HULU, LLC EXHIBIT 1006

Developing Feeas wiul noo auu iswvvis

RSS and Atom are among the fastest-growing technologies on the Web, The RSS 1.0
and 2.0 standards and the up-and-coming Atom are XML-based formats that help web
developers to describe and syndicate web site content, application developers to share
data, scripters to repurpose information, businessmen to stay on top of their world, and
consumers to tap into the Internet in a whole new way.

Developing Feeds with RSS and Atom offers webloggers, web developers, and the programmers
who support them an explapation of syndication in general and RSS and Atom in particular.

Written for web developers who want to offer feeds of their content, as well as developers who
want to use the content other people are syndicating, the book explores and explains metadata
interpretation, different forms of syndication, and the role of Web Services and the Semantic Web,

This comprehensive volume introduces content syndication’s purpose, limitations, and traditions,
and answers the question of “why would you consider ‘giving your content away’ like this?” The
book delves into the architecture of content syndication with an overview of the entire system,
from content author to end user. You'll follow the flow of data: content, referral data, and publish-
and-subscribe calls, with a detailed lock at the protocols and standards possible at each step.
You'll understand the specifications and learn how to use them to their limits.

Topics covered in this book include:

= Creating XML syndication feeds with RSS 2.0

¢ Producing feeds in the enterprise

» Moving toward the Semantic Web with R5S 1.0 and RDF metadata

« Introducing Atom

» Extending your vocabulary: an extensive guide to RSS modules and their design
s Parsing syndication feeds

* Designing architectures for content syndication

if you're interested in producing your own feeds, using other people’s, or keeping up-to-date with the
latest web technologies, you'll want this step-by-step guide to RSS and Atom and their implementation.

wiww.oreilly.com
ISBN 0-596-00881-3 US $29.95 CAN $55.95 sa'ari I
ncludes

I W, | S

9

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

Example 1-2. An example CDF document (continued)

<Author VALUE="FooSports" />
<LastMod VALUE="1994.11.05T08:15-0500" />

<Schedule>

<StartDate VALUE="1994.11.05T08:15-0500" />
<EndDate VALUE="1994.11.05T08:15-0500" />
<IntervalTime DAY=1 />

<FarliestTime HOUR=12 />

<LatestTime, HOUR=18 />

</Schedule>

</Item>

</Channel>

Very soon after its release, the potential of a standard, XML-based syndication for-
mat became apparent. By April 14, 1997, just over a month since Microsoft gave the
standard its first public viewing, Dave Winer’s UserLand Software released support
for the format into its Frontier product. Written by Wes Felter, and built upon by
Dave Winer, it would be the company’s first foray into XML-based syndication, but
by no means its last. UserLand was to become a major character in our story.

CDF was an exciting technology. It had arrived just as XML was being lauded as the
Next Big Thing, and that combination—of a useful technology with a whole new
thing to play with—made it rather irresistible for the nascent weblogging commu-
nity. CDF, however, was really designed for the bigger publishers. A lot of the ele-
ments were overkill for the smaller content providers (who, at any rate, didn’t
consider themselves content providers at all), and so a lot of webloggers started to
look into creating a simpler specification.

Weblogging?

RSS 1.0, RSS 2.0, and Atom are all deeply entrenched within the weblogging commu-
nity, and I refer to weblogging, webloggers, and weblogs themselves frequently within
this book. If you've never heard of the activity, it is easily explained. A weblog is, at
heart, a personal web site, consisting of diary-like entries displayed in reverse chrono-
Jogical order. Weblogging, or blogging for short, is the activity of writing a weblog, or
blog, upon which a weblogger, or blogger, spends his time. Weblogging is extremely
popular: at time of writing, in late 2004, there are an estimated four million weblogs
being written worldwide. The vast majority of these produce a syndication feed.

For good examples of weblogs, visit hitp://www.weblogs.com for a list of recently
updated sites. My own weblog is found at hitp://www.benhammersley.com/weblog/
index.html.

O’Reilly has also published a book on weblogging, Essential Blogging.

ot

A WAl

HEC EXHIBLT 0 15

o NewsGator Outlook Edition (http://www.newsgator.com/outlook.aspx) is an RSS
reader extension for Microsoft Outlook. Many people swear by it, and it features
synchronization with an online version for when you're away from your main

machine.

Feed-Based Search Engines

For anyone wanting to start a search engine, RSS and Atom are godsent. It’s no sur-
prise that a handful of search engines have started up fed solely by syndication feeds.
They’re usually based around weblogs and the news sites that publish feeds, and can
be extraordinarily up to date.

o Feedster (http:/fwww.feedster.com/) is the original, and perhaps the best. It
claims to index close to one million feeds.

o Medlogs (http://www.medlogs.com/) is a good example of feeds powering a spe-
cialist search engine. This one aggregates medical news.

o Bulkfeeds (http://bulkfeeds.net/) is much like a smaller Feedster, only based in
Japan and concentrating on Japanese feeds. It’s a fine example of the interna-
tionalization of feed technology.

Finding Feeds to Read

Identifying sites that make feeds available can be tricky. There is no standard place to
publish a feed, nor is there any particular filename or path to look for one. Of course,
there are various methods for sites to identify their feeds, but none are universal.
Nevertheless, if you can’t see an explicit link to a feed, here’s a few things you can
try:
o Look for the traditional feed icon, the white writing on an orange background,
usually reading “XML” (see Figure 2-7). There are variants on this theme, but
they’re all recognizable.

Figure 2-7. The garden variety eggplant

« View Source on the site’s main page. If you see a line within the head section of
the code that reads:
<link rel="alternate" type="application/rss+xml" title="RSS" href= "http://www.
example.org/rss.xml"/>
the href part is the URL you want. This is a called an Auto-Discovery link and is
discussed in Chapter 9.

HULU, LLC EXfBRa06 19

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

Note that this configuration defines the directory’s index page as index.shtml because
it isn’t a good idea to make your browser seek out SSI directives in every page it
serves. Rather, you should tell it to look for SSI directives solely in pages that end
with a certain file extension by adding the following lines to your httpd.conf file
AddType text/html .shtml
AddHandler server-parsed .shtml
This makes Apache search any file ending in shtml (the traditional extension for
such things) for SSI directives and replace them with their associated files before
serving them to the end user.

This approach has a disadvantage: if you want to add SSI directives to an existing page,
you have to change the name of that page. All links to that page will therefore be bro-
ken in order to get the SSI directives to work. So, if you're retrofitting a site with RSS,
the other method is to use the XBitHack directive within your httpd.conf file:

XBitHack on

XBitHack tells Apache to parse files for SSI directives if the files have the execute bit
set. So, to add SSI directives to an existing page, rather than having to change the
filename, you just need to make the file executable using chmod.

How Often to Read the Feed

Feeds do change, it is true. People update their sites at all hours, and it would be lovely
to have the very latest headlines. Currently, however, it isn’t a good idea to keep
requesting a new feed every few minutes. Etiquette and convention limit requests for a
new file to once every 60 minutes, unless the feed’s publisher specifically allows you to
grab it more often, or unless said publisher is using Publish and Subscribe (see
Chapter 9).

In many cases, even requesting the feed every hour is too much. Feeds that change only
once a day require downloading only once a day. It’s a simple courtesy to pay attention
to these conventions.

server-Side Includes with Microsoft 115

Microsoft’s Internet Information Services (IIS) server package comes with server-side
includes enabled: by default, it processes any file ending in .stm, .shtm, or .shtml.
However, files are processed only if they’re inside directories with Scripts or Execute
access permissions.

e HULY, LG EXHIBHT1006——
| Chapter8: Parsingand Using Feeds ’

CHAPTER 10
Unconventional Feeds

Equation (1.2-9) is a second order, nonlinear, vector,
differential equation which has defied solution in its
present form. It is here therefore we depart from the

realities of nature to make some simplifying
assumptions...

—Roger R. Bate, Jerry E. White, and Donald Mueller
Fundamentals of Astrodynamics, 1971

By now you should be confident in your understanding of both RSS and Atom, how
the standards work, how to parse them, and how to fit them into the rest of the
Internet. Before we finish this book with an explanation of how the standards can be
extended, we have a good opportunity to show our knowledge in action. This chap-
ter, therefore, is a collection of recipes for creating and using feeds that do things
slightly more interesting and useful than simply transporting headlines and articles.

Apache Logfiles

Like many people, I have a weblog and quite a considerable amount of other online
writings sitting on my own web server. However once I've written something and it’s
been indexed by the search engines, people tend to find it, and I feel a vague social
responsibility to keep it up there. But things being as they are, and me tinkering as 1
do, documents go missing. Keeping track of the “404 Page Not Found” errors spit
out by your server is, therefore, a good thing to do.

This script, therefore, goes through a standard Apache logfile and produces an RSS
2.0 feed of pages other people have found to be missing.

Walking Through the Code

Let’s start with the usual Perl good form of strict; and warnings; and then load up
the marvellous Date: :Manip module. This is perhaps a little overkill for its use here,
but it does allow for some extremely simple and readable code. This is a CGI

HULU, LLC EXHIBIT 1006 179

CHAPTER 10
Unconventional Feeds

Equation (1.2-9) is a second order, nonlinear, vector,
differential equation which has defied solution in its
present form. It is here therefore we depart from the

realities of nature to make some simplifying
assumptions...

