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Abstract

We have developed a novel technique to automatically
identify a region of interest (ROI) surrounding a spiculated
lesion on a mammogram. Our proposed approach for de-
termining the size of the ROI depends on the response of
a set of unique Spiculation Filters (SF). The design of these
filters is based on manually annotated physical characteris-
tics of spicules. The accuracy of our algorithm is measured
in terms of the percentage of spicule pixels located inside
the identified ROI. Spicules on each image were identified
by an experienced radiologist to serve as a reference to de-
termine the percentage of spicules located in the ROI. On
average, 94 percent of spicule pixels were located inside
the ROI identified by our algorithm.

1. Introduction

The American Cancer Society has estimated that
218, 940 women will be diagnosed with breast cancer in
the U.S. in 2007 [1], out of which 40, 460 women are ex-
pected to die. Screening mammography, x-ray imaging of
the breast, is currently the most effective tool for early de-
tection of breast cancer. However, mammography is not
perfect. Detection of suspicious abnormalities is a repeti-
tive and fatiguing task. For every thousand cases analyzed
by a radiologist, only 3 to 4 are cancerous and thus an ab-
normality may be overlooked. Computer-Aided Detection
(CADe) systems have been developed to aid radiologists
in detecting mammographic lesions that may indicate the
presence of breast cancer. These systems act only as a sec-
ond reader and the final decision is made by the radiologist.
Some studies have shown that CADe systems, when used as
an aid, have improved radiologists’ accuracy for detecting

breast cancer.

Radiologists visually search mammograms for specific
abnormalities. Some of the important signs of breast cancer
that radiologists look for are clusters of microcalcifications,
masses, and architectural distortions. Masses with spicu-
lated margins carry a much higher risk of malignancy than
calcifications or other types of masses. However, current
CADe systems are dramatically better at detecting micro-
calcifications than masses. The most widely used commer-
cial CADe system is reported to have 98.5% sensitivity at
0.185 false positives per image (FPI) for microcalcification
clusters but only 86% sensitivity at 0.24 FPI for spiculated
masses [9]. However, the results vary considerably on dif-
ferent datasets. For example, clinical studies to evaluate the
performance of commercial CADe systems for mass detec-
tion, have reported sensitivities ranging from 67% to 89%
with the FPI ranging from 0.40 to 0.74 FPI [10, 2]. For
normal images FP rates of 1.3 to 1.8 FPI have been re-
ported [11].

In our previous work, we developed a successful algo-
rithm for the CADe of spiculated lesions [5, 6]. This algo-
rithm entails computing the Radon transform of an image
followed by filtering in the Radon domain to enhance the
spicules. Once the enhanced image is obtained, the loca-
tions where spicules converge are found by using a set of
spiculation filters. The parameters of these filters are based
on the physical characteristics of the spicules obtained from
the measurement study [7].

In this paper, we present a new algorithm for automated
detection of region of interest (ROI) in mammogram im-
ages that completely contain candidate spiculated lesions.
The detection of ROI is based on the responses of spicula-
tion filters applied on mammogram images. The candidate
spiculated lesions that are detected can then be subjected
to a more intensive, directed and finer scale processing in
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order to extract features to be used in the classification of
normal vs. lesion and, subsequently benign vs. malignant.

2. Background

In our previous work, we developed a detection algo-
rithm comprised of three components. The first compo-
nent is used to find the central mass region of spiculated
lesions by using Gaussian filters. A set of 25 Gaussian fil-
ters was applied on each image. The maximum output re-
sponse across all Gaussian Filters computed at each pixel
of the image represents the likelihood of the presence of a
mass.

The second component is used to find the spatial loca-
tions where spicules converge. The spicules were first en-
hanced by filtering the mammograms in the Radon domain.
Then a set of spiculation filters was applied on the enhanced
images. A large overall output of a spiculation filter at a
particular spatial location corresponds to a high likelihood
of the center of a spiculated lesion. A likelihood map for
the locations of spiculated lesions is computed by taking
the maximum spiculation filter output across all filters.

The third component is used to reduce the false posi-
tives due to normal linear structures in parenchyma. Normal
structures such as blood vessels and ducts may be enhanced
due to filtering in the Radon domain and these could con-
tribute to large spiculation filter response. Therefore, these
linear structures can generate false positive detection. We
use the Oriented Difference-of-Gaussian filters to identify
and suppress false positives.

3. Methods

3.1. Physical parameter measurements

We asked an experienced radiologist to measure the
physical parameters of spiculated lesions for 37 cases.
We used the ROI Manager plugin of NIH ImageJ
(http://rsb.info.nih.gov/ij/) to enable a user, with minimal
training, to place markers at specific locations, and com-
pute the pixel distance between the markers. The radiolo-
gist measured the length of the spicules and width of the
spicules at their base (where the spicules meet the mass).
The radiologist also measured the major axis of the central
mass region of each lesion. Finally, the radiologist counted
the number of spicules for each mass and this quantity is
used to compute angular density. Since the resolution of the
images is known, the pixel measurements can be converted
into physically meaningful quantities (e.g., mm).

