
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
12 July 2007 (12.07.2007) PCT WO 2007/076715 Al

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 11/28 (2006.01) H04L 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM,
G06F 15/16 (2006.01) AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(21) International Application Number: GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,

PCT/CN2006/003728 JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV,LY, MA, MD, MG, MK, MN, MW, MX, MY,

(22) International Filing Date: MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
30 December 2006 (30.12.2006) RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
(25) Filing Language: English

(84) Designated States (unless otherwise indicated, for every

(26) Publication Language: English kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(30) Priority Data: ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

60/766,1 15 30 December 2005 (30.12.2005) US European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

60/766,1 19 3 1 December 2005 (31.12.2005) US FR, GB, GR, HU, IE, IS, IT, LT, LU, LV,MC, NL, PL, PT,

11/616,950 28 December 2006 (28.12.2006) US RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): Declaration under Rule 4.17:
METASWARM (HONGKONG) LTD. [CN/CN]; — as to the applicant's entitlement to claim the priority of the
Unit C, 11/F, Gaylord Comm. Bldg., 114-118 Lockhart earlier application (Rule 4.17(Hi))
Road, Wanchai, Hong Kong (CN).

Published:
(72) Inventors: SHANNON, Marvin; 3579 East Foothill — with international search report

Blvd., #328, Pasadena, CA 91107 (US). BOUDEVILLE, — before the expiration of the time limit for amending the
Wesley; 33 Richardson Arcade, Winthrop, Perth 6155 claims and to be republished in the event of receipt of
(AU). amendments

(74) Agent: LIU, SHEN & ASSOCIATES; A0601, Huibin For two-letter codes and other abbreviations, refer to the "G uid

Building, No.8 Beichen Dong Street, Chaoyang District, ance Notes on Codes and Abbreviations" appearing at the beg in
Beijing 100101 (CN). ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD OF APPROVING WEB PAGES AND ELECTRONIC MESSAGES

page

(57) Abstract: We expand our antiphishing methods to show how web pages and electronic messages might have multiple approval
tags. These designate that the item was approved by other parties. Typically, the latter are customers of an Aggregator. When the
item is viewed by a browser, the browser can have a plug-in parse the tags, and verify these by contacting the Aggregator. Useful
for ascertaining that charitable websites and messages purporting to be from charities are real (or not). More generally, it can also be
used to let web pages and messages have endorsements from other organizations. We show how a blog or journal that lets authors
write articles in an unmoderated manner can let them write verifiable articles. A tag is added to an article, that points to another
website, where a "Checker" runs. The tag also has an author id. A visitor to the blog has code that hashes an article and goes to the
Checker and presents the (id, hash) and asks if this is valid. Previously, the author registered the hash with the Checker, as one of
her valid hashes. This can be extended to binding the article to the blog page, by the author hashing her article and the page address,
and registering this with the Checker. This prevents someone copying her article to another website and having it be verifiable there.

HULU, LLC EXHIBIT 1011

System and Method of Approving Web Pages and Electronic
Messages

CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of the filing date of U.S. Provisional

Application, Number 60/766119, "System and Method of Approving Web Pages

and Electronic Messages", filed December 31, 2005, and which is incorporated by

reference in its entirety. It also incorporates by reference in its entirety the U.S.

Provisional Application, Number 60/766115, "System and Method of Verifying

Blogging/Journaling", filed on December 30, 2005.

TECHNICAL FIELD

This invention relates generally to information delivery and management in a

computer network. More particularly, the invention relates to techniques for letting

people or organisations approve web pages, in a verifiable manner.

BACKGROUND OF THE INVENTION

As usage of the Internet continues to increase, so does the incidence of fraud

on the Internet. A fraudster might make a website that claims to be accepting

donations for a charitable cause. As a prominent example, after Hurricane Katrina,

there were a slew of such websites. On 9 September 2005, CNN reported that

2300 websites about Katrina had been tallied by the FBI, who considered most of

these to be bogus

HULU, LLC EXHIBIT 1011

(http ://money.cnn.com/2005/09/09/pf/beware_disaster_scams/?cnn=y es) .

Prior to Katrina, the Asian Tsunami of December 2004 also gave rise to

fraudulent websites. It can be anticipated that future disasters will also lead to

future fraudulent websites.

Nor are the frauds necessarily confined to websites. They might also involve

the sending of mass electronic messages (spam). Purporting to be from a relief

organization or even a government. If the messages are email, then it is trivial to

forge the sender line to be whatever the author wishes. In general, the message

body can have text claiming to be from that organization. But, typically, the

message will also have a link which goes to a pharm (fake website).

The websites and messages involve social engineering. Through text and

images (and possibly even audio and video), they try to fool the unwary reader.

Especially possible if the web pages and messages are very professionally done.

So that a casual reader cannot easily distinguish between a fake and a real charity.

It may actually be impossible to objectively do so. (At least before this Invention.)

That is, there is simply not enough information in the page or message for a

manual perusal to objectively reach a conclusion.

This is reflected in advice currently given by antifraud groups. For instance,

scambusters.org suggests 4

measures(http://www.scambusters.org/hurricanekatrinascams.html). The using of

common sense. Never responding to an email request for a donation. Not opening

attachments in those emails (because they might have viruses). And manually

checking the charity's name against a list of real charities. Where the latter might

be at give.org, which is run by the Better Business Bureau.

The US Government also offers similar advice. See for example

http ://www.fbi.gov/katrina.htm.

HULU, LLC EXHIBIT 1011

Another existing method involves companies like Verisign Corp. and Truste

Coip. that offer seals that can be added to the web page of an organization

approved by them. These seals might be clickable, and go back to those companies.

So that a user could click on these and get some validation of the organization. But

if the seals are not clickable, then a fraudster can just copy the images and put

them into her pages or messages. If the seals are clickable, she might still do this

and make the images non-clickable. Because not everyone who sees the seals

knows that they should be clickable. Or, she might make them clickable, but the

click goes back to her website, or another website run by her, and not the websites

of the antifraud companies. Not all users are aware that clickable seals must go

back to the latter. And even someone who does know, often does not bother to

click them.

In a manner related to the above fraud problems, there has also been a long

standing problem regarding authorship of articles in newsgroups and blogs. These '

are often not primarily financial fraud related, but may be regarded as an issue of

fraudulant authorship. It arose with the first killer application of the Internet, email.

This led to the proliferation of innumerable newsgroups by 1990. Often, anybody

could post to such a group. Groups could be moderated or unmoderated.

Several years after the advent of the Web, blogging become popular. Often, a

blog is associated with a given person, who writes the main articles in it. But

usually, a blog invites comments by others, who might assume false identities.

Newgroups, in the pre-Web sense, still exist. Now some offer the ability to also

upload images, audio or video. Blogs can do this too.

Both often have a common problem. Anyone might make a submission.

Perhaps furnishing a misleading address (like an email address or link). It would

be very useful for a person viewing a blog or newsgroup (by using a browser, say)

to somehow be able to see which entries are validated, in some sense.

HULU, LLC EXHIBIT 1011

A second problem also arises. Blogs and newsgroups, have been targeted by

"bots". These are programs (i.e. robots) that write spam messages. Usually, a bot

message advertises some good or service, with a link to the spammer's website.

Often, the blog or newsgroup administrator and readers consider such submissions

to be highly undesirable. This bot problem only appears if the blog is unmoderated.

However, going to a moderated blog has drawbacks of its own. Namely the

manual effort by a human moderator. Plus the time delay before a submission by a

human gets posted to the blog

REFERENCES CITED

"We Blog: Publishing Online with Blogs" by P Bausch et al, Wiley 2002.

"Survey of Text Mining: Clustering, Classification and Retrieval" by M

Berry, Springer 2003.

"Understanding Search Engines" by M Berry, SIAM 2005. \

"The Weblog Handbook" by R Blood, Perseus 2002.

"The NAT Handbook" by B Dutcher, Wiley 200 1.

"Developing Feeds With RSS and Atom" by B Hammersley, O'Reilly 2005.

