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Preface

Visual information systems are information systems for visual computing. Visual
computing is computing on visual objects. Some visual objects such as images
are inherently visual in the sense that their primary representation is the visual
representation. Some visual objects such as data structures are derivatively visual
in the sense that their primary representation is not the visual representation,
but can be transformed into a visual representation. Images and data structures
are the two extremes. Other visual objects such as maps may fall somewhere in
between the two. Visual computing often involves the transformation from one
type of visual objects into another type of visual objects, or into the same type
of visual objects, to accomplish certain objectives such as information reduction,
object recognition, and so on.

In visual information systems design it is also important to ask the follow-
ing question: who performs the visual computing? The answer to this question
determines the approach to visual computing. For instance it is possible that
primarily the computer performs the visual computing and the human merely
observes the results. It is also possible that primarily the human performs the
visual computing and the computer plays a supporting role. Often the human
and the computer are both involved as equal partners in visual computing and
there are visual interactions. Formal or informal visual languages are usually
needed to facilitate such visual interactions.

In this conference various research issues in visual information systems design
and visual computing are explored. The papers are collectively published in this
volume. We would like to express our special thanks to the sponsorship of the
National Science Council, ROC, the Lee and MTI Center of National Chiao
Tung University, ROC, and Knowledge Systems Institute, USA.

January 2002 Shi-Kuo Chang, Zen Chen, and Suh-Yin Lee
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Feature Extraction and a Database Strategy
for Video Fingerprinting

Job Oostveen, Ton Kalker, and Jaap Haitsma

Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Job.Oostveen@philips.com, Ton.Kalker@ieee.org, Jaap.Haitsma@philips.com

Abstract. This paper presents the concept of video fingerprinting as a
tool for video identification. As such, video fingerprinting is an important
tool for persistent identification as proposed in MPEG-21. Applications
range from video monitoring on broadcast channels to filtering on peer-
to-peer networks to meta-data restoration in large digital libraries. We
present considerations and a technique for (i) extracting essential per-
ceptual features from moving image sequences and (ii) for identifying
any sufficiently long unknown video segment by efficiently matching the
fingerprint of the short segment with a large database of pre-computed
fingerprints.

1 Introduction

This paper presents a method for the identification of video. The objective is to
identify video objects not by comparing perceptual similarity of the video objects
themselves (which might be computationally expensive), but by comparing short
digests, also called fingerprints, of the video content. These digests mimic the
characteristics of regular human fingerprints. Firstly, it is (in general) impossible
to derive from the fingerprint other relevant personal characteristics. Secondly,
comparing fingerprints is sufficient to decide whether two persons are the same
or not. Thirdly, fingerprint comparison is a statistical process, not a test for
mathematical equality: it is only required that fingerprints are sufficiently similar
to decide whether or not they belong to the same person (proximity matching).

1.1 Classification

Fingerprint methods can be categorized in two main classes, viz. the class of
method based on semantical features and the class of methods based on non-
semantical features. The former class builds fingerprints from high-level features,
such as commonly used for retrieval. Typical examples include scene boundaries
and color-histograms. The latter class builds fingerprints from more general per-
ceptual invariants, that do not necessarily have a semantical interpretation. A
typical example in this class is differential block luminance (see also Section 2).
For both classes holds that (small) fingerprints can be used to establish percep-
tual equality of (large) video objects. It should be noted that a feature extrac-
tion method for fingerprinting must be quite different from the methods used for

S.-K. Chang, Z. Chen, and S.-Y. Lee (Eds.): VISUAL 2002, LNCS 2314, pp. 117–128, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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118 Job Oostveen, Ton Kalker, and Jaap Haitsma

video retrieval. In retrieval, the features must facilitate searching of video clips
that somehow look similar to the query, of that contain similar objects as the
query. In fingerprinting the requirement is to identify clips that are perceptually
the same, except for quality differences or the effects of other video processing.
Therefore, the features for fingerprinting need to be far more discriminatory, but
they do not necessarily need to be semantical.

Consider the example of identification of content in a multimedia database.
Suppose one is viewing a scene from a movie and would like to know from which
movie the clip originates. One way of finding out is by comparing the scene to all
fragments of the same size of all movies in the database. Obviously, this is totally
infeasible in case of a large database: even a short video scene is represented by
a large amount of bytes and potentially these have to be compared to the whole
database. Thus, for this to work, one needs to store a large amount of easily
accessible data and all these data have to be compared with the video scene to
be identified. Therefore, there is both a storage problem (the database) as well
as a computational problem (matching large amounts of data).

