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United States Patent Office 3,358,269 
Paterated Dec. 2, 1967 

3,358,269 
SQUARE SWITCH DISTRIBUTION NETWORK 
EMPLOYNG. A. MNMALL NUMBER OF 
CROSSPONTS 

Waclav E. Benes, Chester, N.J., assignor to Bei Telephone 
Laboratories, Incorporated, New York, N.Y., a corpo 
ration of New York 

Filed Apr. 10, 1964, Ser. No. 358,712 
9 Claims. (C. 340-166) 

ABSTRACT OF THE DISCLOSURE 
A rearrangeable symmetrical distribution network is 

disclosed for connecting any one of N input terminals 
to any one of N output terminals where N is any positive 
integer such that 22:33 . . . k"k is the prime decomposi 
tion of N into a product of prime numbers raised to inte 
ger exponents. The network includes 

2(a)- 
interconnected stages if the largest prime factor of N 
exceeds three or if it equals three and N is odd, or 

2(S o)-3 
interconnected stages if the largest prime factor of N 
equals two or if it equals three and N is even. Each stage 
includes a plurality of square switches of like size. The 
number of inputs and outputs of each stage equals N. 

This invention relates to switching circuits and, more 
specifically, to a distribution switching networb employ 
ing a minimal number of crosspoint contact pairs. 

Pursuant to relatively recent innovations in the elec 
tronic and magnetic arts, much effort is currently bein 
directed towards the development of economic telephone 
Systems employing electronic switching principles. Such 
arrangements are inherently capable of faster operative 
speeds and increased flexibility than were prior telephone 
communication embodiments. 

Experience with electronic telephone switching systems 
has indicated that the crosspoint switches found in signal 
distribution switching arrays included therein comprise 
a greater percentage of the over-all system cost than 
these circuit combinations did in older, electro-mechan 
ical switching arrangements. Accordingly, electronic tele 
phone systems require distribution networks comprising 
a minimal number of crosspoints. In addition, it is fur 
ther desirable that such connecting networks be rearrange 
able, i.e., allow each idle inlet to be connected to each 
idle outlet by rearranging the existing connection pattern. 
An illustrative rearrangeable network, along with com 
mon control equipment associated therewith, is disclosed 
in a copending application by M. C. Paull, Ser. No. 154,- 
477, filed Nov. 24, 1961 (now patent 3,129,407 issued 
Apr. 14, 1964). However, the above-described combina 
tion of features in a distribution connector, viz., rear 
rangeability and a crosspoint minimum, are in general 
conflicting, and have therefore not been embodied in prior 
art switching structures. 

It is thus an object of the present invention to provide 
an improved distribution switching network. 
More specifically, an object of the present invention is 

the provision of an economical, rearrangeable distribu 
tion network which includes a minimum number of cross 
point switches. 

It is another object of the present invention to provide 
a distribution connector which may easily and inexpen 
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2 
sively be fabricated from a plurality of similar circuit 
combinations. 

These and other objects of the present invention are 
realized in a specific, illustrative, rearrangeable symmet 
rical distribution connector which includes a minimum 
number of crosspoints for each input and output ter 
minal connected thereto. The composite distribution net 
work includes an odd number of stages each comprising 
a plurality of square switches of a like size. 

Corresponding to N input and N output terminals, 
where N is any positive integer whose prime decomposi 
tion 2's 38 . . . k"k includes a prime factor greater than 
three or includes a prime factor equal to three and N 
is odd, the switching structure includes 

2(S o)-1 
stages. Where the largest prime factor of the prime de 
composition of N is equal to three and N is even or 
where the largest prime factor is equal to two, the switch 
ing structure includes 

2(S)-3 
stages. Each stage includes a plurality of square switches 
of like size. In the first situation mentioned above, the 
number of square switches included in each stage is de 
rived by dividing N by a corresponding prime factor. In 
the second situation the number of square switches in 
cluded in each stage except the middle stage is also de 
rived by dividing N by a corresponding prime factor. 
The middle stage in this latter case includes either four 
or six square switches depending on the value of N. 
The total number of crosspoints included in the instant 

connector is proportional to N log N, which compares 
favorably with the N factor characterizing prior art square 
matrix switches. 