"XML in a Nutshell" by E Harold and W Means, O'Reilly 2004.

"Clustering for Data Mining" by B Mirkin, Chapman and Hall 2005.

"Search Engine Marketing" by M Moran and B Hunt, IBM Press 2005.

"Hacking RSS and Atom" by L Orchard, Wiley 2005.

"Introduction to Data Mining" by P Tan, Addison-Wesley 2005.

"Blog Marketing" by J Wright, McGraw-Hill 2005.

fbi.gov/katrina.htm

give.org

scambusters.org

truste.org

verisign.com

HULU, LLC EXHIBIT 1011

SUMMARY OF THE INVENTION

The foregoing has outlined some of the more pertinent objects and features

of the present invention. These objects and features should be construed to be

merely illustrative of some of the more prominent features and applications of the

invention. Other beneficial results can be achieved by using the disclosed

invention in a different manner or changing the invention as will be described.

Thus, other objects and a fuller understanding of the invention may be had by

referring to the following detailed description of the Preferred Embodiment.

We expand our antiphishing methods to show how web pages and electronic

messages might have multiple approval tags. These designate that the item was

approved by other parties. Typically, the latter are customers of an Aggregator.

When the item is viewed by a browser, the browser can have a plug-in parse the

tags, and verify these by contacting the Aggregator. Useful for ascertaining that

charitable websites and messages purporting to be from charities are real (or not).

More generally, it can also be used to let web pages and messages have

endorsements from other organizations.

We show how a blog or journal that lets authors write articles in an

unmoderated manner can let them write verifiable articles. A tag is added to an

article, that points to another website, where a "Checker" runs. The tag also has an

author id. A visitor to the blog has code that hashes an article and goes to the

Checker and presents the (id, hash) and asks if this is valid. Previously, the author

registered the hash with the Checker, as one of her valid hashes. This can be

extended to binding the article to the blog page, by the author hashing her article

and the page address, and registering this with the Checker. This prevents someone

copying her article to another website and having it be verifiable there.

HULU, LLC EXHIBIT 1011

BRIEF DESCRIPTION OF THE DRAWINGS

There is one drawing. Figure 1 shows an Approver, an Aggregator, an

approvee, and a browser looking at a page at the approvee. (The terms are defined

in the text.)

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

What we claim as new and desire to secure by letters patent is set forth in the

following claims.

We described a lightweight means of detecting phishing in electronic

messages, or detecting fraudulent web sites in these earlier U.S. Provisional :

Number 60522245 ("2245"), "System and Method to Detect Phishing and Verify

Electronic Advertising", filed September 7, 2004; Number 60522458 ("2458"),

"System and Method for Enhanced Detection of Phishing", filed October 4, 2004;

Number 60552528 ("2528"), "System and Method for Finding Message Bodies in

Web-Displayed Messaging", filed October 11, 2004; Number 60552640 ("2640"),

"System and Method for Investigating Phishing Websites", filed October 22, 2004;

Number 60552644 ("2644"), "System and Method for Detecting Phishing

Messages in Sparse Data Communications", filed October 24, 2004; Number

60593114, "System and Method of Blocking Pornographic Websites and Content",

filed December 12, 2004; Number 60593115, "System and Method for Attacking

Malware in Electronic Messages", filed December 12, 2004; Number 60593 186,

"System and Method for Making a Validated Search Engine", filed December 18,

2004; Number 60/593877 ("3877"), "System and Method for Improving Multiple

Two Factor Usage", filed February 21, 2005; Number 60/593878 ("3878"),

"System and Method for Registered and Authenticated Electronic Messages", filed

February 21, 2005; Number 60/593879 ("3879"), "System and Method of Mobile

Anti-Pharming", filed February 21, 2005; Number 60/594043 ("4043"), "System

HULU, LLC EXHIBIT 1011

and Method for Upgrading an Anonymizer for Mobile Anti-Pharming", filed

March 7, 2005; Number 60/594051 ("4051"), "System and Method for Using a

Browser Plug-in to Combat Click Fraud", filed March 7, 2005.

We will refer to these collectively as the "Antiphishing Provisionals".

Below, we will refer to the following U.S. Provisionals submitted by us,

where these concern primarily antispam methods: Number 60320046 ("0046"),

"System and Method for the Classification of Electronic Communications", filed

March 24, 2003; Number 60481745 ("1745"), "System and Method for the

Algorithmic Categorization and Grouping of Electronic Communications, filed

December 5, 2003; Number 60481789, "System and Method for the Algorithmic

Disposition of Electronic Communications", filed December 14, 2003; Number

60481899, "Systems and Method for Advanced Statistical Categorization of

Electronic Communications", filed January 15, 2004; Number 60521014 ("1014"),

"Systems and Method for the Correlations of Electronic Communications", filed

February 5, 2004; Number 60521 174 ("11 74"), "System and Method for Finding

and Using Styles in Electronic Communications", filed March 3, 2004; Number

60521622 ("1622"), "System and Method for Using a Domain Cloaking to

Correlate the Various Domains Related to Electronic Messages", filed June 7,

2004; Number 60521698 ("1698"), "System and Method Relating to Dynamically

Constructed Addresses in Electronic Messages", filed June 20, 2004; Number

60521942 ("1942"), "System and Method to Categorize Electronic Messages by

Graphical Analysis", filed July 23, 2004; Number 605221 13 ("21 13"), "System

and Method to Detect Spammer Probe Accounts", filed August 17, 2004; Number

60522244 ("2244"), "System and Method to Rank Electronic Messages", filed

September 7, 2004.

We will refer to these collectively as the "Antispam Provisionals".

1. Approving Pages and Messages

HULU, LLC EXHIBIT 1011

Note that the above background advice involves entirely manual steps by a

person using a browser or reading a message. These have drawbacks. Notably, she

might not be aware of these steps. And even if she has some knowledge of these,

finding a reputable website with a list of valid charities is not obvious. The

give.org website mentioned above is not a prominent website, for example.

In this Invention, we describe an automated way to detect in an objective and

lightweight fashion valid charitable websites and electronic messages. For the

latter, we will choose the common example of email. Though our method can be

applied to other types of electronic messaging, like faxes, Instant Messaging and

SMS.

We describe the use of a browser and a custom plug-in that implements our

method on the client desktop. Alternatively, the functionality of the plug-in might .

be incorporated into a browser. Also, our method is applicable in other client

programs that can display hypertext documents and electronic messages.

In our Antiphishing Provisionals, we described an antiphishing method

which involved the use of an Aggregator (or set of these), a browser plug-in,

Partner Lists and a Notphish tag. The latter would be used in an email or web page,

written perhaps as

<notphish a="bank0.com" />

Here, the email or page claims to be from BankO.

The plug-in would detect this tag, and extract domains from any links in the

page or message, and possibly find a hash of that page or message. It would

contact an Aggregator. To see if BankO was one of the Aggregator's customers. If

so, then it would compare the domains with those of BankO's Partner List. Or,

instead of or perhaps in addition, it would see if the hash was in a list of valid

hashes for BankO.

HULU, LLC EXHIBIT 1011

Here, we extend the above idea. Suppose a web page is for a charity, with a

domain charityO.org. Or perhaps there is a message from this charity. In either case,

it can embed a new "Approval" tag. The representation depends on an actual

implementation, and here we use one such representation, in these examples:

<approve from="agency.gov" to="charityO.org" />

<approve from="charity5.org" to="charityO.org" />

The "from" attribute designates another organization that approves of

CharityO. The "to" attribute designates the organization being approved; in this

case, CharityO. The Approval tag might have other fields, as described later.

The page or message could have several Approval tags. A key difference

from the Notphish tag. The latter inherently could or should appear only once in a

page or message. Because the Notphish tag is used to identify the owner of the

page or message. There is only one such owner. Whereas Approval can be done by,

several other parties.

Note that when a plug-in/browser is looking at a message, it is at a web page

of some message provider that has received the message for the user. We

distinguish between this and when the browser is looking at a generic

non-message provider web page, by using the method of "2528".