—Roger R. Bate, Jerry E. White, and Donald Mueller
Fundamentals of Astrodynamics, 1971

By now you should be confident in your understanding of both RSS and Atom, how
the standards work, how to parse them, and how to fit them into the rest of the
Internet. Before we finish this book with an explanation of how the standards can be
extended, we have a good opportunity to show our knowledge in action. This chap-
ter, therefore, is a collection of recipes for creating and using feeds that do things
slightly more interesting and useful than simply transporting headlines and articles.

Apache Logfiles

Like many people, I have a weblog and quite a considerable amount of other online
writings sitting on my own web server. However once I've written something and it’s
been indexed by the search engines, people tend to find it, and I feel a vague social
responsibility to keep it up there. But things being as they are, and me tinkering as 1
do, documents go missing. Keeping track of the “404 Page Not Found” errors spit
out by your server is, therefore, a good thing to do.

This script, therefore, goes through a standard Apache logfile and produces an RSS
2.0 feed of pages other people have found to be missing.

Walking Through the Code

Let’s start with the usual Perl good form of strict; and warnings; and then load up
the marvellous Date: :Manip module. This is perhaps a little overkill for its use here,
but it does allow for some extremely simple and readable code. This is a CGI

HULU, LLC EXHIBIT 1006 179

application, so we need that module, and we're producing RSS, so XML: :RSS is natu-
rally required too.

use strict;

use warnings;

use Date::Manip;

use XML::RSS;

use CGI gw(:standard);

First off, let’s set up the feed. Because this is the simplest possible form of RSS— just
a list, really—it is a perfect fit for RSS 2.0. Then we give it a nice title, link and
description, as per the specification:
my $rss = new XML::RSS(version => '2.0’);
$rss->channel(
title => "Missing Files",
link => "http://www.example.org",
description => "Files found to be missing from my server"

)
On my host at least, logfiles are split daily and named after the date. Since I'm fixing
the missing files as they appear, 1 only want to parse yesterday’s file. So let’s use
Date: :Manip’s functions to return yesterday’s date, then create the logfile path, and
open a filehandle to it. You will need to change this line to reflect your own setup:

my $yesterdays_date = 8UnixDate("yesterday", AP SR

my $logfile file = " /web/1ogs/ben/benhammersley . com/$yesterdays_date.log";

open(LOGFILE, "< $logfile file");
Now, go into a loop, taking the logfile line by line and using the mother of regular
expressions to split it up into its requisite parts. This is a very useful line to take note
of: you can change this section to convert this script to monitor your Apache logfiles
for just about anything.

while (<LOGFILE>) {

my (
$host, $ident_user, $auth_user, $date, $time,

$time_zone, $method, $url, $protocol, $status,
$bytes, $referer, $agent

)
= /M(\S+) (\S+) (\S+) \[([A:]#) s (\deNdNd4) ([MNTT0M] "(\S+) (+2) (\SH)" (A
S+) (\S+) "([*"1+)"
(1)
But today, we're interested in 404 errors. So, the script uses the XML: :RSS module to
add itenms for every error found:

my $cleaned status = $status || "111";

if ($cleaned status == "404") {
$rss->add_item(
title = "$url",
link => "$url",
description => "$referer”

180 | Chapter10: Unconventional Feeds HULU, LLC EXHIBIT 1006

);
}
}

Then all that’s left to do is to close the filehandle, print out the correct MIME type
for RSS, and print out the feed we’ve built:

close(LOGFILE);
print header('application/xml+rss’);
print $rss->as_string;

The Entire Listing

#!/usr/bin/perl

use strict;

use warnings;

use Date::Manip;

use XML::RSS;

use (GI qw(:standard);

my $rss = new XML::RSS{ version => '2.0');
$rss->channel(
title => "Missing Files",
link => "http://www.example.org”,
description => "Files found to be missing from my server"

)s

my $yesterdays _date = 8UnixDate("yesterday", "%Yimid");
my $logfile file = "/web/logs/ben/benhammersley.com/$yesterdays_date.log";
open(LOGFILE, "< $logfile file");

while (<LOGFILE>) {

my (
$host, $ident_user, $auth_user, $date, $time,

$time zone, $method, $url, $protocol, $status,
$bytes, $referer, $agent

)

= /MOAS+H) (ASH) (\S+) N[([7:]4) s (\d+e\d:\d+) (IMNTTON] "(AS+) (+2) (\SH)" (A
S+) (\s+) "([*"]9)"
(1718

my $cleaned status = $status || "111";

if ($cleaned status == "404") {
$rss->add_item(

title => "$url",
link = "$url",
description => "$referer"
);
}
}
close(LOGFILE);

print header('application/xml+rss');
print $rss->as_string;

HULU, LLC EXHIBH: 3@R6 | 11

Code TODOs to RSS

I live by my to-do list. Without it, ’d be a drippy mess of procrastination, and you
wouldn’t be reading this book right now. It’s good to be organized, and especially so
with code. Working on the scripts and chapters in this book, I've started to leave
messages to myself within them. I mark these out as a new line starting with TODO:.

I then have this script run over all of my working directories, parsing each file and
looking for those lines. The result is a nice to-do list in my reader application and a
morning’s work all set out.

Walking Through the Code

we'll do the usual start, with strict;, warnings;, CGI and XML::RSS. Let’s use the
File::Find module to do the directory-traversing:

use strict;

use warnings;

use XML::RSS;

use CGI gw(:standard);

use File::Find;
Up near the top, we set the root directory, below which everything will be parsed.
You need to change this to match your own setup, but remember that the script
checks every file. Setting it to something too high up your filesystem tree might slow
the script down magnificently.

my $start_directory = "/Users/ben/Code/";

Now, set up the RSS feed, as per usual. Here, were using a cunning trick, techni-
cally against the RSS 2.0 specification, of making the link element a file:// URL.
This usually works very well, bringing up your OS’s file manager, or the application
associated with that particular file, but remember that technically, it’s not supposed
to work at all. Still, for a locally produced, locally consumed feed, a little slackness
on the specification is probably allowed.

my $rss = new XML::RSS(version => '2.0);

$rss->channel(
title => "TODOs from $start_directory”,

link > "file:/$start directory”,
description => "Files with TODO messages, from $start_directory”

)
Now, use the File: :Find module to traverse the directories, opening a filehandle for
each one, slurping it in and searching each line with a regular expression for TODO. If
it’s found, add an item to the RSS feed.

find(\&search and rss, $start_directory);

sub search_and_rss {

HULU, LLC EXHIBIT 1006

182 | Chapter10: Unconventional Feeds

open(CODEFILE, "< $File::Find::name");

while (<CODEFILE>) {
if ((§_ =~ m/TODO/) {
$rss->add_item(
title => "$File::Find::name",
link => "file:\/\/$File::Find: :name",
description => "$ at Line $. of $File::Find::name"
)
As a test for the script, 've left a TODO line within itself. It’s just a suggestion that a
section of code to add the file’s last modification date to the RSS feed might be a nice

idea; I leave this as an exercise for the reader. Now, close the filehandle:

#TODO: Put in date code here

}

close(CODEFILE);
}

And finally, we serve up the feed:

print header('application/xml+rss');
print $rss->as_string;

The Entire Listing

#!/usx/bin/perl

use strict;

use warnings;

use XML::RSS;

use (GI gw(:standard);
use File::Find;

my $start directory = "/Users/ben/Code/";

my $rss = new XML::RSS(version => '2.0");
$rss->channel(
title => "TODOs from $start_directory",
link => "file:/$start_directory”,
description => "Files with TODO messages, from $start directory"

);
find(\&search and rss, $start directory);
sub search_and_rss {
open(CODEFILE, "< $File::Find::name");
while (<CODEFILE>) {

if ($_ =~ m/T0D0/) {
$rss->add_item(

HULU, LLC EX{B0FeRg06 183

title => "$File::Find: :name",
link => "file:\/\/$File::Find: :name",
description => "$_ at Line $. of $File::Find::name"

)5
#TODO: Put in date code here
}
close(CODEFILE);

}

print header('application/xml+rss’);
print $rss->as_string;

Daily Doonesbury

The morning isn’t quite the same without the daily dose of Doonesbury, the Pulitzer
Prize winning cartoon strip by Garry Trudeau. But, frankly, the nearest newspaper
stand is far too far to go before 've had morning coffee and typing in http://lwww.
doonesbury.com on an empty stomach is a bit much. Why not have it delivered via
RSS? You just need a web server, or a proper operating system capable of running
CGI scripts, and the following code. This is tremendously simple stuff—but dis-
tinctly pleasing to have set up for your morning coffee.

Walking Through the Code

We’ll go with the traditional start: strict;, warnings;, CGI with DATE: :Manip, and the
joy that is XML: :RSS all being loaded for your coding pleasure. So far, so simple.

use strict;

use warnings;

use CGI qw(:standard);
use Date::Manip;

use XML::RSS;

The Doonesbury site, thankfully, names its image files after the date, in the format
YYMMDD. So, first, you work out the date, then add a single entry containing
escaped HTML that displays the image file you want.

my $todays_date = &UnixDate("today", “%yZkmisd");
my $this_year = 8UnixDate("today","%Y");

my $rss = new XML::RSS(version => '2.0);

$rss->add_item(
title => "Doonesbury for $todays_date",
link => "http://images.ucomics.com/comics/db/$this_year/db$todays_date.gif",
description => '<img src="http://images.ucomics.com/comics/db/2004/"
. "db$todays_date.gif"
LY

184 | (Chapter10: Unconventional Feeds

Then it’s just a matter of adding in the channel information and serving the thing out
with the correct MIME type:

$rss->channel(
title => "Today's Doonesbury",
link => "“http://wwa.doonesbury.com",
description => "Doonesbury, by Garry Trudeau"

);

print header('application/xml+rss’);
print $rss->as_string;

You can obviously use this sort of code to produce RSS feeds of any online comic
strip. Do the author a favor, however: don’t make the feed public, visit his site once
in a while, and buy some schwag. You're getting great stuff for free—with the added
convenience you've added, for sure—and it’s nice to give something back.

