
US 2006012.9971 A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0129971 A1

Rojer (43) Pub. Date: Jun. 15, 2006

(54) OBJECTORIENTED PROCESSING OF Publication Classification

(76)

(21)

(22)

(60)

MARKUP

Inventor: Alan S. Rojer, Maplewood, NJ (US)

Correspondence Address:
Alan S. Rojer
423 Walton Road
Maplewood, NJ 07040-1119 (US)

Appl. No.: 11/286,914

Filed: Nov. 23, 2005

Related U.S. Application Data

Provisional application No. 60/631,291, filed on Nov.
24, 2004.

1000

1060

(51) Int. Cl.
G06F 9/44 (2006.01)
G06F 9/45 (2006.01)

(52) U.S. Cl. .. 717/104; 717/136

(57) ABSTRACT

An application-specific client for object-oriented processing
of markup includes a model object and a plurality of element
objects. The model object is configured to respond to client
requests including construct-element, accept-root-element,
and accept-root-text. The element objects are configured to
respond to client requests including accept-attribute, accept
element, and accept-text. Responses to requests contain
application-specific processing as necessary. A driver gen
erates client requests in response to processing of XML
markup. An RSS client processes markup describing syndi
cated web content to HTML markup.

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 1 of 17 US 2006/0129971 A1

FIG. I

1000 1002 1004

FIG 2

// Interface00' . . .
class Model''' {
Element's construct element (Tex late
bool accept element'' (Element' *element020);
bool accept text (Text text'');

class Element

bool accept attribute 024 (Text:00 ko, Text:00 v10, Model 1906 &model);
bool configure02 (Model 9 &model 9'');
bool accept element'' (Element *element', Model' &model');
bool accept text.00 (Text text, Model &model');
bool commit0? (Model:00 &model);

t1010 1018)

1008 {

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 2 of 17 US 2006/0129971 A1

FIG. 3

<itemd
item = model'?->construct element''' ("item");
item.05->configure' ();

<title>
title = model'-> construct element'' ("title");
title->configure0? ()

Example Feed
title'->accept text

</title>
title956.--> commit032 ();
item->accept element' (title

<link href="http://example.org/ f>"
link = model'?->construct element' ("link");
link'->accept attribute' ("href", "http://example. org/>") ;

A.

'("Example Feed");

1056) F

link-> configure''' ();
link05-> commit0? () ;
item.0->accept element' (link);

</iteme
item.05-> commit? () ;
model 9’->accept element' (item');

FIG. 4

1000

Abstract XML Driver
1060

Generic XML Driver

FIG. 5

typedef char XML Char';
typedef XML Char0+ ExpatName';
typedef XML Char'* * ExpatAttributes';
typedef XML Chark Expatbuffer';

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 3 of 17 US 2006/0129971 A1

FIG. 6
struct AbstractXmlDriver {

// data members. . .
XML-Parser parser';
bool failed;
// factory. . .
AbstractXmlDriver" () : parser' (O), failed 97 (0) ()
virtual AbstractXmlDriver' () {}
// parse service entry. . .
bool parse' (FILE);
// expat handler methods. . .
static void start tag handler' (void*, ExpatName', Expatattributes');
static void end tag handler' (void*, ExpatName'');
static void characters handler' (void*, ExpatBuffer', int);
// pure virtual notifications for specializations. . .
void start tag' (ExpatName', Expatattributes');
void end tag' (ExpatName'');
void characters' (ExpatBuffer', int);
// etc. . .
bool fail.09 (Text.00)

FIG. 7

void AbstractXmlDriver'':: start tag handler' (
void* v,
ExpatName tag,
ExpatAttributes attr

)
{ -

AbstractxmlDriver' *p' = (AbstractXmlDriver
if (pl.0-> failed 1076) plo->start tag.090 (tago, attri02)

1062 -) v1098,

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 4 of 17 US 2006/0129971 A1

FIG. 8

void AbstractXmlDriver'': : end tag handler' (
void* v,
ExpatName tag

)
(
AbstractxmlDriver' *p1110 = (AbstractXmlDriver *) v;
if (po-> failed”) p0->end tag 092 (tago);

FIG. 9

void AbstractXmlDriver'': : characters handler' (
void* v,
ExpatBuffer s,
int length

)
{
AbstractxmlDriver p = (AbstractxmlDriver *) v;
if (!p-> failed 1076) p->characters (s, length');

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 5 of 17 US 2006/0129971 A1

FIG. 10

bool AbstractXmlDriver''::parse' (FILE f)
{

parser' = XML ParserCreateNS (NULL, : ');
if (! parser') return fail' ("couldn't create parser");
XML SetUserData (parser'', (void*) this);
XML SetElementHandler (parser', start-tag_handler'', end tag handler'),
XML SetcharacterDataHandler (parser', characters handler');
const sizet buffer size' = 8192;
char buffer buffer size??);
while (1) {

1124, 1. 122 f 1120) size it bytes_read' = fread (buffer , buffer size",
if (ferror (f20)) {
fail' ("read error"); break;

}
int done? = feof (f);
if (XML Parse (parser', buffer', bytes read', done')) {
fail' ("XML error"); break;

}
if (failed') fail' ("processing error"); break;
if (done') break;

}
XML-ParserFree (parser');
parser' = 0;
return failed';

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 6 of 17 US 2006/0129971 A1

FIG. II

H1130 E 1132 template <struct , Struct
struct GenericxmlDriver' : public AbstractXmlDriver'
{

// data members . . .
H30s modell;
StackE * > stack;
// factory. . .
GenericXmlDriver
GenericXmlDriver
// AbstractXmlDriver' pure virtual member functions. . .

1138 (H 1130s)
1140 ().

void start tag''' (ExpatName', ExpatAttributes');
void end tag''' (ExpatName'');
void characters''' (ExpatBuffer', int);
// stack operations. . .
void pushi (E32 k);
E1132k pop1150 ().
E 1132k top1152 ();
bool is empty' ()

};
Const;

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 7 of 17 US 2006/0129971 A1

FIG. 12

template <struct H', struct Ea
void GenericxmlDriver''<H, E3’s ::start tag 1142 (

ExpatName0 tag 56,
ExpatAttributes attris

)

1132 1160 11.56 E. e); = - model'->construct element' (tag
if (!el160) {
fail' ("couldn't construct element");
return;

}
ExpatAttributes07 s? = attr; while (ks?) {
Text 100 key 16 - s1162++,
Text:00 valuell = rs1162++.
f (i.e.->accept attribute?’ (key, value, model')) {
fail' ("attribute was declined");
delete e';
return;

if (!e->configure (model))
fail' ("configure failed");
delete e';
return;

pushi (e1160)

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 8 of 17 US 2006/0129971 A1

FIG. 13

template <struct H', struct E''>
void GenericxmlDriver''<H', E''>: : end tag (
ExpatName' tag

)
{

E1132 k el16 = pop 1150 () ;
if (!e->commit02 (model)) {
fail' ("commit failed");
delete e1168.
return;

if (tops? ()) { 11.68
if (!top' () ->accept element' (e', model')) {

fail ("accept failed");
delete e';
return;

}
}
else {

if (! mode ... accept elemen
fail' ("model accept failed");
delete e:
return;

11134 1014 (e1168)) {

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 9 of 17 US 2006/0129971 A1

FIG. I.4

template <struct H', struct E°s
void GenericxmlDriver06&H 130, E 1132
ExpatBuffer's,
int length

:: characters''' (

)
{

Textil010 till 74 (s1170 length");
if (top? ()) { .

if (!top'' () ->accept text.00 (t", model 3)) {
fail' ("element declined text");
return;

}
}
else {

if (!_mode ... accept text
fail' ("model declined text");
return;

1134 1016 (t1174)) {

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 10 of 17 US 2006/0129971 A1

FIG. I5

FIG. 16

struct Trivial Element''' {
virtual bool accept attribute''' (Text'', Text, TrivialModel's.) {

return 1 ;
}
virtual bool configure''' (Trivial Model''' &) (return 1; }
virtual bool accept element' (Trivial Element *e, Trivial Model's.) {

delete e';
return 1 ;

}
virtual bool accept text' (Text'', Trivial Model' &) { return 1 ; };
virtual bool commit' (Trivial Model' &) { return 1; }

};

FIG. I. 7

struct Trivial Model {
virtual Trivial Element'''“ construct element' (Text

return new Trivial Element';
1010) {

}
virtual bool accept element' (Trivial Element''' ke

delete e';
return 1 ;

1198)

virtual bool accept text'' (Text'') { return 1; }
};

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 11 of 17 US 2006/0129971 A1

FIG. 18

// ras1202. . .
r4sModel '0' ()
r4sElement''' {

r4sField?0 {
r4sTitle {}
r4sLink? ().
r4sDescription

}
r4sComposite' {

r4s Item' ()
r4sChannel’ { }

}
r4s Feed??? ()

}
r4sHtml Writer''' {}

1214 {}

FIG. 19

struct r4sModel' {
// members . .
r4sFactory’ factory??;
Sequence.<rasFeed's feeds;
// factory. . .
virtual rasMOdel''' () { /* delete elements of feeds' */}
// Model' requests. . .
r4SElement' * construct element' (Text n) (
r4sElement' *e = factory'. manufacture (n);
return e ? e : new rasField';

}
bool accept root element' (raselement' * e) {

if (!e->put model feed'' (this)) delete e;
return 1 ;

}
bool accept root_text' (Text) { return 1; }

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 12 of 17 US 2006/0129971 A1

FIG. 20

struct r 4 selemen
// Element' requests. . .
virtual bool accept attribute''' (Text, Text, rasMOdel's.) { return 1; }
virtual bool configure' (rasMOdel's.) { return 1; }
virtual bool accept element' (rasElement' *e, r4sModel's.) {

delete e; return 1 ;