The organizations mentioned in the from field are assumed to be customers

of the Aggregator. Similar to our earlier methods. Because the Aggregator acts to

accept only reputable organizations, that it has validated by some means. This role

is vital. If the plug-in were to go directly to the addresses of the organizations

mentioned in the from field, then a phisher ("Amy") could merely make a website

that approves her main website that solicits donations.

HULU, LLC EXHIBIT 1011

(An alternative implementation is for the plug-in to have a hardwired list of

reputable approval organizations. And it goes to those directly, without querying

an Aggregator. Another alternative implementation is for the plug-in to

periodically get such a list from an Aggregator, and then use it to directly query

the organizations in it.)

If the plug-in finds a hash of the page or message, it should preferably first

remove all the Approval tags. This lets the page or message be approved by

several organizations. Since adding these tags will not change the hash.

A difference from the earlier Provisionals is that here, CharityO need not be a

customer of the Aggregator. Though the organizations that approve it need to be

customers, and hence validated, there is no such requirement for CharityO. This

lets new organizations use our method for approval. It also lets each approver

decide, using its own methods, which organizations it will approve.

An approver sends to the Aggregator a list of organizations that it approves

("approvees"). Typically, this list might have the base domains of the approvees.

Optionally, the approver might furnish more detail about an approvee. It might say

that a page or message from the latter can only have links with base domains in a

list specified by the approver. Analogous to the Partner List of "2245". The

approver might also give a list of hashes of pages or messages that it approves of.

Given the above information, the plug-in can then apply it to the page or

message. However, an important difference arises, depending on whether the

browser is looking at a page or message. Suppose the browser is at an URL in the

charityO.org domain. Then if an approver just gave the base domain, charityO.org,

the plug-in can indicate that the page is approved by the approver. Because the

plug-in can take the URL and extract its base domain and compare this with the

base domains approved by the approver.

HULU, LLC EXHIBIT 1011

Now imagine we are looking at an email with a sender address at

charityO.org. If the approver only approved the base domain, charityO.org, then

preferably, the plug-in should not say that the message was approved. Because the

sender field can be trivially altered. An alternative is for the plug-in to indicate

approval, but only if there are no links, or, if there are links, that these all have the

base domain charityO.org. We recommend that this alternative be deprecated.

Because a phisher might write a message with no links, where the text indicates

that the reader should perhaps manually call a phone number, or type in an URL

not at charityO.org.

In general, for approving messages, the preferred implementation is for the

approver to have a list of valid domains in links in those messages or hashes.

The approver could also attach a comment to an approvee, or to a given page

or message by the latter. The comment would be sent to the Aggregator, and then

downloaded by the plug-in. Hence, the plug-in could make these available to the

user, if she asked for them, for example.

Plus, the approver might also attach a number or string to an approvee, or to

a given page or message by the latter. Without loss of generality, assume it is a

number. The possible values this might take, and the meanings of those values,

could be promulgated by the Aggregator. Hence, the plug-in could take these

values, and summarize or display them (or their meanings) in their entirety, if the

user asked for these. In terms of a summary, if it is meaningful to take a numerical

average, then this might be done, for example.

Possibly, an approver might furnish several numbers or strings, for a given

approvee or given page or message. Each might be for a different property or

metric. For example, an approver might have a string that indicates a country code,

or several country codes. The meaning of these could be that the approver is

saying, or suggesting, that the approvee can only raise funds in those countries, or

HULU, LLC EXHIBIT 1011

from citizens or residents of those countries. The approver might be a government

body with the authority to regulate charities, for instance.

Another example is a number that indicates how "strongly" the approver

vouches for the approvee. One value is that the approvee is the approver itself.

Another value could be that the approver has inspected the approvee's books.

Another value might be that the approver only knows casually of the approvee.

Another example is a number that measures the urgency of the appeal. For

example, an approvee raising money for cancer research might have moderate

urgency. Since it makes little difference whether a donation is made today or two

months from now, given the long time scales (years) for a suitable drug or therapy

to be found and tested. Whereas an approvee raising money for famine victims

might have greater urgency.

Another example is a number that measures the efficiency of the approvee in

using donated funds. That is, the lower its overhead, the greater its efficiency.

Bona fide charities might have to, or might voluntarily, reveal their overheads to

an approver. Especially if the latter is a government regulator.

Another example is an expiration date for the approval. An approver might

be reluctant to give an open-ended approval. So rather than having to decide at

some future time whether to withdraw the approval, it simply defines an expiration.

Which can tllen be implemented by the Aggregator.

When the plug-in analyzes the Approval tags, suppose it finds that a tag is

wrong, but that several tags check out correctly? The plug-in might have a policy

that if any tag is wrong, then it will take steps to alert the user, like coloring an

icon in the toolbar, as was done in our antiphishing inventions. It could also turn

off any links in the message. Including any "submit" buttons. The latter is

important, to prevent the user filling in a form with her personal information and

HULU, LLC EXHIBIT 1011

pressing that button, which might then send it to the fraudster.

The plug-in might have a more permissive policy, in which it will do the

above only if 2 tags are wrong, or if a majority of tags are wrong.

Now consider more closely what it means if the plug-in were to find out from

the Aggregator that a tag is wrong. There could be degrees of wrongness, and a

code could be returned to the plug-in that indicates why the tag is wrong. Firstly,

the approver might not be a customer of the Aggregator. Which strongly suggests

that the tag is inherently false. Likewise, if the approver is a customer, but has not

approved the approvee.

Another possibility is that the approvee, or the page or message, was once

approved, but that approval has now expired. This might be seen as not as bad as

the previous cases, inasmuch as the approvee or item was once approved.

Another possibility is that the approvee, or the page or message, was once

approved, but the approval was revoked. Here there could be several reasons,

some of which are discussed below. Some of these reasons could be worse than

others. Like if the approvee was discovered to be a phisher.

The browser's user might also be able to define how permissive the browser

might be, if it finds that some Approval tags verify and others do not.

1.1 Extensions

In the above examples of approval tags, both the approver and approvee were

specified in the tags. A variant on an approval tag might omit explicit mention of

the approvee. Instead, the approvee might be derived from the context of the page

or message. If we are looking at a web page, then the UKL gives us the approvee's

HULU, LLC EXHIBIT 1011

base domain. If we are looking at an email, then the sender field gives us the

approvee's base domain.

This idea of multiple approvals could be used with any type of digital data. A

document file might have approval tags embedded. So a program that can read the

document can extract these tags and act in the manner of the browser plug-in, to

test the document's approval. Or the file might be a binary file; i.e. a computer

program. This insertion of approval tags into the binary file follows our idea in

earlier Provisionals of using a tag in a binary file, where the tag was inserted by

the author of the file.

We can also use the ideas in our Antispam Provisionals. In those was defined

the idea of several metadata spaces that could be derived from a set of electronic

messages. The spaces included domain, hash, style, relay and user. Here, we can

define an "approval metadata space". This consists of mappings from approver

to approvee. Where an approver can point to several approvees. And an approvee

can have several approvers. Hence, one could make directed graphs ("clusters") to

further investigate the relationships between these parties. Furthermore, these

clusters have the virtue of being deterministic, because they are based on an

objectively observed topological connectivity. By contrast, in data mining,

clustering is often subjective. (Cf. "Introduction to Data Mining" by P Tan,

Addison-Wesley 2005.)

This approval metadata can be combined with information from other

Electronic Communication Modalities (ECMs) of "0046". For example, using the

methods of "1745", an ISP or Aggregator might make clusters in various metadata

spaces, from a corpus of email. Then, the Aggregator might combine a domain

cluster derived from email with an approval graph or cluster. Giving rise to a

cluster than spans two ECMs. The extra information given here, and the novelty

of merging data from disparate sources, may let the Aggregator study the behavior

of the approvees in a comprehensive manner.

HULU, LLC EXHIBIT 1011

Also, the Aggregator might share such information with its approver

customers. Consider such a customer, charity5.org. It is approached by charityO,

who would like charity5 to approve it. Presumably, the people in charity5 might

then perform some manual scrutiny of .charityO. But, charity5 might also ask the

Aggregator for any metadata information about charityO. Where this could come

from email data analyzed by the Aggregator or perhaps by its ISP customers.