It is thus a feature of the present invention that a 
distribution switch include a plurality of switching stages 
each comprising a plurality of like size, square switches. 

It is another feature of the present invention that 
a distribution network comprise a like number of inlets 
and outlets, an odd number of symmetrically-connected 
switching stages each employing like-sized square switches, 
wherein the network comprises a minimum number of 
crosspoint contact pairs. 

It is still another feature of the present invention that 
a symmetrical distribution network employing square 
switches comprise N input and N output terminals, and 
S switching stages serially connected between the input and 
output terminals, where s 

when the largest prime factor of the prime decomposition 
of N is greater than three or is equal to three and N is 
odd, and 

k 

Sas 2(s o)-3 j=2 

when the largest prime factor of the prime decomposition 
of N is equal to two or is equal to three and N is even. 
A complete understanding of the present invention 

and of the above and other features, advantages and 
variations thereof may be gained from a consideration of 
the following detailed description of an illustrative em 
bodiment thereof presented hereinbelow in conjunction 
with the accompanying drawing, in which: 
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FIGS. 1 (A) and 1 (B) are schematic diagrams respec 
tively illustrating the upper and lower halves of a distri 
bution network which embodies the principles of the 
present invention; and 

FIG. 2 is a graph comparing the number of cross 
point switches employed in the instant class of distribution 
arrangements with the number of corresponding elements 
required in prior art square matrix embodiments. 
As indicated above, it is considered important in the 

switching art to provide a rearrangeable distribution net 
work which connects each of N input terminals, or inlets, 
to each of N output terminals, or outlets, and which em 
ploys a relatively small number of crosspoint switches. 
Accordingly, one aspect of the present invention is the 
provision of a distribution network which employs an 
absolute minimum number of crosspoints for the class of 
rearrangeable distribution connectors which comprise an 
odd number of serially-connected symmetrically-arranged 
switching stages each employing square switches. Each 
square switch, in turn, comprises a matrix array including 
a like number of inlets and outlets which are intercon 
nected via a plurality of crosspoint switches. The cross 
point switches may advantageously comprise electronic 
devices, such as PNPN rectifiers or transistors, or elec 
tromechanical elements such as relays. 
The over-all network is symmetrical to facilitate the 

fabrication thereof and also to simplify the associated 
common control circuit which may advantageously be of 
the type disclosed in the aforementioned Paul applica 
tion. Further, the serially-connected switching stages 
include square switches to further facilitate the fabrication 
of the present distribution network. 

General network structure 
A distribution network constructed according to the 

principles of the present invention is exactly defined when 
the number of switching stages, the composition of each 
stage, and the interstage linkage patterns are specified. 
The former two criteria are dependent upon the particular 
value of N, corresponding to the N input and N output 
terminals to be interconnected by the composite distri 
bution network. The precise nature of this dependence is 
given hereinbelow. 
As is well known, every integer N has associated there 

with a corresponding prime decomposition into a product 
of prime numbers each raised to an integer exponent. That 
is, for every integer N, there exists a sequence of prime 
factors 2, 3, 5, . . . k such that 

N-22.3's .55 . . . k.k. (1) 
where the or exponents may take on any integer value 
including zero. For example, the integer 126 has the prime 
decomposition. 

126-21. 32.50.71 
Also, it is well known that there is only one, unique prime 
decomposition for any particular integer. 
With the above in mind, a distribution network embody 

ing N inlets and N outlets is derived as follows. The case 
where the number of switching stages S is given by 

k W 

S -(2 o)-1 2. (3) 
will be considered. In this case, the central switching stage 
includes N/k square switches each comprising k inlets 
and outlets. The remaining switching stages are sym 
metrically distributed about the aforementioned central 
stage and comprise N/f square switches each having f 
inlets and outlets, where f is the corresponding prime 
factor included in the prime decomposition of N. Each 
prime factor f gives rise to 2 of switching stages, where 
of is the corresponding exponent of the prime factor f, 
with these switching stages being symmetrically connected 
on both sides of the central switching stage. 