Both problems can be alleviated by reducing the number of bits needed to
represent the video scenes: fewer bits need to be stored and fewer bits need to
be used in the comparison. One possible way to achieve this is by using video
compression.

However, because it is not needed to reconstruct the video from the repre-
sentation, at least theoretically it is possible to use less bits for identification
than for encoding. Moreover, perceptually comparing compressed video streams
is a computationally expensive operation.

A more practical option is to use a video compression scheme that is geared
towards identification, more specifically to use a fingerprinting scheme. Video
identification can then be achieved by storing the fingerprints of all relevant
fragments in a database. Upon reception of a unknown fragment, its fingerprint is
computed and compared to those in the database. This search (based on inexact
pattern matching) is still a burdensome task, but it is feasible on current-day
PCs.

1.2 Relation to Cryptography

We will now first discuss the concept of cryptographic hash functions and show
how we approach the concept of fingerprints as an adaptation of cryptographic
hash functions. Hash functions are a well-known concept in cryptography [8]. A
cryptographic hash, also called message digest or digital signature, is in essence
a short summary of a long message. Hash functions take a message of arbitrary
size as input and produce a small bit string, usually of fixed size: the hash or hash
value. Hash functions are widely used as a practical means to verify, with high
probability, the integrity of (bitwise) large objects. The typical requirements for
a hash function are twofold:

1. For each message M , the hash value H = h(M) is easily computable;
2. The probability that two messages lead to the same hash is small.
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Feature Extraction and a Database Strategy for Video Fingerprinting 119

As a meaningful hash function maps large messages to small hash values, such
a function is necessarily many-to-one. Therefore, collisions do occur. However,
the probability of hitting upon two messages with the same hash value should
be minimal. This usually means that the hash values for all allowed messages
have a uniform distribution. For an n-bit value h the probability of a collision is
then equal to 2−n.

Cryptographic hash functions are usually required to be one-way, i.e., it
should be difficult for a given hash value H to find a message which has H
as its hash value. As a result such functions are bit-sensitive: flipping a sin-
gle bit in the message changes the hash completely. The topic of this paper,
fingerprinting for video identification, is about functions which show a strong
analogy to cryptographic hash functions, but that are explicitly not bit sensitive
and are applicable to audio-visual data. Whereas cryptographic hashes are an
efficient tool to establish mathematical equality of large objects, audio-visual
fingerprint functions serve as a tool to establish perceptual similarity of (usu-
ally large) audio-visual objects. In other words, fingerprints should capture the
perceptually essential parts of audio-visual content. In direct analogy with cryp-
tographic hash functions, one would expect a fingerprint function to be defined
as a function that maps perceptually similar objects to the same bit string value.
However, it is well-known that perceptual similarity is not a transitive relation-
ship. Therefore, a more convenient and practical definition reads as follows: a
fingerprint function is function that (i) maps (usually bitwise large) audiovisual
object to (usually bitwise small) bit strings (fingerprints) such that perceptual
small changes lead to small differences in the fingerprint and (ii) such that per-
ceptually very different objects lead with very high probability to very different
fingerprints.

1.3 Fingerprinting Approaches

The scientific community seems to be favouring the terminology ‘fingerprint’,
and for that reason this is the terminology that will be used in this paper.
However, it is doubtful whether or not this is the best choice. For instance, the
term fingerprinting is also used in the watermarking community, where it denotes
the active embedding of tracing information.

Although the literature on fingerprinting is still limited, in particular for
video, some progress is already reported. Among others algorithms for still im-
age fingerprinting are published by Abdel-Mottaleb et.al. [1], by J. Fridrich [5],
by R. Venkatesan et al. [12,11] and by Schneider and Chang [10]. A number of
algorithms for audio fingerprinting have been published. See [6] and the refer-
ences therein. A number of papers present algorithms for video fingerprinting.
Cheung and Zakhor ( [4]) are concerned with estimating the number of copies
(possibly at different quality levels) of video clips on the web. Hampapur and
Bolle [7] present a indexing system based on feature extraction from key frames.