The Entire Listing

#!/usz/bin/perl

use strict;

use warnings;

use CGI qw(:standard);
use Date::Manip;

use XML::RSS;

my $todays date = 8UnixDate("today", "Zy%m%d");
my $rss = new XML::RSS(version => '2.0");

$rss->add_item(
title => "Doonesbury for $todays_date”,
link => "http://images.ucomics.com/comics/db/2004/db$todays_date.gif",
description => '81lt;img src="http://images.ucomics.com/comics/db/2004/"
. "db$todays_date.gif”
. /gt
)

$rss->channel(
title => "Today's Doonesbury"”,
link => "http://www.doonesbury.com”,
description => "Doonesbury, by Garry Trudeau"

);

print header('application/xml+xss');
print $rss->as_string;

HULU, LLC EX®IBPTs1006 165

Amazon.com Wishlist to RSS

Being perfection herself, my wife loves books, and as a loving and dutiful husband,
her Amazon wishlist is required reading for Christmas, birthdays, and all other occa-
sions. But keeping track of the wishlist is a pain if I have to trudge over to Amazon
every time. Far better to have my feed reader do it for me, with the help of a little
script. Figure 10-1 shows my wishlist to give you an idea of what one looks like.

Swarchs { Al rogucts

risnde B Favorites > Aboul You > Your Wish List
s v t

Name or E-mail

{1E ya ' o1 ey, ek e}
Bhare your Wish List | Find 2 Wish Lis)
Important Message o
City or State {optional)
Please anter & shipping sddress 5o that iteme on this st <an be bought by athers and sent to you, . e

We will anty display your ity and state to help youe Triends and family igentify you,

Total ltems: 2
My Vievs: Normal view | Compagt

Vasuy Basrchabie Optiong

oty Bty Sindd wautr Wigh UL

Ao Faxt s Huw be Best Your Best Timer— Beery Time by Prives §11.67
Hal Higdon . @ Sty : Your Nama: Ben Hanuversley

g cumtormer raviess YRGS
fate fddedt: Hovember 3, 2004

Desired:]

ugnd from 575
fused from 55 Shipping Addrass

Hoaw Etored

Comment: |

priority: 3 Like 1o have

Tell Prionds to Ragistor

Seand an e-rasil ta your
friends ar family telling

Pricg: $1187

2 Hal Hindon's How to Train ; The Best Programe, ! o
Joriouts, And Schedules For Runnere OF A1l Ages by Hal @ st them how to create ac
Higdan S’ Dhwish List

Ay castond reviaw
Dots Added: Newember 3.2

Posired:

T Usualty shies i & ta 2 days i
S e fo | PBaby Regisloy
FWedding Beaistey

e 1o Explore

Commants

* Create Hemindees

Priority: | .

Figure 10-1. My Amazon.com wishlist page

This feed uses the Amazon Web Services API to do its evil work. This can be either
REST- or SOAP-based, so you can choose your own preferred poison. For fun, I'll do

186 | Chapter10: Unconventional Feeds

this using the REST interface, and then using XML: :Simple to parse the XML. My idea
of fun might not be the same as yours, of course.

Walking Through the Code

As always, we fire up the script with the loading of the modules and the setting of
some global variables: the obligatory use strict; and use warnings;, and the required
Amazon API subscription key. You'll need to get your own from http://www.amazon.
com/gplaws/landing.html.

use strict;

use warnings;

use XML::RSS;

use XML::Simple;

use LWP::Simple qw(!head);
use CGI qu(:standard);

use Getopt::long;

use Date::Manip;

my $amazon subscription_id = "XXXXXXXXXXXXXXXXXX";

my $rss = new XML::RSS(version => '2.0');
As this script is running as a CGI application, it requires the Amazon Wishlist ID as a
parameter. This allows you to use the same script many times over for each of the
lists you want to monitor. Let’s make the parameter compulsory, naturally.

my $cgi = CGI::new();

my $list _id = $cgi->param('list’);
Now, run the query via the Amazon Web Services REST interface. This takes a spe-
cifically formed URI and returns an XML document. We'll retrieve this using the
LWP: : Simple module:

my $query url =

"http://webservices.amazon.com/onca/

xml?Service=AWSProductDatadSubscriptionId=$amazon_subscription_

id&0peration=ListLookup&ProductPage=15&ListType=WishList&ListId=$1list
id&ResponseGroup=Request,ListItems"”;

my $wishlist _in_xml = get("$query_url");
and place it into the Parser:
my $parser = XMLin{"$wishlist in_xml") or die ("Could not parse file");

This produces an array of the items within the wishlist, albeit still stored within the
XML format returned by the REST query. That format looks like this:

81t;ListItemdgt;
≪ListItemIddgt; I2MNVARCOPUUA781L; /ListItemIdigt;
81t;DateAddeddigt;2004-11-0381t; /DateAddeddgt;
&1t;QuantityDesireddgt;181t;/QuantityDesireddgt;
81t;QuantityReceiveddgt;081t;/QuantityReceiveddgt;
&1t; Itembgt;

Ll -1 11
ULU, L

0> LIIDIT 4

| V4 [] faYaVYal
thazoit.com TRMist ¢ (1Y 9 187

81t; ASINGgt; 087596352881t ; /ASINSgt;
§1t; ItemAttributesdgt;
&1t;Title8gt;Hal Higdon's How to Traindlt;/Titledgt;
81t; /ItemAttributesdgt;
&1t;/Ttemdgt;
81t;/ListItembgt;

So now you need to take the relevant bits of that information and throw it into the
feed. For the taking is the title, the date, and the ASIN number—Amazon’s internal
system for identifying its stock. Use this to provide a link. For a change of pace, let’s
use a different XML parsing method, too. XML: :Simple is tremendously useful for this

sort of thing.

Now, we’ll add in some code to create the correct date, based on the date the item
was added to the wishlist. Amazon returns the date in the format YYYY-MM-DD,
but RSS 2.0 insists on the format Sun, 19 May 2002 15:21:36 GMT. For the sake of
sanity, assume all the dates Amazon gives are at exactly midnight.

We need to do some date manipulation, and what better than Date::Manip to do
this? Under its UnixDate function, the code %g is exactly the right format for RSS 2.0.
Nifty, no?

foreach my $item (@{$parser—>{'Lists'}—>{'List'}->{'ListItem'}}) {

#my $date = ZUnixDate("midnight $item->{'Item'}->{'DateAdded'}","%c, %e b w"Y;

$rss->add_item(
title => "$item->{‘Item'}—>{‘ItemAttributes'}->{'Tit1e'}",
link = "http://www.amazon.com/exec/obidos/tg/detail/-/$item->{'Item'}—>
{"ASIN'}",
description => "$item—>{’Item'}->{'ItemAttributes'}->{'Tit1e‘}",
pubDate => 8UnixDate("midnight $item->{'DateAdded'}","%g")

)5
}

Then, as ever, it’s just a matter of adding in the channel information and serving the
thing out with the correct MIME type:

$rss->channel(
title => "Amazon Wishlist, $list id",
link => "http://www.amazon.com",
description => "An RSS feed of the Amazon Wishlist, id number $list_id"

)5

print header('application/xml+rss’);
print $rss->as_string;

188 | Chapter10: Unconventional Feeds HULU, TLC EXHIBIT 1006

The Entire Listing

#!/ust/bin/perl

use strict;

use warnings;

use XML::RSS;

use XML::Simple;

use LWP::Simple qw(!head);
use CGI qw{:standard);

use Getopt::lLong;

use Date::Manip;

my $amazon_subscription id = "08R1SHPFGCA8VYT9PBO2";
my $rss = new XML::RSS(version => '2.0");

my $cgi = CGI::new();
my $list id = $cgi->param('list’);

my $query url =

"http://webservices.amazon.com/onca/
xml?Service=AWSProductData&SubscriptionId=$amazon_subscription_
id80peration=ListLookup&ProductPage=15&ListType=WishList8ListId=$1ist_
id&ResponseCroup=Request, ListItems";

my $wishlist_in xml = get("$query_url");
my $parser = XMLin("$wishlist_in_xml") or die ("Could not parse file");
foreach my $item (@{$parser->{'Lists'}->{'List’}->{ ListItem'}}) {

$rss->add_item(

title => "$item->{'Item'}->{'ItemAttributes'}->{'Title'}",

link => "http://waw.amazon.com/exec/obidos/tg/detail/-/$item->{"Item"}->
{'ASIN'}",

description => "$item->{'Ttem'}->{'ItemAttributes'}->{'Title'}",

pubDate => 8UnixDate("midnight $item->{'DateAdded'}","%g")

)
}
$rss->channel(
title => "Amazon Wishlist, $list id",
link => "http://www.amazon.com”,

description => "An RSS feed of the Amazon Wishlist, id number $list_id"
);

print header('application/xml+rss’);
print $rss->as_string;

HULU, LLs@adnXirMBiFtRS06 189

FedEx Parcel Tracker

Christmas is coming, and Santa has outsourced his deliveries to Federal Express.
Lucky us, as that means we can use FedEx’s online shipment tracker to watch our
parcels wend their merry way here. Except the tiresome chore of refreshing the
FedEx site is just too much to handle. Let’s let a nice script elf take care of it and cre-
ate a feed for every parcel.