Suppose charityO appears in a domain cluster, where many other domains are

considered to be spammers. Then, charity5 might decide that charityO is possibly a

spammer, and hence declines to approve it.

This cluster investigation can also use more than just charityO's domain or

network address. It might also look at any clusters that contain addresses in the

neighborhood of charityO's address. For example, in the IPv4 addressing for the

Internet, this might be a Class C set of addresses that contains charityO's address. ,

Plus, we might also look at clusters with domains that have addresses close to

charityO's address.

In addition to helping an approver approve or disapprove an approvee, the

above steps can also be periodically done by the Aggregator or approver, in

reviewing an approvee. Suppose that a month after charityO has been approved by

charity5, the Aggregator compiles a domain cluster containing charityO, based on

email. If the cluster has a "significant" number of spammer domains, or if the

styles of the Bulk Message Envelopes ("0046") are considered undesirable, then

the Aggregator might contact charity5 with its analysis. Here, the question of what

constitutes a significant number of spammer domains might be where the

Aggregator uses its expertise. Charity5 might also do its analysis. In any event, it

may decide, based on the data, that charityO either is associated with undesirable

others (spammers), or that charityO is a spammer. Initially, when charity5

approved charityO, this information might have been unavailable, and hence the

approval was done. But now, charity5 might revoke its approval and tell the

HULU, LLC EXHIBIT 1011

Aggregator.

Also, charity5 or the Aggregator might inform the other approvers of

charityO, so that they could review their approvals of charityO.

The Aggregator may also reserve the right to revoke one or more approvals

of an approvee. Even if the approvers do not consent to this or have not (yet) been

informed. While there might be several reasons, because the most important is that

the Aggregator finds out from its own analysis, or is informed by others that it

considers credible, that an approvee is bogus. Under these conditions, to protect

others, the Aggregator might consider it imperative to immediately revoke the

approvee's approvals. The Aggregator could also be compelled to take this action

by a government regulator with jurisdiction over the Aggregator.

If an approval is changed or revoked, then the Aggregator might tell the

approvee. Unless possibly the approver requested otherwise. Or if the Aggregator .

had a policy of not doing so.

The Aggregator can amass useful data from the incoming queries from

plug-ins. For a given approvee, it can find any time dependence to the queries and

any geographic dependence. Where the latter is inferred from the network

addresses of the plug-ins. To be sure, the latter can be nullified if a user uses an

anonymizer. But for most users, it might be reasonably expected that this will not

occur. If the approvee has several pages or messages, then the Aggregator can do

this for each of those, or for any subset.

The Aggregator can also study the relative effects of different approvers. This

is information that individual approvers are unlikely to have. Each approver might

only know about its own activities. The Aggregator may be able to use this

comparative information to suggest to potential approvees, which are the most

credible approvers.

HULU, LLC EXHIBIT 1011

If the Aggregator revokes an approval, as discussed above, and this is due to

the approvee being considered fraudulent, then there are possible elaborations. The

Aggregator might tell most plug-ins that ask about the approvee that the approval

was revoked. Which protects those users against the approvee. But, the Aggregator

might deliberately tell a few plug-ins that the page or message is approved. These

plug-ins could be located in machines used by investigators, who might want to

pretend to be fooled, and perhaps give the approvee false data.

1.2 Non-Charities

Thus far, we have discussed the context of a charity getting approvals from

other parties. But our Invention has broader scope. It can be used by any website .

or author, that wants endorsements from other parties. Where the latter are

assumed to be customers of an Aggregator, and hence presumably reputable and

recognized authorities in their fields. While the approvee might be a startup

company, or new author, that does not have name recognition, and wants to use

our method to obtain some credibility.

Along these lines, an approver might charge an approvee for an approval.

Similar to a company paying an accounting firm to audit its books. Or a company

paying a bond ratings firm to analyze it, so that it can issue bonds.

Under these circumstances, the Aggregator might set a flag by such

approvers or approvals, so that the plug-in can obtain it, and hence possibly

indicate to the user that an approval was paid for by the approvee.

Whether endorsements are paid for or not, it has to be expected that an

approvee will remove, or not place, any tags in its website or message that refer to

an unfavorable "approval". The latter word is probably not the right term, in

HULU, LLC EXHIBIT 1011

general parlance. But we use it here, for consistency with the usage in the rest of

this Invention, on the understanding that it can connote an unfavorable review. The

Aggregator can offer these unfavorable approvals to the plug-in. So suppose the

plug-in encounters a page with various approval tags. It goes to the Aggregator

and finds that these verify. But it is also informed of other approvals that point to

the page, but are not in the page. This can be especially useful to the user. So the

plug-in might inform the user, in some fashion, that other approvals of the page

exist, but are not referred to by the page. Hence, the user can read these. Plus, any

metrics that might be found by combining data from approvals can, and perhaps

should, include the data from these external approvals.

1.3 Search Engine

A search engine can also take advantage of our method. If it finds a page in

its spidering with our custom tag, then it can perform the steps that a plug-in

would do. If the verification fails, it could take action. Like possibly not making

the page available as a search result. Because it might construe that the page is

fraudulent, and hence protect its users by never giving the page.

It can expand on this, by perhaps scrutinizing other pages at that domain, and

lowering their weightings. And, if several pages are found to have failed tags, then

it might even remove all the domain's pages from its data.

However, if the tags verify, then it might choose to increase the weighting of

the page. Since the page now has more credibility than a page without the tags.

Which should improve the quality of the search results. And a page with several

tags (that point to different approvers) that verify, might have a higher weighting

than a page with only one tag that verifies, other factors being equal.

If the engine also has access to other types of data, like email, then it can

HULU, LLC EXHIBIT 1011

apply our method to them.

The engine can also offer various search options to its users, including but

not limited to the following. To search only those pages that are approved. To

search only those pages approved by 2 or more approvers. To search only those

pages approved by a given approver.

Or course, the engine could also offer searching that involves the negations

of the options in the previous paragraph, or any Boolean combination of those.

The approval network can be considered analogous to the network made by

regular hyperlinks in web pages. Hence ideas used by the engine for ranking pages

might also be applied here. One example is the use of anchor text. In a hyperlink,

this is the visible text that appears between the <a> and tags. It is well known

that an engine might use this, in order to help classify the page that is pointed to.

(Cf. "Search Engine Marketing" by Moran and Hunt, IBM Press 2005.) The

engine can programmatically record the anchor text, and use this, when finding

results of a queiy. Similarly, if an approval has text, possibly in a comment, then

this can be treated like anchor text.

1.4 User Feedback

Users with a browser and plug-in may be allowed to give feedback on a

given page or message that has the approval tags. Typically, this feedback might

be a simple "yes" or "no". The feedback could be communicated to the plug-in.

Which could then transmit it to the Aggregator, who can then accumulate these

from many plug-ins. The Aggregator could then summarize these and pass the

results onto the various approvers. Giving them feedback as to what end users

think of their approvals. The Aggregator might also do this for the approvees.

HULU, LLC EXHIBIT 1011

1.5 Alternative Tags

We described the use of a custom tag, with the example <approve ... />.

This was chosen to be different from existing HTML tags, and well as common

but non-HTML tags that might, for example, be used only by specific browsers.

An alternative way to implement this Invention in a page or message is to expand

the usage of the hyperlink tag, <a>. The standard notation for it is, for example,

 Click

Custom fields could be inserted, like this,

 Click

Here, the "from" attribute indicates an approver. There might also be a "to"

attribute, to explicitly indicate the approvee. These fields are different from those

in the official <a>, and hence a browser that does not have our plug-in will ignore

them, and just show a standard hyperlink. But if the plug-in exists, then it can

parse the <a> tags looking for the above custom attributes. If these exist, then it

can contact the Aggregator and apply our method.

The plug-in might support both our <approve> tag and the above custom <a>

tag.

If the custom <a> tag is used, and the plug-in is present and it computes a

hash of the page or message, then it should first remove all such custom tags.