Cryptographic hashes operate on the basis of a complete message. As such,
it is impossible to check the integrity or obtain the identity of a part of the
message. For video fingerprint this is an undesirable property, as it means that
it is impossible to identify short clips out of a longer clips. Also, for integrity
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120 Job Oostveen, Ton Kalker, and Jaap Haitsma

checking, one would like to be able to localize distortions. For this reason, it is
not always appropriate to create a global fingerprint for the whole of an audio-
visual object. Instead, we propose to use a fingerprint-stream of locally computed
fingerprint bits (also referred to as sub-fingerprints): per time unit, a number
of bits are extracted from the content. In this way, it is possible to identify
also smaller sections of the original. In a typical identification scenario, the full
fingerprint stream is stored in the database. Upon reception of a video, the
fingerprint values are extracted from a short section, say with a duration of 1
second. The result, which we call a fingerprint block, is then matched to all blocks
of the same size in the database. If the fingerprint block matches to a part of the
fingerprint stream of some material, it is identified as that specific part of the
corresponding video. If there is no sufficiently close match, the process repeats
by extracting a next fingerprint block and attempting to match it.

The description above reveals two important complexity aspects of a full
fledged fingerprinting system. The first complexity aspect concerns fingerprint
extraction, the second concerns the matching process. In a typical application the
fingerprint extraction client has only limited resources. Moreover, the bandwidth
to the fingerprint matching engine is severely restricted. It follows that in many
applications it is required that fingerprint extraction is low complexity and that
the size of the fingerprint is either small or at least sufficiently compressible. This
observation already in many cases rules out the use of semantic fingerprints, as
these tend to be computationally intensive. The fingerprint matching server is
in its most basic form a gigantic sliding correlator: for an optimal decision a
target fingerprint block needs to be matched against all fingerprinting blocks of
similar length in the database. Even for simple matching functions (such as bit
error rate), this sliding correlation becomes infeasible if the fingerprint database
is sufficiently large. For a practical fingerprint matching engine it is essential
that the proximity matching problem is dealt with in an appropriate manner,
either by including ingredients that allow hierarchical searching [6], by careful
preparation of the fingerprint database [3] or both. Both types of complexities
are already well recognized in the field of audio fingerprint, see for example the
recent RIAA/IFPI call [9].

1.4 Overview
In this paper we introduce a algorithm for robust video fingerprinting that has
very modest feature extraction complexity, a well-designed matching engine and
a good performance with respect to robustness. We will present some general
considerations in the design of such a video fingerprinting algorithm with a focus
on building a video identification tool. In Section 2 we introduce the algorithm
and discuss a number of the issues in designing such an algorithm. Section 3 con-
tains the design of a suitable database structure. In Section 4 we will summarize
our results and indicate directions for future research.

2 Feature Extraction

In this section, we present a feature extraction algorithm for robust video finger-
printing and we discuss some of the choices and considerations in the design of
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Fig. 1. block diagram of the differential block luminance algorithm

such an algorithm. The first question to be asked is in which domain to extract
the features. In audio, very clearly, the frequency domain optimally represents
the perceptual characteristics. In video, however, it is less clear which domain
to use. For complexity reasons it is preferable to avoid complex operations, like
DCT or DFT transformations. Therefore, we choose to compute features in
the spatio-temporal domain. Moreover, to allow easy feature extraction from
most compressed video streams as well, we choose features which can be easily
computed from block-based DCT coefficients. Based on these considerations, the
proposed algorithm is based on a simple statistic, the mean luminance, computed
over relatively large regions. This is also approach taken by Abdel-Mottaleb [1].
We will choose our regions in a fairly simple way: the example algorithm in this
paper uses a fixed number of blocks per frame. In this way, the algorithm is
automatically resistant to changes in resolution.

To ease the discussion, we introduce some terminology. The bits extracted
from a frame will be refereed to as sub-fingerprints. A fingerprint block then
denotes a fixed number of sub-fingerprints from consecutive frames.

Our goal is to be able to identify short video clips and moreover to localize
the clip inside the movie where it originates from. In order to do this, we need to
extract features which contain sufficient high frequency content in the temporal
direction. If the features are more or less constant over a relatively large number
of frames, then it is impossible to localize exactly the clip inside the movie.
For this reason, we take differences of corresponding features extracted from
subsequent frames. Automatically, this makes the system robust to (slow) global
changes in luminance. To arrive at our desired simple binary features, we only
retain the sign of the computed differences. This immediately implies robustness
to luminance offsets and to contrast modifications. To decrease the complexity
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of measuring the distance between two fingerprints (the matching process), a
binary fingerprint also offers considerable advantages. That is, we can compare
fingerprints on a bit-by-bit basis, using the Hamming distance as a distance
measure. Summarizing, we discard all magnitude information from the extracted
filter output values, and only retain the sign.

