
USOO6940308B2

(12) United States Patent (10) Patent No.: US 6,940,308 B2
Wong (45) Date of Patent: *Sep. 6, 2005

(54) INTERCONNECTION NETWORK FOR A 5,349.248 A 9/1994 Parlour et al. 307/465
FIELD PROGRAMMABLE GATE ARRAY 5,519,629 A 5/1996 Snider 364/490

5.530,813 A 6/1996 Paulsen et al. 395/312
(75) Inventor: Dale Wong, San Francisco, CA (US) 5.987,028 A 11/1999 Yang et al. 370/380

6,693.456 B2 2/2004 Wong 326/41
(73) ASSignee: Leopard Logic Inc., Cupertino, CA

(US) FOREIGN PATENT DOCUMENTS

(c:) Notice: Subject to any disclaimer, the term of this EP O919938 6/1999 G06F/17/50
p is Sh adjusted under 35 p. O3O98353 4/1991 HO4L/12/48

a -- y U dayS.

OTHER PUBLICATIONS
This patent is Subject to a terminal dis
claimer. 66 - - - Chan et al., “Architectural Tradeoffs in Field-Program

mable-Device Based Computing Systems,” GPGAS for
(21) Appl. No.: 10/764,216 Custom Computing Machines, Procedings, IEEE Workshop
(22) Filed: Jan. 23, 2004 on Napa, CA, USA, Apr. 5–7, 1993, pp. 152-161.
(65) Prior Publication Data

US 2004/0150422 A1 Aug. 5, 2004 Primary Examiner Daniel Chang
(74) Attorney, Agent, or Firm Aka Chan LLP

Related U.S. Application Data (57) ABSTRACT

(63) Sinitie? Epig . 09/923.294, filed on Aug. 3, An interconnection network architecture which provides an
(60) Provisional application No. 60/223,047, filed on Aug 4, interconnection network which is especially useful for

2000. FPGAs is described. Based upon Benes networks, the result
(51) Int. Cl." H03K 19/173; G06F 7/38 ing network interconnect is rearrangeable So that routing
(52) U s c - 326/41; 32 63s. 710/317 between logic cell terminals is guaranteed. Upper limits on

58 Fi la fs- - - - - - - -h - - - - - - - - - - - - - - - - - s 326iss 39 40 time delays for the network interconnect are defined and
(58) Field of Search 326f41, 47: 71037 pipelining for high Speed operation is easily implemented.

s s The described network interconnect offers flexibility so that
(56) References Cited many design options are presented to best Suit the desired

U.S. PATENT DOCUMENTS

5,299,317 A 3/1994 Chen et al. 395/325

application.

5 Claims, 13 Drawing Sheets

Page 1 of 22 FLEX LOGIX EXHIBIT 1008

U.S. Patent Sep. 6, 2005 Sheet 1 of 13 US 6,940,308 B2

IO IO

Cell

Logic Cell
IO

IO

FIG. I.
(Prior Art)

I5

input A Output C

inputB Output D

input A Output C

inputB - Output D

"CROSS

FIG. 2B

Page 2 of 22

U.S. Patent Sep. 6, 2005 Sheet 2 of 13 US 6,940,308 B2

Page 3 of 22

U.S. Patent Sep. 6, 2005 Sheet 3 of 13 US 6,940,308 B2

level eve2 level 3 level4 Level 5

20 20 20

EEE input 20 20 20 Output

D D
FIG 3A

Level 1 level 2 Level 3 Level4 Level 5

Page 4 of 22

U.S. Patent Sep. 6, 2005 Sheet 4 of 13 US 6,940,308 B2

Page 5 of 22

U.S. Patent Sep. 6, 2005 Sheet 5 of 13 US 6,940,308 B2

To and From
Logic Cells

Page 6 of 22

U.S. Patent Sep. 6, 2005 Sheet 6 of 13 US 6,940,308 B2

Page 7 of 22

US 6,940,308 B2 Sheet 7 of 13 Sep. 6, 2005 U.S. Patent

FIG. 6B

r | | ! | | | | | | | | | | | | | | { | | | |-

FIG. 7

Page 8 of 22

US 6,940,308 B2 Sheet 8 of 13 Sep. 6, 2005 U.S. Patent

interconnect
NetWork

Page 9 of 22

U.S. Patent Sep. 6, 2005 Sheet 9 of 13 US 6,940,308 B2

al-AW as W
- W.

FIG. I3A

Page 10 of 22

U.S. Patent Sep. 6, 2005 Sheet 10 0f 13 US 6,940,308 B2

FIG. I. IA

FIG. I. IB

Page 11 of 22

U.S. Patent Sep. 6, 2005 Sheet 11 of 13 US 6,940,308 B2

User Selects Corner Turning
Option

User Selects
Crossbar Option

Mininuin
Area?

Corner Turning-No
Crossbars=4x4
Latches=No

orner Turning=Yes
Crossbars=32x32

atchessNo

Corner turning No
Crossbars=32x32

atches=0
Usef Selects
Latch Option

X)

User Specifies Number
of Logic Cells

Round Up to Power of Two

Calculate Dimensions of
Alternate Layouts

User
Size Constraint? No

Yes
Find Best-Matching User Selects

Layout Layout

CSX 1Y

Generate Array
FIG. I2

Page 12 of 22

U.S. Patent Sep. 6, 2005 Sheet 12 of 13 US 6,940,308 B2

FIG. 13B

"A. A. As a "It is a
"B1 B2B3B4 is a 34
"c c2cc, "Kkokk to it
"E. E. E. E. "Miss M .
E"FF Firs. E. N. N. N. N.
E"GC G364 E.00200
El H. Has H. P. pepp

FIG. 14A

Page 13 of 22

U.S. Patent Sep. 6, 2005 Sheet 13 of 13 US 6,940,308 B2

clerc,
EF FIF2
GH ge

To act
ABETF
coach

MIN
ktop

is was mana
a stor or

FIG. I.4B

it. ceil
Asia-62-Ass E FE2F2 EF
coca Dac Dachs G2H2 GH
is MBE, F, it

C4D4G4H4
44 M4N4. kop

2 2 is is MINIM2NaMN
Kalakalaoa Pao Pao P1
c EE

FIG. I.4C

Page 14 of 22

US 6,940,308 B2
1

INTERCONNECTION NETWORK FOR A
FIELD PROGRAMMABLE GATE ARRAY

CROSS-REFERENCES TO RELATED
APPLICATIONS

This patent application claims priority from Provisional
Patent Application No. 60/223,047, filed Aug. 4, 2000, and
is a continuation of U.S. patent application Ser. No. 09/923,
294, filed Aug. 3, 2001 is now a U.S. Pat. No. 6,693.456, all
of which are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

