
- ~ - -

Developer's Guide to Syndicating News and Biogs

Developing Feeds with

O'REILLY~ Ben Hammersley HULU, LLC EXHIBIT 1006

Web Programming/XML

O'REILLY®

Developing Feeds with RSS and Atom
RSS and Atom are among the fastest-growing technologies on the Web. The RSS 1.0
and 2.0 standards and the up-and-coming Atom are XML-based formats that help web
developers to describe and syndicate web site content, application developers to share
data, scripters to repurpose information, businessmen to stay on top of their world, and

consumers to tap into the Internet in a whole new way.

Developing Feeds with RSS and Atom offers webloggers, web developers, and the programmers
who support them an explanation of syndication in general and RSS and Atom in particular.
Written for web developers who want to offer feeds of their content, as well as developers who
want to use the content other people are syndicating, the book explores and explains mecadata
interpretation, different forms of syndication, and the role of Web Services and the Semantic Web.

This comprehensive volume introduces content syndication's purpose, limitations, and traditions,
and answers the question of "why would you consider 'giving your content away' like thjs?" The
book delves into the architecture of content syndication with an overview of the entire system,
from content author to end user. You'll follow the flow of data: content, referral data, and publish­
and-subscribe calls, with a detailed look at the protocols and standards possible at each step.
You'll understand the specifications and learn how to use them to their limits.

Topics covered in this book include:

• Creating XML syndication feeds with RSS 2.0

• Producing feeds in the enterprise

• Moving toward the Semantic Web with RSS 1.0 and RDF metadata

• Introducing Atom

• Extending your vocabulary: an extensive guide to RSS modules and their design

• Parsing syndication feeds

• Designing architectures for content syndication

If you're interested in producing your own feeds, using other people's, or keeping up-to-date with the
latest web technologies, you'll want this step-by-step guide to RSS and Atom and their implementation.

www. ore illy. com
I SBN 0-596-00881-3 US$39.95 CAN $55.95 Salari·

BOOKS ONLINE
ENABLED

Includes
FREE 45~Day
Online Edition HULU, LLC EXHIBIT 1006

g

;s with Slash

'Reilly books.
biogs, sample

; interested in
latforms, pro-

·ture the ideas
in document­

.e innovator's
h.es. Visit con-

r online refer-
1als. Conduct
~rs can zero in
:r of seconds.
cover or sim­

ree trial.

Developing Feeds with
RSSand Atom

Ben Hammersley

O'REILLY®
Beijing • Cambridge • Farnham • Koln • Paris • Sebastopol • Taipei • Tokyo

HULU, LLC EXHIBIT 1006

Developing Feeds with RSS and Atom
by Ben Hammersley

Copyright@ 2005 O'Reilly Media, Inc. All rights reserved.
Printed in the United States oi America.

Published by O'Reilly Media, Im:., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or stiles promotional use. Online editions
arc also :ivailable for most titles (safari.oreilly.cmn). For more informat.ion, contact our corporace/insti­
nnional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor:

Production Editor:

Cover Designer:

Interior Designer:

Printing History:

April 2005:

Simon Sc.Laurent

Mary Anne Weeks Mtiyo

Ellie Volckhausen

David Futato

hr.st Edition, with c.:ontcnt from Co11tc:11t Syndication with RSS.

Nutshell Handbook, rhe Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Developing Feeds with R.SS and Atom, the image of an American kestrel, and related
trade dress are trademarks of O'Reilly Media, Inc.

Many of the dcsignmions used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, lm:. was aware of a
trademark claim, the designations have been primed in caps or initial caps.

While every precaution has been raken in rhe preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or ior damages resulting from the use of the information
contained herein.

= This book uses RepKover'7 a durable and flt.:xibk: lay-ilat binding.

ISBN: 0-596-00881-3

[Ml

HULU, LLC EXHIBIT 1006

5472.

1nlim: editions
:orporate/insti-

trademarks of
:rel, and related

s are claimed as
as aware of a

I author assume
1formarion

Table of Contents

Preface ix

1. Introduction 1
What Are RSS and Atom for? 1

A Short History of RSS and Atom

Why Syndicate Your Content?

Legal Implications

2
11

12

2. Using Feeds 13
Web-Based Applications 13

Desktop Applications 16

Other Cunning Techniques 17

Finding Feeds to Read 19

3. Feeds Without Programming 21
From Email 21

From a Search Engine 22

From Online Stores 24

4. RSS 2.0 25
Bringing Things Up to Date

The Basic Struccure

Producing RSS 2.0 with Blogging Tools

Introducing Modules

Creating RSS 2.0 Feeds

25

26
34
36

43

HULU, LLC EXHIBIT 1006

5. RSS 1.0 51
Merndata in RSS 2.0

Resource Description framework

RDFinXML
Introducing RSS 1.0

The Specification in Derail

Creating RSS 1.0 reeds

51

56

59
64
67

72

6. RSS 1.0 Modules . 77
Module Status

Support for Modules in Common Applications

Other RSS 1.0 Modules

77

78

114

7. The Atom Syndication Format 115
lncroducing Atom 115

The Acom Emry Document in Detail 123

Producing Atom feeds 129

8. Parsing and Using Feeds 130
Important Issues 130

JavaScript Dispby Parsers 132

Parsing for Programming 135

Using Regular Expressions

UsingXSLT

Client-Side Inclusion

Server-Side Inclusion

147
1-+8

]50
150

9. Feeds in the Wild 154
Once You Have Created Your Simple RSS Feed

Publish :rnd Subscrihc

Rolling Your Own: LinkPimp PubSub

LinkpimpClicnt.pl

154
160

163

164

10. Unconventional Feeds 179
Apache Logfiles

Code TODOs to RSS

Daily Dooncsbuiy

Amazon.com Wishlist to RSS

FedEx Parcel Tracker

vi I Table of Contents

179

182

184

186

190

HULU, LLC EXHIBIT 1006

....... 51
51
56
59

64
67
72

... 77
77
78

114

...... 115
115

123

129

...... 130
130

132

135

147
148
150

150

...... 154
154
160

163

164

.. 179
179
182

184

186
190

Google to RSS with SOAP

Last-Modified Files

Installed Perl Modules

The W3C Validator to RSS

Game Statistics to Excel

Feeds by SMS

Podcasting Weather Forecasts

Having Amazon Produce Its Own RSS Feeds

Cross-Poster for Movable Type

196
198
200
202
204
205
208
211

212

11. Developing New Modules 218
Namespaces and Modules Within RSS 2.0 and Atom 218

Case Study: mod_Book 219

Extending Your Desktop Reader 225

Introducing AmphecaDesk 225

A. The XML You Need for RSS 231

B. Useful Sites and Software 242

Index 247

Table of Contents I vii HULU, LLC EXHIBIT 1006

Preface

This book is about RSS and Atom, the two most popular content-syndication tech­
nologies. From distributing the latest web site content to your desktop and power­
ing loosely coupled applications on the Internet, to providing the building blocks of
the Semanric Web, these two technologies are among the Internet's fastest growing.

There are millions of RSS and Atom feeds available across the Web today; this book
shows you how to read them, how to create your own, and how to build applica­
tions that use them. It covers:

• RSS 2.0 and its predecessors

• RSS LO and the Semantic Web

• Atom and the latest generation off eed technology

• How to create and parse feeds

• Extending RSS and Atom through modules

• Using RSS and Atom on the desktop, on the Web, and in the enterprise

• Building RSS- and Atom-based applications

Audience
This book was written with two somewhat interrelated groups in mind:

Web developers and web site authm·s
This book should be read by all web developers who want to share their site
with others by offering feeds of their content. This group includes everyone from
webloggers and amateur journalists to those running large-budget, multiuser
sites. Whether you're working on projects for multinational news organizations
or neighborhood sports groups, with RSS and Atom, you can extend the reach,
power, and utility of your product, and make your life easier and your work
more productive. This book shows you how.