The introduction of differentiation in the temporal direction leads to a prob-
lem in case of still scenes. If a video scene is effectively a prolonged still image,
the temporal differentiation is completely determined by noise, and therefore
the extracted bits are very unreliable. Conceptually, what one would like is that
fingerprints do not change while the video is unchanged. One way to achieve
this is by using a conditional fingerprint extraction procedure. This means that
a frame is only considered for fingerprint computation if it differs sufficiently
from the last frame from which a fingerprint was extracted [2]. This approach
leads, however, to a far more difficult matching procedure: the matching needs
to be resistant to the fact that the fingerprint extracted from a processed version
of a clip may have a different number of sub-fingerprints than the original. An-
other possibility is to use a different temporal filter which does not completely
suppress mean luminance (DC). This can be achieved in a very simple manner
by replacing the earlier proposed FIR filter kernel [ −1 1 ] by [ −α 1 ], where α
is a value slightly smaller than 1. Using this filter the extracted fingerprint will
be constant in still scenes (and even still regions of a scene), whereas in regions
with motion the fingerprint is determined by the difference between luminance
values in consecutive frames.

In addition to the differentiation in the time domain, we can also do a spatial
differentiation (or more generally, a high-pass filter) on the features extracted
from one frame. In this way, also the correlation between bits extracted from
the same frame is decreased significantly. Secondly, application of the spatial
filter avoids a bias in the overall extracted bits, which would occur if the new
temporal filter were applied directly to the extracted mean luminance values1.
For our experiments, the results of which will be presented below, we have used
the following algorithm.
1. Each frame is divided in a grid of R rows and C columns, resulting in R×C

blocks. For each of these blocks, the mean of the luminance values of the
pixels is computed. The mean luminance of block (r, c) in frame p is denoted
F (r, c, p) for r = 1, . . . , R and c = 1, . . . , C.

2. We visualise the computed mean luminance values from the previous step
as frames, consisting of R × C “pixels”. On this sequence of low resolution
gray-scale images, we apply a spatial filter with kernel [ −1 1 ] (i.e. taking
differences between neighbouring blocks in the same row), and a temporal
filter with kernel [ −α 1 ], as explained, above.

3. The sign of the resulting value constitutes the fingerprint bit B(r, c, p) for
block (r, c) in frame p. Note that due to the spatial filtering operation in the
previous step, the value of c ranges from 1 to c − 1 (but still, r = 1, . . . , R).
Thus, per frame we derive C × (R − 1) fingerprint bits.

1 Without spatial differentiation the fingerprint values before quantization would have
a larger probability of being positive than negative
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Summarizing, and more precisely, we have for r = 1, . . . , R, c = 1, . . . , C − 1:

B(r, c, p) =
{

1 if Q(r, c, p) ≥ 0,
0 if Q(r, c, p) < 0,

where

Q(r, c, p) = (F (r, c + 1, p) − F (r, c, p)) − α (F (r, c+, p − 1) − F (r, c, p − 1)) .

We call this algorithm “differential block luminance”. A block diagram, de-
scribing this is depicted in Figure 1. These features have a number of important
advantages:

– Only a limited number of bits is needed to uniquely identify short video clips
with a low false positive probability

– the feature extraction algorithm has a very low complexity and it may be
adapted to operate directly on the compressed domain, without a need for
complete decoding

– The robustness of these features with respect to geometry-preserving oper-
ations is very good

A disadvantage may be that for certain applications the robustness with respect
to geometric operations (like zoom & crop) may not be sufficient. Experimental
robustness results are presented in section 2.1, below.

For our experiments we used α = 0.95 and R = 4, C = 9. This leads to a
fingerprint size of 32 bits per frame, and a block size 120 × 80 pixels for NTSC
video material. Matching is done on the basis of fingerprint bits extracted from
30 consecutive frames, i.e., 30 × 32 = 960 bits.