1206 {

}
virtual bool accept text'' (Text, rasMOdel's.) { return 1; }
virtual bool commit' (rasMOdel's.) { return 1; }
// double-dispatch accumulator methods . . .
virtual bool put model feed'' (rasMOdell'*) (return 0; }
virtual bool put feed channel' (r4sFeed'*) return 0; }
virtual bool put channel item'' (raschannel'*) (return 0; }
virtual bool put field' (r4sComposite'*) { return 0; }

};

FIG 21

d1222 1206 struct rasfee public r4s Elemen
Sequence.<r4sChannel's channels';
virtual bool accept element'' (r4s Element' *e, r4sModel' &) {

if (!e->put feed_channel' (this)) delete e :
return e;

virtual bool put model feed' (r4sModel' *m) {
m-> feeds'. append (this);
return 1 ;

}
virtual rasfeed'' (/* delete constituents of channels' * /)

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 13 of 17 US 2006/0129971 A1

FIG. 22

1216. : public r4sElement''' { struct ras.Composite
// members . . .
r4sTitle k title1266
r4sLink?? k link126;
r4sDescription' * description'70;
// factory. . .
r4sComposite
delete description
delete link;
delete title';

1272 {
1270

11220
1218

struct raisChanne public r4sComposite''' {
Sequence.<rasitem items';
virtual bool accept element'' (ras Element' *e, rasmodel' &); {

if (e->put channel item' (this)) return 1;
if (e->put field' (this)) return 1;
delete e;
return 1;

}
virtual bool put feed channel' (r4s Feed' *f) {
f->-channels'. append (this);
return 1 ;

}
virtual r4sChannel''' { /* delete constituents of items' */)

};

struct ras.Item'': public r4sComposite
virtual bool accept element' (rasElement' *e, r4sModel' &) {

if (!e->put field' (this)) delete e;
return 1 ; -

}
virtual bool put channel item' (r4sChannel' *c) {

c-> items''. append (this);
return 1 ;

}
};

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 14 of 17 US 2006/0129971 A1

FIG. 23
1208. : public raselement' { struct rasFiel

// member . . .
Text text;
// Element' specialization (s)...
virtual bool accept text'' (Text, r4sModel' &);

struct rasTitle: public r4sField''' {
virtual bool put field'' (ras.Composite' *c) {

c-> title = this;
return 1 ;

}
};

struct rasLink: public rasField'' {
virtual bool put field' (r4sComposite'* c) {

c-> link = this;
return 1 ;

}
};

struct rasDescription: public rasField'' {
virtual bool put field'' (ras.Composite' * c) {

c-> description' = this;
return 1 ;

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 15 of 17 US 2006/0129971 A1

FIG. 24

struct r4sHtml Writer''' {
r4sHtml Writer' (const rasMOdel' &m, Textsink &) {

/* format HTML top boilerplate */
foreach (f in m. feeds') view'' (f);
/* format HTML bottom boilerplate */

}
bool view' (constrasfeed??? *f) {

foreach (c in f-> channels’) view'' (c);

bool view'' (const r4sChannel k c) {
/* format link, title, and description
foreach (i in c-> items') view'' (i);

bool view'' (const r4sItem *i) {
/* format link', title', and description

1270 /

1270 /

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 16 of 17

FIG.25

1304 int main (int argc, char * * argv)

r4sModel?' model 306;

US 2006/0129971 A1

GenericxmlDriver.<rasMOdel', r4sElement's driver (model);
int arg=1; while (arg < argC) {
FILE * f = fopen (argv arg++));
driver 1308.parse'082 (f);
fclose (f);

}
TextFileSink sink (stdout);
r4sHtml Writer' writer' (model', sink);
return 0;

FIG. 26

KSSd

<channel 2
<title>One Channel.</title>
<link>http://one. demo/channel -1/-/linkd
<description>Our first RSS Channel.</description>
<generator>Hand-crafted RSS code</generator>
<lastBuildDates Sun Nov 20 16:15:20 EST 2005</lastBuildDates
<item)

<title>Our First Item</title>
<link-http://one. demo/item-2005-11-20-001/</link->
<pubDatex Sun Nov 20 16:17:51 EST 2005</pubDatex

<description>
The first RSS item we ever published Don't miss this
</description>

</item>
<item>

<title>Our Second Item</title>
<pubDatec Sun Nov 20 16:18:09 EST 2005-/pubDatex
<link2.http://one. demo/item-2005-11-20-002/</link>

<description>
Our second RSS item. Not as cool as the first one.
</description>

</itemd
</channeld

</rss>

HULU, LLC EXHIBIT 1010

Patent Application Publication Jun. 15, 2006 Sheet 17 of 17 US 2006/0129971 A1

FIG. 27

<html>
<head>
<title>r4s Feed Summary</title>

</head>
<body>
<h1>r 4s Feed Summary.</h1>
<h2>One Channel.</ad </h2>
<p2-Our first RSS Channel.</p>
<h3>

Our First Item</ad
</h.3>
<p>

The first RSS item we ever published! Don't miss this
</p>
<h3>

Our Second Items/ad
</h3>
<ps
Our second RSS item. Not as cool as the first one.
</p>
</body>
</html>

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

OBJECTORIENTED PROCESSING OF MARKUP

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001) This application claims the benefit of PPA Serial
Number 60/631,291, filed Nov. 24, 2400 by the present
inventor, the disclosure of which is incorporated herein by
reference.

BACKGROUND OF THE INVENTION

0002 This invention relates to application-specific
object-oriented processing of markup, including but not
limited to the Extensible Markup Language (XML).
0003. Object-oriented programming has been embraced
by many programmers seeking to enhance their productivity.
A useful introduction to object-oriented programming may
be found in the book "Object-Oriented Analysis and Design
with Applications, 2nd Edition,” by Grady Booch, Ben
jamin/Cummings, 1994, ISBN 0-8053-5340-2. Another use
ful object-oriented programming text is "Design Patterns:
Element of Reusable Object-Oriented Software.” by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Addison-Wesley, 1995, ISBN 0-201-63361-2. For the lan
guage programming language C++, which will be utilized in
this disclosure, a useful reference is “The C++ Programming
Language, 3rd Edition.” by Bjarne Stroustup. Addison
Wesley, 1997, ISBN 0-201-88954-4. Each of these reference
is incorporated herein by reference.
0004. In object-oriented programming, an object encap
Sulates both data and operations. An object is an instance of
one or more classes. A class defines data and operations
which are available for objects which are instances of the
class. An element of data defined in a class is denoted a
member. Each distinct object from a class has its own
distinct instance of each member, except where members are
explicitly denoted as class members, in which case all class
instances share the same data instance. An operation defined
for an object from a class is denoted a member function. A
member function may be invoked for an object which is an
instance of the class in which it is defined; the member
function may make use of the member data which is specific
to the particular object for which the member function was
invoked.

0005 An object-oriented programming language
includes facilities for class definition as well as facilities for
creating objects, invoking operations on objects, and
destroying objects. Some popular object-oriented program
ming languages are C++, Java, and C#.
0006 An application is a computer program that carries
out some useful task on behalf of a user. Applications are
oriented towards such fields as business, engineering, enter
tainment, and media production. An object-oriented appli
cation uses application-specific classes to represent entities
that are meaningful in the context of the application. Thus a
business application might use application-specific classes
to represent customers, purchase orders, inventory items,
and shipments. In an object-oriented application, class facili
ties are used to instantiate application-specific objects,
which are then utilized to carry out operations which are
meaningful in the context of the application.
0007 Among the important characteristics of applica
tion-specific objects are associations which represent rela

Jun. 15, 2006

tionships between application-specific objects. For example,
in a business application, an application-specific object
representing a purchase order might be associated with an
application-specific object representing a customer. Simi
larly, a customer object could be associated with a plurality
of purchase-order objects. Such associations may be realized
by use of pointer or references members. For example, a
purchase order object could contain a pointer member which
indicates the Subject object. A collection of application
specific objects configured to represent application-specific
relationships is denoted an application-specific object-ori
ented data structure. An application-specific object-oriented
data structure is a useful component in an application.
Indeed an application is often most easily understood as a
process in which an application-specific object-oriented data
structure is created from an Stored representation, operations
reflecting meaningful activities in the application context are
performed on the data structure, and a stored representation
is written. The stored representations which are read and
written by an application are often in the form of markup.
0008 An application-specific data structure typically
includes numerous application-specific objects, organized
according to one or more schemes that reflect the require
ments of the application. It is often convenient to encapsu
late the application-specific object-oriented data structure in
a single model object. The model object's class or classes
may define one or more members which reference applica
tion-specific objects singly or in collections, and one or more
member functions, which facilitate random access to par
ticular application-specific objects. For example, a model
class in a business application might define a member
function in which a customer object is provided in response
to a textual customer number. Such a model class might
further provide the entire collection of customers, or a
collection of purchase orders which have been received but
not yet shipped. The particular members and member func
tions of a model class are designed to facilitate the perfor
mance of the tasks that are the purpose of the application.

0009. The stored representations which are read and
written by applications are often in the form of markup. Of
particular importance for markup is XML, which is in wide
use. A useful reference for XML is the book "XML In a
Nutshell, 3rd Edition', by Elliotte Rusty Harold and W.
Scott Means, published by O'Reilly, 2004, ISBN 0-596
00764-7, incorporated herein by reference. Many applica
tions are required to read or write XML or other markup
languages.

