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Abstract

A non-intrusive method is described which can be used to determine the forms of oral
structures. It is based on the digitising of standard replicas with a co-ordinate-measuring
machine. Supporting software permits a mathematical model of the surface to be recon-
structed and visualised from captured three-dimensional co-ordinates. A series of surface
data sets can be superposed into a common reference frame without the use of extrinsic
markers, allowing changes in the shapes of oral structures to be quantified accurately over
an extended period of time. The system has found numerous applications.

Copyright © 2000 S. Karger AG, Basel

Introduction

There is a clinical need for objective quantification of the shapes of three-
dimensional oral structures such as the morphology of teeth, the position
and contour of the gingivae, the surface characteristics of fillings and their
adaptation to the teeth in which they are placed. This need is particularly
evident in the field of conservative dentistry which is concerned with all aspects
of the conservation and restoration of teeth as well as the whole care of the
patient. Additionally, such care requires assessment not only of shape, but
also of changes in shape due to, for example, the wear of teeth and restorations,
plaque accumulation, gingival recession or gingival inflammation.

Much of this assessment has previously been subjective and reliant on
the clinician’s experience. Examples are the USPHS criteria for evaluating
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occlusal restorations [1] by which several aspects of a restoration are classified
as ideal, acceptable or unacceptable based on the observations of two or
more evaluators, or the Leinfelder method [2] in which an experimental
cast is compared visually to standard casts calibrated for wear in steps of
100 pm.

Subjective methods are insensitive to small changes and produce few,
if any, quantitative results. Consequently, numerous techiques for obtaining
objective measurements have been developed. Sometimes the features of inter-
est can be presented in a planar (two-dimensional) form, for instance by
producing sectioned silicone replicas which permit lengths and angles to be
measured from photographs magnified by a known factor [3]. However, the
most useful and widely applicable techniques are those which provide numeri-
cal data in the form of three-dimensional co-ordinates. Such techniques include
stereophotogrammetry [4, 5], reflex microscopy [6-8], laser interferometry
[9, 10], scanning electron microscopy [11-14], microtomography [15-17], con-
forcal microscopy [18], infra-red cameras [19] and mechanical digitisers [20].
A review can be found in Chadwick [21] and a table of methods and accuracies
in Bayne et al. [22].

From the point of view of conservative dentistry, the techniques of greatest
interest are those which can provide three-dimensional co-ordinate data ac-
quired from an entire tooth surface with sufficient density and accuracy to
permit the construction of a computer model. Additionally, the speed of data
acquisition must be sufficient to permit practical application in clinical research
studies involving large numbers of subjects.

Each of the techniques listed above is well suited for its particular area
of application, but fails to meet these requirements in one or more aspects.
A satisfactory solution has been provided by a category of measurement
apparatus known as ‘co-ordinate measuring machines’ (CMMs), many of
which were developed in the 1980s for industrial quality control of manufac-
tured parts. Most CMMs consist of a horizontal platform upon which the
object to be measured (a tooth replica, for instance) is placed and 3-D co-
ordinates are acquired from it by an active data acquisition component in the
form of a mechanical stylus or optical probe.

A number of systems based on CMMs or devices of equivalent func-
tionality have been employed in dental research [23-30]. Their application
generally involves three distinct stages of work. Firstly, a replica or model of
the study surface is produced. Depending on the specific system used, there
may be a requirement that the material be non-elastic, electrically conductive
or of a particular colour and reflectivity. Secondly, co-ordinate data are ac-
quired from the model surface. Finally, the data are analysed to produce
quantitative results.
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The published reports vary in the emphasis and amount of detail given
relating to the methodology, but it is evident that the analysis of acquired co-
ordinate data has frequently been problematic due to the unavailability of
software which would be specifically tailored to the needs of dental research.
The use of software intended for other application areas can render the process
impracticably laborious. Where specialised software has been written, little is
reported about the mathematical methods employed. Mitchell and Chadwick
[31] write that ‘although clinical results derived from such techniques are
reported within the dental literature, none of the dental papers to date has
described fully the underlying theory’.

With this in mind we present a detailed account of the methodology,
supporting software and clinical application of the system for dental co-
ordinate metrology developed at St. Bartholomew’s and the Royal London
School of Medicine and Dentistry [32]. Emphasis is given to description of the
supporting mathematical models and the software which permits researchers to
perform their own analyses by providing: (1) visualisation of surfaces with
realistic rendering to enable the identification of anatomical features of interest;
(2) construction of cross-sections and measurement of lengths and angles on
such cross-sections; (3) quantification of changes in morphology by compar-
ison of sequential replicas, particularly depth and volume changes on hard
tissue and gingivae, and (4) output of results in graphical and numerical
formats.

Particular attention is paid to the ‘superposition’ (or ‘registration’) of
data sets obtained from a sequence of replicas of the same oral structure taken
at different times. Such data sets do not generally lie in the same frame
of reference and their comparison requires the application of co-ordinate
transformations (rotations and translations) by which corresponding anatom-
ical features are brought into coincidence.

The material is presented here in the following sequence, which reflects
the progression from clinical replication to numerical results:

Replication of the study surface

!

Co-ordinate data acquisition

!

Construction of a computer model of the study surface

!

Superposition of sequential data into a common reference frame

!

Measurement
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Replication of the Study Surface

Materials and Methods

The physical characteristics and mode of operation of CMMs preclude
their use directly in the mouth. However, the provision of dental care invariably
involves the replication of oral structures at some stage and dentistry has
developed materials for the accurate and safe replication of oral structures,
together with clinical expertise to use them effectively [33, 34]. Silicone impres-
sion materials are ideal for the purpose in hand, having been widely researched
to determine their safety for use in the mouth, their elasticity, their ability to
replicate very fine detail and their dimensional stability [35, 36].

The replicas in our studies were produced by a procedure similar to the
standard routine followed in patient care but appropriately modified to address
the special considerations that arise from the intended purpose of measuring
changes in surface morphology. In studies involving sequential replicas of the
same oral structure over a period of time it was desirable that the co-ordinate
data capture be performed with all replicas having approximately the same
orientation. In order to recreate not only the surface of interest but also its
orientation, a special impression tube was designed which could be reposi-
tioned within the mouth in the same orientation each time.

An aspect of a tooth was selected as appropriate for the study to be
undertaken, usually the buccal or occlusal surface of a tooth, and a plaster
model was constructed from an alginate impression (fig. 1). A 9-mm length
of accurately machined square section, rigid brass tubing of 12- or 16-mm
nominal internal width was selected according to the size of the area to be
studied. The surface of the model was lubricated and the impression tubing
positioned on the plaster model over the surface to be replicated, so that its
long axis was approximately normal to that surface (fig. 2). Its periphery was
modified as necessary using a stone or a file so as to approximate the surface
reasonably well. A polymethyl methacrylate resin was applied to the outside
of the tubing to ensure that there were no gaps between the surface of the
tooth and the tubing and to facilitate the correct locating of the tube in the
mouth itself on one or many occasions.

On a subsequent patient visit, the quadrant containing the study surface
was isolated and the tooth was gently dried with air. The tube was then located
in its position in the mouth, held firmly in place and a polyvinyl siloxane
dental impression material (Kerr Extrude, SDS Kerr, Orange, Calif.,, USA)
was then injected onto the tooth surface within the tube to fill the latter to
excess (fig. 3).

When the impression material had polymerised, the tube containing the
silicone impression was removed from the mouth. Approximately 3 min after
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Fig. 1. The surface of interest identified in vivo and on the plaster model.
Fig. 2. Fabrication of the impression tube.

Fig. 3. Replication of the study surface.

Fig. 4. The completed replica.
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Table 1. Repeatability of hard tissue

replication Study Number RMS/point
date of pairs um (mean +SD)
1996 112 84+2.1
1996 30 7.7+1.8
1997 63 6.5+2.5
1997 18 59+14

this removal the base of the brass tube was trimmed flush with the edge of
the tubing using a sharp blade and the block of silicone extruded from it. The
tube was then available for further use on a subsequent occasion and the
replica was ready for study (fig. 4).

Results

The physical properties of silicone-based impression materials have been
researched extensively [36-40], showing their dimensional accuracy and long-
term stability to be in the region of 0.1%. However, the replicas used in
this work were not produced under the controlled conditions available in a
laboratory, but in a clinical environment where they might be subjected to
many additional influences. It was therefore considered necessary to perform
our own evaluations of the practically achievable repeatability of sequential
replicas of the same oral structure.

Sequences of repeat replicas were digitised and the data sets superposed
into a common reference frame. Pairs of data sets were compared by evaluating
the z co-ordinates of each of the data sets at 2,500 x—y locations distributed
on a rectangular grid and recording the differences (which should ideally be
zero). The measure of repeatability was defined as the root mean square (RMS)
of the z differences, customarily termed the ‘RMS/point’ [30, 41]. Bearing in
mind the procedures carried out to arrive at superposed mathematical models
of the replica surfaces, the repeatability values obtained were all-inclusive,
being influenced not only by the replication accuracy but also by the accuracy
of the co-ordinate measurements, the superposition, as well as the instability
of any soft tissue, e.g. the gingivae.

Hard Tissue

Table 1 shows the repeatability of replication of hard tissue over the course
of several studies involving a total of 223 replica pairs taken at intervals ranging
from 10 min to 6 months. Values which were found to differ significantly from
these could invariably be attributed to the clinical procedure, for instance
distortion due to failure of the replica material to polymerise fully.
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Soft Tissue

Repeatability in the replication of gingivae was assessed on a series of
10 replicas taken in immediate succession. The pairwise RMS/point values
were found to be between 29.0 and 64.5 (mean 41.8) um. It is not currently
clear what proportion of these differences in the sequential replicas of gingi-
vae can be attributed to the physical distortion caused by the pressure
applied during replication, and how much to changes in the gingival contour
resulting from other factors including alterations in blood flow, desiccation
or reactions to the chemicals within the impression material prior to its
polymerisation. However, the repeatability of replication of the gingivae is
sufficiently good to permit the investigation of changes in their contour
caused by factors of interest in our studies, since such changes are generally
considerably greater.

Plaque

The repeatability of replicas made in order to determine the location and
thickness of plaque were comparable to those made on clean teeth. There was
some concern that the plaque may be removed or disturbed by the replication
process, but measurements of the repeat replicas indicated that any such effects,
if they had occurred, would be too small to detect with our system. Further-
more, the clinical applications have confirmed that the accuracy is sufficient,
for instance, to demonstrate the progressive accumulation of plaque over a
period of 21 days and to detect statistically significant differences between the
efficacy of two plaque-removal procedures.

Data Acquisition

CMM and Optical Probe

The central data acquisition equipment is a Merlin Mk II 750 Co-
ordinate Measuring Machine (International Metrology Systems Ltd., Liv-
ingstone, UK) fitted with a Renishaw (Renshaw plc, Wotton-under Edge,
UK) OP2 optical probe (fig. 5). The dimensions of the machine permit
accommodation of a wide variety of differently sized objects, combining a
large measuring volume (500 x 750 x 500 mm) with high accuracy throughout
that volume. The worktable consists of a block of solid granite whose mass
reduces the effects of environmental vibration. The position of the probe in
each axis is determined to a resolution of 0.5 um by a photocell which detects
patterns on a stainless steel/glass grating. The accuracy of the position in
each axis is 4.0 pm + L/275000 where L is the distance (in metres) travelled
from an initial starting point. Control is provided by an IBM-PC compatible
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Fig. 5. The CMM and OP2 probe.

computer interfaced to the electronic desk unit which integrates the functions
of the CMM and probe.