2.1 Experimental Results

Extensive experiments with the algorithm described above are planned for the
near future. In this article we report on the results of some initial tests. We have
used six 10-second clips, taken from a number of movies and television broad-
casts (with a resolution of 480 lines and 720 pixels per line). From these clips,
we extracted the fingerprints. These are used as “the database”. Subsequently,
we processed the clips, and investigated how this influences the extracted finger-
print. The test included the following processing:

1. MPEG-2 encoding at 4 Mbit/second;
2. median filtering using 3 × 3 neighbourhoods;
3. luminance-histogram equalisation;
4. shifting the images vertically over k lines (k = 1, 2, 3, 4, 8, 12, 16, 20, 24, 32);
5. scaling the images horizontally, with a scaling factor between 80% and 120%,

with steps of 2%.
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Fig. 2. Robustness w.r.t. horizontal scaling (left graph) and vertical shifts (right graph)

The results for scaling and shifting are in Figure 2. The other results are
reported below:

MPEG-2 encoding: 11.8%
median filtering: 2.7%
histogram equalisation: 2.9%

The results indicate that the method is very robust against all processing which
is done on a local basis, like for instance MPEG compression or median filtering.
In general the alterations created by these processes average out within the
blocks. Processing which changes the video more in a global fashion is more
difficult to withstand. For instance, global geometric operations like scaling and
shifting lead to far higher bit error rates. This behaviour stems from the resulting
misalignment of the blocks. A higher robustness could be obtained by using larger
blocks, but this would reduce the discriminative power of the fingerprint.

3 Database Strategy

Matching the extracted fingerprints to the fingerprints in a large database is a
non-trivial task since it is well known that proximity matching does not scale
nicely to very large databases (recall that the extracted fingerprint values may
have many bit errors). We will illustrate this with some numbers, based on using
the proposed fingerprinting scheme (as described in Section 2), in a broadcast
monitoring scenario. Consider a database containing news clips with a total du-
ration of 4 weeks (i.e., 4×7×24 = 672 hours of video material). This corresponds
to almost 300 megabytes of fingerprints. If we now extract a fingerprint block
(e.g. corresponding to 1 second of video, which results in 30 sub-fingerprints)
from an unknown news broadcast, we would like to determine which position in
the 672 hours of stored news clips it matches best. In other words we want to
find the position in these 672 hours where the bit error rate is minimal. This
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Fig. 3. database layout

can be done by brute force matching, but this will take around 72 million com-
parisons. Moreover the number of comparisons increases linearly with the size
of the database.

We propose to use a more efficient strategy, which is depicted in Figure 3.
Instead of matching the complete fingerprint block, we first look at only a single
sub-fingerprint at a time and assume that occasionally this 32-bit bit-string
contains no errors. We start by creating a lookup table (LUT) for all possible
32-bit words, and we let the entries in the table point to the video clip and
the position(s) within that clip where this 32-bit word occurs as sub-fingerprint.
Since this word can occur at multiple positions in multiple clips the pointers are
stored in a linked list. In this way one 32-bit word is associated with multiple
pointers to clips and positions. The approach that we take bears a lot of similarity
to inverted file techniques, as used commonly in text retrieval applications. Our
lookup table is basically an index describing for each sub-fingerprint (word) at
which location in which clip it occurs. The main difference with text retrieval
is that due to processing of the video we need to adapt our search strategy to
the fact that sub-fingerprints will frequently contain (possibly many) erroneous
bits.

By inspecting the lookup table for each of the 30 extracted sub-fingerprints
a list of candidate clips and positions is generated. With the assumption that
occasionally a single sub-fingerprint is free of bit errors, it is easy to determine
whether or not all the 30 sub-fingerprints in the fingerprint block match one of
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the candidate clips and positions. This is done by calculating the bit error rate of
the extracted fingerprint block with the corresponding fingerprint blocks of the
candidate clips and positions. The candidate clip and position with the lowest
error rate is selected as the best match, provided that this error rate is below an
appropriate threshold. Otherwise the database reports that the search could not
find a valid best match. Note that in practice, once a clip is identified, it is only
necessary to check whether or not the fingerprints of the remainder of the clip
belong to the best match already found. As soon as the fingerprints no longer
match, a full structured search is again initiated.

Let us give an example of the described search method by taking a look at
Figure 3. The last extracted fingerprint value is 0x00000001. The LUT in the
database points only to a certain position in clip 1. Let’s say that this position is
position p. We now calculate the bit error rate between the extracted fingerprint
block and the block of song 1 from position p-29 until position p. If the two blocks
match sufficiently closely, then it is very likely that the extracted fingerprint
originates from clip 1. However if the two blocks are very different, then either
the clip is not in the database or the extracted sub-fingerprint contains an error.
Let’s assume that the latter occurred. We then try the one but last extracted
sub-fingerprint (0x00000000). This one has two possible candidate positions,
one in clip 2 and one in clip 1. Assuming that the bit error rate between the
extracted fingerprint block and the corresponding database fingerprint block of
clip 2 yields a bit error rate below the threshold, we identify the video clip as
originating from clip 2. If not, we repeat the same procedure for the remaining
28 sub-fingerprints.