The present invention relates to integrated circuit inter
connections and, in particular, to the interconnection archi
tecture of FPGA (Field Programmable Gate Array) inte
grated circuits.
FPGAS are integrated circuits whose functionalities are

designated by the users of the FPGA. The user programs the
FPGA (hence the term, “field programmable”) to perform
the functions desired by the user.
A very significant portion of an FPGA's design is the

integrated circuit's interconnection network between the
logic cells or blocks, which perform the functions of the
FPGA. Heretofore, the current practice for designing an
FPGA interconnection architecture has been empirical and
on an ad hoc basis. The goal of the FPGA designer has been
to create an interconnect Structure which is Sufficiently
flexible to implement the required wiring for any circuit
design intended for the FPGA, and yet occupies a minimal
amount of area of the integrated circuit and with a minimal
amount of transmission delay. In today's FPGA products,
the interconnect network typically occupies about 90% of
the chip area and the actual logic cells occupy only about 5%
of the chip. In other words, most of the area of the integrated
circuit is not dedicated to the circuits performing desired
functions of the FPGA, but rather to the interconnections
between those circuits.

Furthermore, the current practice for designing FPGA
interconnects is empirical and on an ad hoc basis. The users
of these FPGA products spend most of their design time
trying to make their circuits route to obtain the desired
functions and to meet the timing constraints. The rule of
thumb is to only utilize 50% of the available logic cells in
order to guarantee they can all be routed through the
interconnect network. If the timing constraints are relatively
high speed, then the rule of thumb is to only utilize 33% of
the logic cells in order to avoid the need for detours and
longer delays in the routing.

Hence, there is a need for an FPGA interconnection
network architecture by which routing through the resulting
interconnect network is guaranteed and that the timing
constraints of the interconnect network are predictable. The
present invention provides for Such an interconnection net
work.

SUMMARY OF THE INVENTION

The present invention provides for an integrated circuit
having a plurality of logic cells, and a programmable
network interconnecting the logic cells. The programmable
interconnection network has a plurality of interconnection
network input terminals, a plurality of programmable
Switches, each programmable Switch having a plurality of
input terminals and output terminals with the programmable
Switch arranged So that signals on any input terminal are
passed to any output terminal. The plurality of program

15

25

35

40

45

50

55

60

65

2
mable Switches interconnecting the plurality of interconnec
tion network input terminal to the interconnection network
output terminal are arranged in a Benes network So that
connections between the interconnection network input ter
minals and interconnection network output terminals are
rearrange able.
The plurality of programmable Switches are arranged in

hierarchical levels with a first level of the programmable
Switches having input terminals connected to the intercon
nection network input terminals and a last level of the
programmable Switches having output terminals connected
to the interconnection network output terminals. The levels
of the programmable Switches intermediate the first and last
level are arranged in a plurality of first rank Sub
interconnection networks equal to the number of Switch
output terminals. Each first rank Sub-interconnection net
work is connected to an output terminal of each program
mable Switch in the first level and connected to an input
terminal of each programmable Switch in the last level. In a
Similar arrangement, the first rank Sub-interconnection net
Works themselves are formed from Second rank Sub
interconnection networks and So forth.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of the interconnection architecture of
a current SRAM-based FPGA;

FIG. 2A is a diagram of one operation of a 2x2 Switch for
a Benes network, FIG. 2A is a diagram of another operation
of a 2x2 Switch for a Benes network; FIG. 2C is a block
diagram of the elements of a 2x2 Switch;

FIG. 3A illustrates the organization of an 8x8 Benes
network with 2x2 Switches in accordance with one embodi
ment of the present invention; FIG. 3B illustrates the inter
connection between the Switches at the first rank of hierar
chy; FIG. 3C illustrates the interconnection between the
Switches at the next lower rank of hierarchy; FIG. 3D shows
the complete interconnection of the 8x8 Benes network;
FIG.3E is an example of a permutation of connections in the
8x8 Benes network to reverse the order of input signals at
the output terminals of the network,

FIG. 4A shows how the 8x8 Benes network is folded for
an FPGA interconnection network in accordance with an
embodiment of the present invention; FIG. 4B shows the
resulting folded Benes network; FIG. 4C illustrates the FIG.
4B folded network in which the interconnections have been
inverted by level;

FIG. 5 shows two exemplary logic cells connected to a
combined Switch of the FIG. 4C network in which the
combined Switch provides for corner turn routing in accor
dance with an embodiment of the present invention;

FIG. 6A illustrates the four elementary states of the
combined Switch; FIG. 6B illustrates 10 additional states of
an enhanced combined Switch for corner turn routing in
accordance with the present invention;

FIG. 7 is a block diagram of the enhanced combined
Switch described with respect to FIGS. 6A and 6B;

FIG. 8 illustrates the four states with the input stage of the
combined Switch having fanout capability;

FIG. 9 illustrates an exemplary arrangement to create
fanout functions with an FPGA interconnect network in
accordance with an embodiment of the present invention;

FIG. 10 shows a pair of enhanced switches with timing
latches in accordance with an embodiment of the present
invention;

FIG. 11A is a block diagram of an exemplary circuit
pipeline with mismatched delay paths; FIG. 11B is a block

Page 15 of 22

US 6,940,308 B2
3

diagram of a modified FIG. 11A circuit pipeline with the
delay paths corrected in accordance with an embodiment of
the present invention;

FIG. 12 is a flow chart of a software generator for an
FPGA, in accordance with an embodiment of the present
invention;

FIG. 13A illustrates an exemplary column-based floorplan
layout of an FPGA according to an embodiment of the
present invention; FIG. 13B illustrates how two of the FIG.
13A columns are interconnected;

FIG. 14A shows the column-based layout of FIG. 13B
with all the cells labeled; FIG. 14B illustrates the same
topological network arranged in a tree-based layout in
accordance with the present invention; and FIG. 14C shows
a modification of the FIG. 14B tree-based layout with
wirelengths between switch levels minimized.

DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

Current SRAM (Static Random Access Memory)-based
FPGA products conform to the interconnect architecture as
illustrated in FIG. 1: The basic structure of FIG. 1 has logic
cells 10, which implement the desired circuit logic by the
user, connection cells 11 which connect logic cells 10 to the
interconnect network, and Switch cells 12 which implement
the interconnect network. Additional connections are made
between a Switch cell 12 and its four neighboring Switch
cells 12 in the north, east, west, and South directions. The
Switch cells 12, connection cells 11, and all their wires and
connections constitute the interconnect network of the
FPGA. This basic unit is arrayed to build FPGAs of varying
SZCS.

The flexibility of this architecture lies within the connec
tion cell 11 and the Switch cell 12. In common terminology,
a fully “populated” connection cell 11 will connect each pin
of the logic cell 10 to every wire connecting to the Switch
cell 12. A “depopulated” connection cell 11 will connect
each pin of the logic cell to a Subset of the wires connecting
to the Switch cell 12, with each pin connecting to a different,
possibly overlapping, Subset of wires. Similarly, a fully
“populated” Switch cell will provide full crossbar connec
tions between all the wires on all four of its Sides, and a
“depopulated” Switch cell will only provide a subset of these
connections. Lastly, the Set of wires between any two cells
is called a “channel”, and the number of wires in a channel
can be varied.

Each possible connection in the FPGA interconnect net
work requires its own pass gate and controlling configura
tion bit. A fully populated interconnect network is prohibi
tively expensive to implement and the current practice has
been to build a parameterized Software model that can
represent varying depopulated interconnect networks. Then
various representative logic designs are tried onto the mod
eled networks. Based on this empirical data, a judgment
must be made about what constitutes an “acceptable' inter
connect network in terms of routability versus implementa
tion cost. This is an ad hoc proceSS Since there are no
theoretical guarantees of routability, i.e., that the desired
interconnections can actually be made.
A further complication in the above empirical proceSS has

been that the demands on the interconnect network do not
Scale linearly with the number of logic cells in the array. In
other words, an interconnect network that Seems to route
most designs on an array with 1 Klogic cells cannot simply
be replicated for a 64K logic cell array. AS Seen empirically,
the routing demands grow exponentially, but these demands

15

25

35

40

45

50

55

60

65

4
are highly dependent on the exact algorithms used to imple
ment the design. Specifically, it depends on the algorithms
used to map the original circuit design onto the logic cells,
to place the logic cells on the array, and to route (connect)
the logic cells to each other. There is currently no precise
theoretical model of this growth in wiring demand, although
current practice has been to approximate the wiring demand
with stochastic models. The use of these models entails
Some assumptions for certain coefficients, which are based
on empirical data, and So current practice is Still an ad hoc
proceSS.

In contrast, the present invention provides for an FPGA
interconnection network architecture which creates inter
connection networks which are “rearrangeable, i.e., any
permutation of interconnections from the network's input
terminals to the output terminals can be implemented. The
resulting FPGA network interconnect has guaranteed rout
ing with defined maximum timing delayS and is Scalable.
The present invention uses the So-called Benes network,

which has been the Subject of research in the telecommu
nications field, Specifically for Switching networks. Gener
ally described, a Benes network interconnects a number of
network input terminals to a number of network output
terminals. Between the input and output terminals are
Switches, each Switch itself having input terminals and a
number of output terminals and the ability to pass Signals on
any input terminal to any output terminal. The Switches are
connected in hierarchical levels with a first level of Switches
having input terminals connected to the network input
terminals and a last level of the Switches having output
terminals connected to the network output terminals. The
levels of the Switches intermediate the first and last levels are
arranged in a plurality of first rank Sub-interconnection
networks equal to the number of Switch input (and output)
terminals, each first rank Sub-interconnection network con
nected to an output terminal of each Switch in the first level
and connected to an input terminal of each Switch in the last
level. The first rank Sub-interconnection networks are
formed by Second level Switches having input terminals
connected to the output terminals of the first level switches
and Second-to-the-last level Switches having output termi
nals to the input terminals of the last level of Switches. The
levels of Switches intermediate the Second and Second-to
the-last level are arranged in a plurality of Second rank
Sub-interconnection networks equal to the number of Switch
output terminals with each Second rank Sub-interconnection
network connected to an output terminal of each Second
level Switch and connected to an input terminal of each
Second-to-the-last level Switch.
A Switch level hierarchy is formed because each rank

Sub-interconnection network is formed like the rank Sub
interconnection network above. That is, each rank Sub
interconnection network is formed by a plurality of Switches
in one level, the Switches having input terminals connected
to output terminals of Switches of a Sub-interconnect net
work rank immediately higher; and a corresponding level of
Switches having output terminals connected to input termi
nals of Switches of the Sub-interconnect network ran imme
diately higher; and the levels of the Switches intermediate
the Switches in the one and corresponding levels arranged in
a plurality of lower rank Sub-interconnection networks equal
to the number of Switch output terminals, each lower rank
Sub-interconnection network connected to an output termi
nal of each Switch in the one level and connected to an input
terminal of each Switch in the corresponding level. To define
the hierarchical level arrangement of the Switches.
The particular Benes network described immediately

below explains the Switch hierarchy with specificity. This

Page 16 of 22

US 6,940,308 B2
S

network is also useful to implement an FPGA according to
the present invention.
Benes Network With 2x2 Switches
The building block of the described Benes network is the

2x2 (2 input, 2 output) Switch 20, having operations illus
trated in FIGS 2A and 2B. The 2x2 Benes Switch 20 has two
possible configuration modes: pass and croSS. In pass mode
illustrated by FIG. 2A, a signal on input A is passed Straight
to output C, and a Signal on input B is passed Straight to
output D. In cross mode illustrated by FIG. 2B, a signal on
input A crosses over to output D and a Signal on input B
crosses over to output C. A Single configuration or control bit
can control these two modes.