The Renishaw OP2 optical probe operates on the principle of ‘optical
triangulation’ (fig. 6). A laser diode generates infrared laser radiation with a
wavelength of 830 nm which is focused onto the surface, producing a spot
25 pm in diameter. The light scattered from the surface is detected by a
position-sensitive device from which the surface height is computed. Each
probe is individually calibrated and the calibration data stored in the controller
firmware. The vertical measurement range of the probe is +2 mm but this is
effectively extended by the vertical motion of the probe column. Further
flexibility in orienting the probe is provided by a multidirectional mounting
which permits rotation of the probe around two axes. The maximum measure-
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Fig. 6. Principle of operation of the OP2 probe. Copy-
right © 1988 Renishaw plc. Reproduced with permission.

Probe optical
centre line

Fig. 7. The angle between the optical centre line and the surface normal. Copyright
© 1988 Renishaw plc. Reproduced with permission.

ment frequency is 50 readings/s but in the integrated Merlin/OP2 configuration
the optimal speed was determined to be 10 readings/s.

Two primary characteristics of a measurement device are its ‘repeatability’
(variations between repeated measurements) and ‘accuracy’ (how close the
measurement is to the true value). The OP2 probe has a quoted repeatability
of 2 um. Its accuracy, however, depends on several factors, foremost of which
is the angle between the probe’s optical centre line and the surface normal
(fig. 7), termed the ‘gradient’. As the gradient increases, the intensity of the
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scattered light which reaches the detector decreases and the focused spot
becomes elongated to an ellipse, which reduces the detection reliability. An
optimal arrangement is achieved when the surface normal coincides either
with the optical axis of the laser diode or with that of the detector and in
such cases its accuracy is 5 um.

A replica is digitised by programming the probe to move across the surface
tracing a pattern of parallel ‘scan lines’. The data point spacing (or ‘scanning
pitch’) is most commonly selected to be 100 pm, with dimensions of a typical
region of interest being 10 x 10 mm. Such a region requires around 25 min
of processing time. The worktable can accommodate up to 36 replicas, placed
ona 6 x 6 grid of squares, which can be processed sequentially without operator
intervention. On completion of a batch of replicas the data sets are transferred
to shared storage on a Novell NetWare (Novell Inc., Utah, USA) server where
they can be accessed by all authorised users.

Repeatability and Accuracy

Familiarity with the capabilities and, equally importantly, the limitations
of a measurement system allows it to be used efficiently while avoiding any
temptation to extract meaningful information from unreliable data. The repeat-
ability and accuracy are a complex combination of many factors and although
it is convenient to summarise them in terms of single values, such summaries
are not always realistic indicators of performance.

A series of experiments to establish the repeatability and accuracy of
measurements in practice were carried out under standard operating conditions
and on surfaces which were representative of those encountered in the clinical
applications.

Repeatability was assessed by performing multiple measurements of a
single replica. Since the OP2 probe is sensitive to the surface gradient, a
labial surface which contained both mild and severe gradients was chosen
(fig. 8).The replica was digitised four times. Within each region of interest
(A-D), the z co-ordinates were evaluated at 2,500 locations and the standard
deviation was computed for each location. Repeatability for each region was
defined as the average of the 2,500 standard deviations. The results are
given in table 2. As expected, measurements on steeper gradients were less
repeatable, except in the case of region D which was not located on the
smooth hard tissue.

The accuracy was determined by measuring objects of known shape and
dimensions and also the replicas of those objects made from standard impres-
sion material. On a sphere of known diameter, the acquisition errors manifested
themselves as progressive systematic deviations from the true values in accord-
ance with the graph in figure 9, plus an additional random component which
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Fig 8. Regions with different gradients.

Table 2. Repeatability on different gradients

Region

A B C D
Gradient 20° 52° 70° 20°
Repeatability, um 2.4 4.0 53 4.5

is of a similar magnitude to the errors on flat, optimally oriented surfaces
[42, 43]. The result of measuring a smooth surface was, therefore, again a
smooth surface, although slightly distorted in regions with steep gradients.
This had the desirable consequence of preserving reproducibility. Thus, when
comparing sequential replicas of a single tooth, the difference between the
two replicas could be determined to a greater accuracy (generally 5 um) than
could their true shapes.

It was also found that the probe’s accuracy was not omnidirectional with
respect to rotation around the optical centre line and that optimal results
could be achieved if the probe travelled in a direction which was normal to
the plane defined by the laser beam and the optical centre line [44]. The
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Fig 9. OP2 probe accuracy vs. gradient.

standard procedure for digitising replicas was modified to take this aspect
into account.

If a surface with a variable gradient is to be digitised without continually
reorienting the probe, the best compromise is to orient the probe in such a
way that the optical centre line is normal to the ‘mean best fit plane’ through
the surface. Some surfaces can be processed using two or more probe orienta-
tions, but doing so requires additional operator effort and is not used routinely.
In most applications involving single surfaces of teeth, the region of interest
does not extend over too large a range of gradients and the replica can be
positioned on the worktable in such a way that it is presented to the probe
in a favourable orientation.

Although the error in z co-ordinates acquired on steep gradients may be
relatively large (assuming that the probe is oriented so that its optical centre
line coincides with the z axis), the errors of computed ‘distances’ are smaller
when the dimension of interest is in a direction normal to the surface, for
instance when measuring the loss of hard tooth tissue. If Az is the acquisition
error for a point on a flat surface inclined at angle o to the horizontal, then
the error of measured distances Ad is only affected by that component of
the acquisition error which lies in the direction of the dimension of interest
(Ad=Az cos o). If a replica is digitised in two different orientations, the average
probe-to-surface angle will also differ and the measurements at any particular
location on the replica will have been made under different accuracy conditions.
Similar considerations apply when digitising two sequential replicas of the
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same oral structure. For purposes of quantifying morphological change, the
two data sets can be brought into a common reference frame but doing so
does not compensate for inconsistencies caused by acquisition errors which
arise from the different probe-to-surface gradients. In practice this aspect
proved not to be a problem for misorientations of up to 10°, an accuracy of
positioning which is easily achieved by the operator.

The repeatability of measurements was found to be lower on regions
whose contour changes rapidly over an interval comparable to the scanning
pitch. This is not due to acquisition errors, since it occurs even with a theoreti-
cally perfect digitiser, but a consequence of the sparse spacing of the data
points relative to the complexity of the surface contour. In relation to oral
structures, this effect can occur to a small extent on gingivae, shown by the
reduced repeatability for region D of figure 8. However, changes in gingival
contour are evaluated over a sufficiently large region (> 1 mm?) for the height
uncertainty to be greatly reduced by averaging. Thus, even with high-accuracy
digitising systems, on certain types of surface features the sampling density is
the primary determinant of accuracy and repeatability. The scanning pitch
therefore needs to be appropriate to the surface morphology and the desired
detail of information. In the literature, assessments of accuracy and repeatabil-
ity of individual measurement systems are generally produced by measuring
a flat surface, perhaps at several different inclinations. Such assessments should
not be taken to mean that the values so provided are valid for ‘real’ tooth
replicas, or that they are constant over the entire surface.

Reconstruction of Surfaces from Co-Ordinate Data

The data set obtained by digitising a replica consists of individual 3-D
points (fig. 10). For the purposes of visualisation and measurement such a
representation is not the most convenient or practical. For instance, one
method of computing the volume enclosed between two surfaces is based on
evaluating the difference in their z co-ordinate for a given x and y. This
approach is not possible if the two surfaces were digitised over different x—y
grids. The co-ordinate data therefore need to be represented in a form appro-
priate to the intended analyses. Since the orientation and movement of the
laser probe during scanning are such that only one z co-ordinate is sampled
at each (x, y) location, the natural form of a continuous surface that models
the acquired data is a single-valued function z=7£(x, y).

The aim of surface reconstruction is to find such a function f(x, y) which
passes through the measured points exactly (interpolation) or as closely as
sensibly possible (approximation) and which models the underlying surface
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Fig 10. A data set consisting of 11,432 points acquired from a labial tooth surface.

with sufficient accuracy in the regions between data points. The degree of
success with which this can be done is dependent, amongst other things, on
the accuracy of the measurements, their density (which should be sufficiently
high to represent the smallest features of interest) and their (x, y) locations
(more complex and time-consuming for non-uniform data). From a practical
viewpoint, it is also desirable that the computation and subsequent evaluation
of the function f be efficient and numerically stable.

Polynomial Splines

Consider the interpolation of a set of 2-D data points A={(x,, y),
(X2, ¥2)5 «..r (X, ¥,)} obtained from measurements of a curve defined on an
interval [Xpin, Xmax] Satisfying X=X, <X, <+ <X, = Xpa. We wish to find a
function y=f(x) defined on the same interval which passes through all the
points of A.

The simplest solution is provided by the piecewise-linear function whose
graph can be constructed by joining the successive points of A with line
segments. This function is continuous but it is not smooth and therefore it
cannot be expected to model curved lines accurately.
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On the other hand, the n-th degree polynomial
ay+ayx+ax*+ - +a,x" €))

whose coefficients a; can be determined formally by solving the system of
n linear equations obtained by substituting each (x;, y,) in turn into
expression (1), passes through all the points of A, but its value between the
data points may often exhibit spuriously large oscillations. Its behaviour is
non-local in the sense that each coefficient is dependent on all the data points
and even a small change in the location of any of the points will in general
alter the appearance of the entire curve.

An intermediate scheme which is both sufficiently flexible and stable is
one whereby a function fis constructed by defining different polynomials on
each subinterval [x;, x;.;]. These polynomials can be of a low degree (often
cubic) and conditions can be specified at the joins in such a way that the
resulting curve has continuity not only of value, but also of its first and possibly
higher-order derivatives. Functions constructed in this way are known as
‘polynomial splines’, a term which derives from the analogy with the draughts-
man’s tool of the same name [45].

The concept of polynomial splines can be extended to higher dimensions.
Polynomial spline surfaces have found wide application in a diversity of areas
including computer-aided design [46], reverse engineering [47, 48], terrain
mapping [49, 50] and medicine [51]. On this basis they were considered appro-
priate for modelling oral structures whose shapes are almost arbitrarily compli-
cated and which belong to the category of ‘free-form’ surfaces about which
very few assumptions can be made. A concise introduction to the mathematical
theory and practical implementation of polynomial splines can be found in
Cox [52, 53], and with more detail in de Boor [54].

Polynomial Spline Curves

Polynomial spline curves can be expressed as linear combinations of basis
functions known as ‘B-splines’. In defining a spline on an interval [ X, Xmax,
we will consider that the interval is partitioned by N points A, ..., Ay termed
‘interior knots’:

Xinin < 7\‘I < }\'2 << )\w<xmax
and that additional points, termed ‘exterior knots’, are defined such that
”'SK—ISQ\‘()Sxmim xmaxﬁ)\‘.w'+lg7\',’\r+2£"'

Most commonly, the exterior knots are selected such that A;=x,,, if j<1 and
A= Xmax if j> N and this will be assumed to apply here.
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The interval [Xpn, Xmax] 18 divided into N+1 disjoint subintervals
Iy, I, ..., Iy defined by

{ Ay 2 j=0,1,.., N—1,

1= .
[M, Ml j=N.

J

A B-spline of order n, denoted by N, ,(x), is defined on the knots
A—m Nj_uy1s ., A; Dy the recurrence relation due to Cox [55] and de Boor [56]:

—Na N h—Xx ( i !
Hj(x) )\‘ _}\‘ n—1,j— l(x)"" 7\‘ 7\’] el n—l,j X) nn>

and

1 ifxel_,

Nl’j(x)={0 otherWise,
The B-spline N, ;(x) consists of polynomial ‘pieces’ of degree n—1 so, for
instance, B-splines of order 4 are referred to as cubic B-splines. It is non-zero
only on the interval (A;_,, &) and therefore if a function is represented as a
linear combination of B-splines, altering any one of the coefficients will only
alter the function locally, over the same interval.