Although FedEx and its rivals do provide APls, we won't be using them here.
FedEx’s page is easy enough to scrape by brute force, and it’s fun to do so. Of
course, when it next changes its page layout, this script will need rejigging. It’s easy
to see how to do that when it happens.

Walking Through the Code

So, starting with the usual Perl standards of warnings;, strict;, XML::RSS, and CCI,
let’s use LWP::Simple to retrieve the page and the marvellous HTML: :TokeParser to do
the dirty work. More on that anon.

use warnings;

use strict;

use XML::RSS;

use CGI gw(:standard);

use LWP::Simple 'get’;

use HTML::TokeParser;
Now let’s set up some variables to use later, then fire up the CGI module and grab
the tracking number from the query string. To use this script, therefore, you need to
request:

http://www.example.org/fedextracker.cgi?track=123456789
where 123456789 is the tracking number of the parcel:

my ($tag, $headline, $url, $date_line);
my $last_good_date;
my $table_end_check;

i

CGI::new();
$cgi-sparam('track’);

my $cgi
my $tracking number

Now we’re ready to jingle. Using LWP: : Simple’s get method, pull down the page from
the FedEx site. FedEx, bless them, employ openly understandable URLS, so this is
easy to set up. Once that’s downloaded, throw it into a new instance of the HTML::
TokeParser module, and we’re ready for scraping:

my $tracking page =

get(
"hstp:/ffedex.com/Tracking?action:track&tracknumbex_list=$trackinganumber&cntry_
code=us

);
my $stream = HTML: : TokeParsexr->new(\$tracking_page);
HiH L)

| 1]
A4 =\ "I =™

C EYXYHIRIT-4
A\ v AN R) R

190 | Chapter10: Unconventional Feeds

Now is as good a time as any to start off XML: :RSS and fill in some channel details:

my $rss = XML::RSS->new();

$rss->channel(
title => "FedEx Tracking: $tracking number”,

link =
“http://fedex.com/Tracking?action=track&tracknumber_list=$tracking_number&cntry_
code=us"

);
From now on, we're using the HTML: : TokeParser module, skipping from tag to tag
until we get to the section of the HTML to scrape. The inline comments say what
we’re up to.

Go to the right part of the page, skipping 13 tables (!!!)
$stream->get_tag("table");
$stream->get_tag("table");
$stream->get_tag("table");
$stream->get_tag("table");
$stream->get tag("table");
$stream->get_tag("table");
$stream->get tag("table");
$stream->get_tag("table");
$stream->get_tag("table");
$stream->get_tag("table");
$stream->get_tag("table");
$stream->get_tag("table");
$stream->get_tag("table");

Now go inside the tracking details table
$stream->get_tag("table");
$stream->get tag("tr");
$stream->get_tag("/tr");
$stream->get tag("tr");
$stream->get_tag("/tr"); _
By this point, you're at the table to parse, so loop through it, getting the dates and
locations. You need to stop at the bottom of the table, so test for a closing /table

tag. You can do so with a named loop and a last...if... command.

You'll notice that in this section, we use those mysterious variables from earlier.
Because the table is displayed with the date mentioned only once per day, no matter
how many stops the parcel makes on that day, you need to keep track of it.

PARSE: while ($tag = $stream->get tag('tr')) {

$stream->get tag("td");
$stream->get_tag("/td");

i# Test here for the closing /tr. If it exists, we're done.
i# Now get date text

$stream->get tag("td");
$stream->get tag("b");

HULU, LLC EXeltiBidm@0a 191

my $date text = $strean->get_trimmed text("/b");

The page only mentions the date once, so we need to fill in any blanks
that might occur.

if ($date text eq "\xa0") {
$date_text = $last_good_date;

}
else {

$last_good_date = $date_text;
¥

Now get the time text
$stream->get tag("/b");
$stream->get_tag("/td");
$stream->get tag("td");
my $time_text = $stream->get_trimmed_text("/td");
$time text =~ s/\xad//g;

Now get the status

$stream->get tag("/td");

$stream->get tag("/td");
$stream->get_tag("/td");

$stream->get tag("/td");

$stream->get tag("td");

my $status = $stream->get trimmed_text("/td");
$status =~ s/\xa0//g;

Now get the location

$stream->get_tag("/td");

$stream->get tag("/td");
$stream->get_tag("/td");
$stream->get_tag("/td");

$stream->get tag("td");

my $location = $stream->get trimmed_text("/td");
$location =~ s/\xa0//g;

Now get the comment

$stream->get tag("/td");
$stream->get_tag("/td");
$stream->get_tag("/td");
$stream->get_tag("/td");

$stream->get tag("td");

my $comment = $stream->get_trimmed_text("/td");
$comment =~ s/\xa0//g;

Now go to the end of the block
$stream->get_tag("/td");
$stream->get_tag("/td");
$stream->get tag("/tr");

0K, now we have the details, we need to put them into a feed
Do what you want with the info:

192 | Chapter10: Unconventional Feeds

Still inside the loop, create an item for the RSS feed:

if ($status) {
$rss->add_item(
title => "$status $location $date text $time_text",
link =
"http://fedex.com/us/tracking/?action=track&tracknumber_list=$tracking number”,
description =>
"Package number $tracking_number was last seen in $location at $time_text on $date_
text, with the status,
$status. $comment Godspeed, little parcel! Onward, tiny package!"
);
}

Stop parsing after the pickup line.
last PARSE if ($status eq "Picked up ");
}

All that done, you can serve it up nice and festive:

print header('application/rss+xml');
print $rss->as_string;

The Entire Listing

#!/usr/bin/perl

use warnings;

use strict;

use XML::RSS;

use CGI gw(:standard);
use LWP::Simple 'get';
use HTML::TokeParser;

my ($tag, $headline, $url, $date_line);
my $last good date;
my $table end_check;

]

my $cgi CGI::new();
my $tracking_number = $cgi->param(’track’);

my $tracking_page =

get(
"http://fedex.com/Tracking?action=trackdtracknumber_list=$tracking_number8cntry_
code=us”

)
my $stream = HTML::TokeParser->new(\$tracking_page);
my $rss = XML::RSS->new();
$rss->channel (

title => "FedEx Tracking: $tracking_number",
link =>

HULU, LLC EXFligbl e | 193

"http://fedex.com/Tracking?action=track&tracknumber_list=$tracking numberbcntry_
code=us"

)

Go to the right part of the page, skipping 13 tables (!!!)
$stream->get tag(“table");
$stream->get tag("table");
$stream->get_tag("table");
$stream->get tag("table");
$stream->get_tag("table");
$stream->get_tag("table");
$stream->get tag("table");
$stream->get_tag("table");
$stream->get_tag("table");
$stream->get_tag("table");
$stream->get tag("table");
$stream->get tag("table");
$stream->get_tag("table");

Now go inside the tracking details table
$stream->get_tag("table");
$stream->get_tag("tr");
$stream-yget_tag("/tr");
$stream->get_tag("tr");

$stream->get tag("/tr");

PARSE: while ($tag = $stream->get_tag('tr')) {

$stream->get_tag("td");
$stream->get_tag("/td");

Test here for the closing /tr. If it exists, we're done.
Now get date text

$stream->get_tag("td");

$stream->get_tag("b");

my $date text = $stream->get trimmed text("/b");

The page only mentions the date once, so we need to fill in any blanks
that might occur.

if ($date_text eq "\xa0") {
$date text = $last_good_date;

}
else {

$last_good_date = $date_text;
}

Now get the time text
$stream->get_tag("/b");
$stream->get_tag("/td");
$stream->get tag("td");

HULU, L1 C EXHIBIT 1006

194 | Chapter10: Unconventional Feeds

my $time text = $stream->get trimmed_text("/td");
$time text =~ s/\xa0//g;

Now get the status

$stream->get_tag("/td");
$stream->get_tag("/td");
$stream->get_tag("/td");
$stream->get_tag("/td");
$stream->get_tag("td");

my $status = $stream->get_trimmed _text("/td");
$status =~ s/\xa0//g;

Now get the location

$stream->get tag("/td");
$stream->get_tag("/td");
$stream->get_tag("/td");
$stream->get_tag("/td");

$stream->get_tag("td");

my $location = $stream->get_trimmed text("/td");
$location =~ s/\xa0//g;

Now get the comment

$stream->get_tag("/td");
$stream->get_tag("/td");
$stream->get_tag("/td");
$stream->get_tag("/td");
$stream->get_tag("td");

my $comment = $stream->get_trimmed_text("/td");
$comment =~ s/\xa0//g;

Now go to the end of the block
$stream->get_tag("/td");
$stream->get_tag("/td");
$stream->get _tag("/tr");

OK, now we have the details, we need to put them into a feed
Do what you want with the info:

if ($status) {
$rss->add_item(‘
title => "$status $location $date_text $time text",
link =»
"http://fedex.com/us/tracking/?action=track&tracknumber_list=$tracking_number",
description =>
"package number $tracking_number was last seen in $location at $time text on $date_
text, with the status,
$status. $comment Godspeed, little parcel! Onward, tiny package!®
);
}

Stop parsing after the pickup line.
last PARSE if ($status eq "Picked up ");

}

print header('application/rss+xml');
print $rss->as_string;

Google to RSS with SOAP

Google, the search engine of fashion these days, is as close to an authority as you can
get on the Internet. If it’s not mentioned on Google, the feeling is, it’s not really
online. And if it is, conversely, then people will find it. Keeping track of things in
Google’s database, therefore, is an important job. Whether you are trying to find
things out or monitoring for other people’s discoveries, an RSS feed is the perfect
way to do it. Happily, Google provides a nice interface to work with its systems. This
makes things very easy.