The Switching itself can be implemented with two 2:1
multiplexers or MUX's as shown by FIG.2C. The switch 20
has two MUXs 21 and 22 having two input nodes which are
each connected to one of the input terminals, input A or input
B, of the switch 20. The output node of the MUX 21 forms
the output terminal, output A, and the output node of the
MUX 22 forms the output terminal, output B, of the Switch
20. Both MUXS 21 and 22 are connected to a control line 23
which carries the configuration or control bit. The entire
Switch cell only requires 18 transistors in a CMOS
(Complementary Metal-Oxide-Semiconductor) implemen
tation of an integrated circuit.

These 2x2 Switches are connected in a Specific topology
to build a Benes network. For the purpose of illustration, the
arrangement of the 2x2 Switches 20 in an 8x8 Benes
network is shown in FIG. 3A. For a network with N inputs
and N outputs, N being a power of 2, there are (2*(logN)-
1) levels of Switches, each level consisting of N/2 switches.
In this example of an 8x8 network, each level has 4 Switch
cells and there are 5 levels. The interconnection between the
Switches 20 can best be understood by viewing the network
in a hierarchical arrangement, starting from the outside and
proceeding inwards. We can view the two outermost levels,
levels 1 and 5, in detail and view the inner levels as
hierarchical blocks, as illustrated by FIG. 3B. The inner
levels can be viewed as two hierarchical blocks, an Upper
Network 25 and a Lower Network 26. In level 1, each Switch
cell 20 has one output going to the Upper Network 25, and
one output going to the Lower Network 26. Similarly in
level 5, each Switch cell has one input from the Upper
Network 25, and one input coming from the Lower Network
26.

At the next level of the hierarchy of the Benes network,
the details of the Upper Network 25 and the Lower Network
26 are expanded in FIG. 3C. The Upper Network 25 is
formed by Switches 20 in levels 2 and 4, and Upper and
Lower Networks 27 and 28 respectively. The Lower Net
work 26 is formed by Switches 20 in levels 2 and 4, and its
own Upper and Lower Networks 29 and 30 respectively.
Each of these networks 27-30 are half the size of the higher
level networks 25 and 26 and are similarly decomposed into
their own Upper and Lower Networks: In this example of an
8x8 network, the bottom of the hierarchy has been reached
since the lower level networks 27-30 are Switches 20 in
level 3. For larger networks, a similar decomposition into the
Upper and Lower Networks may be performed until the
bottom of the hierarchy is reached. The complete intercon
nection of the constituent Switches 20 in the 8x8 Benes
network is illustrated by FIG. 3D.
The Benes network of FIG. 3D is not configured with only

the hard-wired connections between the Switch cells 20
illustrated. This network can potentially implement any
permutation of Signals on input terminals to output termi
nals. In order to configure the network to implement a

1O

15

25

35

40

45

50

55

60

65

6
specific routing, each Switch cell 20 must be individually
configured as either “pass” or “cross” mode described
previously. The example of FIG.3E shows the configuration
of the network to implement an order reversal from the
inputs to the outputs:

Note that there are many variations of the Benes network.
The hierarchical sub-division into Upper and Lower net
WorkS can be generalized to more than 2 Sub-networks, So
networks of the Size p", p>2, can be constructed. Also, the
sub-division does not require that the Sub-networks be of
equal size. This generalized construction leads to overall
Benes networks with arbitrary numbers of inputs and a
proportional number of Switch cells. All variants are simply
be referred to as Benes networks.

The Benes network is a very powerful and efficient
interconnection network with guaranteed routability. Its use
has not been more widespread because of the complexity of
the algorithm required to determine the appropriate configu
ration of the Switches for a specific routing. The Benes
network is “rearrangeable,” but not “non-blocking.” Non
blocking means that any input-to-output connection can
always be made, even if there are already existing connec
tions on the network. Rearrangeable is less powerful and
means that any input-to-output connection can be made, but
Some existing connections may need to be rerouted. In the
dynamic worlds of telephone Switching and data communi
cation networks, a Benes network would require that a
routing algorithm be performed every time a new connection
is requested. A Benes routing algorithm requires time
O(NlogN), but the network itself transmits data in time
O(logN). It takes longer to reconfigure the network than to
actually transmit the data through the network. Hence,
current practice in the data communications has to use more
expensive non-blocking Switches.

However, the present invention recognizes that in the
FPGA world, routing is not so dynamic. There is no real time
Set up and tear down of fleeting connections. Instead, in an
offline process, a circuit design is mapped onto the FPGA
integrated circuit once and the resulting interconnect con
figuration is used without change. Even in the application of
FPGA technology to the burgeoning field of “reconfigurable
logic', multiple configurations may be rapidly Swapped in
and out of the FPGA, but each configuration itself is never
changed. Presently, the offline routing process in an FPGA
requires on the order of minutes or even hours of execution
time. In contrast, the execution of a Benes routing algorithm
requires in the order of 10 Seconds (which is completely
unacceptable in a data communications network) in accor
dance with the present invention. This time is spectacularly
fast and routability is guaranteed.
Specific Implementation of Benes Network in FPGAs

There are a number of ways that the Benes network may
be adapted to make it more efficient as an interconnection
network for an FPGA or MPGA (Mask Programmable Gate
Array). In an FPGA, the logic is composed from building
blocks called “logic cells', and the logic cells contain both
input and output pins. An example of a typical logic cell is
a 2-input NAND gate. So an FPGA interconnection network
should have neighboring “leaf cells” which correspond to
the logic cells and which contain both inputs and outputs to
make the connections to the logic cells. This can be accom
modated by “folding in half the original Benes network,
and combining the Switch cells 20 from the first level and
last level, the Second level and Second-to-last level, and So
on. This is illustrated in FIG. 4A with the 8x8 network
example. The “folding” is made along the dotted line 31
which runs through the Switches 20 in level 3. The Switches

Page 17 of 22

US 6,940,308 B2
7

20 are labeled by location in the network to maintain
identification through the folding operation. The first num
ber in the labels identifies the level of the Switch and the
Second number its row location. Hence Switch with label,
“4.3," is in level 4 and row 3.