A polynomial spline curve s(x) of order n defined on a set of knots
A1, ..., Ay 1S @ linear combination of B-splines

s(x) = Z N (%)

where g=N+n and ¢, ..., ¢, are ‘B-spline coefficients’. Interpolation of a set
of data points with a spline curve thus consists of selecting an appropriate grid
and then determining the unknown B-spline coefficients from the conditions
s(x;)=y,. Figure 11 shows a cubic spline curve

11
s(x)= Zl ¢; N, ;(x)
f=
with N=7 interior knots. The B-spline N, ¢(x) is shown in bold.

Polynomial Spline Surfaces
A polynomial spline surface is defined over a rectangular region [X,in, Xmax] X
Wmin» Ymax)- Taking each axis separately, denote by M, ;(x) the B-splines of
order n, for a set of N, interior knots A, ..., Ay, ON [Xym, Xma] and by
N, ;(») the B-splines of order n, for a set of N, interior knots p,, ..., jy, on
[Vmin> Vmax]- A polynomial spline surface s(x, y) is defined as the sum of products
of B-splines
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Fig. 11. A spline curve and the B-splines of which it is composed.

s(x)= Z,l ;Q/Mn“ (XN, ;)

withcoefficients {¢;|i=1, ..., ¢,, j=1, ..., ¢,} whereq, =N, +n,andq,=N,+n,.
The process of constructing the interpolant of a set of data points (x;, y;, z;)
consists of finding the unknown coefficient matrix C by solving the system of
linear equations resulting from the conditions s(x;, y;) =z;. If the x—y locations
of the data points lie on a rectangular m, x m, grid, then the coefficients C
can be determined extremely rapidly and efficiently [53] by taking advantage
of the separability of the system into the form A, CAJ=F where A, is the
m, X m, matrix consisting of B-spline basis functions in x evaluated at the x
gridlines, and A, similarly for y.

Interpolation of CMM Data

As a consequence of the way in which a spline surface is defined as a
sum of products of univariate B-splines, interpolation is straightforward only
if the data points lie on a rectangular x—y grid. This is not the case with CMM
data whose spacing is controlled by two parameters: the speed of motion of
the probe column, and the frequency of readings of the OP2 probe. The two
parameters are computed by the system software from a user-specified desired
point spacing, but the actual achieved spacing is not guaranteed to be equal
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to this value, or to be regular. Additionally the laser beam need not be oriented
vertically in which case the scan line is not straight but dependent on the
surface contour. Whilst some CMMs are capable of producing data with
constant spacing, thisis not a great advantage since the rectangular distribution
is generally lost if a data set is rotated in order to superpose it onto another.
It was therefore necessary to consider methods appropriate for data points
which do not lie on a rectangular grid.

Although any of the many existing methods for gridding generally scat-
tered data could be applied, advantage can be taken of the fact that the data
points are distributed on approximately straight lines [57-60]. The data set is
regularised first in the direction of x, then in y by two series of successive
univariate interpolations, resulting in a new data set, representative of the
original, but which lies on a rectangular grid. This new data set is then
interpolated with a bicubic spline surface as described above. Details are given
by Jovanovski et al. [32]. The method of arriving at a surface representation
by successive interpolations may appear to be a rather indirect way of con-
structing an approximant but there were practical reasons for this approach,
foremost of which was the speed of execution. The software related to this
project was required to perform with an acceptable speed on a wide variety
of standard, modestly specified computers and this aim was achieved. A data
set consisting of 10,000 points requires just 5.6 s of processing time on a
Pentium 166 processor.

Accuracy of the Spline Interpolant

The spline interpolant of the gridded data points does not, in general,
pass exactly through the original data points. The question therefore arises
whether it is a satisfactory model. The data points are subject to measurement
errors and there is therefore no great advantage in reproducing them exactly.
It is suggested by Cox [53] that ‘an approximant should be sought that repro-
duces the data to the accuracy warranted by the data’. To determine if such
an approximant was being attained, the residuals were evaluated on several
types of replicas which were typical for the intended clinical applications and
scanned with a pitch of 100 um. It was apparent that the fit was worse in
some regions than in others and that these regions were associated with detailed
morphological features.

The root mean square residuals were found to be 0.09 um on hard tissue,
1.95 um on plaque and 1.06 um on gingivae. These values were considered
satisfactory. While it is possible to improve them further, for instance by
applying the iterative method described by Anderson and Mason [59] and
Anderson and Pink [61], it should be borne in mind that such improvements
would be only in the numerical sense of fitting the surface model to the digitised
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Fig. 12. The reconstructed labial tooth surface.

data and not necessarily produce a better representation of the underlying
surface.

Visualisation and Measurement

When the surface has been represented as a continuous function z =f{(x, y),
it can be manipulated in a variety of ways. Realistic rendering with Gouraud
shading [62] permits the identification of anatomical features of interest and
viewing of the surface in any desired orientation (fig. 12). Cross-sections may
be defined by interactively marking a line segment which constitutes the x—y
extent and measurements of lengths and angles may be made (fig. 13). The
cross-sections need not necessarily be ‘vertical’ (i.e. parallel to the z axis), in
which case the intersection between the plane and the surface is computed
using contouring algorithms [63, 64].

Surface Representation in Other Dental Systems

Very little has been published about the surface representation methods
used in other dental applications. Some systems permit digitising of a series
of sequential replicas to be made on a common x—y grid by using external
markers and mechanical repositioning. In studies of wear, it has been consid-
ered sufficient to evaluate the changes only at selected locations on the x—y
grid and not on any intermediate points, which would require interpolation.

Cubic spline curves have been used in the development of the University
of Minnesota system [65] to represent the surface as a series of parallel con-
tours, and the intention of using bicubic splines for a ‘full’ surface representa-
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Fig. 13. Cross-sections, angles and lengths.

tion at a later stage was stated. In other systems, co-ordinate data sets are
stored simply as an array of z values on an x—y grid. When a z value is required
for point (x,, y,) not on the grid, a local interpolation is performed by fitting
a polynomial through neighbouring points and evaluating it at (x,, y,). Most
commontly, this has been bilinear interpolation (fitting a plane through three
neighbouring grid points). Such is the case with the University of Munich
system [30]. Mitchell and Chadwick [31] implement bilinear interpolation in
the FORTRAN software, but refer to the possibility of using higher-order
polynomials in the gridding of scattered data.

Although simple to implement, bilinear interpolation produces a less
accurate surface model than quadratic or cubic interpolation. Furthermore,
local interpolation can be inefficient since it entails solving a system of equa-
tions whenever a z co-ordinate is required. The speed of such computations
is not critical in the gridding of scattered data since it is only performed once
for each data set, but if z co-ordinates are to be evaluated at many locations,
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for instance during measurement, visualisation or superposition of sequential
data sets, the advantages of polynomial splines, whose coefficients are pre-
computed, are evident.

Superposition of Sequential Data

Mathematical Background

Comparison of two sequential measurements of the same tooth replica
can reveal any changes over time, such as those due to plaque formation,
caries or restorations. For such a comparison to be possible, the two data sets
must be in the same frame of reference in the sense that corresponding points
(those which represent the same anatomical feature) should have the same
numerical co-ordinates. However, the co-ordinate data from any two replicas
will not generally lie in the same reference frame. The two major contributing
factors are: (i) variations in orientation of the brass tube assembly when taking
the replicas, and (ii) variations in the orientation of the replicas when placed
on the worktable of the CMM. Attempting to reduce these variations by
physically constraining the positioning of the brass tube assembly in the mouth
and of the replicas on the measuring platform is impractical since it would
still permit errors whose magnitude is considerably greater than the dimensions
of the intended measurements. The corrections to the orientation can, instead,
be made retrospectively by applying to the (x, y, z) co-ordinates of the digitised
surfaces such transformations which correspond to the physical motion of
rigid objects. This approach can deal with all the causes of disorientation
simultaneously and with high potential accuracy.

The process of bringing two data sets into a common reference frame in
this way is known as ‘registration’ (the term commonly used in medicine
and computer vision) or ‘superposition’ (elsewhere). The registration problem
occurs in a variety of application areas including automated inspection of
manufactured components, 2-D and 3-D medical imaging (with data from
sequential observations or multimodal imaging) and computer vision (to deter-
mine the ‘pose’ of an object and recognise it by fitting to models of known
categories of objects).

A Generalised Method

Suppose that a single image is printed on two transparent sheets but not
necessarily in an identical orientation (fig. 14). If a person was asked to bring
the two images into superposition, their most likely course of action would
be to keep one of them in a fixed position and move the other one by rotating
and translating so as to either bring the corners into coincidence, or maximise
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Fig. 14. Superposing two images ‘by hand’.

the area of overlap. This procedure may be formulated mathematically as the
following three-step ‘generalised method’: (1) express the position © of the
second image relative to its initial position by a set of numerical parameters
Uy, Uy, ..., t,; (2) define a measure E(m) of the positional disparity, and
(3) determine the position of best fit by finding a vector of parameter values
u=(uf¥, u¥, ..., u¥) for which E(u,, u, ..., u,) attains a minimum.
Unsurprisingly, these three steps form the essence of all registration
methods encountered in practice. However, the specific choice of method for
accomplishingeach step depends on the nature of the problem as not all solutions
will be equally appropriate to all situations. In the example of figure 14, two
possible disparity functions were suggested: the first one expressed by the dis-
tances between the corresponding corners of the ‘L’ symbols, and the second
one by the area of the non-overlapping regions. If the corners of the ‘L’ symbols
were rounded, it would be difficult to identify corresponding points and the
second function would be more appropriate despite its greater complexity.

Rigid Motion and its Parameterisation

Registration of two surfaces involves movement of one of the surfaces as
a rigid body. In order to arrive at a parametric representation of the position
of the surface relative to its initial position it is necessary to consider the class
of those co-ordinate transformations which correspond to physical movement
without deformation. Such transformations are termed ‘rigid motion’ [66, 67]
and have the general form:

(x)=Rx+v (2

where R is a ‘proper orthogonal’ 3 x 3 matrix and v a fixed vector. A matrix
R is proper orthogonal if R'/R=I (the identity matrix) and |R|=1. Such
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matrices are also termed ‘rotations’ since they corespond to the standard
geometrical notions of physical rotation around the co-ordinate origin. Stated
in geometrical terms, the characterisation 2 is: every rigid motion can
be represented as a rotation around the co-ordinate origin, followed by a
translation.

The class of rigid motions forms a group in relation to the composition
of transformations: (1) the identity transformation t(x)=x is a rigid motion;
(2) if ©(x)=Rx+c is a rigid motion then its inverse T~'(x) =R"x —R'¢ is also
a rigid motion, and (3) if 1,(x) =R,;x + ¢, and 1,(x) = R,x + ¢, are rigid motions,
then their composition 7,(7,(X)) =R,R x4+ (Rs¢, +¢,) is also a rigid motion.

When registration is performed, the ‘disparity’ function E (termed the
‘objective function’), can ultimately be represented as a multivariate function
of the elements of the matrix R and of the translation vector v. However, the
nine elements of the rotation matrix are not independent, but connected by
the relations arising from the orthogonality of R and as such they cannot
serve as the independent variables of E.