Adjacent ones of the serially-connected switching stages 

(2) 
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4. 
are interconnected in a repeating, overlapping manner. 
That is, a junctor connects the first outlet of the first (or 
top-most) switch includes in a left-hand switching stage 
with the first inlet of the first switch in the right-adjacent 
stage. The second outlet on the first switch of the left stage 
is joined with the first inlet of the second switch of the 
adjacent switching stage. This connection pattern con 
tinues until each switch of the right stage has one junctor 
connected thereto. At this point, the process starts over 
again with the first switch, continuing cyclically until all 
the junctors emanating from the left stage have been 
assigned. 

It is noted that the above relationships define a complete 
distribution structure for any value of N. The structure 
embodying the above-described class of distribution net 
Works, and the particular method of fabrication thereof, 
will become more clear from the discussion hereinafter of 
a particular, illustrative connector shown in FIG. 1, which 
Succeeds a mathematical proof of crosspoint minimization. 

Proof of minimization 
The following proof demonstrates that the herein 

presented class of distribution networks in fact employs an 
absolute minimum number of crosspoint switches for the 
above-described connector requirements, viz., and odd 
number of symmetrically-connected switching stages each 
including square switches of a like size. 

SECTION 1-PRELIMINAREES 
The symbol CN, NS2, is used to denote the class of all 

connecting networks v with the following properties: 
(1) v is two-sided, with N terminals on each side; 
(2) v is built of an odd numbers of stages 8 k=v, . . . , 
of Square switches, each stage having N inlets and 
N outlets; 

(3) v is symmetric in the sense that 8-3-ki for 
k=1,. . . . , 72 (s-1); and 

(4) Employing the notation 
S-s(v)=number of stages of v, n= n(v)=switch size 
in the kh stage of v, where v has N/nidentical switches 
in the kth stage. 

The defining conditions of CN imply that 
- 1 

ki-ki- for k-1, . (4) 

and that 
4 (s--1) 
TT n=N k= (5) 

It is assumed throughout that n(v)is 2 for all v and all 
k=1,. . . . , s(v). The cost per terminal (on a side) c(v) of a network 
veCN is defined to be the total number of crosspoints of v 
divided by the number N of terminals on a side. Since 
there are 

Nin a k-trek 
Switches in stage k, the total number of crosspoints is 
(using the symmetry condition) 

S S %(s-l) N . . .2s N nk = N 1-1/2(s 2 7, 25:-Nank ( acro-2'Sn) 
(6) 

and so 
34(s-1) 

c(v) = n.1/2(+1)--2 2. 
kc1 (7) 

A network v is called optimal if 
c(v)=min{c(a):pleCN} (8) 

It is clear that the cost per terminal of a network veCN 
75 depends only on the switch sizes, and not at all on the 

Page 5 of 10



3,358,269 
5 

permutations that define the junctor patterns between 
stages. 

Also, it may be observed that given any network 
vieCN there is another network veCN that is rearrangeable 
and differs from v1 only in the fixed permutations that 
are used to connect the stages; in particular v1 and v2 have 
the same number of cross-points. Thus, the problem of 
selecting an optimal rearrangeable network from CN is 
equivalent to that of choosing an optimal network from 
CN, rearrangeable or not. A network in CN can be made 
rearrangeable by changing its junctor patterns at no in 
crease in cost, 
Let 
Definition 1: 

m= m (v) -s ( t = numerical index of the 
middle stage 

and 
n=n(v)=nm (v)=size of middle stage switches. 
Definition 2: 0(v)={n-1, . . . , nim-1}=the set of switch 

sizes (with repetitions) in outer (i.e., nonmiddle) stages. 
Definition 3: w(N)={0(v) : veCN}. 