HULU, LLC EXHIBIT 1006

Developers
This book is also for developers who want to use the content other people are
syndicating and build applications that produce feeds as their output. This
group includes everyone from fan-site developers wanting the latest gaming
news and intranet builders needing up-to-date financial information on the cor­
porate Web, to developers looking to incorporate news feeds into artificially
intelligent systems or build data-sharing applications across platforms. For you,
this book delves into the interpretation of metadata, different forms of content
syndication, and the increasing use of web services technology in this field. We'll
also look at how you can extend the different flavors of RSS and Atom to fit your
needs.

Depending on your interests, you may find some chapters more necessary than oth­
ers. Don't be afraid to skip around or look through the index. There are all kinds of
ways to use RSS and Atom.

Assumptions This Book Makes
The technology used in this book is not all that hard to understand, and the con­
cepts specific to RSS and Atom are fully explained. The book assumes some familiar­
ity with HTML and, specifically, XML and its processing techniques, although you
will be reminded of important technical points and given places to look for further
information. (Appendix A provides a brief introduction to XML if you need one.)

Most of the code in this book is written in Perl, but the examples arc commented suf­
ficiently to make things clear and easily portable. There are also some examples in
PHP and Ruby. However, users of any language will get a lot from this book: the
explanations of the standards and the uses of RSS and Atom are language-agnostic.

How This Book Is Organized
Because RSS and now Atom come in a number of flavors, and there are lots of ways
to use them, this book has a lot of parts.

Chapter 1 explains where these things came from and why there is so much diversity
in what seems on the surface to be a relatively simple field. Chapter 2 and 3 look at
whar you can do with RSS and Acom without writing code or getting close to the
data. Chapter 2 looks at these technologies from the ordinary user's perspective,
showing how co read feeds with a number of tools. Chapter 3 digs deeper into the
challenge of creating RSS and Atom feeds, but does so using cools that don't require
any programming.

The next four chapters look at the most common varieties of syndication feeds and
how to create them. Chapter 4 examines RSS 2.0, inheritor of the 0.91 line of RSS.
Chapter 5 looks at RSS 1.0, and its rather different philosophy. Chapter 6 explores

x J Preface HULU, LLC EXHIBIT 1006

~r people are
)utput. This
uest gaming
1 on the cor­
to artificially
ms. For you,
1s of content
.s field. We'll
1m to fit your

ary than oth­
e all kinds of

and the con­
)me familiar-
3lthough you
,k for further
eed one.)

nmenced suf­
: examples in
1is book: the
:e-agnostic.

! lots of ways

iuch diversity
and 3 look at
~ close to the
; perspective,
:eper into the
don't require

ion feeds and
L line of RS$.
:er 6 explores

the many modules available to exrend RSS 1.0. Chapter 7 looks at a third alterna­
tive: the recently emerging Atom specification.

Chapters 8 through 11 focus on issues that developers building and consuming feeds
will need to address. Chapter 8 looks at the complex world of parsing these many
flavors of feeds, and the challenges of parsing feeds that aren't always quite right.
Chapter 9 looks at ways to integrate feeds with publishing models, particularly
publish-and-subscribe. Chapter 10 demonstrates a number of applications for feeds
that aren't the usual blog entries or news information, and Chapter 11 describes how
to extend RSS 2.0 or RSS 1.0 with new modules in case the existing feed structures
don't do everything you need.

Finally, there are two appendixes. Appendix A provides a quick tutorial to XML that
should give you the foundation you need to work with feeds, while Appendix B pro­
vides a list of sites and software you can explore while figuring out how best to apply
these technologies to your projects.

Conventions Used in This Book
The following font conventions are used in this book:

Italic is used for:

• Unix pathnames, filenames, and program names

• Internet addresses, such as domain names and URLs

• New terms where they are defined

Constant width is used for:

• Command lines and options that should be typed verbatim

• Names and ke}'\vords in programs, including method names, variable names,
and class names

• XlVIL element tags and URis

Constant width italic is used for:

• Replaceable items, such as variables or optional elements, within syntax lines or
code

"'"
[fil. This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Preface I xi HULU, LLC EXHIBIT 1006

Using Code Examples
The examples from this book are freely downloadable from the book's web site at
http://www.oreilly.com/catalog/deveoprssatom.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O'Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but don't require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: "Developing Feeds with RSS and
Atom, by Ben Hammersley. Copyright 2005 O'Reilly Media, Inc., 0-596-00881-3."

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari Enabled

S I -· When you see a Safari® Enabled icon on the cover of your favorite cech-
8 lfl nology book, it means the book is available online through the O'Reilly

llOOM.8 ONLINE •

Mi ti •HM Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, dO'\,vnload
chapters, and find quick answers when you need the most accurate, current informa­
tion. Try it for free at http://safari.oreilly.com.

Comments and Questions
Please address comments and questions concerning this book co the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

\Ve have a web page for chis book, where we list errata, examples, and any addi­
tional information. You can access this page at:

http://www.oreilly.com/catalog/deveoprssatom

xii I Preface HULU, LLC EXHIBIT 1006

s web site at

.e the code in
omact us for
For example,
s not require
ly books does
ting example
t of example
·m1ss1on.

includes the
vith RSS and
-00881-3."

nission given

favorite tech­
. the O'Reilly

that lets you
:s, download
rent informa-

,lisher:

nd any addi-

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O'Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments
Thanks, as ever, go to my editor Simon St.Laurent and my technical reviewers Roy
Owens, Tony Hammond, Timo Hannay, and Ben Lund. Thanks also to Mark Pil­
grim, Jonas Galvez, Jorge Velazquez for their lovely code. Bill Kearney, Kevin
Hemenway, and Micah Dubinko earned many thanks for their technical-reviewing
genius on the first edition. Not to forget Dave Winer, Jeff Barr, James Linden, DJ
Adams, Rael Domfest, Brent Simmons, Chris Croome, Kevin Burton, and Dan Brick­
ley. Cheers to Erhan Erdem, Dan Libby, David Kandasamy, and Castedo Ellerman
for their memories of the early days of CDF and RSS and to Yo-Yo Ma for his record­
ing of Bach's Cello Suite No.1, to which much of this book was written.

But most of all, of course, to Anna.

Preface I xiii HULU, LLC EXHIBIT 1006

A Short History of RSS and Atom
In the Developer's Bars of the world-those dark, sordid places fiHed with grizzled
coders and their clans-a special corner is always reserved for the developers of con­
tent-syndication standards. There, weeping into their beer, you'll find the veterans of
a long and difficult process. Most likely, they will have the Thousand Yard Stare of
those who have seen more than they should. The standards you will read about in
this book were not born fresh and innocent, of a streamlined process overseen by the
Wise and Good. Rather, the following chapters have been dragged into the world
and tempered through brawls, knife fighrs, and the occasional riot. What has sur­
vived, it is hoped, is hardy enough to prosper for the foreseeable future.

To fully understand these wayward children, and to get the most out of them, it is
necessary to understand the motivations behind the different standards and how
they evolved into what they are today.

HotSauce: MCF and RDF
The deepest, darkest origins of the current versions of RSS began in 1995 with the
work of Ramanathan V. Guha. Known to most simply by his surname, Guha devel­
oped a system called the Meta Content Framework (MCF). Rooted in the work of
knowledge-representation systems such as Cycl, KRL, and KIF, MCF's aim was to
describe objects, their attributes, and the relationships between them.

MCF was an experimental research project funded by Apple, so it was pleasing for
management that a great application came out of it: ProjectX, later renamed Hot­
Sauce. By late 1996, a few hundred sites were creating MCF files that described
themselves, and Apple HotSauce allowed users to browse around these MCF repre­
sentations in 3D. Documentation still exists on the Web for MCF and HotSauce. See
http://www.eclectica-systems.co. uklcomplexlhotsauce.php and Example 1-1 for more.