In general the elements of an n x n orthogonal matrix are functions of
n(n—1)/2 variables [68]. In three-dimensional space, rotation matrices can be
represented as a product of three rotations R=R; R, R, of the form

1 0 O ¢, 0 s c; —s3 0
R=[0¢ —s5[R=| 0 10 and R;=|s; ¢ O
05 o -5 0 o 0 0 1

where ¢} +s7=1 (i=1, 2, 3). Geometrically, R, is a rotation around the x axis
by an angle @, where ¢,=cos @, and s,=sin @,. Similarly, R, and R; are
rotations around the y and z axes, respectively. The explicit form of the product
R; R, R, is
(3 §182C3— €183 C1852C3— 85153
R=| ¢85 sis3+cic3 01883 —8163

—8; 51C; cicy

Thus, a rotation matrix can be parameterised by three rotation angles [69].
On occasions where it is necessary to convert between matrix and parameter
representations, the rotation angles can be found from the relationships:

I3 —TI3 L3
tan @;=— tan @,= and tan @;=—.

I'33 13+ 1% T

In summary, every rigid motion Rx+v in three-dimensional space can be
represented by a six-parameter vector

P=(®1, P2, P3, V1, V2, V3)
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where @,, @, and @; are rotation angles and v, v, and v; are the components
of the translation vector v.

As outlined above, determining the optimum transformation requires
finding the minimum of an objective function £ which contains a rotation
matrix R whose elements r; are functions of the rotation angles. Since the
methods for minimising E generally require the evaluation of its partial deriva-
tives with respect to the rotation angles, it is useful at this stage to define
OR/0a, the ‘partial derivative of a rotation matrix R with respect to the rotation
angle’ o, to be the matrix whose (i, j)-th element is the partial derivative of
(¢, @2, ¢3) With respect to .

Specifically,

ro C15,C3+ 5153 — 818,63+ €153
oR
—=0 585 —50 — 818283 — C1C3
0o,

LO [$16) — 816

[ —5203 §162C3 C16xC3

oR
= =825 516283 C1C283
0,
L —C — 815 — 015
and
— (83 — 818283 —C1C3 — 15283+ 5163
oR
—=| 03 818203 — €153 C18,C3+ 5153
00;
0 0 0

This notation permits expressions to be written compactly and in a form
similar to that for single-valued functions of one variable.

Methods Based on Identification of Corresponding Points

The position and orientation of an object in three-dimensional space are
determined uniquely by the locations of at least three non-collinear points on
its surface. If pairs of corresponding points are identified on two surfaces,
then the surfaces can be superposed by finding the rigid motion which brings
the second set of points into ‘best’ correspondence with the first. In practice
an exact match will usually not be possible, due to errors arising from measure-
ment or from the process of identifying the corresponding points, so the notion
of ‘best’ is defined in a least squares sense. The formal statement of the problem
is: given two sets of points A={a,, a,, ..., a,,} and B={b,, b,, ..., b,}, find a
rigid motion t(x)=Rx+v which, when applied to B, minimises the sum of
squares of distances
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ER,v)= Z} la;—(b)) |*.

This problem has been considered by many researchers [69-73]. It can be
shown that the optimal transformation has the form 1(x) = R(x —b) +a where
a and b are the centroids of A and B, respectively. Furthermore, if A and B
are centred around the co-ordinate origin to obtain new data sets X and Y,
then R is that rotation matrix which maximises the sum

m

Z X?-Ryi'
=

The optimal rotation matrix can be found efficiently by singular value decom-
position (SVD). The SVD of a real m x n (m>n) matrix A is its representation
in the form

A=USV", 3

where U is an m x n column-orthogonal matrix', V is n x n orthogonal and
S=diag(o,, ..., 0,) where 6,>0,>:-->0,>0. Details of the SVD can be
found in Golub and Van Loan [74] and algorithms for its computational
implementation in Press et al. [75].

The matrix R which produces the optimal fit of the two sets of points X
and Y is found as follows: (1) form the m x 3 matrices X and Y whose rows
are the co-ordinates of the points in X and Y, respectively; (2) form the product
C=Y"X; (3) compute the SVD C=USV", and (4) the solution is R=UV",

Because of its simplicity, registration by point correspondence has been
applied extensively. In relation to anatomical surfaces (including teeth), there
are two approaches to the identification of corresponding points: (a) external
markers can be attached to the surface under investigation [8, 24, 76, 77] or
made on the surface itself [28, 78], and (b) characteristic points (landmarks)
can be identified on the surface anatomy retrospectively by presenting the
acquired data on a computer visualisation system [79].

Both approaches were attempted in our laboratory.

External Markers

Three ball-bearing were permanently attached to a tooth throughout the
course of the investigations. The acquisition of a large number of points on
the surface of these ball-bearings permitted the co-ordinates of their centres
to be computed and these centres served as the three required reference points.
The co-ordinates of the centres could be identified to within 8 pm in x and
¥, but only to within 36 um in z [80].

"If u, and u; are two columns of U then uf wy=1 if i=j and 0 otherwise.
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Fig. 15. Interactive identification of corresponding points.

This degree of accuracy was, however, insufficient. Such closely spaced
reference points did not form a stable configuration for superposition since
the errors in the computed transformation angles are inversely proportional
(approximately) to the distances between the reference points. The clinical
aspect was also problematic. External markers are uncomfortable for the
subject and the oral environment may cause chemical changes to their surface.
In a study of denture wear using a reflex microscope, Adams et al. [8] concluded
that the markers ‘should not be subject to any, even microscopic, changes of
position, substance or definition during the monitoring period’, since the
registration accuracy could be seriously affected by any such changes.

Surface Landmarks

The software for surface reconstruction and visualisation developed for
this project incorporates a facility to display a baseline and follow-up surface
side-by-side and to mark points interactively on either of them (fig. 15). A
point-to-point fit is performed and the computed transformation parameters
are applied to the data points of the follow-up surface and re-interpolated to
produce a bicubic spline surface superposed onto the first.

The accuracy ultimately attainable with this method was 10 pm [81], but
only with great effort. The accurate identification of corresponding points was
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Fig. 16. Transforming a set of representative points.

limited by the resolution of the displayed image (30 um/screen pixel) and by the
relatively featureless morphology of some categories of surfaces, particularly
anterior teeth. Partial compensation for both these sources of inaccuracy could
be made by selecting a larger number of corresponding pairs, but the effect
of one or two grossly mismatched pairs was serious [79]. However, this method
is capable of quickly providing an initial approximation which can further be
refined by other methods, described next.

Shape-Based Method

Methods based on the locations of landmarks, by their very nature, only
use a small amount of the surface information. By utilising the additional
information made available by the representation of the baseline surface as a
continuous functions f{x, y), it was possible to develop a method based on
point-to-surface distances [82] which is robust and whose accuracy is operator-
independent.

Suppose we are given a baseline surface z=f{x, y) and a set of points
A={a, a,, ..., a,} selected from a nominally identical follow-up surface
(fig. 16). We wish to fit the set of points A onto the baseline surface by applying
a rigid motion 1(a) =Ra+v. Denoting by x,=(x;, y;, z;) the images of the points
in A under the transformation t (i.e. x,=Ra;+v), the aim is to find such
a vector of parameters p=(Q;, @», P, V1, V5, v3) of the transformation t that
minimises some measure of the disparity E between the transformed points
X and the surface f.

Let the function E be defined as the sum of squares of distances d; between
the transformed points x; and the surface f. Leaving the particular choice of
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the distance function d=d(x, y, z) unspecified for now, the following will hold
true: (a) E is a function of the individual distances d;: E=E(d); (b) d; is a
function of the co-ordinates of the transformed i-th point: d;=d(x,, y;, z;), and
(¢) x;, y; and z; are functions of the transformation parameters: x;=X;(p).

Therefore, if the set of points A is specified, then the value of E will
depend only on the transformation parameters p.

m

Ep)=). d:p) @

Minimisation of the Objective Function

Expressions similar to equation 4 occur frequently when dealing with
experimental data that contain normally distributed measurement errors, be-
cause a sum of squares is a maximume-likelihood estimator [75]. The problem
of minimising such an expression is a ‘least squares problem’.

Consider first the least squares problem where each function d; is a linear
function of its parameters p=(py, p,, ..., P,):

di(p)=anpi+ - +agp;+ - +a, p,—b; (i=1,..,m).

The optimal vector p* can be determined by the following method [74]: (1) form
the matrix A whose (i, j)-th element is a; and the vector b=(b,, b, ..., b,), let
r=rank(A); (2) compute the SVD A=USV", and (3) letu,, ..., u, and v, ..., v,
denote the columns of U and V, respectively. Then, the optimal vector p* is
given by

p*=_:Zl

u'b
V;.
i

(¢

The optimal vector p* is also termed the solution of the overdetermined system
of linear equations Ap =b in the least squares sense because it has the property
that || Ap*—b| <| Ap—b| for all vectors p.

If the functions d; are non-linear, then the minimisation of expression 4
presents a non-linear least squares problem, which may be solved by the
Gauss-Newton method [83]. The iterations of the Gauss-Newton method are
performed as follows.

GNI: Suppose that p, is an approximation to the optimal solution p*. Let J denote
the m x n matrix whose (i, j)-th element is the partial derivative

od;(p1, s Du)
dp; ‘

GN2: use the SVD of J, as outlined above, to find a vector h, which is the solution
of the system of linear equations Jh,= —d in the least squares sense, where
d=(d. d,, ..., d,).
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GN3: Set py,; =pr+h. The vector p,,, is a better approximation to p*.
GN4: Repeat steps 1-3 until satisfactory accuracy has been attained.

The Gauss-Newton method can now be applied to the least squares problem
presented by the fitting of a transformed set of sampled points to a surface.
The vector of unknown parameters is p=(®;, ®,, P, v}, V5, v3) and therefore
the i-th equation of the system obtained in step GN2 will have the form:

{@d,-(p) 0od;(p) dd,(p) 0d;(p) dd;(p) Od;(p)

op, 0, 0p; O ov,  On ]h__di(l))~ (5)

The partial derivatives of the distances d; with respect to the transformation
parameters p can be found by applying the chain rule (with indices omitted
for notational convenience):

od _Gd ) ox
op ox op’
It is readily verified that

od od [ZM od od }

ox O(x,y.2) |ox dy Oz
and that
| | | | |
I | 110 10
x |oR | @R | @R | | |
—= —a al —al 0 11 10
op [0@1 | 0@y | 0¢; | ! ;
o et

The explicit form of equation (5) is therefore:

1 I ‘1 1o o
od, ad, ad/]| @R | oR | @R :o :1 }0 he 4 .
ox 0y Oz || 0y }G(pzai: 6(p3ai | | } - ©)
1 | 1010 |1
| | | | |

All that remains is to select an appropriate distance function d(x, y, z). The
‘true’ distance from a point x=(x, y, z) to a surface f{(x, y) is the distance
between the point x and that point on the surface f which is closest to x,
termed the ‘foot point’. Finding the foot point is computationally expensive
[84], but a first-order approximation can be used. If the surface f'is considered
to be represented by its tangent plane at the point (x, y, f{x, y)) which is the
z-projection of x onto f, then the first-order approximation of the distance is
given by:
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Fig. 17. A first-order approximation of the point-to-surface distance.

z—flx,y)
L/ ) +/3(x, )
where f, and f, denote the partial derivatives of f with respect to x and y
(fig. 17).
Substituting this distance function into equation 6, the final explicit form
of equation 5 in full is:

&)
=

0
0 h= f(xh yx) —Z (7)
| 1413, y) +/5(x »)

[@)]

00,

| \ \
| [
R
al —a; 10 |
TR I

| O

|
0 |
:
1 1
|
0 |
|

where (x;, y,, z;) =Ra,;+v, and n; is the unit normal of the baseline surface at
(xin yin ﬂxia yi))s le
1

n;= (=0 y) =X p) 1T
1+£3(x y) +f,\2’(xii ) v

Superposition of Non-Identical Surfaces

In the preceding section it was assumed that the baseline and follow-up
surfaces represent the same underlying shape, except for random measure-
ment errors. However, the ultimate purpose of registration is to enable the
measurement of changes in shape, and that fact implies that in practice the
two surfaces will differ to some extent. The differences may be small (wear,
for instance) or large (cavity preparation) but in most cases there exists a
region which remains relatively stable throughout, or is subject to consider-
ably smaller changes than those in the region of interest. The registration of
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Fig. 18. The stable region outlined on the follow-up surface.

non-identical surfaces is achieved by restricting the selection of representative
points to such stable regions. It is then possible to proceed as if the surfaces
were identical.

