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ABSTRACT 

The proliferation of digital images creates problems for 
managing large image databases, indexing individual im­
ages, and protecting intellectual property. This paper in­
troduces a novel image indexing technique that may be 
called an image hash Junction. The algorithm uses ran­
domized signal processing strategies for a non-reversible 
compression of images into random binary stn·ngs, and is 
shown to be robust against image changes due to compres­
sion, geometric distortions, and other attacks. 

This algorithm brings to images a direct analog a/Mes­
sage Authentication Codes (MACs) from cryptography, in ' 
which a main goal is to make hash values on a set of dis­
tinct inputs pairwise independent. This minimizes the prob­
ability that two hash values collide, even when inputs are 
generated by an adversary. 

1. INTRODUCTION 

Due to the popularity of digital technology, more and more 
digital images are being created and stored every day. This 
introduces a problem for managing image databases. One 
cannot determine if an image already exists in a database 
without exhaustively searching through all the entries. Fur­
ther complication arises from the fact that two images ap­
pearing identical to the human eye may have distinct dig­
ital representations, making it difficult to compare a pair 
of images: e.g., an image and its watermarked version, a 
watermarked image and a copy attacked by software to re0 

move watermarks, an image and its enhanced version using 
commercial software, an image stored using distinct trans­
forms, and an image and its compressed version. Given a 
suitable algorithm to generate image identifiers, or an im­
age hash function, one may use standard algorithms that 
search and sort n binary strings in time proportional to 
log n rather than to n [ 4]. 

Other applications ofimage hashing lie in the area of 
image authentication and watermarking [3, 8, 5, l]. Given 
a suitable keyed image hash function h(K, I) that authen­
ticates an image J using a secret key K, one can pro­
ceed as in standard cryptographic methods [6] by append­
ing a tag of the form Encrypt(h(K, I)). In watermark­
ing, hash functions help to secure against some known at­
tacks that use many images watermarked with the same 
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random secret key: for an image I, use the watermark­
ing key K 1 derived from a master key K by computing 
K1 = M D5(M K, hash(K, I)). 

Standard hash functions such as MOS and SHA-1 can­
not be used on images, since their output would be dramat­
ically changed even if one bit of input changed [6, 8, l]. 
However, digital images commonly undergo various ma­
nipulations; such as compression, enhancement, scaling, 
and cropping,just to name a few. Instead, the hash function 
should take into account the changes in the visual domain 
and produce hash values based on an image's visual ap­
pearance. In other words, the hash values obtained by ap­
plying the hash function to visually similar images should 
remain the same. For visually distinct images, the hash 
function should produce different hash values. 

Here we introduce a novel algorithm that utilizes a wave­
let representation of images and new randomized process­
ing strategies for hashing. Constructions based on error­
correcting codes serve to reduce the length of the hash 
value while keeping collision probability low. The statis­
tical properties of the hash values on distinct images are 
similar to the properties used in cryptography to minimize 
collision probabilities [6]. An extension of [9, 10], this 
algorithm was extensively tested and found to be robust 
against common image processing and malicious attacks. 

2. IMAGE HASHING ALGORIIBM 

A significant principle behind our design was to allow for 
the fact that image pixels are strongly correlated and may 
in fact be modified by an adversary. The hash function 
takes two inputs, an image I and a secret key K, to pro­
duce a hash value h = H(I, K). The key K functions as a 
seed to the pseudorandom number generator used at vari­
ous stages of the hashing algorithm. Given the same image, 
if a different key is used, the resulting hash will be statis­
tically independent and thus completely different. The key 
is kept secret, and the hash value of a given image cannot 
be computed or verified by an unauthorized party. 

We now outline the main steps of the algorithm, many of 
which are easily generalized. Our algorithm will use coin 
flips in an essential way, and may use a cryptographically 
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strong p.seudorandom generat9r G( s) with a secret random 
seeds. 

First, a wavelet decomposition of the image is com­
puted, and each subband is randomly tiled into small rect­
angles. Each rectangle's statistics (either averages or vari­
ances, depending on the subband) are calculated and quan­
tized using a randomized rounding(i.e., probabilistic quan­
tization) .method that is crucial to ensure the the resulting 
hash values as binary strings are random;e.These quantized 
statistics can be thought of as elementary image features, 
many of which are relatively robust against attacks. The 
quantized statistics are then input to the decoding stage of 
a suitably chosen error-correcting code to generate the final 
hash value. This step helps ensure that hash value remains 
the same if the decoder input remains within a suitlbly de­
fined decoding region. 

More specifically, the steps of the algorithm are as fol­
lows: 

Step 1 :Random tiling transform and statistics calcula­
tion: A random tiling of each subband of the image is gen­
erated as illustrated in Fig. 1. This can be thought of as 
a randomized analog of methods for computing integrals 
through approximation. The number of samples is large 
enough to ensure that there is enough information about the 
original image while purposely. introducing irreversibility 
and some unpredictability. Averages of coefficients in the 
rectangles are calculated in the coarse subband, and vari­
ances are calculated in the other subbands. This results in 
a length~l image-statistics vector m = a(I, K), where I 
is the image, K is the key that determines the tiling, and a 
is the feature (statistics) mapping operation. 

Fig. I. Random tiling of Lena's coarse subband (in a three­
level wavelet decomposition using Haar wavelet). 