Including the closing tags, and the visible text delineated by those tags. This

lets the author add several custom tags, and yet keep the same hash.

HULU, LLC EXHIBIT 1011

1.6 Chain of Approvals

Above, we discussed the example of charityO being approved by charity5.

Where charity5 is a customer of the Aggregator, and charityO is not. The

Aggregator might then let charityO approve other companies. Suppose one of these

is chess3.org. Then, a web page at that site, or a message from it, might have the

tag

<approve from="charity0.org" to=" chess3.org" />

The plug-in sees this, and does similar steps to earlier, sending a query to the

Aggregator about an approver called charityO.org. The Aggregator sees that this is

not one of its customers. But it then searches its customers' approval lists. It finds

that for the customer charity5.org, it approves charityO.org. Hence, it can tell the

plug-in that the approval exists. If so, it might also indicate to the plug-in that this

is one degree of separation from its actual customers. This assumes that at some

earlier time, when charityO found that it was approved by charity5, then charityO

uploaded its approvals to the Aggregator, in the same manner that was done by

charity5.

Continuing in this manner, the Aggregator might be willing to approve up to

some maximum degree of separation. Hence we can construct a microtrust model

that derives from a base of a set of companies that have been validated by the

Aggregator.

Of course, the longer the chain of approvals, the greater the risk that some

company in that chain is a fraudster. Which is why the plug-in may want to offer

some signal about the length of the chain to the user. Or, the user might define a

maximal chain that she will accept. If she gets to a page or message that has a

longer chain, then the plug-in will automatically take whatever actions it would for

an invalid approval. Naturally, the plug-in might offer a default maximal chain, to

HULU, LLC EXHIBIT 1011

make the user's choice easier.

1.7 Blacklists

The use of a blacklist against domains in hyperlinks of messages was

described by us in "0046". If the blacklist has spammer domains, then this is a

very simple and effective antispam measure. Now for the customers of the

Aggregator, it might be unlikely, though not impossible, that they would use (or,

rather, misuse) electronic messaging so that they would be considered spammers.

However, if the Aggregator permits a chain of approvals, then entities further

down the chains might be more likely to issue spam.

In either case, a message provider that gets incoming or outgoing messages

can also apply the blacklist against domains in the approval tags. If an approver in

such a tag is in the blacklist, then the provider might take the view that the

approvee is also likely to be a spammer. The message can then be treated as spam.

The provider might do this without checking the tag against the Aggregator. If the

message is meant to be outgoing, then the provider might refuse to send it out, and

might apply scrutiny to the sender, as a suspected spammer.

Note however that if the provider has a whitelist, and it finds a tag with the

approver in the whitelist, then it should still check the tag. Because it has no

assurance that the tag is in fact valid.

Clearly, if the approval data is written into the <a> tag, as discussed above,

then the blacklist can be applied against the relevant custom fields in this tag.

If the message has scripting routines that dynamically make the approval tag,

then this might be written by a spammer, to avoid an easy comparison with a

blacklist. We discussed a related idea with standard hyperlinks in "1698". A simple

HULU, LLC EXHIBIT 1011

extension of that method can be used to handle any dynamic approval tags.

1.8 Web Services

Multiple approval tags can also be written into XML documents that are

passed between servers running Web Services. A server might then have routines

that perform tasks similar to that of the browser plug-in. These routines would

extract the contents of an approval tag and check this against the Aggregator.

These steps could be fully programmatic.

1.9 Advantages

Our method has several advantages over the current situation. The latter

consists almost entirely, if not entirely, of manual steps that a casual user might be

unaware of, or unwilling to perform. And even if she does do these steps, she can

still make mistakes that cause her to be fooled by scam websites and messages.

Those steps are mostly subjective. In contrast, our method is far stronger, because

it can be done programmatically. and it is objective. Put simply, either a tag is right

or it is wrong. It cannot be both. While we do permit shades of wrongness, there is

still a strict demarcation between these and a tag that is correct.

Our method does not involve a parsing of keywords or any attempt to discern

the "meaning" of a page or message. Which makes it language independent.

Plus, our method is computationally lightweight. There is no encryption

involved. Except possibly to the extent that communication between the plug-in

and the Aggregator might be done using https.

Also, since our plug-in is external to the page or message, it does not suffer

HULU, LLC EXHIBIT 1011

from the disadvantage of seals, which reside inside the page or message and can

be faked. And which might still require manual effort on the part of the user, to see

if the page or message is fake. If the item turns out to be real, then this false alarm

will tend to reduce the user's inclination to perform such manual tests in the future,

for other items. In our method, the manual effort needed by the user is mostly after

a page or message is found to be fake. Which involves far less effort by the user.

Our method can be very germane to a government agency that regulates

charities. It might act as an important approver, or it might combine the roles of an

approver and an Aggregator. In the above discussion, for clarity, we have kept

these roles separate. But a government may have the power to combine these.

Given the global reach of the Internet, our method can also be used by

multinational agencies.

2 . Verifying Blogging/Journaling

In the scope of this invention, we regard blogs, newsgroups and bulletin

boards as fundamentally the same type of entity. We consider the cases of these

which let visitors submit articles (and other content) in an unmoderated fashion.

The articles can be considered "journaling". For brevity below, when we refer to

a blog, this shall also include a newsgroup and bulletin board, unless otherwise

specifically stated.

In our Antiphishing Provisionals, we described various elements that we now

extend to tackle the above problem. Specifically, "5807" has a method of

verifying links in web pages or messages. For a web page, it dealt with verifying

all the links in that page. While for a message that is viewed in a program, like a

browser, that can display hypertext, the method of "2528" lets us isolate the

message body and hence only extract links from it.

HULU, LLC EXHIBIT 1011

One natural extension is to handle verifying different messages on the same

web page. In general, these will be from different users. We can take the notation

in Section 20 of "5807", where we presented these tags, <askLimit> and

</askLimit>. They were used to delimit a section of an message. This section

could then be hashed by the Asker. Within the section would be a tag <ask

link="10.20.30.40:301" ...> (for example). Also in the tag might preferably be an

id of the author. The Asker could then go to that network address and ask a

Checker process, which is assumed to be present there, for verification about the

message. The Asker might submit the (id, hash) and the Checker checks if the id

exists, and if the hash is associated with the id. Thus far, in this paragraph, we

have described strictly steps in "5807".

(The above could also be simplified by merging the fields of the <ask> into

the <askLimit>. While we will not assume this in the further discussion, it is

another possible implementation.)

We now make these extensions. The web page shows a blog. Whereas in

"5807", the page was made by a message provider, in which the user is reading a

message (like email). Next, instead of a single message being viewed in a browser,

it is replaced by one or more articles. These could be from different visitors.

Typically, a visitor writes an article by pressing some link or button in the page,

which brings up another page where she can type. Or the first page might have a

box where she can directly type. Or she might be able to email the article to the

blog site.

The next change is that an article might not have any standard hyperlinks. In

"5807", it mostly discussed the case of verifying such links. Here we handle the

case where these are absent. But if the article has the <askLimit> and </askLimit>

tags, and the <ask> tag between them, then a modification of the Asker and

Checker of "5807" is possible.

HULU, LLC EXHIBIT 1011

"5807" also described various forms that a Checker could take. One variant

is that the author ("Jane") of an article writes the above tags, and one of these

points to another website. In which she then registers the hash of the article with

that website's Checker, where the hash is made of the material between the

<askLimit> and </askLimit> tags. The Checker stores a map from an id assigned

to her to a list of such hashes. With possibly other information supplied by her.

Hence it could answer a query from an Asker.

Alternatively, a simple form of a Checker could merely be a web page

written by Jane, in which she posts the hashes.

In either case, she might deliberately omit putting in the Checker the address

of the blog page where she wrote her article. This means that someone else who

visits the page might copy her article and then post it, unmodified, at a different

website. This might be ok to her. So that she does not need to add the blog's

address to her Partner List (PL) at the Checker. Indeed, she might choose not to

maintain a PL, if all her articles at various blogs only need to be validated for

content, and she does not care about copying.