Walking Through the Code

We start, as ever, with the usual pragmas, CGI and XML: :RSS. This time, you also need
SOAP::Lite and HTML: :Entitie.

use warnings;

use strict;

use XML::RSS;

use CGI qw(:standard);
use HTML::Entities ();
use SOAP::lLite;

We'll set up the query term, and the Google API key, from the CGI input. Then, we
fire up the SOAP::Lite by pointing it at Google’s WSDL file. WSDL files contain the
finer details of a SOAP interface, telling the script exactly where to send commands
and so on.

param("q");
param("k");

L]

my $query
my $key

my $service = SOAP::lite -> sexvice('http://api.google.com/GoogleSearch.wsdl');

Now, run the search using the SOAP interface we just set up; then set up the feed:

ny

my $result = $service -> doGoogleSearch ($key, $query, 0, 10, "false", "",
"false","", "latin1", "latinl");

my $rss = new XML::RSS (version => '2.00");

$rss->channel(title => "Google Search for $query",
link => "http://www.google.com/search?q=$query",
description => "Google search for $query”,
language => "en",

)s

VIR EE _WiL

196 | Chapter10: Unconventional Feeds HULU, LtECEXHIBIT 1006

Now, it’s just a matter of going through the results and using them as values for the
feed’s items. To make it valid XML, use the HTML: :Entities module to encode any
stray characters that might need it:

foreach my $element (@{$result->{'resultElements'}}) {
$rss->add_item(
title => HTML::Entities::encode($element->{'title'}),
link => HTML::Entities::encode($element->{"URL'})
)
}

And finally, serve the feed:

print header('application/xml+rss'), $rss->as_string;

The Entire Listing

#!/usx/bin/perl

use warnings;

use strict;

use XML::RSS;

use CGI gw(:standard);
use HTML::Entities ();
use SOAP::lite;

my $query = param("q");
my $key = param("k");

my $service = SOAP::Lite -> service('http://api.google.com/GoogleSearch.wsdl');

my $result = $service -> doGoogleSearch ($key, $query, o, 10, "false", "", "false",
v "latini”, "latinl");

my $rss = new XML::RSS (version => ‘2.00");

$rss->channel{ title => "Google Search for $query”,
link => "http://www.google.com/search?q=$query",
description => "Google search for $query”,
language => "en",

)5

foreach my $element (@{$result->{'resultElements'}}) {
$rss->add_item(
title => HTML::Entities::encode($element->{'title'}),
link => HTML::Entities::encode($element->{"URL'})
);
}

print header('application/xml+rss'), $rss->as_string;

HULU, LLColugXt-HBIThspBOG 197

There are lots of reasons to have an ever-updating list of recently modified files: secu-
rity, for one. However, it’s also a useful system for helping you group working files in
your mind. I'm forever loosing track of files I'm working on—especially overnight—
and this feed helps a great deal. For collaborative working, it’s a godsend because
you can see what other activity is going on automatically. 1 also have one of these
pointed at a shared directory where friends drop music and silly MPEGs. Altogether,
for something so simple, it’s remarkably useful.

It's a CGI script that takes a single parameter path, which should be equal to the
absolute path on your filesystem that you wish to look under—for example, http://
www. example.org/lastmodified.cgi?path=/users/ben.

Walking Through the Code

Let’s trek once again into the warnings;, strict;, XML::RSS, and CGI, plus Date: :Manip
for the dateline and File::Find for its directory traversing capabilities. Lovely. All
set? Good.

use warnings;

use strict;

use XML::RSS;

use CGI qu(:standard);
use File::Find;

use Date::Manip;

By now you should be getting the hang of this. We're firing up the CGl module,
snaffling the parameter we are passing to it, then setting up the feed. No great mys-
tery here, in other words. Really, this is somewhat the point: feeds are very simple
things. It’s the ideas of how to use them that are valuable.

my $cgi = CGI::new();
my $start directory = $cgi->param('path");

my $rss = new XML::RSS(version => '2.0");
$rss->channel(
title => "Last modified from $start directory”,
link => "file:/$start directory”,
description =>
"A list of all of the files in $start directory, with their modification dates added

in
);
Here’s the real meat of the script. We're using the find function from the File: :Find

module, to traverse the directory we’ve given it and throw each individual file it finds
into a small subroutine:

find(\&search_and rss, $start directory);

sub search_and rss {

198 | Chapter10: Unconventional Feeds

Here’s an interesting thing. You can use File::Find and the standard stat function
to grab the last-modified date of each file and then use Date: :Manip to convert it from
the standard epoch seconds to the required format. Note that, unlike most other date
strings, Date: :Manip requires the word “epoch” in front of the raw time value to help
it along. This caused me to do a lot of shouting before I remembered it.

my $last modified date = (stat($File::Find::name) MEIE

my $parsed_date = 8ParseDate("epoch $last_modified_date");

ny $pubDate = 8UnixDate($parsed date, "%g");
It’s then just a matter of creating each item, and, once the whole directory has been
traversed, serving up the feed:

$rss->add_item(

title => "$File::Find::name",

link => "file:\/\/$File::Find::name",
description => "$File::Find::name",

pubDate => "$pubDate”,

);
}

print header('application/xml');
print $rss-»as_string;

The Entire Listing

#!/usz/bin/perl

use warnings;

use strict;

use XML::RSS;

use CGI gw(:standard);
use File::Find;

use Date::Manip;

my $cgi (CI:tnew();
my $start_directory = $cgi->param(’'path’);

my $rss = new XML::RSS(version => '2.0');
$rss->channel(
title => "Last modified from $start_directory",
link => "file:/$start_directory",
description =>
"A list of all of the files in $start directory, with their modification dates added
in"

);
find(\&search and_rss, $start_directory);

sub search_and_rss {

W S I | 1 /1 1}

HULU, LLC EXERIdred K6 109

(stat($File::Find::name))[9];
&ParseDate("epoch $last modified_date");
BUnixDate($parsed_date, "%g");

my $last_modified_date
my $parsed_date
my $pubDate

i

$rss->add_item(

title => "$File::Find::name",

link => "file:\/\/$File::Find::name",
description => "$File::Find::name",

pubDate => "$pubDate”,

)5
}

print header('application/xml');
print $rss->as_string;

Installed Perl Mbduﬂes

Another interesting way to use a Feed is to keep track of changing system configura-
tions. The following is a simple example. I have two machines running my scripts;
one is my laptop and the other a server in a rack somewhere in North America. |
write mostly in Perl and use a lot of modules. It’s useful to me to keep track of what’s
installed, and what’s not, on each; this script produces a feed of the modules 1 have
installed.

Walking Through the Code

We'll use the usual modules plus one more, ExtUtils::Installed. Written by Alan
Burlison, this module really does all the work here. Again, this is somewhat the point
of this chapter. Feeds aren’t difficult things, and they are incredibly useful interfaces
to list-like data.

use warnings;

use strict;

use CGI gw(:standard);

use XML::RSS;

use ExtUtils::Installed;
ExtUtils::Installed creates an array of all the installed modules; run the shell com-
mand uname -n to find the name of the machine we’re running the script on:

my $installed ExtUtils::Installed->new();
my $machine name = “uname -n";

1

Now, set up the feed as usual, using the machine name to label it:

my $r55 = new XML::RSS(version => '2.0");
$rss->channel(
title => "Perl Modules on $machine_name",
link => "http://www.benhammersley.com/tools/",
description => "A list of installed Perl modules on $machine_name"

);

|
T |VLU, | ey -

200 | Chapter10: Unconventional Feeds

Finally, go through the array, pulling out the name and version number of each mod-
ule and creating the items. Then serve it up. Simple.

foreach my $module ($installed->modules()) {
my $version = $installed->version($module) || "?222";

$rss->add_item(

title => "$module $version”,
description => "$module $version",
link => "http://search.cpan.org/search%3fmodule=$module”,

);
}

print header('application/rss+xml");
print $rss->as_string;

The Entire Listing

#!/usr/bin/perl

use warnings;

use strict;

use CGI qw(:standard);
use XML::RSS;

use ExtUtils::Installed;

my $installed
my $machine_name

1

ExtUtils::Installed->new();
“uname -n;

my $rss = new XML::RSS(version => '2.0");
$rss->channel(
title => "Perl Modules on $machine_name",
link => "http://www.benhammersley.com/tools/",
description => "A list of installed Perl modules on $machine name"

);

foreach my $module ($installed->modules()) {
my $version = $installed->version($module) || "?22";

$rss->add_item(
title => "$module $version”,
description => "$module $version”,
link => "http://search.cpan.org/search%#3fmodule=$module”,
)
}

print headexr('application/rss+xml’);
print $rss->as_string;

HULU, LLC EXHHB{PI 1806 | 201

The W3(Validator to RSS

Of all the tasks of Hercules, the one where he had to keep his web site’s XHTML val-
idated was the hardest. Without wanting to approach the whole Valid XHTML Con-
troversy, we can still safely say that keeping a site validated is a pain. You have to
validate your code, most commonly using the W3C validator service at hitp://
validator.w3.org, and you have to keep going back there to make sure nothing has
broken.

