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Synopsis

Following development of a filament-stretching extensional rheometer at Monash Univer
similar rheometers have been designed and built in other laboratories. To help validate the
technique, a collaborative program was undertaken to compare results from several instrum
First, three test fluids prepared at the University of California at Berkeley were characterize
steady and transient shear flows there and at the Massachusetts Institute of Technology~M.I.T.!, and
then tested in extensional rheometers at M.I.T., Monash and the University of Toronto. Each
is a constant-viscosity solution of narrow-molecular-weight-distribution polystyrene dissolved
oligomeric polystyrene. The solute molecular weights are 2.0, 6.5, and 20 million g/mol, and
polymer concentration in each fluid is 0.05 wt. %. From linear viscoelastic measurements, the Z
relaxation times of the fluids are found to be 3.7, 31, and 150 s, respectively. The scalin
relaxation times with molecular weight indicates better-than-theta solvent quality, a find

a!This paper was presented by D. F. James at the Society of Rheology Annual Meeting in Madison, Wisco
October 1999.
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84 ANNA ET AL.
consistent with independent intrinsic viscometry measurements of equilibrium coil size. Each fluid
was tested in the three filament stretching rheometers at similar Deborah numbers. Despite
variations in instrument design and the general difficulty of the technique, transient Trouton ratios
measured in the three instruments are shown to agree quantitatively. ©2001 The Society of
Rheology. @DOI: 10.1122/1.1332388#

I. INTRODUCTION

The development of a filament stretching apparatus by Sridhar and coworkers has
enabled the transient extensional flow behavior of mobile fluids to be characterized,
particularly the behavior of dilute polymer solutions@Sridharet al. ~1991!#. Although the
importance of extensional rheology measurements has been recognized since the turn of
the century@see~Petrie ~1979! for a historical account#, generating purely extensional
flows of mobile fluids has proven to be extremely difficult. Various devices have been
developed to measure the ‘‘extensional viscosity,’’hE , of a mobile fluid, including
opposed jet devices, spin-line rheometers, and two- and four-roll mills. These techniques,
reviewed in detail elsewhere, all have serious drawbacks, among them an unknown
preshear history, ‘‘contamination’’ of the extensional flow field with regions of shearing,
and an inability to approach steady state conditions@Gupta and Sridhar~1988!; James and
Walters~1994!#. An international ‘‘round-robin’’ study in the Journal of Non-Newtonian
Fluid Mechanics in 1990 attempted to quantify the differences between many of these
devices by comparing measurements for the same fluid, denoted M1@Sridhar ~1990!#.
This study showed that different devices can yield widely different results at a given
extensional rate. In fact, James and Walters compiled the data from this study and the
plot shows over three decades of variation in measurements ofhE as a function of

imposed strain rate«̇ @James and Walters~1994!#. James and Walters note that the
‘‘values of hE . . . are transient values and the disparity makes it clear how strongly
these values depend upon variables other than strain rate.’’ The round-robin study of the
M1 fluid demonstrated that a new device was needed which could overcome some of the
drawbacks of earlier devices and allow systematic study of other dependent variables.

As a part of this 1990 study, a ‘‘falling plate’’ device was introduced by Matta and
Tytus @Matta and Tytus~1990!# which would subsequently evolve into the filament
stretching apparatus. By simply placing a small amount of fluid between two circular
plates and allowing the bottom one to fall under gravity, Matta and Tytus were able to
generate a nearly pure extensional flow and to calculate the tension in the fluid filament
during stretching. Motivated by this work, Tirtaatmadja and Sridhar designed a device to
control the separation of the two endplates such that the fluid is subjected to nearly ideal
uniaxial extension while the force on one plate is measured. In this device, theevolution
of fluid stress from equilibrium to steady state can be followed@Sridharet al. ~1991!;
Tirtaatmadja and Sridhar~1993!#. Several groups have subsequently built similar filament
stretching devices and reported results for various test fluids@Kröger et al. ~1992!; Ooi
and Sridhar~1993!; Berget al. ~1994!; Ooi and Sridhar~1994!; Solomon and Muller
~1996b!; Spiegelberget al. ~1996!; Spiegelberg and McKinley~1996!; van Nieuwkoop
and Muller von Czernicki~1996!; Jainet al. ~1997!; Verhoefet al. ~1999!#. The flow
kinematics, including the effect of the nonideal flow conditions near the rigid endplates,
have been explored by researchers, and still others have used data from filament stretch-
ing devices to make quantitative comparisons with constitutive models@Shipmanet al.
~1991!; Tirtaatmadja and Sridhar~1995!; Gaudetet al. ~1996!; Kolte et al. ~1997!;
Sizaire and Legat~1997!; Szabo~1997!; Remmelgaset al. ~1998!; Yao and McKinley
~1998!; Olagunju~1999!; Yaoet al. ~2000!#. In addition, the device has been used to
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85FILAMENT-STRETCHING RHEOMETERS
examine stress relaxation and birefringence in uniaxial extension@Orr and Sridhar
~1996!; Spiegelberg and McKinley~1996!; Doyleet al. ~1998!; Sridharet al. ~2000!#.

The goal of the current study is to investigate the reliability of filament stretchin
rheometers and to determine their utility as a quantitative method for characterizing
transient extensional rheology of viscoelastic liquids. In the following sections, we co
pare the transient stress growth in well-characterized test fluids measured in three d
ent filament stretching devices that have been built independently in different labora
ries. We highlight important practical considerations and procedures needed to ach
good agreement in results from these different devices.

In Sec. II, we describe the composition and properties of the three test fluids use
this interlaboratory project. Measurements of intrinsic viscosity, steady and dynam
shear rheology, and transient startup and cessation of shear flow are presented. Fu
more, it is found that the fluid response is consistent with a Zimm spectrum of relaxat
times, and we demonstrate remarkably good agreement between scaling exponent
tained from intrinsic viscosity measurements and small-amplitude oscillatory shear d
With this complete characterization in shear flows as a foundation, we proceed w
measurements of extensional viscosity and compare data from the three different in
ments for the three test fluids. In Sec. III, we describe the three filament stretch
devices, and compare the fluid response in different ways to show that nearly id
kinematics are achieved. Finally, in Sec. IV we present measurements of the trans
extensional rheology of the three test fluids for a range of imposed strain rates. We h
that this study will provide a guide for experimenters who wish to use filament stretch
rheometry as a standard characterization technique.

II. CHARACTERIZATION OF COMMON TEST FLUIDS

A. Fluid composition

The three fluids used in this study, denoted SM-1, SM-2, and SM-3, are dilute polym
solutions with nearly constant shear viscosities, which enable the effects of elasticit
be isolated from those of shear thinning@Boger ~1977/78!; Boger and Nguyen~1978!#.
Each solution has the same concentration,c 5 0.05 wt. %, of high molecular weight
polystyrene~Pressure Chemical, P.D.I.,1.20) dissolved in oligomeric styrene~Picco-
lastic A5 Resin, Hercules!. The mass-average molecular weights of the polystyrene
2.0, 6.5, and 203106 g/mol, respectively, and the density of each fluid is 1.02 g/cm3.
The manufacturer-reported values of the polydispersity indices for the three solutes
1.03, 1.05, and 1.20, respectively. The three fluids were prepared at the Universit
California at Berkeley. In each case, the high molecular weight polymer was dissol
directly in the oligomeric resin, and the fluid was gently rolled once a day for 2 mont
to ensure a homogeneous mixture.

The first step of the characterization was measurement of quiescent solution pro
ties, including polymer molecular weight, coil size, and solvent quality, which we
determined through a combination of intrinsic viscometry, gel permeation chromatog
phy ~GPC!, and static light scattering at UC Berkeley. Manufacturer-reported molecu
weights of the starting polymers were confirmed by GPC in tetrahydrofuran and by st
light scattering in dioctyl phthalate at 22 °C, the theta point for polystyrene. Static lig
scattering also yielded the radii of gyration of the coils under theta conditionsRg,u ;
details of these measurement techniques are reported elsewhere@Solomon and Muller
~1996a!; Leeet al. ~1997!#. The measured radii of gyration under theta conditions were
excellent agreement with the values calculated from the molecular weight and the c
acteristic ratioC` as
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86 ANNA ET AL.
Rg,u
2 5 C`nl2, ~1!

whereC` 5 9.85 @Brandrupet al. ~1999!#,n is the number of carbon–carbon bonds in
the backbone, andl 5 1.54 Å is the length of a carbon–carbon bond@Flory ~1953!#.

Direct measurements of coil sizes and solvent quality in these solutions via static lig
scattering could not be made because of insufficient contrast in the scattering between
oligomeric styrene solvent and the high molecular weight polystyrene solute. Inste
these measurements were made through intrinsic viscometry as described below.

For each molecular weight, a series of dilutions were prepared from a 0.05 wt.
master solution and viscosities were measured in a capillary viscometer or in a Rheom
rics RMS-800 mechanical spectrometer using cone-and-plate fixtures. The limiting v
cosity number~or intrinsic viscosity! @h# is defined through an expansion of the solution
viscosityh in concentrationc as

h 5 hs~11@h#c1kH@h#2c21 . . .!, ~2!

and was determined by a dual Huggins–Kramer extrapolation of the viscosity data
infinite dilution. In the above equation,hs is the ~oligomeric styrene!solvent viscosity
andkH is the Huggins coefficient. The resulting values of@h# are given in Table I, along
with other properties of the three solutions. The radius of gyrationRg for each fluid was
then determined from the Flory–Fox equation:

@h# 5 F0Rg
3/Mw , ~3!

whereF0 is a universal constant, equal to 3.6731024 mole21.
The size of a polymer coil in solution may be related to the solvent quality throug

either a coil expansion parametera defined as

a [
Rg

Rg,u
~4!

or through an excluded volume exponentn where

Rg } Mn. ~5!

