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INTERCONNECTION NETWORK FOR A 
FIELD PROGRAMMABLE GATE ARRAY 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

This patent application claims priority from Provisional 
Patent Application No. 60/223,047, filed Aug. 4, 2000, and 
is a continuation of U.S. patent application Ser. No. 09/923, 
294, filed Aug. 3, 2001 is now a U.S. Pat. No. 6,693.456, all 
of which are hereby incorporated by reference. 

BACKGROUND OF THE INVENTION 

The present invention relates to integrated circuit inter 
connections and, in particular, to the interconnection archi 
tecture of FPGA (Field Programmable Gate Array) inte 
grated circuits. 
FPGAS are integrated circuits whose functionalities are 

designated by the users of the FPGA. The user programs the 
FPGA (hence the term, “field programmable”) to perform 
the functions desired by the user. 
A very significant portion of an FPGA's design is the 

integrated circuit's interconnection network between the 
logic cells or blocks, which perform the functions of the 
FPGA. Heretofore, the current practice for designing an 
FPGA interconnection architecture has been empirical and 
on an ad hoc basis. The goal of the FPGA designer has been 
to create an interconnect Structure which is Sufficiently 
flexible to implement the required wiring for any circuit 
design intended for the FPGA, and yet occupies a minimal 
amount of area of the integrated circuit and with a minimal 
amount of transmission delay. In today's FPGA products, 
the interconnect network typically occupies about 90% of 
the chip area and the actual logic cells occupy only about 5% 
of the chip. In other words, most of the area of the integrated 
circuit is not dedicated to the circuits performing desired 
functions of the FPGA, but rather to the interconnections 
between those circuits. 

Furthermore, the current practice for designing FPGA 
interconnects is empirical and on an ad hoc basis. The users 
of these FPGA products spend most of their design time 
trying to make their circuits route to obtain the desired 
functions and to meet the timing constraints. The rule of 
thumb is to only utilize 50% of the available logic cells in 
order to guarantee they can all be routed through the 
interconnect network. If the timing constraints are relatively 
high speed, then the rule of thumb is to only utilize 33% of 
the logic cells in order to avoid the need for detours and 
longer delays in the routing. 

Hence, there is a need for an FPGA interconnection 
network architecture by which routing through the resulting 
interconnect network is guaranteed and that the timing 
constraints of the interconnect network are predictable. The 
present invention provides for Such an interconnection net 
work. 

SUMMARY OF THE INVENTION 

The present invention provides for an integrated circuit 
having a plurality of logic cells, and a programmable 
network interconnecting the logic cells. The programmable 
interconnection network has a plurality of interconnection 
network input terminals, a plurality of programmable 
Switches, each programmable Switch having a plurality of 
input terminals and output terminals with the programmable 
Switch arranged So that signals on any input terminal are 
passed to any output terminal. The plurality of program 
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2 
mable Switches interconnecting the plurality of interconnec 
tion network input terminal to the interconnection network 
output terminal are arranged in a Benes network So that 
connections between the interconnection network input ter 
minals and interconnection network output terminals are 
rearrange able. 
The plurality of programmable Switches are arranged in 

hierarchical levels with a first level of the programmable 
Switches having input terminals connected to the intercon 
nection network input terminals and a last level of the 
programmable Switches having output terminals connected 
to the interconnection network output terminals. The levels 
of the programmable Switches intermediate the first and last 
level are arranged in a plurality of first rank Sub 
interconnection networks equal to the number of Switch 
output terminals. Each first rank Sub-interconnection net 
work is connected to an output terminal of each program 
mable Switch in the first level and connected to an input 
terminal of each programmable Switch in the last level. In a 
Similar arrangement, the first rank Sub-interconnection net 
Works themselves are formed from Second rank Sub 
interconnection networks and So forth. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a diagram of the interconnection architecture of 
a current SRAM-based FPGA; 

FIG. 2A is a diagram of one operation of a 2x2 Switch for 
a Benes network, FIG. 2A is a diagram of another operation 
of a 2x2 Switch for a Benes network; FIG. 2C is a block 
diagram of the elements of a 2x2 Switch; 

FIG. 3A illustrates the organization of an 8x8 Benes 
network with 2x2 Switches in accordance with one embodi 
ment of the present invention; FIG. 3B illustrates the inter 
connection between the Switches at the first rank of hierar 
chy; FIG. 3C illustrates the interconnection between the 
Switches at the next lower rank of hierarchy; FIG. 3D shows 
the complete interconnection of the 8x8 Benes network; 
FIG.3E is an example of a permutation of connections in the 
8x8 Benes network to reverse the order of input signals at 
the output terminals of the network, 

FIG. 4A shows how the 8x8 Benes network is folded for 
an FPGA interconnection network in accordance with an 
embodiment of the present invention; FIG. 4B shows the 
resulting folded Benes network; FIG. 4C illustrates the FIG. 
4B folded network in which the interconnections have been 
inverted by level; 

FIG. 5 shows two exemplary logic cells connected to a 
combined Switch of the FIG. 4C network in which the 
combined Switch provides for corner turn routing in accor 
dance with an embodiment of the present invention; 

FIG. 6A illustrates the four elementary states of the 
combined Switch; FIG. 6B illustrates 10 additional states of 
an enhanced combined Switch for corner turn routing in 
accordance with the present invention; 

FIG. 7 is a block diagram of the enhanced combined 
Switch described with respect to FIGS. 6A and 6B; 

FIG. 8 illustrates the four states with the input stage of the 
combined Switch having fanout capability; 

FIG. 9 illustrates an exemplary arrangement to create 
fanout functions with an FPGA interconnect network in 
accordance with an embodiment of the present invention; 