Software Implementation

Registration is performed in three stages. First, an initial approximation
of the transformation parameters is obtained by marking three or more pairs
of corresponding points as in the landmark-based method, but with the dif-
ference that the points only need to be marked approximately because the
method accuracy is not critically dependent on the choice of initial parameter
values.

In the second stage, the operator marks the extent of the stable regions
on the follow-up surface by outlining them with the mouse (fig. 18). The
replicas in this example are from a study of the accumulation of plaque and
changes in gingival contour. The crown was cleaned carefully using gauze,
except for the region of interest in the proximity of the gingival margin.
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Fig. 19. The main processing phase.

On completion of the second stage, a set of 3,000 representative points
which lie in the stable region of the follow-up surface is automatically generated
by random uniform sampling (the number of representative points is chosen
to be as high as possible, whilst maintaining an acceptable speed of operation).
Following this, the main processing phase is initiated during which the repre-
sentative points are fited to the baseline surface by the Gauss-Newton method.
The display (fig. 19) is updated at each iteration to show: (1) the representative
points, transformed by the parameter values obtained at the current iteration,
overlaid onto the baseline surface: (2) a histogram of the distances (residuals)
between the baseline surface and the transformed representative points of the
follow-up surface; (3) statistics of the residuals (mean, standard deviation,
RMS); (4) the values of the transformation parameters at the current iteration,
and (5) the magnitude of their change dp from the previous iteration.

The primary indicator of a satisfactory fit is the RMS of the residuals
(RMS/point). Additional verification is provided by the histogram. If the
marked regions are indeed identical except for randomly distributed measure-
ment errors, it is expected that the histogram should correspond closely to
the overlaid Gaussian curve which has the same mean and standard deviation
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Fig. 20. Inaccurate registration, but low RMS.

as the residuals. Those transformed representative points which correspond
to the worst 15% of residuals (outliers) are displayed in a different colour to
the others (red for positive, blue for negative). The software incorporates a
facility to exclude the outliers from further consideration and allows the
iterative procedure to continue with the new ‘refined’ set of representative
points. When the procedure has converged, the optimal transformation is
applied to all the data points of the follow-up surface. From these transformed
points a new, superposed follow-up surface is generated.

Results

The practical application of the shape-based method in a number of
clinical studies involving many hundreds of replicas has shown that tooth
surfaces can generally be superposed to within 6-9 pm RMS/point. The fit is
not perfect because the registration is being performed on two surfaces which
are not absolutely identical, as a consequence of the finite accuracy of replica-
tion and digitising. Furthermore, if a pair of surfaces are superposed repeatedly,
the parameters of the computed optimal transformation will be subject to
small variations, depending on the size and location of the marked stable
regions, and also on the specific locations of the selected representative points.
It was therefore of interest to quantify not only the overall goodness of fit,
but also to determine which factors affect it, and to what extent.

Is some cases, the RMS/point deviation is not a complete indicator of
the registration accuracy, a fact which has also been noted in other application
areas [85, 86]. The example in figure 20 shows a situation where the stable
region is an almost perfectly circular arc.

While the RMS/point value is low, the misregistration & between corre-
sponding anatomical features x, and x’ is high. From this it is clear that the
evaluation of registration accuracy should be based on a measure capable of
distinguishing between solutions which produce equal RMS/point values.
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If ©* is a known optimal registration and % is a solution obtained by
some method, then the misregistration of a particular point x is the distance
|2~ 't*(x)—x |, equal to the distance that a point x is displaced by the residual
transformation 1., =%"'t*. Clearly, the displacement is not constant for all
points x due to the distance-dependent effects of rotation, but its average value
can be estimated. Given a transformation t whose parameters are
(@1, @1, @3, 1, v5, v3) and a point x, it can be shown that

) —x || < [Ix|[/ot+ @3+ 3+ /vi+vi+vi=Ix| ol +]v,

provided that the rotation angles are small, which is the case with t,,.

The quantity | x || ||¢ | 4/ v| is upper bound and scale-dependent. In our
studies, with replica dimensions of approximately 10 x 10 mm centred around
the co-ordinate origin, an appropriate ‘mean’ distance is 5 mm. We therefore
define the mean displacement (MD) of a transformation t as MD(t) =5 mm
@[+ V] . (Angles are dimensionless quantities, while vector norms are dis-
tances (lengths). The ‘5 mm’ multiplier plays the role of || x || in the expression
x| @]+ v]. The MD is therefore also expressed in units of length.)

In this way, and assuming that the optimal transformation t* between
two surfaces is known, the registration accuracy of a particular solution 1 can
be defined as the MD of the residual transformation t.,, =% ~'t*. In this context,
the quantity MD(Z~'1*) serves as a measure of the ‘distance’ between the two
transformations 1 and t*.

The repeatability of a sequence of solutions (t;, T, ..., T,) 1s defined in an
analogous way to the standard deviation of a random variable, as the root
mean square of the ‘distances’ of each of the n solutions from their ‘mean’.
A transformation t,,,, is obtained by averaging the n vectors of transformation
parameters, and the repeatability is defined as:

Repeatability = RMS(MD(t;' Tyean), k=1, ..., 1).

A series of experiments to assess the accuracy and repeatability of registration
were performed using data from actual digitised replicas of labial surfaces and
also from surfaces generated synthetically. Each experiment was repeated 50
times with different initial transformation parameters which simulated the
variations that would arise in practice from the landmark-based initial approxi-
mation phase.

Synthesised ‘Typical’ Case

Evaluation of registration accuracy requires that the exact solution
(ground truth) be known, but this is not achievable with pairs of surfaces
obtained by the standard procedure. Instead, a transformation t was applied
to a single data set P, obtained from a labial tooth surface, to create a new
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data set P,. The two sets of points were interpolated to create two continuous
surfaces S, and S,. These two surfaces were ‘digitised’ synthetically by sampling
two sets of data points D, and D, in such a way that their x—y distribution
resembled that which would be obtained with the CMM. Random errors
which modelled the characteristics of the OP2 probe were added to their z
co-ordinates. Finally, the data sets D, and D, were interpolated to create a
pair of surfaces related by the known transformation t. When the two surfaces
were superposed in the standard way, the accuracy, repeatability and RMS/
point were 9.8, 8.1 and 6.4 pm, respectively.

Effects of the Distribution of Acquired Data Points

When replicas are digitised repeatedly, the x—y distribution of each set of
data points is different and the spline interpolants of those data sets therefore
also differ to a small extent. The accuracy, repeatability and RMS/point of
data sets obtained synthetically from a single surface, but sampled at different
x—y locations, were found to be 1.25, 1.26 and 1.24 pm, respectively.

Effects of the Locations of Representative Points

Repeated registration of two ‘real’ data sets was performed with different
initial parameters, but with the same set of representative points each time.
The repeatability was found to be near-perfect (10~* um). From this, two
conclusions follow.

(1) Different representative points produce different solutions. This is
expected, since the ‘follow-up’ structure represented by these points is different
each time to an extent dependent on the accuracy of replication and measure-
ment.

(2) The same solution was obtained each time, despite the different initial
parameters. Therefore, no local minima of the objective function were encoun-
tered. It is generally found in other application areas that 3-D registration of
free-form surfaces is sensitive to local minima, particularly with structures
whose morphology is detailed, such as human brains. In such situations the
global minimum can be sought either by repeating the superposition many
times and rejecting ‘outlier’ solutions, or by parameter space searching. How-
ever, in this application the surfaces were smooth and the measurement errors
low in relation to the data point spacing and therefore the solution was not
sensitive to the choice of initial transformation parameters.

Effects of the Number of Representative Points

Since the information used in superposing the follow-up surface consists
only of its representative points, it was expected that selecting a larger number
of points would provide a better description and therefore a more stable and
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Fig. 21. Registration accuracy and repeatability vs. number of representative points.

accurate fit. Varying their number from 500 to 3,000 produced the results in
figure 21. Better solutions were indeed obtained by selecting a greater number
of points, but it was also apparent that an increase in their number above
1,500 yielded only slight improvements. These facts would not have been
revealed by examining the RMS/point value alone, since it remained constant.

Effects of the Magnitude of Acquisition Errors

The sequence of operations employed to evaluate the ‘typical’ case were
performed with different magnitudes of synthetic acquisition errors. The graph
in figure 22 shows that a linear dependence exists between the acquisition
errors and the RMS/point, but that the effect on accuracy and repeatability
was proportionally greater. It is not yet clear why this should be so, but it
indicates (as does the previous experiment) that the RMS/point value alone
does not always provide all the information of interest.

Convergence Properties

The values of the six-dimensional vector p of transformation parameters
at each iteration of the Gauss-Newton method form an iterative sequence
Pi, P2, ... which converges toward some optimal value p* (within the bounds
of the computing precision). The convergence properties of these sequences
were of interest because this information might reveal deficiencies or indicate
how the speed of operation could be improved.

A fundamental characteristic of convergent iterative sequences is the ‘or-
der of convergence’, defined as the largest number r for which
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The Gauss-Newton method is ultimately capable of achieving a quadratic rate
of convergence, but only if the objective function tends to zero as p, approaches
p*. Otherwise its convergence is linear, and this was found to apply in the case
of replica surfaces. The distances || p,—p* || obtained during several runs of the
registration procedure were recorded and plotted on a logarithmic scale against
the iteration count. In each case, an almost exactly straight line was obtained
(figure 23), showing that the ratio || pi.; —p* ||/ | px—p* || was almost constant.
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The linear convergence permitted the application of a predictive technique
known as Aitken acceleration to considerably reduce the number of required
iterations. Consider a sequence {a,} which converges linearly towards a value
a* and in which each element is generated from the preceding one by some
iterative procedure P. From the definition of the order of convergence it follows
that for any three successive values a;_,, a;_, and g, the following will hold
true:

ay_ —a* N a,—a*

tr—a* " @ —a*’ ®)
The relationship 8 permits the approximate value of the unknown value a*
to be found as:

(ak_akfl)z

*
Frg———————.
a—2a,_ 1 +a,_,

®
The computed value of a* is not exact, but if this value is used as the next
element q,,, in the sequence, instead of the value of .., which would have
been obtained by applying the procedure P, the convergence is greatly acceler-
ated. Aitken acceleration has been implemented in the registration software
and figure 24 shows the result of its application to a surface pair for which
the convergence was particularly slow, resulting in an execution time of 30 s
on a Pentium 166 processor.
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Discussion

Accuracy and Repeatability

The experimental results showed that the method error was negligible
when applied to identical surfaces, and that the registration accuracy depends
primarily on the accuracy of the acquired data. In the absence of a known
ground truth, all registration methods are ultimately statistical [87], and while
it is not easy to assess the accuracy of any particular solution, repeated
registration of synthetically generated data sets, which closely model the real
data, has provided estimates of what may be expected in practice.