The resulting folded network is illustrated by FIG. 4B.
The Switches 20 are combined into two, with the formerly
level 3 switches duplicated for uniformity. While the com
bined Switches 32 represent a topological change of the 8x8
Benes network, it should be noted that the connections
between the cells 20 remain the same. The combined input
and output Switch cells 32 on the left of the folded network,
e.g., combined switches 1.2 and 5.2, form the leaf cells for
the connection to the pins of the FPGA logic cells.

From the connections between the combined Switches 32,
the network of FIG. 4B can be turned “inside out', that is,
the innermost levels of the combined Switches 32 become
the outermost and vice versa, as illustrated in FIG. 4C,
without affecting the routability of the interconnection net
work. The levels with shorter connections are moved be
closer to the logic cells. This is more suitable for an FPGA.
Corner Turning for Interconnection Network
With inputs and outputs combined into a single Switch cell

32, shorter routes between logic cells which don't travel
through all 2 (logN) levels of Switches can be configured.
In the original Benes network, every route must travel
through all the levels to go from input to output. In the
adapted interconnection network, Signals from the logic can
“turn the corner” before reaching the opposite side of the
network. For example, in FIG. 5, logic cell 41 has an output
pin that must be routed to an input pin on logic cell 42.
Of course, the particular advantage of corner turning in

the interconnection network depends on the quality of logic
cell placement algorithm for the FPGA. (Note that “place
ment” for an FPGA logic cell is not the physical placement
of Selected logic gates to form a desired function, but rather
the programming of a Selected logic cell to perform the
desired function.) The algorithm is designed to minimize the
distance between connected logic cells, where distance is not
defined as it usually is for an FPGA or MPGA. The usual
definition of distance in a placement algorithm is either
Euclidean or Manhattan. In present interconnection
network, distance is defined as the depth of the first common
ancestor in the network because a corner can be turned at
this point. The most appropriate placement algorithms build
cluster trees with capacity constraints, either top-down or
bottom-up. Nonetheless, regardless of the quality of logic
cell placement, the present invention Still provides the
original worst case bound of 2 (logN) Switches, no matter
how highly the network is utilized. In contrast, current
FPGA products cannot guarantee a worst case bound on
Signal delay when the integrated circuit is highly utilized.
Enhanced Switch for FPGAs

Corner turning requires that the original Benes Switch be
enhanced. It should noted that the original Switch had 2
States responsive to 1 configuration bit. See the description
above with respect to FIGS. 2A and 2B. Just by combining
the input and output Switches cells, the combined switch 32
has 4 States and requires 2 configuration bits. FIG. 6A
illustrates the four permutations of passing Signals from the
input terminals to the output terminals for the combined
Switch 32.

The corner turning feature adds 5 more States for the
“output lower half of the combined switch 32. When
multiplied by 2 states for the “input” upper half, there are a
total of 10 new states for the combined Switch 32. These
additional 10 states are illustrated by FIG. 6B. It should be

15

25

35

40

45

50

55

60

65

8
noted that for the corner turning States shown, there are only
two possible paths to turn a corner: Each of the two possible
corner turning outputs can only be connected to one of the
inputs, not both inputs. The unconnected input comes from
the same Switch as the one the output is going to. While there
may be Some possible use for this connection in terms of
Selectively adding variable delays to certain routes, the cost
of implementing additional configuration bits to all com
bined Switch cells to Support these paths is unjustified.
Of course, the increased number of States for the com

bined switch can not be satisfied by the two-MUX structure
of FIG. 2C. FIG. 7 is a block diagram of the combined
switch cell 32, which is formed by MUXs 61-66 which
operate by the Setting of configuration bits on five control
line nodes 71–75. MUXS 61 and 62 each have terminal
nodes connected to inputs A and B; control line node 71 is
connected to MUX 61 and control line node 72 is connected
to MUX 72. The output nodes of MUX 61 and 62 form the
outputs of the combined Switch 32. MUXs 63 and 65 are
connected so that the output node of the MUX 63 forms one
input node of the MUX 65; in effect, the MUXs 63 and 65
form a 3:1. MUX. The input nodes of the MUX 63 are
connected to the reverse direction inputs C and D, and the
second input node of the MUX 65 is connected to the input
B. The MUXS 64 and 66 form a second 3:1. MUX. The
output node of the MUX 64 forms one input node of the
MUX 66. The input nodes of the MUX 64 are also connected
to the reverse direction inputs C and D, and the Second input
node of the MUX 66 is connected to the input A. The output
nodes of MUX 65 and 66 form the reverse direction outputs
of the combined Switch 32. The control line node 73 is
connected in common to the MUXs 63 and 64. The control
line node 74 is connected to the MUX 65 and the control line
75 is connected to the MUX 66.
One further enhancement is required for a interconnection

network which is highly suitable for FPGAs. That enhance
ment is fanout Support. In an FPGA, the outputs frequently
fan out to multiple inputs. At the Switch level, fanout can be
supported in either the “output half or the “input' half of
the combined switch 32. However, in terms of routability for
one-to-many connections, the fanout must be in the input
half of the combined switch in order to break cyclic depen
dencies. Therefore, the preferred embodiment of the com
bined Switch cell 32 has 4 states in the input half of the
Switch, as represented by the four states in FIG. 8.
An alternative way of creating the fanout function is with

the use of logic cells which are connected through MUXs to
the interconnect network. Such an arrangement avoids the
placing of additional functionality upon the interconnect
network itself. An example of this arrangement is shown in
FIG. 9. Each logic cell is a 4-LUT (4 input Look Up Table).
There are four 4-LUTs 76-79 (having a total of 16 inputs)
with 4 outputs A-D respectively. These outputs A-D are
connected to the input nodes of each of 16 MUXS 80 which
have a total of 16 outputs. These outputs (as the inputs to the
4-LUTs 76–79), in turn, are connected to the enhanced
combined switch cells of the first (and last) levels of the
described Benes interconnect network. Through control Sig
nals on the MUXs, the outputs A-D can be selectively
placed into the interconnect network. With the repetition of
one of the 4LUT outputs A-D into the interconnect network,
a fanout is effectively created.