It also means that she might preserve some level of obscurity, with regard to

which websites she writes articles in. The Checker only knows the hashes. It does

not know the web pages these refer to. Whereas in "5807", the PL held at the

Checker immediately gives it that information. Of course, here, as the Checker

gets queries about Jane, with hashes that verify, then it can choose to build up a list

of such pages over time. Jane cannot prevent this.

Many of the scenarios discussed in "5807" concerned a web page or message

where only Jane could write to it. Thus, it was usually sufficient to just have a

Checker verify links in what Jane wrote. But now we have the possibility that

several people can write to the same page. This allows an attack where a spammer

sees a verified entry written by Jane. Then, the spammer submits another article,

HULU, LLC EXHIBIT 1011

with different text and mostly different links, and having one other link be the

same as a verified link in Jane's article. Thus, if just links are verified, the

spammer can give the correct appearance that one of the links is verified, even if

the others are not. Offers partial credibility to the spammer's article. But if Jane

hashes her text, it blocks that attack. All the spammer might be able to do is

duplicate Jane's article. Which is fairly harmless.

Given the presence of a network address inside the custom tag, the blog site

might apply a blacklist against such addresses. So that if an address was in the

blacklist, the blog might take action, like deleting the message. The blog might

also check if that network address was within some neighbourhood of an address

in the blacklist. For example, if it is in the same Class C neighbourhood, under

IPv4 addressing. If so, then the blog might have a policy that this is tantamount to

the message being undesirable, and hence delete it.

We also extend our anti-"Man in the Middle" method of "5809". In it, we

described how a user taking her computer to an unfamiliar location, and getting a

temporary address, could face a MITM, run by a phisher ("Amy"). Where Amy's

machine sits between Jane's machine and the bank that Jane wants to login to. We

offered an easy technique of Jane hashing a combination of her password and her

temporary network address. And then passing this plus her username at the bank,

to the supposed bank, which is really Amy. Thus, it does no good for Amy to

pretend to be Jane, since in general, Amy will be seen by the bank to be at a

different network address than Jane. In "5809", the hashing is of a secret and

Jane's address.

Now, in this Invention, Jane can choose to find a hash of the combination of

(the address of the blog page in which her article appears) PLUS (the text of her

article). Here, all the information that goes into the hash is public. Jane then

submits the resultant hash to her Checker. In the <askLimit> or <ask> or

</askLimit>, she adds an attribute indicating that the verification hashing should

HULU, LLC EXHIBIT 1011

also include the page address. Optionally, extra parameters might be written to the

tag. For instance, indicating which hash method was used. If this is omitted, then

an implementation might have promulgated some default choice of hash method.

In this usage of the address, she can decide to specify only a subset of the

address. Letting the blog owner have some leeway in redeploying the article at a

different address within that address range. For example, suppose the page is at

http://ape.blog.info/dog/bird/goat.html.

She might hash only "http://ape.blog.info/dog/bird/ " . Hence the blog owner

can move her article to any file in that directory. Or, Jane might hash "blog.info".

So her article can sit at any address with that base domain. Or, suppose the domain

maps to the raw address 20.30.40.50, and the blogger owns the range 20.30.40.*.

Then Jane might hash "20.30.40.*". So that her article can sit anywhere in this raw

range. (Here, we use the Internet Protocol version 4 addressing. But our remarks

also hold under IPv6, with the obvious generalizations in notation.)

Whichever her decision, this choice of which fields to hash can also be

encoded into the tag. So that a visitor knows what to hash when verifying.

When we said Jane makes this choice, it might actually be on advice by the

blog owner. Who might require or suggest that if an author wants to make her

article verifiable and include address information, then she should only use certain

fields. Perhaps to give the owner leeway to move around the pages. This advice

from the owner to Jane can be done in a programmatic manner. For example,

imagine the owner exposing a Web Service that Jane's browser can detect. The

Service then specifies the addressing constraints and whether these are mandatory

or optional. The browser can use these to automatically find the hash, when Jane is

finished writing the article. Or, in the page where Jane submits her article, there

might be these hashing options. And the blog site then finds the hash, according to

HULU, LLC EXHIBIT 1011

these choices.

It should be understood that when we said hash the address+text, that this can

be taken to mean hashing some mathematical combination of the two variables.

This parallels the discussion in "5809". So, for example, our method includes

hashing in this order the text+address. What matters is that the steps done by Jane

are the same as those done by a visitor to the blog, that is attempting to verify her

article.

Hence, Jane locks down the verification to that web page. Anyone copying

her article will not be able to have it verified at a different address. This locking is

an alternative to the use of a PL in "5807". In the Web, there is no obstacle to a

user with a browser copying a typical web page, and putting that copy at another

address. Indeed, this has been one of the factors driving the Web's growth. But

though copying cannot be prevented, verification can.

(The previous paragraph has a minor caveat. Some web pages might have

intricate functionality that preclude a simple copy. But most pages, and this

includes most blog, newsgroup or bulletin websites, can indeed be easily copied.

Or subsets of those pages, like single articles.)

As described in "5807", the website (blog) where Jane (and presumably

others) wrote articles can offer a verification ability. For example, it might

highlight in some manner the articles that have been verified. While unverified

articles (which lack the tags) are shown in another fashion. And invalidated

articles (these have tags, but are found to be invalid) are shown differently.

Standard display options might be to only show verified articles, or to only show

unverified articles.

2.1 Bot Articles

HULU, LLC EXHIBIT 1011

Now suppose a bot visits the blog and writes an article. If it lacks our tags,

then the blog owner has an extra programmatic heuristic of finding such articles.

The problem still exists of being being able to distinguishing between the bot

article and regular articles that don't have our tags. The blog can use blacklists of

spam sites, and apply these against any links in articles. For spam sites that are

long lived, and which employ bots to write blog articles, a comprehensive

blacklist can help a blog detect many of these articles.

Suppose the bot article has our tags. If these do not verify, then it is a very

strong signal that the article is dubious.

Hence imagine that the bot article has our tags and it verifies. The blog may

have a special whitelist of Checker domains. These are domains which it considers

to be reputable and which have policies against verifying spammers or users for

which there have been substantial such complaints. If the bot article verifies

against a Checker not on the blog's Checker whitelist, then the article might be

deleted.

Plus, of course, the blog can still apply its spam blacklist against any links in

the verified articles. If it finds such an article, then this can be used as the basis for

a complaint to that Checker about the article's author.

2.2 Search Engine

Our method can also be used by a search engine ("Engine") that spiders the

blog. It might spider blogs, simply because these are publicly accessible web

pages, and so become part of the Engine's scope. A problem that has emerged with

blogs is "search spam". These bot articles are often written by a program or a

human that visits the blog and submits what is really an ad for a good or service.

HULU, LLC EXHIBIT 1011

Sometimes, conceivably, the owner of the blog might insert such articles. Perhaps

one reason for the owner to maintain the blog is to be able to sell such ads. Like a

lot of email spam, search spam often has links to, websites offering goods or

services. The spam articles might be not just for humans to read and click on the

links. They might also be to skew the Engine's rankings of websites. If the Engine

spiders many blogs, and finds many spam articles pointing to a given website, then

that website might rise in the Engine's rankings. Undesirable for two reasons.

Firstly, this ranking does not reflect true, independent assessments by different

websites of that website's popularity. The value of the search results is diminished

for users. Secondly, the spammer does this to avoid buying ads with the Engine.

The Engine loses revenue.

Now, the Engine can give higher weighting to blog articles that can be

verified using our method. It can do this, independently of whether the blog does

so or not. This is to account for the case where the blog owner is responsible for

the spam articles, and might falsely claim that the articles are verified. Also, the

Engine can detect this false claim. If so, then it has extra information about the

blog site. It might consider the site to be highly suspect, and deprecate the site's

weighting or even drop the site from its survey.