An additional factor, not considered in the experiments, relates to the
size, shape and location of the stable regions from which the representative
points are selected. This is a complex issue which proved very difficult to
quantify rigorously since the stable regions may be either single or multiple,
with varying size and patterns of spacing. This question is closely related to
that of ill-posed problems such as the example in figure 20, where the RMS/
point remains constant or changes very slowly relative to the changes in the
transformation parameters. It is well known that some categories of surfaces
cannot be superposed uniquely. For example, a cone is invariant under rotation
around its axis and therefore the superposition of two cones has one rotational
degree of freedom. Similar considerations apply to spheres, cylinders, planes
and other forms which are self-similar, i.e. invariant under some rigid motion.
When such surfaces are superposed, the matrix J of the associated least squares
system Jh=d is singular and permits an infinity of solutions. Such surfaces
did not occur in our investigations, since the measurement errors introduce
sufficient imperfections to disrupt the geometrical regularity, but it was noted
that selecting very flat or cylindrical representative regions caused slower
convergence and worse repeatability. Despite the potential for labial tooth
surfaces to be self-similar, there are extenuating circumstances. Measurements
of changes due to plaque or wear are generally made in the z direction which
represents the direction of maximum constraint and therefore they are not
strongly affected by registration errors in the direction of maximum freedom.
Given the fact that motion-invariance is an inherent property of the surface
shape, it would be desirable to develop a method which would provide an «
priori estimate of registration accuracy and stability. Recent work in other
application areas has produced some promising results [88, 89].

Identification of Stable Regions and Removal of Outliers

The registration of non-identical surfaces is based on the assumption that
stable regions exist and that they can be identified. The locations and extents
of such regions differ depending on the type of change being studied and
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therefore some clinical knowledge of the problem is required, but there is
always the possibility that the regions which have been marked as identical
are, in fact, different. Possible causes are: (1) erroneous assumptions about
the extent of the stable regions; (2) the presence of plaque or saliva on the
tooth surface; (3) air bubbles on the replica surface, and (4) distortion of the
replica caused by moving the impression tray at the critical stage while the
impression material is setting.

The software provides facilities for the identification and rectification of
such occurrences. If the differences between the marked regions are due only
to measurement errors, then the RMS residual of the fitted points is expected
to be in the range of 6-9 um, the histogram of the residuals should exhibit a
Gaussian distribution and the outlier points (both positive and negative)
should be distributed uniformly.

If the outlier points are concentrated within a very small area, indicating
a local fault, the operator can specify that they be automatically removed
from the set of representative points and thereby excluded from further consid-
eration. Larger regions of outlier concentration indicate more serious problems
requiring further investigation which might lead either to the rejection of one
or both of the replicas, or reconsideration of the possible locations of the
stable regions.

Outlier removal has been used in other surface registration applications,
including dental-related ones [30, 31] as a step towards automating the detec-
tion of stable regions, but there are difficulties with this approach. Namely,
when the criteria for outlier detection are applied, the two surfaces are not
yet correctly superposed, or there would be no need to take further action.
The point-to-surface distances of the representative points will therefore differ
from their final optimal values, permitting two types of classification errors
to occur. Firstly, there might be failure to detect points which are not outliers
according to the current relative attitude of the two surfaces, but would be if
the surfaces were correctly superposed. Secondly, some ‘good’ points might
be wrongly identified as outliers and rejected, thereby reducing the amount
of available information. For these reasons, the registration software leaves
the process of outlier removal under the control of the operator, to be used
only where appropriate, such as in compensating for local imperfections.

Other Registration Methods

The development of surface registration methods has largely been moti-
vated by the requirements of computer vision, industrial inspection and image-
guided surgery. It can be seen from literature surveys [90, 91] that such methods
essentially conform to the template of the ‘generalised method’, but that the
specifics of each method depend on the properties of the acquired data. For
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instance, computer-aided tomography produces a 3-D data set whereby an
object is represented as a large number of small cubes, each of which is assigned
a discrete density value. Clearly, such data and the errors associated with its
acquisition are of a very different nature to the tooth surface co-ordinate data
and therefore require different processing methods.

Of methods that are applicable to co-ordinate data and surfaces recon-
structed from it, the best known is probably the iterative closest point (ICP)
method [92]. The ICP method is based on the fitting of two sets of correspond-
ing points, as follows: (1) select a set of representative points on the follow-
up surface; (2) for each follow-up point, find the point on the baseline surface
which is closest to it; (3) fit the follow-up points to the baseline points, and
(4) repeat steps 2-3 until convergence.

This method is popular because it is equally applicable to 2-D curves,
2!1,-D’ (single-valued) surfaces and 3-D surfaces in general. It does not require
the derivatives of the surface function to be known or estimated and permits
straightforward implementation, the main requirement being a function which
returns the closest point and a routine for least squares fitting of two sets of
points.

The ICP method was implemented in our data analysis software as an
alternative, but found to be inefficient for the following reasons: (1) finding
the closest point is time-consuming [84], and (2) the presence of flat horizontal
regions tends to ‘anchor’ the surface vertically which causes very slow conver-
gence.

The method of Chen and Medioni [93] is a close counterpart of the
method used in this work. This method, too, is based on minimising the
distances from points to tangent planes, but whereas our plane passes
through the control point (x, y, f(x, y)) (fig. 17), the control point in Chen
and Medioni is chosen at the intersection of the baseline surface and a line
through (x, y, z) which is normal to the transformed follow-up surface. The
computation of this surface-to-line intersection incurs a considerable compu-
tational expense.

A point-to-surface method frequently cited in the medical literature is
the method of Pelizzari et al. [94, 95] which has been used in brain imaging.
The baseline surface is represented as a series of parallel contour lines and
the follow-up surface as a set of points. The minimisation is performed by
a parameter search method, which is reflected in the lengthy execution
time, quoted as ‘several minutes’ for a set of 300 points on a VAX-11/750
computer.

In dental-related applications, Bangerter et al. [27] have used the simplex
algorithm (also known as Nelder and Mead’s polytope method) [96] for super-
posing tooth surfaces, but no further particulars are given. The University of
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Minnesota system [97] also employs the simplex algorithm with a reported
registration accuracy of 16.9 um RMA/point on buccal surfaces [98]. The
method accuracy of the latter is quoted as 3.5 um [99].

The simplex algorithm is a parameter search method. As such, it does
not require the derivatives of the objective function to be known or approxi-
mated, but its convergence is very slow. It was considered in the early stages
of this work, but rejected after tests which showed that the superposition of
two identical curves required over 100 iterations.

Dastane et al. [41] have performed a comparative study of three registra-
tion methods using commercially available software. The best achievable result
in terms of RMS/point was 9.49 um on surfaces defined by points on an
81 x 81 grid with a spacing of 175 um and 500 representative points. The
surfaces were nominally identical, one being obtained from the other by a
known rigid transformation. Under comparable conditions, our shape-based
method achieved 0.013 um. This difference perhaps best illustrates the short-
comings of applying ‘off-the-shelf” solutions intended for general purpose use
or for other specific application areas.

The registration method used in the University of Munich system [30]
bears much resemblance to ours, having evidently been developed following
a similar line of reasoning. An initial approximation is obtained by identify-
ing three pairs of corresponding points, stable regions are defined by multiple
polygons and the disparity function is defined as the sum of squares of
point-to-surface distances. Minimisation is by gradient descent, conjugate
gradient descent and the Levenberg-Marquardt method [83]. The RMS/point
on registered occlusal surfaces was 10.1 pm, mainly due to measurment
errors, whereas the intrinsic registration error is described as ‘considerably
less than 1 um’.

Least squares minimisation of point-to-surface distances has also been
applied to tooth surfaces by Mitchell and Chadwick [31]. Although the system
is described as experimental, the reported particulars of its development are
especially welcome since they show that the key issues identified by the authors
as relevant to the accurate detection of changes in morphology are included
within those that have been addressed in this work.

Clinical Applications

The validity of the practical and theoretical methods described above has
been confirmed by their successful application in objective clinical research.
This section presents examples of some of the types of our investigations
which have been enhanced by co-ordinate data analysis.
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Wear of Restorations

Quantification of the wear of restored occlusal anterior tooth surfaces
has been a dominant area in the study of dental morphology by analysis of
co-ordinate data using both CMMs and other measurement systems. Wear
over long periods can be readily detectable and since this area has been
extensively researched, it did not figure prominently in our investigations. It
was of interest, due to the timescales involved, to determine if useful data
could be obtained from ‘historical’ replicas taken for purposes unrelated to
co-ordinate acquisition. Figure 25 shows a plane cross-section through a se-
quence of three replicas of a molar tooth followed longitudinally over a 10-
year period taken at 5-year intervals. The restoration covered an area of 80%
or more of the occlusal surface of the tooth and extended to one of the
approximal surfaces and onto more than half the buccal surface. In the top
image, the wear can particularly be seen adjacent to the cavo-surface margin
of the restoration, which was more steeply inclined near the area where the
restoration meets the tooth surface. The middle image shows the good super-
position of the surfaces buccally and lingually, where relatively little wear had
occurred, whilst the cusp tips, being related to occlusal contact areas, had
worn relatively more. The centre half of the cross-sections shows the greater
relative wear of the composite resin restorative material (P-10, 3M Dental
Products, St. Paul, Minn., USA). In the lower image the wear at one point
on the composite resin material has been quantified and shown to be 345 um.

Plague

Plaque is frequently present in sufficient quantity to enable its visual
detection from the rendered images (fig. 26). Its distribution can be viewed
either on individual cross-sections (fig. 27) or over the entire surface with
colour-coded ‘subtraction maps’ (fig. 28) of the type commonly used in imaging
applications [27, 100]. The distribution of plaque is frequently very irregular
and therefore measurements of its thickness at individual locations are suscept-
ible to considerable variations. For this reason, plaque thickness is evaluated
by permitting the operator of the software to define a rectangular region of
interest (usually 1 mm?) over which the thickness is automatically evaluated
at several thousand locations and averaged.

The presence of a stable region required for superposing is ensured by
removing the plaque (with gauze) from a region located around the mid-line
on the upper coronal half of the tooth prior to replication. Assessment of the
methodology is reported by Yeganeh et al. [101, 102]. The method has been
applied to compare the plaque removal ability of two toothpastes [103] and
proved capable of revealing a statistically significant difference in plaque depth
change between the two products (mean=19 um, SE=6.53, p<0.01).
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Fig. 25. Wear of a restoration at 5 and 10 years.
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Fig. 26. Plaque before and after cleaning.

Gingivitis

Co-ordinate metrology is particularly well suited to the study of changes
in gingival contour, since these are large in relation to the method accuracy
and the entire tooth surface can be used as the stable region for superposing.
Applications to date include a study of experimentally induced gingivitis over
a period of 21 days [104] and canine gingivitis [105].

Effects of Two Toothbrushes on Hard Tissue

The system proved capable of discriminating between the effects of differ-
ent toothbrushes on hard tissue loss during a 3-month study period, while
clinical assessment during the same period did not produce statistically signifi-
cant observations [106].

Three-Month Assessment of an Antimicrobial Root Sealant

Co-ordinate metrology has previously been used to assess the volume and
area of sealant applied to occlusal surfaces [100, 107]. Our system was applied
in an investigation of the thickness and wear of a protective root sealant on
exposed root surfaces [108]. Impressions were taken before and after the
placement of the sealant to assess its thickness (fig. 29) and also after 3 months
to assess wear and failure (fig. 30).
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Geometry of Crowns and Crown Preparations

The variations in geometry of labial shoulder preparations from a variety
of operators and the effects that these variations have on the emergence profile
of metal ceramic crowns have been assessed and reported by Seymour et al.
[109, 110]. An example is shown in figure 31.