For a theta solvent,a is unity by definition andn 5 1/2. For good solvents,a is greater
than unity and 0.5, n , 0.6.

Alternatively, sinceRg,u } M1/2, one may define a coil expansion exponentg from
Eq. ~4! above, i.e.,a } Mg whereg 5 n21/2 . The value of the exponentg typically
varies from zero for a theta solvent to 0.1 for a good solvent. As shown in Table I, t

TABLE I. Equilibrium properties and molecular weight scaling exponents for SM Boger fluids. The conce
tration c of all three solutions is fixed atc 5 0.000 51 g/mL. The excluded volume exponent is determined to
be n 5 0.5260.015, and the coil expansion exponent,g 5 0.0260.015.

Mw
~g/mol!

@h#
~mL/g!

Rg
~nm! L

c1*
~g/mL!

c2*
~g/mL! c/c2*

SM-1 2.03106 120 41 88 0.0083 0.0011 0.44
SM-2 6.53106 250 78 164 0.0040 0.000 58 0.87
SM-3 2.03107 430 133 277 0.0023 0.000 34 1.50
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87FILAMENT-STRETCHING RHEOMETERS
values ofn andg for our polystyrene–~oligomeric styrene!system were found to be 0.52
60.015 and 0.0260.015, respectively, indicating that the styrene oligomer is slight
better than a theta solvent.

The above measurements also enable assessment of the diluteness of the thre
fluids. Since the polystyrene concentrations are the same in each case, the dilut
decreases with increasing molecular weight. Several measures of diluteness have
proposed in the literature, and a very thorough discussion of these is given by Grae
and by Harrison and co-workers@Graessley~1980!; Harrisonet al. ~1998!#. The most
common method of assessing diluteness depends on the magnitude of the intrinsic
cosity. A critical concentrationc1* can be defined as

c1* 5 1/@h#, ~6!

although Graessley notes that a proportionality factor of 0.77 is more rigorous.
values ofc1* given in Table I are well above the concentration of 0.000 51 g/mL of o
solutions, showing that all three fluids lie well within the dilute regime according to th
definition. A second, more conservative measure of diluteness is based on the conc
tion at which the coils at equilibrium begin to physically overlap. This critical conce
tration c2* is given by

c2* 5
Mw

4
3 pRg

3 NA

, ~7!

whereNA is Avogadro’s number@Graessley~1980!#. By this measure, the SM-3 fluid lies
in the semidilute regime, sincec ' 1.5c2* . A plot of the fluid viscosity versus concen-
tration also shows significant curvature at concentrations above 0.034 wt %, indica
that SM-3 is above a nominal value ofc* , as defined in terms of the relative magnitud
of the quadratic term in Eq.~2!. However, in this study, SM-3 is considered to be a dilut
solution, because we found that the behavior of the fluid in viscometric experiments
consistent with that of a dilute solution.

B. Steady and dynamic shear rheology

The rheology of the three fluids in both steady and dynamic shear flows was cha
terized at the Massachusetts Institute of Technology~M.I.T.! using a TA Instruments
AR1000N cone-and-plate rheometer. First normal stress differences were also mea
using a Rheometric Scientific RMS-800 cone-and-plate rheometer to obtain values o

first normal stress coefficientC1(ġ) . Controlled shear stress measurements were carr
out at three temperatures: 15, 25, and 35 °C, and time–temperature superposition
used to obtain master curves for the steady and dynamic material functions over 6
cades in shear rate. Throughout this text, the official Society of Rheology nomenclatu
used for the material functions studied@Dealy ~1995!#.

The temperature dependence of the viscometric properties was determined by con
ously increasing the temperature from 15 to 35 °C over the period of 1 h at a constant rate
of (DT/Dt) 5 0.056 K/s while keeping the applied shear stress fixed at 10.0 Pa.
hysteresis was observed in subsequent tests with a decreasing temperature ramp
confirms that evaporation of the viscous oligomeric styrene solvent is negligible over
temperature range and the temperature ramp is slow enough that the process is
static. The measured viscosity curve was then normalized by the viscosity at the refer
temperatureT0 5 25 °C to obtain the shift factoraT as a function of temperatureT. The
Bio-Rad Ex. 2027 
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88 ANNA ET AL.
temperature behavior of the SM fluids is best described by the WLF model, in which
shift factor depends on the temperature according to

aT [
h~T!

h~T0!

T0

T
5

l~T!

l~T0!
5 expF2a~T2T0!

b1~T2T0!
G, ~8!

wherea andb are constants determined by fitting the equation to experimental data@Bird
et al. ~1987a!#. In this expression we have dropped the additional factor ofr0 /r(T) that
appears in the first equality since it is negligibly small over the temperature range of
experiments. Figure 1 shows excellent agreement between the experimentally meas
shift factor and the fitted WLF curve for SM-1. The corresponding Arrhenius fit is als
shown in order to demonstrate that the Arrhenius function is not strong enough to
scribe the observed temperature dependence. Both the measured shift factor and the
fitted function agree well with values ofaT obtained by manually shifting the flow curves
measured at 15, 25, and 35 °C until a smooth master curve was obtained. The be
values ofa andb for the WLF model are included in Table II. Time–temperature supe
position is used to shift both shear and extensional rheology data obtained at a labora
temperatureT to the reference temperatureT0. Separate tests of the thermal sensitivity o
the total shear viscosityh0 and the solvent viscosityhs indicate that each quantity
depends on temperature in the same way, and the relationship given in Eq. 8 is use

FIG. 1. Temperature dependence of shear viscosity of SM-1 fluid. Experimental points measured in a c
and-plate rheometer~s! are compared with manually shifted values (m) and fitted curves from Arrhenius and
WLF models~dashed and solid lines, respectively!.

TABLE II. Measured viscometric properties and fit parameters for the Zimm bead-spring model for SM flu
The solvent viscosity,hs 5 34.0 Pa s, and the solvent relaxation timels 5 2.731024 s.

Mw
~g/mol!

h0
~Pa s!

lZ
~s!

C10
~Pa s2 h* aWLF

bWLF
~K!

SM-1 2.03106 39.2 3.7 20.3 0.20 16.9 75.4
SM-2 6.53106 46.1 31.1 428 0.15 22.4 99.6
SM-3 2.03107 55.5 155 3510 0.18 36.9 160
Bio-Rad Ex. 2027 
Page 6



ient

uid.
of

on
odel

el
-
the
ther
d de-
for-

lem

es as

m-

del

89FILAMENT-STRETCHING RHEOMETERS
shift each of these values. The validity of time–temperature superposition for trans
extensional flows of thermorheologically simple fluids has been confirmed by Mu¨nstedt
and Laun~1979!.

Figure 2 shows the steady and dynamic shear material functions for the SM-1 fl
The SM-2 and SM-3 shear rheology curves are qualitatively similar, with magnitudes
the viscosityh0 and the first normal stress coefficientC10 at zero-shear rate increasing
with molecular weight. Each fluid is well described by a Zimm spectrum of relaxati
times, as shown by the model curves in Fig. 2. The Zimm model is a bead-spring m
in which the polymer chain is approximated as a coarse-grained chain ofN11 beads
connected by springs of lengthQ. In contrast to the Rouse bead-spring model, this mod
incorporates hydrodynamic interaction between beads~in a preaveraged sense!, and in
cludes both partially free-draining and dominant hydrodynamic interaction limits. In
Zimm model, solvent flow around each bead is affected by the presence of the o
beads, and thus internal parts of the chain are hydrodynamically screened. Detaile
scriptions of this model and of the corresponding evolution equations for chain con
mation are given elsewhere@Bird et al. ~1987a!; Larson~1988!#. The Zimm spectrum of
relaxation times can be obtained from an approximate solution of the eigenvalue prob
that results from the coupling between springs. The relaxation time of each modei is
related to the longest relaxation timelZ by thehydrodynamic interaction parameter h*
according to the expression

li 5 lZ /i21s̃, ~9!

wheres̃ > 21.40(h* )0.78@Larson~1988!#. The hydrodynamic interaction parameterh*
has a maximum value of 0.25 when the solvent is a theta solvent, and decreas
solvent quality improves and the coils expand.

The dynamic moduli for the Rouse–Zimm bead-spring model may be written co
pactly in the form

FIG. 2. Steady and dynamic shear rheology of SM-1 fluid. Fitted curves from the Zimm bead-spring mo
~solid lines!are compared with measurements of the dynamic storage and loss moduli@h8, D; 2h9(v)/v, s#
obtained in a cone-and-plate rheometer. Predictions from the FENE-P model~dashed lines!are compared with

steady shear data@h(ġ), m; C1(ġ), d].
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90 ANNA ET AL.
G8 [ h9v 5
cNAkBT

Mw
(

i 5 1

Nm H ~lZv!2

@i2(21s̃)1~lZv!2#
J ,

G9 [ h8v 5 hsv1
cNAkBT

Mw
(

i 5 1

Nm H ~lZv!i(21s̃)

@i2(21s̃)1~lZv!2#
J , ~10!

where kB is Boltzmann’s constant andNm is the number of modes. In addition, the
zero-shear-rate viscometric properties of the dilute polymer solution are described by

h0 5 hs1
cNAkBT

Mw
lZ (

i 5 1

Nm 1

i(21s̃) , ~11!