FIG. 10 shows a pair of enhanced switches with timing 
latches in accordance with an embodiment of the present 
invention; 

FIG. 11A is a block diagram of an exemplary circuit 
pipeline with mismatched delay paths; FIG. 11B is a block 
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diagram of a modified FIG. 11A circuit pipeline with the 
delay paths corrected in accordance with an embodiment of 
the present invention; 

FIG. 12 is a flow chart of a software generator for an 
FPGA, in accordance with an embodiment of the present 
invention; 

FIG. 13A illustrates an exemplary column-based floorplan 
layout of an FPGA according to an embodiment of the 
present invention; FIG. 13B illustrates how two of the FIG. 
13A columns are interconnected; 

FIG. 14A shows the column-based layout of FIG. 13B 
with all the cells labeled; FIG. 14B illustrates the same 
topological network arranged in a tree-based layout in 
accordance with the present invention; and FIG. 14C shows 
a modification of the FIG. 14B tree-based layout with 
wirelengths between switch levels minimized. 

DESCRIPTION OF THE SPECIFIC 
EMBODIMENTS 

Current SRAM (Static Random Access Memory)-based 
FPGA products conform to the interconnect architecture as 
illustrated in FIG. 1: The basic structure of FIG. 1 has logic 
cells 10, which implement the desired circuit logic by the 
user, connection cells 11 which connect logic cells 10 to the 
interconnect network, and Switch cells 12 which implement 
the interconnect network. Additional connections are made 
between a Switch cell 12 and its four neighboring Switch 
cells 12 in the north, east, west, and South directions. The 
Switch cells 12, connection cells 11, and all their wires and 
connections constitute the interconnect network of the 
FPGA. This basic unit is arrayed to build FPGAs of varying 
SZCS. 

The flexibility of this architecture lies within the connec 
tion cell 11 and the Switch cell 12. In common terminology, 
a fully “populated” connection cell 11 will connect each pin 
of the logic cell 10 to every wire connecting to the Switch 
cell 12. A “depopulated” connection cell 11 will connect 
each pin of the logic cell to a Subset of the wires connecting 
to the Switch cell 12, with each pin connecting to a different, 
possibly overlapping, Subset of wires. Similarly, a fully 
“populated” Switch cell will provide full crossbar connec 
tions between all the wires on all four of its Sides, and a 
“depopulated” Switch cell will only provide a subset of these 
connections. Lastly, the Set of wires between any two cells 
is called a “channel”, and the number of wires in a channel 
can be varied. 

Each possible connection in the FPGA interconnect net 
work requires its own pass gate and controlling configura 
tion bit. A fully populated interconnect network is prohibi 
tively expensive to implement and the current practice has 
been to build a parameterized Software model that can 
represent varying depopulated interconnect networks. Then 
various representative logic designs are tried onto the mod 
eled networks. Based on this empirical data, a judgment 
must be made about what constitutes an “acceptable' inter 
connect network in terms of routability versus implementa 
tion cost. This is an ad hoc proceSS Since there are no 
theoretical guarantees of routability, i.e., that the desired 
interconnections can actually be made. 
A further complication in the above empirical proceSS has 

been that the demands on the interconnect network do not 
Scale linearly with the number of logic cells in the array. In 
other words, an interconnect network that Seems to route 
most designs on an array with 1 Klogic cells cannot simply 
be replicated for a 64K logic cell array. AS Seen empirically, 
the routing demands grow exponentially, but these demands 
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4 
are highly dependent on the exact algorithms used to imple 
ment the design. Specifically, it depends on the algorithms 
used to map the original circuit design onto the logic cells, 
to place the logic cells on the array, and to route (connect) 
the logic cells to each other. There is currently no precise 
theoretical model of this growth in wiring demand, although 
current practice has been to approximate the wiring demand 
with stochastic models. The use of these models entails 
Some assumptions for certain coefficients, which are based 
on empirical data, and So current practice is Still an ad hoc 
proceSS. 

In contrast, the present invention provides for an FPGA 
interconnection network architecture which creates inter 
connection networks which are “rearrangeable, i.e., any 
permutation of interconnections from the network's input 
terminals to the output terminals can be implemented. The 
resulting FPGA network interconnect has guaranteed rout 
ing with defined maximum timing delayS and is Scalable. 
The present invention uses the So-called Benes network, 

which has been the Subject of research in the telecommu 
nications field, Specifically for Switching networks. Gener 
ally described, a Benes network interconnects a number of 
network input terminals to a number of network output 
terminals. Between the input and output terminals are 
Switches, each Switch itself having input terminals and a 
number of output terminals and the ability to pass Signals on 
any input terminal to any output terminal. The Switches are 
connected in hierarchical levels with a first level of Switches 
having input terminals connected to the network input 
terminals and a last level of the Switches having output 
terminals connected to the network output terminals. The 
levels of the Switches intermediate the first and last levels are 
arranged in a plurality of first rank Sub-interconnection 
networks equal to the number of Switch input (and output) 
terminals, each first rank Sub-interconnection network con 
nected to an output terminal of each Switch in the first level 
and connected to an input terminal of each Switch in the last 
level. The first rank Sub-interconnection networks are 
formed by Second level Switches having input terminals 
connected to the output terminals of the first level switches 
and Second-to-the-last level Switches having output termi 
nals to the input terminals of the last level of Switches. The 
levels of Switches intermediate the Second and Second-to 
the-last level are arranged in a plurality of Second rank 
Sub-interconnection networks equal to the number of Switch 
output terminals with each Second rank Sub-interconnection 
network connected to an output terminal of each Second 
level Switch and connected to an input terminal of each 
Second-to-the-last level Switch. 
A Switch level hierarchy is formed because each rank 