0010 Markup consists of hierarchically organized tagged
elements. A tagged element typically consists of a start tag,
an optional body, and an end tag. Where the body is absent,
the start tag and end tag may be combined into a single tag.
The start tag includes a textual tag name and optional
attributes. The tag name describes the tagged element. Each
attribute includes a textual key and a textual value.
Attributes may provide additional descriptive information
about the tagged element. The body of the tagged element
may contain both instances of textual content and nested
tagged elements. The end tag concludes the tagged element.

0011. The hierarchical organization of markup is
reflected in the nesting of tagged elements. The body of a
tagged element may contain nested tagged elements as well
as textual content. The containing tagged element is denoted

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

the parent. The nested tagged element is denoted the child.
A tagged element which lacks a parent is denoted a root. In
XML, a well-formed document is required to contain
exactly one root tagged element.
0012. An application programming interface (APT)
specifies an interface to computational services. An API
permits decomposition of a programming task between the
provider of the API and the consumer of the API. As long as
clients and providers adhere to the API, diverse clients may
make use of a single provider. Likewise, providers may be
freely interchanged without affecting clients. APIs are avail
able which facilitate markup processing. Although markup
may be processed by any programming language, object
oriented languages including Java, and Scripting languages
includes Perl and Python have been most widely used.
However C and especially C++ are also well-suited to
markup processing. The aforementioned XML book covers
Java programming interfaces. A reference for C++ program
ming interfaces may be found in the book “C++ XML, by
Fabio Arciniegas, published by New Riders, 2002, ISBN
0-7357-1052-X, incorporated herein by reference.
0013 The oldest XML API is the Document Object
Model (DOM). DOM processes markup to a tree-like data
structure. DOM is a W3C standard which is documented
online at http://www.w3.org/DOM/. DOM presents markup
as an object-oriented data structure however the objects of
the presentation faithfully the structure and properties of the
markup. DOM does not provide application-specific objects
for business, engineering, entertainment, or artistic applica
tions.

0014) An alternative API to DOM is SAX, the Simple
API for XML. SAX processes markup to a series of event
notifications, where the event notifications correspond to
particular Subelements of the processed markup. Expat is a
open-source implementation of the SAX API, originally
written by James J. Clark, with contributions by David
Megginson and David Brownell. Expat is in wide use. Expat
materials may be found online at the official Expat website,
http://sax. Source-forge.net/. Expat does not provide object
oriented facilities for markup processing other than the SAX
processor itself, the operation of which is controlled using an
object-oriented interface.
0015 SAX and DOM are of limited benefit to a program
mer who desires an application-specific object-oriented data
structure, consisting of application-specific objects intercon
nected to reflect properties and associations that are natural
to the application. To build an application-specific object
oriented data structure from SAX notifications, a program
mer must maintain complex context to interpret the events in
terms of the ongoing construction of the desired structure. In
DOM, the programmer must systematically traverse a com
plex tree structure, generating a parallel structure consisting
of application-specific objects. In both SAX and DOM, the
programmer must invest significant additional effort to con
struct the desired application-specific object-oriented data
Structure.

0016. Thus, it would be advantageous to reduce the effort
required for the construction of an application-specific
object-oriented data structure from markup. It would also be
advantageous to maximize flexibility in the structure and
function of the application-specific objects which are con
structed corresponding to tagged elements.

Jun. 15, 2006

SUMMARY

0017. An application-specific client for object-oriented
processing of markup includes a model object and a plurality
of element objects. The model object is configured to
respond to client requests including construct-element,
accept-root-element, and accept-root-text. The element
objects are configured to respond to client requests including
accept-attribute, accept-element, and accept-text. Responses
to requests contain application-specific processing as nec
essary. A driver generates client requests in response to
processing of XML markup. An RSS client processes
markup describing syndicated web content to HTML
markup.

BRIEF DESCRIPTION OF DRAWINGS

0018 FIG. 1 depicts an exemplary embodiment of a
system for processing markup.
0019 FIG. 2 depicts an exemplary embodiment of the
interface for object-oriented processing of markup.
0020 FIG. 3 demonstrates the processing of markup to
requests in the interface.
0021 FIG. 4 depicts an exemplary embodiment of an
Xml-driver.

0022 FIG. 5 depicts an exemplary embodiment of type
defs which relate expat interface parameters to functional
aCS.

0023 FIG. 6 depicts an exemplary embodiment of a
class abstract-Xml-driver.

0024 FIG. 7 depicts an exemplary embodiment of an
abstract-Xml-driver class function start-tag-handler.
0025 FIG. 8 depicts an exemplary embodiment of an
abstract-Xml-driver class function end-tag-handler.
0026 FIG. 9 depicts an exemplary embodiment of an
abstract-Xml-driver class function characters-handler.

0027 FIG. 10 depicts an exemplary embodiment of an
abstract-Xml-driver member function parse.
0028 FIG. 11 depicts an exemplary embodiment of a
template class generic-Xml-driver.
0029 FIG. 12 depicts an exemplary embodiment of a
generic-Xml-driver member function start-tag.
0030 FIG. 13 depicts an exemplary embodiment of a
generic-Xml-driver member function end-tag.
0031 FIG. 14 depicts an exemplary embodiment of a
generic-Xml-driver member function characters.
0032 FIG. 15 depicts an exemplary embodiment of a

trivial client implementation of the interface.
0033 FIG. 16 depicts an exemplary embodiment of the

trivial element class which provides a client implementation
of the element interface.

0034 FIG. 17 depicts an exemplary embodiment of the
trivial model class which provides a client implementation
of the model interface.

0035 FIG. 18 depicts an exemplary embodiment of a
module providing a client implementation of the interface
Suitable for an application processing a Subset of RSS.

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

0.036 FIG. 19 depicts an exemplary embodiment of a
RSS model class.

0037 FIG. 20 depicts an exemplary embodiment of a
RSS element class.

0038 FIG. 21 depicts an exemplary embodiment of a
RSS feed class.

0.039 FIG. 22 depicts an exemplary embodiment of a
RSS composite class and its specializations.
0040 FIG. 23 depicts an exemplary embodiment of a
RSS field class and its specializations.
0041 FIG. 24 depicts an exemplary embodiment of a
RSS HTML writer class.

0.042 FIG. 25 depicts an exemplary embodiment of an
application which reads RSS and writes HTML.
0.043 FIG. 26 depicts an exemplary embodiment of a
sample RSS document.
0044 FIG. 27 depicts an exemplary embodiment of the
HTML produced by the rss-html-writer operating on the
sample RSS document.

DETAILED DESCRIPTION

1 Object-Oriented Interface
0045 FIG. 1 depicts an examplary embodiment of a
system for processing markup. The markup is processed by
a driver 1000, which reads the markup, detects tagged
elements, attributes, and intances of textual content, and
generates a sequence of requests. The requests are specified
by an interface 1002. A client 1004 responds to the requests.
In consequence of the responses of the client 1004 to the
requests of the driver 1000, an application-specific object
oriented data structure may be produced.
0046 FIG. 2 depicts an examplary embodiment of the
interface 1002. The interface 1002 specifies a collection of
requests which govern interactions between the driver 1000,
which generates the requests, and the client 1004, which
responds to the requests. The client 1004 includes a single
instance of a class model 1006 and one or more instances of
a class element 1008. An instance of the model 1006
encapsulates the application-specific object-oriented data
structure which is produced by processing the markup. The
model 1006 corresponds to the totality of the processed
markup, including one or more documents. An instance of
the element 1008 corresponds to a particular tagged element;
typically an instance of the element 1008 represents an
entity which is meaningful in the context of an application.
The interface 1002 also makes use of a scalar class text
1010, an instance of which represents textual content and
other textual data.

1.1 Model Requests
0047. An instance of the model 1006 encapsulates the
application-specific object-oriented data structure which is
produced by processing the markup. The model instance
corresponds to the totality of the processed markup, includ
ing one or more documents. The model instance responds to
a request construct-element 1012, which is requested when
a start tag is detected in the markup. The model instance
responds to a request accept-root-element 1014, which is
requested when a root instance of the element 1008 has been

Jun. 15, 2006

Successfully processed from markup. The model instance
responds to a request accept-root-text 1016, which is
requested when root textual content is detected in the
markup.

0048. An instance of the model 1006 responds to the
request construct-element 1012. The construct-element 1012
is requested when a start tag is detected in the markup. The
construct-element 1012 is Supplied with an argument name
1018, a instance of text 1010 which indicates the tag name.
The construct-element 1012 responds with a newly con
structed instance of the element 1008, unless the request is
invalid, in which case the construct-element 1012 returns
null.

0049. An instance of the model 1006 responds to the
request accept-root-element 1014. The accept-root-element
1014 is requested when a root element 1008 has been
Successfully processed from markup. In XML, a single root
element 1008 is permitted in a document but the interface
1002 permits the model 1006 to enforce or relax that
requirement. The accept-root-element 1014 is supplied with
an argument element 1020, an instance of the element 1008.
The accept-root-element 1014 returns a boolean value, indi
cating whether the supplied element 1020 was acceptable to
the responsive instance of the model 1006. The responsive
model instance assumes responsibility for the eventual dele
tion of the supplied element 1020.
0050. An instance of the model 1006 responds to the
request accept-root-text 1016. The accept-root-text 1016 is
requested when root textual content is processed from the
markup. Root text is textual content which is outside of any
tagged element. Often such text is ignored, but the model
instance may enforce any policy. The accept-root-text 1016
is Supplied with an argument text 1022, a instance of text
1010, representing the root textual content. The accept-root
text 1016 returns a boolean value, indicating whether the
supplied text 1022 was acceptable to the responsive model
instance.