C10 5 2
cNAkBT

Mw
lZ

2 (
i 5 1

Nm 1

i 2(21s̃) . ~12!

In practice,lZ is obtained by fitting Eqs.~10!–~12! to the measured dynamic moduli and
matching the respective zero-shear-rate values. Varyingh* allows better agreement be-
tween the experimental and fitted curves at intermediate angular frequencies. For the
fit, it was found that a small amount of solvent elasticity was needed in order to inco
porate the high frequency behavior observed in both the storage and loss moduli.
value chosen for the solvent relaxation timels was based on the frequency (v*
; 1/ls) at which the solvent elasticity became important. Table II presents the visc

metric properties and the fitted Zimm parameters for the three SM fluids.
Like the equilibrium properties, the molecular weight dependence of the viscomet

properties can also be used to investigate polymer–solvent interaction. In the Zim
bead-spring model, the parametern defined by Eq.~5! is connected to the hydrodynamic
interaction parameterh* . To understand how hydrodynamic interaction affects the mo
lecular weight dependence of the longest relaxation timelZ and the polymer contribu-
tion to the viscosityhp 5 h02hs , we first recognize that the flow of solvent around a
single bead on the polymer chain affects the flow around all the other beads in such a
that the overall flow can be described by Stokes flow around a single sphere of rad
A6Rg . In Stokes flow, the drag on a sphere is given byf 5 6phs(A6Rg)n. The relax-
ation time of the fluid is a function of the diffusivityD of the polymer chain
lZ ; Rg

2/D, and this diffusivity is inversely proportional to the drag in accordance with
the Stokes–Einstein relation. Combining these relationships and using Eq.~5!, the relax-
ation time is found to depend on the molecular weight in the following way:

lZ ;
6phs

kBT
Rg

3 ; Mw
3n . ~13!

Substituting this dependence into Eq.~11!, we find that the polymer contribution to the
viscosity has the following dependence on molecular weight:

hp ;
cNAkbTlZ

Mw
; Mw

3n21. ~14!

Further details of this analysis can be found elsewhere@Bird et al. ~1987b!; Larson
~1988!#.

We performed a linear regression technique to plots of the measured values
lZ(Mw) and hp(Mw) 5 h0(Mw)2hs as functions of molecular weight in order to
Bio-Rad Ex. 2027 
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91FILAMENT-STRETCHING RHEOMETERS
determine the value ofn. The values oflZ and hp at the reference temperature
T0 5 25.0 °C, are shown in Fig. 3, together with error bars and the corresponding
regression lines. From these lines, the molecular weight dependence of each para
found to be

lZ 5 ~2.361.7!310210Mw
(1.6260.05), R2 5 0.999,

hp 5 ~6.863.9!31024Mw
(0.6260.04), R2 5 0.997,

~15!

yielding n 5 0.5460.02 to be consistent with Eqs.~13! and ~14!. Finally, we note tha
this value ofn agrees very well with the value of 0.5260.015 obtained from the intrins
viscosity measurements, further supporting the idea that the styrene resin ac
slightly better than theta solvent for the high-molecular-weight polystyrene.

Although the Zimm bead-spring model can describe the rheological behavior of
polymer solutions in the linear viscoelastic regime, it cannot describe the behavior
the fluid is subjected to larger deformations. In fact, the Zimm model predicts th

shear viscosityh(ġ) and the first normal stress coefficientC1(ġ) are both constan

independent of shear rate. Figure 2 shows thatC1(ġ) is in fact far from constant. For th
large deformations which the present fluids experience in both shear and extens
model needs to incorporate nonlinear elasticity. Hence we examine predictions
bead-spring models, the FENE-P dumbbell and the FENE-PM chain. The FE
model, the simpler of the two, is described in detail in Birdet al. ~1987b!. This mode
approximates the polymer chain as a single nonlinear spring connecting two bea
accounts for the finite length of the polymer by limiting the extension of the dumb
An additional spring parameter, thefinite extensibility L, determines the maximum len
of the dumbbell. WhileL can be used as an adjustable parameter, a more ph
approach is to require thatL be defined by molecular arguments. Following this
proach, the finite extensibility is related to the ratio of the maximum contour length
polymer chain to its equilibrium radius of gyration, as given by

FIG. 3. Molecular weight scaling of the longest relaxation timelZ (m), and of the polymeric contribution t
total viscosityhp(d) for the three SM fluids. Linear regression was used to obtain a value of 0.54 f
scaling exponentn, a value appropriate for a solution of nonfree-draining bead spring chains.
Bio-Rad Ex. 2027 
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92 ANNA ET AL.
L2 5 3Srmax

Rg
D 2

. ~16!

Values ofL for the SM fluids are given in Table I.
The evolution equations for stresses in a FENE fluid can be derived by balancing

molecular-level forces on each of the dumbbells and taking appropriate ensemble a
ages to obtain the macroscopic material response@Bird et al. ~1987b!#. As shown by Bird
et al. ~1987b!, a closed-form FENE-P model is obtained by making the well-know
Peterlin approximation, leading to the following evolution equations:

l1A(1) 5 I2 f ~ tr A!A
~17!

f~tr A! 5 F 1

12tr A/L2G ,

whereA 5 ^RRO& is the dimensionless configuration tensor describing the ensemble a
erage of the dumbbell orientations. The stresses in the FENE-P fluid are then given

tp 5
hp

l1
@ f ~ tr A!A2 I #

~18!
t 5 tp1ts ,

wheretp is the polymeric contribution to the stress andts is the solvent contribution

given by ts 5 hsġ. The values of the longest relaxation timel1 and the polymeric
viscosityhp in this model are taken from the viscometric properties given in Table II. In
the present study, Eqs.~17! and~18! were used to calculate the shear and normal stresse
for the simple case of steady shear flow, from which the first normal stress coefficie

C1(ġ) was computed. The resulting prediction is the dashed curve in Fig. 2, whic

describes the shear-thinning behavior ofC1(ġ) qualitatively, but not quantitatively.
The transient rheological response of a dilute polymer solution is more complex th

can be captured by a simple closed-form dumbbell model, as shown by recent Brown
dynamics simulations of Kramers chains and bead-spring chains@Doyle and Shaqfeh
~1998!; Doyleet al. ~1998!; Huret al. ~2000!; Li et al.~2000!#. This complex response is
a result of coupling between the flow and the internal degrees of freedom of the cha
Detailed comparisons between simulations and filament stretching experiments have b
presented elsewhere@Doyle et al. ~1998!; Li et al.~2000!#and it is not the purpose of the
present work to consider all such comparisons. For simplicity, we instead select
simplest multimode bead-spring chain, namely the FENE-PM model of Wedgewo
et al. ~1991!, which is capable of capturing a spectrum of internal degrees of freedo
together with an overall finite extensibility. In this model,Nm beads andNm21 nonlinear
springs are connected to form a linear bead-spring chain. In order to obtain a closed-fo
constitutive equation, the connector force in each individual link is replaced with th
mean connector force in theNm links. The resulting constitutive equations are given by

Ak(1) 5
1

lk
~ I2 ZAk!,

~19!

Z 5 F12H (
k 5 1

Nm

tr Ak /bNmJ G21

,

Bio-Rad Ex. 2027 
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93FILAMENT-STRETCHING RHEOMETERS
whereI is the identity matrix andb is related to the finite extensibility bybNm 5 L2 .
The Zimm spectrum of relaxation times found from dynamic shear data are used as th
relaxation timeslk and the fluid stresses are computed from Eq.~19!:

tk 5 nkBT~ZAk2I !
~20!

t 5 ts1 (
k 5 1

Nm

tk .

The number of relaxation modesNm can be varied to obtain better fits to the linear
viscoelastic data and to the steady and transient shear measurements. We recognize
advance, however, that the FENE-PM model is not capable of capturing all of the dy
namics of a Kramers chain. In particular, it does not produce the stress-orientation hy
teresis encountered in strong transient shear and extensional flows@Kwan and Shaqfeh
~1998!; Doyleet al. ~1998!; Sridharet al. ~2000!#. However, it predicts stresses more
accurately than a single dumbbell model, and thus indicates the extent to which the she
and extensional rheology of dilute elastic polymer solutions can be captured by closed
form constitutive models. In the next section, we compare predictions from the
FENE-PM model to stress growth and relaxation curves measured in stepped shear flo
for the SM-2 fluid. In Sec. IV, we compare FENE-PM predictions of extensional viscos-
ity to measurements from the filament stretching rheometers at M.I.T., Monash Univer
sity, and the University of Toronto.

C. Transient shear flows

Transient shear flow experiments were performed at UC Berkeley for all three fluids
using a Rheometric Scientific RMS-800 cone-and-plate rheometer. In this work, a ste
increase in shear rate was imposed for a prescribed amount of time, and then the rotati
of the cone was stopped abruptly. The growth of shear and normal stresses were mo
tored, along with their relaxation after cessation of shearing. The temperature of a
experiments was held constant atT0 5 25 °C.