3.2. Region of interest identification

The primary goal of this work is to identify a region in
the mammogram image that completely contains the candi-
date mass and its spicules. It is important that the dimen-
sions of the ROI be not too small, or else some informa-
tion regarding the candidate spiculated lesion will be lost.
Also, it is necessary for the ROI to be not too large since
subsequent per pixel directed processing is computationally
intensive, and it is crucial not to waste these resources on
noncandidate portions of the image. Our approach for de-
tecting the ROI is based on the use of spiculation filters.
Spiculation Filters are a new class of complex quadrature
filters made up of the cosine, fc(r, θ; r0, σ, ω), and sine,
fs(r, θ; r0, σ, ω), components. The spiculation filters have
three parameters. 1) radius 2) frequency and 3) σ. The ra-
dius of the filter is the size parameter measured in pixels
and its value corresponds to the length of the spicules. The
frequency corresponds to the number of spicules located per
circumference of the central mass region. σ is the standard
deviation in pixels. Figure 1 and 2 illustrate examples of
sine and cosine spiculation filters.

g(r, r0, σ) = exp(
(r − r0)

2

σ2
) (1)

fc(r, θ; r0, σ, ω) = g(r, r0, σ) cos(ωθ) (2)

fs(r, θ; r0, σ, ω) = g(r, r0, σ) sin(ωθ) (3)

Figure 1. Cosine Spiculation Filter with σ = 2,

ω = 10.

We determine the size of the ROI based on the response
of spiculation filters, such as those depicted above. For each
candidate spiculated lesion with the true positive location
determined by our detection algorithm, we applied a set of
spiculation filters with radii increasing from a minimum to
a maximum value. The response of these spiculation filters
is indicative of the presence of spicules that have a given
length. The density of spicules of a given length will de-
termine the response of the spiculation filter as the radii in-
crease. Beyond a certain value of radius, the filter response
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Figure 2. Sine Spiculation Filter with σ = 2,

ω = 10.

becomes negligible owing to the disappearance of spicules.
This point will be determined by a simple, empirically cal-
culated threshold value. The outermost above-threshold fil-
ter diameter will thus determine the size of the ROI.
It is not possible to know beforehand the number of

spicules that are present around the central mass region.
Hence we use a set of spiculation filters with each having a
different frequency. The frequencies are also chosen based
on our ongoing measurement study of the physical charac-
teristics of the spicules [7]. Figure 3 illustrates the results of
spiculation filtering of mammogram images. A set of spic-
ulation filters with frequency ranging from 5 to 35 spicules
per central mass region was used and radius of each of these
filters was increased from 10 to 350 pixels. For each fil-
ter with a fixed frequency, we determined the radius corre-
sponding to the first local minimum filter response that was
less than a certain threshold. The threshold was determined
empirically as half the maximum filter response. The de-
sired radius was then calculated by taking the mean of the
radii that correspond to the first minimum value.

4. Results

We tested our ROI detection algorithm on mammo-
grams obtained from the Digital Database for Screening
Mammography (http://marathon.csee.usf.edu/ Mammogra-
phy/ Database.html) [3]. The DDSM is the largest publicly
available dataset of digitized mammograms. The medi-
olateral oblique (MLO) views of 37 cases of spiculated
masses were randomly selected from the DDSM. Cases
were selected from a single scanner (a pixel resolution of
50μm × 50μm), and we confirmed that a range of density
ratings, subtlety ratings, and pathology were represented by
the sample.
Figure 4 shows two examples of the detected ROI by our

algorithm. The red square represents the border of the ROI
detected by this technique. Sides of the square are twice
the calculated radius of the spiculated lesion. Blue lines are

Figure 3. Spiculation filter response at spe-
cific pixel (TP location) plotted against in-
creasing radii at a fixed frequency.

spicules marked by an experienced radiologist in the mea-
surement study [7].
In order to evaluate the performance of our algorithm, we

calculated the percentage of pixels marked as spicules by
the radiologist which are located inside the ROI detected by
our algorithm. This value is bound between zero (none of
spicules are inside the detected ROI) and one (all of spicules
are located inside the detected ROI). The average percent-
age of pixels inside the ROI is 94%, maximum and mini-
mum values are 100% and 49% respectively. This quantita-
tive metric alone is not sufficient to test the accuracy of the
algorithm as it will show a 100% result for the detected ROI
when it is much bigger than what is required. Therefore, we
used an area overlap criterion as a second metric for evaluat-
ing the performance of our algorithm. Overlap criteria have
been used by several mass segmentation techniques [4, 8]
and is described by equation 4.