Sub-interconnection network is formed like the rank Sub 
interconnection network above. That is, each rank Sub 
interconnection network is formed by a plurality of Switches 
in one level, the Switches having input terminals connected 
to output terminals of Switches of a Sub-interconnect net 
work rank immediately higher; and a corresponding level of 
Switches having output terminals connected to input termi 
nals of Switches of the Sub-interconnect network ran imme 
diately higher; and the levels of the Switches intermediate 
the Switches in the one and corresponding levels arranged in 
a plurality of lower rank Sub-interconnection networks equal 
to the number of Switch output terminals, each lower rank 
Sub-interconnection network connected to an output termi 
nal of each Switch in the one level and connected to an input 
terminal of each Switch in the corresponding level. To define 
the hierarchical level arrangement of the Switches. 
The particular Benes network described immediately 

below explains the Switch hierarchy with specificity. This 

Page 16 of 22



US 6,940,308 B2 
S 

network is also useful to implement an FPGA according to 
the present invention. 
Benes Network With 2x2 Switches 
The building block of the described Benes network is the 

2x2 (2 input, 2 output) Switch 20, having operations illus 
trated in FIGS 2A and 2B. The 2x2 Benes Switch 20 has two 
possible configuration modes: pass and croSS. In pass mode 
illustrated by FIG. 2A, a signal on input A is passed Straight 
to output C, and a Signal on input B is passed Straight to 
output D. In cross mode illustrated by FIG. 2B, a signal on 
input A crosses over to output D and a Signal on input B 
crosses over to output C. A Single configuration or control bit 
can control these two modes. 

The Switching itself can be implemented with two 2:1 
multiplexers or MUX's as shown by FIG.2C. The switch 20 
has two MUXs 21 and 22 having two input nodes which are 
each connected to one of the input terminals, input A or input 
B, of the switch 20. The output node of the MUX 21 forms 
the output terminal, output A, and the output node of the 
MUX 22 forms the output terminal, output B, of the Switch 
20. Both MUXS 21 and 22 are connected to a control line 23 
which carries the configuration or control bit. The entire 
Switch cell only requires 18 transistors in a CMOS 
(Complementary Metal-Oxide-Semiconductor) implemen 
tation of an integrated circuit. 

These 2x2 Switches are connected in a Specific topology 
to build a Benes network. For the purpose of illustration, the 
arrangement of the 2x2 Switches 20 in an 8x8 Benes 
network is shown in FIG. 3A. For a network with N inputs 
and N outputs, N being a power of 2, there are (2*(logN)- 
1) levels of Switches, each level consisting of N/2 switches. 
In this example of an 8x8 network, each level has 4 Switch 
cells and there are 5 levels. The interconnection between the 
Switches 20 can best be understood by viewing the network 
in a hierarchical arrangement, starting from the outside and 
proceeding inwards. We can view the two outermost levels, 
levels 1 and 5, in detail and view the inner levels as 
hierarchical blocks, as illustrated by FIG. 3B. The inner 
levels can be viewed as two hierarchical blocks, an Upper 
Network 25 and a Lower Network 26. In level 1, each Switch 
cell 20 has one output going to the Upper Network 25, and 
one output going to the Lower Network 26. Similarly in 
level 5, each Switch cell has one input from the Upper 
Network 25, and one input coming from the Lower Network 
26. 

At the next level of the hierarchy of the Benes network, 
the details of the Upper Network 25 and the Lower Network 
26 are expanded in FIG. 3C. The Upper Network 25 is 
formed by Switches 20 in levels 2 and 4, and Upper and 
Lower Networks 27 and 28 respectively. The Lower Net 
work 26 is formed by Switches 20 in levels 2 and 4, and its 
own Upper and Lower Networks 29 and 30 respectively. 
Each of these networks 27-30 are half the size of the higher 
level networks 25 and 26 and are similarly decomposed into 
their own Upper and Lower Networks: In this example of an 
8x8 network, the bottom of the hierarchy has been reached 
since the lower level networks 27-30 are Switches 20 in 
level 3. For larger networks, a similar decomposition into the 
Upper and Lower Networks may be performed until the 
bottom of the hierarchy is reached. The complete intercon 
nection of the constituent Switches 20 in the 8x8 Benes 
network is illustrated by FIG. 3D. 
The Benes network of FIG. 3D is not configured with only 

the hard-wired connections between the Switch cells 20 
illustrated. This network can potentially implement any 
permutation of Signals on input terminals to output termi 
nals. In order to configure the network to implement a 
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6 
specific routing, each Switch cell 20 must be individually 
configured as either “pass” or “cross” mode described 
previously. The example of FIG.3E shows the configuration 
of the network to implement an order reversal from the 
inputs to the outputs: 

Note that there are many variations of the Benes network. 
The hierarchical sub-division into Upper and Lower net 
WorkS can be generalized to more than 2 Sub-networks, So 
networks of the Size p", p>2, can be constructed. Also, the 
sub-division does not require that the Sub-networks be of 
equal size. This generalized construction leads to overall 
Benes networks with arbitrary numbers of inputs and a 
proportional number of Switch cells. All variants are simply 
be referred to as Benes networks. 

The Benes network is a very powerful and efficient 
interconnection network with guaranteed routability. Its use 
has not been more widespread because of the complexity of 
the algorithm required to determine the appropriate configu 
ration of the Switches for a specific routing. The Benes 
network is “rearrangeable,” but not “non-blocking.” Non 
blocking means that any input-to-output connection can 
always be made, even if there are already existing connec 
tions on the network. Rearrangeable is less powerful and 
means that any input-to-output connection can be made, but 
Some existing connections may need to be rerouted. In the 
dynamic worlds of telephone Switching and data communi 
cation networks, a Benes network would require that a 
routing algorithm be performed every time a new connection 
is requested. A Benes routing algorithm requires time 
O(NlogN), but the network itself transmits data in time 
O(logN). It takes longer to reconfigure the network than to 
actually transmit the data through the network. Hence, 
current practice in the data communications has to use more 
expensive non-blocking Switches. 