Other Application Areas — Treatment of Inflamed Joints

Replicas of a single inflamed proximal interphalangeal joint injected with
a steroid to reduce swelling were made at baseline prior to injection and 2
and 7 days after the steroid injection. The scanning pitch was 300 pm (fig. 32).
The RMS/point of stable regions was between 90 and 130 um — remarkably
accurate considering that any bending of the joint would alter the shape
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Fig 28. Plaque—subtraction map.

considerably. The measured improvement (fig. 33) was not detected through
clinical observation by the rheumatologist, nor by the patient.

Conclusions

Computer-based methods have in the past been described as ‘extremely
expensive, subject to superpositioning errors and impractical for evaluating
casts in large clinical studies’ [22]. With this new system, patient and clinician
time consumption is minimal and involves the use of familiar techniques. Since
replicas can be obtained easily, speedily and economically, and forwarded to
a central laboratory for digitising, the cost implications, even when large
clinical studies are involved, are not of the significance that has previously
been the case. The replication method is highly repeatable for hard tissue and
plaque, less so for soft tisue, but sufficient to permit the reliable detection of
changes.
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Fig 31. Geometry of crown preparations.

The majority of co-ordinate data acquisition systems applied in dental
research have employed probes which make physical contact with the surface
of the specimen. Such probes are not ideal for measuring silicone impressions
because they exert pressure which may cause deformation of the elastic impres-
sion material and therefore require rigid models to be produced. Additionally,
post-processing of the data is necessary to compensate for the shape of the
stylus, since the exact point with which it contacts the surface is gradient-
dependent [111]. The ability to acquire co-ordinate data directly from standard
silicone impressions eliminates the time, effort and potential for additional
errors associated with the production of rigid models. The system has been
applied over a sufficiently lengthy period to permit a more detailed assessment
of its characteristics than has been the case with many other acquisition
systems, thus enabling its optimal exploitation.
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Fig. 32. The surface obtained from a replica of an inflamed joint.

The reference-free superposition of data sets obtained from sequential
replicas permits investigations of changes in morphology to be performed
which would otherwise be impractical if external markers were required. It
can also be applied to replicas and models produced earlier, in studies which
have not anticipated the use of co-ordinate metrology.

The registration method itself is based on the well-known principle of
least squares optimisation. The convergence has been augmented by Aitken
acceleration.

Extensive assessment of the method’s accuracy and repeatability on syn-
thetically constructed surfaces and on clinically acquired data has been per-
formed. The registration accuracy of clinically acquired data was found to be
6-9 um in terms of RMS/point. Operation of the supporting software is
straightforward and efficient, requiring little operator training. Its visualisation
capabilities permit the creation of images which can be easily perceived and
understood by clinicians.

The study and application of co-ordinate data analysis over an extended
period has enabled detailed, quantifiable 3-D measurements to be recorded
in longitudinal studies on gingivae, plaque and root surfaces of teeth, which
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have been rarely investigated in the past. There is good correlation between
the results obtained using the methods described and those determined by
clinical examination alone, e.g. plaque indices vs. the measured plaque or
changes in gingival contour, though the discriminating power of co-ordinate
data analysis is far better. Areas of further clinical research in which the system
might be applied are not limited to dentistry, but include a wide category of
medical and other investigations of changes in shape.

Acknowledgements

We are grateful to: Prof. Harry Allred, founder of the Dental Metrology Unit; Prof.
Maurice Cox of the National Physical Laboratory, for providing mathematical expertise;
Mrs Lifong Zou, for digitising all replicas used in these studies; Ms Sharzad Yeganeh, Ms
Aylin Baysan, Dr Kevin Seymour and Dr Carolyn Morris-Clapp, clinical investigators, and
Prof. David Blake of the University of Bath for collaboration on the study of inflamed joints.

The authors would like to acknowledge the support of clinical studies by: Optiva
Corporation, USA; The Scientific Foundation for Dental Diagnosis, Netherlands; Unilever
Research, UK; Procter and Gamble, USA; Synthélabo, France and Dentsply, Germany.

References

1 Cvar JF, Ryge G: Criteria for the clinical evaluation of dental restorative materials. USPHS Publica-
tion No 790-244. San Francisco, US Government Printing Office, 1971.

2 Leinfelder KF, Taylor DF, Barkmeier WW, Goldberg AJ: Quantitative wear measurement of poste-
rior composite resins. Dent Mater 1986;2:198-201.

3 Elderton RJ: An objective method for measuring the surface morphology of cavities and restorations
in vivo. J Oral Rehabil 1977;4:323-334.

4 Chadwick RG, McCabe JF, Walls AW, Mitchell HL, Storer R: Comparison of a novel photogrammet-
ric technique and modified USPHS criteria to monitor the wear of restorations. J Dent 1991;19:
39-45.

5 Chadwick RG: Close range photogrammetry — A clinical dental research tool. J Dent 1992;20:
235-239.

6  Scott PJ: Pepper’s ghost observed in Cape Town. S Afr J Photogram Remote Sensing Cartog 1984;
14:89-95.

7  Adams LP, Wilding RJC: Tooth wear measurements using a reflex microscope. J Oral Rehabil 1988;
15:605-613.

8  Adams LP, Jooste CH, Thomas CJ: An indirect in vivo method for quantification of wear in denture
teeth. Dent Mater 1989;5:31-34.

9  Atkinson JT, Groves D, Lalor MJ, Cunningham J, Williams DF: The measurement of wear in
dental restorations using laser dual-source contouring. Wear 1982;76:91-104.

10 Williams DF, Cunningham J, Lalor MJ, Groves D, Atkinson JT: Laser techniques for the evaluation
of wear in class II restorations. J Oral Rehabil 1983;10:407-414.

11 Farely DW, Shin D, Jones R, Agrawal CM: The wear of human enamel opposing dental porcelain
(abstract). J Dent Res 1999;78:112.

12 Boyde A, Howell PGT, Franc F: Simple SEM stereophotogrammetric method for three-dimensional
evaluation of features on flat substrates. J Microsc 1986;143:257-264.

Dental Metrology 125



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34
35

36

37

38

39

Howell PGT, Reid SA: A microcomputer-based system for rapid on-line stereological analysis in
the SEM. Scanning 1986;8:139-144.

Howell PGT, Boyde A, Ross HF: A three axis stereocomparator for scanning electron microscopic
photogrammetry — RS3. Scanning 1986;8:182-186.

Anderson P, Davis GR, Elliott JC: Microtomography. Microsc Anal 1994;15:31-33.

Nielsen RB, Alyassin AM, Peters DD, Carnes DL, Lancaster J: Microcomputed tomography: An
advanced system for detailed endodontic research. J Endod 1995;21:561-568.

Balto K, Miiller R, Carrington DC, Stashenko P: Quantitation of periapical bone destruction in
mice by micro-computed tomography (abstract). J Dent Res 1999;78:122.

Watson TF, Boyde A: Confocal light microscopic techniques for examining dental operative proce-
dures and dental materials. Am J Dent 1991;4:193-200.

Mormann WH, Bindl A: The new creativity in ceramic restorations: Dental CAD-CIM. Quintessence
Int 1996;27:821-828.

Alcaiiiz M, Chinesta F, Monserrat C, Grau V, Ramén A: An advanced system for the simulation
and planning of orthodontic treatments; in Héhne KH, Kikinis R (eds): Visualization in Biomedical
Computing. 4th Int Conf. Berlin, Springer, 1996, pp 511-520.

Chadwick RG: A review: The assessment of the durability of composite resin restorative materials
in vivo. Clin Mater 1989;4:241-253.

Bayne SC, Taylor DF, Rekow ED, Wilder AD, Heymann HO: Confirmation of Leinfelder clinical
wear standards. Dent Mater 1994;10:11-18.

Roulet JF, Reich T, Lutz F: High precision occlusal mapping — A new method for measuring wear
of posterior composite resins (abstract). J Dent Res 1983;62:220.

Roulet JF: Development of appropriate measuring devices; in Roulet J-F (ed): Degradation of
Dental Polymers. Basel, Karger, 1987, pp 101-108.

Lambrechts P, Vanherle G, Vuylsteke M, Davidson CL: Quantitative evaluation of the wear resistance
of posterior dental restorations. J Dent 1984;12:252-267.

DeLong R, Pintado MR, Douglas WH: Measurement of change in surface contour by computer
graphics. Dent Mater 1985;1:27-30.

Bangerter V, Christensen R, Christensen G: Method for determination of in vivo wear (abstract).
J Dent Res 1987;66:126.

McDowell GC, Bloem TJ, Lang BR, Asgar K: In vivo wear. Part I: The Michigan computer-graphic
measuring system. J Prosthet Dent 1988;60:112-120.

Chadwick RG, Mitchell HL, Cameron I, Hunter B, Tulley M: Development of a novel system for
assessing tooth and restoration wear. J Dent 1997;25:41-47.

Mehl A, Gloger W, Kunzelmann KH, Hickel R: A new optical 3-D device for the detection of
wear. J Dent Res 1997;76:1799-1807.

Mitchell HL, Chadwick RG: Mathematical shape matching as a tool in tooth wear assessment —
Development and conduct. J Oral Rehabil 1998;15:921-928.

Jovanovski V, Tay WM, Zou L, Anderson IJ, Cox MG, Forbes AB, Allred H, Morganstein SI,
Lynch E: Objective assessment of three-dimensional structures in clinical dentistry using methods
of co-ordinate metrology. Nanobiology 1996;4:55-61.

Starcke EN Jr: A historical review of complete denture impression materials. J Am Dent Assoc
1975;91:1037-1041.

Doubleday B: Impression materials. Br J Orthod 1998;25:133-140.

Chee WW, Donovan TE: Polyvinyl siloxane impression materials: A review of properties and
techniques. J Prosthet Dent 1992;68:728-732.

Fano V, Gennari PU, Ortalli I: Dimensional stability of silicone-based impression materials. Dent
Mater 1992;8:105-109.

Clancy JM, Scandrett FR, Ettinger RL: Long-term dimensional stability of three current elastomers.
J Oral Rehabil 1983;10:325-333.

Williams PT, Jackson DG, Bergman W: An evaluation of the time-dependent dimensional stability
of eleven elastomeric impression materials. J Prosthet Dent 1984;52:120-125.

Tjan AH, Whang SB, Tjan AH, Sarkissian R: Clinically oriented evaluation of the accuracy of
commonly used impression materials. J Prosthet Dent 1986;56:4-8.

Jovanovski/Lynch 126



40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Corso M, Abanomy A, Di Canzio J, Zurakowski D, Morgano SM: The effect of temperature
changes on the dimensional stability of polyvinyl siloxane and polyether impression materials.
J Prosthet Dent 1998;79:626-631.

Dastane A, Vaidyanthan TK, Vaidyanthan J, Mehra R, Hesby R: Development and evaluation of
a new 3-D digitization and computer graphic system to study the anatomic tissue and restoration
surfaces. J Oral Rehabil 1996;23:25-34.

Zou L, Yang QP, Jovanovski V, Tay WM, Lynch E: Measurement of tooth morphology using a
laser probe fitted on a co-ordinate measuring machine; in De Chiffre L (ed): Proc 4th Int IMEKO
Symp on Laser Metrology for Precision Measurement and Inspection in Industry. Lyngby, Center for
Geometrical Metrology, Institute of Manufacturing Engineering, Technical University of Denmark,
1996, pp 11-20.

Zou L, Jovanovski V, Tay WM, Lynch E: Error distribution on a digitised datum sphere (abstract).
J Dent Res 1996;75:1165.

Zou L, Jovanovski V, Tay WM, Lynch E: The influence of three parameters on laser probe scanning
of irregular surfaces (abstract). J Dent Res 1995;74:895.