Remark 1: c(v) = n(v)+2 XX 
Xe00) 

Theorem 1: Let (An) be a point (element) of wN)xX 
with 

7. . y=N (9) 
Then there exists a nonempty set Y CC 
CN Such that 

T(v)=(An), veY (10) 
The v's in Y differs only in the permutations between the 
stages, and in the placing of the outer stages, and at least 
one of them is rearrangeable. This result follows from the 
definition of C.N. 
SECTION 2-CONSTRUCTION OF THE BASIC 

PARTIAL ORDERING 
The solution to the problem of synthesizing an optimal 

rearrangeable network from CN will be accomplished as 
follows: first define a mapping T of CN into w(N)xX, 
with X={1, . . . , N}, and a partial ordering 2 of 
T(C); the map T will have the property that c(v) is a 
function of T(v); then prove that (roughly speaking) a 
network v is optimal if and only if T(v) is at the "bottom' 
of the partial ordering, i.e., that c(v) is almost an isotone 
function of T(v). 
To define a partial ordering of a finite set, it is enough 

to specify consistently which elements cover which others. 
Let Z.Z.Z. . . . be sets of positive integers 2N possibly containing repetitions. 
Definition 4: Z1 covers Z2 if and only if there are positive 

integers i and k such that k occurs in Zi, j divides k, and 
Z is obtained from Z. by replacing an occurrence of k. 
with one occurrence each of i and k/j. 

Definition 5: Z-27, if and only if there is an integer n 
and sets Z172 . . . Zn such that Z-1 covers Zi, i=0, 
1, . . . n-1 and Z=Z. 

Definition 6: T: v->0 (v), n(p) 
Apartial ordering 2 of T(CN) is defined by the follow 

ing definition of covering: 
Definition 7: Let u, v be elements of C(N) T(u) covers 
T(v) if and only if either 

i(i) n(v) <n (v), n(v) divides n(p), and 0 (v) results 
from 0 (pl.) by adding an occurrence of n(u)/n (v), or 

(ii) n(v)=n (u) and 0(u) covers 0(v). 
SECTION 3. COST IS NEARLY ISOTONE ON T(C) 
Theorem 2: If T(v)2T(u), and n(p) >6, then c(v)ac(u). 
Proof: It is enough to prove the result for u and v such 

that T(u) covers T(v). 
Case (i): n(p) <n (u), n(v) divides n(p), n(v(S2, and 

6 
0(v) results from 0(pl.) by adding an occurrence of 

Thus c(v)2c(u) if and only if 
5 n(p)Y 2n(u) 

n()(1-1)+40 (12) 
that is if 

2y 
20 itsa (13) 

where x= n(v) and y = n(u)/n (v). Now n (u) >6 implies 
that either 

(i) - n(p) 
25 n(v)=2 and n(v) 24 

O 

(ii) - n (pl.) 
n(v)=3 and m (v) >3 

30 or 
(iii) n(v) >3 
The condition 

2y 
35 21st 

is fulfilled in all three cases, and so c(v)2c (pl.). 
Case (ii): n (u)=n (v) and 0(u) covers 0(v). There 

exist integers j, k such that i divides k, is2 in 0(u), and 
40 00) results from 0(u) by replacing one occurrence of k 

with one each of i and k/i. Then 

xe0) 
. . 2k 45 = n(u)=2k+2.j----2X a 

x0) 
. . 2k 

=c(u)-2k+2}+; (14) 
Since i divides k and is2, ks2i and ks2k/i, so 50 

ki>2 max (i.)> j+ (15) 
and c(v) <c(u). 
Theorem 3: If veCN and 0 (v) do not consist entirely of 

55 prime numbers (possibly repeated), then there exists a 
network u in CN of s(v)--2 stages with c(u)<c(v), and v 
cannot be optimal in CN. 

Proof: There is a value of k in the range 12kam (v)-1 
for which nik is not a prime, say nk=ab. Replace the kth 

60 stage of 2 by two stages, one of N/a axia switches, the 
other of N/b bxb switches. Replace the (s-k-1)th stage 
of 2 by two stages, one of N/b bxb switches, the other of 
N/a axia switches. It is possible to interconnect these 
stages to give a symmetric network pl. that is rearrangeable. 

65 It is apparent that nm ()=nm() and that 0(v) covers 
0(a). Hence, the argument for case (ii) of Theorem 2 
shows that p, has strictly lower cost than v. 

Corollary 1: If N>6 and is not prime, then a network v 
consisting of one square switch is not optimal. 

SECTION 4. PRINCIPAL RESULTS 
Definition 8: An element T(v) of T(CN) is ultimate if 

there are no pleCN such that T(v) covers T(u). 
Remark 2: T(v) is ultimate if and only if n(v) is 

75 prime and 0 (v) consists entirely of prime numbers. 