However, the present invention recognizes that in the 
FPGA world, routing is not so dynamic. There is no real time 
Set up and tear down of fleeting connections. Instead, in an 
offline process, a circuit design is mapped onto the FPGA 
integrated circuit once and the resulting interconnect con 
figuration is used without change. Even in the application of 
FPGA technology to the burgeoning field of “reconfigurable 
logic', multiple configurations may be rapidly Swapped in 
and out of the FPGA, but each configuration itself is never 
changed. Presently, the offline routing process in an FPGA 
requires on the order of minutes or even hours of execution 
time. In contrast, the execution of a Benes routing algorithm 
requires in the order of 10 Seconds (which is completely 
unacceptable in a data communications network) in accor 
dance with the present invention. This time is spectacularly 
fast and routability is guaranteed. 
Specific Implementation of Benes Network in FPGAs 

There are a number of ways that the Benes network may 
be adapted to make it more efficient as an interconnection 
network for an FPGA or MPGA (Mask Programmable Gate 
Array). In an FPGA, the logic is composed from building 
blocks called “logic cells', and the logic cells contain both 
input and output pins. An example of a typical logic cell is 
a 2-input NAND gate. So an FPGA interconnection network 
should have neighboring “leaf cells” which correspond to 
the logic cells and which contain both inputs and outputs to 
make the connections to the logic cells. This can be accom 
modated by “folding in half the original Benes network, 
and combining the Switch cells 20 from the first level and 
last level, the Second level and Second-to-last level, and So 
on. This is illustrated in FIG. 4A with the 8x8 network 
example. The “folding” is made along the dotted line 31 
which runs through the Switches 20 in level 3. The Switches 
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20 are labeled by location in the network to maintain 
identification through the folding operation. The first num 
ber in the labels identifies the level of the Switch and the 
Second number its row location. Hence Switch with label, 
“4.3," is in level 4 and row 3. 

The resulting folded network is illustrated by FIG. 4B. 
The Switches 20 are combined into two, with the formerly 
level 3 switches duplicated for uniformity. While the com 
bined Switches 32 represent a topological change of the 8x8 
Benes network, it should be noted that the connections 
between the cells 20 remain the same. The combined input 
and output Switch cells 32 on the left of the folded network, 
e.g., combined switches 1.2 and 5.2, form the leaf cells for 
the connection to the pins of the FPGA logic cells. 

From the connections between the combined Switches 32, 
the network of FIG. 4B can be turned “inside out', that is, 
the innermost levels of the combined Switches 32 become 
the outermost and vice versa, as illustrated in FIG. 4C, 
without affecting the routability of the interconnection net 
work. The levels with shorter connections are moved be 
closer to the logic cells. This is more suitable for an FPGA. 
Corner Turning for Interconnection Network 
With inputs and outputs combined into a single Switch cell 

32, shorter routes between logic cells which don't travel 
through all 2 (logN) levels of Switches can be configured. 
In the original Benes network, every route must travel 
through all the levels to go from input to output. In the 
adapted interconnection network, Signals from the logic can 
“turn the corner” before reaching the opposite side of the 
network. For example, in FIG. 5, logic cell 41 has an output 
pin that must be routed to an input pin on logic cell 42. 
Of course, the particular advantage of corner turning in 

the interconnection network depends on the quality of logic 
cell placement algorithm for the FPGA. (Note that “place 
ment” for an FPGA logic cell is not the physical placement 
of Selected logic gates to form a desired function, but rather 
the programming of a Selected logic cell to perform the 
desired function.) The algorithm is designed to minimize the 
distance between connected logic cells, where distance is not 
defined as it usually is for an FPGA or MPGA. The usual 
definition of distance in a placement algorithm is either 
Euclidean or Manhattan. In present interconnection 
network, distance is defined as the depth of the first common 
ancestor in the network because a corner can be turned at 
this point. The most appropriate placement algorithms build 
cluster trees with capacity constraints, either top-down or 
bottom-up. Nonetheless, regardless of the quality of logic 
cell placement, the present invention Still provides the 
original worst case bound of 2 (logN) Switches, no matter 
how highly the network is utilized. In contrast, current 
FPGA products cannot guarantee a worst case bound on 
Signal delay when the integrated circuit is highly utilized. 
Enhanced Switch for FPGAs 

Corner turning requires that the original Benes Switch be 
enhanced. It should noted that the original Switch had 2 
States responsive to 1 configuration bit. See the description 
above with respect to FIGS. 2A and 2B. Just by combining 
the input and output Switches cells, the combined switch 32 
has 4 States and requires 2 configuration bits. FIG. 6A 
illustrates the four permutations of passing Signals from the 
input terminals to the output terminals for the combined 
Switch 32. 