Hence, with the 7 possible states on the output half of the
combined Switch, the enhanced Switch has a total of 28
States. A Switch cell appropriate for an FPGA interconnect
network has been created from a simple 2-State Switch cell
which requires 1 configuration bit and capable of being

Page 18 of 22

US 6,940,308 B2

implemented with 18 transistors in CMOS. The 28-state
combined Switch cell requires 5 configuration bits and can
be implemented with 74 transistors in CMOS. The most
expensive enhancement, in terms of Silicon area, is the
corner turning feature. Without corner turning, the combined
Switch cell would only have 8 states, which require 3
configuration bits and can be implemented in 46 transistors
in CMOS. This is about a 38% reduction in silicon area for
the interconnect network alone. For the purpose of analysis,
assuming the logic cell is a 4-LUT (4-input Look-Up Table)
with a latched output and the array is built with 16K logic
cells (a 64K gate equivalent), a 33% reduction in the total
FPGA area may be achieved. Table A below compares the
results of a combined Switch cell with and without corning
turning:

TABLE A

Switch
Cell
Tran- Logic Cell Area Per FPGA FPGA Area
sistors Transistors Transistor Total Area Percentage

With 74 270 O.OOOOO4 153 100%
Corner
Turning
Without 46 270 O.OOOOO4 102 67%
Corner
Turning

AS discussed previously, corner turning is highly desir
able for reducing the signal delay due to routing. The FPGA
user should be able to make the design tradeoff whether a
specific project needs a faster chip or a smaller chip. The
interconnect network according to the present invention
provides many options to the FPGA user. An even higher
Speed, larger area alternative is discussed below.
Pipelined Interconnect and Predictable Delays Through the
Interconnect Network

Even with the enhanced combined Switch, the present
invention provides for further improvement. The biggest
problem in semi-custom VLSI (Very Large Scale
Integration) design today is the signal delays due to an
integrated circuit's interconnection network. With deep Sub
micron fabrication processes and its thin resistive wires, the
delay due to interconnect dominates any delay due to the
logic cells. This problem is even worse in an FPGA because
there is the additional interconnect delay due to the Switch
cells in the routing. The difficulty arises in trying to either
predict or constrain the routing delayS.

The current practice for VLSI design is to estimate the
delay due to routing during the logic design Stage. The
estimation is done by Statistical wire loading models or by
rules-of-thumb which limit the levels of logic between clock
cycles. Then the actual placement and routing of the logic is
performed, and the prior estimates are usually passed on as
constraints to these algorithms. However, constraint driven
place-and-route algorithms are Still an open problem, and So
there still must be a timing verification Stage after these
programs are run. Usually there are timing violations and the
designer has different options. He or She can try to tweak the
placement and routing to meet the timing constraints. This is
largely a matter of patience and luck. If this fails, he can go
back and modify the logic design based on the actual timing
from the place-and-route. Then he tries to place and route
routine again with the hope that the process will converge
and there will be no new timing violations. However,
placement algorithms have been theoretically proven to be
highly Sensitive to even Small changes, So the delay profile

15

25

35

40

45

50

55

60

65

10
of the modified logic design may be very different from what
was hoped. This is usually a highly iterative and lengthy
process. In practice, VLSI designers have learned not to be
aggressive with their timing estimates and constraints, So
that the process will converge more rapidly. Most current
FPGA designs only run at 50–100 MHz.
With an interconnect network according to the present

invention, a totally different design methodology is possible.
All the problems arising from variable interconnect delayS
and the need to predict and constrain them are avoided. The
described interconnect network provides for a uniform
multi-stage network as illustrated in FIG. 10. A representa
tive pair of neighboring enhanced switches 48 and 49 are
shown. The inputs of the Switch cells 48 and 49 have latches
50 to pipeline the signals routed through the network. The
latches 50 in the Switch cell 48 are responsive to one edge
of a clock signal and the latches 50 in the Switch cell 49 are
responsive to the other edge of the clock signal. Alternating
Switch levels in the interconnect network can thus be rising
or falling edge-triggered of a clock signal. In a fully pipe
lined design, the clock can operate as fast as the slowest
Stage in the network, and should be capable of Supporting
clock rates up to 1000 MHz.
To maximize throughput, every Switch level of the inter

connect network may be latched. On the other hand, if such
a high clock rate is not needed, every few levels may be
latched for a lower clock rate and throughput. Each latch
requires 10 transistors to implement, So that each unlatched
Switch cell is 46% smaller than its latched version.
Alternatively, latches may be included in every level, but
with a 2:1 MUX, one input being the output of the latch and
the other being the input to the latch. The MUX serves as a
field programmable bypass to the latch, and allows field
control of the number of Switch levels between the latches.
In this manner, the number of Switch levels between latches
and whether they include the bypass MUXS is placed under
the control of the FPGA user.

For a fully pipelined design, a logic cells input signals
must arrive at the same time. The described interconnect
network can disable corner turning (either in the routing
algorithm or in the FPGA network generator) so that every
route passes through exactly 2 (logN) levels and the delay
is known a priori. Then the only Source of Signal delay
variation arises from the differing levels of logic along the
paths for different input pins for a given logic cell in the
user's logic design.

FIG. 11A represents Such an example. Two Sets of data are
presented in queues, one Set for logic cell 51 and the other
set for logic cell 52. The corresponding data from both sets
are to be processed by logic cell 54. With the assumption that
each route has a delay of 1 ns and each logic cell 51 and 52
has a delay of 1 ns, then the upper path (with logic cell 51)
has a delay of 2 ns and the lower path (with logic cells 52
and 53 and a path between the two logic cells) has a delay
of 4 ns. This design will not operate correctly in a fully
pipelined mode. By the time Data 1 arrives at logic cell 54
along the bottom path, Data 1 has already passed logic cell
54 along the upper path. Instead Data 2 is present.

But with a minor modification, the present invention
allows the design to be pipelined and to operate the clock at
1 ns. FIG. 11B shows the insertion of a buffer 55 along the
upper path between the logic cells 51 and 54. Buffers can be
inserted without affecting the logic of the design. In fact,
most commercial place-and-route tools will insert buffers on
Signals with long routing lines in order to improve their
overall delay; this is done transparently for the user. The
present invention allows buffer insertion to be made simply
because the Signal delays through the interconnect network
are known.