Step 2: Randomized rounding: This technique is used 
in theoretical computer science in design of algorithms and 
analysis of their behaviour on inputs that are chosen by an 
adversa,y (7]. We are not aware of any other use of this 
technique where it is necessary for both theoretical and 
practical reasons. The statistics vector m calculated from 
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Step 1. is quantized using a randomized quantizer Q. This 
gives the rounded statistic increased robustness against at­
tacks. We recall that to minimize the probability that any 
two distinct inputs collide, each output bit of a hash func­
tion must be random, and hash values must be pairwise in­
dependent; we treat inputs as produced by unknown sour­
ces, and randomized rounding is the crucial source of ran­
domness (or entropy) in the hash function's output. The 
function Q uses the pseudorandom seed K from Step 1 
to generate the probabilistic distribution used for quantiza­
tion. Step 2 produces a length-l vector 

x = Q(m, K) E {0, 1, · · ·, 7}1 

whose entries are 3-bit data. 

Step 3: The quantized statistics vector xis decoded by a 
first-order Reed-Muller error-correcting decoder D to pro­
duce the length-n binary hash value h = D(x) E {O, 1}" 
[2). The metric used for decoding is the exponential pseudo­
norm, which approximates the sup norm and confers addi­
tional robustness to the decoding scheme. The decoding 
stage of the algorithm serves several important purposes: 

• It cancels small perturbations (that remain in decod­
ing spheres) in quantized statistics of visually similar 
images, yielding the same hash value. 

• On distinct images, it results in statistically uncorre­
lated hash values. 

• It condenses the randomness introduced by random­
ized rounding into fewer bits to make the outputs 
random. 

Step 4 Another decoding stage of a linear code with ran­
dom parameters maps the current intermediate hash value 
into an even shorter string. 

The above steps may be repeated with different random 
keys and different domains (e.g., spatial and DCT) to yield 
many independent random strings, and the algorithm can 
check if a majority of the hash values agree. This increases 
the strength of the hash function significantly. For exam­
ple, even given the hash value, finding an image that yields 
the same hash.value on all (or most) of the invocations or 
repetitions involves a significant computational load in the 
final step. A formal analysis of the steps involved in the 
hash computation will appear elsewhere. 

3. EXPERIMENTAL RESULTS 

Extensive tests on over a hundred images were performed, 
and no failure cases were noted. We present some details 
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next. The normalized Hamming distance between interme­
diate, hash values before and after image distortions is used 
to measure the algorithm's perfonnance. We refer to this 
distance as the equality percentage (EP), or the percent­
age of equal vector components in the intermediate hash 
vectors used in the above algorithm. This measure satis­
fies two key properties: first, EP is high (near 100 %) for 
visually similar images, because the hash values are simi­
lar; second, EP is low for distinct images, because the hash 
values are quite different. In fact, the expected value of 
of EP is 50% for two vectors independently drawn from a 
uniform random distribution on {O, l}n. 

TEST 1: RESISTANCE TO ATTACKS: A variety of at­
tacks, many from the wen known StirMark software pack­
age, were perfonned on about 100 images, inc1uding the 
traditional Lena and Baboon. The hash function was ro­
bust against a range of attacks: 

• Rotation by up to 2 degrees; 

• Cropping up to l 0% of image area; 

• Scaling by up to 10%; 

• Random deletion of up to 5 lines; 

• Shifting by up to 5%; 

• JPEG compression using quality factor of 10% or 
higher; 

• 4 x 4 median filtering. 

The EP's remained dose to 100%, and the final hash values 
were invariant without exception. 

TEST 2: PROBABILITY OF COLLISION FOR UNRELAT­
ED IMAGES: We used Baboon as our original image and 
compared its hash value with that of 150 other images. The 
resulting EPs were aU in the range [45%, 65%]. The final 
hash values were distinct. 

TEST 3: KEY (PSEUDORANDOM SEED) DEPENDENCY 
OF THE ALGORITHM: Many steps of the algorithm, such 
as the geometric decomposition of the image and the round­
ing of the coefficients, are controlled by a random seed. 
Distinct seeds for the same image yielded uncorrelated ran­
dom hash values as though hashing were performed on dis­
tinct images, while the EP was in the range [50%, 65%). 
In terms of security, such a strong dependency on the key 
is significant: once a key is broken, the user can simply 
change it, like a password. No systemic changes are nec­
essary after attacks or improvements to the algorithm, aside 
from recomputing hash values of images in a database. 
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4. CONCLUSION 

We presented an image-hashing algorithm that converts im­
ages into short, robust bit strings. Using this algorithm, we 
can compare two images by checking two bit strings for 
exact equality, rather than attempting the far more involved 
problem of comparing ma11eable, "fuzzy" image data. In 
our experiments, image hashes were robust to various at­
tacks, .inc1uding both common image processing and mali­
cious distortions. The hashing algorithm combines various 
ideas from the fields of signal processing, .error-correcting 
codes, and cryptography. 

Hashing can be used in place of watermarking, with the 
benefit that nothing is added to images. From a game­
theoretic point of view, hashing may be stronger than wa­
termarking, since hashing algorithms can be adapted to 
attacks after these occur and without the need to modify 
and re-release deployed images; with watermarking, on the 
other hand, the first move belongs to the embedding algo­
rithm, which commits to a particular watermark that the 
attacker can subsequently try to remove. A formal analysis 
of image hashing, as well as hashing of other media, will 
be covered)n future work. 
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