multiple Data stream, A class of parallel computer archi-
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tectures where all processors can execute individual programs asynchronous.

MISD Multiple Instruction stream Single Data stream. A class of data architectures where sev-
eral processes the same data concurrently. Pipelined architectures are often considered as
MISD.

MOPS Mega OPerations per Seconds, The number of word-operations, typically MAC equiv-
alent, in an algorithm scaled with 108, Or the peak-performance in number of operations for an
architecture.

MPD Medium Pulse repetition Doppler, A class of radars aimed at simultaneous unambiguous
range and velocity detection. Typical prfs range from 10-20 KHz.

MTI Moving Target Indicator, A filtering to remove all echoes from non-moving targets.
MVIP Matrix-VIP, A VIP architecture aimed at LPD STAP-processing.

NLU Neighborhood Logic Unit, Hardware for inter-PE communication used in LAPP/MAPP,
NSIP and MVIP architectures.

PCC Pulse Code Compression, A filtering which compresses the energy of a long transmitted
pulse into a single range bin.

PRF Pulse Repetition Frequency, The frequency of the pulse transmissions from the radar.
RVIP Radar-VIP, A VIP architecture aimed at ground-based LPD radar processing.

SIMD Single Instruction stream Multiple Data stream, A class of parallel computer architec-
tures where all processors execute the same instruction synchronously.

STAP Space-Time Adaptive Processing, A class of algorithms used for adaptive clutter sup-
pression in phased-array antenna radars.

SVP Serial Video Processor, An SIMD architecture with bit-serial PEs presented by Texas
Instruments.

VIP Video Image Processor, An SIMD architecture aimed at real-time video-rate image pro-
cessing.

WYVIP Wood-VIP, A VIP architecture aimed at real-time wood inspection signal processing.
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