Page 19 of 22

US 6,940,308 B2
11

Hence the present invention offers a methodology for
fully pipelined design as follows: analyze a given netlist to
identify existing mismatches in delay paths, optionally, the
user may modify his or her netlist to eliminate the mis
matches; for each mismatch, insert buffers to lengthen the
Shorter paths until the delay paths match; determine what
Size array is required for the modified netlist; and perform
place-and-route without corner turning. This methodology
does not require iteration as current methodologies do. This
is because of two properties of interconnection network of
the present invention: 1) the delay of every routing path is
known a priori; and 100% routability for a given array is
guaranteed, a property of the Benes network.

The described methodology Supports fully pipelined
operation at very high clock rates. It should be noted that
pipelining yields a Signal processing throughput propor
tional to the clock rate, but the Signal processing latency is
Still proportional to the levels of logic and interconnect.
Latency Control
The present invention permits even further efforts to

reduce latency. One potential drawback of using a multi
Stage network as an interconnect network is the potentially
long latency of a route. Although corner turning reduces the
average length of the routing, the worst case length is still
2*(log-N) levels, as explained above. While the perfor
mance of an FPGA with the described interconnection
architecture is Superior than existing FPGA products, there
is room to control worst case latency. This can be done
without giving up guaranteed routability, known delays, or
pipeline Support, but at the expense of more Silicon area.

Because of the hierarchical Structure of a Benes network,
the Benes network can be recursively constructed. The
Upper Network and Lower Network are themselves
expanded into Benes networks, each with half the number of
inputs and outputs of the original network. See FIG. 3B. In
essence, each of these Sub-networks Simply guarantees a
means of routing any of its inputs to any of its outputs.
Functionally, this is a crossbar Switch. A Benes network is a
much more area efficient method of implementing a rear
rangeable crossbar. The Size of a Benes network grows by
N*log2N, whereas the size of a crossbar grows by N°.
However, maximum latency can be reduced if just the lowest
levels of Benes networks are Substituted with crossbars. The
following Table B illustrates the relative areas, in 0.18
micron technology, for a 16K logic cell array:

TABLE B

Inputs to
Sub-Network Levels Reduced Benes Total mm2 Crossbar Total mm2

16 7 9.7 11.0
32 9 12.1 24.2
64 11 14.5 543
128 13 17.0 122.O
256 15 19.4 273.7

Thus the replacement of the 16x16, 32x32, or even the
64x64 Sub-networks in the described interconnect networks
are viable and attractive options. Nonetheless, the option
which should be selected depends on the constraints of the
Specific application.
Parameterized Array Generation

In accordance with the present invention, the described
interconnect network has Several options which trade off
area, latency, and throughput. To take advantage of this
flexibility, different families of FPGA products, each family
optimized for different design objectives, may be created.
Perhaps a better way is to provide an FPGA array generator

15

25

35

40

45

50

55

60

65

12
program to the end user. Such a generator-based methodol
ogy allow the user to explore various tradeoffs for his or her
Specific application. In addition, the generator allows the end
user to Specify the Size and shape of the array desired. This
enables the user to fit an FPGA component onto a larger
VLSI chip floorplan with other components, a further advan
tage of the present invention.
A Summary of the features of the interconnect network

options that have been described so far is listed in Table C:

TABLE C

Objective Corner Turning Crossbars Latches

Typical Yes No No
Minimum Area No No No
Minimum Latency Yes Yes No
Maximum Throughput No Yes Yes

Each of these options is a control on the Software gen
erator having a top level flow chart as shown in FIG. 12, in
accordance with the present invention. The Corner Turning
control either includes or excludes the corner turning
MUX's and their configuration bits for all switch cells. The
Crossbar control offers a set of choices (e.g., 4, 8, 16, or 32)
for the level of Sub-network to be replaced with crossbars.
The Latch control offers a set of choices (e.g., 0, 1, 2, or 3)
for the number of levels of unlatched Switches between
latched Switches. In addition, the generator offers a "novice
user” mode for users who are not familiar with the details of
the described interconnect network. In the novice user mode,
there are only three choices: Minimum Area, Minimum
Latency, or Maximum Throughput. Selection one of these
choices instructs the generator to Set the Corner Turning,
Crossbars, and Latches options with appropriate defaults.

Besides the above options for the generation of the
interconnect network, the generator also accepts parameters
for the other components of the FPGA array. The user can
specify the total number of primary IO's (Input/Output
terminals) for the array. Optionally, the number of IO's per
Side (north, east, west, or South) can be specified. If the
number of IO's per side is not specified, the total number of
IO's are evenly distributed around the array. In addition, if
the Sides have been Specified, a list of the exact offset
location for each IO may optionally be specified. The
generator performs all the necessary design rule checks. For
the logic cells, the user can Specify the total number of logic
cells desired and the generator then rounds up to the nearest
power of two. After the number of logic cells is specified, the
generator offers a choice of feasible layouts with their
various width and height dimensions. Optionally, the user
may specify either a maximum width or a maximum height,
and the generator automatically Selects the layout which
most closely conforms to this constraint.

Lastly, the Generator can be incorporated into a broader
automated methodology which includes the user's design
logic Synthesis. From the output of the logic Synthesis
program, the methodology automatically determines the
number of primary IOS and logic cells, and then invokes the
generator with these parameters. An optional “fudge' factor
can be specified by the user (e.g. 10%) to instruct the
generator to create an array with the Specified number of
additional logic cells over the number required by the
Synthesized logic.

Because the array is field programmable, the user may
wish to specify more logic cells than are absolutely required
by the given design. These extra cells can be used in the field
to accommodate future bug fixes and enhancements. It is

Page 20 of 22

US 6,940,308 B2
13

even possible to accommodate a user who has only a general
idea of the logic design, but can Specify the maximum gate
count anticipated, and does So in order to begin the manu
facturing of his or her ASIC (Application Specific Integrated
Circuit) before the final logic design is finished. It is also
possible to accommodate the user who wants a Single array
to be able to accept more than one design. For example, the
user may want his product to be able to interface many
alternative external memory devices, each requiring differ
ent protocols or timing, and the final Selection of interface is
field configurable.
Layout for FPGA Array

There are two viable floorplans to map the topology of
present inventions interconnect network onto a physical
layout, i.e., on the Surface of the Substrate of an integrated
circuit. The first floorplan is tree-based, and the Second
floorplan is column-based. Each floorplan has its own
advantages and disadvantages.
The most straightforward mapping is column-based. With

the previous illustrations of the Benes interconnect network
and columns of logic cells added, the layout is nearly
completed. See FIG. 13A. There are two logic cells 81 per
Switch cell 82, connected in the so called “butterfly” pattern,
consistent with the Benes network topology: More
generally, an input-output pin-pair of a logic cell forms the
leaves of the Benes interconnect network. So if a logic cell
has many pins, there are a number of Switch cells connected
to it. For example, if the logic cell is a 4-input, 1-output
Look Up Table (see FIG. 9), the single output pin is fanned
out 4 times to form 4 pin-pairs for each cell, and there are
2 Switch cells in the first level of the Benes network
connecting to each logic cell.