We need to verify that our assumption that every fingerprint block contains
an error-free sub-fingerprint is actually a reasonable assumption. Experiments
indicate that this is actually the case for all reasonable types of processing. By
the above method, we only compare the fingerprint blocks to those blocks in
the database which correspond exactly in at least one of their sub-fingerprints.
This makes the search much faster compared to exhaustive search or any pivot-
based strategy [3], and this makes it possible to efficiently search in very large
databases. This increased search speed comes at the cost of possibly not finding
a match, even if there is a matching fingerprint block in the database. More
precisely, this is the case if all of the sub-fingerprints have at least one erroneous
bit, but at the same time the overall bit error rate is below the threshold. We
can decrease the probability of missed identifications by using bit reliability in-
formation. The fingerprint bits are computed by taking the sign of a real-valued
number. The absolute value of this number can be taken as a reliability measure
of the correctness of the bit: the sign of a value close to zero is assumed to be less
robust than the sign of a very large number. In this way, we can declare q of the
bits in the fingerprint unreliable. To decrease the probability of a missed recogni-
tion, we toggle those q bits, thus creating 2q candidate sub-fingerprints. We then
do an efficient matching, as described above, with all of these sub-fingerprints.
If one of these leads to a match, then the database fingerprint block is compared
with the originally extracted fingerprint. If the resulting bit error rate of this
final comparison is again below the threshold then we have a successful identifi-
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cation. Note that in this way the reliability information is used to generate more
candidates in the comparison procedure, but that it has no influence on the final
bit error rate.

In [6] we have described a method for audio fingerprinting. The database
strategy described there is the same as the one in this paper, except for some
of the parameter values (in case of audio, matching is done based on fingerprint
blocks which consist of 256 sub-fingerprints, corresponding to 3 seconds of audio).
With this audio database we have carried out extensive experiments, that show
the technical and economical feasibility to scale this approach to very large
databases, containing for instance a few million songs.

An important figure of merit for a fingerprinting method is the false positive
probability: The probability that two randomly selected video clips are declared
similar by the method. Under the assumption that the extracted fingerprint bits
are independent random variables, with equal probability of being 0 or 1, it
is possible to compute a general formula for the false positive probability: Let
a fingerprint consist of R sub-fingerprints and let each sub-fingerprint consist
of C bits. Then for two randomly selected fingerprint blocks, the number of
bits in which the two blocks correspond is binomially (n, p) distributed with
parameters n = RC and p = 1

2 . As RC is large, we can approximate this
distribution by a normal distribution with mean μ = np = RC/2 and variance
σ2 = np(1 − p) = RC/4. Given a fingerprint block B1 the probability that less
than a fraction α of the bits of a randomly selected second fingerprint block B2

is different from the corresponding bits of B1 equals

Pf (α) =
1√
2π

∫ ∞

(1−2α)
√

n

e−
x2
2 dx =

1
2

erfc
(

1 − 2α√
2

√
n

)
.

Based on this formula, we can set our threshold for detection. In our experiments
we used n = 960. Setting the threshold α = 0.3 (i.e., declaring two clips similar
if their fingerprint blocks are different in at most 30% of the bit positions), the
false positive probability is computed to be in the order of 10−35. In practice
the actual false positive probability will be significantly higher due to correla-
tion between the bits in a fingerprint block. Currently, we are in the process of
studying experimentally the correlation structure, and adapting our theoretical
false positive analysis accordingly.

4 Conclusions

In this paper we have presented fingerprinting technology for video identifica-
tion. The methodology is based on the functional similarity between fingerprints
and cryptographic hashes. We have introduced a feature extraction algorithm,
the design of which was driven by minimal extraction complexity. The result-
ing algorithm is referred to as differential block luminance. Secondly we have
outlined a structure for very efficiently searching in a large fingerprint database.

The combination of these feature extraction and database algorithms re-
sults in a robust and very efficient fingerprinting system. Future research will
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be mainly focusing on extracting even more robust features, still under the
constraint of limited complexity of the extractor and manageable fingerprint
database complexity.
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