70 
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Definition 9: An element T(v) of T (CN) is penulti 
mate if it covers an ultimate element. 

Definition 10: p.m. n=1,2, . . . , is the nth prime. 
Definition 11: r(n) is the prime decomposition of n, 

that is, the set of numbers (with repetitions) such that 
n = p11p.2 . . . pe (16) 

if and only if tr(n) contains exactly ox1 occurrences of 
pi, i=1,..., l, and nothing else. 

Definition 12: p is the largest prime factor of N. 
Lemma 1: If p=3 and ND6 is even, then the following 

conditions are equivalent: 
(i) v is optimal 
(ii) T(v) is penultimate and n(v)=6, or 4 

" ro-(()) (()) 
if 4 divides N 

Proof: By Theorems 2,3 only v with n(v)26 and (v) 
consisting entirely of primes can be optimal. Writing 
N=2x3y with x>1 and y21, it is seen that such v must 
have a cost c(v) having one of the forms 

The least of these is either of the last two, which corre 
spond to n(v)=6 if x=1, or to n(v)=6 or 4 if x.) 1. 
It is apparent that (ii) is equivalent to (iii). 
Lemma 2: If p=2, and ND4, then the following con 

ditions are equavalent: 
(i) v is optimal 
(ii) T(v) is penultimate and n(v) = 4 

(iii) T() = r() 4. 
Proof: With N=2x it can be seen as in Lemma 1 that 
only those v can be optimal whose cost c(v) has one 
of the forms 

2-22(x-1) 
4-1-22(x-2)] 

The second of these is the better, and corresponds to 
n(v)=4. 
Theorem 4: Let u be a network such that a prime 

humber ird n(u) occurs in 0(u). Let M result from 0(u) 
by replacing one occurrence of r by n(p). Then for any 
network v with 

(17) 

c(v) <c(pl.) (18) 
i.e., v is strictly better than p. Among such v, that is best 
for which ris largest. 

Proof: Existence of a rearrangeable v satisfying 

is guaranteed by Theorem 1. For the rest of the proof, 
observe that ron (a) and 

xeM 

= r- (u) -- c(v) (19) 
Theorem 5: If n (u)26, n(u)=2x3 y52, some prime 

number r)3 occurs in O(u), and if M results from 0 (pl.) 
by replacing one occurrence of r by x occurrences of 2, 
y occurrences of 3, and z occurrences of 5 then for any 

network veCN with 

T(v)=(M,r) 
it is true that 

(20) 
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c(v)2c(u) (21) 
i.e., v is at least as good as a. Among such v, that is best 
for which ris largest. 

Proof: Existence of a rearrangeable veCN satisfying 
T(v)=(M,p) is is given by Theorem 1. For the rest of 
the proof, we observe that r25 and 

it is true that 

X w. 

= r --n (u) - 4a-6y-102 -- c(v) (22) 

Since x, y, and z can only assume the values 0 and 1, 
with z=1 if and only if x=y=0, we have c(u)2c(v) 
the best v corresponding to the largest r. - 
Definition 13: 

Q={(4, r): r a prime and A= r() 
Definition 14: L-T-1(O). 
Remark 2: Q consists of all the absolute minima in 

the partial ordering 2 of T(CN), i.e., v c L implies that 
there are no u e CN for which 

T(a) <T(v) (23) 
Theorem 6: If pd3, then all optimal networks belong 
to L. 

Proof: Let ueCN-L be given. The following shows that 
there exists a veL that at least as good. 
Case 1: There is a sequence use u1, u2, . . . , p with 
unzáv, veL, it (ten)26 

T(u)ST(u)s . . . ST(u) (24) 
and such that T(w) covers T(v). Then the numbers 
n(u), i=1,. . . . , n are all >6, and the result follows 
from Theorem 2. Case 2: All sequences u=p1, p.2, . . . , pin, v with 
unzy, veL, T(p1)sT(u2)s . . . ST(un), and such 
that T(a) covers T(v), are such that n (un)26. Consider 
such a sequence. Let i be the smallest index i for which 
n(u)=26, i=1, . . . , n. Then Theorem 2 gives 

Since n (u)26 and T(w) covers T(v), it follows that 
0 (pi) contains an occurrence of pc3. Hence by Theorem 
5 there exists a network neCN with n(n)=p and 

c(n)2c(u)2c (pl.) (25) 
Let &sll be such that n(3) = p and T(n) covers T(8). 
Then c(3)2c(n) by case (ii) of Theorem 2. Hence 

c(8)2c (pl.) (26) 
&c. 