The corner turning feature adds 5 more States for the 
“output lower half of the combined switch 32. When 
multiplied by 2 states for the “input” upper half, there are a 
total of 10 new states for the combined Switch 32. These 
additional 10 states are illustrated by FIG. 6B. It should be 
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8 
noted that for the corner turning States shown, there are only 
two possible paths to turn a corner: Each of the two possible 
corner turning outputs can only be connected to one of the 
inputs, not both inputs. The unconnected input comes from 
the same Switch as the one the output is going to. While there 
may be Some possible use for this connection in terms of 
Selectively adding variable delays to certain routes, the cost 
of implementing additional configuration bits to all com 
bined Switch cells to Support these paths is unjustified. 
Of course, the increased number of States for the com 

bined switch can not be satisfied by the two-MUX structure 
of FIG. 2C. FIG. 7 is a block diagram of the combined 
switch cell 32, which is formed by MUXs 61-66 which 
operate by the Setting of configuration bits on five control 
line nodes 71–75. MUXS 61 and 62 each have terminal 
nodes connected to inputs A and B; control line node 71 is 
connected to MUX 61 and control line node 72 is connected 
to MUX 72. The output nodes of MUX 61 and 62 form the 
outputs of the combined Switch 32. MUXs 63 and 65 are 
connected so that the output node of the MUX 63 forms one 
input node of the MUX 65; in effect, the MUXs 63 and 65 
form a 3:1. MUX. The input nodes of the MUX 63 are 
connected to the reverse direction inputs C and D, and the 
second input node of the MUX 65 is connected to the input 
B. The MUXS 64 and 66 form a second 3:1. MUX. The 
output node of the MUX 64 forms one input node of the 
MUX 66. The input nodes of the MUX 64 are also connected 
to the reverse direction inputs C and D, and the Second input 
node of the MUX 66 is connected to the input A. The output 
nodes of MUX 65 and 66 form the reverse direction outputs 
of the combined Switch 32. The control line node 73 is 
connected in common to the MUXs 63 and 64. The control 
line node 74 is connected to the MUX 65 and the control line 
75 is connected to the MUX 66. 
One further enhancement is required for a interconnection 

network which is highly suitable for FPGAs. That enhance 
ment is fanout Support. In an FPGA, the outputs frequently 
fan out to multiple inputs. At the Switch level, fanout can be 
supported in either the “output half or the “input' half of 
the combined switch 32. However, in terms of routability for 
one-to-many connections, the fanout must be in the input 
half of the combined switch in order to break cyclic depen 
dencies. Therefore, the preferred embodiment of the com 
bined Switch cell 32 has 4 states in the input half of the 
Switch, as represented by the four states in FIG. 8. 
An alternative way of creating the fanout function is with 

the use of logic cells which are connected through MUXs to 
the interconnect network. Such an arrangement avoids the 
placing of additional functionality upon the interconnect 
network itself. An example of this arrangement is shown in 
FIG. 9. Each logic cell is a 4-LUT (4 input Look Up Table). 
There are four 4-LUTs 76-79 (having a total of 16 inputs) 
with 4 outputs A-D respectively. These outputs A-D are 
connected to the input nodes of each of 16 MUXS 80 which 
have a total of 16 outputs. These outputs (as the inputs to the 
4-LUTs 76–79), in turn, are connected to the enhanced 
combined switch cells of the first (and last) levels of the 
described Benes interconnect network. Through control Sig 
nals on the MUXs, the outputs A-D can be selectively 
placed into the interconnect network. With the repetition of 
one of the 4LUT outputs A-D into the interconnect network, 
a fanout is effectively created. 

Hence, with the 7 possible states on the output half of the 
combined Switch, the enhanced Switch has a total of 28 
States. A Switch cell appropriate for an FPGA interconnect 
network has been created from a simple 2-State Switch cell 
which requires 1 configuration bit and capable of being 
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implemented with 18 transistors in CMOS. The 28-state 
combined Switch cell requires 5 configuration bits and can 
be implemented with 74 transistors in CMOS. The most 
expensive enhancement, in terms of Silicon area, is the 
corner turning feature. Without corner turning, the combined 
Switch cell would only have 8 states, which require 3 
configuration bits and can be implemented in 46 transistors 
in CMOS. This is about a 38% reduction in silicon area for 
the interconnect network alone. For the purpose of analysis, 
assuming the logic cell is a 4-LUT (4-input Look-Up Table) 
with a latched output and the array is built with 16K logic 
cells (a 64K gate equivalent), a 33% reduction in the total 
FPGA area may be achieved. Table A below compares the 
results of a combined Switch cell with and without corning 
turning: 

TABLE A 

Switch 
Cell 
Tran- Logic Cell Area Per FPGA FPGA Area 
sistors Transistors Transistor Total Area Percentage 

With 74 270 O.OOOOO4 153 100% 
Corner 
Turning 
Without 46 270 O.OOOOO4 102 67% 
Corner 
Turning 

AS discussed previously, corner turning is highly desir 
able for reducing the signal delay due to routing. The FPGA 
user should be able to make the design tradeoff whether a 
specific project needs a faster chip or a smaller chip. The 
interconnect network according to the present invention 
provides many options to the FPGA user. An even higher 
Speed, larger area alternative is discussed below. 
Pipelined Interconnect and Predictable Delays Through the 
Interconnect Network 

Even with the enhanced combined Switch, the present 
invention provides for further improvement. The biggest 
problem in semi-custom VLSI (Very Large Scale 
Integration) design today is the signal delays due to an 
integrated circuit's interconnection network. With deep Sub 
micron fabrication processes and its thin resistive wires, the 
delay due to interconnect dominates any delay due to the 
logic cells. This problem is even worse in an FPGA because 
there is the additional interconnect delay due to the Switch 
cells in the routing. The difficulty arises in trying to either 
predict or constrain the routing delayS. 