1.2 Element Requests
0051. An instance of the element 1008 corresponds to a
tagged element. A tagged element includes a start tag,
optional attributes, an optional body containing nested
tagged elements and text, and an end tag. The element
instance responds to a request accept-attribute 1024, which
is requested when an attribute is detected in the start tag of
the corresponding tagged element. The element instance
responds to a request configure 1026, which is requested
after all the attributes in the start tag have been processed,
but before any text or tagged elements have been processed
from the body of the corresponding tagged element. The
element instance responds to a request accept-element 1028,
which is requested when a nested tagged element has been
Successfully processed from the body of the corresponding
tagged element. The element instance responds to a request
accept-text 1030, which is requested when textual content
has been processed from the body of the corresponding
tagged element. The element instance responds to a request
commit 1032, which is requested when the end tag of the
corresponding tagged element has been detected.

0052 An instance of the element 1008 responds to the
request accept-attribute 1024. The accept-attribute 1024 is
requested when an attribute is detected in the start tag of the

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

corresponding tagged element. The accept-attribute 1024 is
provided with an argument key 1034, of text 1010, repre
senting the attribute key. The accept-attribute 1024 is pro
vided with an argument value 1036, of text 1010, represent
ing the attribute value. The accept-attribute 1024 is provided
with an argument model 1038, an instance of the model
1006, encapsulating the application-specific data structure.
The accept-attribute 1024 returns a boolean value, indicating
whether the attribute was successfully processed. The
responsive element instance may use the return value to
indicate. whether a Supplied attribute is recognized or
whether any externalities implied by the supplied attribute
have been satisfied.

0053 An instance of the element 1008 responds to the
request configure 1026. The configure 1026 is requested
after all the attributes in the start tag have been detected, but
before any text or tagged elements have been processed
from the body of the corresponding tagged element. The
configure 1026 is provided with an argument model 1040, an
instance of the model 1006, encapsulating the application
specific data structure. The configure 1026 returns a boolean
value indicating whether the previously supplied attributes,
if any, are satisfactory for the purposes of the responsive
element instance. The responsive element instance may use
this request to determine whether any required attributes
have been provided.
0054 An instance of the element 1008 responds to the
request accept-element 1028. The accept-element 1028 is
requested when a nested tagged element has been success
fully processed from the body of the corresponding tagged
element. The accept-element 1028 is supplied with an argu
ment element 1042, an instance of the element 1008, cor
responding to the nested tagged element, which is subject to
acceptance. The accept-element 1028 is supplied with an
argument model 1044, an instance of the model 1006,
encapsulating the application-specific data structure. The
accept-element 1028 returns a boolean value, indicating
whether the supplied element 1042 is satisfactory for con
tainment by the responsive instance of the element 1008.
The responsive element instance assumes responsibility for
the eventual deletion of the supplied element 1042.
0055 An instance of the element 1008 responds to the
request accept-text 1030. The accept-text 1030 is requested
when textual content has been processed from the body of
the corresponding tagged element. The accept-text 1030 is
Supplied with an argument text 1046, an instance of text
1010, representing the textual content. The accept-text 1030
is supplied with an argument model 1048, an instance of the
model 1006, encapsulating the application-specific data
structure. The accept-text 1030 returns a boolean value,
indicating whether the supplied text 1010 is satisfactory for
containment by the responsive element instance.
0056. An instance of the element 1008 responds to the
request commit 1032. The commit 1032 is requested when
the end tag of the corresponding tagged element has been
detected. The commit 1032 is supplied with an argument
model 1050, an instance of the model 1006, encapsulating
the application-specific data structure. The accept-text 1030
returns a boolean value, indicating whether the responsive
element instance is in a satisfactory condition for ending.
The responsive element instance may use this request to
determine whether any required subelements have been
provided.

Jun. 15, 2006

2 Demonstration

0057 FIG. 3 demonstrates the processing of XML
markup to requests in the interface 1002. XML markup is
shown in a bold font, left-justified; interfaces requests are
shown indented, in a normal font.
0058 A first line of markup presents a start tag of a root
tagged element. The start tag '<item>'' is processed to
generate the request construct-element 1012, which is
requested to a demo-model 1052. The demo-model 1052 is
an instance of the model 1006. The request returns a
demo-item 1054, an instance of the element 1008. For
simplicity, the demo-item 1054 and subsequent returned
elements from the construct-element 1012 are shown here as
if they were assigned to variables. More typically, the newly
constructed elements would be pushed onto a stack. There
are no attributes to be supplied to the demo-item 1054, so the
configure 1026 is requested of the demo-item 1054, provid
ing a notification to the demo-item 1054 that all attributes
have been processed.
0059 A second line of markup presents a start tag of a
nested tagged element. The start tag '-title> is processed to
generate the request construct-element 1012, which is
directed to the demo-model 1052. The request returns a
demo-title 1056, an instance of the element 1008. There are
no attributes to be supplied to the demo-title 1056, so the
configure 1026 is requested of the demo-title 1056,
0060 A third line of markup presents textual content. The
textual content is processed to generate the accept-text 1030,
which is directed to the demo-item 1054.

0061 A fourth line of markup presents an end tag of a
nested tagged element. The end tag “-/title> is processed to
generate the request commit 1032, which is directed to the
demo-title 1056. The demo-title 1056, fully processed, is
now presented to the containing element. A request accept
element 1028 directed to the demo-item 1054 presents the
demo-title 1056.

0062. A fifth line of markup presents a start tag of a
nested tagged element, including an attribute. The start tag
''<link>'' is processed to generate the request construct
element 1012, which is directed to the demo-model 1052.
The request returns a demo-link 1058, an instance of the
element 1008. The attribute “href” is presented to the newly
constructed demo-link 1058 in a request accept-attribute
1024. The configure 1026 is then requested of the demo-link
1058. The end tag is immediately detected; a request commit
1032 is directed to the demo-link 1058, following which a
request accept-element 1028 is directed to the demo-item
1054, presenting the demo-link 1058.
0063 A sixth line of markup presents an end tag of the
root tagged element, corresponding to the demo-item 1054.
A request commit 1032 is directed to the demo-item 1054,
and the demo-item 1054 is presented to the demo-model
1052 in a request accept-root-element 1014.
3 XML Driver for Interface

0064 FIG. 4 depicts an examplary embodiment of an
Xml-driver 1060. The Xml-driver 1060 is a refinement of the
driver 1000, specifically adapted for processing XML
markup. The Xml-driver 1060 processes XML markup and
dispatches client requests in the interface 1002. To process
XML markup, the xml-driver 1060 uses the open-source

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

XML parser expat, by James J. Clark. Expat is itself a
specialized provider of an abstract markup programmer's
interface, SAX, which is a simple stream-oriented interface
that specifies notifications to the parse client on start tag, end
tag, and textual content. The Xml-driver 1060, acting as the
client of expat, provides buffers of markup to expat, receiv
ing from expat notifications of start tags, end tags, and
textual content as expat processes the Supplied markup. The
xml-driver 1060 transforms expat notifications to client
requests in the interface 1002.
0065. The Xml-driver 1060 is partitioned between an
abstract-xml-driver 1062, and a generic-xml-driver 1064.
The abstract-xml-driver 1062 interfaces directly with expat.
The abstract-xml-driver 1062 is independent of particular
client implementations of the model 1006 and the element
1008. The abstract-xml-driver 1062 specifies pure virtual
notification methods which its specializations must provide
to respond to expat notifications.
0.066 The generic-xml-driver 1064 specializes the
abstract-xml-driver 1062. The generic-xml-driver 1064 is a
template class which is parameterized by client implemen
tations of the model 1006 and the element 1008. The generic
generic-xml-driver 1064 specializes the virtual member
functions of the abstract-xml-driver 1062 which represent
the expat notifications; the expat notifications are converted
to client requests in the interface 1002, specialized to the
particular client implementations of the model 1006 and the
element 1008 by which the generic-xml-driver 1064 is
parameterized.
0067. Before plunging into the details of the abstract
xml-driver 1062 and the generic-xml-driver 1064, there is a
technicality pertaining to expat notifications. Expat makes
extensive use of the XML Char typedef throughout its
programmer's interface; which may be a 16 or 8 bit encoded
datum. In case the data is encoded using UTF-8, the XML
Char is defined to be the usual C char. Conceptually, in the

various notifications expat provides, there are names,
attributes, and buffers. Expat interfaces simply use variants
of the indirect references to XML Char for all these ele
ments. In the particular embodiment, the names, attributes
and buffers are distinguished for clarity.
0068 FIG. 5 depicts an examplary embodiment of type
defs which relate expat interface parameters to functional
names. The typedef XML Char 1066 is defined for refer
ence purposes as a C char, but in an alternative embodiment
the XML Char could be defined as a 16-bit short or even
something larger. The expat-name 1068 is defined as a
pointer to a XML Char, which is guaranteed by expat to
behave like a typical C String; i.e., a null-terminated
sequence of XML Char. The expat-attributes 1070 is
defined as a pointer to a pointer to a XML Char; expat
provides a null terminated array of pointers to typical C
strings. This array is actually a flattened sequence of pairs,
corresponding to attribute key, value pairs. The expat-buffer
1072 is defined as a pointer to XML Char but the expat
buffer 1072 is not a typical C string in that it’s not guaren
teed to be null-terminated. Hence in any interface providing
a expat-buffer 1072 there is a length parameter indicating the
length of the data in the buffer.
3.1. Abstract XML Driver

0069 FIG. 6 depicts an examplary embodiment of the
abstract-Xml-driver 1062. The abstract-Xml-driver 1062

Jun. 15, 2006

encapsulates the expat XML parser. The abstract-xml-driver
1062 creates and invokes expat and the abstract-xml-driver
1062 provides class functions which are the recipients of the
expat notifications corresponding to the parsed XML
markup. The abstract-xml-driver 1062 also provides pure
virtual member functions which must be specialized by
derived classes (such as the generic-xml-driver 1064). A
specialization of the abstract-xml-driver 1062 indirectly
receives expat notifications via its implementations of the
pure virtual member functions.
0070 A member parser 1074 is provided by the abstract
xml-driver 1062. The parser 1074 is of type XML parser.
The XML parser is defined by expat; the parser 1074 is an
opaque pointer to the expat parser.
0.071) A boolean member failed 1076 is provided by the
abstract-xml-driver 1062. The member failed 1076 repre
sents the parse status; if any failure has been detected, the
failed 1076 will be true.