Theorem 7: If Na6 and v is optimal, then v is a square 
switch and c(v)=N. 

Proof: For prime N with 22NC6 the result is patent. 
If N=6 and veCs then exactly one of the following al 
ternatives obtains: 

The first alternative is optimal, and there is exactly one 
veCs such that T(v)=(6, 6), viz., the 6x6 square switch. 
Similarly, if n=4 and veC4, then T(v) = (0, 4) or 
({2}, 2); the former has cost 4, the latter 6. 

Definition 15: For ns2, D(n) is the sum of the prime 
divisors of n counted according to their multiplicity; thus 
if 

n = 2^32 ... p.k (28) 
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then 
k 

D(n) = ty X 
(n) Pe. Xe(n) (29) 

Definition 16: c(N)=min{c(v) : veC} 
Theorem 8: 

N if N <6 or N is prime 
p--2D(N1p) if N)6 and either p)3 or N is 

odd N 
c(N) 2D(N12) if N)6 in all other cases 

(i.e., p -2, or p=3 
and N is even). (30) 

Proof: 
Putting together Lemmas 1, 2 and Theorems 1, 2, 3, 

4, 6, and 7 we obtain the following values for the minimal 
cost in crosspoints per terminal on a side for networks 
in CN: 

N if N 36 or N is prime 
p--2 if p)3, N>6 

Xer (NIp) 
6-2 ac=2 3C kär. xia 

c(N)= if p=3, N>6, N even 
3-2 ac=3-6(logs N-1) 

Xsar (NPs) 
if p=3, N>6, Nodd 

4+2 X a = 4(logs N-2)=2 
Xer(N14) Xer(N12) 

if p = 2, N>6 
(31) 

simplification gives Theorem 8. 
Hence, it may be observed that the general circuit 

described hereinabove is an exact minimum for the here 
in-considered class of networks when N is greater than 
six. 

Specific example 
With the above general principles of network con 

struction, and the associated proof of minimization de 
scribed in detail above, a specific, illustrative distribution 
network will now be described. Referring to FIGS. 1 (A) 
and 1.(B), there is shown a distribution switching net 
work which connects thirty input terminals 20 with each 
of thirty output terminals 25. Employing the general net 
work structure described hereinabove, and letting N=30, 
we have the prime decomposition: 

N-30:21-31.51 
Hence, the number of switching stages S is given by 

(32) 

S=2X cy; -1 =2(1--1-1) -1 =5 2. (1--1-1) (33) 
wherein the five switching stages are denoted in FIGS. 
1(A) and 1 (B) by the reference numerals ie through 14. 
The central switching stage 12 includes a plurality of 
square switches equal in size to the largest prime factor 
of 30. Hence, each of the switches in the central stage 12 
includes a 5 x 15 array of crosspoint contact pairs, with 
each device being represented in FIGS. 1 (A) and 1 (B) by 
a heavy dot. The number of Such square Switches in the 
stage 12 is given by N/5, or 6. The six square switches 
comprising the third switching stage 12 are identified 
by the reference numeral 121 through 126, with the num 
ber 12 representing the switching stage, and the subscript 
symbolizing the particular square switch within the switch ing stage. 
The next step in constructing the thirty inlet and out 

let distribution network illustrated in FIGS. 1 (A) and 
1(B) is to choose another prime factor of 30, for Ex 
ample 3. As illustrated in FIGS. 1 (A) and 1 (B), the sec 
ond and fourth switching stages 11 and 13 each include 
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10 
N/3 or 10 Switching stages each comprising a 3 x 3 array. 
Finally, the remaining prime factor 2 gives rise to the two 
remaining switching stages 10 and 14 which are symmetri 
cally disposed about the central switching stage 12. The 
stages 10 and 14 each include N/2, or 15 square switches 
each comprising a 2 x 2 matrix array. It is noted that the 
thirty input terminals 20 correspond to the inlets of the 
first stage square switches 101 through 1915, with the 
thirty output terminals corresponding to the outlets of 
the fifteen 2 X 2 square switches 141 through 1415 which 
are included in the fifth switching stage 14. 
With the switching structures described above, it re 