Transient curves for the SM-2 fluid, showing both growth and relaxation of the vis-
cosity and the first normal stress coefficient, are shown in Figs. 4~a! and 4~b!. Data for

three imposed shear rates,ġ0 5 1.0, 4.0, 8.0 s21, are shown. As the shear rate in-
creases, the steady state value of viscosity remains essentially constant, wh

C1
1(ġ0 ,t → `) decreases, in agreement with the data in Fig. 2. Prior to reaching a

steady state value, the first normal stress coefficient experiences an overshoot, the m
nitude of which increases as the shear rate increases. Transient shear curves predic
from the FENE-PM model are shown for each shear rate. Although the steady sta

values ofC1(ġ) are overpredicted, both the transient stress overshoot and the shea
thinning effect are qualitatively captured.

The relaxation of the shear stress and first normal stress difference following cessatio
of steady shear flow is also shown in Fig. 4. The relaxation data show that, as the she
rate increases, the rate of decay increases. Predictions from the FENE-PM model al
show this trend, although the stress decays much faster than the model indicates. In F
4~a!, the FENE-PM model accurately predicts the immediate decade drop in viscosity an
is qualitatively correct afterward. In Fig. 4~b!, the agreement between experiment and
model is qualitative at best. The inability of the FENE-PM model to quantitatively predict
Bio-Rad Ex. 2027 
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94 ANNA ET AL.
either the shear-rate dependence of the viscometric properties or the stress relaxa
curves arises in part because of the coupling-mode averaging which simplifies compu
tions with the model.

At the highest shear rateġ 5 8.0 s21 both the shear stress and the first normal stres
difference increase erratically with time. This behavior is characteristic of an elas
instability, first observed by Jacksonet al. ~1984!and later studied in detail by numerous
authors@Magda and Larson~1988!; McKinley et al. ~1991!; Byarset al. ~1994!; Mac-
Donald and Muller~1997!#. This instability was observed in the two most elastic fluids
~SM-2 and SM-3!during steady rate sweeps.

III. INTERLABORATORY COMPARISON OF FILAMENT STRETCHING DATA

Having fully characterized the linear viscoelastic, steady, and transient shear respon
of the test fluids, we now proceed to measure the transient extensional stress growt
three filament stretching devices.

FIG. 4. Startup and cessation of shear flow for SM-2 fluid for three imposed shear rates; (d)

ġ0 5 1.0 s21, (m) 4.0 s21, (l) 8.0 s21. Predicted curves from the FENE-PM model~solid lines! are
compared with measured transient curves~symbols!of ~a! viscosity and~b! first normal stress difference.
Bio-Rad Ex. 2027 
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95FILAMENT-STRETCHING RHEOMETERS
A. Filament stretching devices

The basic elements of a filament stretching device are shown in Fig. 5. An initial
cylindrical fluid filament is elongated between two circular endplates, which are attach
to a motion control system consisting of either one or two moving platens. Seve
possible arrangements of the endplates, motor platens, and sensors allow simultan
measurement of the tensile force in the filamentFp and the mid-filament diameterDmid
as the endplates move apart according to a carefully controlled separation historyLp(t).
Additional important components of the instrument include the data acquisition and co
trol software on an attached computer, a temperature sensor, and possibly equipme
image the flow near the rigid endplate.

In an ideal uniaxial extensional flow, in which the extensional rate is constant, th
axial velocity in the fluidvz is proportional to the axial positionz, leading to an endplate
separation profile which increases exponentially with time

Lp~t! 5 L0 exp~Ėt!, ~21!

FIG. 5. Schematic diagram of a generic filament stretching device. Basic elements include:~a! fluid filament,
~b! linear motor with one or two moving platens,~c! force transducer,~d! top endplate,~e! bottom endplate,~f!
diameter sensor,~g! ~optional!camera for observing profile near endplate, and~h! computer system for control
and data acquisition. Components can be arranged in several different configurations; the specific configura
of the three devices used in this study are summarized in Table III.
Bio-Rad Ex. 2027 
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96 ANNA ET AL.
where Ė is the imposedconstant stretch rate andL0 is the initial length. The total
deformation of the fluid filament is defined in terms of theHencky strain, for which the
nominal value is computed from the length

«L 5 lnSLp~t!

L0
D 5 Ėt. ~22!

Table III summarizes the specific configuration and geometry details of the three lab
tory instruments. The main differences in the devices involve the diameterD0 of the rigid
endplates and the configuration of the motor platens and force transducers. At M.
D0 5 7.0 mm, and the force transducer is mounted to the bottom endplate. At Mon
and Toronto,D0 5 3.0 mm, and the force transducer is attached to the upper endpla
The three laboratories have different motion configurations: at M.I.T., the top endpl
moves upward from the stationary bottom endplate; at Monash, both endplates m

TABLE III. Component specifications of the filament stretching devices.

Toronto M.I.T. Monash

Flow kinematics and motion control

Motor
Belt-driven dc

Servo
Linear dc

Servo
Linear dc

Servo

Configuration
top: fixed

bottom: moves
top: moves

bottom: fixed
top: moves

bottom: fixed
Lmax ~cm! 200 180 90/plate
DLmin ~cm! — 131024 131024

Vmax ~cm/s! 200 300 200/plate
DVmin ~cm/s! 0.3 0.035 a

«̇* ~1/s! 1.50 1.67 2.22

Force measurement

Sensor
Cantilevered
quart beams Strain gage

Cantilevered
quartz beams

Configuration fixed, top fixed, bottom moves, bottom
Fmax ~g m! 1 or 10 10 5
DFmin ~g m! 0.0002 0.01 0.0001
Sensor response — two-pole —
f c ~Hz! — 12 40
gD ~1/s! — 58 —

Diameter measurement
Sensor Zumbach ODAC Omron Z4LA Zumbach ODAC
Dmax ~mm! 8 10 30
DDmin ~mm! 0.05 0.01 0.05

Geometry

D0 ~mm! 3.0 7.0 3.0

L0 4/3 1.0 1.0

Dimensionless parameters

«L
max 6.90 6.24 7.09

Desag~SM-1! 1.43 3.33 1.43
Desag ~SM-2! 10.2 23.7 10.2
Desag ~SM-3! 42.1 98.3 42.1
Bo 0.75 4.1 0.75

aMachine reports velocity in steps of 0.25 cm/s, calculated from length.
Bio-Rad Ex. 2027 
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97FILAMENT-STRETCHING RHEOMETERS
simultaneously in opposite directions away from the stationary midplane of the filament;
and at Toronto, the bottom endplate moves downward from the stationary top endplate
Each configuration leads to a slightly different balance of forces on the fluid filament, the
details of which will be discussed later in this section. In contrast to the other two
instruments, in the Toronto device the filament diameter is measured at the filamen
midplane only up to a total plate separation of aboutLp ' 48 mm, at which time the
diameter sensor stops moving. This method is expected to yield acceptable diamete
measurements for at least strongly strain-hardening fluids because the filament diamete
has been found to be uniform for dilute polymer solutions@Sridharet al. ~1991!#.

In each device, the diameter sensor has a resolution of better than 50mm, and the
force transducer has a resolution of less than 0.1% of the maximum measurable force
Both diameter and force sensors are calibrated periodically at each laboratory using
optical fibers of known diameter and calibration weights, respectively. Each force trans-
ducer has a different dynamical response, characterized by the rolloff frequencyf c and
the damping coefficientgD , given in Table III. The values of these parameters determine
the characteristic time of the transducer to respond to transient loads. Fluctuations in th
force data can be reduced using a low-pass filter. Finally, the initial aspect ratio of the
fluid filament L0 [ L0 /(D0/2) is approximately unity for each rheometer, leading to
similar initial transient force responses as stretching begins@Spiegelberget al. ~1996!#.

Geometric dimensions and motor capacity determine the ranges of experimental pa
rameters accessible in a given device. Figure 6 depicts the generic operating space for
device, where endplate velocity is plotted as a function of endplate position. The maxi-
mum positionLmax and the maximum velocityVmax achievable by the motors form the
bounds of the operating space. An ideal uniaxial extensional flow, described by Eq.~21!,

is a straight line on this phase diagram, with a slope equal to the imposed strain rateĖ.
It is clear from the diagram that a given experiment will be limited by either the total
travel available to the motor platens or by the maximum velocity the motors can provide.

The optimum strain rate,«̇* 5 Vmax /Lmax , is the rate which utilizes the full ranges of

FIG. 6. Operating space of a generic filament stretching device. Motor and sensor limitations translate
into parameter ranges in uniaxial extensional flow, shown here for an ideal experiment in which

Lp(t) 5 L0exp(«̇0t). Fluid properties and geometry considerations can also lead to additional limitations due to
gravitational sagging and endplate instabilities.
Bio-Rad Ex. 2027 
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98 ANNA ET AL.
both position and velocity. For each experiment, the maximum achievable Hencky stra
is determined by the limiting variable: if position-limited,

«max 5 lnSLmax

L0
D , ~23a!

if velocity-limited,

«max 5 lnSVmax

ĖL0
D . ~23b!