You have to do that unless, of course, you're subscribed to a feed of validation
results. This script does just that, providing an RSS interface to the W3C validator.

You pass the URL you want to test as a query in the feed URL, like so: http://www.
example.org/validator.cgi?url=http://www.example.org/index.html.

Walking Through the Code

We're using the traditional Perl start plus LWP::Simple and XML::Simple, which will
parse the results coming back from the validator. Note that, in the classic gotcha,
LWP: :Simple and CGI clash, so we have to add those additional flags to prevent a type
mismatch.

use warnings;

use strict;

use XML::RSS;

use CGI qu(:standard);

use LWP::Simple 'get';

use XML::Simple;
Now, grab the URL from the query string, and use LWP: : Simple to retrieve the results.
The W3C provides an XML output mode for the validator, and this is what we’re
using here. It is, however, classed as beta and flakey, and might not always work.

CGI:inew();
$cgi->param(‘url');

my $cgi
my $url

ny $validator results in xml =
get("http://validator.w3.org/check?uri=$url;output=xnl");

Curiously enough, the top of the XML that is returned causes XML: :Simple to throw
an error. Use a split function to trim off this broken section:

my ($broken xml to_ignore, $trimmed_validator results_in_xml) =
split (/]>/, $validator results_in xml);

Now, place the valid XML into an XML: :Simple object, and parse it:
my $parsed_validator results = XMLin($trimmed validator results in xml);

Now is a good a time as any to set up the top of the feed:

HULU, LLC EXHIBIT 1006

202 | Chapter10: Unconventional Feeds

my $rss = new XML::RSS(version => '2.0');

$rss->channel(title => "XHTML Validation results for $url",
link => "http://validator.w3.org/check?uri=$url",
description => "w3c validation results for $url");

Then it’s a simple matter of running through each error message the validator gives
and turning it into a feed item:

foreach my $error (@{ $parsed validator results->{'messages'}->{'msg'} }) {
$rss->add_item(
title => "Line $error->{'line'} $error->{ content'}",
link => "http://validator.w3.org/check?uri=$url"”,
description => "Line $error->{'line'} $error->{ content'}",
)
¥

Finally, serve it up:

print header('application/xml+rss");
print $rss-»as_string;

The Entire Listing

#!/usr/bin/perl

use warnings;

use strict;

use XML::RSS;

use CGI quw(:standard);
use LWP::Simple 'get';
use XML::Simple;

CGI::new();
$cgi->param(‘url');

i

my $cgi
my $url

H

my $validator results_in xml =
get("http://validator.w3.org/check?uri=$url;output=xml");

my ($broken xml to_ignore, $trimmed_validator results_in xml) =
split (/]>/, $validator_results in xml);

my $parsed validator_results = XMLin($trimmed_validator_results_in_xml);
my $rss = new XML::RSS(version => '2.0");

$rss->channel(title => "XHTML Validation results for $url",
link => "http://validator.w3.org/check?uri=$url”,
description => "w3c validation results for $url");

foreach my $error (@{ $parsed validator results->{'messages'}->{'msg'} }) {
$rss->add_item(
title => "Line $error->{'line'} $error->{'content'}",
link => "http://validator.w3.org/check?uri=$url”,

HULYU LG EXH
’ The W3C éfélalortol%@sl 203

description => "Line $error->{'line'} $error->{'content’}",
)
¥

print header('application/xml+rss');
print $rss->as_string;

Game Statistics to Excel

Halo 2, a game for the XBox console, can be played as a multiplayer online game
over the XBox-Live network. If you do this, your players statistics become available
online as an RSS 2.0 feed. Example 10-1 shows an example of such a feed, courtesy
of player “nedrichards.”

Example 10-1. An RSS 2.0 feed from Halo 2

<7xml version="1.0" encoding="utf-8"?>
<rss version="2.0">
<channel>
<titlesnedrichards's recent games</title>
<linkshttp://www.bungie.net/stats</link>
<descriptionsHalo2 games played recently (courtesy of Bungie.Net)</description>
<language>en-us</language>
<pubDate>Tue, 21 Dec 2004 15:16:54 GMT</pubDate>
<docs>http://blogs.law.harvard.edu/tech/rss</docs>
<generator>BungieTest RSS Generator</generator>
<webMasters>webmaster@bungie.net</webMaster>
<item>
<titlesArranged Game: Rockets on Headlong</title>
<link>http://bungie.net/stats/gamestats,aspx?gameid=30084649&p1ayer=nedrichards</
link>

<pubDate>Thu, 16 Dec 2004 22:49:33 GMT</pubDate>
<guid>http://bungie°net/stats/gamestatsﬂaspx?gameid=30084649&p1ayer=nedrichards</
guid> '

<description>Game played at Thu, 16 Dec 2004 22:49:33 GMT

Playlist:
Arranged
Game
Rockets on Headlong

Gamertag (Team): Score, Kills, Deaths,
Assists</by
Evil Ted Hed (4): 25, 25, 14, 1
Cranium Oxide (0): 21, 21, 12,
2
nedrichards (2): 15, 15, 25, 1
smokingdrum (3): 12, 12, 18, 2
Frizby
(1) 11, 11, 24, 1
</description>
</item>
<item>
<titlesTeam Skirmish: 1 Flag CTF Fast on Burial Mounds</title>
<link>http://bungie.net/stats/gamestats.
aspx?gameid=30068566&player=nedrichards</link>

<pu?Date>Thu, 16 Dec 2004 22:28:23 GMT</pubDate>
<guid>http://bungie.net/stats/gamestats.
aspx?gameid=30068566&p1ayer=nedrichards</guid>

HULU, LLC EXHIBIT 1006

=\

204 | Chapter10: Unconventional Feeds

Example 10-1. An RSS 2.0 feed from Halo 2 (continued)

<description>Team game played at Thu, 16 Dec 2004 22:28:23 GMT

Playlist:
Team Skirmish
1 Flag CTF Fast on Burial Mounds

Gamertag (Team):
Score, Kills, Deaths, Assists
Frizby (1): 0, 3, 8, 1
BoP Andy (0): o, 4,
2, 1<br/s>nedrichards (1): 0, 3, 7, 1
smokingdrum (1): 0, 2, 8, 2
Ninja Master
35 (0): 0, 10, 6, 1
Snakegooo (1): 0, 11, 8, 2
BEACONHILLGAMER (0): 0, 9, 5, 1<br/
>Spartan
736 (0): 0, 7, 6, 2
</description>
</item>
<item>
<title>Team Slayer: Team Slayer on Foundation</title>
<link>http://bungie.net/stats/gamestats.
aspx?gameid=300602968player=nedrichards</link>

<pubDate>Thu, 16 Dec 2004 22:17:44 (MT</pubDate>
<guid>http://bungie.net/stats/gamestats.
aspx?gameid=300602968player=nedrichards</guid>

<description>Team game played at Thu, 16 Dec 2004 22:17:44 GMT<bx/><bz/>
Playlist:Team Slayer
Team Slayer on Foundation
<bx/>Gamertag (Team): Score,
Kills, Deaths, Assists
AgelessPainter (0): 22, 22, 4, 3
smokingdrum (1):
12, 12, 14, O
sfpipemani (0): 11, 11, 8, 2
DARKNIGHT377 (0): 11, 11, 6, 1

nedrichards(1): 9, 9, 12, 5
BlindJokerCard (0): 6, 6, 6, 6

Frizby (1): 4, 3, 15, 4
Wang2 (1): 0, 0, 9, 4
</description>

</item>

</channel>

</158>

Each item contains the statistics for a single game. I've removed most of the games
from the example to save space.

Such statistics are perfect fodder for analysis, and so Samuel Radakovitz—a program
manager for Excel within Microsoft—has built a workbook for Excel 2003 that can
import Halo2 feeds and produce beautiful reports from them. It is getting ever more
powerful, and the latest version can be downloaded from http://www.isamrad.com/
Halo2RSS/.

Feeds by SMS

In most of the examples so far, we have written the parsed feed to the screen of a
computer. This is just the start. You can use the same basic structure to output to
~ just about anything that handles text. Example 10-2 is a script that sends the top
headline of a feed to a mobile phone via the Short Message Service (SMS). It uses the
WWW: :SMS module, outputting to the first web-based free SMS service it can find that
works.

Example 10-2. rsssms.pl sends the first headline title to a mobile phone via SMS

#1/usr/local/bin/perl
use strict;

use warnings;

use LWP::Simple;

use XML::Simple;

use WWl: :SMS;

Take the command line arguments, URL first, then complete number of mobile
my $url=$ARGV[0];
my $number=$ARGV[1];

Retrieve the feed, or die disgracefully
my $feed to_parse = get ($url) or die "I can't get the feed you want";

Parse the XML
my $parser = XML::Simple->new();
my $rss = $parser->XMLin("$feed_to_parse");

Get the data we want
my $message = "NEWSFLASH:: $rss->{ ' channel'}->{'item'}->[0]->{ title'}";

Send the message
my @gateway = WWW::SMS->gateways();
my $sms = WWW::SMS->new($number, $message);
foreach my $gateway(@gateway) {if ($sms->send($gateway)) {
print 'Message sent!';
last;
} else {
print "Error: $WWW::SMS::Error\n”;
)

You can use the script in Example 10-2 from the command line or crontab like so:
perl rsssms.pl http://full.urlof/feed.xml 123456789

You can see how to set this up on crontab to send the latest news at the desired inter-
val. But how about using the system status module, mod_systemstatus, to automati-
cally detect and inform you of system failures? Perhaps you can use something like
Example 10-3.