0072 A constructor 1078 is provided by the abstract
xml-driver 1062. The constructor 1078 initializes the parser
1074 to null and the member failed 1076 to false.

0073) A virtual destructor 1080 is provided by the
abstract-xml-driver 1062. The destructor 1080 is empty.
0074. A member function parse 1082 is provided by the
abstract-xml-driver 1062. The parse 1082 directs the
abstract-xml-driver 1062 to process XML markup from a
supplied file handle. The parse 1082 is supplied with a file
handle representing the file from which the markup shall be
read. The parse 1082 returns a boolean value indicating the
success of the parse. The parse 1082 is considered in detail
below.

0075. A class function start-tag-handler 1084 is provided
by the abstract-xml-driver 1062. The start-tag-handler 1084
receives expat notifications indicating the start tag of a
tagged element. The start-tag-handler 1084 is a class mem
ber, hence a global function (as distinguished from a mem
ber function). It is thus invoked without a responsive
instance of the abstract-xml-driver 1062. The start-tag
handler 1084 is supplied with a first argument of pointer to
Void, representing arbitrary client data. The start-tag-handler
1084 is Supplied with a second argument of type expat-name
1068, representing the tag name. The start-tag-handler 1084
is Supplied with a third argument of type expat-attributes
1070, representing the tag attributes, if any. The start-tag
handler 1084 returns void; expat does not accept any
returned information from a notification. The start-tag-han
dler 1084 is considered in detail below.

0076 A class function end-tag-handler 1086 is provided
by the abstract-xml-driver 1062. The end-tag-handler 1086
receives expat notifications indicating the end of a tagged
element. The end-tag-handler 1086 is a class member, hence
a global function (as distinguished from a member function).
It is thus invoked without a responsive instance of the
abstract-xml-driver 1062. The end-tag-handler 1086 is Sup
plied with a first argument of pointer to Void, representing
arbitrary client data. The end-tag-handler 1086 is supplied
with a second argument of type expat-name 1068, repre
senting the tag name. The end-tag-handler 1086 returns
Void; expat does not accept any returned information from a
notification. The end-tag-handler 1086 is considered in
detail below.

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

0077. A class function characters-handler 1088 is pro
vided by the abstract-xml-driver 1062. The characters-han
dler 1088 receives expat notifications indicating the receipt
of textual content. The characters-handler 1088 is a class
member, hence a global function (as distinguished from a
member function). It is thus invoked without a responsive
instance of the abstract-Xml-driver 1062. The characters
handler 1088 is supplied with a first argument, of pointer to
Void, representing arbitrary client data. The characters
handler 1088 is supplied with a second argument, of type
expat-buffer 1072, a buffer holding the parsed textual con
tent. The characters-handler 1088 is supplied with a third
argument, of type int, indicating the length of the Supplied
buffer. The characters-handler 1088 returns void; expat does
not accept any returned information from a notification. The
characters-handler 1088 is considered in detail below.

0078. A pure virtual member function start-tag 1090 is
provided by the abstract-xml-driver 1062. The start-tag 1090
must be provided by specializations of the abstract-xml
driver 1062. The start-tag 1090 is the indirect recipient of the
expat notification of the start tag of a tagged element. The
start-tag 1090 receives a first argument of type expat-name
1068 indicating the tag name. The start-tag 1090 receives a
second argument of type expat-attributes 1070, indicating
the tag attributes, if any. The start-tag 1090 returns void.
0079 A pure virtual member function end-tag 1092 is
provided by the abstract-xml-driver 1062. The end-tag 1092
must be provided by specializations of the abstract-xml
driver 1062. The end-tag 1092 is the indirect recipient of an
expat notification of the end of a tagged element. The
end-tag 1092 receives an argument of type expat-name
1068, indicating the tag name. The end-tag 1092 returns
Void.

0080 A pure virtual member function characters 1094 is
provided by the abstract-xml-driver 1062. The characters
1094 must be provided by specializations of the abstract
xml-driver 1062. The characters 1094 is the indirect recipi
ent of an expat notification of textual content. The characters
1094 receives a first argument of type expat-name 1068, a
buffer holding the parsed textual content. The characters
1094 receives a second argument of type int, indicating the
length of the supplied buffer. The characters 1094 returns
Void.

0081. A member function fail 1096 is provided by the
abstract-xml-driver 1062. The fail 1096 provides a conve
nient mechanism for reporting parse failure. The fail 1096
receives an argument of type text 1010, which may be used
to formulate a status message. The fail 1096 sets the failed
1076 to nonzero, indicating the failure status of the parse.
The fail 1096 returns Zero to indicate failure.

3.1.1 Abstract XML Driver Start Tag Handler
0082 FIG. 7 depicts an examplary embodiment of an
implementation of the class function start-tag-handler 1084,
drawn from the class abstract-Xml-driver 1062. The start
tag-handler 1084 receives a first argument user-data 1098, of
pointer to Void, representing client data. The start-tag
handler 1084 receives a second argument tag 1100, of
expat-name 1068, representing the tag name. The start-tag
handler 1084 receives a third argument attribute-array1102,
of type ExpatAttributes, representing the tag attributes, if
any. A driver 1104, an instance of the abstract-xml-driver

Jun. 15, 2006

1062, is obtained by slam-casting the user-data 1098. The
validity of the slam-cast depends on the parser 1074 having
had properly assigned client data. The member failed 1076
for the driver 1104 is examined to determine whether the
parse has failed yet. If the parse is successful so far, the
driver 1104 is notified by the start-tag 1090, with arguments
the tag 1100 and the attribute-array 1102. Thus the static,
global-level handler converts the generic Supplied client data
to an instance of the abstract-xml-driver 1062 and dispatches
the supplied name and attributes to the start-tag 1090.

3.1.2 Abstract XML Driver End Tag Handler
0083 FIG. 8 depicts an examplary embodiment of the
class function end-tag-handler 1086, drawn from the class
abstract-xml-driver 1062. The end-tag-handler 1086
receives a first argument user-data 1106, of pointer to void,
representing arbitary client data. The end-tag-handler 1086
receives a second argument tag 1108, of expat-name 1068,
representing the tag name. A driver 1110, an instance of the
abstract-xml-driver 1062, is obtained by slam-casting the
user-data 1106. The member failed 1076 for the driver 1110
is examined to determine whether the parse has failed yet. If
the parse is successful so far, the driver 1110 is notified by
the end-tag 1092 with argument the tag 1108.
3.1.3 Abstract XML Driver Characters Handler

0084 FIG. 9 depicts an examplary embodiment of the
class function characters-handler 1088, drawn from the class
abstract-Xml-driver 1062. The characters-handler 1088
receives a first argument user-data 1112, of pointer to Void,
representing arbitary client data. The characters-handler
1088 receives a second argument string 1114, of type
expat-buffer 1072, referencing a buffer of textual data. The
characters-handler 1088 receives a third argument length
1116, of type int, indicating the length of data in the string
1114. A driver 1118, an instance of the abstract-Xml-driver
1062, is obtained by slam-casting the user-data 1112. The
member failed 1076 for the driver 1118 is examined to
determine whether the parse has failed yet. If the parse is
successful so far, the driver 1118, is notified by the charac
ters 1094, with arguments the string 1114 and the length 116.
3.14 Abstract XML Driver Parse

0085 FIG. 10 depicts an examplary embodiment of the
member function parse 1082, drawn from the class abstract
xml-driver 1062. The parse 1082 is supplied with an argu
ment file-handle 1120, indicating the source of the markup
to be processed. The parser 1074 is created using the expat
service XML ParserCreateNS. The namespace variant of
the expat parser is utilitized for maximum generality in
processing XML. Tag names and attributes incorporating
XML name space directives will be expanded by expat to
their canonical forms. If the parser creation failed, failure is
noted and Zero is returned to indicate parse failure. The
responsive instance of the abstract-xml-driver 1062 is pro
vided to the parser 1074 as client data, using the expat
service XML SetUserData'. The start-tag-handler 1084
and the end-tag-handler 1086 are provided to the parser
1074 via the expat service “XML SetBlementHandler” for
use as recipients of expat notifications on start tag and end
tag, respectively. The characters-handler 1088 is provided to
the parser 1074 via the expat service XML SetCharacter
DataHandler', for use by expat to receive notifications of
textual content. A buffer size buffer-size 1122 is defined. A

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

buffer 1124 is defined, sized according to the buffer-size
1122. The buffer 1124 will be used to sequentially receive
text from the supplied file-handle 1120, and to relay text to
the parser 1074.
0.086 An unbounded loop is designated to encompass the
reading of arbitrary-length markup. The standard C library
service “fread' is invoked to read into the buffer 1124 from
the supplied file-handle 1120. The number of bytes actually
read is captured in a bytes-read 1126. The standard C library
service “ferror” is invoked to determine whether the Sup
plied file-handle 1120 has become invalid. Should the file
handle 1120 have reported an error, read failure is reported
and the loop is broken. The end-of-file status on file-handle
1120 is determined using the standard C library service
“feof. The end-of-file status is captured in an integer done
1128, which is used by expat and consulted below regarding
termination of the loop. The expat service XML Parse' is
invoked for the parser 1074, the buffer 1124, and the done
1128. If the XML Parse indicated failure, the error is
reported and the loop is broken. If any failure has been
indicated (e.g., by one of the expat client notifications), the
failure is noted and the loop is broken. The loop is broken
if the done 1128 indicates that end-of-file has been reached.