For multiple column arrays, levels of Switch cells are
added to each column's Sub-network. The new levels are
connected together between columns in a topology consis
tent with a Benes network. See FIG. 13B in which a level of
Switch cells 83 are added to make the connection between
two FIG. 13A column arrays. For each additional doubling
of the number of cell columns, an additional column of
Switch cells must be added to each of the cell columns, and
the Span for connecting these new columns to each other
doubles as well. AS before, each columns top-level inputs
and outputs are connected to the primary I/O of the FPGA.
The strength of this column floorplan is that the number

of cells in a column can be any power of 2, and the number
of rows can also independently be any power of 2. This
enables the generation of arrays containing numbers of cells
that are any power of 2, and with a Selection of various
aspect ratios. On the other hand, the weakness of this column
floorplan is that the long inter-column connections for
Several levels can all pass in parallel over the same area. The
floorplan may be limited by the metal pitch constraints of the
Semiconductor proceSS used to manufacture the FPGA, and
the floorplan may also have crosstalk problems. These issues
must be addressed carefully in the leaf cell design for the
Software generator.

The other viable floorplan maps the Benes topology onto
a hierarchical tree layout. It is most clearly understood by
showing the cell-to-cell correspondence with the column
floorplan. FIG. 14A shows a 16 logic cell column floorplan
(the same as shown in FIG. 13B) with the cells labeled for
identification; FIG. 14B shows the equivalent network laid
out in a hierarchical tree floorplan. The advantage of this tree
floorplan is that the maximum wire length for any connec
tion is only a quarter of the width of the Substrate Surface;
whereas in the column floorplan, the maximum wire length
is a half the width of the chip. Furthermore, in the tree

15

25

35

40

45

50

55

60

65

14
floorplan the Switches can be “slid” along their hierarchical
connection paths in order to evenly distribute the wire
lengths between levels and to thus minimize the longest wire
length. FIG. 14B is used as an example of sliding the
Switches towards the center, where the maximum wire
length is now 2, instead of the original 3. The resulting
layout is illustrated in FIG. 14C.

This rearrangement, in turn, minimizes the size of the
circuit drivers in the Switch cells. This can be significant if
the same Switch cell is used everywhere in the generator.
Minimizing the longest wire is also significant in pipeline
operation because the clock rate is limited by the slowest
level in the network. On the other hand, the disadvantage of
this tree floorplan is that it does not pack the Substrate
Surface perfectly and leaves Some open Spaces. Additionally,
the aspect ratio of the array is fixed.

All these various floorplans still implement the same
topology of the disclosed interconnect network. In fact, a
Straightforward Software method can mechanically trans
form between the various floorplans, even after place-and
route has been performed. Other than the physical locations
of the cells, the only remaining question is the delay of the
physical interconnect wires. This can be approximated with
Simple resistance and capacitance models Since interconnect
wires have no branches. These simple models cannot
account for the croSStalk and interlayer parasitics, but they
should be sufficient for all the design stages before full-chip
Verification.
Applicability to MPGA

Finally, the disclosed Benes interconnect network can
also be applied to MPGAs (Mask Programmable Gate
Arrays). This is accomplished as a post-processing Step
where each Switch cell used in the routing is replaced with
either a metal via or an end-to-end concatenation of two
Same layer metal wires, depending on the orientation of the
wires. The advantage over existing MPGA interconnect
architectures is the guaranteed routability, Support for
pipelining, as well as the fast execution Speed of the place
and-route algorithms.
While the foregoing is a complete description of the

embodiments of the invention, it should be evident that
various modifications, alternatives and equivalents may be
made and used. For example, while the foregoing descrip
tion is that of an FPGA integrated circuit, the present
invention works equally well in an FPGA which forms only
a portion of an integrated circuit. Furthermore, while logic
cells are interconnected in an FPGA, the interconnection
network of the present invention may be used to intercon
nect arbitrary components, Such as multiple processors or
peripheral blocks, of an integrated circuit. In fact, the
interconnection network might be even on a separate inte
grated circuit and is used to interconnect Separate integrated
circuit devices. Accordingly, the above description should
not be taken as limiting the Scope of the invention which is
defined by the metes and bounds of the appended claims.
What is claimed is:
1. An integrated circuit comprising:
a plurality of logic cells, and
a rearrangeable programmable network interconnecting

Said logic cells, Said programmable interconnection
network having:
a plurality of programmable Switches, each program

mable Switch having a plurality of input terminals
and a number of output terminals, Signals on any
input terminal passed to any output terminal respon
Sive to a programming of Said Switch,

Said plurality of programmable Switches arranged in a
Benes network So as to form a rearrangeable net
work.

Page 21 of 22

US 6,940,308 B2
15

2. The integrated circuit of claim 1 wherein each of Said
programmable Switches has two input terminals.

3. The integrated circuit of claim 1 wherein said inte
grated circuit comprises an FPGA.

4. The integrated circuit of claim 1 wherein each pro
grammable Switch has a plurality of latches responsive to
clock signals passing Signals through Said programmable
interconnection network in a pipelined fashion to avoid
uncertainties in Signal routing delays through Said program
mable interconnection network.

16
5. The integrated circuit of claim 1 wherein predetermined

ones of programmable Switches each have a plurality of
latches responsive to clock Signals passing Signals through
Said programmable interconnection network in a pipelined
fashion to avoid uncertainties in Signal routing delayS
through Said programmable interconnection network.

Page 22 of 22