Example 1-1. An example of MCF

begin-headers:
MCFVersion: 0.95
name: "Eclectica"
end-headers:

unit: "tagging.mco"
name: "Tagging and Acrobat Integration"
default_genl_x: -109
default_genl_y: -65
typeOf: #"SubjectCategory"

unit: "http: //wtM. nplum.demon. co. uk/temptin/temptin. htm"
name: "Temptln Information Management Template"
genls_pos: ("tagging.mco" -85 -137)

2 I Chapter 1: Introduction HULU, LLC EXHIBIT 1006

with grizzled
opers of con-
1e veterans of
'tard Stare of
ead about in
erseen by the
to the world
'hat has sur-

:>f them, it is
:ds and how

995 with the
Guha devel­
the work of

s aim was to

; pleasing for
:named Hot-
1at described
: MCF repre­

lotSauce. See
1 for more.

Example 1-1. An example of MCF (continued)

unit: "http://www.nplum.demon.eo.uk/temptin/tryout. htm"
name: "Download Try-out Version"
genls_po.s: ("tagging.mco" -23S 120)

It was popular, but experimental, and when Steve Jobs's return to Apple's manage­
ment in 1997 heralded the end of much of Apple's research activi.ty, Guba left for

Netscape.

There, he met with Tim Bray, one of the original XML pioneers, and started moving
MCF over to an XML-based format. (XML itself was new at that time.) This project
later became the Resource Description Framework (RDF). RDF is, as the World
Wide Web Consortium (W3C) RDF Primer says, "a general-purpose language for
representing information in the World Wide Web." It is specifically designed for the
representation of metadata and the relationships between things. In its fullest form,
it is the basis for the concept known as the Semantic Web-the W3C's vision
wherein computers can understand the meaning of, and the relationships between,
documents and other data. You can read http://en.wikipedia.org/wiki!Semantic_Web
for more details.

Channel Definition Format
In 1997, XML was still in its infancy, and much of the Internet's attention was
focused on the increasingly frantic war between Microsoft and Netscape.

Microsoft had been watching the HotSauce experience, and early that year the Inter­
net Explorer development team, along with some others, principally a company
called Pointcast, created a system called the Channel Definition Format (CDF).

Released on March 8, 1997, and submitted as a standard to the W3C the very next
day, CDF was XML-based and described both the content and a site's particular rat­
ings, scheduling, logos, and metadata. It was introduced in Microsoft's [nrerner
Explorer 4.0 and later into the Windows desktop itself, where it provi.ded the back­
bone for what was then called Active Desktop. The CDF specification document is
still online at http://www.w3.org/TRINOTE-CDFsubmit.html, and Example 1-2
shows a sample.

Example 1-2. An example CDP document

<!D0C1YPE Channel SYSTEM "http://w.iw.w3c.org/Channe1.dtd" >
<Channel HREf;"http: / /1·Mw. foosports. com/foosports. cdf" IsClonable~YES >

<lntroUrl
VALUE;"http://ww,~.foosports.com/channel-setup.html" I>
<LastMod VALUE;"1994.11.osT08:1s-osoo" I>
<Title VALUE;"FooSports" I>
<Abstract VALUE~"The latest in sports and atheletics from FooSports" I>
<Author VALUE~"FooSports" I>

A Short History of RSS and Atom I 3 HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

The Basic Structure
The top level of an RSS 2.0 document is the rss version="2.o" element. This is fol­
lowed by a single channel element. The channel element contains the entire feed con­
tents and all associated metadata.

Required Channel Subelements
There are 3 required and 16 optional subelements of channel within RSS 2.0. Here
are the required subelemems:

title
The name of the feed. In most cases, this is the same name as the associated web
site or service.

<title>RSS and Atom</title>

link
A URL pointing to the associated resource, usually a web site. The link must be
an !ANA-registered URI scheme, such as http://, https://, news://, or ftp://,
though it isn't necessary for a application developer to support all these by
default. The most common by a large margin is http://. For example:

<link>http: I !~NM. benhammersley. corn</linb

description
Some words to describe your channel.

<description>This is a nice RSS 2.0 feed of an even nicer weblog</description>

Although it isn't explicitly stated in the specification, it is highly recommended that
you do not pm anything other than plain text in the channel/title or channel/
description elements. There are some existing feeds with HTML within those ele­
ments, but these cause a considerable amount of wailing, and at least a small amount
of gnashing of teeth. Do not do it. Use plain text only in these elements. The follow­
ing sidebar, "Including HTML Within title or description," gives a fuller account of
this, but in my opinion it's a bad idea.

Optional Channel Subelements
There are 16 optional channel subelements of RSS 2.0. Technically speaking, you can
leave these out altogether. However, I encourage you to add as many as you can.
Much of this stuff is static; the content of the element never changes. Placing it into
your RSS template or adding another line to a script is little work for the additional
value of your feed's metadata. This is especially true for the first three subelements
listed here:

26 I Chapter 4: RSS 2.0 HULU, LLC EXHIBIT 1006

nr. This is fol­
ntire feed con-

RSS 2.0. Here

1ssociated web

e link must be
s://, or ftp://,
t all these by
le:

description>

nmended that
e or channel/

:hin those ele­
small amount

:s. The follow­
ler account of

1king, you can
1y as you can.
Placing it into

the additional
c subelements

Including HTML Within title or description
Since the early days of RSS 0.91, there's been an ongoing debate about whc:ther the
item/title or i t em/description elemen ts may, or shotild, contain HTML In my opin­
ion, chey should not, for both practical and philosophical reasons. Practically speak­
ing, including HTML markup requires the client software to be able to parse. or filter
it. While chis is fine with many desktop agents, it restricts developers looking for ocher
uses of the daca. This brings us to the philosophical aspect. RSS's second use, after pro­
viding headlines and content to desktop .readers and sites, is to provide inde.xable
metadata. By combining presentation and content (Le., by including HTML markup
within the: description element), you could disable this feature.

However, my opinion lost out on this one. RSS 2.0 now allows for entity-encoded
HTML within the item/description tag. It doesn't mention anything, in c:ither direc­
tion, reg~rding item/title, and people are basically making it up as they go along.
With that in mind, l still state that item/title at least should be considered plain text.

If you want to put HTML within the i tern/description element, you can do it in two
ways:

Entity encoding

With entity encoding, the angle brackets of HTML tags arc converted to their
respective HTML entities, < and >. If you need to show angle brackets as lit­
eral characters, the ampersand character itself should be encoded as well:

This is a lovely left angle bracket: &lt;

Within a CDA TA block

The alternative is to enclose the HTML within a CDATA block. This removes one
level of entity encoding, as in:

<! [CDATA[This is a lovely left angle bracket: <])>

Either approach is acceptable a,Ccording to the specification, and there is no way for a
program to te ll the difference between the two, or to tell if the description is actually
just plain te."'<t that resembles encoded HTML This is a major problem with the RSS 2.0
specification, as you'll see when we talk about parsing feeds. Atom and RSS 1.0 both
have their own ways around this issue.

language

The language the feed is written in. This allows aggregators to index feeds by
language and should contain the standard Internet language codes as per RfC
1766.

<language>en-US</language>

copyright
A copyright notice for the content in rhe feed:

<copyright>Copyright 2004 Ben Hammersley</copyright>

The Basic Structure I 27 HULU, LLC EXHIBIT 1006

managingEditor
The email address of the person to contact for editorial enquiries. It should be in
the format: name@example.com (FirstName LastName).