0087. After the loop, the parser 1074 is freed using the
expat service XML ParserFree'. The parser 1074 is
assigned null, reflecting that after being freed, the parser
1074 is no longer valid. The parse 1082 returns the inversion
of the member failed 1076, indicating the success of the
parse.

3.2 Generic XML Driver

0088 FIG. 11 depicts an examplary embodiment of the
class generic-xml-driver 1064. The generic-xml-driver 1064
derives from the class abstract-Xml-driver 1062. The
generic-xml-driver 1064 is a template parameterized by a
1130 and an 1132. The 1130 is required to implement the
client interface defined by the model 1006 from the interface
1002. Likewise, the 1132 is required to implement the client
interface defined by the element 1008 from the interface
1002. The generic-xml-driver 1064 has base class the
abstract-xml-driver 1062; thus it is required to implement
the pure virtual member functions that are defined by the
abstract-xml-driver 1062. An instantiation of the generic
xml-driver 1064, characterized by particular specializations
of the model 1006 and the element 1008, may be invoked
with the parse 1082 by virtue of its specialization of the
abstract-xml-driver 1062. In carrying out the abstract opera
tions defined by the abstract-xml-driver 1062 on its param
eters, the generic-xml-driver 1064 delivers the client
requests that comprise the interface 1002 to the client
implementations of the model 1006 and element 1008. To
use the interface 1002, a client must provide specializations
of the model 1006 and the element 1008. To process XML
markup, the client need only instantiate a generic-Xml-driver
1064 with the client’s model 1006 and element 1008 spe
cializations as parameters.
0089. The generic-xml-driver 1064 provides several data
members. A member model 1134 is provided by the generic
Xml-driver 1064. The model 1134 is of type 1130. The model
1134 is a client implementation of the model 1006. A
member stack 1136 is provided by the generic-xml-driver
1064. The stack 1136 is stack of instances of the 1132. The
stack is a well-known data structure which manages a

Jun. 15, 2006

sequence in last-in, first-out order, providing push, pop, and
top operations which respectively add a last element to the
stack, remove the last element from the stack, and access but
not remove the last element from the stack.

0090 The generic-xml-driver 1064 provides two factory
member functions. A constructor 1138 is provided by the
generic-xml-driver 1064. The constructor 1138 receives an
argument of 1130, which serves to initalize the model 1134.
A destructor 1140 is provided by the generic-xml-driver
1064. The destructor 1140 is empty.
0091. The generic-xml-driver 1064 provides specializa
tions of the pure virtual expat notifications defined by the
base abstract-xml-driver 1062. A member function start-tag
1142 is provided by the generic-xml-driver 1064. The start
tag 1142 processes expat notifications indicating the start tag
of a tagged element. The start-tag 1142 specializes the
start-tag 1090. The start-tag 1142 receives a first argument of
expat-name 1068, indicating the name of the tagged ele
ment. The start-tag 1142 receives a second argument of
expat-attributes 1070, representing the attributes of the
tagged element. The start-tag 1142 is considered in detail
below.

0092. A member function end-tag 1144 is provided by the
generic-xml-driver 1064. The end-tag 1144 processes expat
notifications indicating the end of a tagged element. The
end-tag 1144 specializes the end-tag 1092. The end-tag 1144
receives an argurment of expat-name 1068, indicating the
name of the tagged element. The end-tag 1144 is considered
in detail below.

0093. A member function characters 1146 is provided by
the generic-xml-driver 1064. The characters 1146 processes
expat notifications indicating textual content. The characters
1146 receives a first argument of expat-buffer 1072, con
taining the textual content. The characters 1146 receives a
second argument of type int, indicating the amount of data
in the supplied expat-buffer 1072. The characters 1146 is
considered in detail below.

0094. A member function push 1148 is provided by the
generic-xml-driver 1064. The push 1148 receives an argu
ment of 1132. The supplied 1132 is pushed onto the stack
1136.

0.095 A member function pop 1150 is provided by the
generic-xml-driver 1064. The pop 1150 removes and returns
the topmost 1132 from the stack 1136.
0096. A member function top 1152 is provided by the
generic-xml-driver 1064. The top 1152 is of type 1132. The
pop 1150 returns the topmost 1132 from the stack 1136, but
does not change the stack 1136.
0097. A member function is-empty 1154 is provided by
the generic-xml-driver 1064. The is-empty 1154 returns a
boolean value indicating whether the stack 1136 is empty.
3.2.1 Generic XML Driver Start-Tag
0098 FIG. 12 depicts an examplary embodiment of the
member function start-tag 1142, drawn from the class
generic-xml-driver 1064. The start-tag 1142 receives a first
argument tag 1156, of expat-name 1068, indicating the tag
name. The start-tag 1142 receives a second argument
attribute-array 1158, of expat-attributes 1070, representing
the tag attributes, if any. A tagged element has been detected.

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

An element 1160, an instance of the 1132, is created by
request of the construct-element 1012 of the model 1134
with argument tag 1156. If the requested element 1160 is
null, the failure is noted and the member function returns.
0099. A string 1162 is initialized to the attribute-array
1158. While the string 1162 is non-zero, the next attribute
key, value pair is indirectly visited from the the attribute
array 1158 via the string 1162. An attribute of tagged
element has been detected. A key 1164 is obtained. A value
1166 is obtained. The accept-attribute 1024 is requested of
the element 1160 with arguments key 1164, value 1166, and
model 1134. If the accept-attribute 1024 request fails, the
failure is noted, the element 1160 is deleted, and the member
function returns.

0100 When all the attributes have been processed, hence
the absence of additional attributes has been detected, the
configure 1026 is requested of the element 1160 with
argument model 1134. If the configure 1026 fails, the failure
is noted, the element 1160 is deleted and the member
function returns. Otherwise, the configured element 1160 is
pushed onto the stack 1136 using the push 1148. The stack
1136 maintains an association between the markup element
which is being processed and the element object to which
requests shall be directed.
3.2.2 Generic XML Driver End-Tag
0101 FIG. 13 depicts an examplary embodiment of the
member function end-tag 1144, drawn from the class
generic-xml-driver 1064. The end-tag 1144 receives an
argument of type expat-name 1068. The completion of a
markup element has been detected; no further markup
elements or textual content remain in the body of the
completed markup element. The topmost 1132 from the
stack 1136 is popped via pop 1150, and assigned to an
element 1168. Popping the element object corresponding to
the completed markup element maintains the assocation
between the markup element being processed and the ele
ment object to which requests shall be directed. The commit
1032 is requested of the element 1168 with argument the
model 1134. If the commit 1032 fails, the failure is noted, the
element 1168 is deleted, and the end-tag 1144 returns.
0102) The presence of an element on the stack is deter
mined via the top 1152. If there's an element on the stack,
the accept-element 1028 is requested of the top 1152 with
arguments the element 1168 and the model 1134. An element
object corresponding to a parent markup element is top-most
on the stack, and the recently popped element object corre
sponds to a child markup element. If the accept-element
1028 fails, the failure is noted, the element 1168 is deleted,
and the end-tag 1144 returns.

0103). Otherwise, in the case where there's no element on
the stack, the popped 1132 corresponds to a root tagged
element. The accept-root-element 1014 is requested of the
model 1134 with argument the element 1168. If the accept
root-element 1014 invocation fails, the failure is noted, the
element 1168 is deleted, and the end-tag 1144 returns.
3.2.3. Generic XML Driver Characters

0104 FIG. 14 depicts an examplary embodiment of the
member function characters 1146, drawn from the class
generic-xml-driver 1064. The characters 1146 receives a
first argument string 1170, of expat-buffer 1072. The char

Jun. 15, 2006

acters. 1146 receives a second argument length 1172, of int.
A local text 1174, of text 1010, is initialized from the string
1170 and the length 1172. The presence of an 1132 on the
stack is determined using the top 1152. If an 1132 is present,
an instance of textual content has been detected, and the
accept-text 1030 is requested of the 1132 obtained from the
top 1152, with arguments text 1174 and model 1134. If the
accept-text 1030 invocation fails, the failure is noted and the
characters 1146 returns.

0105. Otherwise, there's no topmost stack element, so a
root instance of textual content has been detected, and hence
the supplied text is directed to the model. The accept-root
text 1016 is requested of the model 1134 with argument the
text 1174. If the accept-root-text 1016 invocation fails, the
failure is noted and the characters 1146 returns.

4 Trivial Client Implementation
0106 FIG. 15 depicts an examplary embodiment of a
trivial-module 1176, providing a trivial client implementa
tion of the interface 1002. The trivial-module 1176 thus
refines the client 1004. A class trivial-element 1178 provides
a client implementation of the element 1008. A class trivial
model 1180 provides a client implementation of the model
1006.

0.107. In some subsequent figures depicting classes, the
C++ keyword "struct” is used in class definitions. This usage
indicates that all of the depicted members and member
functions have public scope (by default, members of a C++
class declared as a struct have public scope). In an alterna
tive embodiment, the “class' keyword could be used, in
which case, by default, members would have private scope.
The struct convention is used here to avoid cluttering the
depictions with access member functions. In an alternative
embodiment, members would be private, with public mem
ber functions provided to get and set those data members,
where necessary. Most member functions would remain
public, but certain member functions could be made private
where their access is not required outside the class imple
mentation.