Excample 10-3. mod_systemstatusSMS.pl
#1/usr/local/bin/perl

use strict;

use warnings;
use LWP::Simple;
use XML::Simple;
use WWW: :SMS;

206 | Chapter10: Unconventional Feeds

Example 10-3. mod_systemstatusSMS.pl (continued)

Take the command line arguments, URL first, then complete numbex
my $url=$ARGV[0];
my $number=$ARGV[1];

Retrieve the feed, or die gracefully
my $feed to parse = get ($url) or die "I can't get the feed you want";

Parse the XML
my $parser = XML::Simple->new();
my $rss = $parser->XMLin("$feed_to_parse");

initialise the $message
my $message;

Look for downed servers

foreach my $item (@{$rss->{'item'}}) {
next unless ($item->{'ss:responding'}) eq 'false’;
$message .= "Emergency! $item->{'title'} is down.";

}

Send the message
if ($message) {
my @gateway = WWW::SMS->gateways();
my $sms = WW::SMS->new($number, $message);
foreach my $gateway(@gateway) {if ($sms->send($gateway)) {
print 'Message sent!’;
} else {
print "Error: $WWW::SMS::Error\n";

1}

b
Again, run from cron, this little beasty will let you monitor hundreds of machines—
as long as they are generating the correct RSS—and inform you of a server outage via
your mobile phone.

This combination of selective parsing, interesting output methods, and cron allows
you to do many things with RSS feeds that a more comprehensive system may well
inhibit. Monitoring a list of feeds for mentions of keywords is simple, as is using RSS
feeds of stock prices to alert you of falls in the market. Combining these techniques
with Publish and Subscribe systems (discussed in Chapter 9) gives you an even
greater ability to monitor the world. Want an IRC channel to be notified of any new
weblog postings? No problem. Want an SMS whenever the phrase “Free Beer”
appears in your local feeds? Again, no problem.

Podcasting Weather Forecasts

The podcasting technique described in Chapter 4 is a hotbed of development at the
moment. One idea put forward was to use it to deliver weather forecasts via a web
service and a text-to-speech application.

Jorge Veldzquez put together a script to do just that. Released at hitp://www.jorgev.
com/archives/000115.html, it requires an account with weather.com and an installa-
tion of Lame (from http://lame.sourceforge.net/) and text2wave on the server.

How to Use It

The URL accepts two parameters, locid and unit. The locid is the weather.com
location identifier for the city you require. For U.S. cities, this can be a zip code, and
for non-U.S. cities, it is a special weather.com code. (e.g., 92126 for San Diego, CA,
or ITXX0067 for Rome, Italy). The unit parameter is optional and can be either m for
metric or s for imperial measurements. It defaults to imperial.

The location code for Florence, Italy, is ITXX0028, so the URL for the feed would be
hitp:/lwww.example.com/cgi-bin/weather.cgi?locid=ITXX0028. Simple.

The Code Itself

Jorge’s code is, in his own words, very simple. This is how he describes it:

A brief explanation of how the script works, it’s actually quite simple: I first call into
weather.com’s XML Data Feed. Then I use XPath to extract the data in which I am
interested. T format this information into a text file, which I then pass onto the
text2wave utility which performs the text-to-speech conversion. Finally, since wav files
are so huge, I convert it to MP3 using the LAME encoder. Piece of cake, eh?

#1/usr/bin/perl -w
2004-12-13 Jorge Veldzquez

use strict;

use CGI qw{:standard);
use XML::RSS;

use XML::XPath;

use LWP::Simple;

use File::Temp;

use File::Basename;

partner and key information
my $par = 'partneridhere’;
my $key = 'keyhere';

get parameters

my $cgi = CGI::new();

my $locid = $cgi->param('locid');
my $unit = $cgi->param('unit');

208 | Chapter10: Unconventional Feeds

if (not $unit) {
$unit = 's';
}
my $mp3dir = 'enter/mp3/path/here’;

query weather info, current conditions with 2 day forecast
my $xml =

get(
"http://xoap.weather.com/weather/local/
$locid?cc=*&dayf=28prod=xoaplpar=$pardkey=$keydunit=$unit"

);

#load it into XPath object
my $xp = XML::XPath->new($xml);

extract unit information from feed

my $ut = $xp->findvalue('/weather/head/ut");
my $ud = $xp->findvalue('/weather/head/ud");
my $us = $xp->findvalue('/weather/head/us');

create rss 2.0 feed
my $rss = new XML::RSS(version => '2.0");

channel information
$rss->channel(

title => 'Weather Podcast’,

link => 'http://www.weather.com/",
description => 'Local weather podcasting feed’,
language => 'en’

)5

get current weather conditions

my $dnam = $xp->findvalue('/weather/loc/dnam');
my $ccobst = $xp->findvalue('/weather/cc/obst');
my $cclsup = $xp->Findvalue('/weather/cc/lsup');
my $cctemp = $xp->Ffindvalue('/weather/cc/tmp’);

my $ccwind = $xp->Ffindvalue('/weather/cc/wind/s");
my $cct = $xp->findvalue('/weather/cc/t');

my $ccbarr = $xp->findvalue('/weather/cc/bar/r");
my $ccbard = $xp->Findvalue('/weather/cc/bar/d");

convert the units to words
my $utword = $ut eq 'F' ? 'fahrenheit' : 'celsius’;

build the text file for converting to speech
my $text =
"Current conditions for $dnam. $cct. The temperature is $cctemp $utword.";

write the file and get the stats
my $filename = Bwritefile($text);

my $basename = basename $filename;

my $filesize = (stat $filename)[7];

HULU, LGB Fo1000]

209

add rss item for current weather
$rss->add_item(

title => "Current weather conditions for $ccobst”,
link = "http://www.weather.com/weather/loca1/$1ocid“,
description => $text,
pubDate => $cclsup,
enclosure => {
url => "$mp3dir$basename”,

length => $filesize,
type => ‘audio/mpeg’
}
)

get forecast timestamp
my $lsup = $xp—>findvalue('/weather/dayf/lsup');

iterate through forecast days
my $nodeset = $xp->Find(' /weather/dayf/day");
foreach my $node ($nodeset->get nodelist) o

get the items of interest to our script

my $t = $node->findvalue('@t');

my $dt = $node->findvalue('@dt');

my $hi = $node->Findvalue('hi');

my $low = $node->Findvalue('low');

my $d = $node->Findvalue(' part[@p="d"]/t");
my $n = $node->Findvalue('part[@p="n"1/t");

build the text file for converting to speech
$text = "Weather forecast for $t, $dt in $dnam. ";
if ($d eq 'NA") A

$text .= "Daytime conditions not available. 5
}
else {
$text .= "Daytime $d. “;
}
if ($neq 'N/A") {
$text .= "Nighttime conditions not available. ";
}
else {

$text .= "Nighttime $n. “;

}
if ($hi eq 'N/A") {
$text .= "The high is unavailable. ";

}
else {

$text .= "The high is $hi $utword. *;
¥
if ($low eq 'N/A') {

$text .= "The low is unavailable. ";
}
else {

$text .= "The low is $low $utword. ";
}

210 | Chapter10: Unconventional Feeds

write the file and get the stats
$filename = Gwritefile($text);
$basename = basename $Ffilename;
$filesize = (stat $filename)[7];

add this forecast
$rss->add_item(
title => "Weather forecast for $t, $dt at $dnam",
link => "http://www.weather.com/weather/local/$locid",
description => $text,
pubDate => $1lsup,
enclosure => {
url => "$mp3dir$basename”,
length => $filesize,
type => 'audio/mpeg’
}
);
}

print headex('application/rss+xml');
print $rss-»as_string;

sub writefile {

write the text file

my $fhixt = new File::Temp(suffix => '.txt');
print $fhtxt $_[0];

close $fhtxt;

write the wav file
my $fhwav = new File::Temp(suffix => '.wav');
system "textzwave", "-0", $thwav->filename, $fhtxt->filename;

convert it to mp3
my $Fthmp3 =

new File::Temp(unlink => 0, dir => '../mp3", suffix => ".mp3');
system "lame", "-h", $fhwav->filename, $fhmp3->filename;

return the file name
return $thmp3->filename;

Having Amazon Produce Its Own RSS Feeds

Andrew Odewahn, an editor at O’Reilly, spotted how you can have Amazon.com
produce RSS feeds from any search within its own site. So, he says:

» ¢

You could subscribe to a search for books on “software engineering,” “Java,” and “his-

tory of europe” to easily keep track with what’s going on.

HUuddlng hafon EofEHRBRI RSO | 211

To do this, you only need play with a URL. The URL for an RSS 0.91 feed of a key-
word search for “software engineering” is:

hitp://xml.amazon.com/onca/xml3 t=webservices-20&dev-
t=amznRss&KeywordSearch=software%20engineering&mode=books&bcm=8typ
e=liteCpage=1&rct=text/xml&sort=+salesrank&f=http://xml.amazon.com/xsl/
xml-rss091.xsl

As you can see, this is actually calling the Amazon web services system and then for-
matting it by passing it through an XSLT stylesheet.