The current practice for VLSI design is to estimate the 
delay due to routing during the logic design Stage. The 
estimation is done by Statistical wire loading models or by 
rules-of-thumb which limit the levels of logic between clock 
cycles. Then the actual placement and routing of the logic is 
performed, and the prior estimates are usually passed on as 
constraints to these algorithms. However, constraint driven 
place-and-route algorithms are Still an open problem, and So 
there still must be a timing verification Stage after these 
programs are run. Usually there are timing violations and the 
designer has different options. He or She can try to tweak the 
placement and routing to meet the timing constraints. This is 
largely a matter of patience and luck. If this fails, he can go 
back and modify the logic design based on the actual timing 
from the place-and-route. Then he tries to place and route 
routine again with the hope that the process will converge 
and there will be no new timing violations. However, 
placement algorithms have been theoretically proven to be 
highly Sensitive to even Small changes, So the delay profile 
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10 
of the modified logic design may be very different from what 
was hoped. This is usually a highly iterative and lengthy 
process. In practice, VLSI designers have learned not to be 
aggressive with their timing estimates and constraints, So 
that the process will converge more rapidly. Most current 
FPGA designs only run at 50–100 MHz. 
With an interconnect network according to the present 

invention, a totally different design methodology is possible. 
All the problems arising from variable interconnect delayS 
and the need to predict and constrain them are avoided. The 
described interconnect network provides for a uniform 
multi-stage network as illustrated in FIG. 10. A representa 
tive pair of neighboring enhanced switches 48 and 49 are 
shown. The inputs of the Switch cells 48 and 49 have latches 
50 to pipeline the signals routed through the network. The 
latches 50 in the Switch cell 48 are responsive to one edge 
of a clock signal and the latches 50 in the Switch cell 49 are 
responsive to the other edge of the clock signal. Alternating 
Switch levels in the interconnect network can thus be rising 
or falling edge-triggered of a clock signal. In a fully pipe 
lined design, the clock can operate as fast as the slowest 
Stage in the network, and should be capable of Supporting 
clock rates up to 1000 MHz. 
To maximize throughput, every Switch level of the inter 

connect network may be latched. On the other hand, if such 
a high clock rate is not needed, every few levels may be 
latched for a lower clock rate and throughput. Each latch 
requires 10 transistors to implement, So that each unlatched 
Switch cell is 46% smaller than its latched version. 
Alternatively, latches may be included in every level, but 
with a 2:1 MUX, one input being the output of the latch and 
the other being the input to the latch. The MUX serves as a 
field programmable bypass to the latch, and allows field 
control of the number of Switch levels between the latches. 
In this manner, the number of Switch levels between latches 
and whether they include the bypass MUXS is placed under 
the control of the FPGA user. 

For a fully pipelined design, a logic cells input signals 
must arrive at the same time. The described interconnect 
network can disable corner turning (either in the routing 
algorithm or in the FPGA network generator) so that every 
route passes through exactly 2 (logN) levels and the delay 
is known a priori. Then the only Source of Signal delay 
variation arises from the differing levels of logic along the 
paths for different input pins for a given logic cell in the 
user's logic design. 

FIG. 11A represents Such an example. Two Sets of data are 
presented in queues, one Set for logic cell 51 and the other 
set for logic cell 52. The corresponding data from both sets 
are to be processed by logic cell 54. With the assumption that 
each route has a delay of 1 ns and each logic cell 51 and 52 
has a delay of 1 ns, then the upper path (with logic cell 51) 
has a delay of 2 ns and the lower path (with logic cells 52 
and 53 and a path between the two logic cells) has a delay 
of 4 ns. This design will not operate correctly in a fully 
pipelined mode. By the time Data 1 arrives at logic cell 54 
along the bottom path, Data 1 has already passed logic cell 
54 along the upper path. Instead Data 2 is present. 

But with a minor modification, the present invention 
allows the design to be pipelined and to operate the clock at 
1 ns. FIG. 11B shows the insertion of a buffer 55 along the 
upper path between the logic cells 51 and 54. Buffers can be 
inserted without affecting the logic of the design. In fact, 
most commercial place-and-route tools will insert buffers on 
Signals with long routing lines in order to improve their 
overall delay; this is done transparently for the user. The 
present invention allows buffer insertion to be made simply 
because the Signal delays through the interconnect network 
are known. 
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Hence the present invention offers a methodology for 
fully pipelined design as follows: analyze a given netlist to 
identify existing mismatches in delay paths, optionally, the 
user may modify his or her netlist to eliminate the mis 
matches; for each mismatch, insert buffers to lengthen the 
Shorter paths until the delay paths match; determine what 
Size array is required for the modified netlist; and perform 
place-and-route without corner turning. This methodology 
does not require iteration as current methodologies do. This 
is because of two properties of interconnection network of 
the present invention: 1) the delay of every routing path is 
known a priori; and 100% routability for a given array is 
guaranteed, a property of the Benes network. 

The described methodology Supports fully pipelined 
operation at very high clock rates. It should be noted that 
pipelining yields a Signal processing throughput propor 
tional to the clock rate, but the Signal processing latency is 
Still proportional to the levels of logic and interconnect. 
Latency Control 
The present invention permits even further efforts to 

reduce latency. One potential drawback of using a multi 
Stage network as an interconnect network is the potentially 
long latency of a route. Although corner turning reduces the 
average length of the routing, the worst case length is still 
2*(log-N) levels, as explained above. While the perfor 
mance of an FPGA with the described interconnection 
architecture is Superior than existing FPGA products, there 
is room to control worst case latency. This can be done 
without giving up guaranteed routability, known delays, or 
pipeline Support, but at the expense of more Silicon area. 