<man~gingEditor>ben@benhammersley.com (Ben Hammersley)</managingEditor>

\~ebMaster
The email address of the person responsible for technical issues with the feed:

<11ebMas ter>techsupport@benhammersley.com (Geek Mc Nerdy)</·..ieb!~aster>

pubDate
The publication date of the content within the feed. For C.'\.amplc, a daily morn­
ing newspaper publishes at a certain time early cvc1y morning. Technically, any
information in the feed should nor be displayed until after the publication dare,
so you can set pubDate to a time in the future and expect that the feed won't be
displayed until after that time. rcw existing RSS readers take any notice of this
element in this way, however. Kcverthclcss, it should he in the format outlined
in RFC 822:

<pubDate>Sun, 12 Sep 2004 19:00:40 GMT</pubDate>

lastBuildDate
The date and time, RfC 822-style, when the feed last changed. Note the differ­
ence between this and channel!pubDate. lastBuildDate must be in the past. It is
this element that feed applications should cake as the "last time updated" value
and not channel/pubDate.

<pubDate>Sun, 12 Sep 2004 19:01:ss GMT</pubDate>

category
Identical in syntax to the item/category element you'll see later. This rakes one
optional attribute, domain. The value of category should be a forward-slash­
s.:paratcd string that identifies a hierarchical location in a taxonomy represented
by the domain attrib1.1te. Sadly, there is no consensus either within the specifica­
tion or in the real world as to any standard format for the domain attribute. Ir
would seem most sensible to restrict it to a URL; however, it needn't necessarily
beso.

<category domain="Syndic8">1765</cJtegory>

generator

docs

This should contain a string indicating which program created the RSS file:

<generator>l>'lovable Type v3.1b3</generator>

A URL that points to an explanation of the standard for future reference. This
should point to http:llblogs.law.harvard.edultech!rss:

<docs>http://blogs.law.harvard.edu/tech/rss</docs>

28 I Chapter 4: RSS 2.0 HULU, LLC EXHIBIT 1006

It should be in

Htor>

th the feed:

. a daily morn­
~chnically, any
blication date,
feed won't be
notice of this

>rmat outlined

ote rhe differ­
the past. It is

pdated" value

~his takes one
:orward-slash­
,y represented
the specifica­

n attribute. It
1't necessarily

tSS file :

ference. This

cloud

ttl

The <cloud!> element enables a rarely used feature known as "Publish and Sub­
scribe," which we shall investigate fully in Chapter 9. It takes no value itself, but
it has five mandatory attributes, themselves also explained in Chapter 9: domain,
path, port, registerProcedure, and protocol.

<cloud domain="rpc.sys.com" port="8o" path="/RPC2" registerProcedure= "pingMe"
protocol="soap"I>

ttl, short for Time-to-Live, should contain a number, which is the minimum
number of minutes the reader should wait before refreshing the feed from its
source. Feed authors should adjust this figure to reflect the time between
updates and the number of times they wish their feed to be requested, versus
how up to date they need their consumers to be.

<ttl>60</ttl>

image
This describes a feed's accompanying image. It's optional, but many aggregators
look prettier if you include one. It has three required and two optional subele­
ments of its own:

url
The URL of a GIF, JPG, or PNG image that corresponds to the feed. It is,
quite obviously, required.

title
A description of the image, normally used within the ALT attribute of
HTML's tag. It is required.

link

The URL to which the image should be linked. This is usually the same as
rhe channel/link.

11idth and height

rating

The width and height of the icon, in pixels. The icons should be a maxi­
mum of 144 pixels wide by 400 pixels high. The emergent standard is 88
pixels wide by 31 pixels high. Boch elements are optional.



The PICS rating for the feed; it helps parents and teachers control what children
access on the Internet. More information on PICS can be found at http://www.
w3.org!PICS1. This labeling scheme is little used ar present, but an example of a
PICS rating would be:

<rating>(PICS-1.1 ''http://Wl'IW.gcf.org/v2. 5" labels on "1994, 11.osToS: 15-0500"
until "1995,12..31T23:59-0000" for "http://w3.org/l'ICS/Overvie1,1.html" ratings
(suds 0.5 density o color/hue 1))</rating>

The Basic Structure I 29 HULU, LLC EXHIBIT 1006

textlnput
An element chat lees RSS feeds display a small text box and Submit button, and
associates chem with a CGI application. Many RSS parsers support this feature,
and many sites use it to offer archive searching or email newsletter sign-ups, for
example. textinput has four required subelemcncs:

title
The label for the Submit button. It can have a maximum of 100 characters.

description
Text to explain what the textlnput actually does. It can have a maximum of
500 characters.

name

link

The name of the text object that is passed to the CGl script. Jt can have a
maximum of 20 characters.

The URL of the CGI script.

<textlnput> <title>Search</title> <description>5earch the Archives</
description> <name>query</name> dink>http: / 1"Mw. exampleurl. com/example/
search.cgi</link> </textlnput>

skipDays and skipHours
A set of clements that can control when a feed user reads the feed. skipDays can
contain up to seven day subelements: Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, or Sunday. skipHours contains up co 24 hour subelements, the
numbers 1-24, representing the time in Greenwich Mean Time (GMT). The cli­
ent should nor retrieve the feed during any day or hour listed within these two
elements. The elements arc ORed not ANDcd: in the example here, the applica­
tion is instructed not to request the feed during 8 p.m. on any day, and never on
a Monday:

<skipDays><day>Monday</day></skipDays> <skipHours><hour>20</hour><lskipHours>

item Elements
RSS 2.0 can have any number of item elemcnrs. The item element is at the heart of
RSS; it contains the primary content of the feed. Technically, item elements are
optional, but a syndication feed with no items is just a glorified link. Not having any
i terns doesn't mean the feed is invalid, just extremely boring.

All item subelemenrs are optional, with the proviso that at lease one of item/title or
item/description is present. You can us1.: this feature to build lists (more on that
lacer).

With item, there are the 10 standard item subelements available:

30 I Chapter4: RSS2.0 HULU, LLC EXHIBIT 1006

: button, and
· this feature,
sign-ups, for

characters.

maximum of

It can have a

.ves<I
1/example/

skipDays can
1y, Thursday,
!lements, the
\,ff). The cli-
1in these two
, the applica­
and never on

/skipHours>

t the heart of
elements are
n having any

Ltem/title or
nore on chat

title
Usually, this is the title of the story linked to by the item, but it can also be seen
as a one-line list item. There is controversy over whether HTML is allowed
within this element; for more information, see the sidebar "Including HTML
Within title or description."

link
The URL of the story the item is describing.

description
A synopsis of the story. The description can contain entity-encoded HTML.
Again, as with item/title, see the pertinent sidebar "Including HTML Within
title or description."

author
This should contain the email address of the resource's author referred to within
the item. The specification's example is in the format user@example.com
(firstname lastname) but isn't explained further:

<author>ben@benhammersley.com (Ben Hammersley)</author>

category
Exactly the same as channel/category, but it pertains to the individual item only:

<category domain;"the tl'listed passages of my rnind">up/to_the_left/there</category>

comments
This should contain the URL of any comments page for the item; it's primarily
used with weblogs:

http://www.example.com/comments.cgi?post~12345

enclosure
This describes a file associated with an item. It has no content, bur it takes three
attributes: url is the URL of the enclosure, length is its size in bytes, and type is
the standard MIME type for the enclosure. Some feed applications can down­
load these files automatically. The original idea was for configuring a feed aggre­
gator to automatically download large media files overnight, thereby deferring
the extra bandwidth required. This is an underused feature of RSS 2.0 because
most aggregarors don't support it, but in 2004, it became the focus of a lot of
development around the idea of podcasting. See the sidebar "Including HTML
Within title or description" for details.

guid

<enclosure url~"http://www.example.com/hotxxxpron.mpg" length~ "34657834"
type:"video/rnpeg"/>

Standing for Globally Unique Identifier, this element should contain a string that
uniquely identifies the item. It must never change, and it must be unique to the
object it is describing. If that content changes in any way, it must gain a new
guid. This element also has the optional attribute isPermalink, which, if true,
denotes that the value of the element can be taken as a URL to the object

The Basic Structure I 31 HULU, LLC EXHIBIT 1006

referred to by the item. Therefore, if no item/link element is present, but the
isPermalink attribute is set to true, the application can take the value of guid in
its place. The specification doesn't say what to do if both are present and aren't
the same, but it seems sensible to give preference within any application to the
item/link element.