Andrew goes on to say,

By default, the search results are sorted by Amazon rank. After hacking around a bit, I
found that you can change this default to any of a variety of other orders. For exam-
ple, you can modify the feed so that books are sorted by publication date to get an
automatically updated list of new books published on a particular topic.
To do this, scroll over the URL until you see the “&sort=+salesrank” part. To
change the sort order, replace “salesrank” with the option you’d prefer. Here’s a list
of possible options found on Amazon’s Web Services page, http:/fwww.amazon.com/
gplaws/landing. html:

o Publication Date — daterank
° Featured Items — pmrank
° Sales Rank — salesrank
o Customer reviews — reviewrank
e Price (Lo-Hi) — pricerank
e Price (Hi-Lo) — inverse-pricerank
So, to get a feed of all the new books published in Software Engineering, just replace

“salesrank” with “daterank” and click update. From now on, you easily see all the
new stuff coming out in one place. For example:

http://xml.amazon.com/oncalxml3 t=webservices-20&-dev-
t=amznRss&KeywordSearch=Ben%20Hammersley&mode=books&rbcm=Etype=l
ite€rpage=16rct=textxmlsort=+pricerank&f=http://xml.amazon.com/xsl/xml-
rss091.xsl

produces a feed of the books I have written, in order of price. This technique high-
lights a very good point: it is well worth looking at complex URLs quite carefully:
they’re invariably hackable.

Cross-Poster for Movable Type

By now, the traditional use of feeds as a form of content syndication is beginning to
look somewhat old-fashioned. But fear not: here’s a use that is as traditional as can be.

212 | (hapter 10: Unconventional Feeds HULU, LLC EXHIBIT 1006

I needed a script to check all of the weblogs I write for and to cross-post everything 1
write onto my own weblog. Bear in mind that I'm not the only author on these other

sites.

To do this, check their RSS feeds on a set schedule, grab the content within, build a
big entry, and then post it. This code is for a Movable Type installation, but it isn’t
hard to modify it to fit another weblogging platform.

Walking Through the Code

You open the proceedings by defining all of the libraries and modules. This is the
exact same code as I have running on my own server, so you need to modify the fol-
lowing paths to point to your own Movable Type libraries, blog IDs, and so on:

use 1ib "/web/script/ben/mediacooperative.com/1ib";
use 1ib "/web/script/ben/mediacooperative.com/extlib";
use 1ib "/web/script/ben/1ib/perl";

use MT;

use MT::Entry;

use Date::Manip;

use LWP::Simple 'get’;

use XML::RSS;

my $MTauthor = "1";

my $MTblogID = "3";

my $MTconfig = "/home/ben/web/mediacooperative.com/mt.cfg";
my $guts "

3

!

Now, let’s set up a list of sites to check. For each site, you need to define only the
feed URL and the <dc:creator> or <author> name under which I am posting. Every-
thing else you can get from the feed itself. For example:

hitp://del.icio.us/rss/bhammersley “bhammersley” http://www.oreillynet.com/feeds/
author/?x-au=909 “Ben Hammersley” http://monkeyfilter.com/rss.php
“DangerIsMyMiddleName” hitp://www.benhammersley.com/expeditions/
northpole2006/index.rdf “Ben Hammersley”

You can do this with an array of arrays:

my @sites_to_check = (

["http://del.icio.us/rss/bhammersley”, "bhammersley" 1,

["http://www.oreillynet.com/feeds/author/?x-au=909", "Ben Hammersley"],
[“http://monkeyfilter.com/rss.php", "DangerIsMyMiddleName"],
[

"http://www.benhammersley . com/expeditions/northpole2006/index. rdf",
"Ben Hammersley"

B
);
Now, the loop. You go through each feed, downloading, parsing, and so on. Let’s
start by taking the site_feed_url and the site_author_nym (the name under which I

HULU, TG GRERRITaokHp0 | 213

go on that site) out of the array. This step could be omitted, but for the sake of clar-
ity, we’ll leave it here.

for my $site being checked (@sites_to_check) {

my $site feed url = @$site_being_checked[0];
my $site author_nym = @$site_being _checked[1];

Now, retrieve the feed, or go to the next one if it fails:
my $feed xml = get("$site_feed_url") or next;

And now, to parse it. You do so by spawning a new instance of the XML: :RSS parser
and jamming the feed into it:

my $rss_parser = XML::RSS->new();

$rss_parser->parse($feed xml);
To set up for the strange occasion where there might be new content to post, let’s
query the newly created RSS parser object for its name:

my $feed name = $rss_parser->{channel}->{title};

my $feed link = $rss_parser->{channel}->{1link};
Now, go through each of the items within the field, and grab all needed data out of
them: the link, title, description, author, and date. Note that you have to include the
fallbacks of the guid, content, and the various dc values to deal with different ver-
sions of RSS.

foreach my $item (@{ $xss_parser->{items} }) {

my $item_link = $$item{1ink} || $$item{guid};

my $item_title $$item{title};

my $item description = $$item{description};

my $item_author = $$item{author} || $$item{dc}->{creator};
my $item date = $$item{pubDate} || $$item{dc}->{date};

i

Now, check to see if any were written today by me. First, work out what time and
date it is now. Then, compare the post’s date with the date now, and, if it’s less than
24 hours behind, and it was written by me, then all is good.

Note: to get this code to work with del.icio.us and any other sites that use date
strings with z instead of +00:00 (which Date: :Manip can’t deal with), you have to use
a nasty substitution. Sorry about that.

my $todays_date = &UnixDate("now", "S4Y-Sm- % T%H %M : %S+00: 00");

$item date =~ s/Z/+00:00/;

my $date delta = DateCalc("$item date", "$todays_date", \$err, 1)
my $parsed delta = Delta_Format("$date_delta", exact, '%dh’)

if (($parsed delta < 1) and ($item_author eq $site_author_nym)) {

If all the tests turn out to be true, add a bunch of HTML to the $guts variable, within
which you’re building the new entry:

214 | (hapter10: Unconventional Feeds

$guts .=
qq|<div id="CrossPoster"><blockquote>$item_title
posted
to $feed_name
</p><p>$item_description</p></blockquote>
</divy];

}

Now, having worked our way through the feeds, if the $guts has anything in it, you
need to post it and take care of that end:

if ($guts ne "") {

my $mt = MT->new(Config => $MTconfig) or die MT->errstr;
my $entry = MT::Entry->new;

$entry->blog id($MTblogID);
$entry->status(MT::Entry::RELEASE());
$entry->author_id($MTauthor);
$entry->title("Posted elsewhere today");
$entry->text{$guts);
$entry->convert breaks(0);
$entry->save

or die $entry->errstr;

rebuild the site

$mt->rebuild(BlogID => $MTblogID)
or die "Rebuild error: " . $mt->errstr;

ping aggregators

$mt->ping ($MTblogID);

The Entire Listing

#!/usr/bin/perl

use lib "/web/script/ben/mediacooperative.com/1ib";
use lib "/web/script/ben/mediacooperative.com/extlib";
use 1ib "/web/script/ben/lib/perl";

use MT;

use MT::Entry;

use Date::Manip;

use LWP::Simple 'get’;

use XML::RSS;

my $MTauthor = "1;
my $MTblogID = "3";
my $MTconfig = " /home/ben/web/mediacooperative.com/mt.cfg";

un

my $guts R

i

HULU, LLC (a¢hidBdMokblOpe | 215

my @sites to_check = (

["http://del.icio.us/rss/bhammersley”, "bhammersley”],

["http://www.oreillynet.com/feeds/author/?x-au=909", "Ben Hammersley" 1,
["http://monkeyfilter.com/rss.php", "DangerIsMyMiddleName"],
[

“http://www.benhammersley.com/expeditions/northpole2006/index.xrdf",
"Ben Hammexrsley"

1,
)5

for my $site being checked (@sites_to_check) {

my $site feed url = @$site being_checked[0];
my $site author_nym = @$site_being checked[1];

my $feed xml = get("$site_feed url") or next;

my $rss_parser = XML::RSS->new();
$rss_parser->parse($feed_xml);

my $feed name = $rss_parser->{channel}->{title};
my $feed link = $rss_parser->{channel}->{link};

foreach my $item (@{ $rss_parser->{items} }) {

my $item link = $$item{link} || $$item{guid};

my $item title $$item{title};

my $item description = $$item{description};

my $item author = $$item{author} || $$item{dc}->{creator};
my $item date = $$item{pubDate} || $$item{dc}->{date};

It

my $todays date = &UnixDate("now", "%Y-%m-%dT#H:%M:%5+00:00");
$item date =~ s/Z/+00:00/;

my $date delta = DateCalc("$item_date", "$todays_date", \$err, 1);
my $parsed delta = Delta_Format("$date delta", exact, '%dh’);

if (($parsed delta < 1) and ($item author eq $site_author_nym)) {
$guts .=
qq|<div id="CrossPoster"><blockquotes$item title
posted

to $feed_name
</p><p>$item.description</p></blockquote>
</divs|; '

}
if ($guts ne "") {

my $mt = MT->new(Config => $MTconfig) or die MT->errstr;
my $entry = MT::Entry->new; :

$entry->blog_id($MTblogID);
$entry->status(MT::Entry::RELEASE());

HULU, LLC EXHIBIT 1006

216 | Chapter10: Unconventional Feeds

$entry->author_id($MTauthor);
$entry->title("Posted elsewhere today");
$entry->text($guts);
$entry->convert_breaks(0);
$entry->save

or die $entry->errstr;

rebuild the site

$mt->rebuild(BlogID => $MTblogID)
or die "Rebuild error: " . $mt->errstr;

ping aggregators

$mt->ping($MTblogID);

HULU, L1 C EXHIBIT 1006

Cross-Poster for Movable Type | 217

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