Because of the hierarchical Structure of a Benes network, 
the Benes network can be recursively constructed. The 
Upper Network and Lower Network are themselves 
expanded into Benes networks, each with half the number of 
inputs and outputs of the original network. See FIG. 3B. In 
essence, each of these Sub-networks Simply guarantees a 
means of routing any of its inputs to any of its outputs. 
Functionally, this is a crossbar Switch. A Benes network is a 
much more area efficient method of implementing a rear 
rangeable crossbar. The Size of a Benes network grows by 
N*log2N, whereas the size of a crossbar grows by N°. 
However, maximum latency can be reduced if just the lowest 
levels of Benes networks are Substituted with crossbars. The 
following Table B illustrates the relative areas, in 0.18 
micron technology, for a 16K logic cell array: 

TABLE B 

Inputs to 
Sub-Network Levels Reduced Benes Total mm2 Crossbar Total mm2 

16 7 9.7 11.0 
32 9 12.1 24.2 
64 11 14.5 543 
128 13 17.0 122.O 
256 15 19.4 273.7 

Thus the replacement of the 16x16, 32x32, or even the 
64x64 Sub-networks in the described interconnect networks 
are viable and attractive options. Nonetheless, the option 
which should be selected depends on the constraints of the 
Specific application. 
Parameterized Array Generation 

In accordance with the present invention, the described 
interconnect network has Several options which trade off 
area, latency, and throughput. To take advantage of this 
flexibility, different families of FPGA products, each family 
optimized for different design objectives, may be created. 
Perhaps a better way is to provide an FPGA array generator 
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12 
program to the end user. Such a generator-based methodol 
ogy allow the user to explore various tradeoffs for his or her 
Specific application. In addition, the generator allows the end 
user to Specify the Size and shape of the array desired. This 
enables the user to fit an FPGA component onto a larger 
VLSI chip floorplan with other components, a further advan 
tage of the present invention. 
A Summary of the features of the interconnect network 

options that have been described so far is listed in Table C: 

TABLE C 

Objective Corner Turning Crossbars Latches 

Typical Yes No No 
Minimum Area No No No 
Minimum Latency Yes Yes No 
Maximum Throughput No Yes Yes 

Each of these options is a control on the Software gen 
erator having a top level flow chart as shown in FIG. 12, in 
accordance with the present invention. The Corner Turning 
control either includes or excludes the corner turning 
MUX's and their configuration bits for all switch cells. The 
Crossbar control offers a set of choices (e.g., 4, 8, 16, or 32) 
for the level of Sub-network to be replaced with crossbars. 
The Latch control offers a set of choices (e.g., 0, 1, 2, or 3) 
for the number of levels of unlatched Switches between 
latched Switches. In addition, the generator offers a "novice 
user” mode for users who are not familiar with the details of 
the described interconnect network. In the novice user mode, 
there are only three choices: Minimum Area, Minimum 
Latency, or Maximum Throughput. Selection one of these 
choices instructs the generator to Set the Corner Turning, 
Crossbars, and Latches options with appropriate defaults. 

Besides the above options for the generation of the 
interconnect network, the generator also accepts parameters 
for the other components of the FPGA array. The user can 
specify the total number of primary IO's (Input/Output 
terminals) for the array. Optionally, the number of IO's per 
Side (north, east, west, or South) can be specified. If the 
number of IO's per side is not specified, the total number of 
IO's are evenly distributed around the array. In addition, if 
the Sides have been Specified, a list of the exact offset 
location for each IO may optionally be specified. The 
generator performs all the necessary design rule checks. For 
the logic cells, the user can Specify the total number of logic 
cells desired and the generator then rounds up to the nearest 
power of two. After the number of logic cells is specified, the 
generator offers a choice of feasible layouts with their 
various width and height dimensions. Optionally, the user 
may specify either a maximum width or a maximum height, 
and the generator automatically Selects the layout which 
most closely conforms to this constraint. 

Lastly, the Generator can be incorporated into a broader 
automated methodology which includes the user's design 
logic Synthesis. From the output of the logic Synthesis 
program, the methodology automatically determines the 
number of primary IOS and logic cells, and then invokes the 
generator with these parameters. An optional “fudge' factor 
can be specified by the user (e.g. 10%) to instruct the 
generator to create an array with the Specified number of 
additional logic cells over the number required by the 
Synthesized logic. 

Because the array is field programmable, the user may 
wish to specify more logic cells than are absolutely required 
by the given design. These extra cells can be used in the field 
to accommodate future bug fixes and enhancements. It is 
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even possible to accommodate a user who has only a general 
idea of the logic design, but can Specify the maximum gate 
count anticipated, and does So in order to begin the manu 
facturing of his or her ASIC (Application Specific Integrated 
Circuit) before the final logic design is finished. It is also 
possible to accommodate the user who wants a Single array 
to be able to accept more than one design. For example, the 
user may want his product to be able to interface many 
alternative external memory devices, each requiring differ 
ent protocols or timing, and the final Selection of interface is 
field configurable. 
Layout for FPGA Array 

There are two viable floorplans to map the topology of 
present inventions interconnect network onto a physical 
layout, i.e., on the Surface of the Substrate of an integrated 
circuit. The first floorplan is tree-based, and the Second 
floorplan is column-based. Each floorplan has its own 
advantages and disadvantages. 
The most straightforward mapping is column-based. With 

the previous illustrations of the Benes interconnect network 
and columns of logic cells added, the layout is nearly 
completed. See FIG. 13A. There are two logic cells 81 per 
Switch cell 82, connected in the so called “butterfly” pattern, 
consistent with the Benes network topology: More 
generally, an input-output pin-pair of a logic cell forms the 
leaves of the Benes interconnect network. So if a logic cell 
has many pins, there are a number of Switch cells connected 
to it. For example, if the logic cell is a 4-input, 1-output 
Look Up Table (see FIG. 9), the single output pin is fanned 
out 4 times to form 4 pin-pairs for each cell, and there are 
2 Switch cells in the first level of the Benes network 
connecting to each logic cell. 