Conversely, the maximum stretch rate for a device is dictated by the desired final Henc

strain for a given experiment, and can be found by solving Eq.~23b! for Ėmax .
In addition to these considerations, it must be remembered that the motor responds

a finite time (dt ' 50–100 ms!to a motion command, further limiting the maximum

controllable strain rate. The maximum stretching rate«̇max that can be attained in a
filament stretching device is ultimately determined by the limiting~i.e., slowest!response
time dtmax of either the velocity-position feedback controller, the radial micrometer, or
the force transducer. A~generous!estimate of this limiting strain rate can be found by
considering an experiment of total durationdtmax which is also velocity limited so that at
the end of the experiment we have

Vmax 5 V0exp~«̇maxdtmax!. ~24!

Substituting forV0 5 «̇maxL0 and rearranging leads to the following implicit expression
for the maximum stretch rate of a given filament stretching device

~dtmax! «̇max1 ln~«̇max! 5 ln~Vmax/L0!. ~25!

For a typical filament stretching device withdtmax ' 0.050 s,Vmax ' 2.0 m/s, and
an initial sample size ofL0 ' 231023 m, the maximum stretch rate is thus

«̇max ' 57s21. Carefully controlled ‘‘type III’’ experiments@Kolte et al. ~1997!#at such
stretch rates would be extremely difficult to realize in practice due to the very limited
time available for communication between the linear stage, the radius measuring devic
and the controller. These limits on the range of attainable Hencky strains and strain rat
will affect whether a steady state extensional viscosity can be measured in a give
experiment.

The procedure for performing a successful filament stretching experiment begins b
determining the correct plate motion to impose. Although the endplate position profil
Lp(t) is nominally described by Eq.~21!, the no-slip condition at the endplates intro-
duces shearing there, which affects the midfilament diameterDmid(t). Several authors
have examined this nonideal flow@Shipmanet al. ~1991!; Spiegelberget al. ~1996!; Yao
and McKinley ~1998!#, and methods of performing and analyzing filament stretching
experiments have been proposed by Kolte and coworkers@Kolte et al. ~1997!#. It has
been found that the optimal endplate separation is not a simple exponential function b
rather a more complex motion such that the midfilament diameter decreases expone
tially, according to

Dmid 5 D0exp~20.5«̇0t !. ~26!

This so-called ‘‘type III’’ test@Kolte et al. ~1997!#is straightforward to generate numeri-
cally but difficult to realize experimentally. In early work, the required endplate motion
Bio-Rad Ex. 2027 
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99FILAMENT-STRETCHING RHEOMETERS
was obtained by trial-and-error. However, two equivalent methods of realizing this ide
diameter profile have recently been put forward@Anna et al. ~1999!; Orr and Sridhar
~1999!#, and these ‘‘master-curve’’ techniques are used in this study to achieve nea
ideal flow kinematics.

Once the correct endplate position historyLp(t) has been determined@i.e., the one
which results in aDmid(t) profile that decreases according to Eq.~26!#, this motion
profile is downloaded to the motion controller. A small volume of fluid is introduced into
the gap between the endplates such that the fluid forms a right-circular cylinder
diameterD0 and lengthL0. While the fluid filament is being stretched, the forceFp(t)
and the midfilament diameterDmid(t) are measured simultaneously. Since the diamete
decreases exponentially, the actual strain rate is determined by least-squares fitting of
logarithm of the diameter to a linear function of time.

In order to compute the transient extensional viscosity from the measurements, forc
on a viscoelastic filament must be balanced. A detailed analysis of this force balan
incorporating surface tension, filament curvature, weight of the filament, inertia, an
endplate acceleration, has been presented elsewhere@Szabo~1997!#. Because each labo-
ratory has a different motion and force configuration, each applies a slightly differe
formula to compute tensile stresses. At M.I.T., where the force transducer is mounted
the stationary bottom endplate, the force balance yields

^tzz2trr& 5
Fp

~pDmid
2 /4!

1
1

2

rgV0

~pDmid
2 /4!

2
s

~Dmid/2!
1

1

2

rV0L̈p

~pDmid
2 /4!

, ~27!

where ^tzz2t rr & is the principal tensile stress difference in the fluid filament,
V0 5 pL0(D0 /2)2 is the volume of the fluid sample,s is the surface tension of the
fluid, andr is the density of the fluid. At Toronto, where the force transducer is mounte
to the stationary top endplate, the sign of the second term in Eq.~27! is negative. And at
Monash, where the force transducer moves with the top plate and both plates move ap

the Toronto equation is used without the finalL̈p term arising from fluid inertia. In
practice, this inertial term is found to contribute less than 1% to the stress difference,
this term is not actually computed. From Szabo’s detailed force balance analysis,
neglect terms involving axial filament curvatureRs9 and other inertial terms because
filaments of dilute polymer solutions become increasingly uniform along their lengt
during stretching@Szabo~1997!#. The force balance given in Eq.~27! assumes that the
force transducer has been taredprior to loading the fluid sample.

Finally, the dimensionless extensional viscosity, orTrouton ratio ~Tr! is computed,
utilizing time–temperature superposition when necessary, by the following expression

Tr 5
h̄1~T!

aTh0
5

^tzz2t rr &

«̇0aTh0

, ~28!

where«̇0 is obtained from the fit to the raw diameter data, andaT is given by Eq.~8!.
The Hencky strain at the midplane of the filament is computed using the measur
mid-filament diameter

«D [ 22 ln~Dmid~ t !/D0! 5 «̇0t. ~29!

Investigators at each laboratory independently verified that their measurements of
Trouton ratio are reproducible for identical conditions. Errors are a major concern
experimental work, of course, and thus we examined the contribution of various sourc
of error by performing standard error propagation analyses using Eqs.~27! and ~28!.
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100 ANNA ET AL.
Since the first term in the force balance equation is the dominant one during stretching
we restrict our analysis to this term only. The error in the Trouton ratio as a function of
the Hencky strain is given by

dTr

Tr
5 H S dF

F D 2

1S 2dD

D D 2

1S daT

aT
D 2

1S d«̇0

«̇0
D 2J 1/2

, ~30!

wheredF is the magnitude of fluctuations in a baseline force signal,dD is the deviation
from the ideal diameter profile given in Eq.~26!, daT is the temperature measurement

error, andd«̇0 is the standard deviation resulting from the least-squares fit to the strain
rate as described earlier. Each term in Eq.~30! can contribute significantly at different

times in the stretching. AlthoughdaT /aT and d«̇0 / «̇0 are generally constant during a
given experiment,dF/F anddD/D both vary with time. Calculations using Eq.~30! will
be given for a specific experiment in Sec. III C. Finally, we note that experiments were
performed on the M.I.T. device using bothD0 5 3.0 mm andD0 5 7.0 mm endplates,
with identical initial aspect ratiosL0 5 1.0 for each experiment. The resulting values of
Tr agreed well until late times, when the filament diameter fell below the resolution of the
diameter sensor and produced unreliable and noisy data.

The operating conditions of a particular experiment can be characterized by severa
dimensionless groups. The most important of these is the Deborah number De, which i
the dimensionless extensional rate, defined by

De 5 lZ«̇0 . ~31!

Another dimensionless group, the Bond number Bo, describes the competition betwee
gravity, which causes the filament to sag and drain, and surface tension, which acts t
maintain the cylindrical shape of the filament. The Bond number is given by

Bo 5
rgD0

2

4s
. ~32!

This number is useful because it is a measure of the axial asymmetry of the initial static
fluid column about its midplane. Large Bond numbers, Bo. 1, indicate that surface
tension is not able to maintain a perfectly cylindrical fluid filament; in practice, a visible
bulge appears in the fluid below the midplane, which increases in size as Bo increase
@Szabo~1997!; Domann and McKinley~1998!#. Another dimensionless group related to
surface tension is the capillary number Ca, which describes the competition betwee
viscous forces and surface tension

Ca 5
h0«̇0D0

2s
. ~33!

For Newtonian fluids at least, the capillary number is a measure of the stability of the
slender fluid filament as it is stretched. Viscous forces in the filament tend to stabilize the
cylindrical shape, while surface tension acts to destabilize the shape by causing th
diameter to rapidly decrease until the filament breaks apart@Ide and White~1976!; Has-
sageret al. ~1998b!#.

The ratio of the Bond number to the capillary number

Bo

Ca
5

rgD0

2h0«̇0

~34!
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101FILAMENT-STRETCHING RHEOMETERS
expresses the competition between gravitational and viscous forces during stretchi
large value of Bo/Ca indicates that a significant amount of fluid drains below the m
plane of the filament during stretching. In strongly strain-hardening fluids, draining is

an issue because stresses in the filament are of the orderh̄1«̇0 rather thanh0«̇0. At
lower stretch rates, however, sagging can be important. Nevertheless, in computin
transient extensional viscosity from Eqs.~27! and~28!, it is assumed that exactly half the
volume of the fluid filament lies below the midplane@Szabo~1997!#. If Bo/Ca> 1,
significantly more than 50% of the fluid volume will drain below the midplane, leading
an additional correction term in Eq.~27! of the form

rgdV

~pDmid
2 /4!

, ~35!

wheredV is the extra volume below the midplane. The evolution of this incremen
volume with time is a complicated function of surface curvature and cannot be comp
analytically even for a Newtonian filament. Although the correction term in Eq.~35! is
not easy to calculate, it can become large, and extensional viscosities computed w
accounting for it exhibit anomalously low values at moderate Hencky strains, even
coming negative for large enough Bo/Ca values.