2.3 Non-Text Verifying

Suppose Jane uploads an image file into her article, or an audio file, or a

video file, or some other type of data. Her tag can indicate whether these should be

be added to the text of her article, in order to hash the combination. Or, if these

files should be hashed separately. In this case, an elaboration is for a hash to be

made of the combination of (text+file hashes). So as to produce a final hash that

binds the entire contents of the article together. With the address of the page also

added to the input to the hashing, as discussed above, if Jane want to bind to the

address.

HULU, LLC EXHIBIT 1011

The tag notation can be generalized to indicate which of the assets in her

article should be hashed. She may want this precision, so that, for example, she

can state that only the text and images should be hashed, while audio files can be

skipped.

For a visitor with a browser going to the page with Jane's article, finding the

hashes is a little more involved than above. The assets which are immediately

available to the visitor are the text and any images. But for an arbitrary file in the

article, it may need to be downloaded to the browser's memory, for hashing to be

done.

The previous paragraph is moot to the blog, if it wishes to verify Jane's

article. Since Jane has, by assumption, uploaded all the assets of the article to the

blog's computer.

2.4 Aggregating Articles

A popular trend is for a newsfeed to be aggregated from multiple sources.

Perhaps using the RSS (Really Simple Syndication) methods. One possibility is

that Jane might have her own blog site, where she writes her articles. She might

then want some other sites to use her articles. One way, under RSS, is for her to

supply an RSS news feed. While is basically a list (file) written in XML, with

links to her web pages, and possibly to specific articles on a given page. By

publishing this list on the Web, other sites could then link to her articles. Another

approach is for those sites to copy (hopefully verbatim) her articles. As we've

mentioned earlier, this copying is essentially impossible to prevent. But Jane can

put restrictions on which websites her articles will verify on.

Assume that when she wrote her article for her website, she just did a hash of

HULU, LLC EXHIBIT 1011

its text, and did not include her website address in the hash input. In the Checker,

she can supply ancillary data to be associated with this hash. It could be a whitelist

of addresses at which she approves, to physically hold a copy of her article. This

entries in the whitelist might be full addresses. Or, perhaps more realistically, they

might be base domains. So an entry of, say, ballbat.com, means that the Checker

should say that any request about her (id, hash) at an address with that base

domain, is verified.

Jane might also have a blacklist of addresses which will not verify. A

question arises that having both a whitelist and a blacklist seems redundant?

Possibly. Jane might have only a whitelist, and a policy at the Checker that if an

address is not on the list, then the article is not verified. Or she might have only a

blacklist, and a policy that if an address is not on the list, then the article is

verified.

Either list might have the ability to have wildcards. So that, for example, a

whitelist entry of "*.gov" means that any address in the US government domain is

considered good.

The Checker might supply a default whitelist and blacklist, so that its

customers can use these in conjunction with, or perhaps instead of, their own lists.

2.5 Provenance of Repeated Aggregation

Suppose we have a blog site, Theta.com, that collects articles via newsfeeds

(like RSS perhaps) and possibly also by contributors directly writing to it. Imagine

another blog site, Phi.com, that does likewise. And Phi takes articles from Theta.

Theta can essentially act as the "author" of the articles posted on its site. For

example, with a given article, it might encapsulate that with <askLimit> and

HULU, LLC EXHIBIT 1011

</askLimit> tags. Even if that article already has these, from its existing, actual

author. Then, Theta can add an <ask> tag. Where, to reduce chances of ambiguity

with any existing <ask> tags, Theta's tag goes outside the scope of any internal

<askLimit> or </askLimit> tags.

(Or, when any <askLimit> and </askLimit> tags are used, there might be no

<ask>. Instead, as mentioned earlier, the <ask> fields are put into <askLimit>.

Which simplifies the above encapsulation.)

If Theta does this, it might run its own Checker, or refers to some other

Checker. In either case, it registers its id and hashes with the Checker. (If the

Checker is its own, then the id is probably superfluous, if this Checker only

verifies Theta's data.) Hence, a visitor to Phi's website can use the method of the

earlier sections to see that the articles from Theta are verified. This is true whether

or not the articles have any verification from other Checkers. If they do, then our

method can be easily extended to let the visitor's browser (or Phi) perform

verification using those other Checkers.

In this fashion, a visitor can see the provenance of an article, as it propagated

through the blogs or newsgroups. Even if the original owner is Anonymous, being

able to verify the trajectory of the article may have value to some visitors. Or to a

blog that might have policies about what articles it will accept. Imagine that Phi

might not accept any articles submitted directly to it by an author, that it cannot

verify. But it will do so, if these come from Theta. Phi can do this

programmatically, which is a significant saving over using manual effort. In this

example, maybe Theta accepts unverified articles. But, say, it expends manual

effort to somehow check these. In general, Theta's cost for doing this will not be

passed in its entirety to Phi. Or perhaps even at all, if Phi gets a free feed from

Theta.

Suppose Phi shows articles from many sources. It might have logic that uses

HULU, LLC EXHIBIT 1011

some type of reputation service (which may be external to it) to make decisions

like that in the previous paragraph.

Of course, Phi does not have to abide by our method. When it displays an

article that comes from Theta, it might strip off any enclosing tags. Or even all

such tags, throughout the article, which wipes out any verification ability to the

visitor. But an attraction of our method is that it lets websites that use it compete

with websites that do not. Not all websites (and their visitors) will see a need for

our method. Others might. Our method allows for incremental adoption by authors

and websites. And the articles that are generated with our tags are compatible with

websites that do not use these.

Suppose we have an article that has traveled through various blogs, with each

encapsulating it in the blog's verification tags. When a blog gets this article, it can

keep those tags. But suppose it makes changes to some. Or it deletes some, but not

all. Or it inserts fake tags. If it presents the article as verifiable, then these can be

detected, unless it chooses to delete all the valid tags. By the encapsulation and the

hashing of everything inside a corresponding pair of tags, this acts to bind the

trajectory and the content. Actions by a rogue blog will cause the verification to

fail.

We can compare this to the situation in email. Each email relay adds its

header information to a message that it gets and sends on. But the email protocol

was written at a time when there was no reason why a relay might enter false

information. Or why a message going to a relay might have false information

about the message's purported route that that relay. Spammers have taken full

advantage of this. One proposed antidote is for digital signing of messages,

including their headers, as they go through the Internet. This has proved difficult

to implement for several reasons, including issues of key distribution and the

increased complexity of handling the mail.

HULU, LLC EXHIBIT 1011

In contrast, our method involves hashing and not signing. There are no keys

to distribute and maintain. And the computational effort in hashing is less than in

signing. Plus, there are fewer hashes than there would be signatures, assuming that

digital signing was used for most email. Each day, several billion emails are sent

out, spam and non-spam. But not several billion new articles for blogs and the like.

Even where a program might generate these, like spam, there is no incentive to

ramp up to the numbers seen for spam. The bottleneck is the blog pages. Writing

the same spam thousands of times to a given blog page is very unlikely to

significantly increase the chances of readers buying its offering.

2.6 Anti-MITM Extension

Above, we described an extension to the anti-MITM method of "5809". Here,

we describe another extension. This involves the following topology. A user, Laura,

has a mobile computer, which she connects to the network, via another party, Amy.

Laura wants to login to her bank account at bank0.com -

Laura < > Amy < > bankO.com

Amy represents herself to Laura as various possible legitimate guises.

Perhaps as a WiFi connection. Or as the network connection in a cybercafe or

public library. But unbeknownst to Laura, when she tries to connect to bank0.com,

she is really going to a fake site, that possibly has BankO's real network address.

This is where Amy might have a false DNS mapping for bankO, or in other

fashions, misrouting Laura's message. In "5809", we described how if Laura is

allocated a network address that can be seen by the rest of the network, then she

can include it in the input to a hash. The latter is sent to bankO. Which can then

verify it independently, by seeing what address the (apparent) Laura is at.

Another possibility is that when Laura connects to what she thinks is the

HULU, LLC EXHIBIT 1011

network, that explicitly, Amy might be running what amounts to a dynamic DNS.