<guid isPermalink="true">http: //~iww. example. com/example. html</guid>

pubDate
The publication date of the item. Again, as with channel/pubDate, any informa­
tion in the item shouldn't be displayed until after the publication date, but few
existing RS$ readers take any notice of this element in this way. The date is in
RFC 822 format.

<pubDate>Mon, 13 Sep 2004 00:23:05 GMT</pubDate>

source
This should contain the name of the feed of the site from which the item was
derived, and the attribute url should be the URL of that other site's feed:

<source urh"http: / /wi,iw. metafilter. com/rss .xml ">Metafilter</source>

Example 4-1 shows these parts assembled into an RSS 2.0 XML document.

Example 4-1. An example RSS 2.0 feed

<?xrnl version="t.O"?>
<rss version="2.0">
<channel>

<title>RSS2.0Example</title>
<link>http: / hMw.exampleurl .com/example/index. html</link>
<description>This is an example RSS 2.0 feed</description>
<language>en-gb</language>
<copyright>Copyright 2002, Oreilly and Associates.</copyright>
<managingEditor>example@exarnpleurl.com</managingEditor>
<webMaster>webmaster@exampleurl.com</webMaster>
<rating> </rating>
<pubDate>03 Apr 02 1500 GMT</pubDate>
<last8uildDate>03 Apr 02 1500 GMT</lastBuildDate>
<docs>http://blogs.law.harvard.edu/tech/rss</docs>
<skipDays><day>Monday</day><lskipDays>
<skipHours><hour>20</hour><lskipHours>
<category dornain="http: / /1,t.,tw. dmoz. org" >Business/Industries/Publishing/Publishers/

Nonfiction/Business/O'Reilly_and_Associates/</category>
<generator>NewsAggregator'o'Matic</generator>
<ttl>30<ttl>
<cloud domain="http://\,iww.exampleurl.com" port="So" path:"/RPC2"

registerProcedure="pleaseNotify" protocoh"XML-RPC" I>



<textI nput>
<title>Search</title>
<description>Search the Archives</description>
<name>query</name>
<linbhttp://=.exampleurl.com/example/search.cgi</link>

</textlnput>

<item>
<title>The First Item</title>
<link>http://1>Mw.exampleurl.com/example/001.html</link>
<description>This is the first item.</description>
<source url="http: //1vww. anothersite. com/index. xml ">Another Site</source>
<enclosure urh" http:/ /l·iww. exampleurl. com/example/001.mp3" length=" 543210"

type"audio/mpeg"I>
<category domain;"http://\'lww.dmoz.org">Business/Industries/Publishing/Publishers/

Nonfiction/Business/O'Reilly_and_Associates/</category>
<comments>http://www.exampleurl.com/cornments/001.html</comments>
<author>Ben Hamrnersley</author>
<pubOate>Sat, 01 Jan 2002 0:00:01 G/o\T</pubDate>
<guid isPermaLink="true">http://w,,M.exampleurl.com/example/001.html</guid>

</item>

<item>
<title>The Second Item</title>
<link>http://1wiw.exampleurl.com/example/oo2.html</link>
<description>This is the second itern.</description>
<source url="http: / /~ll'IW. anothersite. com/index.xml ">Another Site</source>
<enclosure url="http: //1-Mw. exampleurl. com/example/002 .mp3" length=" 543210"

type"audio/mpeg"I>
<category domain="http://i,t,1W.dmoz.org">Business/Industries/rublishing/Publishers/

Nonfiction/Business/O'Reilly_and_Associates/</category>
<comments>http: //ww,1. exarnpleurl .com/comments/002. html</cornments>
<author>Ben Hammersley</author>
<pubDate>Sun, 02 Jan 2002 0:00:01 GMT</pubDate>
<guid isPermaLink="true">http://W1-1W.exampleurl.com/example/oo2.html</guid>

</item>

<item>
<title>The Third Item<ltitle>
<link>http://wwi~.exampleurl.com/example/003.html</link>
<description>This is the third item.</description>
<source url='' http://wwl'l.anothersite.com/index. xml">Another 5ite</source>
<enclosure url= "http: I /wwi,1.exampleurl.com/example/003. mp3" length=" 543210"

type"audio/mpeg"/>
<category domain= "http:/ /WW1·1.dmoz. org">Business/Industries/Publishing/Publishers/

Nonfiction/Business/O'Reilly_and_Associates/</category>
<comments>http://www.exampleurl.com/comments/003.html</comments>
<author>Ben Hamrnersley</author>

The Basic Structure I 33 HULU, LLC EXHIBIT 1006

One key difference between the development of RSS and the development of i\tom is
that Atom's whok design process is held out in the open, on the Acom-Syntax mail­
ing list just mentioned and on the Atom wiki. The wiki (littp:llwww.intertwingly.net/
wikilpic!FrontPage) i.s a great place ro find the latest devclopmenrs, issL1es, iJcas, and
pointers to the latest specification documents. lt is well worth exploring, once you've
finished re:1ding.

The Structure of an Atom Feed
Because Atom is really two Stal1(.b.rds, one for syndication and one for the remote
retrieval, creat.ion, and editing of onlinc resources (or, to put 1t more simply, a
weblog APl), an Atom document is deeply structured. The syndication format, our
bailiwick here, defines two document formats: the Atom feed anJ the Acom entry.

An Atom feed is made up of none or more Acom emries (although it's most proba­
bly going to have at least one entry), plus some additional metad::1ta. An Atom rntry
is just th:-it: one single indivisible piece of "content." This single indivisible piece of
content is what gives Acom its n:irne 3nd is the key w understanding the whole Acom
project.

The Atom entry
Before we get too exciwd, let's look at an Atom entry document (Example 7-1).

Exam11l.: 7-1 . A.11 Atom .:nt1y docrmicnt

c1xml version-"1.0" encoding="utf-8"'>
centry version="draft-ietf-ato,npub-form~t-os: do not deploy"
xmlns="http://purl.org/atom/nslldraft-ietf-atompub-format-OS">

ditle>Exa,nplc Entry Documentc/title>

<link
rel="alternate"
type="text/html"
href=" http://ex;imple.org/exa,nplc_ entry"
hreflang="en"
title="Example Entry Document"
I>

cedit href="http://example.org/edit?title=example_entry">

<author>
<name>Ben Hammcrsleyc/name>
cur i>http: //W',·l~J. benhJn-.mersley. co,n</uri>
cemail>ben·~bcnhammersley. come/email>

c/author>

ccontributor>
cname>Albert Einsteinc/na,ne>

116 I Chapter 7: The Atom Syndication Format HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

HULU, LLC EXHIBIT 1006

ink};

k:isdn"}">

tem·>{"book:

!ment, if you

the template

: sure to pass
amphetadesk.
: RSS world a

APPENDIX A

The XML You Need for RSS

The purpose of this appendix is to introduce you to XML A knowledge of XML is
essential if you want to write RSS documents directly, rather than having them gener·
ated by some utility. If you're already acquainted with XML, you don't need to read
this appendix. If not, read on.

The general overview of XML given in this appendix should be more than sufficient
to enable you to work with the RSS documents. For further information about XML,
the O'Reilly books Learning XML and XML in a Nutshell are invaluable guides, as is
the weekly online magazine XML.com.