The experimental conditions for which gravitational sagging will become import
can be estimated using dimensionless quantities. Since gravitational forces begin to
nate when the ratio Bo/Ca approaches unity, Eqs.~34! and~8! can be used to compute a

critical strain rate«̇sagbelow which sagging becomes important

«̇sag5
rg D0

2h0aT
. ~36!

This condition leads to a critical Deborah number Desag, which depends on materia
properties and test geometry and which is only a weak function of temperature@cf. Eq.
~8!#:

Desag5 lZ

rgD0

2h0

T0

T
. ~37!

Values of the dimensionless groups Bo and Desagare given in Table III for each rheom-
eter and for the three SM test fluids at the reference temperatureT0. The Deborah number
for a given experiment can be compared to Desag to determine if sagging effects are
important; Deborah numbers greater than Desagare expected to be less affected by sa
ging. For the SM fluids, it was shown in Sec. II B that the longest relaxation timelZ
increases much more rapidly with molecular weight than does the total shear visc
h0; hence Eq.~37! shows that the potential for saggingincreasesnot only with the plate
size but also with molecular weight.

Gravitational sagging is a particularly important constraint in filament stretching
vices if one wishes to explore experimentally the coil–stretch transition in dilute poly
solutions at Deborah numbers of De' 0.5. This may be demonstrated by considering t
critical Deborah number for sagging in more detail. For a dilute polymer solution
scribed by the Zimm theory, the longest relaxation time and polymer contribution to
viscosity may be expressed aslZ 5 2.369@h#hs Mw /(NA kBT) and hp [ (h02hs)
5 @h# hsc, respectively. The critical Deborah number for sagging can thus be writte

the compact form
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102 ANNA ET AL.
Desag[
lZrgD0

2h0
5

2.369@h# Mw rg~D0 /2!

~NA kBT0!~11@h#c!
. ~38!

The intrinsic viscosity can also be represented in the form of the Mark–Houwin

Sakaruda expression@h# 5 K8 Mw
a8 ~in which K8 anda8 are tabulated constants for a

particular polymer–solvent pair!. For the solution to be considered dilute we requir
c @h# < 1, which places an upper bound on the denominator. If we require Desag
< 0.5 then Eq.~38! can be reduced to

1.18~K8 Mw
11a8! rg ~D0 /2!

R T0
< 0.5, ~39!

whereR 5 NA kB is the ideal gas constant.
For most polymer solutions in good solvents, the constantK8 is in the range (10

< K8 < 50)31023 ml/g @see e.g., Brandrupet al. ~1999!#. Taking typical values of
rg ' 104 J/m4, RT0 ' 2400 J/mol andD0 /2 ' 1023 m we thus need to perform
experiments with fluids having relative molecular masses in the range

~0.5– 2.5!310210~Mw!11a8 < 0.5. ~40!

The Zimm theory gives (11a8) [ 3n, wheren is the scaling exponent for the coil
size determined from light scattering. For example, from Table I we findn ' 0.52 and
K ' 3531023 ml/g for the PS/PS fluids employed in this study. We would therefo
need to use polymers with molecular weightslessthanMw < 1.153106 g/mol in order
to explore the coil–stretch transition in the absence of appreciable gravitational sagg

It is interesting to note that although this result does depend on the solvent qu
parametern, it is independent of the viscosity of the solvent~since both the longest
relaxation time and the polymer contribution vary linearly onhs). Changing the solvent
viscosity does, however, change the absolute magnitude of the tensile force exerte
the endplates during the stretching. This places another independent constraint o
experimental range attainable by filament stretching devices.

B. Realization of kinematics

This component of the study was undertaken with the hope that, in spite of sl
variations in instrument configuration, different laboratories can achieve the same re
for identical fluids. Before we compare our results from the different instruments, we fi
examine how closely the ideal stretching history is achieved.

As mentioned in the previous section, the first step in a successful filament stretc
experiment is to determine the correct kinematics, i.e., the endplate separationLp(t) and

velocity L̇p(t) that result in the midfilament diameter decreasing exponentially@Eq. ~26!#.
We use the techniques developed at M.I.T. and Monash to determine these kinem
@Annaet al. ~1999!; Orr and Sridhar~1999!#. Figure 7 shows a so-called ‘‘master curve’
in which one measure of the total Hencky strain is plotted against the other, the
Hencky strains being given by Eqs.~22! and ~29!. The nonlinearity of this plot reflects
the influence of the no-slip boundary condition at the endplates and the extent of
strain hardening in the fluid rheology. A filament which is deforming ideally is cylindr
cal along its entire length for the duration of the experiment, and then the Hencky st
based on endplate separation would exactly equal the Hencky strain based on midfila
diameter. In reality, they are not equal. However, for sufficiently high strain rates,
curve should be independent of the kinematics for a particular test fluid, as suggeste
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103FILAMENT-STRETCHING RHEOMETERS
extensive experimentation and constitutive arguments@Anna et al. ~1999!; Orr and
Sridhar~1999!#. The plot can thus be used to invert a nonideal experiment, in which
endplate position is described by Eq.~21!, into a nearly ideal experiment, in which th
midfilament diameter is described by Eq.~26!. Details of the inversion process are de
scribed elsewhere@Annaet al. ~1999!; Orr and Sridhar~1999!#. The curves shown in Fig
7 are data from the three laboratories for SM-1 at similar Deborah numbers. The
curves are very close, indicating that the imposed kinematics are virtually the same
three laboratories. Each laboratory found that the curve actually is weakly depende
the Deborah number, and so this ‘‘master curve’’ must be recreated for each imp
strain rate@Anna et al. ~1999!#.

We further investigate the kinematics by comparing the endplate positions and v
ity profiles achieved by the individual motors. Since the linear motor~s! in each rheometer
controlseitherposition or velocity, but not both, plotting an operating diagram similar
that in Fig. 6 would allow a proper comparison. However, since the initial axial sep

tion L0 is different at each laboratory, and since the imposed strain rates«̇0 are also

slightly different, the endplate velocity is normalized by the characteristic velocity«̇0L0
and the endplate position by the initial separationL0. ~This type of operating diagram
essentially plots a third characteristic Hencky strain, based on the endplate velocity
function of the Hencky strain based on position.! The results are shown in Fig. 8, for the
same data presented in Fig. 7. Again, we observe that the kinematics realized b
different devices agree reasonably well. We have found that quantitative agreemen
tween imposed velocityand position profiles is crucial in obtaining good agreeme
between transient Trouton ratio profiles. Fluctuations in the low velocity data shown
the Monash and Toronto devices result from low resolution in the velocitiesreportedby
the motion controller, although the actual velocities are observed to be smooth.
velocity profile shown for the M.I.T. device is smoother because it is computed du
postprocessing by fitting a spline curve to the reported endplate position data.

Finally, we can examine how successfully the modified kinematics achieve the de
midfilament diameter profiles. Figure 9~a! shows the actual midfilament diameter profile
from the three laboratories along with the ideal diameter, the solid line, given by Eq.~26!.

FIG. 7. Comparison of the ‘‘master curves’’ for SM-1 from the three filament stretching devices at sim
Deborah numbers. Good agreement is found between the Hencky strain profiles measured by M.I.Ts,
De 5 17.0!, Monash (h, De 5 14.0!, and Toronto (n, De 5 12.0!.
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104 ANNA ET AL.
These curves appear to show excellent agreement, as they are nearly indistingu
from the ideal curve on this scale. A more illuminating plot is shown in Fig. 9~b!, which
shows diameter error. This error measure is defined as the deviation of the ac
midfilament diameter from the ideal value and normalized by the ideal value so tha

dD

D
5

Dideal2Dmid

D ideal
5 12

Dmid

D0e20.5«̇0
. ~41!

Figure 9~b!shows that all three laboratories are able to maintain an error of less than
for the duration of a run. Although the error plot has a distinct shape for each labora
showing that the errors are not random, the errors are small and not expected to s
cantly affect the resulting transient extensional viscosities. The excellent agreeme
tween imposed endplate kinematics and resulting midfilament diameter profiles from
three laboratories leads us to expect similarly good agreement between the tra
extensional viscosities computed with the three devices. These viscosities are pre
in Sec. IV.