mains only to specify the interstage linkage pattern. As 
indicated hereinabove, the junctors connecting adjacent 
switching stages are connected in the above-described 
overlapping manner. For example, examining the inter 
connections between the second and third switching stages 
11 and 12, note that the junctors emanating from any 
particular square switch 111 through 110 are connected 
to the uppermost free terminals located on consecutive 
square switches 21 through 126 included in the third 
switching stage 2. More particularly note, for example, 
that the junctors emanating from the switch is are respec 
tively connected to inlets of the third stage switches 12, 
125 and 126. It is observed from the above that any par 
ticular value of N gives rise to a corresponding, rear 
rangeable distribution connector which, as indicated by 
the above proof, includes a minimum number of cross 
point switches. This connector may advantageously inter 
connect the N inlets and outlets in any desired pattern. 

Comparison with prior art connectors 
To more fully illustrate the significant crosspoint saving 

which may be effected by the teachings of the present 
invention, the number of contacts included in an illus 
trative member of the present class of distribution net 
works will now be compared with the number of similar 
elements included in prior art, square matrix arrays. 
Specifically, a comparison will be made for particular 
values of N given by 

N-5m 
where m is any positive integer. 
For such a network, the total number of crosspoints 

T is given by the product of the number of switching 

(34) 

stages S multiplied by the number of crosspoints per 
switching stage C where 

S=2(m)-1) (35) and 
C=N/5(5 x 5)=5N (36) 

Hence, 
T= 2m-15N) (37) 

But, since 
malogs N (38) 

then 
T=5N (2. logs N-1) (39) 

Hence, it is observed that the total number of contacts 
T varies as N log N. To compare the crosspoints Tem 
ployed in the instant distribution switch, with the N2 
number of crosspoints employed in prior art square 
matrix arrays, let a comparison factor C.F., expressed 
as a percentage, be defined as 

100.5N2 logs N-1) 100N (10 logs N-5) C.F. = 
N2 N 

(40) 
TABLE I 

N 10 logs N-5 C.F. 

5 5 100 
25 2 5 60 
125 3 35 20 
625 4. 35 5, 6 

3,125 5 35 1.44 
15,615 6 55 ,353 
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Table I, supra, illustrates the relationship between m, 
N, 10 logsW-5, and C.F. for a range of values for in, 
with the comparison factor C.F. being illustrated in FIG. 
2 in graphical form. Thus, for example, in a distribu 
tion connector comprising 625 inlets and outlets, the Sav 
ings in the number of crosspoints required, along with 
the reduction in the associated cost of the connector fabri 
cation, amounts to the extremely significant factor of 
94.4%. In general, for the larger values of N commonly 
found in operative distribution connectors, the saving be 
comes proportionately larger, and exceeds 99% as N 
becomes greater than 3125. 

Summarizing the basic concepts of the present inven 
tion, a rearrangeable distribution connector made in ac 
cordance therewith includes an odd number of stages each 
comprising a plurality of square switches of a like size. 
Corresponding to N input and output terminals, where N 
is any positive integer such that 2"2:38 . . . k"k is the 
prime decomposition of N into a product of prime num 
bers raised to integer exponents, the composite distribu 
tion switch includes 

stages if the largest prime factor of N exceeds three or 
if the largest prime factor equals three and N is odd, 
and includes 

k 

S = 2(S o)-3 j=2 

stages if the largest prime factor of N equals three and 
N is even or if the largest prime factor equals two. 
Where the number of stages is 

the number of square switches included in each stage is 
derived by dividing N by a corresponding prime factor. 
Where the number of stages is 

S-2(S a)-3 
the number of square switches included in each stage 
other than the middle stage is also derived by dividing N 
by a corresponding prime factor. The number of Switches 
included in the middle stage in the last case is determined 
as follows. When the largest prime factor of N is equal 
to two, the number of switches in the middle stage is N/4 
(from Lemma 2). When the largest prime factor of N 
is equal to three and N is even, the number of switches 
in the middle stage is N/4 if N is divisible by four and 
N/6 otherwise (from Lemma 1). 
The total number of crosspoints included in the instant 

connector is proportional to N log N, which compares 
favorably with the N2 factor characterizing prior art 
square matrix switches. 