O =
S ∩ T

S ∪ T
(4)

S is the area of the box detected by our technique and
T is the area of best box, the smallest one that can have
all spicules inside. Green squares in figure 4 illustrate the
best ROI (T ). An overlap percentage of one means an ex-
act match between the two regions. The average overlap
percentage of our ROI identification method is 48%.

5. Conclusions

A new automated method for detection of a ROI in a
mammogram images has been presented in this paper. The
responses of spiculation filters on mammograms are used

131

Authorized licensed use limited to: Finnegan Henderson Farabow Garrett & Dunner. Downloaded on June 18,2020 at 05:57:12 UTC from IEEE Xplore.  Restrictions apply. 

PAGE 3 OF 4



Figure 4. Examples of the detected region of
interest (red box) against the best region of
interest (green box) are shown on two exam-
ple mammograms with spiculated lesions.

for ROI identification. Accurate ROI identification is im-
portant since it makes it possible to apply a more directed,
finer-scale and localized processing in order to identify fea-
tures that will help in making the classification of lesion vs.
normal and benign vs. malignant. Evaluation of the perfor-
mance of our technique for detecting ROI was done in two
different ways. First, we calculated the percentage of pixels
marked as spicules by the radiologist which are located in-
side the ROI detected by our algorithm. On average, 94% of
spicule pixels were located inside the ROI. Second, we used
an area overlap criteria to determine the overlap in area be-
tween the ROI identified by our algorithm and the area that
was manually identified as best. On average, overlap per-
centage of our ROI identification method is 48%. These
results show that our approach to automatically detect ROI

in mammograms is promising and we plan to use this as a
starting point for localized processing.

References

[1] A. American Cancer Society. Cancer Facts and Figures
2007, 2007.

[2] T. W. Freer and M. J. Ulissey. Screening Mammogra-
phy with Computer-aided Detection: Prospective Study of
12,860 Patients in a Community Breast Center. Radiology,
220(3):781–786, 2001.

[3] M. Heath, K. Bowyer, D. Kopans, R. Moore, and
P. Kegelmeyer. The digital database for screening mammog-
raphy. Int. Work. on Dig. Mammography, pages 212–218,
2000.

[4] M. A. Kupinski and M. L. Giger. Automated seeded lesion
segmentation on digital mammograms. Medical Imaging,
IEEE Transactions on, 17(4):510–517, Aug 1998.

[5] M. P. Sampat and A. C. Bovik. Detection of spiculated le-
sions in mammograms. Engineering in Medicine and Biol-
ogy Society, 2003. Proceedings of the 25th Annual Interna-
tional Conference of the IEEE, 1:810–813 Vol.1, 17-21 Sept.
2003.

[6] M. P. Sampat, G. J. Whitman, M. K. Markey, and A. C.
Bovik. Evidence based detection of spiculated masses and
architectural distortions. volume 5747, pages 26–37. SPIE,
2005.

[7] M. P. Sampat, G. J. Whitman, T. W. Stephens, L. D.
Broemeling, N. A. Heger, A. C. Bovik, and M. K. Markey.
The reliability of measuring physical characteristics of spic-
ulated masses on mammography. The British Journal Of
Radiology, 79 Spec No 2:PS134 –PS140, 2006.

[8] G. M. te Brake and N. Karssemeijer. Segmentation of sus-
picious densities in digital mammograms. Medical Physics,
28(2):259–266, 2001.

[9] C. J. Vyborny, T. Doi, K. F. O’Shaughnessy, H. M. Roms-
dahl, A. C. Schneider, and A. A. Stein. Breast Cancer: Im-
portance of Spiculation in Computer-aided Detection. Radi-
ology, 215(3):703–707, 2000.

[10] L. J. Warren Burhenne, S. A. Wood, C. J. D’Orsi, S. A. Feig,
D. B. Kopans, K. F. O’Shaughnessy, E. A. Sickles, L. Tabar,
C. J. Vyborny, and R. A. Castellino. Potential Contribution
of Computer-aided Detection to the Sensitivity of Screening
Mammography. Radiology, 215(2):554–562, 2000.

[11] S. K. Yang, W. K. Moon, N. Cho, J. S. Park, J. H. Cha, S. M.
Kim, S. J. Kim, and J.-G. Im. Screening Mammography-
detected Cancers: Sensitivity of a Computer-aided Detec-
tion System Applied to Full-Field Digital Mammograms.
Radiology, 244(1):104–111, 2007.

132

Authorized licensed use limited to: Finnegan Henderson Farabow Garrett & Dunner. Downloaded on June 18,2020 at 05:57:12 UTC from IEEE Xplore.  Restrictions apply. 

PAGE 4 OF 4