Faux ID, Pratt MJ: Computational Geometry for Design and Manufacture. Chichester, Ellis Hor-
wood, 1979.

Catley D, Whittle C, Thornton P: Applications of the general surface definition and manipulation
system GENSURF; in Martin RR (ed): The Mathematics of Surfaces II. Oxford, Clarendon Press,
1987, pp 171-202.

Sarkar B, Menq C-H: Smooth-surface approximation and reverse engineering. Computer Aided
Design 1991;23:623-628.

Weir DJ, Milroy MJ, Bradley C, Vickers GW: Reverse engineering physical models employing wrap-
around B-spline surfaces and quadrics. Proc Inst Mech Eng [B] 1996;210:147-157.

McLain DH: Drawing contours from arbitrary data points. Computer J 1976;17:318-324.
MacCarthy BL, Handscomb DC: The approximation of hydrographic survey data using tensor-
product B-spline surfaces; in Handscomb DC (ed): The Mathematics of Surfaces III. Oxford,
Clarendon Press, 1989, pp 373-389.

Ateshian GA: A B-spline least-squares surface-fitting method for articular surfaces or diarthroidal
joints. J Biomech Eng 1993;115:366-373.

Cox MG: Practical spline approximation; in Turner PR (ed): Lecture Notes in Mathematics 965:
Topics in Numerical Analysis. Berlin, Springer, 1982, pp 79-112.

Cox MG: Algorithms for Spline Curves and Surfaces. NPL Report DITC 166/90. Teddington,
National Physical Laboratory, 1990.

de Boor C: A Practical Guide to Splines. New York, Springer, 1978.

Cox MG: The numerical evaluation of B-splines. J Inst Math Appl 1972;10:134-149.

de Boor C: On calculating with B-splines. J Approx Theory 1972;6:50-62.

Sabin MA: Contouring — The state of the art; in Earnshaw RA (ed): Fundamental Algorithms for
Computer Graphics. NATO ASI Series, vol F17. Berlin, Springer, 1985, pp 411-482.

Anderson 1J, Cox MG, Mason JC: Tensor-product spline interpolation to data on or near a family
of lines. Numer Alg 1993;5:193-204.

Anderson 1J, Mason JC: Surface fitting by exploiting data distribution; in Mullineux G (ed):
Mathematics of Surfaces VI. Oxford, Clarendon Press, 1996, pp 137-152.

Anderson IJ: A piecewise approach to piecewise approximation. Numer Alg 1997;15:132-152.
Anderson 1J, Pink CK: Spline surface fitting of rank deficient problems: A natural solution; in
Goodman T, Martin R (eds): The Mathematics of Surfaces VII. Winchester, Information Geometers,
1997, pp 439-461.

Gouraud H: Continuous shading of curved surfaces. IEEE Trans Comp [C] 1971;20:623-628.
Heap BR, Pink MG: Three contouring algorithms. NPL Mathematical Report 81. Teddington,
National Physical Laboratory, 1969.

Schumaker LL: Fitting surfaces to scattered data; in Lorentz GG, Chui CK, Schumaker LL (eds):
Approximation Theory II. New York, Academic Press, 1976, pp 203-268.

DeLongR, Bramwell MC: Matching an initial surface to a worn surface subject to rotation and transla-
tion; in Martin RR (ed): The Mathematics of Surfaces II. Oxford, Clarendon Press, 1987, pp 137-149.

Dental Metrology 127



66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83
84

85

86

87

88

89

90

91

Mirsky L: An Introduction to Linear Algebra. Oxford, Clarendon Press, 1995.

Schreier O, Sperner E: Modern Algebra and Matrix Theory. New York, Chelsea Press, 1951.
Schwerdtfeger H: Introduction to Linear Algebra and the Theory of Matrices. Groningen, Noord-
hoff, 1950.

Hanson RJ, Norris MJ: Analysis of measurements based on the singular value decomposition.
SIAM J Sci Stat Comp 1981;2:363-373.

Arun KS, Huang TS, Blostein SD: Least-squares fitting of two 3-D point sets. IEEE Trans Pattern
Anal Machine Intell 1987;9:698-700.

Kanatani K: Analysis of 3-D rotation fitting. IEEE Trans Pattern Anal Machine Intell 1994;16:
543-549.

Horn BKP: Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am
1987;4:629-642.

Benjemaa R, Schmitt F: A solution for the registration of multiple 3D point sets using unit
quaternions; in Burkhardt H, Neumann B (eds): Computer Vision — ECCV '98. Berlin, Springer,
1998, vol 2, pp 241-254.

Golub GH, Van Loan CF: Matrix Computations, ed 2. London, Johns Hopkins University Press, 1989.
Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in C, ed 2. Cambridge,
Cambridge University Press, 1992.

Bartlett DW, Smith BGN: Measurment of tooth wear in patients with palatal erosion. Br Dent J
1997;182:179-184.

Arai K, Fujita M, Ishikawa H: Recording of casts in ICP with an optical 3D measuring system
(abstract). J Dent Res 1999;78:162.

Bloem TJ, McDowell GC, Lang BR, Powers JM: In vivo wear. Part II: Wear and abrasion of
composite restorative materials. J Prosthet Dent 1988;60:242-249.

Toennies KD, Udupa JK, Herman GT, Wornom IL, Buchman SR: Registration of 3D objects and
surfaces. IEEE Comput Graphics Appl 1990;10:52-62.

Bedford J, Zou L, Jovanovski V, Lynch E: Reproducibility of data collected by a co-ordinate
measuring machine (abstract). J Dent Res 1993;72:742.

Jovanovski V, Zou L, Tay WM, Lynch E, Cox MG: Superposition of co-ordinate data obtained
from a sequence of replicas (abstract). J Dent Res 1995;74:895.

Jovanovski V, Zou L, Tay WM, Lynch E, Cox MG: Assessment of three-dimensional structures in
clinical dentistry; in Ciarlini P, Cox MG, Pavese F, Richter D (eds): Advanced Mathematical Tools
in Metrology III. Singapore, World Scientific, 1997, pp 263-265.

Gill PE, Murray W, Wright MH: Practical Optimization. London, Academic Press, 1981.
Anderson 1J, Turner DA, Mason JC: An efficient algorithm for solving the surface foot point
problem; in Cripps R (ed): The Mathematics of Surfaces VIII. Winchester, Information Geometers,
1998, pp 89-103.

Grimson WEL, Ettinger GJ, White SJ, Lozano-Pérez T, Wells WM, Kikinis R: An automatic
registration method for frameless stereotaxy, image guided surgery and enhanced reality visualiza-
tion. IEEE Trans Med Imaging 1996;15:129-140.

Ellis RE, Fleet DJ, Bryant JT, Rudan J, Fenton P: A method for evaluating CT-based surgical
registration; in Troccaz J, Grimson E, Mosges R (eds): Proc CVRMED-MRCAS '97. Berlin, Springer,
1997, pp 141-150.

Pennec X, Thirion J-P: Validation of 3-D Registration Methods based on Points and Frames.
INRIA Report 2470. Sophia-Antipolis, INRIA, 1995.

Simon DA, Kanade T: Geometric constraint analysis and synthesis: Methods for improving shape-
based registration accuracy; in Troccaz J, Grimson E, Mosges R (eds): Proc CVRMED-MRCAS
'97. Berlin, Springer, 1997,pp 181-190.

Stoddart AJ, Lemke S, Hilton A, Renn T: Estimating pose uncertainty for surface registration.
Image Vision Comput 1998;16:111-120.

van den Elsen P, Pol E-JD, Viergever MA: Medical image matching — A review with classification.
IEEE Engineering Med Biol Mag 1993;12:26-39.

Lavalée S: Registration for computer-integrated surgery: Methodology, state of the art; in Taylor
RH (ed): Computer-Integrated Surgery. Cambridge, MIT Press, 1995, pp 77-97.

Jovanovski/Lynch 128



92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

Besl PJ, McKay ND: A method for registration of 3-D shapes. IEEE Trans Pattern Anal Machine
Intell 1992;14:239-256.

Chen Y, Medioni G: Object modeling by registration of multiple range images. Image Vision
Computing 1992;10:145-155.

Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen C-T: Accurate three-dimensional
registration of CT, PET and/or MR images of the brain. J] Comput Assist Tomogr 1989;13:20-26.
Pelizzari CA, Tan KK, Levin DN, Chen GTY, Balter J: Interactive 3D patient-image registration;
in Colchester ACF, Hawkes DJ (eds): Information Processing in Medical Imaging, 12th International
Conference. Berlin, Springer, 1991, pp 132-141.

Walsh GR: Methods of Optimisation. London, Wiley, 1975.

DeLong R, Douglas WH: An artificial oral environment for testing dental materials. IEEE Trans
Biomed Eng 1991;38:339-345.

DeLong R, Pintado MR, Heinzen M, Ko CC, Douglas WH: A comparison of contact and optical
methods for measuring abfraction wear (abstract). J] Dent Res 1999;78:161.

DeLong R, Pintado MR, Douglas WH, Taylor J, Breuer MM: Quantification of clinical changes
in the gingival crest height using computer graphics (abstract). J Dent Res 1993;72:330.

Pintado MR, Conry JP, Douglas WH: Measurement of sealant volume in vivo using image-pro-
cessing technology. Quintessence Int 1988;19:613-617.

Yeganeh S, Zou L, Jovanovski V, Heath MR, Lynch E: Objective quantification of plaque thickness
in vivo (abstract). J Dent Res 1996;75:84.

Yeganeh S, Lynch E, Jovanovski V, Zou L: Quantification of root surface plaque using a new
3-D laser scanning method. J Clin Periodontol 1999;26:692-697.

Waterfield PC, Shearer B, Lynch E, Jovanovski V, Morris-Clapp C: Metrology: A novel method
to measure plaque removal by dentifrices (abstract). J Dent Res 1999;78:498.

Yeganeh S, Lynch E, Shearer B, Heath MR, Jovanovski V, Zou L: Clinical and metrology assessment
of experimentally induced gingivitis (abstract). J Dent Res 1999;78:351.

Snider A, Buchanan W, Yeh C, Donovan Brand R, Mahony L, Jovanovski V, Zou L, Lynch E:
Canine gingivitis assessment by computer aided 3 dimensional ccordinate metrology (abstract).
J Dent Res 1999;78:351.

Savill G, Grigor J, Huntingdon E, Jackson R, Lynch E: Toothbrush design: Adapting for the future.
Int Dent J 1998;48:519-525.

Conry JP, Pintado MR, Douglas WH: Measurement of fissure sealant surface area by computer.
Quintessence Int 1990;21:27-33.

Baysan A, Lynch E, Jovanovski V, Brailsford S, Zou L, Beighton D: Three month assessment of
an antimicrobial root sealant (abstract). J Dent Res 1999;78:444.

Seymour K, Zou L, Samarawickrama DYD, Lynch E: Assessment of shoulder dimensions and
angles of porcelain bonded to metal crown preparations. J Prosthet Dent 1996;75:406-411.
Seymour KG: Variations in the Labial ‘Shoulder’” Geometry of Teeth Prepared to Receive Metal
Ceramic Crowns; PhD thesis, University of London, 1998.

Hewlett ER, Orro ME, Clark GT: Accuracy testing of three-dimensional digitizing systems. Dent
Mater 1992;8:49-53.

Dr. Vladimir Jovanovski, Department of Adult Oral Health,

St. Bartholomew’s and the Royal London School of Medicine and Dentistry,

Turner Street, London E1 2AD (UK)

Tel. +44 20 7377 7000/ext. 2118, Fax +44 20 7377 7375, E-Mail V.Jovanovski@mds.qmw.ac.uk

Dental Metrology 129