It is to be understood that the above-described arrange 
ments are only illustrative of the application of the prin 
ciples of the present invention. Numerous other embodi 
ments may be devised by those skilled in the art without 
departing from the spirit and scope of this invention. 
For example, while each crosspoint is represented in 
FIG. 1 as comprising a single contact pair, each of these 
Switches could, in fact, comprise a plurality of ganged 
Switching arrangements to provide simultaneous switching 
between tip, ring and sleeve telephone connectors. 

Also, it is emphasized that although the instant distribu 
tion Switch is believed to contain an absolute minimum 
number of crosspoints for the defined class of networks, 
the valuable savings effected in the number of crosspoints 
employed therein comprises a significant and worthwhile 
contribution to the art independent of the property of 
absolute minimization. - 
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What is claimed is: 
1. A symmetrical distribution network employing 

square switches comprising N input and N output ter 
minals, where N is any positive integer such that 
22:38 . . . k"k is the prime decomposition of N into a 
product of prime factors raised to integer exponents, S 
switching stages serially connected between said input 
and output terminals, where S equals 

2(a)-1 
if the largest prime factor of N equals three and N is odd 
or if the largest prime factor of N is greater than three, 
and equals 

if the largest prime factor of N equals three and N is 
even or if the largest prime factor of N equals two, each 
of said switching stages including a plurality of square 
switches of equal size. 

2. A combination as in claim 1 wherein each of said 
square switches comprise a plurality of inlets, a like plu 
rality of outlets, and a plurality of switching means con 
necting each of said inlets to each of said outlets. 

3. A combination as in claim 2 wherein the central 
switching stage comprises N/k square switches if said 
largest prime factor equals three and N is odd or if said 
largest prime factor is greater than three, and comprises 
N/4 square switches if said largest prime factor equals two 
or if said largest prime factor equals three and N is even 
and divisible by four and comprises N/6 if said largest 
prime factor equals three and N is even and not divisible 
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by four, each of said switches including k inlets and k. 
outlets. 

4. A distribution network comprising N input and N 
output terminals, where N is any positive integer such 
that 22-38 . . . k"k is the prime decomposition of N into 
a product of prime factors raised to integer exponents, 
and S switching stages serially connected between said 
input and said output terminals, where S equals 

if the largest prime factor of N equals three and N is odd 
or if said largest prime factor is greater than three, and 
equals 

k 

2(S o)-3 is 2 

if said largest prime factor equals three and N is even or 
if said largest prime factor equals two. 

5. A combination as in claim 4, wherein each of said 
Switching stages includes a plurality of square switches 
each equal in size to every other switch in said corre 
sponding Switching stage. 

6. A combination as in claim 5, wherein each of said 
Square Switches comprises a plurality of inlets, a like plu 
rality of outlets, and a plurality of switching means con 
necting each of said inlets to each of said outlets. . 

7. A combination as in claim 6 further comprising a 
plurality of junctors respectively connecting said outlets 
included on each square switch included in a given switch 
ing stage with said inlets included on different square 
Switches included in the following switching stage. 

8. A distribution network comprising N input and N 
output terminals, where N is any positive integer such 
that 2'3" . . . k"k is the prime decomposition of N 
into a product of prime factors raised to integer exponents, 
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a plurality of switching stages serially connected between 
said input and output terminals, each of said stages in 
cluding a plurality of square switches, said square switches 
included in any given noncentral switching stage being of 
a like size corresponding to an associated prime factor of N. 

9. A combination as in claim 8, wherein each of said 
square switches comprises a plurality of inlets, a like plu 
rality of outlets, and a plurality of switching means con 
necting each of said inlets to each of said outlets. 

14 
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