4.1 Trivial Element

0.108 FIG. 16 depicts an examplary embodiment of the
class trivial-element 1178, which provides a trivial client
implementation of the element 1008. A member function
accept-attribute 1182 responds to the request accept-at
tribute 1024. The supplied attribute is ignored; boolean true
is returned. A member function configure 1184 responds to
the request configure 1026. Boolean true is returned. A
member function accept-element 1186 responds to the
request accept-element 1028. An argument element 1188
provides the instance of the trivial-element 1178 which is
subject to acceptance. The supplied element 1188 is deleted.
Boolean true is returned. A member function accept-text
1190 responds to the request accept-text 1030. The supplied
text is ignored. Boolean true is returned. A member function
commit 1192 responds to the request commit 1032. Boolean
true is returned.

4.2 Trivial Model

0109 FIG. 17 depicts an examplary embodiment of the
class trivial-model 1180, which provides a trivial client
implementation of the model 1006. A member function
construct-element 1194 responds to the request accept-root

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

element 1014. An instance of the trivial-element 1178 is
constructed and returned. A member function accept-ele
ment 1196 responds to the request accept-root-element
1014. An argument element 1198 provides the instance of
the trivial-element 1178 which is subject to acceptance. The
supplied element 1198 is deleted. Boolean true is returned.
A member function accept-text 1200 responds to the request
accept-root-text 1016. The supplied text is ignored. Boolean
true is returned.

4.3 Trivial Client Applications
0110. The trivial-module 1176 is useful as a validator of
markup structure. The trivial-module 1176 is also useful as
a cut-and-paste starting point for a more elaborate imple
mentation of the client 1004. In languages which do not
provide facilities for generic programming (templates), the
trivial-module 1176 may provide base classes suitable for
deriviation by a non-trivial implementation of the client
1004. In an alternative embodiment in C++ which avoids
templates, an implementation of the driver 1000 would
direct requests to instances of the trivial-module 1176. A
non-trivial client would derive from the classes of the
trivial-module 1176, with specialized member functions
responsive to the requests of the interface 1002.
5 RSS Subset Client

0111. The advantages of the interface 1002 may be illus
trated by an example of a simple but useful application
processing RSS, a family of popular syndication markup
languages. RSS is used by many web content providers to
summarize and promote their web offerings. The RSS family
of languages is defined by several standards of varying
specificity for distribution of syndication information. A
useful RSS reference is the book “Developing Feeds with
RSS and Atom,” by Ben Hammersley, O'Reilly, 2005, ISBN
0-596-00881-3. In RSS, a feed includes one or more chan
nels. A channel includes one or more items. Each of the
items may include a title, a link, a description, and many
other descriptive elements. A very common RSS application
is to process one or more RSS feeds and produce an HTML
Summary page which incorporates descriptions and links to
the syndicated content. Such an application may conve
niently ignore many of the elements in the feed.
0112 FIG. 18 depicts an examplary embodiment of a
module 1202, providing a client implementation of the
interface 1002 suitable for an application processing a subset
of RSS. FIG. 18 uses a shorthand textual notation for
depiction of a family of related classes. Classes are indicated
by a name and a balanced pair of curly brackets. Inheritance
is indicated by containment. A child class is enclosed within
the brackets of a parent class, indicating that the child class
publicly inherits from the parent class.
0113. A class model 1204 specializes the model 1006. An
instance of the model 1204 encapsulates an application
specific object-oriented data structure representing one or
more RSS feeds. A class element 1206 specializes the
element 1008. An instance of the element 1206 corresponds
to an individual tagged element. The element 1206 provides
a generalized base class from which classes corresponding
to specific tagged elements are derived.

0114) A class field 1208 inherits from the element 1206.
An instance of the field 1208 represents a unit of descriptive
information pertaining to a channel or an item. A class title

Jun. 15, 2006

1210 inherits from the field 1208. An instance of the title
1210 represents the title of a channel or an item. A class link
1212 inherits from the field 1208. An instance of the link
1212 represents a link associated with a channel or an item.
A class description 1214 inherits from the field 1208. An
instance of the description 1214 represents a description
asSocated with a channel or an item.

0.115. A class composite 1216 inherits from the element
1206. An instance of the composite 1216 represents a
composite element of a feed, including a channel or an item.
A class item 1218 inherits from the composite 1216. An
instance of the item 1218 represents an item in a channel. A
class channel 1220 inherits from the composite 1216. An
instance of the channel 1220 represents a channel in a feed.
A class feed 1222 inherits from the element 1206. An
instance of the feed 1222 represents an entire feed.
0116. A class html-writer 1224 provides a transformation
from RSS to HTML. A instance of the html-writer 1224
processes an instance of the model 1204, writing an HTML
file which summarizes the RSS represented by the model
instance.

5.1 RSS Subset Client Model

0.117 FIG. 19 depicts an examplary embodiment of the
class model 1204. The class model 1204 makes use of a class
factory 1226. An instance of the factory 1226 is configured
to associate a particular constructor with a Supplied tag
aC.

0118. A member factory 1228, an instance of the factory
1226, constructs instances of the element 1206 in response
to tag names. A sequence member feeds 1230 accumulates
instances of the feed 1222 which have been detected in
processing markup.

0119) A destructor 1232 is responsible for deletion of the
accumulated instances of the feed 1222 which are collected
in the feeds 1230.

0.120. A member function construct-element 1234 pro
vides the construct-element 1012. The construct-element
1234 uses the factory 1228 to attempt to construct an
instance of the element 1206 corresponding to the supplied
text. If the factory 1228 fails, an instance of the field 1208
is constructed.

0.121. A member function accept-element 1236 provides
the accept-root-element 1014. The accept-element 1236
attempts to accumulate the Supplied element to the feeds
1230; the accumulation only succeeds if the supplied ele
ment is an instance of the feed 1222. If the accumulation
fails, the supplied element is deleted.
0122) A member function accept-text 1238 provides the
accept-root-text 1016. The accept-text 1238 always suc
ceeds, ignoring the Supplied root textual content.
5.2 RSS Subset Client Elements

0123 FIG. 20 depicts the class element 1206. A member
function accept-attribute 1240 provides the accept-attribute
1024. The supplied attribute is ignored. A member function
configure 1242 provides the configure 1026. No action is
taken. A member function accept-element 1244 provides the
accept-element 1028. The supplied element is deleted. A
member function accept-text 1246 provides the accept-text
1030. The supplied text is ignored. A member function

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

commit 1248 provides the commit 1032. No action is taken.
All of these member functions may be overridden by spe
cializations of the element 1206, as necessary.
0.124. A member function put-model-feed 1250 provides
a mechanism by which an instance of the model 1204 may
attempt to accumulate an instance of the feed 1222 in the
models feeds 1230. The model requests the put-model-feed
1250 of an instance of the element 1206, providing itself as
the argument. By default, an instance of the element 1206
may not accumulate itself; thus the default implementation
shown here returns Zero, indicating failure. However, if the
Supplied element instance specializes to an instance of the
feed 1222, the specialized feed instance may accumulate
itself. The class feed 1222 provides a specialization of the
put-model-feed 1250 which performs the accumulation.
This is a convenient type-safe method of achieving a down
cast (i.e. a run-time specialization); it's an example of the
object-oriented technique of double-dispatch, a valuable
discussion of which may be found in the book “More
Effective C++”, by Scott Meyers, Addison-Wesley, 1996,
ISBN 0-201-63371-X, pp. 228-251.
0125. A member function put-feed-channel 1252 pro
vides a mechanism by which an instance of the feed 1222
may attempt to accumulate an instance of the channel 1220.
A double-dispatch technique as described above is used. A
member function put-channel-item 1254 provides a mecha
nism by which an instance of the channel 1220 may attempt
to accumulate an instance of the item 1218. A double
dispatch technique as described above is used. A member
function put-field 1256 provides a mechanism by which an
instance of the composite 1216 may attempt to accumulate
an instance of the field 1208. A double-dispatch technique as
described above is used.

0126 FIG. 21. depicts an examplary embodiment of the
class feed 1222. An instance of the feed 1222 corresponds to
a feed tagged element, consisting of one or more channels.
A sequence member channels 1258 accumulates instances of
the channel 1220.

0127. A member function accept-element 1260 provides
the accept-element 1028. The accept-element 1260 invokes
the put-feed-channel 1252, which, if successful, will accu
mulate a channel to the channels 1258. Failing the put-feed
channel 1252, the suppled element is deleted.
0128. A member function put-model-feed 1262 success
fully specializes the double-dispatch of the put-model-feed
1250, resulting in the accumulation of the feed 1222 into the
supplied instance of the model 1204.

0129. A destructor 1264 deletes the constitituents of the
channels 1258.

0130 FIG. 22, depicts an examplary embodiment of the
class composite 1216 along with its specializations, the item
1218, and the channel 1220.

0131 The class composite 1216 specializes the element
1206. A member title 1266, an instance of the title 1210,
represents the title element in a composite element. A
member link 1268, an instance of the link 1212, represents
the link element in a composite element. A member descrip
tion 1270, an instance of the composite 1216, represents a
description element in a composite element. A destructor
1272 disposes of the field members.

Jun. 15, 2006

0.132. The class channel 1220 specializes the composite
1216. A sequence member items 1274 accumulates instances
of the item 1218.

0.133 A member function accept-element 1276 provides
the accept-element 1028. The accept-element 1276 invokes
the put-channel-item 1254, which, if successful, will accu
mulate an item to the items 1274. Failing the put-channel
item 1254, the accept-element 1276 invokes the put-field
1256, which, if successful, set one of the field members of
the composite 1216. Failing the put-field 1256, the supplied
element is deleted.

0.134. A member function put-feed-channel 1278 suc
cessfully specializes the double-dispatch of the put-feed
channel 1252, resulting in the accumulation of the instance
of the channel 1220 into the channels 1258 of the supplied
instance of the feed 1222.

0135) A destructor 1280 deletes the constituents of the
items 1274.