For multiple column arrays, levels of Switch cells are 
added to each column's Sub-network. The new levels are 
connected together between columns in a topology consis 
tent with a Benes network. See FIG. 13B in which a level of 
Switch cells 83 are added to make the connection between 
two FIG. 13A column arrays. For each additional doubling 
of the number of cell columns, an additional column of 
Switch cells must be added to each of the cell columns, and 
the Span for connecting these new columns to each other 
doubles as well. AS before, each columns top-level inputs 
and outputs are connected to the primary I/O of the FPGA. 
The strength of this column floorplan is that the number 

of cells in a column can be any power of 2, and the number 
of rows can also independently be any power of 2. This 
enables the generation of arrays containing numbers of cells 
that are any power of 2, and with a Selection of various 
aspect ratios. On the other hand, the weakness of this column 
floorplan is that the long inter-column connections for 
Several levels can all pass in parallel over the same area. The 
floorplan may be limited by the metal pitch constraints of the 
Semiconductor proceSS used to manufacture the FPGA, and 
the floorplan may also have crosstalk problems. These issues 
must be addressed carefully in the leaf cell design for the 
Software generator. 

The other viable floorplan maps the Benes topology onto 
a hierarchical tree layout. It is most clearly understood by 
showing the cell-to-cell correspondence with the column 
floorplan. FIG. 14A shows a 16 logic cell column floorplan 
(the same as shown in FIG. 13B) with the cells labeled for 
identification; FIG. 14B shows the equivalent network laid 
out in a hierarchical tree floorplan. The advantage of this tree 
floorplan is that the maximum wire length for any connec 
tion is only a quarter of the width of the Substrate Surface; 
whereas in the column floorplan, the maximum wire length 
is a half the width of the chip. Furthermore, in the tree 
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floorplan the Switches can be “slid” along their hierarchical 
connection paths in order to evenly distribute the wire 
lengths between levels and to thus minimize the longest wire 
length. FIG. 14B is used as an example of sliding the 
Switches towards the center, where the maximum wire 
length is now 2, instead of the original 3. The resulting 
layout is illustrated in FIG. 14C. 

This rearrangement, in turn, minimizes the size of the 
circuit drivers in the Switch cells. This can be significant if 
the same Switch cell is used everywhere in the generator. 
Minimizing the longest wire is also significant in pipeline 
operation because the clock rate is limited by the slowest 
level in the network. On the other hand, the disadvantage of 
this tree floorplan is that it does not pack the Substrate 
Surface perfectly and leaves Some open Spaces. Additionally, 
the aspect ratio of the array is fixed. 

All these various floorplans still implement the same 
topology of the disclosed interconnect network. In fact, a 
Straightforward Software method can mechanically trans 
form between the various floorplans, even after place-and 
route has been performed. Other than the physical locations 
of the cells, the only remaining question is the delay of the 
physical interconnect wires. This can be approximated with 
Simple resistance and capacitance models Since interconnect 
wires have no branches. These simple models cannot 
account for the croSStalk and interlayer parasitics, but they 
should be sufficient for all the design stages before full-chip 
Verification. 
Applicability to MPGA 

Finally, the disclosed Benes interconnect network can 
also be applied to MPGAs (Mask Programmable Gate 
Arrays). This is accomplished as a post-processing Step 
where each Switch cell used in the routing is replaced with 
either a metal via or an end-to-end concatenation of two 
Same layer metal wires, depending on the orientation of the 
wires. The advantage over existing MPGA interconnect 
architectures is the guaranteed routability, Support for 
pipelining, as well as the fast execution Speed of the place 
and-route algorithms. 
While the foregoing is a complete description of the 

embodiments of the invention, it should be evident that 
various modifications, alternatives and equivalents may be 
made and used. For example, while the foregoing descrip 
tion is that of an FPGA integrated circuit, the present 
invention works equally well in an FPGA which forms only 
a portion of an integrated circuit. Furthermore, while logic 
cells are interconnected in an FPGA, the interconnection 
network of the present invention may be used to intercon 
nect arbitrary components, Such as multiple processors or 
peripheral blocks, of an integrated circuit. In fact, the 
interconnection network might be even on a separate inte 
grated circuit and is used to interconnect Separate integrated 
circuit devices. Accordingly, the above description should 
not be taken as limiting the Scope of the invention which is 
defined by the metes and bounds of the appended claims. 
What is claimed is: 
1. An integrated circuit comprising: 
a plurality of logic cells, and 
a rearrangeable programmable network interconnecting 

Said logic cells, Said programmable interconnection 
network having: 
a plurality of programmable Switches, each program 

mable Switch having a plurality of input terminals 
and a number of output terminals, Signals on any 
input terminal passed to any output terminal respon 
Sive to a programming of Said Switch, 

Said plurality of programmable Switches arranged in a 
Benes network So as to form a rearrangeable net 
work. 
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2. The integrated circuit of claim 1 wherein each of Said 
programmable Switches has two input terminals. 

3. The integrated circuit of claim 1 wherein said inte 
grated circuit comprises an FPGA. 

4. The integrated circuit of claim 1 wherein each pro 
grammable Switch has a plurality of latches responsive to 
clock signals passing Signals through Said programmable 
interconnection network in a pipelined fashion to avoid 
uncertainties in Signal routing delays through Said program 
mable interconnection network. 

16 
5. The integrated circuit of claim 1 wherein predetermined 

ones of programmable Switches each have a plurality of 
latches responsive to clock Signals passing Signals through 
Said programmable interconnection network in a pipelined 
fashion to avoid uncertainties in Signal routing delayS 
through Said programmable interconnection network. 
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