IV. EXTENSIONAL RHEOLOGY OF SM FLUIDS

Having imposed proper flow kinematics, we now compare transient extensiona
cosities from the three laboratories. Figure 10 shows the transient Trouton ratio
SM-1 fluid after appropriate versions of Eqs.~27! and~28! are applied. As we had hoped
the Trouton ratio profiles agree very well, consistent with the good agreement bet
endplate kinematics and midfilament diameter profiles in Figs. 7, 8, and 9. The sha
the Trouton ratio profile is also consistent with previously reported measurements o
transient extensional rheology of dilute polymer solutions@Sridharet al. ~1991!; Kröger
et al. ~1992!; Tirtaatmadja and Sridhar~1993!; Berget al. ~1994!; Solomon and Muller
~1996b!; Spiegelberget al. ~1996!; Spiegelberg and McKinley~1996!; van Nieuwkoop
and Muller von Czernicki~1996!; Jainet al. ~1997!; Remmelgaset al. ~1998!; Anna
et al. ~1999!; Orr and Sridhar~1999!; Verhoefet al. ~1999!#. Figure 10 shows that th
fluid response is primarily viscous initially, for the Trouton ratio has a constant valu
approximately 3, consistent with the value expected for a purely Newtonian fluid@Trou-
ton ~1906!#. For Boger fluids, the initial Trouton ratio should be slightly lower than

FIG. 8. Comparison of endplate kinematics with the SM-1 fluid@M.I.T. (s, De 5 17.0!, Monash (h, De
5 14.0!, and Toronto (n, De 5 12.0!#.
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105FILAMENT-STRETCHING RHEOMETERS
with a value of 3hs /h0, since the total viscosityh0 is larger than the solvent viscosity
hs . At moderate strains of about« ; 2, the polymer chains are stretched significantly
strain hardening begins to occur, and the Trouton ratio begins to rise. Finally, at Hen
strains of about« ; 6, the polymer chains are nearly fully stretched, and the Trouto
ratio approaches a steady state value Tr` . For SM-1, gravitational effects are found to be
unimportant because the experimental Deborah numbers are considerably larger tha
critical Deborah number Desag.

Error bars at selected strains have been computed from Eq.~30! and are also included
in Fig. 10. At low Hencky strains, such as those near~a! in the plot, viscous forces are
large and diameter values are well above sensor resolution; hence the error bars ar
than 5% of the total Trouton ratio in this region. At moderate Hencky strains~b!, the
viscous force has decayed significantly and strain hardening has not yet begun; henc
measured force is a minimum and possibly close to the resolution of the transduce
this region, errors can be as high as 50% of the transient Trouton ratio, depending on

FIG. 9. Comparison of~a! midfilament diameter and~b! diameter error for SM-1. In~a! the midfilament
diameter measurements from all three laboratories@M.I.T. (s, De 5 17.0!, Monash (h, De 5 14.0!, and
Toronto (n, De 5 12.0!#are nearly indistinguishable from the ideal profile~solid line!. The diameter errors in
~b! show that all three filament stretching devices produce diameters within 10% of the ideal value du
stretching.
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106 ANNA ET AL.
resolution of the force transducer. Once the force begins to increase due to strain
ening at strain~c!, the error again becomes small and, for Hencky strains of ab
« ; 3–4, the error bars are less than 5%. Finally, near the end of the experiment at
~d!, the force is decreasing and the diameter is approaching the resolution of the s
In this region, error bars can reach 15%–20% of the transient Tr value.

In addition to random fluctuations in the measured data, systematic errors can
We have found that it is essential to calibrate the force and diameter sensors frequ
and carefully, and to ensure that the dynamical response of each sensor is fast enou
no noticeable delay is introduced in the signal. The temperature needs to be mon
frequently and recorded immediately prior to stretching because the fluid viscosities
therefore the relaxation times, are extremely sensitive to temperature, as shown b
~8!. An error in the temperature shifts the entire Tr curve by a constant factor, w
increases rapidly as the magnitude of the temperature error increases. Other imp
considerations for reproducible data include: ensuring that the endplates are clean, a
aligned, and parallel; loading the sample such that the initial liquid bridge is free
bubbles; and obtaining accurate measurements of density, surface tension, and vis
ric properties.

Figures 11 and 12 compare filament stretching data for similar Deborah number
the SM-2 and SM-3 fluids, respectively. For SM-2, the data from Monash and Toro
agree quite well. However, the effect of gravitational sagging is significant in the M.
data for the reason described in the text after Eq.~37!, and this curve does not begin t
approach the other two curves until Hencky strains of about« ; 4. The ratios of the
experimental Deborah number to the critical Deborah number for each laboratory
De/Desag5 0.64, 1.5, and 3.1 for M.I.T., Monash, and Toronto, respectively, a
these values help to explain the observed trends. The ratio is significantly smaller
unity for M.I.T., indicating greater potential for sagging. The ratio isO~1! for the other
two laboratories, suggesting that gravity should not play an observable role. For S
sagging is again significant for the M.I.T. data, although the ratio of the Deborah num
is about De/Desag5 1.2 in this case. Agreement between the Monash and Toronto
is not quite as good in this case, and the discrepancy can be explained by sagging
the Deborah number ratios are De/Desag5 0.76 (Monash) and 2.6 (Toronto). Base

FIG. 10. Comparison of transient Trouton ratio profiles for SM-1@M.I.T. (s, De 5 17.0, T 5 21.3 °C!,
Monash (h, De 5 14.0, T 5 19.5 °C!, and Toronto (n, De 5 12.0, T 5 21.6 °C!#. The bars indicate the
estimated error at low, moderate, and high Hencky strains.
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107FILAMENT-STRETCHING RHEOMETERS
on these ratios, one might expect the sagging effect in both the M.I.T. and Monash d
to have nearly the same magnitude. We believe other factors influence the transi
evolution of these two curves, namely the Bond number Bo and the initial aspect ra
L0, which are not captured in the simple dimensionless criterion of Eq.~37!. For the
M.I.T. experiments, Bo andL0 are both significantly larger than those for the Monash
experiments. These combined factors result in more asymmetry in theinitial fluid col-
umn, which propagates into the force balance during stretching.

No laboratory was able to measure Trouton ratios beyond Hencky strains of abo
« ; 4–5, for either SM-2 or SM-3, because of an elastic instability near the endplate
This instability has been observed and characterized previously for polystyrene- a
polyisobutylene-based Boger fluids@Spiegelberg and McKinley~1996!; Rasmussen and
Hassager~1999!#. Its onset is preceded by a rapid drainage of the fluid adjacent to th
endplates, leading to a large negative pressure gradient across the free surface of

FIG. 11. Comparison of transient Trouton ratio profiles for SM-2@M.I.T. (s, De 5 15.2, T 5 25.3 °C!,
Monash (h, De 5 15.6,T 5 21.0 °C!, and Toronto (n, De 5 31.8,T 5 27.5 °C!#. The effect of gravitational
sagging is evident in the experiments performed at M.I.T. in which larger endplates were used.

FIG. 12. Comparison of transient Trouton ratio profiles for SM-3@M.I.T. (s, De 5 114, T 5 23.1 °C!,
Monash~h, De 5 31.8,T 5 25.0 °C!, and Toronto (n, De 5 110,T 5 28.8 °C!#.
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108 ANNA ET AL.
liquid ‘‘foot’’ and a destabilization of the azimuthal uniformity of the filament cross-
section at large Hencky strains. These perturbations at the foot grow until the filame
splits into ‘‘fingers,’’ which elongate and move radially outward as the endplates con
tinue to separate. For highly elastic fluids, the filament can completely detach from th
endplates, and this occurs at all Deborah numbers for both fluids. Similar fibrillation i
observed in adhesive materials@Fergusonet al. ~1997!; Crosby and Shull~1999!#. The
detachment occurs at strains less than« ; 5, which prevents an approach to steady state
conditions for these fluids, and thus prevents determination of the dependence of stea
state Trouton ratios on polymer molecular weight. This elastic instability also limits ou
ability to compare transient curves with predictions from constitutive models.

In Figs. 13, 14, and 15 we show data for all three fluids over ranges of Debora
numbers. The transient Trouton ratios for SM-1, shown in Fig. 13, agree well when th
Deborah numbers are similar in magnitude, as observed previously in Fig. 10. In add
tion, the Trouton ratio is seen to depend weakly on De, with the slope of the curve a
moderate strains increasing slightly as De increases. Steady-state plateaus were appa
for several values of De, and the behavior of these plateaus will be discussed later. T
Deborah numbers in Fig. 13 are larger than the critical Deborah number Desag, and thus
sagging has no effect.

Predictions from the FENE-PM bead-spring model~discussed in Sec. II B!are also
included in Fig. 13, for two values of De which bound the experimental data. As show
in the figure, the predictions of the initial and steady state Trouton ratios agree well wit
the experimental values. However, the predicted evolution to steady state does not ag
well. The onset of strain hardening occurs too late in the FENE-PM model, and th
Peterlin approximation~FENE-P model!leads to an anomalously sharp approach to
steady state. The dependence on De for this model does follow the experimentally o
served trend, with the slope of the curve at moderate Hencky strains increasing wi
Deborah number.

FIG. 13. Transient extensional rheology of SM-1 fluid over a range of Deborah numbers. Data from all thre
filament stretching devices are represented@M.I.T. ~3, De 5 17.0,T 5 21.3 °C;1, De 5 27.2,T 5 22.2 °C;
n, De 5 71.0, T 5 22.1 °C!, Monash (d, De 5 14.0, T 5 19.5 °C; j, De 5 28.2, T 5 19.5 °C; l, De
5 47.6,T 5 21.0 °C!, and Toronto (s, De 5 12.0,T 5 21.6 °C;h, De 5 19.5,T 5 22.5 °C;L, De 5 46.7,

T 5 23.5 °C!#. Predictions from the FENE-PM model are also shown for both a high Deborah number and
low Deborah number~De 5 10, dashed line; De5 50, solid line!.
Bio-Rad Ex. 2027 
Page 26



ium
’’
the
ich

e

e

109FILAMENT-STRETCHING RHEOMETERS
The FENE-PM model underpredicts the stress at intermediate strains 3< « < 4.
Brownian dynamics calculations@Doyle et al. ~1998!; Larsonet al. ~1999!#of bead-rod
and bead-spring chains show that this stress discrepancy can arise from nonequilibr
internal configurations of the chain, which become trapped and thus develop ‘‘kinks
during strong deformations. The stress associated with such configurations leads to
stress-orientation hysteresis which has been observed in polymer solutions but wh
cannot be captured by closed-form models such as the FENE-PM model@Doyle et al.
~1998!#.