0.136 The class item 1218 specializes the composite
1216. A member function accept-element 1282, specializing
the accept-element 1028, invokes the put-field 1256, which,
if successful, will set one of the field members of the
composite 1216.

0.137. A member function put-channel-item 1284 suc
cessfully specializes the double-dispatch of the put-channel
item 1254, resulting in the accumulation of the instance of
the item 1218 to the items 1274 of the supplied instance of
the channel 1220.

0.138 FIG. 23 depicts an examplary embodiment of the
class field 1208, along with its specializations, the title 1210,
the link 1212, and the description 1214. The class field 1208
specializes the element 1206. The field 1208 provides a
default element which is used for any tagged element which
is not specifically identified. A member text 1286 collects
text making up the content of the field. A member function
accept-text 1288 responds to the accept-text 1030, special
izing the accept-text 1246. The Supplied text is appended to
the text 1286.

0.139. The class title 1210 specializes the field 1208. A
member function put-field 1290 specializing the put-field
1256, successfully resolves a double-dispatch in which a
specialized instance of the title 1210 is made available to an
instance of the composite 1216; the instance of the title 1210
is assigned to the title 1266 of the supplied instance of the
composite 1216.

0140. The class link 1212 specializes the field 1208. A
member function put-field 1292, specializing the put-field
1256, successfully resolves a double-dispatch in which a
specialized instance of the link 1212 is made available to an
instance of the composite 1216; the instance of the link 1212
is assigned to the link 1268 of the supplied instance of the
composite 1216.

0.141. The class description 1214 specializes the field
1208. A member function put-field 1294, specializing the
put-field 1256, successfully resolves a double-dispatch in
which a specialized instance of the description 1214 is made
available to an instance of the composite 1216; the instance
of the description 1214 is assigned to the description 1270
of the supplied instance of the composite 1216.

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

5.3 RSS Html Writer

0142 FIG. 24 depicts an examplary embodiment of the
class html-writer 1224. A constructor 1296 accepts an
instance of the model 1204 and a text sink to which HTML
should be written. The constructor 1296 writes boilerplate
HTML content surrounding the channel and item content.
The constructor 1296 invokes a member function view-feed
1298 for each instance of the feeds 1230.

0143) The member function view-feed 1298 invokes a
member function view-channel 1300 for each instance of the
channels 1258.

0144. The member function view-channel 1300 writes a
HTML header and anchor hyperlink from the title 1266 and
the link 1268 of the supplied instance of the channel 1220.
An HTML paragraph is written from the description 1270 of
the supplied instance of the channel 1220. The member
function view-channel 1300 invokes a member function
view-item 1302 for each instance of the items 1274.

0145 The member function view-item 1302 writes a
HTML header and anchor hyperlink from the title 1266 and
the link 1268 of the supplied instance of the item 1218. An
HTML paragraph is written from the description 1270 of the
supplied instance of the item 1218.
5.4 RSS Subset HTML Writer Application
0146 FIG. 25 depicts an examplary embodiment of an
application r4s-html-writer 1304. The rAs-html-writer 1304
demonstrates of the use of the module 1202 and the generic
xml-driver 1064. The rAs-html-writer 1304 writes a single
HTML page for a collection of one or more RSS markup
files provided on the command line. For clarity, error
checking has been suppressed in this particular embodiment.
In an alternative embodiment, the return values would be
examined to detect errors.

0147 A local model 1306, an instance of the model 1204,
is constructed. A local driver 1308 is constructed. The driver
1308 is an instance of the generic-xml-driver 1064, param
eterized by the model 1204 and the element 1206. The driver
1308 is initialized with the model 1306. Each command-line
argument in the argv array is processed; a file handle is
opened for the argument. This is a fallible invocation. The
parse 1082 is requested of the driver 1308, with the file
handle as an argument. This is also fallible invocation. The
file handle is closed after parsing. A text file sink is con
structed. The text file sink and the model 1306 are supplied
to the construction of a local writer 1310, an instance of the
html-writer 1224. The writer 1310 writes the product HTML
to the Supplied sink. A Successful outcome is indicated by a
Zero return code.

0148 FIG. 26 depicts a sample RSS document. FIG. 27
depicts an examplary embodiment of HTML produced by
the operation of the rAs-html-writer 1304 on the sample RSS
document.

I claim:
1. A computer-implemented system for application-spe

cific object-oriented processing of markup, comprising:

a model object;

a plurality of element objects;

Jun. 15, 2006

said model object is configured to respond to a construct
element request in which a tag name is provided, said
tag name corresponding to a tagged element from said
markup, to construct a new element object, one of said
element objects, according to application-specific
requirements as determined according to said tag name,
to perform application-specific processing as required,
and to return said new element object;

each of said element objects is configured to respond to an
accept-attribute request in which an attribute is pro
vided, said attribute corresponding to a markup
attribute of a tagged element from said markup, and to
perform application-specific processing as required;

each of said element objects is further configured to
respond to an accept-element request in which a child
element object, one of said element objects, is pro
vided, and to perform application-specific processing
as required; and

said model object is further configured to respond to an
accept-root-element request in which a root element
object, one of said element objects, is provided, and to
perform application-specific processing as required.

2. The system of claim 1, wherein:
each of said element objects is further configured to

respond to a configure request said configure request
indicating that no further requests for said accept
attribute will be dispatched to said element object, and
to perform application-specific processing as required.

3. The system of claim 1, wherein:
each of said element objects is further configured to

respond to a commit request, said commit request
indicating that no further requests for said accept
element will be dispatched to said element object, and
to perform application-specific processing as required.

4. The system of claim 1, wherein:
responding to an accept-text request dispatched to one of

said element objects, in which an instance of textual
content from said markup is provided, and to perform
application-specific processing as required.

5. The system of claim 1, wherein:
said model object is further configured to respond to an

accept-root-text request in which an instance of textual
content from said markup is provided, and to perform
application-specific processing as required.

6. A computer-implemented method for application-spe
cific object-oriented processing of markup by a model object
and a plurality of element objects, comprising the steps of

responding to a construct-element request dispatched to
said model object, in which a tag name is provided, said
tag name corresponding to a tagged element from said
markup, constructing a new element object, one of said
element objects, according to application-specific
requirements as determined according to said tag name,
performing application-specific processing as required,
and returning said new element object;

responding to an accept-attribute request dispatched to
one of said element objects, in which an attribute is
provided, said attribute corresponding to a markup
attribute of a tagged element from said markup, and
performing application-specific processing as required;

HULU, LLC EXHIBIT 1010

US 2006/0129971 A1

responding to an accept-element request dispatched to one
of said element objects, in which a child element
object, one of said element objects, is provided, and
performing application-specific processing as required;
and

responding to an accept-root-element request dispatched
to said model object, in which a root element object,
one of said element objects, is provided, and perform
ing application-specific processing as required.

7. The method of claim 6, further comprising the step of:
responding to a configure request dispatched to one of

said element objects, said configure request indicating
that no further requests for said accept-attribute will be
dispatched to said element object, and performing
application-specific processing as required.

8. The method of claim 6, further comprising the step of:
responding to a commit request dispatched to one of said

element objects, said commit request indicating that no
further requests for said accept-element will be dis
patched to said element object, and performing appli
cation-specific processing as required.

9. The method of claim 6, further comprising the step of:
responding to an accept-text request dispatched to one of

said element objects, in which an instance of textual
content from said markup is provided, and performing
application-specific processing as required.

10. The method of claim 6, further comprising the step of:
responding to an accept-root-text request dispatched to

said model object, in which an instance of textual
content from said markup is provided, and performing
application-specific processing as required.

11. A computer-implemented method for processing
markup to dispatch object-oriented requests to a model
object and a plurality of element objects, comprising the
steps of

detecting a tagged element of said markup, said tagged
element including a tag name, dispatching to said
model object an request construct-element, in which
said tag name is provided, and from which a newly
constructed element object is returned, and associating
said newly-constructed element object with said tagged
element of said markup:

detecting an attribute of a tagged element of said markup,
determining an associated element object, one of said
element objects, said associated element object previ
ously associated with said tagged element, and dis
patching to said associated element object an request
accept-attribute, in which said markup attribute is pro
vided;

12
Jun. 15, 2006

detecting a child tagged element of said markup and a
corresponding parent tagged element of said markup,
determining a child element object, one of said element
objects, said child element object previously associated
with said child tagged element, determining a parent
element object, one of said element objects, said parent
element object previously associated with said parent
tagged element, dispatching to said parent tagged ele
ment an request accept-element, in which said child
element object is provided; and

detecting a root-level tagged element of said markup,
determining an associated element object, one of said
element objects, said associated element object previ
ously associated with said tagged element, and dis
patching to said model-object an request accept-root
element, in which said associated element object is
provided.

12. The method of claim 11, further comprising the step
of:

detecting the absence of additional attributes of a tagged
element of said markup, determining an associated
element object, one of said element objects, said asso
ciated element object previously associated with said
tagged element, and dispatching to said associated
element object an request configure.

13. The method of claim 11, further comprising the step
of:

detecting a tagged element of said markup, determining
an associated element object, one of said element
objects, said associated element object previously asso
ciated with said tagged element, and dispatching to said
associated element object an request commit.

14. The method of claim 11, further comprising the step
of:

detecting an instance of textual content from the body of
a tagged element, determining an associated element
object, one of said element objects, said associated
element object previously associated with said tagged
element, and dispatching to said associated element
object an request accept-text, in which said instance of
textual content is provided.

15. The method of claim 11, further comprising the step
of:

detecting an instance of root textual content, and dispatch
ing to said model object an request accept-root-text, in
which said instance of textual content is provided.

HULU, LLC EXHIBIT 1010