Note that this appendix makes frequent reference to the formal XML 1.0 specifica­
tion, which can be used for further investigation of topics that fall outside the scope
of RSS. Readers are also directed to the "Annotated XlvlL Specification," written by
Tim Bray and published online at http://XML.com, which provides an illuminating
explanation of the XML LO specification, and "What is XML?" by Norm Walsh, also
published on XML.com.

What ls XML?
XML (Extensible Markup Language) is an lnternet·friendly format for data and doc­
uments, invented by the World Wide Web Consortium (W3C). Markup denotes a
way of expressing the structure of a document within the document itself. XML has
its roots in a markup language called SGML (Standard Generalized Markup Lan·
guage), which is used in publishing and shares this heritage with HTML XML was
created to do for machine-readable documents on the Web what HTML did for
human·readable documents-that is, provide a commonly agreed-upon syntax, so
that processing the underlying format becomes a commodity and documents are
made accessible to all users.

Unlike HTML, though, XML comes with very little predefined. HTML developers are
accustomed to both the notion of using angle brackets (<>) for denoting elements (that

231 HULU, LLC EXHIBIT 1006

1s, syntax) and also the set of element names themselves (such as head, body, etc.).
XML shares only the former feature (i.e., the notion of using angle brackets for denot­
ing clements). Unlike HTML, Xl\,11. has no predefined clements but is merely a set of
rules that lees you write other langu3gcs like HTML (To clarify Xl\1L's relationship
wirh SGML X.'vfL is an SGML subset. In contrast, HTML is an SGML application.
RSS uses X1v1L to express its operations and thus is an X1v1L application.)

Because X.vfL defines so little, it is easy for everyone to agree to use the XML syntax
and then build applications on top of it. It's like agreeing to use a particular alphahet
and set of punctuation symhols, but not saying which language to use. l Iowever, if
you come co XML from ;m HTML background (and have an interest in extending
RSS), you may need to prepare yourself for the shock of having to choose whar to

call your tags!

Knowing that XML's roots lie with SGML should help you understand some of
XML's features and design decisions. Note that although SCML is essentially a docu­
ment-centric technology, XML's functionality also exrends to data-centric applica­
tions, including RSS. Commonly, data-centric applications don't need all the
flexibiliry and expressiveness that XML provides and limit themselves to employing
only a subset ofXML's functionality.

Anatomy of an XML Document
The best way to exphin how an X!vl.L <locument is composed is to present one. The
following example shows an XML document you might use to describe two auchors:

<?xml version="l.O" encoding="us-ascii"?>
<authors>

<person id="lear">
<name>Edwarcl Learc/name>
<nationality>British</nationality>

</person>
<person id="asimov">

<name>Isaac Asimov</name>
cnationality>American</nationality>

</person>
<person id="rnysteryperson" I>

</authors>

The first line of the document is known as the XlvfL declaration. This tells a process­
ing application which version of Xiv1L you arc using (the version indicator is manda­
tory) and which character encoding you have used for the document. ln this
example, the document is encoded in ASCH. (The significance of character encoding
is covered later in this appendix.)

lf the XlvlL declaration is omitted, a processor makes certain assumptions about your
document. In particular, it expects it to be encoded in UTF-8, an encoding of the
Unicode character set. However, it is best to use the XMI. declaration wherever

232 I Appendix A: The XML You Need for RSS HULU, LLC EXHIBIT 1006

body, etc.).
:s for denot­
:rely a set of
relationship
application.

<ML syntax
Jar alphabet
However, if
n extending
ose what to

nd some of
ally a docu­
:ric applica­
eed all the
, employing

nt one. The
10 authors:

s a process­
,r is manda­
:nt. In rhis
er encoding

about your
,ding of the
n wherever

possible, both to avoid confusion over the character encoding and to indicate to pro­
cessors which version of XML you're using.

Elements and Attributes
The second line of the example begins an element, which has been named authors.
The contents of that element include everything between the right angle bracket (>)
in <authors> and the left angle bracket (<) in </authors>. The actual syntactic con­
structs <authors> and </authors> are often referred to as the element start tag and
end tag, respectively. Don't confuse tags with elements! Note that elements may
include other elements, as well as text. An XML document must contain exactly one
root element, which contains all other content within the document. The name of
the root element defines the type of the XML document.

Elements that contain both text and other elements simultaneously are classified as
mixed content. RSS doesn't generally use mixed content.

The sample authors document uses elements named person to describe the authors
themselves. Each person element has an attribute named id. Unlike elements,
attributes can contain only textual content. Their values must be surrounded by
quotes. Either single quotes(') or double quotes(") may be used, as long as you use
the same kind of closing quote as the opening one.

Within XML documents, attributes are frequently used for metadata (i.e., "data
about data"), describing properties of the element's contents. This is the case in our
example, where id contains a unique identifier for the person being described.

As far as XML is concerned, the order in which attributes are presented in the ele­
ment start tag doesn't matter. For example, these two elements contain the same
information, as far as an XML 1.0-conformant processing application is concerned:

<animal name="dog" legs="4"1>
<animal legs="4'' name="dog"I>

On the other hand, the information presented to an application by an XML proces­
sor after reading the following two lines is different for each animal element, because
the ordering of elements is significant:

<animal><name>dog</name><legs>4</legs></animal>
<animal><legs>4</legs><name>dog</name><lanimal>

XML treats a set of attributes like a bunch of stuff in a hag-there is no implicit
ordering-while elements are treated like items on a list, where ordering matters.

New XML developers frequently ask when it is best to use attributes to represent
information and when it is best to use elements. As you can see from the authors
example, if order is important to you, then elements are a good choice. In general,
there is no hard-and-fast ''best practice" for choosing whether to use attributes or
elements.

Anatomy ofan XML Document J 233 HULU, LLC EXHIBIT 1006

The final author described in our document has no information available. All chat's
known about this person is his or her id, mysteryperson. The document uses the XNIL
shortcut syntax for an empty element. The following is a reasonable alternative:

<person id="rnysteryperson"></person>

Name Syntax
XML 1.0 has certain rules about element and attribute names. In particular:

• Names are case-sensitive: e.g., <person/> isn't the same as <Person/>.

• Names beginning with xml (in any permutation of uppercase or lowercase) are
reserved for use by XML 1.0 and its companion specifications.

• A name must start with a letter or an underscore, not a digit, and may continue
with any letter, digit, underscore, or period. (Actually, a name may also contain
a colon, but the colon is used to delimit a namespace prefix and isn't available
for arbitrary use as of the second edition of XML 1.0. Knowledge of namespaces
isn't required for understanding RSS, but for more information, see Tim Bray's
"XNfL Namespaces by Example," published at http://www.xml.com/publa/1999/
01/namespaces.html.)

A precise description of names can be found in Section 2.3 of the XML 1.0 specifica­
tion at http://www.w3.org/TRIREC-xml#sec-common-syn.

Well-Formedness
An XML document that conforms co rhe rules of XML syntax is said to be well­
formed. At its most basic level, well-formedness means chat elements should be prop­
erly matched, and all opened elemwts should be closed. A formal definition of well­
formedness can be found in Section 2.1 of the XML 1.0 specification at http://www.
w3.org/TR/REC-xml#sec-well-fonned. Table A-1 shows some XML documents that
aren't well-formed.

Table A-1. Examples of poorly formed XML documents

Document

<foo>
<ban
<lfoo>

</bar>

<foo>
<bar>

<lfoo>
<foo baz>
<lfoo>

<foo baz~23>
<lfoo>

Reason it's not well-formed

The elements aren't properly nested, because foo is closed while inside its child element bar.

The bar element was not closed before its parent, foo, was dosed.

The baz attribute has no value. While this is permissible in HTML {e.g., <table border>), it is for­
bidden in XML.