FIG. 14. Transient extensional rheology of SM-2 fluid over a range of Deborah numbers. Data from all thre
filament stretching devices are represented@M.I.T. (3, De 5 3.3,T 5 24.7 °C;1, De 5 8.0,T 5 25.1 °C;n,
De 5 15.2, T 5 25.3 °C;,, De 5 26.4, T 5 25.4 °C;�, De 5 58.3, T 5 22.7 °C!, Monash (d, De 5 5.4,
T 5 21.0 °C;j, De 5 8.2,T 5 21.0 °C;l, De 5 10.9,T 5 21.0 °C;m, De 5 15.6,T 5 21.0 °C!, and Tor-
onto (s, De 5 20.9,T 5 29.3 °C;h, De 5 31.8,T 5 27.5 °C;L, De 5 58.5,T 5 26.8 °C!#.

FIG. 15. Transient extensional rheology of SM-3 fluid over a range of Deborah numbers. Data from all thre
filament stretching devices are represented@M.I.T. (3, De 5 21.2,T 5 23.6 °C;1, De 5 34.7,T 5 24.1 °C;
n, De 5 83.9, T 5 23.9 °C; ,, De 5 114, T 5 23.1 °C!, Monash (d, De 5 10.8, T 5 25.0 °C; j, De
5 15.3,T 5 25.0 °C;l, De 5 31.8,T 5 25.0 °C!, and Toronto (s, De 5 110,T 5 28.8 °C!#.
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110 ANNA ET AL.
The transient Trouton ratios for SM-2 and SM-3 in Figs. 14 and 15 exhibit similar
trends to those found for SM-1. However, as observed in Figs. 11 and 12, sagging play
a significant role in the data reported from M.I.T., and may also play a minor role in the
data reported from Monash. As the Deborah number increases, the sagging effect in th
M.I.T. data decreases, and the transient Trouton ratio curves begin to look similar to the
curves reported from Monash and Toronto. As observed for SM-1, the curves for both
SM-2 and SM-3 become steeper at moderate Hencky strains as De increases. The Henc
strain achieved in each experiment for SM-2 and SM-3 was limited by the fingering
instability and filament detachment described earlier in this section. Only one experiment
~performed at M.I.T.!reached a steady state value for SM-2, and this one corresponded to
the lowest De, with De/Desag5 0.14. Without additional steady state values, it is unclear
whether this single value is valid or is artificially low because of gravity.

Although steady state Tr values could not be observed for the two most elastic SM
fluids due to elastic instability, values of Tr` could be extracted over a range of De for
SM-1. Figure 16 shows the extracted values. Error bars have been included for the M.I.T
data to show that data from the three laboratories agree reasonably well within experi
mental error. In addition to the data, predicted curves are shown for both the FENE-P and
FENE-PM models, as described in Sec. II B. The steady state Trouton ratio for the
FENE-P model can be found by simplifying Eqs.~17! and ~18!, and is given by

Tr` > 2L2S hp

h0
D F S 12

3

L2D 2
1

2De
1O~De22! . . . G , ~42!

while for the FENE-PM model the Trouton ratio is approximately

Tr` > 2
nkBTbNm

h0
F S 12

3

bNm
D 2

1

2DeG , ~43!

wherebNm [ L2. The FENE-PM model thus predicts a steady state extensional viscos-
ity that is a factor of( i 5 1

Nm i 2(21s̃) smaller (' 2.4711 forNm 5 200 ands̃ 5 20.5,
corresponding toh* 5 0.25 in the Zimm model!. This factor is a consequence of some

FIG. 16. Steady-state Trouton ratios for SM-1 fluid as a function of Deborah number. Values extracted from
filament stretching experiments are shown for each device~M.I.T., d; Monash,l; and Toronto,m), and these
experimental values agree to within 1 standard deviation. Theoretical predictions from the FENE-P model and
the FENE-PM model are shown by the dashed and solid lines, respectively.
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111FILAMENT-STRETCHING RHEOMETERS
of the elastic stress in the FENE-PM dumbbell model being redistributed into less ela
~lower time constant!modes that do not stretch during uniaxial elongation@McKinley
~1998!#. Both the FENE-P and FENE-PM models predict that Tr` rapidly approaches a
constant value as De increases. For De between 10 and 30, the FENE-PM asym
nearly agrees with the data. The FENE-P model appears to describe an upper boun
Tr` , while the FENE-PM model gives a lower bound. At higher De, the experimen
values of Tr̀ decrease and fall below the predicted FENE-PM value. This ‘‘extensi
thinning’’ at high De may be a consequence of a stress-dependent drag on the c
@Gupta et al. ~2000!#, or of intermolecular interactions of the highly extended chain
However, the effect is unavoidably coupled with the physical limitations of the moto
used in filament stretching rheometers, for the following reason: the maximum Hen

strain realized in a filament stretching device must decrease for all«̇ . «̇* , in accor-
dance with Eq.~23b!. For example, in the M.I.T. device, withVmax 5 3.0 m/s at

«̇ 5 9.0 s21, the final Hencky strain is« ' 4.5, which is clearly below the value
needed to reach the steady state plateau observed in Fig. 13. Calculating the pre
FENE-PM values of Trmax that correspond to these finite Hencky strains«max rather than
the true steady state value attained at infinite strain allows the extension thinning effe
be qualitatively captured, as shown in Fig. 16. Although the Monash and Toronto dev
achieved higher final Hencky strains than those at M.I.T., extension thinning was
observed. The approach to ‘‘true’’ steady state conditions may be very slow, so
constraints imposed by physical hardware limitations must be considered when analy
data at higher strains and strain rates.

V. DISCUSSION AND CONCLUSIONS

The outcome of our collaborative project is a comprehensive characterization of b
the shear and extensional rheology of a set of carefully prepared test fluids. In
molecular characterization of the solutions, intrinsic viscosity measurements yield
excluded volume exponent ofn 5 0.52, indicating slightly better than theta solvent be
havior. A Zimm bead-spring model predicts the linear viscoelasticity data remarka
well for all three fluids, and the resulting viscometric properties—the relaxation timelZ
and polymeric viscosityhp—also scale with molecular weight in the manner expecte
The excluded volume scaling exponentsn determined from both intrinsic viscosity and
viscometric data agree remarkably well, to well within the estimated experimental er
FENE-P and FENE-PM model predictions are found to agree only qualitatively w
steady and transient shear flow data. The FENE-PM model is slightly more succe
than the FENE-P model at predicting some of the observed nonlinearities in the tran
stress growth and relaxation curves.

The main goal of this study is to compare in detail measurements from three diffe
filament stretching rheometers, in part to assess the accuracy and reproducibility o
sults obtained from this new type of device, and in part to demonstrate the current
of research in extensional rheometry. The imposed and measured flow kinematics d
stretching are found to agree quantitatively for experiments with similar Deborah nu
bers performed at each laboratory. By paying careful attention to detail in the filam
stretching experiment~proper sample loading, correct axial alignment, accurate measu
ments of fluid properties and temperature, calibration of sensors!, and by consistent
postprocessing of the raw data, excellent interlaboratory agreement is obtained for
surements of the transient extensional viscosity of the test fluid SM1, a dilute solutio
polystyrene of molecular weight 2.03106 g/mol dissolved in oligomeric styrene. This
agreement is obtained despite differences in instrument configuration.
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112 ANNA ET AL.
The set of filament stretching experiments span the useful operating ranges of th
instruments, shown in Fig. 6, at least for SM-1, and we have thus been able to directly
quantify the practical limitations of the device. Gravitational sagging and elastic insta-
bilities are found to limit the useful operating space for SM-2 and SM-3. That is, sagging
occurs at low strain rates, and fingering occurs at high strain rates and high strains
Nonetheless, we show that filament stretching devices can provide a significant amoun
of reliable, quantitative information regarding tensile stress growth in viscoelastic fluids.
For the least elastic fluid, SM-1, the transient uniaxial elongational viscosity is observed
to approach steady state conditions, and predictions from the FENE-P and FENE-PM
models for Tr̀ are shown to bound the measured values for moderate Deborah numbers
The transient extensional viscosities predicted by the FENE-PM model do not agree a
well with the experimental values, especially at moderate strains. This is most likely a
consequence of the distribution of internal microscopic configurations in the polymer
chains, which can be captured only by molecular models, such as bead-rod or bead-sprin
models, which retain internal degrees of freedom.

We show that filament stretching rheometry has matured into a reliable method of
measuring the response of viscoelastic fluids, particularly dilute polymer solutions, to a
nearly ideal uniaxial extensional deformation. The kinematics of the flow effectively
isolate extensional effects from those of shearing. Thus filament stretching rheometry ha
the potential to provide useful information for the development of constitutive equations.
The information can also help predict behavior in more complex flows such as those tha
contain both shearing and elongation. The authors hope that filament stretching rheom
etry will become a standard rheological technique, and that measurements of transie
extensional viscosity will be regularly reported alongside data for steady and unstead
shear.
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