For example, Amy might only have one address facing the outside network, which

might and probably will be the Internet. She runs Network Address Translation

(NAT). Users like Laura get a temporary address that cannot be seen on the

outside network. When Laura goes to an arbitrary address on the outside network,

the NAT converts her address into Amy's outside address and some type of id,

unique to Laura's session. For example, a cybercafe might do this, with no malign

intent, if it only has one outward facing address.

Suppose though that Amy does the steps in the previous paragraph, and also

redirects Laura's queries to bankO.com to an outside website run by Amy. Which

then forwards Laura's messages in a MITM manner, to the real banlcO.com. As in

"5809", Laura and bankO have a common shared secret (her password). Under

these conditions, Laura and the bank could implement the following method.

She picks an integer, i, and makes a hash of a combination of i and her

password. She sends (i, hash, username) to what she thinks is bankO.com, but

which is really Amy. Who then forwards a copy to the real BankO. It verifies (i,

hash, username). Then it and Laura use i and her password in some fashion to

derive a key to encrypting messages between them. Hence, even though Amy will

get these encrypted messages, she won't be able to decrypt them.

HULU, LLC EXHIBIT 1011

J o

CLAIMS

1. A method where an author of a web page, with address Theta, can add a

custom "Approval" tag, with an attribute that designates the address of another

network location ("approver") that approves or endorses Theta.

2. A method, using claim 1, where there could be several such Approval tags

in Theta, each tag referring to a different approver.

3 . A method, using claim 1, where there is a central website, Agg, that

maintains a set of approvers, that it approves of; where each approver can submit

to the Agg a list of addresses of pages at other websites that the approver approves;

where with each address in that list might be a list of base domains in links in the

approved page, or a hash of the approved page.

4. A method, using claim 3, where there is a browser modification, such that

when the browser detects an Approval tag in a page it is displaying, it contacts the

Agg to obtain information to verify the tag; where this verification might involve

finding base domains of links in the page, or of finding a hash of the page or of a

subset of the page, and comparing such information with that from the Agg.

5. A method, using claim 4, where if the Approval tag does not verify, then

the browser indicates this in some manner to its user, including, but not limited to,

turning off any links in the page being displayed, or not displaying the page.

6. A method, using claim 4, where if the Approval tag does verify, then the

browser indicates this in some manner to its user.

7. A method, using claim 3, where the approver can set an expiration date on

a given address that it approves of.

HULU, LLC EXHIBIT 1011

8. A method, using claim 3, where the approver can specify a domain of an

approvee, meaning that it approves of all pages within that domain, including any

subdomains.

9. A method, using claim 8, where the browser can apply this data to the

approvee's pages.

10. A method, using claim 3, where an approver indicates that an approval of

an approvee's page was paid for by the approvee.

11. A method, using claim 10, where if such a page's Approval tag verifies,

then the browser can indicate in some manner that the approval was paid for.

12. A method, using claim 4, where if a page has several Approval tags, and

some verify and some do not verify, that the browser has logic to indicate these

"partial" verifications to the user in some manner.

13. A method, using claim 12, where the user can set a browser policy as to

how strict the verifications must be.

14. A method, using claim 3, where the Agg might reject an approvee,

perhaps based on a determination that the approvee is a spammer or phisher.

15. A method, using claim 3, where a search engine, S, spidering a page with

an Approval tag, verifies it with the Agg.

16. A method, using claim 15, where S increases the weight of a page that

verifies, and decreases the weight of a page that does not verify, in determining

search results; and possibly does not make the latter pages accessible in search

results.

HULU, LLC EXHIBIT 1011

17. A method, using claim 15, where S lets a user restrict a search to pages

with Approval tags that verify.

18. A method, using claim I5where a message provider can apply a blacklist

against an approver in an Approval tag in an incoming or outgoing message; and if

the approver is in the blacklist, the provider can take various steps, including

possibly marking the message as spam.

19. A method, using claim 4, where the user can vote on a page with an

Approval, and the browser sends this information to the Agg, which can aggregate

such votes per page and make results available to the approver or approvee.

20. A method where the writing of a message in a page of a newsgroup or

blog might include custom tags, that delineate the message within the page, and

which have an address of another network location that approves of that message;

and where the page might have messages written by several authors.

21. A method, using claim 20, where the blog might have code that detects

such messages with those custom tags, and verifies them by querying processes

("Checkers") at those other network locations.

22. A method, using claim 20, where a search engine spiders such a page, and

verifies any messages with those custom tags, and uses the results to modify the

weight of the page, when determining search results.

23. A method, using claim 20, where the blog might apply a blacklist against

a network address inside the custom tag, and if the address is in the blacklist, then

the blog might delete the message.

HULU, LLC EXHIBIT 1011

HULU, LLC EXHIBIT 1011

International application No.
INTERNATIONAL SEARCH REPORT

PCT/CN2006/003728

A . CLASSIFICATION OF SUBJECT MATTER

See extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B . FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: H04L, G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, EPODOC, PAJ, CNPAT, CNKI : WEB W PAGE TAG OR TAB OR LABEL APPROV+ OR THE SIMILAR

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

PX WO200602692 1A2 (METASWARM HONGKONG LTD) 1-23

16 Mar. 2006 (16. 03. 2006) See the whole document

PX JP2006313517A (E-LOCK CORP SDN BHD) 1-23

16 Nov. 2006 (16. 11. 2006) See the whole document

X US5937404A (APPALOOS A INTERACTIVE CORP) 10 Aug. 1999 (10. 08. 1999) 1-23

See column 3 line 5-25, column 5 line 35-55 in the description, fig. 3

US2004199606A1 (INT BUSINESS MACHINES CORP) 1-23

07 Oct. 2004 (07. 10. 2004) See the whole document

Further documents are listed in the continuation of Box C . See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date
or priority date and not in conflict with the application but

"A" document defining the general state of the art which is not cited to understand the principle or theory underlying the
considered to be of particular relevance invention

"E" earlier application or patent but published on or after the "X" document of particular relevance; the claimed invention

international filing date cannot be considered novel or cannot be considered to involve
an inventive step when the document is taken alone

"L" document which may throw doubts on priority claim (S) or
"Y" document of particular relevance; the claimed invention

which is cited to establish the publication date of another
cannot be considered to involve an inventive step when the '

citation or other special reason (as specified) document is combined with one or more other such

"O" document referring to an oral disclosure, use, exhibition or documents, such combination being obvious to a person

other means skilled in the art

"P" document published prior to the international filing date "&"document member of the same patent family

but later than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

20 Apr. 2007 (20. 04. 2007) 1 7 MAY 2007 Cl 7 0 5 2 0 0 7)

Name and mailing address of the ISA/CN
Authorized officer

The State Intellectual Property Office, the P.R.China /Jt-

6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China WANGZh i
100088

acsimile No. 86-10-62019451
Telephone No. 86-1 0-62086080 j f '

Form PCT/ISA/210 (second sheet) (April 2005)

HULU, LLC EXHIBIT 1011

INTERNATIONAL SEARCH REPORT International application No.

PCT/CN2006/003728

CLASSIFICATION OF SUBJECT MATTER

G06F11/28 (2007.01) i

G06F15/16 (2007.01) n

H04L9/00 (2007.01) n

Form PCT/ISA/210 (extra sheet) (April 2005)

HULU, LLC EXHIBIT 1011

INTERNATIONAL SEARCH REPORT International application No,
Information on patent family members

PCT/CN2006/003728

Patent Documents referred Publication Date Patent Family Publication Date
in the Report

WO2006026921 A2 16.03.2006 NONE

JP2006313517 A 16.11.2006 US2006253446 A 09. 11. 2006

AU200620068S A 23. 11. 2006

US5937404 A 10. 08. 1999 WO9848546A 29. 10. 1998

CA2287341 A 29. 10. 1998

AU6977598 A 13. 11. 1998

EP0978185 A 09. 02. 2000

AU719455B 11. 05. 2000

JP2001503178T 06. 03. 2001

US2004199606 A 1 07. 10. 2004 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

HULU, LLC EXHIBIT 1011

	front-page
	description
	claims
	drawings
	wo-search-report