The baz attribute value. 23, has no surrounding quotes. Unlike HTML, all attribute values must be
quoted in XML

234 I AppendiK A: The XML You Need for RSS HULU, LLC EXHIBIT 1006

ble. All that's
.1ses the XML
native:

1lar:

>wercase) are

nay continue
· also contain
sn't available
f namespaces
:e Tim Bray's
1/pub/a/1999/

1.0 specifica-

:i to be well­
JUld be prop­
.icion of well­
t http://www.
:uments that

,ent bar.

rder>), it is for-

1lues must be

Comments
As in HTML, it is possible to include comments within XML documents. XML com­
ments arc intended to be read only by people. With HTML, developers have occa­
sionally employed comments to add application-specific functionality. For example,
the server-side include functionality of most web servers uses instructions embedded
in HTML comments. XML provides other ways to indicate application-processing
instructions. A discussion of processing instructions (Pis) is outside the scope of this
book. For more information on Pis, see Section 2.6 of the XN1L 1.0 specification at
http://www.w3.org/TRIREC-xml#sec-pi. Comments should not be used for any pur­
pose ocher than those for which they were intended.

The start of a comment is indicated with < !- -, and the end of the comment is indi­
cated with -->. Any sequence of characters, aside from the string --, may appear
within a comment. Comments tend to be used more in XML documents intended for
human consumption than those intended for machine consumption. Comments
aren't widdy used in RSS.

Entity References
Another feature of Xi'v1L that is occasionally useful when writing RSS documents is
the mechanism for escaping characters.

Because some characters have special significance in XML, there needs to be a way to

represent them. For example, in some cases the < symbol might really be intended to
mean "less than" rather than to signal the start of an element name. Clearly, just
inserting the character without any escaping mechanism will result in a poorly
formed document, because a processing application assumes you are starting another
element. Another instance of this problem is the need to include both double quotes
and single quotes simultaneously in an attribme's value. Here's an example that
illustrates both difficulties:

<badDoc>
<para>

I'd really like to use the< character
</para>
<note title="On the proper 'use' of the" character"!>

</badDoc>

XML avoids this problem by using the predefined entity reference. The word entity in
the context of XML simply means a unit of content. The term entity reference means
just that: a symbolic way of referring to a certain unit of content. XML predefines
entities for the following symbols: left angle bracket (<), right angle bracket (>), apos­
trophe('), double quote("), and ampersand (&).

An entity reference is introduced with an ampersand (&), which is followed by a
name (using the word "name" in its formal sense, as defined by the XML 1.0

Anatomy ofan XML Document I 235 HULU, LLC EXHIBIT 1006

specification) and terminated with a semicolon (;). Table A-2 shows how the five pre­
defined entities can be used within an XN1L document.

Table A-2. !:'redefined entity references in XML 1.0

literal character

<

>

&

Entity reference

&It;

>

'

"

&

Here's the problematic document, revised to use entity references:

<badDoo
<para>

I'd really like to use the < character
</para>
<note title;"On the proper ' use ' of the "character"I>

<lbadDoe>

XML 1.0 allows you co define your own entities and use entity references as short­
cuts in your document, but the predefined entities are often all you need for RSS or
Atom; in general, entities are provided as a convenience for human-created XML.
Section 4 of the XML 1.0 specification, available at http://www.w3.org/TRIREC­
xm{#sec-physical-struct, describes the use of entities.

Character References
You may find character references in the context of RSS documents. Character refer­
ences allow you to denote a character by its numeric position in the Unicode charac­
ter set (this position is known as its code point). Table A-3 contains a few examples
that illustrate the syntax.

Table A-3. Example character references

Actual <haracter

A

(l)

Character reference
&1148;

A

Ñ

®

Note that the code point can be expressed in decimal or, with the use of x as a pre­
fix, in hexadecimal.

236 I Appendix A: TheXML You Need for RSS HULU, LLC EXHIBIT 1006

, the five pre-

>

ces as short­
'.d for RSS or
reated XML
org/TRJREC-

aracter refer­
code charac­
ew examples

>f x as a pre-

Character Encodings
The subject of character encodings is frequently a mysterious one for developers.
Most code tends to be written for one computing platform and, normally, to run
within one organization. Although the Internet is changing things quickly, most of us
have never had cause to think too deeply about internationalization.

XML, designed to be an Internet-friendly syntax for information exchange, has inter­
nationalization at its very core. One of the basic requirements for XML processors is
that they support the Unicode standard character encoding. Unicode attempts to
include the requirements of all the world's languages within one character set. Con­
sequently, it is very large!

Unicode encoding schemes

Unicode 3.0 has more than 57,700 code points, each of which corresponds to a char­
acter. (You can obtain charts of all these characters online by visiting http://www.
unicode.orglcharts/.) If you were to express a Unicode string using the position of
each character in the character set as its encoding (in the same way as ASCII does),
expressing the whole rangt.: of characters would require four octets for each charac­
ter. (An octet is a string of eight binary digits, or bits. A byte is commonly, but not
always, considered the same thing as an octet.) Clearly, if a document is written in
100% American English, it would be four times larger than required-all the charac­
ters in ASCII fitting into a 7-bit representation. This places a strain on both storage
space and on memory requirements for processing applications.

Fortunately, two encoding schemes for Unicode alleviate this problem: UTF-8 and
UTr-16. As you might guess from their names, applications can process documents
in these encodings in 8- or 16-bit segments at a time. When code points are required
in a document that can't be represented by one chunk, a bit-pattern indicates that
the following chunk is required to calculate the desired code point. In UTF-8, this is
denoted by the most significant bit of the first octet being set to 1.

This scheme means that UTF-8 is a highly efficient encoding for representing lan­
guages using Latin alphabets, such as English. All of the ASCII character set is repre­
sented natively in UTF-8; an ASCII-only document and its equivalent in UTF-8 are
identical byte for byte.

This knowledge will also help you debug encoding errors. One frequent error arises
because of the fact that ASCII is a proper subset of UTF-8; programmers get used to
this fact and produce UTF-8 documents but use them as if they were ASCII. Things
start to go awry when the XML parser processes a document containing, for exam­
ple, characters such as Á. Because this character can't be represented using
only one octet in UTF-8, a two-octet sequence is produced in the output document;
in a non-Unicode viewer or text editor, it looks like a couple of characters of garbage.

Anatomy of an XML Do<Ument I 237 HULU, LLC EXHIBIT 1006

Other character encodings

Unicode, in the context of computing history, is a rdativdy new invention. Native
opera ting system support for. Unicode is by no me.i ns widespread. For instance,
although ·wind ows NT offers Unicode support, W indows 95 and 98 don 't.

XML 1.0 a llows a document to be encoded in ,my character set registered with the
Internet Assigned ~umbers Authority 11AKA). European documents 3r.e commonly
encoded in one of the ISO Latl!1 character sets, such as IS0-8859-1. Japanese docu­
ments normally use Shifr-J IS, and Chinese documents use (;B23 12 and Big 5.

A full list of registered ch:-iracter sets can be found at http://www.icma.org!
assiKnm..:ntskhar(I.Cter-set.s.

Xl\1L processors a ren't requin:d by the XML 1.0 specification to suppon any mor.e
than UTf-8 and UTF-16, but most commonly support other encodings , such as
US-ASCH and 150-8859-1 . Although most RSS transactions are currently conducted
in ASCTT (or tlu: ASCU subset of UTF-8), there is nothing to stop RSS documents
from containing, say, Korean text. However, you will probably have to dig inro the
encoding support of your computing platform to find out if it is possible fo r you to
use alterna te encodings.

Validity
ln addition to wcll-formcdness, XML 1.0 offers another level of verification called
validity. To explain why validity is important, lcr's take a simple example. tmaginc
you invented a simple XML format for your friends' tclt:phonc numbers:

<phoneboob
<person>

<name>Albert Smith</ name>
<number>123-456-7890</number>

</person>
<person>

<name>Bertrand Jones</name>
<number>456-123-9876</number>

</person>
<trhonebook>

Based on your form::tt, you also consrruct a program to di.splay and search your
phone numbers. This program turns out to be so useful , you share it i.vith your
friends. However, your friends aren'r so hm on detail as you arc, and they try to feed
your program this phone. book file:

<phoneboob
<person>

<narne>,'~elanie Grecn</name>
<phone>l.23-456-7893</phone>

</person>
</phonebook>

238 I App1mdix A: The XMl You Need for RSS HULU, LLC EXHIBIT 1006

:ion. Native
)r instance,
t.

·ed with the
: commonly
anese docu­
g5.

1w.iana.orgl

rr any more
gs, such as
, conducted
documents

dig inro the
e for you to

ation called
,le. Imagine

;earch your
: with your
, try to feed

Note that, although this file is perfectly well-formed, it doesn't fit the format you pre­
scribed for the phone book, and you find you need to change your program to cope
with this situation. If your friends had used number as you did to denote the phone
number, and not phone, there wouldn't have been a problem. However, as it is, this
second file isn't a valid phonebook document.

Document type definitions (DTDs)

For validiry to be a useful general concept, we need a machine-readable way of say­
ing what a valid document is-that is, which elements and attributes must be
present and in what order. XML 1.0 achieves this by introducing document type defi­
nitions (DTDs). For the purposes of RSS, you don't need to know much about
DTDs. Rest assured that RSS does have a DTD, and it spells out in detail exactly
which combinations of elements and attributes make up a valid document.

The purpose of a DTD is to express the allowed elements and attributes in a certain
document type and to constrain the order in which they must appear within that
document type. A DTD is generally composed of one file, which contains declara­
tions defining the element types and attribute lists. (In theory, a DTD may span more
than one file; however, the mechanism for including one file inside another-param­
eter entities-is outside the scope of this book.) lt is common to mistakenly conflate
element and element types. The distinction is that an element is the actual instance
of the structure as found in an XML document, whereas the instance's kind of ele­
ment is the element type.

Putting It Together
If you wane tO validate RSS against a DTD, you need to know how to link a docu­
ment to its defining DTD. This is done with a document type declaration, < !DOCTYPE
••• >, inserted at the beginning of the XML document, after the XML declaration in
our fictitious example:

<?xml version="l.O" encoding="us-ascii" ?>
<!DOCTYPE authors SYSTEM "http://example.com/authors.dtd">
<authors>

<person id="lear">
<name>Edward Lear</name>
<nationality>British</nationality>

</person>
<person id="asimov">

<name>Isaac Asimov</name>
<nationality>American</nationality>

</person>
<person id="mysteryperson"I>

</authors>

This example assumes the DTD file has been placed on a web server at example.com.
Note chat the document type declaration specifies the root element of the document,
not the DTD itself. You can use the same DTD co define person, name, or nationality

Anatomy ofan XML Document I 239 HULU, LLC EXHIBIT 1006

as the root element of a valid document. Certain DTDs, such as the DocBook DTD
for technical documentation (see http://www.docbook.org), use this feature to good
effect, allowing you to provide the same DTD for multiple docu1T1cnt types.

A validating XML processor is obligated to check the input document against its
DTD. If it doesn't validate, the document is rejected. To return ro the phone book
example, if your application validated its input files against a phone hook DTD, you
would have been spared the problems of dcbuggjng your program and correcting
your friend's XML, because your application would have rejected the document as
being invalid. While some of the programs that read RSS files do worry about valida­
tion, most don't.

XML Namespaces
XML 1.0 lets developers create their own elements and attributes, but it leaves open
the potential for overlapping names. "Title'' in one context may mean something
entirely different than "Title" in a different context. The "Namespaces in XML"
specification (which can be found at http://www.w3.org/TRJREC-xml-names) pro­
vides a mechanism developers can use to identify particular vocabularies using URls.

RSS 1.0 uses the URI http://purl.org/rss/1.0/ for its base namespace. The URI is just
an identifier; opening that page in a web browser reveals some links to the RSS, XML
1.0, and Namespaces in XML speci fications. Programs processing documents with
multiple vocabularies can use the namespaces to figure out which vocabulary they
are handling at any given point in a document.

Namespaces are very simple on the surface but are a well-known field of combat in
XML arcana. For more information on namespaces, see O'Rcilly's XML in a Nut­
shell or Learning XML The use of namespaces in RSS is discussed in much grearer
detail in Chapters 6 and 7.

Tools for Processing XML
While RSS can be parsed directly using text-processing tools, XML parsers are often
more convenient. Many parsers exist for using XML with many different program­
ming languages. Most are freely available, and the majority are open source.

Selecting a Parser
An XML parser typically takes the form of a libraty of code that you interface with
your own program. The RSS program hands the XML over to the parser, and the
parser hands back information abouc the contenrs of the XML document. Typically,
parsers do this either via events or via a document object model.

With event-based parsing, the parser calls a function in your program whenever a
parse event is encountered. Parse events include things like finding the start of an

240 I Appendix A: The XML You Need for RSS HULU, LLC EXHIBIT 1006

:Book DTD
ure to good
:s.

t against its
,hone book
k DTD, you
i correcting
. ocument as
bout valida-

leaves open
1 something
!S in XML"
1ames) pro­
using URls.

: URI is just
e RS$, XML
11nen ts with
,bulary they

,f combat in
Lin a Nut­
mch greater

!rs are often
nt program­
ce.

terfacc with
,er, and the
t. Typically,

whenever a
· start of an

element, the end of an element, or a comment. Most Java event-based parsers follow
a standard API called SAX, which is also implemented for other languages such as
Python and Perl. You can find more about SAX at http://www.saxproject.org.

Document object model (DOM)-based parsers work in a markedly different way.
They consume the entire XML input document and hand back a tree-like data struc­
ture that the RSS software can interrogate and alter. The DOM is a W3C standard;
documentation is available at http://www.w3.org/DOM .

Choosing whether to use an event- or DOM-based model depends on the applica­
tion. If you have a large or unpredictable document size, it is better to use event­
based parsing for reasons of speed and memory consumption (DOM trees can get
very large). If you have small, simple Xlv'IL documents, using the DOM leaves you
less programming work to do. Many programming languages have both event-based
and DOM support.

As XML matures, hybrid techniques that give the best of both worlds are emerging.
If you're interested in finding out what's available and what's new for your favorite
programming language, keep an eye on the following online sources:

• XML.com Resource Guide (http:llxml.comlpub/resourceguide)

• XMLhack XML Developer News (http://xmlhack.com)

• Free XML Tools Guide (http:llwww.garshol.priv.no/downloadlxmltools)

XSLT Processors
Many XML applications can transform one XML document into another or into
HTML The W3C has defined a special language, called XSL T, for doing transforma­
tions. XSLT processors are becoming available for all major programming platforms.

XSL T works using a stylesheet, which contains templates that describe how to trans­
form elements from an XML document. These templates typically specify what Xi'v!L
to output in response to a particular element or attribute. Using a W3C technology
called XPath gives you the flexibility not only to say "do this for every person ele­
ment," but also to give instructions as complex as "do this for the third person ele­
ment, whose name attribute is Fred."

Because of this flexibility, some applications have sprung up for XSLT that aren't
really transformation applications at all but take advantage of the ability to trigger
actions on certain element patterns and sequences. Combined with XSLT's ability to
execute custom code via extension functions, the XPath language has enabled appli­
cations such as document indexing to be driven by an XSL T processor.

The W3C specifications for XSL T and XPath can be found at http://w3.org/TR/xslt
and http://w3.org/TR/xpath, respectively. For more information on XSL T, see XSLT
(O'Reilly); for more on XPath, see XPath and XPointer (O'Reilly).

Tools for Processing XML I 241 HULU, LLC EXHIBIT 1006

